SIMULINK

Dynamic System Simulation for MATLAB*

Modeling
1

Simulation
—

Implementation
B

The

Hom
Writing S-Functions \I_nﬁc

Version 4

X LB

° B

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

http://www._mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks .com Bug reports

doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Writing S-Functions
O COPYRIGHT 1998 - 2000 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial” computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: October 1998 First printing Revised for Simulink 3.0 (Release 11)
November 2000 Second printing Revised for Simulink 4.0 (Release 12)

Contents

Overview of S-Functions

1|

Introduction 1-2
What Isan S-Function? 1-2
Using S-Functionsin Models 1-2
Passing Parameters to S-Functions 1-3
When to Use an S-Function 1-5
How S-Functions Work 1-5
Implementing S-Functions 1-9
S-Function Concepts 1-11
S-Function Examples 1-16

2|

Introduction 2-2
S-Function Arguments 2-2
S-Function Qutputs i 2-3
Defining S-Function Block Characteristics 2-4
A Simple M-File S-Function Example 2-5

Examples of M-File S-Functions 2-8
Example - Continuous State S-Function 2-8
Example - Discrete State S-Function 2-11
Example - Hybrid System S-Functions 2-13
Example - Variable Sample Time S-Functions 2-16
Processing S-Function Parameters 2-19

Contents

Writing S-Functions in C

3

Introduction 3-2
Example of a Basic C MEX S-Function 3-3
Templates for C S-Functions 3-9
S-Function Source File Requirements 3-9
The SImStruct 3-11
CompilingCS-Functions 3-12
How Simulink Interacts with C S-Functions 3-13
Process VIiew 3-13
Data VIeW 3-17
Writing Callback Methods 3-21
Converting Level 1 C MEX S-Functionsto Level 2 3-22
Obsolete Macrost 3-24

4 |

OVEIVIBW . ..o e 4-2
Source FileFormat 4-3
Making C++ Objects Persistent 4-7
Building C++ S-Functions 4-8

Creating Ada S-Functions

S|

Introduction 5-2
Ada S-Function Source FileFormat 5-3
Ada S-Function Specification 5-3
Ada S-FunctionBody 5-4
Writing Callback Methods inAda 5-6
Callbacks Invoked By Simulink 5-6
Implementing Callbacks 5-7
Omitting Optional Callback Methods 5-7
SimStruct Functions 5-7
Building an Ada S-Function 5-9
Using an Ada S-FunctioninaModel 5-10
Example of an Ada S-Function 5-11

Creating Fortran S-Functions

6 |

Introduction 6-2
Level 1 Versus Level 2 S-Functions 6-2
Creating Level 1 Fortran S-Functions 6-3
The Fortran MEX Template File 6-3
Example 6-3
Inline Code Generation Example 6-6
Creating Level 2 Fortran S-Functions 6-7
Template File 6-7
C/Fortran Interfacing Tips i 6-7
Constructingthe Gatewayo .. 6-11
An Example C-MEX S-Function Calling Fortran Code 6-13

iv

Contents

PortingLegacy Code i 6-15

FindtheStates 6-15
Sample TimMes 6-15
Multiple Instances 6-15
Use Flints If Needed 6-16
ConsiderationsforReal Time 6-16

A

Introduction 7-2
Dialog Parameters i 7-3
Tunable Parameters 7-4
Run-Time Parameters, 7-6
Creating Run-Time Parameters 7-7
Updating Run-Time Parameters 7-7
Inputand OQutputPorts 7-9
Creating InputPorts 7-9
CreatingOQutputPorts 7-11
Scalar Expansionof Inputs 7-12
Masked Multiport S-Functions 7-13
Custom Data TYPeSottt 7-15
Sample Times 7-16
Block-Based Sample Times 7-16
Port-Based Sample Times, 7-19
Specifying the Number of Sample Times in mdlInitializeSizes 7-20
Hybrid Block-Based and Port-Based Sample Times 7-20
Multirate S-FunctionBlocks 7-21
Synchronizing Multirate S-Function Blocks 7-22
Work Vectors e 7-24
Work Vectors and Zero Crossingsoovvv ... 7-26

An Example Involving a Pointer Work Vector 7-26

Memory Allocation 7-28
Function-Call Subsystems 7-29
Handling Errors 7-31

Exception Free Code i 7-31

ssSetErrorStatus Termination Criteria 7-32
S-Function Examples 7-34

Example - Continuous State S-Function 7-34

Example - Discrete State S-Function 7-38

Example - Hybrid System S-Functions 7-42

Example - Variable Step S-Function 7-45

Example - Zero Crossing S-Function 7-48

Example - Time Varying Continuous Transfer Function 7-60

Writing S-Functions for Real-Time Workshop

8 |

Introduction 8-2
Classes of Problems Solved by S-Functions 8-2
Types of S-Functions 8-3
Basic Files Required for Implementation 8-5

Noninlined S-Functions 8-7

S-Function Module Names for Real-Time Workshop Builds ... 8-7

Writing Wrapper S-Functions 8-9
The MEX S-Function Wrappercciiiuen.... 8-9
The TLC S-Function Wrapper, 8-14
TheInlined Code i 8-18

Fully Inlined S-Functions 8-19
Multiport S-FunctionExample 8-19

Fully Inlined S-Function with the mdIRTW Routine 8-21

Vi

Contents

S-Function RTWdata for Generating Code with

Real-Time Workshop 8-22
The Direct-Index Lookup Table Algorithm 8-23
The Direct-Index Lookup Table Example 8-24

S-Function Callback Methods

Callback Method Reference 9-2
mdICheckParameters i 9-3
mdIDerivatives 9-5
mdlGetTimeOfNextVarHit 9-6
mdlinitializeConditions 9-7
mdlInitializeSampleTimes 9-9
mdlInitializeSizes 9-13
MAIOULPULS . .. e 9-17
mdlProcessParameters, 9-18
MAIRTW 9-20
mdlSetDefaultPortComplexSignals 9-21
mdlSetDefaultPortDataTypes ii.. 9-22
mdlSetDefaultPortDimensioninfo 9-23
mdlSetInputPortComplexSignal 9-24
mdISetinputPortDataType, 9-25
mdISetlnputPortDimensioninfo 9-26
mdISetlnputPortFrameData 9-28
mdlSetInputPortSampleTime 9-29
mdISetInputPortWidth 9-31
mdlISetOutputPortComplexSignal 9-32
mdlISetOutputPortDataType, 9-33
mdISetOutputPortDimensioninfo 9-34
mdISetOutputPortSampleTime 9-36
mdISetOutputPortWidth 9-37
mdISetWorkWidths 9-38
MAIStart e 9-39
mdlTerminate 9-40
mdlUpdate e 9-41
MAIZEroCrosSiNgSo vttt e 9-42

SimStruct Functions

10 |

Introduction 10-2
Language SUpportt 10-2
The SImStruct 10-2

SimStruct Macros and Functions Listed by Usage 10-3
Miscellaneous 10-3
Error Handlingand Status 10-3
/O Port ... 10-4
Dialog Box Parameters 10-6
Run-Time Parameters 10-7
Sample Time 10-8
Stateand Work Vector i 10-9
Simulation Information 10-12
FunctionCall i 10-12
Data Type . .. 10-13
Real-Time Workshop 10-13

Macro Reference i 10-15
ssCallExternalModeFcn 10-16
ssCallSystemWithTid 10-17
sSGetAbsTol 10-18
ssGetContStateAddress i 10-19
ssGetContStateso 10-20
ssGetDataTypeName 10-21
ssGetDataTypeld 10-22
ssGetDataTypeSize 10-23
ssGetDataTypeZero 10-24
ssGetDiscStates 10-25
ssGetDTypeldFromMXArraycoiiii i 10-26
ssGetDWorkComplexSignal 10-28
ssGetDWorkDataType 10-29
ssGetDWorkName 10-30
ssGetDWorkUsedAsDState 10-31
ssGetDWorkWidth 10-32
SSGEtAX . . 10-33
SSGetErrorStatus 10-34

ssGetlnputPortBufferDstPort 10-35

viii

Contents

ssGetlnputPortConnected 10-36

ssGetlnputPortComplexSignal 10-37
ssGetlnputPortDataType 10-38
ssGetlnputPortDimensioninfo 10-39
ssGetlnputPortDimensions, 10-40
ssGetlnputPortDirectFeedThrough 10-41
ssGetlnputPortFrameData 10-42
ssGetlnputPortNumDimensions 10-43
ssGetlnputPortOffsetTime 10-44
ssGetlnputPortOverWritable 10-45
ssGetlnputPortRealSignal 10-46
ssGetlnputPortRealSignalPtrs 10-47
ssGetlnputPortRequiredContiguous 10-48
ssGetlnputPortReusable 10-49
ssGetlnputPortSampleTime 10-50
ssGetlnputPortSampleTimelndex 10-51
ssGetlnputPortSignal 10-52
ssGetlnputPortSignalAddress 10-54
ssGetlnputPortSignalPtrs 10-55
ssGetlnputPortWidth 10-56
ssGetIWork 10-57
ssGetModelName 10-58
ssGetModeVector 10-59
ssGetModeVectorValue 10-60
ssGetNonsampledZCs 10-61
ssGetNumContStates i 10-62
ssGetNumbDataTypeso 10-63
ssGetNumDiscStates 10-64
ssGetNumDWork 10-65
ssGetNumlInputPorts 10-66
ssGetNumIWork 10-67
ssGetNumModes e 10-68
ssGetNumNonsampledZCs 10-69
ssGetNumOutputPorts 10-70
ssGetNumParameters 10-71
ssGetNumRunTimeParams 10-72
ssGetNumPWork 10-73
ssGetNumRWork 10-74
ssGetNumSampleTimes 10-75
ssGetNumSFcnParams 10-76

ssGetOutputPortBeingMerged 10-77

ssGetOutputPortComplexSignal 10-78
ssGetOutputPortDataType 10-79
ssGetOutputPortDimensions 10-80
ssGetOutputPortFrameData 10-81
ssGetOutputPortNumDimensions 10-82
ssGetOutputPortOffsetTime 10-83
ssGetOutputPortRealSignal 10-84
ssGetOutputPortReusable 10-85
ssGetOutputPortSampleTime 10-86
ssGetOutputPortSignal 10-87
ssGetOutputPortSignalAddress 10-88
ssGetOutputPortWidth 10-89
ssGetPath 10-90
ssGetParentSS 10-91
ssGetPlacementGroup ... 10-92
SSGEtPWOIrK . .. 10-93
ssGetRealDiscStates i 10-94
SSGEetROOLSS 10-95
ssGetRunTimeParaminfo 10-96
SSGEtRWOIK ... 10-97
ssGetSampleTimeOffset 10-98
ssGetSampleTimePeriod 10-99
ssGetSFcnParam 10-100
ssGetSFcnParamsCount 10-101
ssGetSimMode 10-102
ssGetSolverName 10-103
ssGetStateAbsTol 10-104
SSGetT 10-105
SSGetTNEeXt . .. 10-106
ssGetTaskTime 10-107
ssGetTFinal 10-108
ssGetTStart 10-109
sslsContinuousTask 10-110
ssGetUserData 10-111
ssIsFirstinitCond 10-112
ssIsMajorTimeStep i 10-113
ssIsMinorTimeStep 10-114
sslsSampleHit 10-115
sslsSpecialSampleHit 10-116

X

Contents

sslsVariableStepSolver 10-117

SSPrintf 10-118
ssRegAllTunableParamsAsRunTimeParams 10-119
ssRegisterDataTypeottt 10-120
ssSetCallSystemOutput 10-121
ssSetDataTypeSize ...t 10-122
ssSetDataTypeZero 10-123
ssSetDWorkComplexSignal 10-125
ssSetDWorkDataType 10-126
ssSetDWorkName 10-127
ssSetDWorkUsedAsDState 10-128
ssSetDWorkWidth 10-129
SSSetErrorStatus 10-130
ssSetExternalModeFcn L L 10-131
ssSetlnputPortComplexSignal 10-132
ssSetlnputPortDataType 10-133
ssSetlnputPortDimensioninfo 10-134
ssSetlnputPortFrameData 10-136
ssSetlnputPortDirectFeedThrough 10-137
ssSetlnputPortMatrixDimensions 10-138
ssSetlnputPortOffsetTime 10-139
ssSetlnputPortOverWritable 10-140
ssSetlnputPortReusable 10-141
ssSetlnputPortRequiredContiguous 10-143
ssSetlnputPortSampleTime 10-144
ssSetlnputPortSampleTimelndex 10-145
ssSetlnputPortVectorDimension 10-146
ssSetlnputPortWidth 10-147
ssSetModeVectorValue 10-148
ssSetNumContStates 10-149
ssSetNumbDiscStates 10-150
ssSetNumDWork 10-151
ssSetNumlnputPorts 10-152
ssSetNumIWork 10-153
ssSetNumModes 10-154
ssSetNumNonsampledZCs 10-155
sSSetNumOuUtputPorts 10-156
ssSetNumPWork 10-157
ssSetNumRunTimeParams 10-158
ssSetNuUmRWork 10-159

ssSetNumSampleTimes, 10-160

ssSetNumSFcnParams i, 10-161
ssSetOffsetTime 10-162
SSSEtOPLIONS . . . o oo 10-163
ssSetOutputPortComplexSignal 10-167
ssSetOutputPortDataType 10-168
ssSetOutputPortDimensioninfo 10-169
ssSetOutputPortFrameData 10-170
ssSetOutputPortMatrixDimensions 10-171
ssSetOutputPortOffsetTime 10-172
ssSetOutputPortReusable 10-173
ssSetOutputPortSampleTime 10-174
ssSetOutputPortVectorDimension 10-175
ssSetOutputPortWidth 10-176
ssSetParameterName 10-177
ssSetParameterTunable 10-178
ssSetPlacementGroup 10-179
ssSetRunTimeParaminfo 10-180
ssSetSampleTime 10-183
ssSetSFcnParamNotTunable 10-184
ssSetSFcnParamTunable 10-185
ssSetSolverNeedsReset 10-186
ssSetStopRequested 10-187
SSSEtTNEXE . .. 10-188
ssSetUserData 10-189
ssSetVectorMode 10-190
ssUpdateAllTunableParamsAsRunTimeParams 10-191
ssUpdateRunTimeParambData 10-192
ssUpdateRunTimeParamiInfo 10-193
SSWarNINgG . .t 10-194
ssWriteRTWMxVectParam 10-195
ssWriteRTWMx2dMatParam 10-196
ssWriteRTWParameters 10-197
ssWriteRTWParamSettings 10-201
ssWriteRTWScalarParam 10-205
SSWriteRTWStr e 10-206
ssWriteRTWStrParam 10-207
ssWriteRTWStrVectParam 10-208
ssWriteRTWVectParam 10-209
ssWriteRTWWorkVect i 10-210

Xi

Xii

Contents

ssWriteRTW2dMatParam

Overview of S-Functions

Introduction12
What Is an S-Function?12
Using S-FunctionsinModels12
Passing Parameters to S-Functions 13
When to Use an S-Function 15
How S-FunctionsWork15
Implementing S-Functions19
S-Function Concepts 11

S-Function Examples 1-16

1 Overview of S-Functions

1-2

Introduction

S-functions (system-functions) provide a powerful mechanism for extending
the capabilities of Simulink®. The introductory sections of this chapter describe
what an S-function is and when and why you might use one. This chapter then
presents a comprehensive description of how to write your own S-functions.

S-functions allow you to add your own blocks to Simulink models. You can
create your blocks in MATLAB®, C, C++, Fortran, or Ada. By following a set of
simple rules, you can implement your algorithms in an S-function. After you
have written your S-function and placed its name in an S-Function block
(available in the Functions & Tables block library), you can customize the user
interface by using masking.

S-functions can be used with the Real-Time Workshop. You can also customize
the code generated by the Real Time Workshop® for S-functions by writing a
Target Language Compiler™ (TLC) file. See the Target Language Compiler
Reference Guide and the Real-Time Workshop User’s Guide for more
information.

What Is an S-Function?

An S-function is a computer language description of a Simulink block.
S-functions can be written in MATLAB, C, C++, Ada, or Fortran. C, C++, Ada,
and Fortran S-functions are compiled as MEX-files using the mex utility
described in the Application Program Interface Guide. As with other MEX-files,
they are dynamically linked into MATLAB when needed.

S-functions use a special calling syntax that enables you to interact with
Simulink’s equation solvers. This interaction is very similar to the interaction
that takes place between the solvers and built-in Simulink blocks. The form of
an S-function is very general and can accommodate continuous, discrete, and
hybrid systems.

Using S-Functions in Models

To incorporate an S-function into an Simulink model, drag an S-Function block
from Simulink’s Functions & Tables block library into the model. Then specify
the name of the S-function in the S-function name field of the S-Function
block’s dialog box as illustrated in the figure below.

Introduction

A model that includes
two S-Function blocks

S-Function dialog box

Block Parameters: 5-Function

S-Function

Uszer-definable block. Blocks may be wiitten in M, C or Fortran and must
conform to S-function standards. tx.u and flag are automatically passed to
the S-function by Simulink. “Extra" parameters may be specified in the
"S-function parameters' field.

Parameters
S-function name:
|m_l,lsfun

S-function parameters:

Apply | h’\H elp | Cloze

File Edit Simulation Format

S-Function

S-Function1

S-Functionl dialog box

Block Parameters: 5-Functionl

S-Function

Uszer-definable block. Blocks may be wiitten in M., C or Fortraerand must
conform to S-function standards. tx.u and flag are auwterfiatically passed to
the S-function by Simulink. “Extra" parametersraEl be specified in the
"S-function parameters' field.

Parameters
S-function name:
|m_l,lsfun

S-function parameters:

Apply | Fewvert | Help | Cloze |

S-function
source file

/*

* MYSFUN

*

*/

/* The follo
#define S_FU

C MEX-file
or

function[sys
% mysfun M-File
%

switch(flag)

| M-file

Figure 1-1: The Relationship Between an S-Function Block, Its Dialog Box,
and the Source File That Defines the Block’s Behavior

In this example, the model contains two instances of an S-Function block. Both
blocks reference the same source file (mysfun, which can be either a C MEX-file
or an M-file). If both a C MEX-file and an M-file exist with the same name, the
C MEX-file takes precedence and is the file that the S-function uses.

Passing Parameters to S-Functions

The S-function block’s S-function parameters field allows you to specify
parameter values to be passed to the corresponding S-function. To use this
field, you must know what parameters the S-function requires and the order in
which the function requires them. (If you do not know, consult the S-function’s

1-3

1 Overview of S-Functions

1-4

author, documentation, or source code.) Enter each parameter, separated by a
comma, in the order required by the S-function. The parameter values may be
constants, names of variables defined in the model’'s workspace, or MATLAB
expressions.

The following example illustrates usage of the S-function parameters field to
enter user-define parameters

limintm I |:I

Cgnatant =~ " S-Function S Scope T ..
. .

H
¥

.- : . te

PP - -

4 Scope

— S-Function

Uszer-definable block. Blocks may be written in M, C, Fartran or Ada and
muszt conform to S-function standards. tx.u and flag are automatically
passed to the 5-function by Simulink. "Extra’’ parameters may be
zpecified in the 'S-function parameters' field.

S-function name:
limivir]
S-function parameters:

|23

QK I Cancel Help Lppli

The model in this example incorporates Iimintm, a sample S-function that
comes with Simulink. The function’s source code resides in toolbox/simulink/
blocks. The Limintm function accepts three parameters: a lower bound, an
upper bound, and an initial condition. It outputs the time integral of the input
signal, if the time integral is between the lower and upper bounds, the lower
bound if the time-integral is less than the lower bound, and the upper bound if
the time-integral is greater than the upper bound. The dialog box in the
example specifies a lower and upper bound and an initial condition of 2, 3, and
1, respectively. The scope shows the resulting output when the input is a
constant 1.

See “Processing S-Function Parameters” on page 2-19 and “Handling Errors”
on page 7-31 for information on how to access user-specified parameters in an
S-function.

Introduction

You can use Simulink’s masking facility to create custom dialog boxes and
icons for your S-function blocks. Masked dialog boxes can make it easier to
specify additional parameters for S-functions. For discussions of additional
parameters and masking, see Using Simulink.

When to Use an S-Function

The most common use of S-functions is to create custom Simulink blocks. You
can use S-functions for a variety of applications, including:

= Adding new general purpose blocks to Simulink

=< Adding blocks that represent hardware device drivers

= Incorporating existing C code into a simulation

= Describing a system as a mathematical set of equations

= Using graphical animations (see the inverted pendulum demo, penddemo)

An advantage of using S-functions is that you can build a general purpose block
that you can use many times in a model, varying parameters with each
instance of the block.

How S-Functions Work

To create S-functions, you need to know how S-functions work. Understanding
how S-functions work, in turn, requires understanding how Simulink
simulates a model, and this, in turn requires an understanding of the
mathematics of blocks. This section therefore begins by explaining the
mathematical relationship between a block’s inputs, states, and outputs.

Mathematics of Simulink Blocks

A Simulink block consists of a set of inputs, a set of states, and a set of outputs
where the outputs are a function of the sample time, the inputs, and the block’s
states.

u X y
(input) ’ (states) ’ (output)

1-5

1 Overview of S-Functions

The following equations express the mathematical relationships between the
inputs, outputs, and the states.

y = fo(t,x, u) (output)
X, = fy(t,x, u) (derivative)

Xdo,, = f (Lt x, u) (update)

k+

= +
where X Xe tXg

Simulation Stages

Execution of a Simulink model proceeds in stages. First comes the
initialization phase. In this phase, Simulink incorporates library blocks into
the model, propagates widths, data types, and sample times, evaluates block
parameters, determines block execution order, and allocates memory. Then
Simulink enters a simulation loop, where each pass through the loop is referred
to as a simulation step. During each simulation step, Simulink executes each
of the model’s blocks in the order determined during initialization. For each
block, Simulink invokes functions that compute the block’s states, derivatives,
and outputs for the current sample time. This continues until the simulation is
complete.

1-6

Introduction

The figure below illustrates the stages of a simulation.

Initialize model

Calculate time of next sample hit
(only for variable sample time blocks)

Calculate outputs

|

Update discrete states

s Cleanup atfinal
time step.

Calculate derivatives

Simulation loop

Calculate outputs .
b > Integration

. (minor time step)
Calculate derivatives

Locate zero crossings

Figure 1-2: How Simulink Performs Simulation

1-7

1 Overview of S-Functions

1-8

S-Function Callback Methods

An S-function comprises a set of S-function callback methods that perform
tasks required at each simulation stage. During simulation of model, at each
simulation stage, Simulink calls the appropriate methods for each S-function
block in the model. Tasks performed by S-function methods include:

= |nitialization — Prior to the first simulation loop, Simulink initializes the
S-function. During this stage, Simulink:

- Initializes the SimStruct, a simulation structure that contains
information about the S-function.

- Sets the number and dimensions of input and output ports.
- Sets the block sample time(s).
- Allocates storage areas and the sizes array.

= Calculation of next sample hit — If you've created a variable sample time
block, this stage calculates the time of the next sample hit, that is, it
calculates the next step size.

= Calculation of outputs in the major time step — After this call is complete,
all the output ports of the blocks are valid for the current time step.

= Update discrete states in the major time step — In this call, all blocks should
perform once-per-time-step activities such as updating discrete states for
next time around the simulation loop.

= Integration — This applies to models with continuous states and/or
nonsampled zero crossings. If your S-function has continuous states,
Simulink calls the output and derivative portions of your S-function at minor
time steps. This is so Simulink can compute the state(s) for your S-function.
If your S-function (C MEX only) has nonsampled zero crossings, then
Simulink will call the output and zero crossings portion of your S-function at
minor time steps, so that it can locate the zero crossings.

Note See “How Simulink Works” in “Using Simulink” for an explanation of
major and minor time steps.

Introduction

Implementing S-Functions

You can implement an S-function as either an M-file or a MEX file. The
following sections describes these alternative implementations and discusses
the advantages of each.

M-file S-Functions
An M-file S-function consists of a MATLAB function of the following form

[sys,x0,str,ts]=F(t,x,u,flag,pl,p2,.-.)

where f is the S-function’s name, t is the current time, x is the state vector of
the corresponding S-function block, u is the block’s inputs, flag indicates a task
to be performed, and p1, p2, ... are the block’s parameters. During simulation
of a model, Simulink repeatedly invokes f, using flag to indicate the task to be
performed for a particular invocation. Each time the S-function performs the
task, it returns the result in a structure having the format shown in the syntax
example.

A template implementation of an M-file S-function, sfuntmpl .m, resides in
matlabroot/toolbox/simulink/blocks. The template consists of a top-level
function and a set of skeletal subfunctions, each of which corresponds to a
particular value of flag. The top-level function simply invokes the subfunction
indicated by flag. The subfunctions, called S-function callback methods,
perform the actual tasks required of the S-function during simulation. The
following table lists the contents of an M-file S-function that follows this
standard format.

Table 1-1: M-File S-Function Routines

Simulation Stage S-Function Routine Flag
Initialization mdlInitializeSizes flag = 0
Calculation of next sample mdIGetTimeOfNextVarHit flag = 4
hit (variable sample time

block only)

Calculation of outputs mdIOutputs flag = 3
Update discrete states mdlUpdate flag = 2

1-9

1 Overview of S-Functions

1-10

Table 1-1: M-File S-Function Routines (Continued)

Simulation Stage S-Function Routine Flag
Calculation of derivatives mdIDerivatives flag = 1
End of simulation tasks mdITerminate flag = 9

We recommend that you follow the structure and naming conventions of the
template when creating M-file S-functions. This will make it easier for others
to understand and maintain M-file S-functions that you create. See Chapter 2,
“Writing M S-Functions” for information on creating M-file S-functions.

MEX-file S-Functions

Like an M-file S-function, a MEX-file function consists of a set of callback
routines that Simulink invokes to perform various block-related tasks during
a simulation. Significant differences exist, however. For one, MEX-file
functions are implemented in a different programming language: C, C++, Ada,
or Fortran. Also, Simulink invokes MEX S-function routines directly instead of
via a flag value as with M-file S-functions. Because Simulink invokes the
functions directly, MEX-file functions must follow standard naming
conventions specified by Simulink.

