DSP Blockset    
Modified Covariance AR Estimator

Compute an estimate of AR model parameters using the modified covariance method.

Library

Estimation / Parametric Estimation

Description

The Modified Covariance AR Estimator block uses the modified covariance method to fit an autoregressive (AR) model to the input data. This method minimizes the forward and backward prediction errors in the least-squares sense. The input is a frame of consecutive time samples, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, A(z), independently for each successive input.

The order, p, of the all-pole model is specified by the Order parameter.

The top output, A, contains the normalized estimate of the AR model coefficients in descending powers of z,

The scalar gain, G, is provided at the bottom output (G).

Dialog Box

Estimation order
The order of the AR model, p.

References

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported Data Types

To learn how to convert to the above data types in MATLAB and Simulink, see Supported Data Types and How to Convert to Them.

See Also

Burg AR Estimator
DSP Blockset
Covariance AR Estimator
DSP Blockset
Modified Covariance Method
DSP Blockset
Yule-Walker AR Estimator
DSP Blockset
armcov
Signal Processing Toolbox

Also see Parametric Estimation for a list of all the blocks in the Parametric Estimation library.


  Minimum Modified Covariance Method