Symbolic Math Toolbox    
ifourier

Inverse Fourier integral transform

Syntax

Description

f = ifourier(F) is the inverse Fourier transform of the scalar symbolic object F with default independent variable w. The default return is a function of x. The inverse Fourier transform is applied to a function of w and returns a function of x.

If F = F(x), ifourier returns a function of t.

By definition

f = ifourier(F,u) makes f a function of u instead of the default x.

Here u is a scalar symbolic object.

f = ifourier(F,v,u) takes F to be a function of v and f to be a function of u instead of the default w and x, respectively.

Examples

Inverse Fourier Transform
MATLAB Command












syms a real
f = exp(-w^2/(4*a^2))
F = ifourier(f)
F = simple(F)
returns
a*exp(-x^2*a^2)/pi^(1/2)














g = exp(-abs(x))


ifourier(g)
returns
1/(1+t^2)/pi














f = 2*exp(-abs(w)) - 1


simple(ifourier(f,t))
returns
-(-2+pi*Dirac(t))/(1+t^2)/pi












syms w real
f = exp(-w^2*abs(v))*sin(v)/v


ifourier(f,v,t)
returns
-1/2*(-atan((t+1)/w^2)
+atan((-1+t)/w^2))/pi

See Also

fourier, ilaplace, iztrans


  hypergeom ilaplace