Other key differences exist. For one, the set of callback functions that MEX
functions can implement is much larger than that can be implemented by
M-file functions. Also, an MEX function has direct access to the internal data
structure, called the SimStruct, that Simulink uses to maintain information
about the S-function. MEX-file functions can also use MATLAB's MEX-file API
to access the MATLAB workspace directly.

A C MEX-file S-function template, called sfuntmpl_basic.c, resides in the
matlabroot/simul ink/src directory. The template contains skeletal
implementations of all the required and optional callback routines that a C
MEX-file S-function can implement. For a more amply commented version of
the template, see sfuntmpl_doc.c in the same directory.

MEX-file Versus M-file S-Functions

M-file and MEX file S-functions each have advantages. The advantage of M-file
S-functions is speed of development. Developing M-file S-functions avoids the
time-consuming compile-link-execute cycle required by development in a

Introduction

compiled language. M-file S-functions also have easier access to MATLAB and
toolbox functions.

The primary advantage of MEX file functions is versatility. The larger number
of callbacks and access to the SimStruct enable MEX-file functions to
implement functionality not accessible to M-file S-functions. Such functionality
includes the ability to handle data types other than double, complex inputs,
matrix inputs, and so on.

S-Function Concepts

Understanding these key concepts should enable you to build S-functions
correctly:

= Direct feedthrough

< Dynamically sized inputs

= Setting sample times and offsets

Direct Feedthrough

Direct feedthrough means that the output (or the variable sample time for
variable sample time blocks) is controlled directly by the value of an input port.
A good rule of thumb is that an S-function input port has direct feedthrough if:

= The output function (mdI0utputs or flag==3) is a function of the input u.
That is, there is direct feedthrough if the input u is accessed in mdl10utputs.
Outputs may also include graphical outputs, as in the case of an XY Graph
scope.

= The “time of next hit” function (nd1GetTimeOfNextVarHit or flag==4) of a
variable sample time S-function accesses the input u.

An example of a system that requires its inputs (i.e., has direct feedthrough) is
the operation y = k x u, where u is the input, k is the gain, and y is the output.

An example of a system that does not require its inputs (i.e., does not have
direct feedthrough) is this simple integration algorithm

Outputs: y = X
Derivative: x = u

where X is the state, x is the state derivative with respect to time, u is the input
and y is the output. Note that xis the variable that Simulink integrates. It is

1-11

1 Overview of S-Functions

1-12

very important to set the direct feedthrough flag correctly because it affects the
execution order of the blocks in your model and is used to detect algebraic loops.

Dynamically Sized Arrays

S-functions can be written to support arbitrary input dimensions. In this case,
the actual input dimensions are determined dynamically when a simulation is
started by evaluating the dimensions of the input vector driving the S-function.
The input dimensions can also be used to determine the number of continuous
states, the number of discrete states, and the number of outputs.

M-file S-functions can have only one input port and that input port can accept
only one-dimensional (vector) signals. However, the signals can be of varying
width.Within an M-file S-function, to indicate that the input width is
dynamically sized, specify a value of -1 for the appropriate fields in the sizes
structure, which is returned during the mdlInitializeSizes call. You can
determine the actual input width when your S-function is called by using
length(u). If you specify a width of 0, then the input port will be removed from
the S-function block.

A C S-function can have multiple 1/0 ports and the ports can have different
dimensions. The number of dimensions and the size of each dimension can be
determined dynamically.

For example, the illustration below shows two instances of the same
S-Function block in a model.

hux ——f] mystem

e S-Function
®—> system
Clock S-Function

The upper S-Function block is driven by a block with a three-element output
vector. The lower S-Function block is driven by a block with a scalar output. By
specifying that the S-Function block has dynamically sized inputs, the same
S-function can accommodate both situations. Simulink automatically calls the
block with the appropriately sized input vector. Similarly, if other block
characteristics, such as the number of outputs or the number of discrete or

Introduction

continuous states, are specified as dynamically sized, Simulink defines these
vectors to be the same length as the input vector.

C S-functions give you more flexibility in specifying the widths of input and
output ports. See “Input and Output Ports” on page 7-9.

Setting Sample Times and Offsets

Both M-file and C MEX S-functions allow a high degree of flexibility in
specifying when an S-function executes. Simulink provides the following
options for sample times:

= Continuous sample time — For S-functions that have continuous states and/
or nonsampled zero crossings (see “How Simulink Works” in Using Simulink
for explanation of zero crossings). For this type of S-function, the output
changes in minor time steps.

= Continuous but fixed in minor time step sample time — For S-functions that
need to execute at every major simulation step, but do not change value
during minor time steps.

= Discrete sample time — If your S-Function block’s behavior is a function of
discrete time intervals, you can define a sample time to control when
Simulink calls the block. You can also define an offset that delays each
sample time hit. The value of the offset cannot exceed the corresponding
sample time.

A sample time hit occurs at time values determined by this formula
TimeHit = (n * period) + offset

where n, an integer, is the current simulation step. The first value of n is
always zero.

If you define a discrete sample time, Simulink calls the S-function md10utput
and mdlUpdate routines at each sample time hit (as defined in the above
equation).

= Variable sample time — A discrete sample time where the intervals between
sample hits can vary. At the start of each simulation step, S-functions with
variable sample times are queried for the time of next hit.

=< Inherited sample time — Sometimes an S-Function block has no inherent
sample time characteristics (that is, it is either continuous or discrete,
depending on the sample time of some other block in the system). You can

1-13

1 Overview of S-Functions

1-14

specify that the block’s sample time is inherited. A simple example of this is
a Gain block that inherits its sample time from the block driving it.

A block can inherit its sample time from:

- The driving block

- The destination block

- The fastest sample time in the system

To set a block’s sample time as inherited, use -1 in M-file S-functions and
INHERITED_SAMPLE_TIME in C S-functions as the sample time. For more
information on the propagation of sample times, see “Sample Time Colors” in
Using Simulink.

S-functions can be either single or multirate; a multirate S-function has
multiple sample times.

Sample times are specified in pairs in this format: [sample_time,
offset_time]. The valid sample time pairs are

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample_time_period, offset]
[VARIABLE_SAMPLE_TIME, 0.0]

where

CONTINUOUS_SAMPLE_TIME = 0.0
FIXED_IN_MINOR_STEP_OFFSET =
VARIABLE_SAMPLE_TIME = -2.0

1.0

and the italics indicate a real value is required.

Alternatively, you can specify that the sample time is inherited from the
driving block. In this case the S-function can have only one sample time pair

[INHERITED_SAMPLE_TIME, 0.0]
or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
where

INHERITED_SAMPLE_TIME = -1.0

Introduction

The following guidelines may help you specify sample times:

= A continuous S-function that changes during minor integration steps should
register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

= A continuous S-function that does not change during minor integration steps
should register the
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.
= A discrete S-function that changes at a specified rate should register the
discrete sample time pair, [discrete_sample_time_period, offset],
where

discrete_sample_period > 0.0

and
0.0 < offset < discrete_sample_period

= A discrete S-function that changes at a variable rate should register the
variable step discrete sample time.

[VARIABLE_SAMPLE_TIME, 0.0]

The md1GetTimeOfNextVarHit routine is called to get the time of the next
sample hit for the variable step discrete task.

If your S-function has no intrinsic sample time, then you must indicate that
your sample time is inherited. There are two cases:

= An S-function that changes as its input changes, even during minor
integration steps, should register the [INHERITED_SAMPLE_TIME, 0.0]
sample time.

= An S-function that changes as its input changes, but doesn’t change during
minor integration steps (that is, remains fixed during minor time steps),
should register the
[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.

The Scope block is a good example of this type of block. This block should run
at the rate, either continuous or discrete, of its driving block, but should
never run in minor step. If it did, the scope display would show the
intermediate computations of the solver rather than the final result at each
time point.

1-15

1 Overview of S-Functions

S-Function Examples
Simulink comes with a library of S-function examples.

To run an example:
1 Enter sfundemos at the MATLAB command line.

MATLAB displays the S-function demo library.

[E]sfundemos [-To[x]
Eile Edit View Simulaion Fomat Tools Help

NMECEREE e D e

Each block represents an S-function example.

2 Click on a block to open and run the example that it represents.

It may be helpful to examine some sample S-functions as you read the next
chapters. Code for the examples are stored in these subdirectories under the
MATLAB root directory:

= M-files: toolbox/simulink/blocks

= C, C++, and Fortran: simulink/src

« Ada: simul ink/ada/examples

1-16

Introduction

M-File S-Function Examples

The simulink/blocks directory contains many M-file S-functions. Consider
starting off by looking at these files.

Filename

Description

csfunc.m
dsfunc.m

vsfunc.m

mixed.m

vdpm.m

simom.m

simom2.m

limintm.m

Defines a continuous system in state-space format.
Defines a discrete system in state-space format.

Illustrates how to create a variable sample time
block. This block implements a variable step delay
in which the first input is delayed by an amount of
time determined by the second input.

Implements a hybrid system consisting of a
continuous integrator in series with a unit delay.

Implements the Van der Pol equation (similar to
the demo model, vdp).

An example state-space M-file S-function with
internal A, B, C, and D matrices. This S-function
implements

dx/at = Ax + By
y = Cx + Du

where x is the state vector, u is the input vector, and
y is the output vector. The A, B, C, and D matrices
are embedded in the M-file.

An example state-space M-file S-function with
external A, B, C, and D matrices. The state-space
structure is the same as in simom.m, but the A, B, C,
and D matrices are provided externally as
parameters to this file.

Implements a continuous limited integrator where
the output is bounded by lower and upper bounds
and includes initial conditions.

1-17

1 Overview of S-Functions

1-18

Filename

Description

sfun_varargm.m

viimintm.m

vdlimintm.m

This is an example M-file S-function showing how to
use the MATLAB vararg facility.

An example of a continuous limited integrator
S-function. This illustrates how to use the size entry
of -1 to build an S-function that can accommodate a
dynamic input/state width.

An example of a discrete limited integrator
S-function. This example is identical to viimint.m,
except that the limited integrator is discrete.

C S-Function Examples

The simulink/src directory also contains examples of C MEX S-functions,
many of which have an M-file S-function counterpart. These C MEX
S-functions are listed in this table.

Filename Description

barplot.c Access simulink signals without using the
standard block inputs.

csfunc.c An example C MEX S-function for defining a
continuous system.

dlimint.c Implements a discrete-time limited integrator.

dsfunc.c An example C MEX S-function for defining a

fcncallgen.c

limintc.c

mixedm.c

discrete system.

Executes function-call subsystems ntimes at the
designated rate (sample time).

Implements a limited integrator.

Implements a hybrid dynamic system consisting
of a continuous integrator (1/s) in series with a
unit delay (1/z).

Introduction

Filename

Description

mixedmex.c

quantize.c

resetint.c

sdotproduct

sftable2.c

sfun_atol.c

sfun_bitop.c

sfun_cplx.c

sfun_directlook.c

sfun_dtype_io.c

sfun_dtype_param.c

sfun_dynsize.c

sfun_errhndl .c

Implements a hybrid dynamic system with a
single output and two inputs.

An example MEX-file for a vectorized quantizer
block. Quantizes the input into steps as specified
by the quantization interval parameter, g.

A reset integrator.

Compute dot product (multiply-accumulate) of
two real or complex vectors

A two-dimensional table lookup in S-function
form.

Sets different absolute tolerances for each
continuous state.

Perform the bitwise operations AND, OR, XOR, left
shift, right shift and one's complement on uints,
uintl6, and uint32 inputs.

Complex signal add with one input port and one
parameter.

Direct 1-D lookup.

Example of the use of Simulink data types for
inputs and outputs.

Example of the use of Simulink data types for
parameters.

A simple example of how to size outputs of an
S-function dynamically.

A simple example of how to check parameters
using the mdlCheckParams S-function routine.

1-19

1 Overview of S-Functions

1-20

Filename

Description

sfun_fcncall.c

sfun_frmad.c
sfun_frmda.c

sfun_frmdft.c

stun_frmunbuff.

sfun_multiport.

sfun_manswitch.

sfun_matadd.c

sfun_multirate.

sfun_psbbreaker.

sfun_psbcontc.c
sfun_psbdiscc.c
sfun_runtimel.c
sfun_runtime2.c

sfun_zc.c

sfun_zc_sat.c

An example of an S-function that is configured to
execute function-call subsystems on the first and
third output element.

Frame-based A/D converter.
frame-based D/A converter.

A multi-channel frame-based Discrete-Fourier
transform (and its inverse).

A frame-based unbuffer block.

An S-function that has multiple input and output
ports.

Manual switch.

Matrix add with one input port, one output port,
and one parameter.

Demonstrates how to specify port-based sample
times.

Implements the logic for the breaker block in the
Power System Blockset.

Continuous implementation of state-space system.
Discrete implementation of state-space system.
Run-time parameter example.

Run-time parameter example.

Demonstrates use of nonsampled zero crossings to
implement abs(u). This S-function is designed to
be used with a variable step solver.

Saturation example that uses zero crossings.

Introduction

Filename Description

sfunmem.c A one integration-step delay and hold “memory”
function.

simomex.c Implements a single output, two input state-space

smatrxcat.c
sreshape.c

stspace.c

stvctf.c

stvdct.f

stvmgain.c

table3.c

dynamic system described by these state-space
equations

dx/dt = Ax + Bu
y = Cx + Du

where x is the state vector, u is vector of inputs,
and y is the vector of outputs.

Matrix concatenation.
Reshapes the input signal.

Implements a set of state-space equations. You
can turn this into a new block by using the
S-Function block and mask facility. This example
MEX-file performs the same function as the
built-in State-Space block. This is an example of a
MEX-file where the number of inputs, outputs,
and states is dependent on the parameters passed
in from the workspace. Use this as a template for
other MEX-file systems.

Implements a continuous-time transfer function
whose transfer function polynomials are passed in
via the input vector. This is useful for continuous
time adaptive control applications.

Implements a discrete-time transfer function
whose transfer function polynomials are passed in
via the input vector. This is useful for
discrete-time adaptive control applications.

Time-varying matrix gain.

3-D lookup table.

1-21

1 Overview of S-Functions

1-22

Filename

Description

timestwo.c

vdImint.c

vdpmex.c
vlimint.c

vsfunc.c

A basic C MEX S-function that doubles its input.

Implements a discrete-time vectorized limited
integrator.

Implements the van der Pol equation.
Implements a vectorized limited integrator.

Ilustrates how to create a variable sample time
block in Simulink. This block implements a
variable step delay in which the first input is
delayed by an amount of time determined by the
second input.

Fortran S-Function Examples
The following table lists sample Fortran S-functions.

Filename

Description

sfun_timestwo_for.
for

sfun_atmos.c

vdpmexf . for

A sample Level 1 Fortran representation of a C
timestwo S-function.

Calculation of the 1976 standard atmosphere to
86 km.

Van der Pol system.

C++ S-Function Examples
The following table lists sample C++ S-functions.

Filename

Description

sfun_counter_cpp.
cpp

Stores an C++ object in the pointers vector PWork.

Introduction

Ada S-Function Examples
The simul ink/ada/examples directory contains the following examples of
S-functions implemented in Ada.

Directory Name Description

matrix_gain Implements a matrix gain block.
multi_port Multiport block.

simple_lookup Lookup table. Illustrates use of a “wrapper”

S-Function that “wraps” stand-alone Ada code (i.e.,
Ada packages and procedures) both for use with
Simulink as an S-function and directly with Ada
code generated using the RTW Ada Coder.

times_two Outputs twice its input.

1-23

1 Overview of S-Functions

1-24

Writing M S-Functions

Introduction

S-Function Arguments

S-Function Outputs

Defining S-Function Block Characterlstlcs
A Simple M-File S-Function Example

Examples of M-File S-Functions .

Example - Continuous State S-Function
Example - Discrete State S-Function .

Example - Hybrid System S-Functions . .
Example - Variable Sample Time S-Functions .
Processing S-Function Parameters

2-2
2-2
2-3
2-4

2-8
2-8

.2-11
. 2-13
. 2-16
. 2-19

2 Writing M S-Functions

2-2

Introduction

An M-file S-function consists of a MATLAB function of the following form
[sys,x0,str,ts]=F(t,x,u,flag,pl,p2,-.-..)

where f is the name of the S-function. During simulation of a model, Simulink
repeatedly invokes f, using the flag argument to indicate the task (or tasks)

to be performed for a particular invocation. Each time the S-function performs
the task and returns the results in an output vector.

A template implementation of an M-file S-function, sfuntmpl _m, resides in
matlabroot/toolbox/simulink/blocks. The template consists of a top-level
function and a set of skeletal subfunctions, called S-function callback methods,
each of which corresponds to a particular value of flag. The top-level function
simply invokes the subfunction indicated by flag. The subfunctions perform
the actual tasks required of the S-function during simulation.

S-Function Arguments
Simulink passes the following arguments to an S-function:

= t, the current time
= x, the state vector
< u, the input vector

=« flag, an integer value that indicates the task to be performed by the
S-function

Introduction

The following table describes the values that flag can assume and lists the
corresponding S-function method for each value.

Table 2-1: Flag Argument

Flag S-Function Routine

Description

0 mdlInitializesizes

1 mdlDerivatives

2 mdlUpdate

3 md10utputs

4 mdIGetTimeOfNextVarHit
9 mdlTerminate

Defines basic S-Function block
characteristics, including sample
times, initial conditions of
continuous and discrete states, and
the sizes array.

Calculates the derivatives of the
continuous state variables.

Updates discrete states, sample
times, and major time step
requirements.

Calculates the outputs of the
S-function.

Calculates the time of the next hit
in absolute time. This routine is
used only when you specify a
variable discrete-time sample time
inmdlInitializeSizes.

Performs any necessary end of
simulation tasks.

S-Function Outputs

An M-file returns an output vector containing the following elements:

= sys, a generic return argument. The values returned depend on the flag
value. For example, for flag = 3, sys contains the S-function outputs.

= x0, the initial state values (an empty vector if there are no states in the
system). x0 is ignored, except when flag = 0.

2-3

2 Writing M S-Functions

2-4

= str, reserved for future use. M-file S-functions must set this to the empty
matrix, [].

= ts, a two column matrix containing the sample times and offsets of the block.
Continuous systems have their sample time set to zero. The hybrid example,
which starts on page 2-13, demonstrates an S-function with multiple sample
times.

Sample times should be declared in ascending order. For example, if you
want your S-function to execute at [0 0.1 0.250.75 1.0 1.1 1.25, etc.], set ts
equal to a two row matrix.

ts = [.25 0; 1.0 .1];

Defining S-Function Block Characteristics

For Simulink to recognize an M-file S-function, you must provide it with
specific information about the S-function. This information includes the
number of inputs, outputs, states, and other block characteristics.

To give Simulink this information, call the simsizes function at the beginning
of mdIInitializeSizes.

sizes = simsizes;

This function returns an uninitialized sizes structure. You must load the
sizes structure with information about the S-function. The table below lists
the sizes structure fields and describes the information contained in each
field.

Table 2-2: Fields in the sizes Structure

Field Name Description
sizes.NumContStates Number of continuous states
sizes.NumDiscStates Number of discrete states
sizes._NumOutputs Number of outputs
sizes._Numlnputs Number of inputs
sizes.DirFeedthrough Flag for direct feedthrough
sizes_NumSampleTimes Number of sample times

Introduction

After you initialize the sizes structure, call simsizes again.
sys = simsizes(sizes);

This passes the information in the sizes structure to sys, a vector that holds
the information for use by Simulink.

A Simple M-File S-Function Example

The easiest way to understand how S-functions work is to look at a simple
example. This block takes an input scalar signal, doubles it, and plots it to a
scope.

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

The M-file code that contains the S-function is modeled on an S-function
template called sfuntmpl .m, which is included with Simulink. By using this
template, you can create an M-file S-function that is very close in appearance
to a C MEX S-function. This is useful because it makes a transition from an
M-file to a C MEX-file much easier.

Below is the M-file code for the timestwo.m S-function.

function [sys,x0,str,ts] = timestwo(t,x,u,flag)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case O
[sys,x0,str,ts] = mdlInitializeSizes; % Initialization

case 3
sys = mdlOutputs(t,x,u); % Calculate outputs

case {1, 2, 4, 9 }
sys = [1; % Unused flags

otherwise

error(["Unhandled flag = *,num2str(flag)]); % Error handling
end;

2-5

2 Writing M S-Functions

% End of function timestwo.

Below are the S-function subroutines that timestwo.m calls.

78

% Function mdlInitializeSizes initializes the states, sample

% times, state ordering strings (str), and sizes structure.
0f

function [sys,x0,str,ts] = mdlInitializeSizes

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes._NumOutputs= 1;

sizes_Numlnputs= 1;

sizes.DirFeedthrough=1;

sizes_NumSampleTimes=1;

% Load the sys vector with the sizes information.

sys = simsizes(sizes);

%

x0 = [1; % No continuous states

%

str = [1; % No state ordering

%

ts = [-1 0]; % Inherited sample time

% End of mdlInitializeSizes.
04

% Function mdlOutputs performs the calculations.
0

function sys = mdlOutputs(t,x,u)
Sys = 2*u;

% End of mdlOutputs.

2-6

Introduction

To test this S-function in Simulink, connect a sine wave generator to the input
of an S-Function block. Connect the output of the S-Function block to a Scope.

Double-click on the S-Function block to open the dialog box.

Block Parameters: 5-Function E
— S-Function

Uszer-definable block. Blocks may be wiitten in M, C or Fortran and must
conform to S-function standards. tx.u and flag are automatically passed to
the S-function by Simulink. “Extra" parameters may be specified in the
"S-function parameters' field.

-
F

S-function name:
Itimestwo

S-function parameters:

Apply Fewvert Help Cloze

Enter the function name here. In this
example, type timestwo.

7 If you have additional parameters to

pass to the block, enter their names

You can now run this simulation.

here, separating them with commas. In
this example, there are no additional
parameters.

2-7

2 Writing M S-Functions

Examples of M-File S-Functions

2-8

The simple example discussed above (timestwo) has no states. Most
S-Function blocks require the handling of states, whether continuous or
discrete. The sections that follow discuss four common types of systems you can
model in Simulink using S-functions:

< Continuous
= Discrete

< Hybrid

=« Variable-step

All examples are based on the M-file S-function template found in sfuntmpl _m.

Example - Continuous State S-Function

Simulink includes a function called csfunc.m, which is an example of a
continuous state system modeled in an S-function. Here is the code for the
M-file S-function.

function [sys,x0,str,ts] = csfunc(t,x,u,flag)

% CSFUNC An example M-file S-function for defining a system of
% continuous state equations:

% X" = AxX + Bu

% y = Cx + Du

%

% Generate a continuous linear system:

A=[-0.09 -0.01

1 0];
B=[1 -7

0 -2]:
c=[O 2

1 -5];
D=[-3 0

1 0];

%

% Dispatch the flag.
%

switch flag,

Examples of M-File S-Functions

case O
[sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D); % Initialization

case 1
sys = mdIDerivatives(t,x,u,A,B,C,D); % Calculate derivatives

case 3
sys = mdlOutputs(t,x,u,A,B,C,D); % Calculate outputs

case { 2, 4, 9 } % Unused flags
sys = [1;
otherwise
error(["Unhandled flag = ",num2str(flag)]); % Error handling
end

% End of csfunc.
04

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.

%
function [sys,x0,str,ts] = mdlInitializeSizes(A,B,C,D)

% Call simsizes for a sizes structure, Ffill it in and convert it
% to a sizes array.

sizes = simsizes;
sizes.NumContStates
sizes_.NumDiscStates
sizes.NumOutputs
sizes.Numlnputs
sizes.DirFeedthrough
sizes.NumSampleTimes
sys = simsizes(sizes);

%

% Initialize the initial conditions.
%

x0 = zeros(2,1);

%

% str is an empty matrix.

% Matrix D is nonempty.

1
P PNNON

2-9

2 Writing M S-Functions

2-10

%

str = [1;

%

% Initialize the array of sample times; in this example the sample
% time is continuous, so set ts to 0 and its offset to O.

%

ts = [0 0];

% End of mdlInitializeSizes.

%

0

0;

% mdlDerivatives

% Return the derivatives for the continuous states.
0y
function sys = mdlDerivatives(t,x,u,A,B,C,D)
Ssys = A*xX + B*u;

% End of mdIDerivatives.

%

0

0

% mdlOutputs

% Return the block outputs.
0f

0;

%

function sys = mdlOutputs(t,x,u,A,B,C,D)
sys = C*x + D*u;

% End of mdlOutputs.

The above example conforms to the simulation stages discussed earlier in this
chapter. Unlike timestwo.m, this example invokes mdIDerivatives to
calculate the derivatives of the continuous state variables when flag = 1. The
system state equations are of the form

X"= AX + Bu
y = Cx + Du

so that very general sets of continuous differential equations can be modeled
using csfunc.m. Note that csfunc.mis similar to the built-in State-Space block.
This S-function can be used as a starting point for a block that models a
state-space system with time-varying coefficients.

Each time the mdIDerivatives routine is called it must explicitly set the value
of all derivatives. The derivative vector does not maintain the values from the

Examples of M-File S-Functions

last call to this routine. The memory allocated to the derivative vector changes
during execution.

