A

abs
absolute accuracy
    BVP
    ODE
addition
    of matrices
adjacency matrix
    and graphing
    Bucky ball
    defined
    distance between nodes
    node
    numbering nodes
airflow modeling
algorithms
    ODE solvers
        Adams-Bashworth-Moulton PECE
        Bogacki-Shampine (2,3)
        Dormand-Prince (4,5)
        modified Rosenbrock formula
        numerical differentiation formulas
amp1dae
analytical partial derivatives (BVP)
angle
arguments
    for ODE file
arrays
    elements
assignment statements
A-stable differentiation formulas

B

ballode <1> <2>
bandwidth of sparse matrix, reducing
Basic Fitting interface
batonode
bicubic interpolation <1> <2>
bilinear interpolation <1> <2>
boundary condition, ODE
Boundary Value Problems
    defined
    determining unknown parameters
    passing additional known parameters <1> <2>
Boundary Value Problems, solver properties
    analytical partial derivatives <1> <2>
        BCJacobian
        FJacobian
    bvpset function
    error tolerance <1> <2>
        absolute accuracy
        AbsTol
        relative accuracy
        RelTol
    mesh <1> <2>
    modifying property structure
    querying property structure
    solver output
        Stats
Brusselator system (ODE example)
brussode <1> <2>
Buckminster Fuller dome
Bucky ball
burgersode
BVP. See Boundary Value Problems
bvpget
bvpset

C

calling MATLAB functions
    ODE solvers
cat
characteristic polynomial
characteristic roots of matrix
chol <1> <2>
Cholesky factorization
    for sparse matrices
closest point searches
colamd
colmmd <1> <2>
colon operator
colperm
column vector
    for polynomial roots representation
    of event locations (ODE)
comparing
    interpolation methods
    sparse and full matrix storage
complex conjugate transpose
complex values in sparse matrix
computational functions
    applying to sparse matrices
condest
condition, dimension compatibility
conditions for ODEs
    boundary
    initial
confidence intervals
contents of sparse matrix
continuous extension (ODE solvers) <1> <2>
contour
contour plots, to compare interpolation methods
conv
convex hull
    multidimensional
convhull
convhulln
convolution
corrcoef
correlation coefficients
cov
covariance
creating
    sparse matrix
cubic interpolation
    multidimensional
    one-dimensional
cubic spline interpolation
curve fitting
    confidence intervals
    using the Basic Fitting interface
Cuthill-McKee, reverse ordering

D

data
    filter
    monotonic
    multivariate
    preprocessing
    sorting
data analysis
    finite differences
    triangulation
data fitting
    confidence intervals
    error bounds
    exponential fit
    exponential fits
    polynomial fits
    using the Basic Fitting interface
data gridding
    multidimensional
data normalization
decomposition
    eigenvalue
    Schur
    singular value
deconv
deconvolution
Delaunay tesselations
Delaunay triangulation
    closest point searches
delaunayn
density of sparse matrix
derivative of polynomial
descriptive statistics
det
determinant
diag
diagonal
    creating sparse matrix from
    of a matrix
diff
difference between successive vector elements
difference equations
differential equations
    boundary value problems for ODEs
    initial value problems for ODEs and DAEs
    partial differential equations
dimension compatibility
direct methods for systems of equations
directories
    funfun
discrete Fourier transform
displaying
    sparse matrices
distance between nodes
division
    matrix
    of polynomials
dot product
dsearch

E

eig
eigenvalue
    decomposition
eigenvalues
    of sparse matrix
eigenvector
error
    bound, for data fit
    tolerance
        boundary value problems
        BVP
        ODE <1> <2>
evaluating
    polynomials in matrix sense
event location (ODE) <1> <2>
examples
    adjacency matrix (sparse)
    airflow modeling
    brussode
    Bucky ball
    Delaunay triangulation
    fem1ode
    interpolation
    ODE solvers
    orbitode
    rigidode
    second difference operator
    sparse matrix <1> <2>
    theoretical graph (sparse)
    van der Pol
        extra parameters
        stiff
    vdpode
exponential fit to data
exponentials, matrix
eye <1> <2>

F

factorization
    Cholesky
    for sparse matrices
        Cholesky
        LU
        triangular
    Hermitian positive definite
    incomplete
    LU
    positive definite
    QR
fast Fourier transform. See Fourier transform, fast
fem1ode <1> <2>
fem1ode example
fem2ode
fft <1> <2>
FFT. See Fourier transform, fast
fill-in of sparse matrix
filtering
find function
    and sparse matrices
finding
    nonzero elements
finite differences
finite element discretization (ODE example)
first-order differential equations, representation for ODE solvers
fit. See data fitting
fminbnd <1> <2>
fminsearch
Fourier analysis
Fourier transform
    fast
        FFT-based interpolation
    specifying length
fplot
full <1> <2>
function
    minimizing
function functions <1> <2>
functions
    optimization
funfun directory
fzero

G

Gaussian elimination <1> <2>
geodesic dome
gplot
graph
    characteristics
    defined
    theoretical
griddata

