Fuzzy Logic Toolbox | ![]() ![]() |
ANFIS and the ANFIS Editor GUI
The basic structure of the type of fuzzy inference system that we've seen thus far is a model that maps input characteristics to input membership functions, input membership function to rules, rules to a set of output characteristics, output characteristics to output membership functions, and the output membership function to a single-valued output or a decision associated with the output. We have only considered membership functions that have been fixed, and somewhat arbitrarily chosen. Also, we've only applied fuzzy inference to modeling systems whose rule structure is essentially predetermined by the user's interpretation of the characteristics of the variables in the model.
In this section we discuss the use of the function anfis
and the ANFIS Editor GUI in the Fuzzy Logic Toolbox. These tools apply fuzzy inference techniques to data modeling. As you have seen from the other fuzzy inference GUIs, the shape of the membership functions depends on parameters, and changing these parameters will change the shape of the membership function. Instead of just looking at the data to choose the membership function parameters, we will see how membership function parameters can be chosen automatically using these Fuzzy Logic Toolbox applications.
![]() | Conclusion | A Modeling Scenario | ![]() |