Example - Discrete State S-Function

Simulink includes a function called dsfunc.m, which is an example of a discrete
state system modeled in an S-function. This function is similar to csfunc.m, the
continuous state S-function example. The only difference is that mdlUpdate is
called instead of mdIDerivative. mdlUpdate updates the discrete states when
the flag = 2. Note that for a single-rate discrete S-function, Simulink calls the
mdlUpdate, md10utput, and md1GetTimeOfNextVarHit (if needed) routines only
on sample hits. Here is the code for the M-file S-function.

function [sys,x0,str,ts] = dsfunc(t,x,u,flag)

%

%

An example M-file S-function for defining a discrete system.
This S-function implements discrete equations in this form:
x(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

Generate a discrete linear system:

A=[-1.3839 —0.5097

1.0000 E
B=[—2.5559 0
0 4.2382];
c=[0 2.0761
0 7.7891];

D=[-0.8141 -2.9334

1.2426 (0] |

switch flag,

case 0
sys = mdlInitializeSizes(A,B,C,D); % Initialization

case 2
sys = mdlUpdate(t,x,u,A,B,C,D); % Update discrete states

case 3
sys = mdlOutputs(t,x,u,A,B,C,D); % Calculate outputs

case {1, 4, 9} % Unused flags
sys = [1:

2-11

2 Writing M S-Functions

otherwise
error(["unhandled flag = ",num2str(flag)]); % Error handling
end
% End of dsfunc.

% Initialization

function [sys,x0,str,ts] = mdlInitializeSizes(A,B,C,D)

% Call simsizes for a sizes structure, fill it in, and convert it
% to a sizes array.

sizes = simsizes;
sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.Numlnputs
sizes.DirFeedthrough
sizes.NumSampleTimes
sys = simsizes(sizes);

X0 ones(2,1); % Initialize the discrete states.
str = []; % Set str to an empty matrix.

ts = [1 0]; % sample time: [period, offset]
% End of mdlInitializeSizes.

P FRPNNMNDNO

; % Matrix D is non-empty.

0
% Update the discrete states
0
function sys = mdlUpdates(t,x,u,A,B,C,D)
Sys = A*X + B*u;

% End of mdlUpdate.

0f
% Calculate outputs
0f
function sys = mdlOutputs(t,x,u,A,B,C,D)
sys = C*x + D*u;

2-12

Examples of M-File S-Functions

%

End of mdlOutputs.

The above example conforms to the simulation stages discussed earlier in
chapter 1. The system discrete state equations are of the form

x(n+1) = Ax(n) + Bu(n)

y(n)

Cx(n) + Du(n)

so that very general sets of difference equations can be modeled using
dsfunc.m. This is similar to the built-in Discrete State-Space block. You can
use dsfunc.mas a starting point for modeling discrete state-space systems with
time-varying coefficients.

Example - Hybrid System S-Functions

Simulink includes a function called mixedm.m, which is an example of a hybrid
system (a combination of continuous and discrete states) modeled in an
S-function. Handling hybrid systems is fairly straightforward; the flag
parameter forces the calls to the correct S-function subroutine for the
continuous and discrete parts of the system. One subtlety of hybrid S-functions
(or any multirate S-function) is that Simulink calls the mdlUpdate, mdl0utput,
and mdIGetTimeOfNextVarHit routines at all sample times. This means that in
these routines you must test to determine which sample hit is being processed
and only perform updates that correspond to that sample hit.

mixed.m models a continuous Integrator followed by a discrete Unit Delay. In
Simulink block diagram form, the model looks like this.

@

In

1 1

Out

Integrator Unit Dalay

Here is the code for the M-file S-function.

function [sys,x0,str,ts] = mixedm(t,x,u,flag)

%
%
%
%
%

A hybrid system example that implements a hybrid system
consisting of a continuous integrator (1/s) in series with a
unit delay (1/2).

Set the sampling period and offset for unit delay.

dperiod = 1;

doffset

0;

2-13

2 Writing M S-Functions

2-14

switch flag,

case 0 % Initialization
[sys,x0,str,ts] = mdlInitializeSizes(dperiod,doffset);

case 1
sys = mdIDerivatives(t,x,u); % Calculate derivatives

case 2
sys = mdlUpdate(t,x,u,dperiod,doffset); % Update disc states

case 3
sys = mdlOutputs(t,x,u,doffset,dperiod); % Calculate outputs
case {4, 9}
sys = [1; % Unused flags
otherwise
error(["unhandled flag = ",num2str(flag)]); % Error handling
end
% End of mixedm.

%

0

0

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.

%

function [sys,x0,str,ts] = mdlInitializeSizes(dperiod,doffset)

sizes

sizes.
sizes.
sizes.
sizes.
sizes.
sizes.

sys =
X0
str
ts =

% End

= simsizes;
NumContStates
NumDiscStates
NumOutputs
Numlnputs
DirFeedthrough
NumSampleTimes
simsizes(sizes);

ones(2,1);

[1;

[O, 0 % sample time
dperiod, doffset];

of mdlInitializeSizes.

|
NORRRER

Examples of M-File S-Functions

% mdlDerivatives
% Compute derivatives for continuous states.

function sys = mdIDerivatives(t,x,u)
Sys = u;

% end of mdlDerivatives.

%

%
% mdlUpdate

% Handle discrete state updates, sample time hits, and major time
% step requirements.

function sys = mdlUpdate(t,x,u,dperiod,doffset)
% Next discrete state is output of the integrator.
% Return next discrete state if we have a sample hit within a
% tolerance of l1le-8. If we don"t have a sample hit, return [] to
% indicate that the discrete state shouldn"t change.
%
if abs(round((t-doffset)/dperiod)-(t-doffset)/dperiod) < le-8
sys = x(1); % mdlUpdate is "latching" the value of the
% continuous state, x(1), thus introducing a delay.

else
sys = [1; % This is not a sample hit, so return an empty
end % matrix to indicate that the states have not
% changed.

% End of mdlUpdate.

% mdlOutputs
% Return the output vector for the S-function.

function sys = mdlOutputs(t,x,u,doffset,dperiod)
% Return output of the unit delay if we have a
% sample hit within a tolerance of le-8. If we

2-15

2 Writing M S-Functions

2-16

% don"t have a sample hit then return [] indicating

% that the output shouldn®"t change.

%

if abs(round((t-doffset)/dperiod)-(t-doffset)/dperiod) < le-8

sys = x(2);
else
sys = [1; % This is not a sample hit, so return an empty
end % matrix to indicate that the output has not changed

% End of mdlOutputs.

Example - Variable Sample Time S-Functions

This M-file is an example of an S-function that uses a variable sample time.
This example, in an M-file called vsfunc.m, calls md1GetTimeOfNextVarHit
when flag = 4. Because the calculation of a next sample time depends on the
input u, this block has direct feedthrough. Generally, all blocks that use the
input to calculate the next sample time (Flag = 4) require direct feedthrough.
Here is the code for the M-file S-function.

function [sys,x0,str,ts] = vsfunc(t,x,u,flag)

% This example S-function illustrates how to create a variable
% step block in Simulink. This block implements a variable step
% delay in which the first input is delayed by an amount of time
% determined by the second input.

%

% dt

% y(t+dt)
%

switch flag,

u(2)
u(t)

case 0
[sys,x0,str,ts] = mdlInitializeSizes; % Initialization

case 2
sys = mdlUpdate(t,x,u); % Update Discrete states

case 3
sys = mdlOutputs(t,x,u); % Calculate outputs

Examples of M-File S-Functions

case 4
sys = mdIGetTimeOfNextVarHit(t,x,u); % Get next sample time

case {1, 9 }
sys = [1; % Unused flags
otherwise
error(["Unhandled flag = ",num2str(flag)]); % Error handling
end

% End of vsfunc.
04

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.

%
function [sys,x0,str,ts] = mdlInitializeSizes

% Call simsizes for a sizes structure, Ffill it in and convert it
% to a sizes array.

sizes = simsizes;

sizes.NumContStates = O;
sizes.NumDiscStates = 1;
sizes.NumOutputs =1;
sizes.Numlnputs = 2;

sizes.DirFeedthrough 1; % Fflag=4 requires direct feedthrough
% if input u is involved in
% calculating the next sample time

% hit.

sizes.NumSampleTimes
sys = simsizes(sizes);

%

% Initialize the initial conditions.
%

x0 = [0];

%

% Set str to an empty matrix.

%

str = [1;

%

1;

2-17

2 Writing M S-Functions

% Initialize the array of sample times.
%

ts = [-2 0]; % variable sample time
% End of mdlInitializeSizes.

%

0

0;

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time

% step requirements.
0f

%

function sys = mdlUpdate(t,x,u)
sys = u(l);

% End of mdlUpdate.

%

0

0

% mdlOutputs

% Return the block outputs.
0f

%

function sys = mdlOutputs(t,x,u)
sys = x(1);

% end mdlOutputs

%

%
% mdlGetTimeOfNextVarHit

% Return the time of the next hit for this block. Note that the

% result is absolute time.
0y

0;

%

function sys = mdIGetTimeOfNextVarHit(t,x,u)
sys = t + u(2);

% End of mdlGetTimeOfNextVarHit.

md1GetTimeOfNextVarHit returns the “time of the next hit,” the time in the
simulation when vsfunc is next called. This means that there is no output from
this S-function until the time of the next hit. In vsfunc, the time of the next hit
isset to t + u(2), which means that the second input, u(2), sets the time when
the next call to vsfunc occurs.

2-18

Examples of M-File S-Functions

Processing S-Function Parameters

When invoking an M-file S-function, Simulink always passes the standard
block parameters, t, x, u, and flag, to the S-function as function arguments.
Simulink can pass additional, block-specific parameters specified by the user
to the S-function. The user specifies the parameters in the S-function
parameters field of the S-function’s block parameter dialog (see “Passing
Parameters to S-Functions” on page 1-3). If the block dialog specifies additional
parameters, Simulink passes the parameters to the S-function as additional
function arguments. The additional arguments follow the standard arguments
in the S-function argument list in the order in which the corresponding
parameters appear in the block dialog. You can use this block-specific
S-function parameter capability to allow the same S-function to implement
various processing options. See the limintm.m example in the toolbox/
simul ink/blocks directory for an example of an S-function that uses
block-specific parameters in this way.

2-19

2 Writing M S-Functions

2-20

Writing S-Functions in C

Introduction e e
Example of a Basic C MEX S-Function .

Templates for C S-Functions
S-Function Source File Requirements
The SimStruct . -

Compiling C S-Functions

How Simulink Interacts with C S-Functions
Process View

Data View

Writing Callback Methods

Converting Level 1 C MEX S-Functions to Level 2
Obsolete Macros .

3-3

3-9
3-9

.3-11
. 3-12

. 3-13
. 3-13
. 3-17
. 3-21

. 3-22
. 3-24

3 Writing S-Functions in C

3-2

Introduction

A C MEX-file that defines an S-Function block must provide information about
the model to Simulink during the simulation. As the simulation proceeds,
Simulink, the ODE solver, and the MEX-file interact to perform specific tasks.
These tasks include defining initial conditions and block characteristics, and
computing derivatives, discrete states, and outputs.

As with M-file S-functions, Simulink interacts with a C MEX-file S-function by
invoking callback methods that the S-function implements. Each method
performs a predefined task, such as computing block outputs, required to
simulate the block whose functionality the S-function defines. Simulink
defines in a general way the task of each callback. The S-function is free to
perform the task according to the functionality it implements. For example,
Simulink specifies that the S-function’s md10utput method must compute that
block’s outputs at the current simulation time. It does not specify what those
outputs must be. This callback-based API allows you to create S-functions, and
hence custom blocks, of any desired functionality.

The set of callback methods, hence functionality, that C MEX-files can
implement is much larger than that available for M-file S-functions. See
Chapter 9, “S-Function Callback Methods” for descriptions of the callback
methods that a C MEX-file S-function can implement. Unlike M-file
S-functions, C MEX-files can access and modify the data structure that
Simulink uses internally to store information about the S-function. The ability
to implement a broader set of callback methods and to access internal data
structures allows C-MEX files to implement a wider set of block features, such
as the ability to handle matrix signals and multiple data types.

C MEX-file S-functions are required to implement only a small subset of the
callback methods that Simulink defines. If your block does not implement a
particular feature, such as matrix signals, you are free to omit the callback
methods required to implement a feature. This allows you to create simple
blocks very quickly.

The general format of a C MEX S-function is shown below.

#define S_FUNCTION_NAME your_sfunction_name_here
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)

Introduction

{
T
<additional S-function routines/code>

static void mdITerminate(SimStruct *S)

{

}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a

MEX-File? */

#include "simulink.c" /* MEX-File interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration

function */
#endif

mdlInitializeSizes is the first routine Simulink calls when interacting with
the S-function. Simulink subsequently invokes other S-function methods (all
starting with mdl). At the end of a simulation, Simulink calls mdITerminate.

Note Unlike M-file S-functions, C MEX S-function methods do not each have
a flag parameter. This is because Simulink calls each S-function method
directly at the appropriate time during the simulation.

Example of a Basic C MEX S-Function

This section presents an example of a C MEX S-function that you can use as a
model for creating simple C S-functions. The example is the timestwo
S-function example that comes with Simulink (see matlabroot/simul ink/src/
timestwo.c). This S-function outputs twice its input.

The following model uses the timestwo S-function to double the amplitude of a
sine wave and plot it in a scope.

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

3-3

3 Writing S-Functions in C

The block dialog for the S-function specifies timestwo as the S-function name;
the parameters field is empty.

The timestwo S-function contains the S-function callback methods shown in

this figure.

| nmdlinitializeSizes |

Initialization v
mdlInitializeSampleTimes ‘

—>‘ md0utputs ‘

Simulation
loop

‘ mdITerminate ‘

3-4

Introduction

The contents of timestwo.c are shown below.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2

#include “simstruc.h”

static void mdlInitializeSizes(SimStruct *S)
{
ssSetNumSFcnParams(S, 0);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

iIT (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetlnputPortDirectFeedThrough(S, 0, 1);

IT (IssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetNumSampleTimes(S, 1);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime(S, O, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

b

static void mdlOutputs(SimStruct *S, int_T tid)
{

int. T i;
InputRealPtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);
real _T *y = ssGetOutputPortRealSignal (S,0);
int. T width = ssGetOutputPortWidth(S,0);

for (i=0; i<width; i++) {
*y++ = 2.0 *(C*uPtrs[i]);
¥
b

static void mdlTerminate(SimStruct *S){}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include “simulink.c” /* MEX-file interface mechanism */

#else

#include “cg_sfun.h” /* Code generation registration function */
#endif

3-5

3 Writing S-Functions in C

This is example has three parts:

=« Defines and includes
= Callback implementations
<« Simulink (or Real-Time Workshop) interface

The following sections explains each of these parts.

Defines and Includes
The example starts with the following defines.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2

The first specifies the name of the S-function (timestwo). The second specifies
that the S-function is in the level 2 format (for more information about level 1
and level 2 S-functions, see “Converting Level 1 C MEX S-Functions to Level
2" on page 3-22).

After defining these two items, the example includes simstruc.h, which is a
header file that gives access to the SimStruct data structure and the MATLAB
Application Program Interface (API) functions.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2
#include "'simstruc.h"

The simstruc.h file defines a a data structure, called the SimStruct, that
Simulink uses to maintain information about the S-function. The simstruc.h
file also defines macros that enable your MEX-file to set values in and get
values (such as the input and output signal to the block) from the SimStruct
(see Chapter 10, “SimStruct Functions”).

Callback Implementations

The next part of the timestwo S-function contains implementations of callback
methods required by Simulink.

mdlinitializeSizes. Simulink calls mdlInitializeSizes to inquire about the
number of input and output ports sizes of the ports and any other objects (such
as the number of states) needed by the S-function.

3-6

Introduction

The timestwo implementation of mdl InitializeSizes specifies the following
size information:

= Zero parameters

This means that the S-function parameters field of the S-functions’s dialog
box must be empty. If it contains any parameters, Simulink will report a
parameter mismatch.

=< One input port and one output port

The widths of the input and output ports are dynamically sized. This tells
Simulink to multiply each element of the input signal to the S-function by
two and to place the result in the output signal. Note that the default
handling for dynamically sized S-functions for this case (one input and one
output) is that the input and output widths are equal.

= One sample time

The timestwo example specifies the actual value of the sample time in the
mdlInitializeSampleTimes routine.

= The code is exception free.

Specifying exception free code speeds up execution of your S-function. Care
must be taken when specifying this option. In general, if your S-function isn't
interacting with MATLAB, it is safe to specify this option. For more details,
see “How Simulink Interacts with C S-Functions” on page 3-13.

mdlinitializeSampleTimes. Simulink calls mdlInitializeSampleTimes to set the
sample time(s) of the S-function. A timestwo block executes whenever the
driving block executes. Therefore, it has a single inherited sample time,
SAMPLE_TIME_INHERITED

mdIOutputs. Simulink calls mdl10utputs at each time step to calculate a block’s
outputs. The timestwo implementation of mdl0utputs takes the input,
multiplies it by two, and writes the answer to the output.

The timestwo mdlOutputs method uses a SimStruct macro,

InputRealPtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);

to access the input signal. The macro returns a vector of pointers, which must
be accessed using

*uPtrs[i]

3-7

3 Writing S-Functions in C

For more details, see “Data View” on page 3-17.
The timestwo mdlOutputs method uses the macro

real_T *y = ssGetOutputPortRealSignal(S,0);

To access the output signal. This macro returns a pointer to an array
containing the block’s outputs.

The S-function uses

int_T width = ssGetOutputPortWidth(S,0);

to get the width of the signal passing through the block. Finally the S-function
loops over the inputs to compute the outputs.

mdITerminate. Perform tasks at end of simulation. This is a mandatory
S-function routine. However, the timestwo S-function doesn’t need to perform
any termination actions, so this routine is empty.

Simulink/Real-Time Workshop Interface

At the end of the S-function, specify code that attaches this example to either
Simulink or the Real-Time Workshop.

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else

#include "'cg_sfun.h"
#endif

Building the Timestwo Example
To incorporate this S-function into Simulink, type

mex timestwo.c

at the command line. The mex command compiles and links the timestwo.c file
to create a dynamically loadable executable for Simulink’s use.

The resulting executable is referred to as a MEX S-function, where MEX
stands for “MATLAB EXecutable.” The MEX-file extension varies from
platform to platform. For example, in Microsoft Windows, the MEX-file
extension is .dIl.

3-8

Templates for C S-Functions

Templates for C S-Functions

Simulink provides skeleton implementations of C MEX S-functions, called
templates, intended to serve as starting points for creating your own
S-functions. The templates contain skeleton implementations of callback
methods with comments that explain their use. The template file,
sfuntmpl_basic.c, which can be found in the directory simul ink/src below
the MATLARB root directory, contains commonly used S-function routines. A
template containing all available routines (as well as more comments) can be
found in sfuntmpl_doc.c in the same directory.

Note We recommend that you use the C MEX-file template when developing
MEX S-functions.

S-Function Source File Requirements

This section describes requirements that every S-function source file must
meet to compile correctly. The S-function templates meet these requirements.

Statements Required at the Top of S-Functions

For S-functions to operate properly, each source module of your S-function that
accesses the SimStruct must contain the following sequence of defines and
include

#define S_FUNCTION_NAME your_sfunction_name_here
#define SFUNCTION_LEVEL 2
#include "simstruc.h"

Where your_sfunction_name_here is the name of your S-function (i.e., what
you enter in the Simulink S-Function block dialog). These statements give you
access to the SimStruct data structure that contains pointers to the data used
by the simulation. The included code also defines the macros used to store and
retrieve data in the SimStruct, described in detail in “Converting Level 1 C
MEX S-Functions to Level 2” on page 3-22. In addition, the code specifies that
you are using the level 2 format of S-functions.

3-9

3 Writing S-Functions in C

3-10

Note All S-functions from Simulink 1.3 through 2.1 are considered to be level
1 S-functions. They are compatible with Simulink 3.0, but we recommend that
you write new S-functions in the level 2 format.

The following headers are included by matlabroot/simul ink/include/
simstruc.h when compiling as a MEX-file.

Table 3-1: Header Files Included by Simstruc.h When Compiling as a MEX-File

Header File Description

matlabroot/extern/include/tmwtypes.h General data types, e.g.,
real T

matlabroot/extern/include/mex.h MATLAB MEX-file API
routines

matlabroot/extern/include/matrix.h MATLAB MEX-file API
routines

When compiling your S-function for use with the Real-Time Workshop,
simstruc.h includes the following.

Table 3-2: Header Files Included by Simstruc.h When Used
by the Real-Time Workshop

Header File Description

matlabroot/extern/include/tmwtypes.h General types, e.g. real _T

matlabroot/rtw/c/libsrc/rt_matrx.h Macros for MATLAB API
routines

Statements Required at the Bottom of S-Functions
Include this trailer code at the end of your C MEX S-function main module
only.

#ifdef MATLAB_MEX FILE /* Is this being compiled as MEX-File? */
#include "simulink.c" /* MEX-File interface mechanism */

Templates for C S-Functions

#else

#include "cg_sfun.h" /* Code generation registration func */

#endif
These statements select the appropriate code for your particular application:

< simulink.c is included if the file is being compiled into a MEX-file.

= cg_sfun.his included if the file is being used in conjunction with the
Real-Time Workshop to produce a stand-alone or real-time executable.

Note This trailer code must not be in the body of any S-function routine.

The SimStruct

The file matlabroot/simulink/include/simstruc.h is a C language header
file that defines the Simulink data structure and the SimStruct access macros.
It encapsulates all the data relating to the model or S-function, including block
parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model. Each
S-function in the model has its own SimStruct associated with it. The
organization of these SimStructs is much like a directory tree. The SimStruct
associated with the model is the root SimStruct. The SimStructs associated
with the S-functions are the child SimStructs.

Note By convention, port indices begin at 0 and finish at the total number of
ports minus 1.

Simulink provides a set of macros that S-functions can use to access the fields

of the SimStruct. See Chapter 10, “SimStruct Functions” for more information.

3-11

3 Writing S-Functions in C

Compiling C S-Functions
S-functions can be compiled in one of three modes identified by the presence of
one of the following defines:

= MATLAB_MEX_FILE — Indicates that the S-function is being built as a
MEX-file for use with Simulink.

= RT — Indicates that the S-function is being built with the Real-Time
Workshop generated code for a real-time application using a fixed-step
solver.

= NRT — Indicates that the S-function is being built with the Real-Time
Workshop generated code for a nonreal-time application using a
variable-step solver.

3-12

How Simulink Interacts with C S-Functions

How Simulink Interacts with C S-Functions

It is helpful in writing C MEX-file S-functions to understand how Simulink
interacts with S-functions. This section examines the interaction from two
perspectives: a process perspective, i.e., at which points in a simulation
Simulink invokes the S-function, and a data perspective, i.e., how Simulink
and the S-function exchange information during a simulation.

Process View

The following figures shows the order in which Simulink invokes an
S-function’s callback methods.

3-13

3 Writing S-Functions in C

3-14

Model Initialization

Simulink Engine

mdIStart optionally calls
mdICheckParameters

followed by
mdIProcessParameters

To simulation loop

Sets output of
constant blocks

How Simulink Interacts with C S-Functions

Simulation Loop

Initialize Model

Simulink Engine
' mdICheckParameters:

/

Called wnen parameters
change.

[

major time step

minor time step

P mdlProcessParameters -«

End Simulation

Called wnen parameters
change.

Called if sample time of
this S-function varies.

Called if this S-function
has continuous states.

Called if this S-function
detects zero crossings.

3-15

3 Writing S-Functions in C

Calling Structure for the Real Time Workshop

When generating code, the Real-Time Workshop does not go through the entire
calling sequence outlined above. After initializing the model as outlined in the
preceding section, Simulink calls mdIRTW, an S-function routine unique to the
Real-Time Workshop, mdITerminate, and exits.

For more information about the Real-Time Workshop and how it interacts with
S-functions, see The Real-Time Workshop User’'s Guide and The Target
Language Compiler Reference Guide.

Alternate Calling Structure for External Mode
When running Simulink in external mode, the calling sequence for S-function

routines changes. This picture shows the correct sequence for external mode.

Model Initialization

4
‘ md ICheckParameters p. 9-3 ‘

v

mdlIProcessParameters p. 9-7 | ‘

‘ mdIRTW p. 9-20 ‘ Called only if no runtime parameters

External mode
parameter change loop

4
| mdITerminate P. 9-40 |

Simulink calls mdIRTW once when it enters external mode and again each time
a parameter changes or when you select Update Diagram under your model’s
Edit menu.

Note Running Simulink in external mode requires the Real-Time Workshop.
For more information about external mode, see the Real-Time Workshop
User’s Guide.

3-16

How Simulink Interacts with C S-Functions

Data View

S-function blocks have input and output signals, parameters, internal states,
plus other general work areas. In general, block inputs and outputs are written
to, and read from, a block 1/O vector. Inputs can also come from

= External inputs via the root inport blocks

= Ground if the input signal is unconnected or grounded

Block outputs can also go to the external outputs via the root outport blocks. In
addition to input and output signals, S-functions can have:

=< Continuous states

= Discrete states

=« Other working areas such as real, integer or pointer work vectors

S-function blocks can be parameterized by passing parameters them using the
S-function block dialog box.

The following picture shows the general mapping between these various types
of data.

External < External
. .
Epo%l;ts Co Block /0| ' 83;? uts
inport Lo outport
blocks) | @ .+ |blocks)
R 3
--------- LN e
o T Work
! v A Vectors,
: DWork,
! RWork,
---- States Parameters| | IWork,
PWork,

3-17

3 Writing S-Functions in C

An S-function’s mdl Initial izeSizes routine sets the sizes of the various
signals and vectors. S-function methods called during the simulation loop can
determine the sizes and values of the signals.

An S-function method can access input signals in two ways:

<« Via pointers
= Using contiguous inputs

Accessing Signals Using Pointers

During the simulation loop, accessing the input signals is performed using

InputRealPtrs uPtrs = ssGetlnputPortRealSignalPtrs(S,portindex)

This is an array of pointers, where portindex starts at 0. There is one for each
input port. To access an element of this signal you must use

*uPtrs[element]

as described by this figure.