H

hb1dae <1> <2>
hb1ode
hccurve
Hermitian positive definite factorization
humps

I

identity matrix
importing
    sparse matrix
improving solver performance
incomplete factorization
initial condition
    example
    initial condition vector
initial condition (ODE)
    defined
initial value problem
    defined
initial-boundary value problem
inner product
integration
    double
    numerical
    See also ordinary differential equation solvers
interp1
interp2
interp3
interpft
interpn
interpolation
    comparing methods
    cubic
    cubic spline
    defined
    FFT-based
    memory
    multidimensional <1> <2>
        cubic
        linear
        nearest neighbor
        scattered data
    one-dimensional
        cubic
        cubic spline
        linear
        nearest neighbor
    polynomial
    smoothness
    speed
    three-dimensional
        nearest neighbor
        tricubic
        trilinear
    two-dimensional
        bicubic <1> <2>
        bilinear <1> <2>
        nearest neighbor <1> <2>
inv
inverse
isnan
iterative methods
    for sparse matrices
    for systems of equations

J

Jacobian matrix (ODE) <1> <2>
    evaluated analytically
    sparsity pattern
    vectorized computation
Jordan Canonical Form

K

kron
Kronecker tensor product

L

least squares
linear algebra and matrices
linear interpolation
    multidimensional
linear systems of equations
    direct methods
    iterative methods
    sparse
linear transformation
linear-in-the-parameters regression
load
Lobatto IIIa ODE solver
log10
logarithm analysis with a second-order model
lu <1> <2>
LU factorization
    for sparse matrices and reordering

M

magnitude
Maple
mass matrix (ODE) <1> <2>
    constant mass matrix
    returned by ODE file
mat4bvp
mathematical functions
    finding zeros
    MATLAB functions for
    minimizing <1> <2>
    numerical integration
    of one variable
        finding zeros
    of several variables
    plotting
    quadrature
    representing in MATLAB
mathematical operations on sparse matrices
MATLAB
    function functions
    representing functions
matrices
    addition
    and linear algebra
    diagonal of
    dimension compatibility
    division
    full to sparse conversion <1> <2>
    identity
    multiplication
    orthagonal
    subtraction
    symmetric
    triangular
matrix
    characteristic roots
    elements
    exponentials
    iterative methods
    multiplication
    powers
max
meshgrid <1> <2> <3>
M-files
    to represent mathematical functions
min
minimal norm
minimizing functions
    of one variable
    of several variables
    setting minimization options
minimum degree ordering
missing values
monotonic data
    for interpolation
Moore-Penrose pseudoinverse
multidimensional arrays
    interpolation <1> <2>
multidimensional data gridding
multidimensional interpolation <1> <2>
    cubic
    linear
    nearest neighbor
    scattered data
multiple regression
multiplication
    matrix
    of polynomials
multistep solver (ODE)
multivariate data

N

NaN
NaNs
    removing from data
ndgrid
nearest neighbor interpolation <1> <2> <3> <4>
    multidimensional
nnz <1> <2>
nodes
    distance between
    numbering
nonzero elements
    number of
nonzero elements of sparse matrix
    maximum number in sparse matrix
    storage <1> <2>
    values
    visualizing with spy plot
nonzeros
norm
    Basic Fitting interface
norm, minimal
normalizing data
null
numerical integration
nzmax <1> <2>

O

ODE. See Ordinary Differential Equations
ode113
    description
ode15s <1> <2>
    description
ode23
    description
ode23s
    description
ode23t
    description
ode23tb
    description
ode45
    description
odeget
odephas2
odephas3
odeplot
odeprint
odeset
one-dimensional interpolation <1> <2>
    cubic spline
    linear
    nearest neighbor
ones
one-step solver (ODE)
operator
    second difference
operators
    colon
optimization
    calling sequence changes
    practicalities
    troubleshooting
optimization code
    updating to MATLAB Version 5 syntax
options
    minimization
orbitode <1> <2>
Ordinary Differential Equations
    coding in MATLAB
    definition
    passing additional parameters
    rewriting for ODE solvers
    solvers
Ordinary Differential Equations, solver properties
    error tolerance <1> <2>
        absolute accuracy
        AbsTol
        NormControl
        relative accuracy
        relative to norm of solution
        RelTol
    event location <1> <2>
        Events
    Jacobian matrix <1> <2>
        Jacobian
        JPattern
        Vectorized
    mass matrix <1> <2>
        InitialSlope
        Mass
        MassSingular
        MStateDependence
        MvPattern
    modifying property structure
    ode15s
        BDF
        MaxOrder
    odeset function
    querying property structure
    solution components for output function
    solver output
        OutputFcn
        OutputSel
        Refine
        Stats <1> <2>
    specifying (overview) <1> <2> <3>
    step size <1> <2>
        InitialStep
        MaxStep
Ordinary Differential Equations, solvers
    basic example
        nonstiff problem
        stiff problem
    boundary conditions
    calling
    different kinds of systems
    examples
    multistep solver
    nonstiff solvers
    obtaining solutions at specific times
    one-step solver
    overview
    representing problems
    rewriting problem as first-order system
    solution array
    stability
    stiff problems
    stiff solvers
    syntax, basic
    time interval
    time span vector
    van der Pol example
        extra parameters
        nonstiff
        stiff
orthogonal matrix
orthogonalization
orthonormal columns
outer product
outliers
output properties
    BVP solver
    ODE solvers
overdetermined systems of simultaneous linear equations

