Mapping Toolbox | ![]() ![]() |
Compute auxiliary sphere radii
Syntax
r = rsphere('biaxial',geoid) r = rsphere('biaxial',geoid,method
) r = rsphere('triaxial',geoid) r = rsphere('triaxial',geoid,method
) r = rsphere('eqavol',geoid) r = rsphere('authalic',geoid) r = rsphere('rectifying',geoid) r = rsphere('curve',geoid) r = rsphere('curve',geoid,lat) r = rsphere('curve',geoid,method
) r = rsphere('curve',geoid,lat,method
) r = rsphere('curve',geoid,lat,method
,units
) r = rsphere('euler',lat1,lon1,lat2,lon2,geoid) r = rsphere('euler',lat1,lon1,lat2,lon2,geoid,units
)
Description
This command calculates the radii of auxiliary spheres for the ellipsoid. An auxiliary sphere is a sphere that shares certain desired characteristics with
the ellipsoid.
r = rsphere('biaxial',geoid) calculates the radius of an biaxial auxiliary sphere for the ellipsoid specified by the two-element geoid vector geoid
. The output, r
, is the radius of this sphere in units consistent with the semimajor axis, that is, the first element of geoid
. The biaxial radius is calculated by averaging the semimajor and semiminor axes of the ellipsoid, giving each
equal weight.
r = rsphere('biaxial',geoid,method
) specifies the averaging method. If the string method
is 'mean'
(the default), an arithmetic mean is used. If method
is 'norm'
, a geometric mean is used.
r = rsphere('triaxial',geoid) results in a triaxial radius, which is calculated by averaging the ellipsoidal axes while giving double weight to the semimajor axis to reflect its role in two of the ellipsoid's three dimensions.
r = rsphere('eqavol',geoid) returns the radius of a sphere with a volume equal to that of the ellipsoid.
r = rsphere('authalic',geoid) returns the radius of a sphere with a surface area equal to that of the ellipsoid.
r = rsphere('rectifying',geoid) returns the radius of a sphere with meridional distances equal to those of the ellipsoid.
r = rsphere('curve',geoid,lat,method
,units
) returns a radius that is the result of averaging the meridianal and transverse radii of curvature at the specified latitude, lat
. The units of the input lat
can be specified by the valid angle units string units
. The default units are 'degrees'
, the default averaging method is 'mean'
, and the default latitude is 45°.
r = rsphere('euler',lat1,lon1,lat2,lon2,geoid) calculates a radius using Euler's Theorem. This calculation requires the specification of an arc, which is defined by its endpoints, (lat1
,lon1
) and (lat2
,lon2
).
Examples
Different criteria result in different spheres:
r = rsphere('biaxial',almanac('earth','geoid','km')) r = 6.3674e+03 r = rsphere('triaxial',almanac('earth','geoid','km')) r = 6.3710e+03 r = rsphere('curve',almanac('earth','geoid','km')) r = 6.3781e+03
See Also
rcurve |
Radii of curvature for the ellipsoid |
![]() | roundn | scaleruler | ![]() |