Getting Started

    Preface
        Using This Guide
        Related Products
        Typographical Conventions

    Introduction
        What Is the Optimization Toolbox?
        New Features in Version 2.2
            New fsolve Default Algorithm

        Configuration Information
        Technical Conventions
            Matrix, Vector, and Scalar Notation

        Acknowledgments

Examples

Tutorial

    Introduction
        Problems Covered by the Toolbox
        Using the Optimization Functions

    Examples that Use Standard Algorithms
        Unconstrained Minimization Example
        Nonlinear Inequality Constrained Example
        Constrained Example with Bounds
        Constrained Example with Gradients
        Gradient Check: Analytic Versus Numeric
        Equality Constrained Example
        Maximization
        Greater-Than-Zero Constraints
        Additional Arguments: Avoiding Global Variables
        Nonlinear Equations with Analytic Jacobian
        Nonlinear Equations with Finite-Difference Jacobian
        Multiobjective Examples

    Large-Scale Examples
        Problems Covered by Large-Scale Methods
        Nonlinear Equations with Jacobian
        Nonlinear Equations with Jacobian Sparsity Pattern
        Nonlinear Least-Squares with Full Jacobian Sparsity Pattern
        Nonlinear Minimization with Gradient and Hessian
        Nonlinear Minimization with Gradient and Hessian Sparsity Pattern
        Nonlinear Minimization with Bound Constraints and Banded Preconditioner
        Nonlinear Minimization with Equality Constraints
        Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints
        Quadratic Minimization with Bound Constraints
        Quadratic Minimization with a Dense but Structured Hessian
        Linear Least-Squares with Bound Constraints
        Linear Programming with Equalities and Inequalities
        Linear Programming with Dense Columns in the Equalities

    Default Parameter Settings
        Changing the Default Settings

    Displaying Iterative Output
        Output Headings: Medium-Scale Algorithms
        Output Headings: Large-Scale Algorithms

    Optimization of Inline Objects Instead of M-Files
    Typical Problems and How to Deal with Them
    Converting Your Code to Version 2 Syntax
        Using optimset and optimget
        New Calling Sequences
        Example of Converting from constr to fmincon

    Selected Bibliography

Standard Algorithms

    Optimization Overview
    Unconstrained Optimization
        Quasi-Newton Methods
        Line Search
        Quasi-Newton Implementation

    Least-Squares Optimization
        Gauss-Newton Method
        Levenberg-Marquardt Method
        Nonlinear Least-Squares Implementation

    Nonlinear Systems of Equations
        Gauss-Newton Method
        Trust-Region Dogleg Method
        Nonlinear Equations Implementation

    Constrained Optimization
        Sequential Quadratic Programming (SQP)
        Quadratic Programming (QP) Subproblem
        SQP Implementation

    Multiobjective Optimization
        Introduction
        Goal Attainment Method
        Algorithm Improvements for Goal Attainment Method

    Selected Bibliography

Large-Scale Algorithms

    Trust-Region Methods for Nonlinear Minimization
    Preconditioned Conjugate Gradients
    Linearly Constrained Problems
        Linear Equality Constraints
        Box Constraints

    Nonlinear Least-Squares
    Quadratic Programming
    Linear Least-Squares
    Large-Scale Linear Programming
        Main Algorithm
        Preprocessing

    Selected Bibliography

Functions - By Category

    Minimization
    Equation Solving
    Least Squares (Curve Fitting)
    Utility
    Demos of Large-Scale Methods
    Demos of Medium-Scale Methods

Function Arguments

    Input Arguments
    Output Arguments

Optimization Parameters

Functions - Alphabetical List

Printable Documentation (PDF)

Product Page (Web)