Input 1 ¥ S-function
Input 2 —s= Block

To Access Input 1:
InputRealPtrs uPtrsO = ssGetlnputPortRealSignalPtrs(S,0)

uPtrsO —9»| >
[>
To Access Input 2:
InputRealPtrs uPtrsl = ssGetlnputPortRealSignalPtrs(S,1)
uPtrsi —B{] » |
i >» |
[>
Block 1/0
Vector

3-18

How Simulink Interacts with C S-Functions

Note that input array pointers may point at noncontiguous places in memory.
You can retrieve the output signal by using this code.

real_T *y = ssGetOutputPortSignal(S,outputPortindex);

Accessing Contiguous Input Signals

An S-function’s mdl InitializeSizes method can specify that the elements of
its input signals must occupy contiguous areas of memory, using
ssSetlnputPortRequiredContiguous. If the inputs are contiguous, other
methods can use ssGetlInputPortSignal to access the inputs.

Accessing Input Signal of Individual Ports

This section describes how to access all input signals of a particular port and
write them to the output port. The figure above shows that the input array of
pointers may point to noncontiguous entries in the block 1/0 vector. The output
signals of a particular port form a contiguous vector. Therefore, the correct way
to access input elements and write them to the output elements (assuming the
input and output ports have equal widths) is to use this code.

int_T element;

int_T portWidth = ssGetlnputPortWidth(S, inputPortindex);

InputRealPtrs uPtrs = ssGetlnputPortRealSignalPtrs(S, inputPortindex);
real_T *y = ssGetOutputPortSignal (S,outputPortldx);

for (elemet=0; element<portWidth; element++) {
y[element] = *uPtrs[element];
}

A common mistake is to try and access the input signals via pointer arithmetic.
For example, if you were to place

real_T *u = *uPtrs; /* Incorrect */

just below the initialization of uPtrs and replace the inner part of the above
loop with

*y++ = *u++; /* Incorrect */

the code compiles, but the MEX-file may crash Simulink. This is because it is
possible to access invalid memory (which depends on how you build your
model). When accessing the input signals incorrectly, a crash will happen when
the signals entering your S-function block are not contiguous. Noncontiguous
signal data occur when signals pass through virtual connection blocks such as
the Mux or Selector blocks.

3-19

3 Writing S-Functions in C

To verify that you are correctly accessing wide input signals, pass a replicated
signal to each input port of your S-function. This is done by creating a Mux
block with the number of input ports equal to the width of the desired signal
entering your S-function. Then the driving source should be connected to each
input port as shown in this figure.

_>

Source signal P Mux P S-function

3-20

Writing Callback Methods

Writing Callback Methods

Writing an S-function basically involves creating implementations of the
callback functions that Simulink invokes during a simulation. For guidelines
on implementing a particular callback, see the documentation for the callback
in Chapter 9, “S-Function Callback Methods.” For information on using
callbacks to implement specific block features, such as parameters or sample
times, see Chapter 7, “Implementing Block Features.”

3-21

3 Writing S-Functions in C

Converting Level 1 C MEX S-Functions to Level 2

Level 2 S-functions were introduced with Simulink 2.2. Level 1 S-functions
refer to S-functions that were written to work with Simulink 2.1 and previous
releases. Level 1 S-functions are compatible with Simulink 2.2 and subsequent
releases; you can use them in new models without making any code changes.
However, to take advantage of new features in S-functions, level 1 S-functions
must be updated to level 2 S-functions. Here are some guidelines:

= Start by looking at simul ink/src/sfunctmpl_doc.c. This template
S-function file concisely summarizes level 2 S-functions.

= At the top of your S-function file, add this define:
#define S_FUNCTION_LEVEL 2

= Update the contents of mdl IntializeSizes, in particular add the following
error handling for the number of S-function parameters:

ssSetNumSFcnParams(S, NPARAMS); /*Number of expected parameters*/

iT (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}
Set up the inputs using:
ifT (IssSetNumlnputPorts(S, 1)) return; /*Number of input ports */
ssSetlInputPortWidth(S, 0, width); /* Width of input
port one (index 0)*/
ssSetlInputPortDirectFeedThrough(S, 0, 1); /* Direct feedthrough
or port one */
ssSetlInputPortRequiredContiguous(S, 0);
Set up the outputs using:
IT (IssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, width); /* Width of output port
one (index 0) */

= |f your S-function has a nonempty mdlInitializeConditions, then update
it to the following form

#define MDL_INITIALIZE_CONDITIONS
static void mdlInitializeConditions(SimStruct *S)

{
}

otherwise, delete the function.

- The continuous states are accessed using ssGetContStates. The ssGetX
macro has been removed.

- The discrete states are accessed using ssGetRealDiscStates(S). The
ssGetX macro has been removed.

3-22

Converting Level 1 C MEX S-Functions to Level 2

- For mixed continuous and discrete state S-functions, the state vector no
longer consists of the continuous states followed by the discrete states. The

states are saved in separate vectors and hence may not be contiguous in
memory.

= The mdI0utputs prototype has changed from
static void mdlOutputs(real_T *y, const real_T *x,
const real _T *u, SimStruct *S, int_T tid)
to:
static void mdlOutputs(SimStruct *S, int_T tid)
Since y, x, and u are not explicitly passed into Level-2 S-functions, you must
use:
- ssGetlnputPortSignal to access inputs.
- ssGetOutputPortSignal to access the outputs.
- ssGetContStates or ssGetRealDiscStates to access the states.
= The mdlUpdate function prototype has been changed from
void mdlUpdate(real T *x, real_T *u, Simstruct *S, int_T tid)
to:
void mdlUpdate(SimStruct *S, int_T tid)

= If your S-function has a nonempty mdlUpdate, then update it to this form
#define MDL_UPDATE

static void mdlUpdate(SimStruct *S, int_T tid)
{
}

otherwise, delete the function.

= If your S-function has a nonempty mdIDerivatives, then update it to this
form

#define MDL_DERIVATIVES
static void mdIDerivatives(SimStruct *S, int_T tid)

{
}

otherwise, delete the function.

3-23

3 Writing S-Functions in C

= Replace all obsolete SimStruct macros. See “Obsolete Macros” on page 3—24
for a complete list of obsolete macros.

= When converting level 1 S-functions to level 2 S-functions, you should build
your S-functions with full (i.e., highest) warning levels. For example, if you
have gcc on a UNIX system, use these options with the mex utility.

mex CC=gcc CFLAGS=-Wall sfcn.c
If your system has Lint, use this code.

lint -DMATLAB_MEX_FILE -lI<matlabroot>/simulink/include
-Imatlabroot/extern/include sfcn.c

On a PC, to use the highest warning levels, you must create a project file
inside of the integrated development environment (IDE) for the compiler you
are using. Within the project file, define MATLAB_MEX_FILE and add

matlabroot/simulink/include
matlabroot/extern/include

to the path (be sure to build with alignment set to 8).

Obsolete Macros

The following macros are obsolete. Each obsolete macro should be replaced
with the specified macro.

Obsolete Macro Replace With

ssGetU(S), ssGetUPtrs(S) ssGetlnputPortSignalPtrs(S, port)

ssGetY(S) ssGetOutputPortRealSignal (S, port)

ssGetX(S) ssGetContStates(S), ssGetRealDiscStates(S)

ssGetStatus(S) Normally not used, but ssGetErrorStatus(S) is
available.

ssSetStatus(S,msg) ssSetErrorStatus(S,msg)

ssGetSizes(S) Specific call the desired item (i.e.,

ssGetNumContStates(S)).

3-24

Converting Level 1 C MEX S-Functions to Level 2

Obsolete Macro

Replace With

ssGetMinStepSize(S)
ssGetPresentTimeEvent(S,sti)
ssGetSampleTimeEvent(S,sti)
ssSetSampleTimeEvent(S,t)
ssGetOffsetTimeEvent(S,sti)
ssSetOffsetTimeEvent(S,sti,t)
sslsSampleHitEvent(S,sti, tid)
ssGetNumlnputArgs(S)
ssSetNumlnputArgs(S, numlnputArgs)
ssGetNumArgs(S)
ssGetArg(S,argNum)

ssGetNumlnputs

ssSetNumlnputs

ssGetNumOutputs

ssSetNumOutputs

No longer supported.
ssGetTaskTime(S,sti)
ssGetSampleTime(S,sti)
ssSetSampleTime(S,sti,t)
ssGetOffsetTime(S,sti)
ssSetOffsetTime(S,sti,t)
sslsSampleHit(S,sti,tid)
ssGetNumSFcnParams(S)
ssSetNumSFcnParams(S, numlnputArgs)
ssGetSFcnParamsCount(S)
ssGetSFcnParam(S,argNum)

ssGetNumlnputPorts(S) and
ssGetInputPortWidth(S,port)

ssSetNumlnputPorts(S, nlnputPorts) and
ssSetlInputPortWidth(S,port,val)

ssGetNumOutputPorts(S) and
ssGetOutputPortWidth(S, port)

ssSetNumOutputPorts(S,nOutputPorts) and
ssSetOutputPortWidth(S,port,val)

3-25

3 Writing S-Functions in C

3-26

Creating C++ S-Functions
|

Overviewo 4-2
Source File Format 4-3
Making C++ Objects Persistent 4-7

Building C++ S-Functions 4-8

4 Creating C++ S-Functions

Overview
The procedure for creating C++ S-functions is nearly the same as that for

creating C S-functions (see Chapter 3, “Writing S-Functions in C”). This section
explains the differences.

4-2

Source File Format

Source File Format

The format of the C++ source for an S-function is nearly identical to that of the
source for an S-function written in C. The main difference is that you must use
tell the C++ compiler to use C call conventions when compiling the callback
methods. This is necessary because the Simulink simulation engine assumes
that callback methods obey C calling conventions.

To tell the compiler to use C calling conventions when compiling the callback
methods, wrap the C++ source for the S-function callback methods in an
extern “C” statement. The C++ version of the sfun_counter S-function
example (matlabroot/simul ink/src/sfun_counter_cpp-cpp) illustrates
usage of the extern “C” directive to ensure that the compiler generates
Simulink-compatible callback methods.

/* File : sfun_counter_cpp-cpp
* Abstract:
*
* Example of an C++ S-function which stores an C++ object in
* the pointers vector PWork.
*
* Copyright 1990-2000 The MathWorks, Inc.
*

$Revision: 1.1 $

#include "iostream._h"

class counter {
double x;
public:
counter() {
X = 0.0;
¥
double output(void) {
X =X + 1.0;
return x;
}
}:

#ifdef _ _cplusplus
extern "C" { // use the C fcn-call standard for all functions
#endif // defined within this scope

#define S_FUNCTION_LEVEL 2
#define S_FUNCTION_NAME sfun_counter_cpp

/*
* Need to include simstruc.h for the definition of the SimStruct and
* its associated macro definitions.

4-3

4 Creating C++ S-Functions

*/
#include "simstruc.h"

/* *
* S-function methods *
* */

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to determine the S-function
* block"s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

/* See sfuntmpl.doc for more details on the macros below */

ssSetNumSFcnParams(S, 1); /* Number of expected parameters */

iT (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

if (IssSetNumlnputPorts(S, 0)) return;

IT (IssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumlWork(S, 0);

ssSetNumPWork(S, 1); // reserve element in the pointers vector
ssSetNumModes(S, 0); // to store a C++ object
ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, 0);

/* Function: mdlInitializeSampleTimes

* Abstract:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as
specified in ssSetNumSampleTimes.

*

*

/

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime(S, 0, mxGetScalar(ssGetSFcnParam(S, 0)));
ssSetOffsetTime(S, 0, 0.0);

Source File Format

}

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
/* Function: mdIStart

* Abstract:

* This function is called once at start of model execution. If you
* have states that should be initialized once, this is the place
* to do it.

*/

static void mdIStart(SimStruct *S)

{

ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the
} // pointers vector
#endif /* MDL_START */

/* Function: mdlOutputs
* Abstract:

* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).
*/

static void mdlOutputs(SimStruct *S, int_T tid)

{
counter *c = (counter *) ssGetPWork(S)[0]; // retrieve C++ object from
real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and use
y[0] = c->output(); // member functions of the

3} // object

/* Function: mdITerminate

* Abstract:
* In this function, you should perform any actions that are necessary
* at the termination of a simulation. For example, if memory was
* allocated in mdlStart, this is the place to free it.
*/
static void mdITerminate(SimStruct *S)
{
counter *c = (counter *) ssGetPWork(S)[0]; // retrieve and destroy C++
delete c; // object in the termination
3} // function
/* x
* See sfuntmpl.doc for the optional S-function methods *
* */
/* *
* Required S-function trailer *
*- */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

4-5

4 Creating C++ S-Functions

#ifdef ___cplusplus
} 7/ end of extern "C" scope
#endi T

4-6

Making C++ Objects Persistent

Making C++ Objects Persistent

Your C++ callback methods may need to create persistent C++ objects, that is,
objects that continue to exist after the method exits. For example, a callback
method may need to access an object created during a previous invocation. Or
one callback method may need to access an object created by another callback
method. To create persistent C++ objects in your S-function:

1 Create a pointer work vector to hold pointers to the persistent object
between method invocations.

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumPWork(S, 1); // reserve element in the pointers vector
// to store a C++ object

s

2 Store a pointer to each object that you want to be persistent in the pointer
work vector.

static void mdIStart(SimStruct *S)
{

ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the
} // pointers vector

3 Retrieve the pointer in any subsequent method invocation to access the
object.

static void mdlOutputs(SimStruct *S, int_T tid)

{
counter *c = (counter *) ssGetPWork(S)[O0]; // retrieve C++ object from
real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and use
y[0] = c->output(); // member functions of the

} // object

4 Destroy the objects when the simulation terminates.

static void mdITerminate(SimStruct *S)

{
counter *c = (counter *) ssGetPWork(S)[0]; // retrieve and destroy C++
delete c; // object in the termination
} // function

4-7

4 Creating C++ S-Functions

Building C++ S-Functions

Use the MATLAB mex command to build C++ S-functions exactly the way you
use it to build C S-functions. For example, to build the C++ version of the
sfun_counter example, enter

mex sfun_counter_cpp-cpp

at the MATLAB command line.

Note The extension of the source file for a C++ S-function must be .cpp to
ensure that the compiler treats the file's contents as C++ code.

4-8

Creating Ada S-Functions

Introduction

Ada S-Function Source File Format
Ada S-Function Specification .
Ada S-Function Body .

Writing Callback Methods in Ada
Callbacks Invoked By Simulink .
Implementing Callbacks .

Omitting Optional Callback Methods
SimStruct Functions

Building an Ada S-Function

Using an Ada S-Function in a Model .

Example of an Ada S-Function

. 5-10

. 5-11

5 Creating Ada S-Functions

5-2

Introduction

Simulink allows you to use the Ada programming language to create
S-functions. As with S-functions coded in other programming languages,
Simulink interacts with an Ada S-function by invoking callback methods that
the S-function implements. Each method performs a predefined task, such as
computing block outputs, required to simulate the block whose functionality
the S-function defines. Creating an Ada S-function thus entails writing Ada
implementations of the callback methods required to simulate the S-function
and then compiling and linking the callbacks into a library that Simulink can
load and invoke during simulation The following sections explain how to
perform theses tasks.

Ada S-Function Source File Format

Ada S-Function Source File Format

To create an Ada S-function, you must create an Ada package that implements
the callback methods required to simulate the S-function. The S-function
package comprises a specification and a body.

Ada S-Function Specification

The specification specifies the methods that the Ada S-function uses and
implements. The specification must specify that the Ada S-function uses the
Simul ink package, which defines data types and functions that the S-function
can use to access the internal data structure (SimStruct) that Simulink uses to
store information about the S-function (see Chapter 10, “SimStruct
Functions”). The specification and body of the Simul ink package reside in the
matlabroot/simul ink/ada/interface/ directory.

The specification should also specify each callback method that the S-function
implements as an Ada procedure exported to C. The following is an example
of an Ada S-function specification that meets these requirements.

-- The Simulink APl for Ada S-Function
with Simulink; use Simulink;

package Times_Two is

-- The S_FUNCTION_NAME has to be defined as a constant
-- string.

S_FUNCTION_NAME : constant String := "times_two";

-- Every S-Function is required to have the

-- "mdlInitializeSizes" method.

-- This method needs to be exported as shown below, with the
-- exported name being "mdlInitializeSizes".

procedure mdlInitializeSizes(S : in SimStruct);
pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes™);

procedure mdlOutputs(S : in SimStruct; TID : in Integer);
pragma Export(C, mdlOutputs, "mdlOutputs'™);

end Times_Two;

5-3

5 Creating Ada S-Functions

Ada S-Function Body

The Ada S-Function body provides the implementations of the S-function
callback methods as illustrated in the following example.

with Simulink; use Simulink;
with Ada.Exceptions; use Ada.Exceptions;

package body Times_Two is

-- Function: mdlInitializeSizes
-- Abstract:
Setup the input and output port attributes for this

S-Function.

procedure mdlInitializeSizes(S : in SimStruct) is

begin
-- Set the input port attributes
ssSetNumlnputPorts(S, 1);
ssSetinputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetlnputPortDataType(S, 0, SS_DOUBLE);
ssSetlnputPortDirectFeedThrough(S, 0, TRUE);
ssSetlInputPortOverWritable(S, 0, FALSE);
ssSetlnputPortOptimizationLevel (S, 0, 3);

-- Set the output port attributes

ssSetNumOutputPorts(S, 1);
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetOutputPortDataType(S, 0, SS_DOUBLE);
ssSetOutputPortOptimizationLevel (S, 0, 3);

-- Set the block sample time.

ssSetSampleTime(S, INHERITED_SAMPLE_TIME);
exception
when E : others =>
if ssGetErrorStatus(S) = """ then
ssSetErrorStatus(s,

"Exception occured in mdlInitializeSizes. " &
“"Name: " & Exception_Name(E) & ", " &
"Message: " & Exception_Message(E) &
*and " & "Information: " &

Exception_Information(E));
end if;
end mdlInitializeSizes;

-- Function: mdlOutputs
-- Abstract:

5-4

Ada S-Function Source File Format

- Compute the S-Function®s output,
- given its input: y =2 *u

procedure mdlOutputs(S : in SimStruct; TID : in Integer) is

uWidth : Integer := ssGetlnputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real_T;
for U"Address use ssGetlnputPortSignalAddress(S,0);

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. yWidth-1) of Real_T;
for Y"Address use ssGetOutputPortSignalAddress(S,0);

begin
if uvidth = 1 then
for ldx in O .. yWidth-1 loop
Y(ldx) = 2.0 * UC0);
end loop;
else
for ldx in O .. yWidth-1 loop
Y(ldx) := 2.0 * U(ldx);

end loop;
end if;
exception
when E : others =>
if ssGetErrorStatus(S) = " then
ssSetErrorStatus(s,
"Exception occured in mdlOutputs. " &
"Name: " & Exception_Name(E) & ', " &
"Message: " & Exception_Message(E) & "™ and " &
"Information: " & Exception_Information(E));
end if;

end mdlOutputs;

end Times_Two;

5-5

5 Creating Ada S-Functions

Writing Callback Methods in Ada

Simulink interacts with an Ada S-function by invoking callback methods that
the S-function implements. This section specifies the callback methods that an
Ada S-function can implement and provides guidelines for implementing them.

Callbacks Invoked By Simulink

The following diagram shows the callback methods that Simulink invokes
when interacting with an Ada S-function during a simulation and the order in
which Simulink invokes them.

4
, 3y ad 3 1 T A & i
-9..4(13 S-functions Flow Chart
v | mdlIntializeSizes |
)
mdl SetWorlWidths
3 t
mdlStart 5"_": Optional: Meke thisexplicit call to process
i 4 ! "_iniﬁal pararmeter values.
gmdlItlltlahiECondltlons; | mdlProcessParameters i
{constant) mdlOutputs Execute blocks with constant (ragenta) sarple times
4" Called only when parareters are changed during
g T " | simulation. Yo must explicifly call this routine in
| MOLTTOCESS ATAMEBLELS | < mdStrtto process your initial parareter values.
.......... g i
SR EE gmdllnitialize(jonditionsé If your S-finction resides in an engbled subsyster
g 58 g f configured to reset states, then this function is
'3 g g é (major)nileutputs called here when the subsyster has just enabled.
§ §E& : ; :
& é’ gvg md Update 1f final fizee e - mdiTerminate
= ©iZp 4
= Bt
E g EDE mdlDe?vatlves Integration (minor time step)
5} =3
B % 2 Integration stages. Only
28
S A

........ hag contirmons states

|: (rminar) mdl Cutputs] performed if your S-function

mdlDerivatives

5-6

Writing Callback Methods in Ada

Note When interacting with Ada S-functions, Simulink invokes only a subset
of the callback methods that it invokes for C S-functions. The “Languages
Supported” section of the reference page for each callback method specifies
whether Simulink invokes that callback when interacting with an Ada
S-function.

Implementing Callbacks

Simulink defines in a general way the task of each callback. The S-function is
free to perform the task according to the functionality it implements. For
example, Simulink specifies that the S-function’s md10utput method must
compute that block’s outputs at the current simulation time. It does not specify
what those outputs must be. This callback-based API allows you to create
S-functions, and hence custom blocks, that meet your requirements.

Chapter 9, “S-Function Callback Methods” explains the purpose of each

callbacks and provides guidelines for implementing them. Chapter 3, “Writing
S-Functions in C” provides information on using these callbacks to implement
specific S-function features, such as the ability to handle multiple signal data

types.

Omitting Optional Callback Methods

The method mdlInitializeSizes is the only callback that an Ada S-function
must implement. The source for your Ada S-function needs to include
implementations only for callbacks that it must handle. If the source for your
S-function does not include an implementation for a particular callback, the
mex tool that builds the S-function (see “Building an Ada S-Function” on
page 5-9) provides a stub implementation.

SimStruct Functions

Simulink provides a set of functions that enable an Ada S-function to access the
internal data structure (SimStruct) that Simulink maintains for the
S-function. These functions consist of Ada wrappers around the SimStruct
macros used to access the SimStruct from a C S-function (see Chapter 10,
“SimStruct Functions”). Simulink provides Ada wrappers for a substantial

5-7

5 Creating Ada S-Functions

subset of the SimStruct macros. The “Languages Supported” section of the
reference page for a macro specifies whether it has an Ada wrapper.

5-8

Building an Ada S-Function

Building an Ada S-Function

To use your Ada S-function with Simulink, you must build a MATLAB
executable (MEX) file from the Ada source code for the S-function. Use the
MATLAB mex command to perform this step.

The mex syntax for building an Ada S-function MEX file is
mex [-v] [-g] -ada SFCN.ads
where SFCN.ads is the name of the S-function’s package specification.

For example, to build the timestwo S-function example that comes with
Simulink, enter the command

mex -ada timestwo.ads

Note To build a MEX file from Ada source code, using the mex tool, you must
have previously installed a copy of version 3.2 (or higher) of the GNAT Ada95
compiler on your system. You can obtain the latest Solaris, Windows, and
GNU-Linux versions of the compiler at the GNAT ftp site (ftp://
cs.nyu.edu/pub/gnat). Make sure that the compiler executable is in
MATLADB’s command path so that the mex tool can find it.

5-9

5 Creating Ada S-Functions

Using an Ada S-Function in a Model

The way to include an Ada S-function in a model is the same at that for
including any other type of S-function. See “Using S-Functions in Models” on
page 1-2 for more information.

5-10

Example of an Ada S-Function

Example of an Ada S-Function

This section presents an example of a basic Ada S-function that you can use as
a model when creating your own Ada S-functions. The example is the timestwo
S-function example that comes with Simulink (see matlabroot/simul ink/ada/
examples/timestwo.ads and matlabroot/simul ink/ada/examples/
timestwo.adb). This S-function outputs twice its input.

The following model uses the timestwo S-function to double the amplitude of a
sine wave and plot it in a scope.

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

The block dialog for the S-function specifies timestwo as the S-function name;
the parameters field is empty.

The timestwo S-function contains the S-function callback methods shown in

this figure.
Start of simulation

| nmdlinitializeSizes |

Initialization v
mdlInitializeSampleTimes ‘

—P‘ mdlOutputs ‘

Simulation
loop

v
end of simulation

The source code for the timestwo S-function comprises two parts:

= Package specification

5-11

5 Creating Ada S-Functions

= Package body

The following sections explains each of these parts.

Timestwo Package Specification

The timestwo package specification, timestwo.ads, contains the following
code.

-- The Simulink APl for Ada S-Function

with Simulink; use Simulink;

package Times_Two is
-- The S_FUNCTION_NAME has to be defined as a constant string. Note that
-- the name of the S-Function (ada_times_two) is different from the name
-- of this package (times_two). We do this so that it is easy to identify
-- this example S-Function in the MATLAB workspace. Normally you would use
-- the same name for S_FUNCTION_NAME and the package.
S_FUNCTION_NAME : constant String := "ada_times_two";
-- Every S-Function is required to have the "mdlInitializeSizes" method.

-- This method needs to be exported as shown below, with the exported name
-- being "mdlInitializeSizes".

procedure mdlInitializeSizes(S : in SimStruct);
pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdIOutputs(S : in SimStruct; TID : in Integer);
pragma Export(C, mdlOutputs, "mdlOutputs™);

end Times_Two;

The package specification begins by specifying that the S-function uses the
Simulink package.

with Simulink; use Simulink;

The Simulink package defines Ada procedures for accessing the internal data
structure (SimStruct) that Simulink maintains for each S-function (see
Chapter 10, “SimStruct Functions”).

Next the specification specifies the name of the S-function.

S_FUNCTION_NAME : constant String := "ada_times_two";

5-12

Example of an Ada S-Function

The name ada_times_two serves to distinguish the MEX file generated from
Ada source from those generated from the timestwo source coded in other
languages.

Finally the specification specifies the callback methods implemented by the
timestwo S-function.

procedure mdlInitializeSizes(S : in SimStruct);
pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdlOutputs(S : in SimStruct; TID - in Integer);
pragma Export(C, mdlOutputs, "mdlOutputs'™);

The specification specifies that the Ada compiler should compile each method
as a C-callable function. This is because the Simulink engine assumes that
callback methods are C functions.

Note When building an Ada S-function, MATLAB'’s mex tool uses the package
specification to determine which callbacks the S-function does not implement.
It then generates stubs for the non implemented methods.