P

Partial Differential Equations
    definition
    representing
    solver
partial fraction expansion
partial pivoting
pchip
    Basic Fitting interface
PDE. See Partial Differential Equations
pdex1
pdex2
pdex3
pdex4
pdex5
performance
    improving for solvers
permutations
phase
pinv
pivoting, partial
plotting
    mathematical functions
poly <1> <2>
polyder
polyfit <1> <2> <3> <4> <5>
    Basic Fitting interface
polynomial
    fits to data
    interpolation
    regression
polynomials
    and curve fitting
    basic operations
    characteristics
    derivative of
    dividing
    evaluating in matrix sense
    multiplying
    representing
    roots
polyval <1> <2> <3> <4>
positive definite factorization
    Hermitian
powers
    matrix
preconditioner for sparse matrix
preprocessing data <1> <2>
product
    dot
    inner
    outer
property structure (BVP)
    creating
    modifying
    querying
property structure (ODE)
    creating
    modifying
    querying
pseudoinverses

Q

qr
QR factorization <1> <2>
quad <1> <2>
quad8 <1> <2>
quadrature
questions and answers, ODE solvers
    different kinds of systems

R

rand
rank
    deficiency <1> <2>
rational format
regression
    linear-in-the-parameters
    multiple
    polynomial
relative accuracy
    BVP
    ODE
Removing NaNs from data
reorderings
    and LU factorization
    for sparser factorizations
    minimum degree ordering
    to reduce bandwidth
representing
    polynomial roots
    polynomials
    problems for ODE solvers
residuals
    for exponential data fit
residue
rigid body ODE example
rigidode <1> <2>
roots
roots of polynomial
row vector
    for polynomial representation

S

save
scalar
scattered data
    multidimensional tesselation and interpolation
    triangulation and interpolation
schur
Schur decomposition
second difference operator, example
shockbvp
singular value decomposition
size
solvers. See ODE solvers
solving linear systems of equations
    sparse
sort
sorting data
sparse <1> <2>
sparse matrix
    advantages
    and complex values
    Cholesky factorization
    computational considerations
    contents
    conversion from full <1> <2>
    creating
        directly
        from diagonal elements
    defined
    density
    distance between nodes
    eigenvalues
    elementary
    example
    fill-in
    importing
    linear algebra
    linear equations
    linear systems of equations
    LU factorization
        and reordering
    mathematical operations
    nonzero elements
        maximum number
        specifying when creating matrix
        storage <1> <2>
        values
    nonzero elements of sparse matrix
        number of
    operations
    permutation
    preconditioner
    propagation through computations
    QR factorization
    reordering <1> <2>
    storage
        for various permutations
        viewing
    theoretical graph
    triangular factorization
    viewing contents graphically
    viewing storage
    visualizing
    working with
sparse ODE
    example
spconvert
spdiags
speye <1> <2> <3>
spline
    Basic Fitting interface
spones
spparms
sprand
spy
spy plot
sqrtm
stability (ODE solvers)
statistics
    analyzing residuals
    correlation coefficients
    covariance
    descriptive
    preprocessing data
step size (ODE) <1> <2>
    first step
    upper bound
stiff ODE
    example
stiffness (ODE), defined
storage
    for various permutations of sparse matrix
    of sparse matrix
    sparse and full, comparison
    viewing for sparse matrix
subtraction
    of matrices
sum <1> <2>
surface plots
    to compare interpolation methods
svd
symamd
Symbolic Math Toolbox
symmetric matrix
symmmd <1> <2>
symrcm <1> <2>
systems of equations. See linear systems of equations
systems of ODEs

T

tesselation
    Delaunay
tessellation
    Voronoi diagrams
theoretical graph
    example
    node
three-dimensional interpolation
    nearest neighbor
    tricubic
    trilinear
time
    interval (ODE)
transformed data
    magnitude
    phase
transforms
    discrete Fourier
    fast Fourier
    fft
transpose
    complex conjugate
    unconjugated complex
triangular factorization
    for sparse matrices
triangular matrices
triangulation
    closest point searches
    Delaunay
    Voronoi diagrams
    See also tesselation
tricubic interpolation
trilinear interpolation
tsearch
twobvp
two-dimensional interpolation
    bicubic
    bilinear
    nearest neighbor

U

unconjugated complex transpose
unwrap
updating optimization code to MATLAB Version 5 syntax

V

van der Pol example
    extra parameters
    simple, nonstiff
    simple, stiff
vdpode <1> <2>
vector
    column
    initial condition (ODE)
    row
    time span vector (ODE)
vector products
vectorization
    for Jacobian matrix computation (ODE)
visualizing
    ODE solver results
    sparse matrix
        spy plot
voronoi
Voronoi diagrams
    multidimensional
voronoin

W

whos

Z

zeros