Mapping Toolbox | ![]() ![]() |
Calculate radii of curvature on an ellipsoid
Syntax
r = rcurve(geoid,lat) r = rcurve(geoid,lat,units
) r = rcurve('parallel',geoid,lat,units
) r = rcurve('meridian',geoid,lat,units
) r = rcurve('transverse',geoid,lat,units
)
Description
r = rcurve(geoid,lat) or r = rcurve('parallel',geoid,lat) returns the parallel radius of curvature at the latitude lat
for a given elliptical definition, where geoid
is a two-element geoid vector. This is the radius of the small circle encompassing the ellipsoid at the given latitude. The radius is a distance in units consistent with the semimajor axis, the first element of geoid
.
r = rcurve(geoid,lat,units
) specifies the units of the input lat
, where units
is any valid angle units string. The default is 'degrees'
.
r = rcurve('meridian',geoid,lat,units
) returns the meridianal radius, which is the radius of curvature at the latitude lat
for the ellipse described by a meridian on the ellipsoid.
r = rcurve('transverse',geoid,lat,units
) returns the transverse radius, which is the radius of a curve described by the intersection of the ellipsoid with a plane normal to the surface of the ellipsoid at the latitude lat
.
Examples
The radii of curvature of the default geoid at 45º, in kilometers:
r = rcurve('transverse',almanac('earth','geoid','km'),45,... 'degrees') r = 6.3888e+03 r = rcurve('meridian',almanac('earth','geoid','km'),45,... 'degrees') r = 6.3674e+03 r = rcurve('parallel',almanac('earth','geoid','km'),45,... 'degrees') r = 4.5024e+03
See Also
geod2aut iso2geod |
Ellipsoid definition functions notation |
rsphere |
Radii of auxiliary spheres |
![]() | rc2yx | readfields | ![]() |