Timestwo Package Body

The timestwo package body, timestwo.adb, contains

with Simulink; use Simulink;
with Ada.Exceptions; use Ada.Exceptions;

package body Times_Two is

-- Function: mdlInitializeSizes -----———---------"---"---————
-- Abstract:
- Setup the input and output port attrubouts for this S-Function.

procedure mdlInitializeSizes(S : in SimStruct) is

begin
-- Set the input port attributes
ssSetNumInputPorts(1
ssSetlnputPortWidth(0, DYNAMICALLY_SIZED);
ssSetlnputPortDataType(, 0, SS_DOUBLE);
ssSetInputPortDlrectFeedThrough(S 0, TRUE);
0
0

U?U?(D

ssSetinputPortOverWritable(S, 0, FALSE);
ssSetlnputPortOptimizationLevel (S, 0, 3);

5-13

5 Creating Ada S-Functions

-- Set the output port attributes

ssSetNumOutputPorts(S, 1);
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetOutputPortDataType(S, 0, SS_DOUBLE);

ssSetOutputPortOptimizationLevel (S, 0, 3);

-- Set the block sample time.
ssSetSampleTime(S, INHERITED_SAMPLE_TIME);

exception
when E : others =>
if ssGetErrorStatus(S) = """ then
ssSetErrorStatus(s,
"Exception occured in mdlInitializeSizes. " &
"Name: " & Exception_Name(E) & ', " &
"Message: " & Exception_Message(E) & "™ and " &
"Information: " & Exception_Information(E));
end if;
end mdlInitializeSizes;

-- Function: mdlOutputs -----—————————— -
-- Abstract:
-= Compute the S-Function®s output, given its input: y = 2 * u

procedure mdIOutputs(S : in SimStruct; TID : in Integer) is

uWidth : Integer := ssGetlnputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real_T;
for U"Address use ssGetlnputPortSignalAddress(S,0);

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. yWidth-1) of Real_T;
for Y"Address use ssGetOutputPortSignalAddress(S,0);

begin
if uWidth = 1 then
for ldx in O .. yWidth-1 loop
Y(ldx) = 2.0 * U(0);
end loop;
else
for ldx in O .. yWidth-1 loop
Y(ldx) := 2.0 * U(ldx);
end loop;
end if;

exception
when E : others =>
if ssGetErrorStatus(S) = """ then
ssSetErrorStatus(s,
"Exception occured in mdlOutputs. " &

5-14

Example of an Ada S-Function

“Name: " & Exception_Name(E) & ", " &
"Message: " & Exception_Message(E) & " and " &
"Information: " & Exception_Information(E));

end if;
end mdlOutputs;

end Times_Two;

The package body contains implementations of the callback methods needed to
implement the timestwo example.

mdlinitializeSizes
Simulink calls mdI InitializeSizes to inquire about the number of input and

output ports sizes of the ports and any other objects (such as the number of
states) needed by the S-function.

The timestwo implementation of mdl InitializeSizes uses SimStruct
functions defined in the Simulink package to specify the following size
information:

= One input port and one output port

The widths of the input and output port are dynamically sized. This tells
Simulink to multiply each element of the input signal to the S-function by
two and to place the result in the output signal. Note that the default
handling for dynamically sized S-functions for this case (one input and one
output) is that the input and output widths are equal.

= One sample time

Finally the method provides an exception handler to handle any errors that
occur in invoking the SimStruct functions.

mdlOutputs

Simulink calls md10utputs at each time step to calculate a block’s outputs. The
timestwo implementation of md10utputs takes the input, multiplies it by two,
and writes the answer to the output.

The timestwo implementation of the mdl0utputs method uses the SimStruct
functions, ssGetlInputPortWidth and ssGetlnputPortSignalAddress, to
access the input signal.

uWidth : Integer := ssGetlnputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real_T;

5-15

5 Creating Ada S-Functions

5-16

for U"Address use ssGetlnputPortSignalAddress(S,0);

Similarly, the mdl0utputs method uses the functions, ssGetOutputPortWidth
and ssGetOutputPortSignalAddress, to access the output signal.

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. yWidth-1) of Real_T;
for Y"Address use ssGetOutputPortSignalAddress(S,0);

Finally the method loops over the inputs to compute the outputs.

Building the Timestwo Example
To build this S-function into Simulink, type

mex -ada timestwo.abs

at the command line.

Creating Fortran
S-Functions

Introduction . . . N R
Level 1 Versus Level 2 S Functlons N ¢ R
Creating Level 1 Fortran S-Functions 6-3
The Fortran MEX TemplateFile 6-3
Example e e e 63
Inline Code Generatlon Example . e e b6
Creating Level 2 Fortran S-Functions 6-7
Template File N Y 4
C/Fortran Interfacing Tlps N 4
Constructing the Gateway6-11
An Example C-MEX S-Function Calllng Fortran Code . . .6-13
PortinglLegacyCode6-15
FindtheStates6-15
SampleTimes6-15
Multiple Instances6-15
Use Flints IfNeeded6-16

Considerations for Real Time6-16

6 Creating Fortran S-Functions

6-2

Introduction

There are two main strategies to executing Fortran code from Simulink. One is
from a Level 1 Fortran-MEX (F-MEX) S-function, the other is from a Level 2
gateway S-function written in C. Each has its advantages and both can be
incorporated into code generated by the Real-Time Workshop.

Level 1 Versus Level 2 S-Functions

The original S-function interface has been dubbed the “Level 1” API. As the
capabilities of Simulink grew over the years, the S-function APl was
rearchitected into the more extensible “Level 2” API. This allows S-functions to
have all the capabilities of a full Simulink model (except automatic algebraic
loop identification and solving) and to grow as Simulink grows.

Creating Level 1 Fortran S-Functions

Creating Level 1 Fortran S-Functions

The Fortran MEX Template File

A template file for Fortran MEX S-functions is located at matlabroot/
simulink/src/sfuntmpl_fortran.for. The template file compiles as-is and
merely copies the input to the output.

To use the template to create a new Fortran S-function:

1 Create a copy under another filename.

2 Edit the copy to perform the operations you need.

3 Compile the edited file into a MEX file, using the mex command.
4 Include the MEX file in your model, using the S-Function block.

Example

The example file, matlabroot/simul ink/src/sfun_timestwo_for . for,
implements an S-function that multiplies its input by two.

(@]

File: SFUN_TIMESTWO_FOR.F

Abstract:
A sample Level 1 FORTRAN representation of a
timestwo S-function.
The basic mex command for this example is:
>> mex sfun_timestwo_for.for simulink.for

Copyright 1990-2000 The MathWorks, Inc.

$Revision: 1.1 $

Function: SIZES

Abstract:
Set the size vector.

SIZES returns a vector which determines model
characteristics. This vector contains the
sizes of the state vector and other
parameters. More precisely,

eNeoNeNeoNeoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo NN

6-3

6 Creating Fortran S-Functions

SI1ZE(1) number of continuous states

SI1ZE(2) number of discrete states

SIZE(3) number of outputs

SIZE(4) number of inputs

SIZE(5) number of discontinuous roots in
the system

SIZE(6) set to 1 if the system has direct
feedthrough of its inputs,
otherwise 0

[eNeNoNoNoNoNoNoNoNeNoNe]

SUBROUTINE SIZES(SIZE)
.. Array arguments ..
INTEGER*4 SIZE(™)
C .. Parameters ..
INTEGER*4 NSIZES
PARAMETER (NS1ZES=6)

@

SIZE(L) =
SI1ZE(2)
SIZE(3)
SIZE(4)
SI1ZE(5)
SI1ZE(6)

1
P OPRFrRRFR OO

RETURN
END

Function: OUTPUT

Abstract:
Perform output calculations for continuous
signals.

eNeNeNoNoNoNoNoNoNeoNe)

.. Parameters ..

SUBROUTINE OUTPUT(T, X, U, Y)
REAL*8 T

REAL*8 XY, U, YD

Y(1) = UQQ) * 2.0

RETURN
END

OO0 0

Stubs for unused functions.

Creating Level 1 Fortran S-Functions

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUT INE
REAL*8

C --- Nothing to
RETURN
END

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUT INE
REAL*8

C --- Nothing to
RETURN
END

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUT INE
REAL*8

C --- Nothing to
RETURN
END

A Level 1 S-function's input/output is limited to using the REAL*8 data type,

INITCOND(XO)
X0(*)
do.

DERIVS(T, X, U, DX)

T, X(*), U(), DX()
do.

DSTATES(T, X, U, XNEW)
T, XY, U, XNEWC)
do.

DOUTPUT(T, X, U, Y)
T, X(), U™, Y(™)
do.

TSAMPL(T, X, U, TS, OFFSET)
T,TS,OFFSET ,X(*),U(™®)
do.

SINGUL(T, X, U, SING)
T, XC), U, SING(Y)
do.

(DOUBLE PRECISION), which is equivalent to a double in C. Of course, the
internal calculations can use whatever data types you need.

To see how this S-function works, type

sfcndemo_timestwo_for

at the MATLAB prompt and then run the model.

6-5

6 Creating Fortran S-Functions

6-6

Inline Code Generation Example

Real-Time Workshop users can use a sample block target file for
sfun_timestwo_for.mex to generate code for sfcndemo_timestwo_for. If you
want to learn how to inline your own Fortran MEX file, see the example at
matlabroot/toolbox/simulink/blocks/tlc_c/sfun_timestwo_for.tlc and
read the Target Language Compiler Reference Guide.

Creating Level 2 Fortran S-Functions

Creating Level 2 Fortran S-Functions

To use the features of a Level 2 S-function with Fortran code, it is necessary to
write a skeleton S-function in C that has code for interfacing to Simulink and
also calls your Fortran code.

Using the C-MEX S-function as a gateway is quite simple if you are writing the
Fortran code from scratch. If instead your Fortran code already exists as a
standalone simulation, there is some work to be done to identify parts of the
code that need to be registered with Simulink, such as identifying continuous
states if you are using variable step solvers or getting rid of static variables if
you want to have multiple copies of the S-function in a Simulink model (see
“Porting Legacy Code” on page 6-15).

Template File

The file matlabroot/simulink/src/sfungate.c is a C-MEX template file for
calling into a Fortran subroutine. It will work with a simple Fortran
subroutine, if you modify the Fortran subroutine name in the code.

C/Fortran Interfacing Tips
The following are some tips for creating the C-to-Fortran gateway S-function.

Mex Environment

Remember that mex -setup needs to find both the C and the Fortran compilers.
If you install or change compilers it is necessary to run mex -setup after
installation or reconfiguration of compilers.

Test out the installation and setup using sample MEX files from MATLAB's C
and Fortran MEX examples in matlabroot/extern/examples/mex as well as
Simulink's examples, which are located in matlabroot/simulink/src.

Compiler Compatibility

Your C and Fortran compilers need to use the same object format. If you use
the compilers explicitly supported by the mex command this is not a problem.
When using the C gateway to Fortran, it is possible to use Fortran compilers
not supported by the mex command, but only if the object file format is
compatible with the C compiler format. Common object formats include ELF
and COFF.

6-7

6 Creating Fortran S-Functions

6-8

The compiler must also be configurable so that the caller cleans up the stack
instead of the callee. Compagq Visual Fortran (formerly known as Digital
Fortran) is one compiler whose default stack cleanup is the callee.

Symbol Decorations

Symbol decorations can cause runtime errors. For example, g77 will decorate
subroutine names with a trailing underscore when in its default configuration.
You can either recognize this and adjust the C function prototype or alter the
Fortran compiler's name decoration policy via command line switches, if the
compiler supports this. See the Fortran compiler manual about altering symbol
decoration policies.

If all else fails, use utilities, such as od (octal dump), to display the symbol
names. For example, the command

od -s 2 <file>

lists strings and symbols in binary (.obj) files.

These binary utilities can be obtained for Windows as well. MKS is one
company that has commercial versions of powerful UNIX utilities, though most
can also be obtained for free on the Web. hexdump is another common program
for viewing binary files. As an example, here is the output of

od -s 2 sfun_atmos_for.o

on Linux.

0000115 EEU

0000136 EEU

0000271 EE°

0000467 CEE@

0000530 CEE

0000575 EEUE&Z5@
0001267 CFjVC-0:C
0001323 :|].-:8A#8yKw6
0001353 ?3330@

0001364 333A

0001414 01.01

0001425 GCC: (GNU) egcs-2.91.66 19990314/Linux
0001522 .symtab
0001532 .strtab
0001542 .shstrtab
0001554 .text

0001562 .rel._text
0001574 .data

0001602 .bss

Creating Level 2 Fortran S-Functions

0001607 .note

0001615 .comment
0003071 sfun_atmos_for. for
0003101 gcc2_compiled.
0003120 rearth.0
0003131 gmr.1

0003137 htab.2
0003146 ttab.3
0003155 ptab.4
0003164 gtab.5
0003173 atmos_
0003207 exp

0003213 pow_d

Note that Atmos has been changed to atmos_ and the latter is what the C
program must call to be successful.

With Compagq Visual Fortran, the symbol is suppressed, so that Atmos becomes
ATMOS (no underscore).

Fortran Math Library

Fortran math library symbols may not match C math library symbols. For
example A”B in Fortran will call library function pow_dd, which is not in the C
math library. In these cases, you must tell mex to link in the Fortran math
library. For gcc environments, these routines are usually found in /usr/
local/lib/libf2c.a, /usr/lib/libf2c.a or equivalent

The mex command becomes

mex -L/usr/local/lib -1¥2c cmex_c_file fortran_object_file

Note On UNIX, the -1f2c option follows the conventional UNIX library
linking syntax where '-1' is the library option itself and 'f2c' is the unique
part of the library file's name, libf2c.a. Be sure to use the -L option for the
library search path since -1 is only followed while searching for include files.

The f2c package can be obtained for Windows and UNIX environments from
the Internet. The file libf2c.a is usually part of g77 distributions, or else the
file is not needed as the symbols match. In obscure cases, it must be installed
separately, but even this is not difficult once the need for it is identified.

6-9

6 Creating Fortran S-Functions

6-10

On Windows using Microsoft Visual C/C++ and Compag Visual Fortran 6.0
(formerly known as Digital Fortran), this example can be compiled using the
following mex commands (each command is on one line).

mex -v COMPFLAGS#”$COMPFLAGS /iface:cref” -c sfun_atmos_sub.for

- _.\..\bin\win32\mexopts\df60opts.bat

mex -v LINKFLAGS#”$LINKFLAGS dfor.lib dfconsol.lib dfport.lib
/L1BPATH:$DF_ROOT\DF98\LIB” sfun_atmos.c sfun_atmos_sub.obj

See matlabroot/simulink/src/sfuntmpl_fortran.txt and matlabroot/
simulink/src/sfun_atmos.c for the latest information on compiling Fortran
for C on Windows.

CFortran

Or try using CFortran to create an interface. CFortran is a tool for automated
interface generation between C and Fortran modules, in either direction.
Search the Web for cfortran or visit

http://www-zeus.desy.de/~burow/cfortran/

for downloading.

Obtaining a Fortran Compiler

On Windows using Visual C/C++ with Fortran is best done with Compaq Visual
Fortran, Absoft, Lahey or other third-party compilers. See Compagq

(www . compag -com) and Absoft (www.absoft.com) for Windows, Linux, and Sun
compilers and see Lahey (www . Iahey . com) for more choices in Windows Fortran
compilers.

For Sun (Solaris) and other commercial UNIX platforms, one can purchase the
computer vendor's Fortran compiler, a third-party Fortran such as Absoft, or
even use the Gnu Fortran port for that platform (if available).

As long as the compiler can output the same object (- o) format as the platform's
C compiler, the Fortran compiler will work with the gateway C-MEX
S-function technique.

Gnu Fortran (g77) can be obtained free for several platforms from many
download sites, including tap://www.redhat.com in the download area. A
useful keyword on search engines is g77.

Creating Level 2 Fortran S-Functions

Constructing the Gateway

The mdlInitializeSizes() and mdlInitializeSampleTimes() methods are
coded in C. It is unlikely that you will need to call Fortran routines from these
S-function methods. In the simplest case, the Fortran is called only from
md10utputs().

Simple Case

The Fortran code must at least be callable in a “step at a time” fashion. If the
code doesn't have any states, it can be called from mdl0utputs() and no
mdIDerivatives() or mdlUpdate() methods are required.

Code with States

If the code has states, you must decide if the Fortran code can support a
variable step solver or not. For fixed-step solver only support, the C gateway
consists of a call to the Fortran code from mdlUpdate () and outputs are cached
in an S-function DWork vector so that subsequent calls by Simulink into
mdI0utputs() will work properly and the Fortran code won't be called until the
next invocation of mdlUpdate(). In this case, the states in the code can be
stored however you like, typically in the work vector or as discrete states in
Simulink.

If instead the code needs to have continuous time states with support for
variable step solvers, the states must be registered and stored with Simulink
as doubles. This is done in mdlInitializeSizes() (registering states), then
the states are retrieved and sent to the Fortran code whenever you need to
execute it. In addition, the main body of code has to be separable into a call
form that can be used by mdIDerivatives() to get derivatives for the state
integration and also by the md10utputs() and mdlUpdate() methods as
appropriate.

Setup Code

If there is a lengthy setup calculation, it is best to make this part of the code
separable from the “one step at a time” code and call it from mdIStart(). This
can either be a separate SUBROUTINE called from mdIStart() that
communicates with the rest of the code through COMMON blocks or argument
1/O, or it can be part of the same piece of Fortran code that is isolated by an
IF-THEN-ELSE construct. This construct can be triggered by one of the input
arguments that tells the code if it is to either perform the setup calculations or
the “one step” calculations.

6-11

6 Creating Fortran S-Functions

6-12

SUBROUTINE Versus PROGRAM

To be able to call Fortran from Simulink directly without having to launch
processes, etc., it is necessary to convert a Fortran PROGRAM into a SUBROUT INE.
This consists of three steps. The first is trivial, the second and third can take a
bit of examination:

1 Change the line PROGRAM to SUBROUTINE subName.
Now you can call it from C using C function syntax.

2 Identify variables that need to be inputs and outputs and put them in the
SUBROUT INE argument list or in a COMMON block.

It is customary to strip out all hard-coded cases and output dumps. In the
Simulink environment, you want to convert inputs and outputs into block
1/0.

3 If you are converting a stand-alone simulation to work inside of Simulink,
identify the “main loop” of time integration and remove both the loop and, if
you want Simulink to integrate continuous states, remove any time
integration code. Leave time integrations in the code if you intend to make
a discrete time (sampled) S-function.

Arguments to a SUBROUTINE

Most Fortran compilers generate SUBROUTINE code that passes arguments “by
reference.” This means that the C code calling the Fortran code must use only
pointers in the argument list.

PROGRAM . ..
becomes

SUBROUTINE somename(U, X, Y)

A SUBROUTINE never has a return value. 1/O is achieved by using some of the
arguments for input, the rest for output.

Creating Level 2 Fortran S-Functions

Arguments to a FUNCTION

A FUNCTION has a scalar return value passed by value, so a calling C program
should expect this. The argument list is passed by reference (i.e., pointers) as
in the SUBROUTINE.

If the result of a calculation is an array, then a subroutine should be used as a
FUNCTION cannot return an array.

Interfacing to COMMON blocks

While there are several ways for Fortran COMMON blocks to be visible to C code,
it is often recommended to use an input/output argument list to a SUBROUTINE
or FUNCTION. If the Fortran code has already been written and uses COMMON
blocks, it is a simple matter to write a small SUBROUTINE that has an input/
output argument list and copies data into and out of the COMMON block.

The procedure for copying in and out of the COMMON block begins with a write of
the inputs to the COMMON block before calling the existing SUBROUTINE. The
SUBROUTINE is called, then the output values are read out of the COMMON block
and copied into the output variables just before returning.

An Example C-MEX S-Function Calling Fortran Code

The subroutine Atmos is in file sfun_atmos_sub.for. The gateway C-MEX
S-function is sfun_atmaos.c, which is built on UNIX using the command

mex -L/usr/local/lib -1¥2c sfun_atmos.c sfun_atmos_sub.o

On Windows, the command is

>> mex -v COMPFLAGS#$COMPFLAGS /iface:cref” -c sfun_atmos_sub.for

- _.\..\bin\win32\mexopts\df60opts.bat

>> mex -v LINKFLAGS#”$LINKFLAGS dfor.lib dfconsol.lib dfport.lib

/LIBPATH:$DF_ROOT\DF98\LIB” sfun_atmos.c sfun_atmos_sub.obj
On some UNIX systems where the C and Fortran compiler were installed
separately (or aren't aware of each other), you may need to reference the library
libf2c.a. To do this, use the -1f2c flag.

UNIX only: if the Iibf2c.a library isn't on the library path, you need to add it
the path to the mex process explicitly with the -L command, for instance:

mex -L/usr/local/lib/ -1f2c sfun_atmos.c sfun_atmos_sub.o

6-13

6 Creating Fortran S-Functions

This sample is prebuilt and is on the MATLAB search path already, so you can
see it working by opening the sample model sfcndemo_atmos.mdl. Just type

sfcndemo_atmos

at the command prompt, or to get all the S-function demos for Simulink, type
sfcndemos at the MATLAB prompt.

6-14

Porting Legacy Code

Porting Legacy Code

Find the States

If avariable step solver is being used, it is critical that all continuous states are
identified in the code and put into Simulink's state vector for integration
instead of being integrated by the Fortran code. Likewise, all derivative
calculations must be made available separately to be called from the
mdIDerivatives() method in the S-function. Without these steps, any Fortran
code with continuous states will not be compatible with variable step solvers,
if the S-function is registered as a continuous block with continuous states.

Telltale signs of implicit advancement are incremented variables such as M=M+1
or X=X+0.05. If the code has many of these constructs and you determine that
it is impractical to recode the source to not “ratchet forward,” you may need to
try another approach using fixed step solvers.

If it is impractical to find all the implicit states and to separate out the
derivative calculations for Simulink, another approach can be used, but you are
limited to using fixed step solvers. The technique here is to call the Fortran
code from the mdlUpdate() method so the Fortran code is only executed once
per Simulink major integration step. Any block outputs must be cached in a
work vector so that mdl0utputs() can be called as often as needed and output
the values from the work vector instead of calling the Fortran routine again
(which would cause it to inadvertently advance time). See matlabroot/
simulink/src/sfuntmpl_gate_ fortran.c for an example that uses DWork
vectors.

Sample Times

Be sure if the code has an implicit step size in its algorithm, coefficients, etc.,
that you register the proper discrete sample time in the
mdlInitializeSampleTimes() S-function method and only change the block's
output values from the mdlUpdate() method.

Multiple Instances

If you plan on having multiple copies of this S-function used in one Simulink
model, it is necessary to allocate storage for each copy of the S-function in the
model. The recommended approach is to use DWork vectors, see matlabroot/

6-15

6 Creating Fortran S-Functions

6-16

simulink/include/simstruc.h and matlabroot/simulink/src/
sfuntmpl .doc for details on allocating data typed work vectors.

Use Flints If Needed

Use flints (floating-point ints) to keep track of time. Flints (for IEEE-754
floating-point numerics) have the useful property of not accumulating round off
error when adding and subtracting flints. Using flint variables in DOUBLE
PRECISION storage (with integer values) avoids round off error accumulation
that would accumulate when floating point numbers are added together
thousands of times.

DOUBLE PRECISION F

F=F+1.0
TIME = 0.003 * F

This technique avoids a common pitfall in simulations.

Considerations for Real Time

Since very few Fortran applications are used in a real-time environment, it is
more common to come across simulation code that is incompatible with a
real-time environment. Common failures include unbounded (or large)
iterations and sporadic but time-intensive side calculations. These must be
dealt with directly if there is to be any hope of running in real time.

Conversely, it is still perfectly good practice to have iterative or sporadic
calculations if the generated code is not being used for a real-time application.

Implementing
Block Features

Introduction

Dialog Parameters
Run-Time Parameters
Input and Output Ports
Custom Data Types
Sample Times .

Work Vectors .
Function-Call Subsystems
Handling Errors

S-Function Examples

7-2

7-3

7-6

7-9

. 7-15

. 7-16

. 7-24

. 7-29

. 7-31

. 7-34

V4 Implementing Block Features

Introduction

This chapter explains how to use S-function callback methods to implement
various block features.

7-2

Dialog Parameters

Dialog Parameters

A user can pass parameters to an S-function at the start of and, optionally,
during the simulation, using the S-Function parameters field of the block’s
dialog box. Such parameters are called dialog box parameters to distinguish
them from run-time parameters created by the S-function to facilitate code
generation (see “Run-Time Parameters” on page 7-6). Simulink stores the
values of the dialog box parameters in the S-function’s SimStruct structure.
Simulink provides callback methods and SimStruct macros that allow the
S-function to access and check the parameters and use them in the
computation of the block’s output.

If you want your S-function to be able to use dialog parameters, you must
perform the following steps when you create the S-function:

1 Determine the order in which the parameters are to be specified in the
block’s dialog box.

2 InthemdlInitializeSizes function, use the ssSetNumSFcnParams macro to
tell Simulink how many parameters the S-function accepts. Specify S as the
first argument and the number of parameters you are defining interactively
as the second argument. If your S-function implements the
mdICheckParameters method, the mdl InitializeSizes routine should call
mdICheckParameters to check the validity of the initial values of the
parameters.

3 Access these input arguments in the S-function using the ssGetSFcnParam
macro.

Specify S as the first argument and the relative position of the parameter in
the list entered on the dialog box (0 is the first position) as the second
argument. The ssGetSFcnParam returns a pointer to the mxArray containing
the parameter. You can use ssGetDTypeldFromMxArray to get the data type
of the parameter.

When running a simulation, the user must specify the parameters in the
S-Function parameters field of the block’s dialog box in the same order that
you defined them in step 1 above. The user can enter any valid MATLAB
expression as the value of a parameter, including literal values, names of
workspace variables, function invocations, or arithmetic expressions. Simulink
evaluates the expression and passes its value to the S-function.

