ACF
AIC
    using for model selection
aicbic
Akaike information criteria. See AIC
AR model
    converting from ARMA model
ARCH/GARCH effects
    hypothesis test
archtest
ARMA model
    converting to AR model
    converting to MA model
asymptotic behavior
    for long-range forecast horizons
autocorr
auto-correlation function. See ACF
auto-regressive model. See AR model

Bayesian information criteria. See BIC
BIC
    using for model selection

compounding
    continuous and periodic
conditional mean models
    with regression components
conditional standard deviations
    inferred from observed return series
    of forecast errors
    simulating
conditional variances
    constant
    of the innovations process
constraints
    boundary <1> <2>
    equality
    fixing model parameters
    stationarity and positivity
conventions in GARCH Toolbox <1> <2>
convergence
    considerations
    determining status
crosscorr
cross-correlation function. See XCF

default model
    estimation example
    forecasting example
defining a model
    using a GARCH specification structure

estimating initial parameters
estimation
    count of coefficients <1> <2>
    incorporating a regression model
    of GARCH process parameters
    summary information
estimation example
    estimating the model parameters
    post-estimation analysis
    pre-estimation analysis
    using the default model

fixing model parameters
forecast
    how to compute
forecast errors
    conditional standard deviations <1> <2>
forecasted explanatory data
forecasting
    asymptotic behavior
    computing RMSE
    conditional mean
    conditional standard deviation
    incorporating a regression model
    minimum mean square error volatility. See MMSE volatility
    MMSE volatility <1> <2>
    plotting results
    using the default model

GARCH
    limitations
    overview
    uses for
GARCH model
    default
GARCH process
    forecasting
    inferring innovations
    objective function
    parameter estimation
        count of coefficients
        displaying results
        plotting results
    simulation
GARCH specification structure
    contents
    creating and modifying parameters <1> <2>
    definition of fields
    fixing model parameters
    parameters that affect convergence
    retrieving parameters
    use of parameters in simulation
    using as function input and output
    using to define a model
GARCH Toolbox
    conventions and clarifications
        array definitions
        compounding
        precision of calculations
        row and column conventions
        stationarity
    overview
    recommendations and suggestions
garchar
garchcount
garchdisp
garchfit
garchget
garchinfer
garchllfn
garchma
garchplot
garchpred
garchset
garchsim

homoskedasticity
    unconditional variance
hypothesis tests
    ARCH/GARCH effects
    likelihood ratio
    Ljung-Box lack-of-fit

inference
    using a regression model
inferring
    conditional standard deviations
    GARCH innovations
innovations
    distribution
    inferring from observed return series
    serial dependence
    simulating

lack-of-fit hypothesis test
lagged time series matrix
lagmatrix
lbqtest
likelihood ratio hypothesis test
likelihood ratio tests
    using for model selection
Ljung-Box lack-of-fit hypothesis test
log-likelihood objective function
    computing values
    gradient values
    maximization
    optimized value
lratiotest

MA model
    converting from ARMA model
maximum likelihood estimation
model parameters
    boundary constraints
    equality constraints
    estimating
    initial estimates
model selection and analysis
    using AIC and BIC
    using likelihood ratio tests
Monte Carlo simulation
moving average model. See MA model

PACF
parameter estimation of GARCH process
parcorr
parsimonious parameterization <1> <2>
partial auto-correlation function See PACF
plotting
    auto-correlation function
    cross-correlation function
    forecasting results
    parameter estimation results
    partial auto-correlation function
    simulation results
prerequisites
price series
    converting from return series
    converting to return series
price2ret

regression
    in a Monte Carlo framework
regression components
    in estimation
    in forecasting
    in inference
    in simulation
    of conditional mean models
ret2price
return series
    converting from price series
    converting to price series
    data size and quality
    simulating
RMSE
    computing for forecasted data
root mean square error. See RMSE

selecting a model
shifted time series matrix
simulating sample paths
simulation
    of GARCH process
    plotting results
    using a regression model
    using ordinary least squares regression
simulation example
    using a higher order model
    using the default model
specification structure. See GARCH specification structure
stationary and nonstationary time series

time series
    correlation of observations
    stationary and nonstationary
time series matrix
    lagged or shifted
transient effects
    minimizing
    overview
transients
    in the simulation process
typographical conventions (table)

unconditional variances
    of the innovations process

variances
    conditional and unconditional
volatility clustering

XCF