7-3

V4 Implementing Block Features

7-4

For example, the following code is part of a device driver S-function. Four input
parameters are used: BASE_ADDRESS_PRM, GAIN_RANGE_PRM, PROG_GAIN_PRM,
and NUM_OF_CHANNELS_PRM. The code uses #define statements to associate
particular input arguments with the parameter names.

/* Input Parameters */

#define BASE_ADDRESS_PRM(S) ssGetSFcnParam(S, 0)
#define GAIN_RANGE_PRM(S) ssGetSFcnParam(S, 1)
#define PROG_GAIN_PRM(S) ssGetSFcnParam(S, 2)

#define NUM_OF_CHANNELS PRM(S) ssGetSFcnParam(S, 3)

When running the simulation, a user would enter four variable names or
values in the S-Function parameters field of the block’s dialog box. The first
corresponds to the first expected parameter, BASE_ADDRESS_PRM(S). The
second corresponds to the next expected parameter, and so on.

The mdlInitializeSizes function contains this statement.

ssSetNumSFcnParams(S, 4);

Tunable Parameters

Dialog parameters can be either tunable or nontunable. A tunable parameter
is a parameter that a user can change while the simulation is running. Use the
macro ssSetSFcnParamTunable in mdlInitializeSizes to specify the
tunability of each dialog parameter used by the macro.

Note Dialog parameters are tunable by default. Nevertheless, it is good
programming practise to set the tunability of every parameter, even those that
are tunable. If the user enables the simulation diagnostic, S-function
upgrade needed, Simulink issues the diagnostic whenever it encounters an
S-function that fails to specify the tunability of all its parameters.

The mdICheckParameters method enables you to validate changes to tunable
parameters during a simulation run. Simulink invokes the
mdICheckParameters method whenever a user changes the values of
parameters during the simulation loop. This method should check the
S-function’s dialog parameters to ensure the changes are valid.

Dialog Parameters

Note The S-function’s mdlInitializeSizes routine should also invoke the
mdICheckParameters method to ensure that the initial values of the
parameters are valid.

The optional mdIProcessParameters callback method allows an S-function to
process changes to tunable parameters. Simulink invokes this method only if
valid parameter changes have occurred in the previous time step. A typical use
of this method is to perform computations that depend only on the values of
parameters and hence need to be computed only when parameter values
change. The method can cache the results of the parameter computations in
work vectors or, preferably, as run-time parameters (see “Run-Time
Parameters” on page 7-6).

Tuning Parameters in External Mode

When a user tunes parameters during simulation, Simulink invokes the
S-function’s md1CheckParameters method to validate the changes and then the
S-functions’ mdIProcessParameters method to give the S-function a chance to
process the parameters in some way. When running in external mode,
Simulink invokes these methods as well but it passed the unprocessed changes
onto the S-function target. Thus, if it is essential that your S-function process
parameter changes, you need to create a Target Language Compiler (TLC) file
that inlines the S-function, including its parameter processing code, during the
code generation process. For information on inlining S-functions, see the
Target Language Compiler Reference Guide.

7-5

V4 Implementing Block Features

Run-Time Parameters

Simulink allows an S-function to create and use internal representations of
external dialog parameters called run-time parameters. Every run-time
parameter corresponds to one or more dialog parameters and can have the
same value and data type as its corresponding external parameter(s) or a
different value or data type. If a run-time parameter differs in value or data
type from its external counterpart, the dialog parameter is said to have been
transformed to create the run-time parameter. The value of a run-time
parameter that corresponds to multiple dialog parameter is typically a function
of the values of the dialog parameters. Simulink allocates and frees storage for
run-time parameters and provides functions for updating and accessing them,
thus eliminating the need for S-functions to performs these tasks.

Run-time parameters facilitate the following kinds of S-function operations:

= Computed parameters

Often the output of a block is a function of the values of several dialog
parameters. For example, suppose a block has two parameters, the volume
and density of some object, and the output of the block is a function of the
input signal and the weight of the object. In this case, the weight can be
viewed as a third internal parameter computed from the two external
parameters, volume and density. An S-function can create a run-time
parameter corresponding to the computed weight, thereby eliminating the
need to provide special case handling for weight in the output computation.

< Data type conversions

Often a block may need to change the data type of a dialog parameter to
facilitate internal processing. For example, suppose that the output of the
block is a function of the input and a parameter and the input and parameter
are of different data types. In this case, the S-function can create a run-time
parameter that has the same value as the dialog parameter but has the data
type of the input signal and use the run-time parameter in the computation
of the output.

=« Code generation

During code generation, Real-Time Workshop writes all run-time
parameters automatically to the model .rtw file, eliminating the need for
the S-function to perform this task via a mdIRTW method.

Run-Time Parameters

Creating Run-Time Parameters
An S-function can create run-time parameters all at once or one by one.

Creating Run-Time Parameters All at Once

Use the SimStruct function, ssRegAlITunableParamsAsRunTimeParams, in
mdISetWorkWidths to create run-time parameters corresponding to all tunable
parameters. This function requires that you pass it an array of names, one for
each run-time parameter. Real-Time Workshop uses this name as the name of
the parameter during code generation.

This approach to creating run-time parameters assumes that there is a
one-to-one correspondence between an S-function’s run-time parameters and
its tunable dialog parameters. This may not be the case. For example, an
S-function may want to use a computed parameter whose value is a function of
several dialog parameters. In such cases, the S-function may need to create the
run-time parameters individually.

Creating Run-Time Parameters Individually

To create run-time parameters individually, the S-function’s
mdISetWorkwidths method should:

1 Specify the number of run-time parameters it intends to use, using
ssSetNumRunTimeParams.

2 Specify the attributes of each run-time parameter, using
ssSetRunTimeParaminfo.

Updating Run-Time Parameters

Whenever a user changes the values of an S-function’s dialog parameters
during a simulation run, Simulink invokes the S-function’s
mdICheckParameters method to validate the changes. If the changes are valid,
Simulink invokes the S-function’s mdIProcessParameters method at the
beginning of the next time step. This method should update the S-function’s
run-time parameters to reflect the changes in the dialog parameters.

Updating All Parameters at Once

If there is a one-to-one correspondence between the S-function’s tunable dialog
parameters and the run-time parameters, the S-function can use the

7-7

V4 Implementing Block Features

7-8

SimStruct function, ssUpdateAl I TunableParamsAsRunTimeParams, to
accomplish this task. This function updates each run-time parameter to have
the same value as the corresponding dialog parameter.

Updating Parameters Individually

If there is not a one-to-one correspondence between the S-function’s dialog and
run-time parameters or the run-time parameters are transformed versions of
the dialog parameters, the mdIProcessParameters method must update each
parameter individually.

If a run-time parameter and its corresponding dialog parameter differ only in
value, the method can use the SimStruct macro, ssUpdateRunTimeParamData,
to update the run-time parameter. This function updates the data field in the
parameter’s attributes record (ssParamRec) with a new value. Otherwise, the
mdIProcessParameters method must update the parameter’s attributes record
itself.To update the attributes record, the method should:

1 Get a pointer to the parameter’s attributes record, using
ssGetRunTimeParaml Info.

2 Update the attributes record to reflect the changes in the corresponding
dialog parameter(s).

3 Register the changes, using ssUpdateRunTimeParaminfo.

Input and Output Ports

Input and Output Ports

Simulink allows S-functions to create and use any number of block 1/O ports.
This section shows how to create and initialize 1/O ports and how to change the
characteristics of an S-function block’s ports, such as dimensionality and data
type, based on its connections to other blocks.

Creating Input Ports

To create and configure input ports, the mdlInitializeSizes method should
first specify the number of input ports that the S-function has, using
ssSetNumlInputPorts. Then, for each input port, the method should specify:

« The dimensions of the input port (see “Initializing Input Port Dimensions”
on page 7-10)
If you want your S-function to inherit its dimensionality from the port to
which it is connected, you should specify that the port is dynamically sized
inmdlInitializeSizes (see “Sizing an Input Port Dynamically” on
page 7-10).

= Whether the input port allows scalar expansion of inputs (see “Scalar
Expansion of Inputs” on page 7-12)

= Whether the input port has direct feedthrough, using
ssSetlInputPortDirectFeedThrough

A port has direct feedthrough if the input is used in either the md10utputs or
md1GetTimeOfNextvarHit functions. The direct feedthrough flag for each
input port can be set to either 1=yes or 0=no. It should be set to 1 if the input,
u, is used in the mdl0Output or md1GetTimeOfNextVarHit routine. Setting the
direct feedthrough flag to 0 tells Simulink that u will not be used in either of
these S-function routines. Violating this will lead to unpredictable results.

= The data type of the input port, if not the default double

Use ssSetlinputPortDataType to set the input port’s data type. If you want
the data type of the port to depend on the data type of the port to which it is
connected, specify the data type as DYNAMICALLY_TYPED. In this case, you
must provide implementations of the mdlSetInputPortDataType and
mdlSetDefaul tPortDataTypes methods to enable the data type to be set
correctly during signal propagation.

7-9

V4 Implementing Block Features

= The numeric type of the input port, if the port accepts complex-valued signals

Use ssSetlnputComplexSignal to set the input port’'s numeric type. If you
want the numeric type of the port to depend on the numeric type of the port
to which it is connected, specify the data type as inherited. In this case, you
must provide implementations of the mdISetInputPortComplexSignal and
mdISetDefaultPortComplexSignal methods to enable the numeric type to
be set correctly during signal propagation.

Note The mdlInitializeSizes method must specify the number of ports
before setting any properties. If it attempts to set a property of a port that
doesn't exist, it will be accessing invalid memory and Simulink will crash.

Initializing Input Port Dimensions
The following options exist for setting the input port dimensions:.

= |If the input signal is one-dimensional, and the input port width is w, use
ssSetlInputPortVectorDimension(S, inputPortldx, w)

= |If the input signal is a matrix of dimension m-by-n, use
ssSetlInputPortMatrixDimensions(S, inputPortldx, m, n)

= Otherwise use
ssSetlInputPortDimensionInfo(S, inputPortldx, dimsinfo)

This function can be used to fully or partially initialize the port dimensions
(see next section).

Sizing an Input Port Dynamically

If your S-function does not require that an input signal have a specific
dimensionality, you may want to set the dimensionality of the input port to
match the dimensionality of the signal actually connected to the port. To
dimension an input port dynamically, your S-function should:

= Specify some or all of the dimensions of the input port as dynamically sized
inmdlInitializeSizes

Input and Output Ports

- If the input port can accept a signal of any dimensionality, use
ssSetlInputPortDimensionInfo(S, inputPortldx, DYNAMIC_DIMENSION)
to set the dimensionality of the input port.

- If the input port can accept only vector (1-D) signals but the signals can be
of any size, use
ssSetlInputPortWidth(S, inputPortldx, DYNAMICALLY_SIZED)
to specify the dimensionality of the input port.

If the input port can accept only matrix signals but can accept any row or
column size, use
ssSetlInputPortMatrixDimensions(S, inputPortldx, m, n)
where m and/or n are DYNAMICALLY_SIZED.
<« Provide amdISetInputPortDimensioninfo method that sets the dimensions
of the input port to the size of the signal connected to it

Simulink invokes this method during signal propagation when it has

determined the dimensionality of the signal connected to the input port.

< Provide a md1SetDefaultPortDimensioninfo method that sets the
dimensions of the block’s ports to a default value

Simulink invokes this method during signal propagation when it cannot
determine the dimensionality of the signal connected to some or all of the
block’s input ports. This can happen, for example, if an input port is
unconnected. If the S-function does not provide this method, Simulink sets
the dimension the block’s ports to 1-D scalar.

Creating Output Ports

To create and configure output ports, the mdl InitializeSizes method should
first specify the number of input ports that the S-function has, using
ssSetNumOutputPorts. Then, for each output port, the method should specify:

= Dimensions of the output port

Simulink provides the following macros for setting the port’s dimensions.

- ssSetOutputPortDimensioninfo
- ssSetOutputPortMatrixDimensions
- ssSetOutputPortVectorDimensions

7-11

V4 Implementing Block Features

7-12

- ssSetOutputWidth

If you want the port's dimensions to depend on block connectivity, set the
dimensions to DYNAMICALLY_SI1ZED. The S-function must then provide
md1SetOutputPortDimensionlnfo and ssSetDefaultPortDimensionlinfo
methods to ensure that output port dimensions are set to the correct values
in code generation.

= Data type of the output port

Use ssSetOutputPortDataType to set the output port’'s data type. If you want
the data type of the port to depend on block connectivity, specify the data
type as DYNAMICALLY_TYPED. In this case, you must provide implementations
of the mdISetOutputPortDataType and mdlSetDefaul tPortDataTypes
methods to enable the data type to be set correctly during signal propagation.

< The numeric type of the input port, if the port outputs complex-valued
signals

Use ssSetOutputComplexSignal to set the output port’'s numeric type. If you
want the numeric type of the port to depend on the numeric type of the port
to which it is connected, specify the data type as inherited. In this case, you
must provide implementations of the md1SetOutputPortComplexSignal and
md1SetDefaul tPortComplexSignal methods to enable the numeric type to
be set correctly during signal propagation.

Scalar Expansion of Inputs

Scalar expansion of inputs refers conceptually to the process of expanding
scalar input signals to have the same dimensions as the port to which they are
connected. This is done by setting each element of the expanded signal to the
value of the scalar input. An S-function’s mdl InitializeSizes method can
enable scalar expansion of inputs for its input ports by setting the
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION option, using ssSetOptions.

The best way to understand the scalar expansion rules is to consider a sum
block with two input ports, where the first input signal is scalar, the second
input signal is a 1-D vector withw > 1 elements, and the output signal isa 1-D
vector with w elements. In this case, the scalar input is expanded to a 1-D vector
with welements in the output method, and each element of the expanded signal
is set to the value of the scalar input.

Outputs
<snip>

Input and Output Ports

ulinc = (ulwidth > 1);
u2inc = (u2width > 1);
for (i=0;i<w;i++) {
y[i] = *ul + *u2;
ul += ulinc;
u2 += u2inc;

}

If the block has more than two inputs, each input signal must be scalar, or the
wide sighals must have the same number of elements. In addition, if the wide
inputs are driven by 1-D and 2-D vectors, the output will be a 2-D vector signal,
and the scalar inputs are expanded to a 2-D vector signal.

The way scalar expansion actually works depends on whether the S-function
manages the dimensions of its input and output ports using
md1SetlInputPortWidth and mdlISetOutputPortWidth or
md1SetInputPortDimensioninfo, mdlSetOutputPortDimensionlinfo, and
mdlSetDefaultPortDimensionlinfo.

If the S-function does not specify/control the dimensions of its input and output
ports using the above methods, Simulink uses a default method to set the input
and output ports using the above methods, Simulink uses a default method to
set the S-function port dimensions.

In mdlInitializeSizes method, the S-function can enable scalar expansion
for its input ports by setting the SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION
option, using ssSetOptions. Simulink default method uses the above option to
allow or disallow scalar expansion for a block input ports. If the above option is
not set by an S-function, Simulink assumes all ports (input and output ports)
must have the same dimensions, and it sets all port dimensions to the same
dimensions specified by one of the driving blocks.

If the S-function specifies/controls the dimensions of its input and output ports,
Simulink ignores the SCALAR_EXPANSION option.

See matlabroot/simulink/src/sfun_multiport.c for an example.

Masked Multiport S-Functions

If you are developing masked multiport S-function blocks whose number of
ports varies based on some parameter, and if you want to place them in a
Simulink library, then you must specify that the mask modifies the appearance
of the block. To do this, execute this command

7-13

V4 Implementing Block Features

set_param(“block”, "MaskSelfModifiable®, "on")

at the MATLAB prompt before saving the library. Failure to specify that the
mask modifies the appearance of the block means that an instance of the block

in a model reverts to the number of ports in the library whenever you load the
model or update the library link.

7-14

Custom Data Types

Custom Data Types
An S-function can accept and output user-defined as well as built-in Simulink
data types. To use a user-defined data type, the S-function’s mdlInitializeSizes
routine must:

1 Register the data type, using ssRegisterDataType.

2 Specify the amount of memory in bytes required to store an instance of the
data type, using ssSetDataTypeSize.

3 Specify the value that represents zero for the data type, using
ssSetDataTypeZero.

7-15

V4 Implementing Block Features

7-16

Sample Times

Simulink supports blocks that execute at different rates. There are three
methods by which you can specify the rates (i.e., sample times):

=« Block-based sample times
= Port-based sample times
< Hybrid block-based and port-based sample times

In the case of block-based sample times, your S-function specifies all the
sample rates of the block and processes inputs and outputs at the fastest rate
specified if all the sample times are integer multiples of the fastest sample
time. (If your sample times are not multiples of each other, Simulink behaves
differently. See “Sample Time Colors” in chapter 9 of Using Simulink for more
information.) When using port-based sample times, your S-function specifies
the sample time for each input and output port. To compare block-based versus
port-based sample times, consider two sample rates, 0.5 and 0.25 seconds
respectively:

= In the block-based method, selecting 0.5 and 0.25 would direct the block to
execute inputs and outputs at 0.25 second increments.

= .In the port-based method, you could set the input port to 0.5 and the output
port to 0.25, and the block would execute inputs at 2Hz and outputs at 4Hz.

You should use port-based sample times if your application requires unequal
sample rates for input and output execution or if you don’t want the overhead
associated with running input and output ports at the highest sample rate of
your block.

In some applications, an S-Function block may need to operate internally at
one or more sample rates while inputting or outputting signals at other rates.
The hybrid block- and port-based method of specifying sample rates allows you
to create such blocks.

In typical applications, you will specify only one block-based sample time.
Advanced S-functions may require the specification of port-based or multiple
block sample times.

Block-Based Sample Times

The next two sections discuss how to specify block-based sample times. You
must specify information in

Sample Times

= mdlInitializeSizes
e ndlInitializeSampleTimes

A third sections presents a simple example that shows how to specify sample
times in mdlInitializeSampleTimes.

Specifying the Number of Sample Times in mdlinitializeSizes. To configure your
S-function block for block-based sample times, use

ssSetNumSampleTimes(S,numSampleTimes) ;

where numSampleTimes > 0. This tells Simulink that your S-function has
block-based sample times. Simulink calls mdI InitializeSampleTimes, which
in turn sets the sample times.

Setting Sample Times and Specifying Function Calls in
mdlinitializeSampleTimes

mdlInitializeSampleTimes is used to specify two pieces of execution
information:

= Sample and offset times — In mdl InitializeSizes, specify the number of
sample times you'd like your S-function to have by using the
ssSetNumSampleTimes macro. In mdlInitializeSampleTimes, you must
specify the sampling period and offset for each sample time.

Sample times can be a function of the input/output port widths. In
mdl InitializeSampleTimes, you can specify that sample times are a
function of ssGetlInputPortWidth and ssGetGetOutputPortWidth.

= Function calls — In ssSetCal 1SystemOutput, specify which output elements
are performing function calls. See matlabroot/simulink/src/
sfun_fcncall.c for an example.

The sample times are specified as pairs [sample_time, offset_time] by using
these macros

ssSetSampleTime(S, sampleTimePairlndex, sample_time)
ssSetOffsetTime(S, offsetTimePairlndex, offset_time)

where sampleTimePairlndex starts at 0.

The valid sample time pairs are (upper-case values are macros defined in
simstruc.h).

7-17

V4 Implementing Block Features

[CONTINUOUS_SAMPLE_TIME, 0.0 1
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample_period, offset 1
[VARIABLE_SAMPLE_TIME , 0.0 1

Alternatively, you can specify that the sample time is inherited from the
driving block in which case the S-function can have only one sample time pair

[INHERITED_SAMPLE_TIME, 0.0 1

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
The following guidelines may help aid in specifying sample times:

=« A continuous function that changes during minor integration steps should
register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

= A continuous function that does not change during minor integration steps
should register the
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.

= A discrete function that changes at a specified rate should register the
discrete sample time pair

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

=« A discrete function that changes at a variable rate should register the
variable step discrete [VARIABLE_SAMPLE_TIME, 0.0] sample time. The
md1GetTimeOfNextvarHit function is called to get the time of the next
sample hit for the variable step discrete task. The VARIABLE_SAMPLE_TIME
can be used with variable step solvers only.

If your function has no intrinsic sample time, then you must indicate that it is
inherited according to the following guidelines:

= A function that changes as its input changes, even during minor integration
steps, should register the [INHERITED_SAMPLE_TIME, 0.0] sample time.

7-18

Sample Times

= A function that changes as its input changes, but doesn't change during

minor integration steps (that is, held during minor steps), should register the

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET] sample time.
To check for a sample hit during execution (in md10utputs or mdlUpdate), use
the sslisSampleHit or sslsContinuousTask macro. For example, if your first
sample time is continuous, then you used the following code fragment to check
for a sample hit. Note that you would get incorrect results if you used
sslsSampleHit(S,0,tid).

if (sslIsContinuousTask(sS,tid)) {
}

If, for example, you wanted to determine if the third (discrete) task has a hit,
then you would use the following code-fragment.

if (sslIsSampleHit(S,2,tid) {
}

Example: mdlinitializeSampleTimes

This example specifies that there are two discrete sample times with periods of
0.01 and 0.5 seconds.

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime(S, 0, 0.01);
ssSetOffsetTime(S, 0, 0.0);
ssSetSampleTime(S, 1, 0.5);
ssSetOffsetTime(S, 1, 0.0);

} /7* End of mdlInitializeSampleTimes. */

Port-Based Sample Times
The next three sections discuss how to specify port-based sample times. You
must specify information in:

=mdlInitializeSizes
= ndISetlnputPortSampleTime
= nd1SetOutputPortSampleTime

7-19

V4 Implementing Block Features

7-20

Specifying the Number of Sample Times in
mdlInitializeSizes
To specify port-based sample times, use

ssSetNumSampleTimes(S, PORT_BASED_ SAMPLE_TIMES)
with:

ssSetlnputPortSampleTime(S, idx, period)
ssSetlnputPortOffsetTime(S, idx, offset)
ssSetOutputPortSampleTime(S, idx, period)
ssSetOutputPortOffsetTime(S, idx, offset)

The inputPortindex and outputPortindex range from O to the number of
input (output) ports minus 1.

When you specify port based sample times, Simulink will call
mdISetInputPortSampleTime and mdISetOutputPortSampleTime to determine
the rates of inherited signals. Once all rates have been determined completed,
Simulink will also call mdlInitializeSampleTimes to configure function-call
connections. If your S-function does not have any function-call connections this
routine should be empty.

Note mdlInitializeSizes should not contain any ssSetSampleTime or
ssSetOffsetTime calls when using port-based sample times.

Hybrid Block-Based and Port-Based Sample Times

The hybrid method of assigning sample times combines the block-based and
port-based methods. You first specify, in mdl Initial izeSizes, the total
number of rates at which your block operates, including both internal and
input and output rates, using ssSetNumSampleTimes. You then set the
SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED, using ssSetOption, to tell the
simulation engine that you are going to use the port-based method to specify
the rates of the input and output ports individually. Next, as in the block-based
method, you specify the period and offset of all of the block’s rates, both internal
and external, using

ssSetSampleTime
ssSetOffsetTime

Sample Times

Finally, as in the port-based method, you specify the rates for each port, using

ssSetlnputPortSampleTime(S, idx, period)
ssSetlnputPortOffsetTime(S, idx, offset)
ssSetOutputPortSampleTime(S, idx, period)
ssSetOutputPortOffsetTime(S, idx, offset)

Note that each of the assigned port rates must be the same as one of the
previously declared block rates.

Multirate S-Function Blocks

In a multirate S-Function block, you can encapsulate the code that defines each
behavior in the md10utput and mdlUpdate functions with a statement that
determines whether a sample hit has occurred. The ssIsSampleHit macro
determines whether the current time is a sample hit for a specified sample
time. The macro has this syntax

ssisSampleHit(S, st_index, tid)

where S is the SimStruct, st_index identifies a specific sample time index, and
tid is the task ID (tid is an argument to the md10utput and mdlUpdate).

For example, these statements specify three sample times: one for continuous
behavior, and two for discrete behavior.

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetSampleTime(S, 1, 0.75);
ssSetSampleTime(S, 2, 1.0);

In the mdlUpdate function, the following statement would encapsulate the code
that defines the behavior for the sample time of 0.75 second.

it (sslsSampleHit(S, 1, tid)) {
}

The second argument, 1, corresponds to the second sample time, 0.75 second.

Example - Defining a Sample Time for a Continuous Block
This example defines a sample time for a block that is continuous in nature.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)

{

7-21

V4 Implementing Block Features

7-22

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

}

You must add this statement to the mdl InitializeSizes function.

ssSetNumSampleTimes(S, 1);

Example - Defining a Sample Time for a Hybrid Block
This example defines sample times for a hybrid S-Function block.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)
{
/* Continuous state sample time and offset. */
ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

/* Discrete state sample time and offset. */
ssSetSampleTime(S, 1, 0.1);
ssSetOffsetTime(S, 1, 0.025);

}

In the second sample time, the offset causes Simulink to call the mdlUpdate
function at these times: 0.025 second, 0.125 second, 0.225 second, and so on, in
increments of 0.1 second.

The following statement, which indicates how many sample times are defined,
also appears in the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 2);

Synchronizing Multirate S-Function Blocks

If tasks running at different rates need to share data, you must ensure that
data generated by one task is valid when accessed by another task running at
a different rate. You can use the sslIsSpecialSampleHit macro in the
mdlUpdate or mdlOutputs routines of a multirate S-Function to ensure that
the shared data is valid. This macro returns true if a sample hit has occurred
at one rate and a sample hit has also occurred at another rate in the same time
step. It thus permits a higher rate task to provide data needed by a slower rate
task at a rate the slower task can accommodate.

Sample Times

Suppose, for example, that your model has an input port operating at one rate,
0, and an output port operating at a slower rate, 1. Further, suppose that you
want the output port to output the value currently on the input. The following
example illustrates usage of this macro.

if (sslSampleHit(S, 0, tid) {
if (sslIsSpecialSampleHit(S, 0, 1, tid) {
/* Transfer input to output memory. */

}
}

if (sslIsSampleHit(S, 1, tid) {
/* Emit output. */

}

In this example, the first block runs when a sample hit occurs at the input rate.
If the hit also occurs at the output rate, the block transfers the input to the
output memory. The second block runs when a sample hit occurs at the output
rate. It transfers the output in its memory area to the block’s output.

Note that higher-rate tasks always run before slower-rate tasks. Thus, the
input task in the preceding example always runs before the output task,
ensuring that valid data is always present at the output port.

7-23

V4 Implementing Block Features

7-24

Work Vectors

If your S-function needs persistent memory storage, use S-function work
vectors instead of static or global variables. If you use static or global variables,
they are used by multiple instances of your S-function. This occurs when you
have multiple S-Function blocks in a Simulink model and the same S-function
C MEX-file has been specified. The ability to keep track of multiple instances
of an S-function is called re-entrancy.

You can create an S-function that is re-entrant by using work vectors. These
are persistent storage locations that Simulink manages for an S-function.
Integer, floating point (real), pointer, and general data types are supported.
The number of elements in each vector can be specified dynamically as a
function of the number of inputs to the S-function.

Work vectors have several advantages:

= Instance specific storage for block variables
= Integer, real, pointer, and general data types

= Elimination of static and global variables and the associated multiple
instance problems

For example, suppose you'd like to track the previous value of each input signal
element entering input port 1 of your S-function. Either the discrete-state
vector or the real-work vector could be used for this, depending upon whether
the previous value is considered a discrete state (that is, compare the unit delay
and the memory block). If you do not want the previous value to be logged when
states are saved, use the real-work vector, rwork. To do this, in

mdl InitializeSizes specify the length of this vector by using ssSetNumRWork.
Then in either mdIStart or mdl InitializeConditions, initialize the rwork
vector, ssGetRWork. In md10utputs, you can retrieve the previous inputs by
using ssGetRWork. In mdlUpdate, update the previous value of the rwork vector
by using ssGetlnputPortRealSignalPtrs.

Work Vectors

Use the macros in this table to specify the length of the work vectors for each
instance of your S-function in mdlInitializeSizes.

Table 7-1: Macros Used in Specifying Vector Widths

Macro Description
ssSetNumContStates Width of the continuous-state vector
ssSetNumDiscStates Width of the discrete-state vector
ssSetNumDWork Width of the data type work vector
ssSetNumRWork Width of the real-work vector
ssSetNumlWork Width of the integer-work vector
ssSetNumPWork Width of the pointer-work vector
ssSetNumModes Width of the mode-work vector
ssSetNumnonsampledZCs Width of the nonsampled zero-crossing
vector

Specify vector widths in mdlInitializeSizes. There are three choices:

= 0 (the default). This indicates that the vector is not used by your S-function.

= A positive nonzero integer. This is the width of the vector that will be
available for use by md1Start, mdlInitializeConditions, and S-function
routines called in the simulation loop.

< The DYNAMICALLY_SI1ZED define. The default behavior for dynamically sized
vectors is to set them to the overall block width. Simulink does this after
propagating line widths and sample times. The block width is the width of
the signal passing through your block. In general this is equal to the output
port width.

If the default behavior of dynamically sized vectors does not meet your needs,
use mdISetWorkwidths and the macros listed in Table 7-1, Macros Used in
Specifying Vector Widths to set explicitly the sizes of the work vectors. Also,
mdISetWorkwidths allows you to set your work vector lengths as a function of
the block sample time and/or port widths.

7-25

V4 Implementing Block Features

7-26

The continuous states are used when you have a state that needs to be
integrated by one of Simulink’s solvers. When you specify continuous states,
you must return the states’ derivatives in mdIDerivatives. The discrete state
vector is used to maintain state information that changes at fixed intervals.
Typically the discrete state vector is updated in place in mdlUpdate.

The integer, real and pointer work vectors are storage locations that do not get
logged by Simulink during simulations. They maintain persistent data
between calls to your S-function.

Work Vectors and Zero Crossings

The mode-work vector and the nonsampled zero-crossing vector are typically
used with zero crossings. Elements of the mode vector are integer values. You
specify the number of mode-vector elements in mdl InitializeSizes using
ssSetNumModes (S, num). You can then access the mode vector using
ssGetModeVector. The mode vector is used to determine how the mdl0utput
routine should operate when the solvers are honing in on zero crossings. The
zero crossings or state events (i.e., discontinuities in the first derivatives) of
some signal, usually a function of an input to your S-function, are tracked by
the solver by looking at the nonsampled zero crossings. To register nonsampled
zero crossings, set the number of nonsampled zero crossings in
mdlInitializeSizes using ssSetNumNonsampledZCs(S, num). Then, define
the md1ZeroCrossings routine to return the nonsampled zero crossings. See
matlabroot/simulink/src/sfun_zc.c for an example.

An Example Involving a Pointer Work Vector

This example opens a file and stores the FILE pointer in the pointer-work
vector.

The statement below, included in the mdl Initital izeSizes function, indicates
that the pointer-work vector is to contain one element.

ssSetNumPWork(S, 1) /* pointer-work vector */

The code below uses the pointer-work vector to store a FILE pointer, returned
from the standard 1/O function, fopen.

#define MDL_START /* Change to #undef to remove function. */
#if defined(MDL_START)
static void mdIStart(real _T *x0, SimStruct *S)

Work Vectors

{
FILE *fPtr;
void **PWork = ssGetPWork(S);
fPtr = fopen("file.data", "r');
PWork[0] = fPtr;

}

#endif /* MDL_START */

This code retrieves the FILE pointer from the pointer-work vector and passes it
to fclose to close the file.

static void mdITerminate(SimStruct *S)
{
if (ssGetPWork(S) != NULL) {
FILE *fPtr;
fPtr = (FILE *) ssGetPWorkVvValue(S,0);
if (fPtr = NULL) {
fclose(fPtr);

3
ssSetPWorkvValue(S,0,NULL);

Note If you are using mdlSetWorkWidths, then any work vectors you use in
your S-function should be set to DYNAMICALLY_SIZED in mdl InitializeSizes,
even if the exact value is known before mdl IntializeSizes is called. The size
to be used by the S-function should be specified in mdl1SetWorkWidths.

The synopsis is

#define MDL_SET_WORK_WIDTHS /* Change to #undef to remove function. */
#if defined(MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)

static void mdlSetWorkWidths(SimStruct *S)

{

¥
#endif /* MDL_SET_WORK_WIDTHS */

For an example, see matlabroot/simulink/src/sfun_dynsize.c.

7-27

V4 Implementing Block Features

7-28

Memory Allocation

When creating an S-function, it is possible that the available work vectors don’t
provide enough capability. In this case, you will need to allocate memory for
each instance of your S-function. The standard MATLAB APl memory
allocation routines (mxCal loc, mxFree) should not be used with C MEX
S-functions. The reason is that these routines are designed to be used with
MEX-files that are called from MATLAB and not Simulink. The correct
approach for allocating memory is to use the stdlib.h (calloc, free) library
routines. In mdIStart allocate and initialize the memory and place the pointer
to it either in pointer-work vector elements

ssGetPWork(S)[i] = ptr;

or attach it as user data.

ssSetUserData(S,ptr);

In mdITerminate, free the allocated memory.

Function-Call Subsystems

Function-Call Subsystems

You can create a triggered subsystem whose execution is determined by logic
internal to an S-function instead of by the value of a signal. A subsystem so
configured is called a function-call subsystem. To implement a function-call
subsystem:

= In the Trigger block, select function-call as the Trigger type parameter.

= In the S-function, use the ssCal 1SystemWithTid macro to call the triggered
subsystem.

= In the model, connect the S-Function block output directly to the trigger port.

Note Function-call connections can only be performed on the first output
port.

Function-call subsystems are not executed directly by Simulink; rather, the
S-function determines when to execute the subsystem. When the subsystem
completes execution, control returns to the S-function. This figure illustrates
the interaction between a function-call subsystem and an S-function.

void mdlOutputs(SimStruct *S, int_T tid) T T T T T v
{ 1

if (IssCallSystemWithTid(S,outputElement,tid)) {
return; /* error or output is unconnected */

}

<next statement> -¢------------ " Function-call
.. ! subsystem
!]
} 1)
b o - - - - o

In this figure, ssCal I1SystemWithTid executes the function-call subsystem that
is connected to the first output port element. ssCal 1SystemWithTid returns 0O
if an error occurs while executing the function-call subsystem or if the output
is unconnected. After the function-call subsystem executes, control is returned
to your S-function.

Function-call subsystems can only be connected to S-functions that have been
properly configured to accept them.

7-29

V4 Implementing Block Features

To configure an S-function to call a function-call subsystem:

1 Specify which elements are to execute the function-call system in
mdlInitializeSampleTimes. For example,

ssSetCal ISystemOutput(S,0); /* call on 1st element */
ssSetCal ISystemOutput(S,2); /* call on 3rd element */

2 Execute the subsystem in the appropriate mdl0utputs or mdlUpdates
S-function routines. For example,

static void mdlOutputs(...)

it (((Gnt)*uPtrs[0]) % 2 == 1) {
it (IssCallSystemWithTid(S,0,tid)) {
/* Error occurred, which will be reported by Simulink */
return;
3
} else {
if (IssCallSystemWithTid(S,2,tid)) {
/* Error occurred, which will be reported by Simulink */
return;

}
}

}

See simulink/src/sfun_fcncall.c for an example.

Function-call subsystems are a powerful modeling construct. You can configure
Stateflow® blocks to execute function-call subsystems, thereby extending the
capabilities and integration of state logic (Stateflow) with dataflow (Simulink).
For more information on their use in Stateflow, see the Stateflow
documentation.

7-30

Handling Errors

Handling Errors

When working with S-functions, it is important to handle unexpected events
correctly such as invalid parameter values.

If your S-function has parameters whose contents you need to validate, use the
following technique to report errors encountered.

ssSetErrorStatus(S,error encountered due to ...");
return;

Note that the second argument to ssSetErrorStatus must be persistent
memory. It cannot be a local variable in your procedure. For example, the
following will cause unpredictable errors.

mdlOutputs()

{
char msg[256]; {ILLEGAL: to fix use "static char msg[256];"}
sprintf(msg, Error due to %s', string);
ssSetErrorStatus(S,msqg);
return;

}

The ssSetErrorStatus error handling approach is the suggested alternative to
using the mexErrMsgTxt function. The function mexErrMsgTxt uses exception
handling to immediately terminate S-function execution and return control to
Simulink. In order to support exception handling inside of S-functions,
Simulink must set up exception handlers prior to each S-function invocation.
This introduces overhead into simulation.

Exception Free Code

You can avoid this overhead by ensuring that your S-function contains entirely
exception free code. Exception free code refers to code that never long jumps.
Your S-function is not exception free if it contains any routine that, when
called, has the potential of long jumping. For example mexErrMsgTxt throws an
exception (i.e., long jumps) when called, thus ending execution of your
S-function. Using mxCal loc may cause unpredictable results in the event of a
memory allocation error since mxCal loc will long jump. If memory allocation is
needed, use the stdlib_h calloc routine directly and perform your own error
handling.

7-31

V4 Implementing Block Features

7-32

If you do not call mexErrMsgTxt or other API routines that cause exceptions,
then use the SS_OPTION_EXCEPTION_FREE_CODE S-function option. This is done
by issuing the following command in the mdl InitializeSizes function.

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

Setting this option will increase the performance of your S-function by allowing
Simulink to bypass the exception handling setup that is usually performed
prior to each S-function invocation. Extreme care must be taken to verify that
your code is exception free when using SS_OPTION_EXCEPTION_FREE_CODE. If
your S-function generates an exception when this option is set, unpredictable
results will occur.

All mex* routines have the potential of long jumping. In addition several mx*
routines have the potential of long jumping. To avoid any difficulties, use only
the API routines that retrieve a pointer or determine the size of parameters.
For example, the following will never throw an exception: mxGetPr, mxGetData,
mxGetNumberOfDimensions, mxGetM, mxGetN, and mxGetNumberOfElements.

Code in run-time routines can also throw exceptions. Run-time routines refer
to certain S-function routines that Simulink calls during the simulation loop

(see “How Simulink Interacts with C S-Functions” on page 3-13). The run-time
routines include:

= mdIGetTimeOfNextVarHit
= mdI0utputs

= mdlUpdate

= mdIDerivatives

If all run-time routines within your S-function are exception free, you can use
this option.

ssSetOptions(S, SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE);

The other routines in your S-function do not have to be exception free.

ssSetErrorStatus Termination Criteria

When you call ssSetErrorStatus and return from your S-function, Simulink
stops the simulation and posts the error. To determine how the simulation

shuts down, refer to the flow chart figure on “How Simulink Interacts with C
S-Functions” on page 3-13. If ssSetErrorStatus is called prior to mdIStart, no

Handling Errors

other S-function routine will be called. If ssSetErrorStatus is called in
mdIStart or later, mdITerminate will be called.

7-33

V4 Implementing Block Features

7-34

S-Function Examples

Most S-Function blocks require the handling of states, continuous or discrete.
The following sections discuss common types of systems that you can model in
Simulink with S-functions:

< Continuous state

= Discrete state

< Hybrid

=« Variable step sample time

= Zero crossings

< Time varying continuous transfer function

All examples are based on the C MEX-file S-function template, sfuntmpl .c,
and sfuntmpl.doc, which contains a discussion of the S-function template.

Example - Continuous State S-Function

The matlabroot/simul ink/src/csfunc.c example shows how to model a
continuous system with states in a C MEX S-function. In continuous state
integration, there is a set of states that Simulink’s solvers integrate using the
equations.

u X y
(input) ' (states) ’ (output)
y = fo(t, X, u) (output)
X, = fy(t, x,, u) (derivative)

S-functions that contain continuous states implement a state-space equation.
The output portion is placed in md10utputs and the derivative portion in
mdIDerivatives. To visualize how the integration works, refer back to the
flowchart in “How Simulink Interacts with C S-Functions” on page 3-13. The
output equation above corresponds to the mdl0utputs in the major time step.
Next, the example enters the integration section of the flowchart. Here

S-Function Examples

Simulink performs a number of minor time steps during which it calls
mdl0utputs and mdIDerivatives. Each of these pairs of calls is referred to as
an integration stage. The integration returns with the continuous states
updated and the simulation time moved forward. Time is moved forward as far
as possible, providing that error tolerances in the state are met. The maximum
time step is subject to constraints of discrete events such as the actual
simulation stop time and the user-imposed limit.

Note that csfunc.c specifies that the input port has direct feedthrough. This
is because matrix D is initialized to a nonzero matrix. If D were set equal to a
zero matrix in the state-space representation, the input signal isn't used in
mdIOutputs. In this case, the direct feedthrough can be set to 0, which indicates
that csfunc.c does not require the input signal when executing mdl10utputs.

matlabroot/simulink/src/csfunc.c

/* File : csfunc.c
Abstract:

Example C-MEX S-function for defining a continuous system.

Ax + Bu
Cx + Du

For more details about S-functions, see simulink/src/sfuntmpl.doc.

Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
$Revision: 1.2 $

*
*
*
*
* X"
* y
*
*
*
*
*

*/

#define S_FUNCTION_NAME csfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -0.09, -0.01 } ,
{1 , 0 }

}s
static real_T B[2][2]1={ { 1 , =7 } .
{o ,-2 H
¥
static real T C[2][2]1={ { © , 2 } .
{1 -5 T
¥

7-35

V4 Implementing Block Features

static real_T D[2][2]={ { -3 , 0 } .
{1 , 0 }
¥
/* *
* S-function routines *
* */

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to determine the S-Function
* block™s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */
iT (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink. */

}

ssSetNumContStates(S, 2);
ssSetNumDiscStates(S, 0);

if (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortWidth(S, 0, 2);
ssSetlnputPortDirectFeedThrough(S, 0, 1);

IT (IssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);
ssSetNumRWork(S, 0);
ssSetNumlWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl.doc. */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
¥

/* Function: mdlInitializeSampleTimes
* Abstract:
* Specify that we have a continuous sample time.
*
/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS

7-36

S-Function Examples

/* Function: mdlInitializeConditions

* Abstract:
* Initialize both continuous states to zero.
*/
static void mdlInitializeConditions(SimStruct *S)
{

real_T *x0 = ssGetContStates(S);
int. T Ip;

for (Ip=0;1p<2;Ip++) {

*x0++=0.0;
}
¥
/* Function: mdlOutputs
* Abstract:
* y = Cx + Du
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
real _T *y = ssGetOutputPortRealSignal(S,0);
real _T *X = ssGetContStates(S);

InputReal PtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);

/* y=Cx+Du */

y[0]1=C[0][01*x[0]+C[0][1]1*x[1]+D[0] [0]*U(0)+D[O][11*U(1);

y[11=C[11[01*x[0]+C[1]1[1]1*x[1]+D[1]1[0]1*U(0)+D[1]1[1]1*U(1);
}

#define MDL_DERIVATIVES

/* Function: mdIDerivatives

* Abstract:
* xdot = Ax + Bu
*/
static void mdlIDerivatives(SimStruct *S)
{
real_T *dx = ssGetdX(S);
real _T *X ssGetContStates(S);

InputRealPtrsType uPtrs ssGetlnputPortRealSignalPtrs(S,0);
/* xdot=Ax+Bu */

dx[0]=A[0] [0]*x[0]+A[0][1]*x[1]+B[O][0]*U(0)+B[O][1]*U(1);
dx[1]1=A[1][0]*x[0]+A[1]1[1]*x[1]1+B[1][0]*U(0)+B[1][1]*U(1);

}

/* Function: mdITerminate

* Abstract:

* No termination needed, but we are required to have this routine.
*/

static void mdITerminate(SimStruct *S)

{

}

7-37

V4 Implementing Block Features

7-38

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

Example - Discrete State S-Function

The matlabroot/simul ink/src/dsfunc.c example shows how to model a
discrete system in a C MEX S-function. Discrete systems can be modeled by the
following set of equations.

y

u > Xd >
(output)

(input) (states)

y = fo(t, xg, U) (output)

Xg+1 = fu(t,xg u) (update)

dsfunc.c implements a discrete state-space equation. The output portion is
placed in mdl0utputs and the update portion in mdlUpdate. To visualize how
the simulation works, refer to the flowchart in “How Simulink Interacts with
C S-Functions” on page 3-13. The output equation above corresponds to the
mdI0utputs in the major time step. The update equation above corresponds to
the mdlUpdate in the major time step. If your model does not contain
continuous elements, the integration phase is skipped and time is moved
forward to the next discrete sample hit.

S-Function Examples

matlabr
/* Fi
Ab

*
*
*
*
*
*
*
*
*
*
*

$R
*/

#defin
#defin

#inclu

oot/simulink/src/dsfunc.c

le : dsfunc.c
stract:

Example C MEX S-function for defining a discrete system.

x(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

For more details about S-functions, see simulink/src/sfuntmpl.doc.

evision: 1.3 $

e S_FUNCTION_NAME dsfunc
e S_FUNCTION_LEVEL 2

de "simstruc.h"

Copyright (c) 1990-1998 by The MathWorks,

Inc. All Rights Reserved.

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0O */

static

static

static

static

real T A[2]1[2]={ { -1.3839, -0
{ 1 , 0

};
real T B[2]1[2]={ { -2.5559, O
{0 , 4

};
real T C[2]1[2]1={ { © , 2
{0 ., 7

}s

real_T D[2][2]1={ { -0.8141, -2
{ 1.2426, O
¥

/*

* S-function routines *
*

*/

/* Fun
* Abs

*

*

*/

.5097 }
b

h
.2382 }

.0761 }
.7891 }

.9334 }

ction: mdlInitializeSizes

tract:

The sizes information is used by Simulink to determine the S-Function
block®s characteristics (number of inputs, outputs, states, etc.).

static void mdlInitializeSizes(SimStruct *S)

{

Ss

SetNumSFcnParams(S, 0); /* Number of expected parameters */
iIT (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

7-39

V4 Implementing Block Features

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 2);

iIT (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortWidth(S, 0, 2);
ssSetlnputPortDirectFeedThrough(S, 0, 1);

if (IssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);
ssSetNumRWork(S, 0);
ssSetNumlWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes(S, 0);
ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE) ;

/* Function: mdlInitializeSampleTimes

* Abstract:

* Specify that we inherit our sample time from the driving block.
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, 1.0);
ssSetOffsetTime(S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

* Abstract:

* Initialize both continuous states to zero.
*/

static void mdlInitializeConditions(SimStruct *S)
{

real_T *x0 = ssGetRealDiscStates(S);
int. T |Ip;

for (I1p=0;1p<2;lIp++) {

*x0++=1.0;

}

7-40

S-Function Examples

/* Function: mdlOutputs

* Abstract:
* y = Cx + Du
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
real _T *y = ssGetOutputPortRealSignal(S,0);

real _T *X = ssGetRealDiscStates(S);
InputReal PtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);

/* y=Cx+Du */
y[0]=C[0][0]*x[0]+C[0] [1]*x[1]+D[0][01*U(0)+DLO][1]*U(1);
y[11=C[1]1[0]*x[0]+C[1][1]*x[1]1+D[1][01*U(0)+D[1][1]*U(1);

#define MDL_UPDATE

/* Function: mdlUpdate

* Abstract:
* xdot = Ax + Bu
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
real _T tempX[2] = {0.0, 0.0};
real_T *X = ssGetRealDiscStates(S);

InputRealPtrsType uPtrs ssGetlnputPortRealSignalPtrs(S,0);
/* xdot=Ax+Bu */

tempX[0]=A[0][0]*x[0]+A[0][1]*x[1]1+B[0] [0]*U(0)+B[O][1]*U(1);
tempX[1]=A[1]1[0]*x[0]+A[1] [1]*x[1]+B[1] [01*U(0)+B[1]1[1]*U(1);

x[0]=tempX[0];
x[1]=tempX[1];

¥
/* Function: mdITerminate
* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

7-41

V4 Implementing Block Features

7-42

Example - Hybrid System S-Functions

The S-function, matlabroot/simulink/src/mixedm.c, is an example of a
hybrid (a combination of continuous and discrete states) system. mixedm.c
combines elements of csfunc.c and dsfunc.c. If you have a hybrid system,
place your continuous equations in mdIDerivative and your discrete equations
in mdlUpdate. In addition, you need to check for sample hits to determine at
what point your S-function is being called.

In Simulink block diagram form, the S-function, mixedm.c looks like

O} }—C

In Out

Integrator Unit Dalay

which implements a continuous integrator followed by a discrete unit delay.

Since there are no tasks to complete at termination, mdITerminate is an empty
function. mdIDerivatives calculates the derivatives of the continuous states of
the state vector x, and mdlUpdate contains the equations used to update the
discrete state vector, x.

matlabroot/simulink/src/mixedm.c

/* File : mixedm.c
Abstract:

An example C MEX S-function that implements a continuous integrator (1/s)
in series with a unit delay (1/2)

For more details about S-functions, see simulink/src/sfuntmpl.doc.

Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
$Revision: 1.4 $

ok X % ok X F % %

*

/

#define S_FUNCTION_NAME mixedm
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input PortO */

/* *
* S-function routines *
* */

/* Function: mdlInitializeSizes
* Abstract:

S-Function Examples

* The sizes information is used by Simulink to determine the S-Function
* block™s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */
iIT (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 1);
ssSetNumDiscStates(S, 1);

ifT (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortWidth(S, 0, 1);
ssSetInputPortDirectFeedThrough(S, 0, 1);

IT (IssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 2);
ssSetNumRWork(S, 0);
ssSetNumlWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes(S, 0);
ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl.doc. */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes
* Abstract:
* Two tasks: One continuous, one with discrete sample time of 1.0
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetSampleTime(S, 1, 1.0);

ssSetOffsetTime(S, 0, 0.0);
ssSetOffsetTime(S, 1, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

* Abstract:
* Initialize both continuous states to zero.
4
static void mdlInitializeConditions(SimStruct *S)
{

real _T *xCO = ssGetContStates(S);
real _T *xDO = ssGetRealDiscStates(S);

7-43

V4 Implementing Block Features

7-44

XCO[0]
xDO[O]

}

/* Function: mdlOutputs
* Abstract:
* y = xD
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
real_T *y = ssGetOutputPortRealSignal(S,0);
real_T *xD = ssGetRealDiscStates(S);

/* y=xD */
if (sslisSampleHit(S, 1, tid)) {
y[0]=xD[0];
}
}

#define MDL_UPDATE

/* Function: mdlUpdate

* Abstract:
* xD = xC
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
real_T *xD = ssGetRealDiscStates(S);
real_T *xC = ssGetContStates(S);

/* xD=xC */
if (sslIsSampleHit(S, 1, tid)) {
xD[0]=xC[0];
}
}

#define MDL_DERIVATIVES

/* Function: mdIDerivatives

* Abstract:
* xdot = U
*/
static void mdlDerivatives(SimStruct *S)
{
real _T *dx = ssGetdX(S);

InputRealPtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);

/* xdot=U */
dx[0]=U(0);
3

/* Function: mdITerminate
* Abstract:
* No termination needed, but we are required to have this routine.

S-Function Examples

*/
static void mdITerminate(SimStruct *S)
{
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-File interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Example - Variable Step S-Function

The example S-function, vsfunc.c uses a variable step sample time. Variable
step-size functions require a call to md1GetTimeOfNextVarHit, which is an
S-function routine that calculates the time of the next sample hit. S-functions
that use the variable step sample time can only be used with variable step
solvers. vsfunc is a discrete S-function that delays its first input by an amount
of time determined by the second input.

This example demonstrates how to correctly work with the fixed and variable
step solvers when the equations (functions) that are being integrated change
during the simulation. In the transfer function used in this example, the
parameters of the transfer function vary with time.

The output of vsfunc is simply the input u delayed by a variable amount of
time. md10utputs sets the output y equal to state x. ndlUpdate sets the state
vector x equal to u, the input vector. This example calls
md1GetTimeOfNextvarHit, an S-function routine that calculates and sets the
“time of next hit,” that is, the time when is vsfunc is next called. In
md1GetTimeOfNextvVarHit the macro ssGetU is used to get a pointer to the input
u. Then this call is made.

ssSetTNext(S, ssGetT(S)(*u[1D);

The macro ssGetT gets the simulation time t. The second input to the block,
(*u[1D), is added to t, and the macro ssSetTNext sets the time of next hit equal
to t+(*u[1]), delaying the output by the amount of time set in (*u[1]).

matlabroot/simulink/src/vsfunc.c

/* File : vsfunc.c
Abstract:

Example C-file S-function for defining a continuous system.

*
*
*
*

7-45

V4 Implementing Block Features

7-46

* Variable step S-function example.

* This example S-function illustrates how to create a variable step
* block in Simulink. This block implements a variable step delay

* in which the first input is delayed by an amount of time determined
* by the second input:

*

* dt = u(2)

- y(t+dt) = u(t)

*

* For more details about S-functions, see simulink/src/sfuntmpl.doc.
*

* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.6 $

*/

#define S_FUNCTION_NAME vsfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0O */

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to determine the S-function
* block®s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 1);

iIT (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortWidth(S, 0, 2);
ssSetlnputPortDirectFeedThrough(S, 0, 0);

IT (IssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 1);
ssSetNumRWork(S, 0);
ssSetNumlWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs(S, 0);

S-Function Examples

/* Take care when specifying exception free code - see sfuntmpl.doc */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

/* Function: mdlInitializeSampleTimes

* Abstract:
* Variable-Step S-function
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime(S, 0, VARIABLE_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

* Abstract:
* Initialize discrete state to zero.
*/

static void mdlInitializeConditions(SimStruct *S)

{
real_T *x0 = ssGetRealDiscStates(S);

x0[0] = 0.0;

#define MDL_GET_TIME_OF_NEXT_VAR_HIT
static void mdIGetTimeOfNextVarHit(SimStruct *S)

{
InputReal PtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);

/* Make sure input will increase time */
if (UQ) <=10.0) {
/* If not, abort simulation */

ssSetErrorStatus(S,''Variable step control input must be ™

"'greater than zero');

return;
}

ssSetTNext(S, ssGetT(S)+U(1));
¥
/* Function: mdIOutputs

* Abstract:

*/
static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T *y = ssGetOutputPortRealSignal(S,0);

7-47

V4 Implementing Block Features

real_T *x = ssGetRealDiscStates(S);

/* Return the current state as the output */
y[0] = x[0]1;

#define MDL_UPDATE
/* Function: mdlUpdate

* Abstract:
* This function is called once for every major integration time step.
* Discrete states are typically updated here, but this function is useful
* for performing any tasks that should only take place once per integration
* step.
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
real_T *X ssGetRealDiscStates(S);

InputRealPtrsType uPtrs ssGetlnputPortRealSignalPtrs(S,0);

x[0]=U(0);

/* Function: mdITerminate

* Abstract:
* No termination needed, but we are required to have this routine.
*
/
static void mdlTerminate(SimStruct *S)
{
3
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Example - Zero Crossing S-Function

The example S-function, sfun_zc_sat demonstrates how to implement a
saturation block. This S-function is designed to work with either fixed or
variable step solvers. When this S-function inherits a continuous sample time,
and a variable step solver is being used, a zero crossings algorithm is used to
locate the exact points at which the saturation occurs.

7-48

S-Function Examples

matlabroot/simulink/src/sfun_zc_sat.c

N
*

File : sfun_zc_sat.c
Abstract:

Example of an S-function that has nonsampled zero crossings
used with a variable or fixed step solver.

A saturation is described by three equations

(¢D) y = UpperLimit
@ y=u
A) y = LowerLimit

and a set of inequalities that specify which equation to use

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if u < LowerLimit then use (3)

A key fact is that the valid equation 1, 2, or 3, can change at

to another.

ook ok X o o X b ok X % ok X % o X % % X ok kX % %

$Revision: 1.5 $

*
N

#define S_FUNCTION_NAME sfun_zc_sat
#define S_FUNCTION_LEVEL 2

#include "tmwtypes.h"
#include "simstruc.h"
#ifdef MATLAB_MEX_FILE
include "mex.h"

#endif

/* *
* General Defines/macros *
*. */

/* index to Upper Limit */
#define I_PAR_UPPER_LIMIT O

/* index to Upper Limit */
#define 1_PAR_LOWER_LIMIT 1

/* total number of block parameters */
#define N_PAR 2

to

implement a saturation function. This S-function is designed to be

any instant. Nonsampled zero crossing (ZC)support helps the variable step
solvers locate the exact instants when behavior switches from one equation

Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

7-49

V4 Implementing Block Features

/*
* Make access to mxArray pointers for parameters more readable.
*/
#define P_PAR_UPPER_LIMIT (ssGetSFcnParam(S,1_PAR_UPPER_LIMIT))
#define P_PAR_LOWER_LIMIT (ssGetSFcnParam(S,I_PAR_LOWER_LIMIT))

#define MDL_CHECK_PARAMETERS
#iT defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdICheckParameters

* Abstract:
* Check that parameter choices are allowable.
*/
static void mdICheckParameters(SimStruct *S)
{
int. T i;
int. T numUpperLimit;
int. T numLowerLimit;

con;t char *msg = NULL;

/*
* check parameter basics
*/
for (1 =0; 1 < N_PAR; i++) {
it (mxIsEmpty(ssGetSFcnParam(S, i)
mxlIsSparse(ssGetSFcnParam(S, i)
mxIsComplex(ssGetSFcnParam(S, i)
ImxIsNumeric(ssGetSFcnParam(S,i)) {
msg = ""Parameters must be real vectors.';
goto EXIT_POINT;

)
DA
DA |
)

}
}
/*
* Check sizes of parameters.
*/

numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);
numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

if ((numUpperLimit I= 1) &
(numLowerLimit I= 1) &
(numUpperLimit !'= numLowerLimit)) {
msg = "Number of input and output values must be equal.";
goto EXIT_POINT;
bs
/*
* Error exit point
*/
EXIT_POINT:

if (mnsg = NULL) {

7-50

S-Function Examples

ssSetErrorStatus(S, msg);
}
}

#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes

* Abstract:
* Initialize the sizes array.
*/
static void mdlInitializeSizes(SimStruct *S)
{
int_T numUpperLimit, numLowerLimit, maxNumLimit;
/*
* Set and check parameter count.
*/

ssSetNumSFcnParams(S, N_PAR);

#if defined(MATLAB_MEX_FILE)
iIT (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdICheckParameters(S);
if (ssGetErrorStatus(S) !'= NULL) {
return;

3
} else {
return; /* Parameter mismatch will be reported by Simulink */

}
#endif

/*

* Get parameter size info.

*/

numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);
numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

ifT (numUpperLimit > numLowerLimit) {
maxNumLimit = numUpperLimit;

} else {
maxNumLimit = numLowerLimit;

}

/*

* states

*/

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

/*
* outputs
* The upper and lower limits are scalar expanded
* so their size determines the size of the output
* only if at least one of them is not scalar.
*/

7-51

V4 Implementing Block Features

7-52

if (IssSetNumOutputPorts(S, 1)) return;

if (maxNumLimit > 1) {
ssSetOutputPortWidth(S, 0, maxNumLimit);
} else {
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

}

* inputs

* 1T the upper or lower limits are not scalar then
* the input is set to the same size. However, the
* ssSetOptions below allows the actual width to

* be reduced to 1 if needed for scalar expansion.

iIT (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortDirectFeedThrough(S, 0, 1);

if (maxNumLimit > 1) {
ssSetlnputPortWidth(S, 0, maxNumLimit);

} else {
ssSetlnputPortWidth(S, 0, DYNAMICALLY_SIZED);
3

/*

* sample times

*/
ssSetNumSampleTimes(S, 1);

/*

* work

*/

ssSetNumRWork(S, 0);
ssSetNumlWork(S, 0);
ssSetNumPWork(S, 0);

N
*

Modes and zero crossings:
IT we have a variable step solver and this block has a continuous
sample time, then
o One mode element will be needed for each scalar output
in order to specify which equation is valid (1), (2), or (3).
o Two ZC elements will be needed for each scalar output
in order to help the solver find the exact instants
at which either of the two possible "equation switches."
One will be for the switch from eq. (1) to (2);
the other will be for eq. (2) to (3) and vise versa.
otherwise

FOo% % % ok o kX x X ¥

S-Function Examples

o No modes and nonsampled zero crossings will be used.

*

/

ssSetNumModes(S, DYNAMICALLY_SIZED);
ssSetNumNonsampledZCs(S, DYNAMICALLY_SIZED);

/*

* options

* o No mexFunctions and no problematic mxFunctions are called

* so the exception free code option safely gives faster simulations.
* o Scalar expansion of the inputs is desired. The option provides

* this without the need to write mdlSetOutputPortWidth and

* mdISetInputPortWidth functions.

*/

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION));

} /7* end mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes
* Abstract:
* Specify that the block is continuous.
*
/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0);

#define MDL_SET_WORK_WIDTHS
#if defined(MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)
/* Function: mdlSetWorkWidths

The width of the modes and the zero crossings depends on the width of the
* output. This width is not always known in mdlInitializeSizes so it is handled
* here.
*/

static void mdISetWorkWidths(SimStruct *S)
{

int nModes;

7-53

V4 Implementing Block Features

7-54

}

int nNonsampledZCs;

iT (sslsvariableStepSolver(S) &&
ssGetSampleTime(S,0) == CONTINUOUS_SAMPLE_TIME &&
ssGetOffsetTime(S,0) == 0.0) {

int numOutput = ssGetOutputPortWidth(S, 0);

/*
* modes and zero crossings
* o One mode element will be needed for each scalar output
* in order to specify which equation is valid (1), (2), or (3).
* o Two ZC elements will be needed for each scalar output
* in order to help the solver find the exact instants
* at which either of the two possible "equation switches"
* One will be for the switch from eq. (1) to (2);
* the other will be for eq. (2) to (3) and vise-versa.
*/
nModes = numOutput;
nNonsampledZCs = 2 * numOutput;
} else {
nModes = 0;
nNonsampledZCs = 0;

ssSetNumModes (S, nModes) ;
ssSetNumNonsampledZCs (S, nNonsampledZCs) ;

#endif /* MDL_SET_WORK_WIDTHS */

Function: mdIOutputs
Abstract:

A saturation is described by three equations.

@) y = UpperLimit
(&) y=u
A) y = LowerLimit

When this block is used with a fixed-step solver or it has a noncontinuous
sample time, the equations are used as is.

Now consider the case of this block being used with a variable step solver
and having a continuous sample time. Solvers work best on smooth problems.
In order for the solver to work without chattering, limit cycles, or
similar problems, it is absolutely crucial that the same equation be used
throughout the duration of a MajorTimeStep. To visualize this, consider
the case of the Saturation block feeding an Integrator block.

To implement this rule, the mode vector is used to specify the
valid equation based on the following:

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)

S-Function Examples

ok ok X b X o ok X F 3k X % ok % % F

*/

if u < LowerLimit then use (3)
The mode vector is changed only at the beginning of a MajorTimeStep.

During a minor time step, the equation specified by the mode vector

is used without question. Most of the time, the value of u will agree
with the equation specified by the mode vector. However, sometimes u"s
value will indicate a different equation. Nonetheless, the equation
specified by the mode vector must be used.

When the mode and u indicate different equations, the corresponding
calculations are not correct. However, this is not a problem. From

the ZC function, the solver will know that an equation switch occurred

in the middle of the last MajorTimeStep. The calculations for that

time step will be discarded. The ZC function will help the solver

find the exact instant at which the switch occurred. Using this knowledge,
the length of the MajorTimeStep will be reduced so that only one equation
is valid throughout the entire time step.

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputReal PtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);
real _T *y = ssGetOutputPortRealSignal(S,0);
int. T numOutput = ssGetOutputPortWidth(S,0);

int_T i0utput;

/*

* Set index and increment for input signal, upper limit, and lower limit
* parameters so that each gives scalar expansion if needed.

*/

Iint. T uldx = 0;

int. T ulnc = (ssGetlnputPortWidth(S,0) > 1);

real _T = mxGetPr(P_PAR_UPPER_LIMIT);

int.T = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);
real _T = mxGetPr(P_PAR_LOWER_LIMIT);

int_ T lowerLimitinc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

iT (ssGetNumNonsampledZCs(S) == 0) {
/*
* This block is being used with a fixed-step solver or it has
* a noncontinuous sample time, so we always saturate.
*
/
for (iOutput = 0; 1O0utput < numOutput; iOutput++) {
I (*uPtrs[uldx] >= *upperLimit) {
*y++ = *upperLimit;
} else if C*uPtrs[uldx] > *lowerLimit) {
*y++ = *uPtrs[uldx];
} else {

*y++ = *lowerLimit;
3

upperLimit += upperLimitinc;
lowerLimit += lowerLimitinc;

7-55

V4 Implementing Block Features

uldx += ulnc;
bs
} else {
/*
* This block is being used with a variable-step solver.
*/

int_T *mode = ssGetModeVector(S);

/*
* Specify indices for each equation.
*
/
enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

/*
* Update the mode vector ONLY at the beginning of a MajorTimeStep.
*/
if (sslsMajorTimeStep(S)) {
/*
* Specify the mode, that is, the valid equation for each output scalar.
*/

for (iOutput = O; iOutput < numOutput; iOutput++) {
if (*uPtrs[uldx] > *upperLimit) {
/*
* Upper limit eq is valid.
*/
mode[iOutput] = UpperLimitEquation;
} else if (*uPtrs[uldx] < *lowerLimit) {

/*
* Lower limit eq is valid.
*/
mode[iOutput] = LowerLimitEquation;
} else {
/*
* Nonlimit eq is valid.
*/
mode[i0Output] = NonLimitEquation;
by
/*
* Adjust indices to give scalar expansion if needed.
*/
uldx += ulnc;

upperLimit += upperLimitinc;
lowerLimit += lowerLimitinc;

3

/*

* Reset index to input and limits.
*/

uldx = 0;

upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);
lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

7-56

S-Function Examples

}

} /7* end IsMajorTimeStep */

/*
* For both MinorTimeSteps and MajorTimeSteps calculate each scalar
* output using the equation specified by the mode vector.
*/
for (10utput = 0; iOutput < numOutput; iOutput++) {
if (mode[i0Output] == UpperLimitEquation) {

/*
* Upper limit eq.
*/
*y++ = *upperLimit;
} else if (mode[iOutput] == LowerLimitEquation) {
/*
* Lower limit eq.
*/
*y++ = *lowerLimit;
} else {
/*
* Nonlimit eq.
*/
*y++ = *uPtrs[uldx];
3
/*
* Adjust indices to give scalar expansion if needed.
*
/
uldx += ulnc;

upperLimit += upperLimitinc;
lowerLimit += lowerLimitinc;

} /7* end mdlOutputs */

#define

MDL_ZERO_CROSSINGS

#if defined(MDL_ZERO CROSSINGS) && (defined(MATLAB_MEX_FILE) || defined(NRT))

/* Function: mdlZeroCrossings

* Abstract:

* This will only be called if the number of nonsampled zero crossings is

* greater than 0, which means this block has a continuous sample time and the
* the model is using a variable step solver.

*

* Calculate ZC signals that help the solver find the

*

exact instants at which equation switches occur:

7-57

V4 Implementing Block Features

7-58

ok % ok b 3k X b X b ok X b kX ok ok 3k F ok % X b kX o kX o ok X % ok % X F X %

*/

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if u < LowerLimit then use (3)

The key words are help find. There is no choice of a function that will
direct the solver to the exact instant of the change. The solver will
track the zero crossing signal and do a bisection style search for the
exact instant of equation switch.

There is generally one ZC signal for each pair of signals that can

switch. The three equations above would break into two pairs (1)&(2)
and (2)&(3). The possibility of a "long jump"” from (1) to (3) does
not need to be handled as a separate case. It is implicitly handled.

When a ZCs are calculated, the value is normally used twice. When it is
First calculated, it is used as the end of the current time step. Later,
it will be used as the beginning of the following step.

The sign of the ZC signal always indicates an equation from the pair. In the
context of S-functions, which equation is associated with a positive ZC and
which is associated with a negative ZC doesn"t really matter. If the ZC is

positive at the beginning and at the end of the time step, this implies that the
positive equation was valid throughout the time step. Likewise, if the

ZC is negative at the beginning and at the end of the time step, this

implies that the negative equation was valid throughout the time step.

Like any other nonlinear solver, this is not fool proof, but it is an
excellent indicator. |If the ZC has a different sign at the beginning and

at the end of the time step, then a equation switch definitely occured

during the time step.

Ideally, the ZC signal gives an estimate of when an equation switch
occurred. For example, if the ZC signal is -2 at the beginning and +6 at
the end, then this suggests that the switch occured

25% = 100%*(-2)/(-2-(+6)) of the way into the time step. It will almost
never be true that 25% is perfectly correct. There is no perfect choice
for a ZC signal, but there are some good rules. First, choose the ZC
signal to be continuous. Second, choose the ZC signal to give a monotonic
measure of the "distance™ to a signal switch; strictly monotonic is ideal.

static void mdlZeroCrossings(SimStruct *S)

{

int_T iOutput;

int_T numOutput = ssGetOutputPortWidth(S,0);

real _T *zcSignals = ssGetNonsampledZCs(S);

InputReal PtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);
/*

* Set index and increment for the input signal, upper limit, and lower
* limit parameters so that each gives scalar expansion if needed.

*/

Int_T uldx = 0;

Iint_T ulnc (ssGetlnputPortWidth(S,0) > 1);

S-Function Examples

real _T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);
int_T upperLimitinc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);
real _T *lower it = mxGetPr(P_PAR_LOWER_LIMIT);
int_T lowerLimitinc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

/*

* For each output scalar, give the solver a measure of "how close things
* are' to an equation switch.

*/

for (iOutput = 0; i10Output < numOutput; iOutput++) {

/* The switch from eq (1) to eq (2)

*

* if UpperLimit < u then use (1)
* if LowerLimit <= u <= UpperLimit then use (2)
*

* is related to how close u is to UpperLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - UpperLimit

* or it Is negative.

*/

zcSignals[2*iOutput] = *uPtrs[uldx] - *upperLimit;

/* The switch from eq (2) to eq (3)

*

* if LowerLimit <= u <= UpperLimit then use (2)
* if u < LowerLimit then use (3)
*

* is related to how close u is to LowerLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - LowerLimit.

*/

zcSignals[2*iOutput+1l] = *uPtrs[uldx] - *lowerLimit;

/*

* Adjust indices to give scalar expansion if needed.
*/

uldx += ulnc;

upperLimit += upperLimitinc;
lowerLimit += lowerLimitinc;

¥

#endif /* end mdlZeroCrossings */

/* Function: mdITerminate

* Abstract:
* No termination needed, but we are required to have this routine.
*/

static void mdITerminate(SimStruct *S)

{

}

7-59

V4 Implementing Block Features

7-60

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

Example - Time Varying Continuous Transfer
Function

The stvctf S-function is an example of a time varying continuous transfer
function. It demonstrates how to work with the solvers so that the simulation
maintains consistency, which means that block maintains smooth and
consistent signals for the integrators despite the fact that the equations that
are being integrated are changing.

matlabroot/simulink/src/stvctf.c

N
*

ook kX o 3k X b o X % ok X % o X F % X o kX % X F ok % X k¥

File : stvctf.c
Abstract:

Time Varying Continuous Transfer Function block

This S-function implements a continuous time transfer function
whose transfer function polynomials are passed in via the input
vector. This is useful for continuous time adaptive control
applications.

This S-function is also an example of how to "use banks"™ to avoid
problems with computing derivatives when a continuous output has
discontinuities. The consistency checker can be used to verify that
your S-function is correct with respect to always maintaining smooth
and consistent signals for the integrators. By consistent we mean that
two mdlOutput calls at major time t and minor time t are always the
same. The consistency checker is enabled on the diagnostics page of the
simulation parameters dialog box. The update method of this S-function
modifies the coefficients of the transfer function, which cause the
output to "jump."™ To have the simulation work properly, we need to let
the solver know of these discontinuities by setting
ssSetSolverNeedsReset. Then we need to use multiple banks of
coefficients so the coefficients used in the major time step output
and the minor time step outputs are the same. In the simulation loop
we have:
Loop:
o Output in major time step at time t
o Update in major time step at time t
o Integrate (minor time step):
o Consistency check: recompute outputs at time t and compare
with current outputs.
o Derivatives at time t.
o One or more Output,Derivative evaluations at time t+k

S-Function Examples

* where k <= step_size to be taken.

* o Compute state, X.

* ot =1t + step_size.

* End_Integrate

* End_Loop

* Another purpose of the consistency checker is used to verify that when
* the solver needs to try a smaller step size that the recomputing of

* the output and derivatives at time t doesn"t change. Step size

* reduction occurs when tolerances aren"t met for the current step size.
* The ideal ordering would be to update after integrate. To achieve

* this we have two banks of coefficients. And the use of the new

* coefficients, which were computed in update, are delayed until after
* the integrate phase is complete.

*

* See simulink/src/sfuntmpl._doc.

*

* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.8 $

*/

#define S_FUNCTION_NAME stvctf
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*
* Defines for easy access to the numerator and denominator polynomials
* parameters
*/

#define NUM(S) ssGetSFcnParam(S, 0)

#define DEN(S) ssGetSFcnParam(S, 1)

#define TS(S) ssGetSFcnParam(S, 2)

#define NPARAMS 3

#define MDL_CHECK_PARAMETERS
#iT defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdICheckParameters

* Abstract:

* Validate our parameters to verify:

* o The numerator must be of a lower order than the denominator.
* o The sample time must be a real positive nonzero value.

*/
static void mdICheckParameters(SimStruct *S)
{

int T i;

for (i = 0; 1 < NPARAMS; i++) {
real_T *pr;
int. T el;
int. T nEls;
if (nxIsEmpty(ssGetSFcnParam(S,i)) |1
mxlIsSparse(ssGetSFcnParam(S,i)) |1

7-61

V4 Implementing Block Features

7-62

mxIsComplex(ssGetSFcnParam(S,i)) |1
ImxIsNumeric(ssGetSFcnParam(S,i))) {
ssSetErrorStatus(S,''Parameters must be real finite vectors');
return;
}
pr = mxGetPr(ssGetSFcnParam(S,i));
nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i));
for (el = 0; el < nEls; el++) {
if (ImxIsFinite(prel])) {
ssSetErrorStatus(S, "Parameters must be real finite vectors™);
return;

}

if (nxGetNumberOfElements(NUM(S)) > mxGetNumberOfElements(DEN(S)) &&
mxGetNumberOfElements(DEN(S)) > 0 && *mxGetPr(DEN(S)) != 0.0) {
ssSetErrorStatus(S, " The denominator must be of higher order than ™
""the numerator, nonempty and with first "
"element nonzero™);
return;

}

/* xxx verify finite */

it (mxGetNumberOfElements(TS(S)) = 1 || mxGetPr(TS(S))[0] <= 0.0) {
ssSetErrorStatus(S,”Invalid sample time specified");
return;

b

¥
#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes
* Abstract:

* The sizes information is used by Simulink to determine the S-function
block"s characteristics (number of inputs, outputs, states, etc.).

*
*/
static void mdlInitializeSizes(SimStruct *S)

{
Int_T nContStates;
Iint_T nCoeffs;

/* See sfuntmpl.doc for more details on the macros below. */

ssSetNumSFcnParams(S, NPARAMS); /* Number of expected parameters. */
#if defined(MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdICheckParameters(S);
if (ssGetErrorStatus(S) != NULL) {
return;

¥
} else {
return; /* Parameter mismatch will be reported by Simulink. */

S-Function Examples

3
#endif

/*

* Define the characteristics of the block:

*

* Number of continuous states: length of denominator - 1

* Inputs port width 2 * (NumContStates+1) + 1

* Output port width 1

* DirectFeedThrough: 0 (Although this should be computed.
* We" 1l assume coefficients entered
* are strictly proper).

* Number of sample times: 2 (continuous and discrete)

* Number of Real work elements: 4*NumCoeffs

* (Two banks for num and den coeff"s:
* NumBankOCoeffs

* DenBankOCoeffs

* NumBank1Coeffs

* DenBankl1Coeffs)

* Number of Integer work elements: 2 (indicator of active bank O or 1
* and flag to indicate when banks
* have been updated).

*

* The number of inputs arises from the following:

* 0 1 input (u)

* o the numerator and denominator polynomials each have NumContStates+1
* coefficients

*/

nCoeffs = mxGetNumberOfElements(DEN(S));

nContStates = nCoeffs - 1;

ssSetNumContStates(S, nContStates);
ssSetNumDiscStates(S, 0);

iT (IssSetNumlnputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 1 + (2*nCoeffs));
ssSetlInputPortDirectFeedThrough(S, 0, 0);

IT (IssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 2);
ssSetNumRWork(S, 4 * nCoeffs);
ssSetNumlWork(s, 2);
ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);
ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

7-63

V4 Implementing Block Features

7-64

} /7* end mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes

* Abstract:

* This

* S-function.

* first, a continuous sam
* transfer function, u.

*

*

*/

ple time, is used for the

function is used to specify the sample time(s) for the
This S-function has two sample times.

The
input to the

The second, a discrete sample time
provided by the user, defines the rate at which the transfer
function coefficients are updated.

static void mdlInitializeSampleTimes(SimStruct *S)

{

/>

* the first sample time, continuous

*
/
ssSetSampleTime(S, 0, CONTI
ssSetOffsetTime(S, 0, 0.0);

/*

* the second, discrete sample time,

*/

NUOUS_SAMPLE_TIME) ;

is user provided

ssSetSampleTime(S, 1, mxGetPr(TS(S))[0]);

ssSetOffsetTime(S, 1, 0.0);

} /7* end mdlInitializeSampleTimes */

#define MDL_INITIALIZE_CONDITIONS

/*

*

*/

{

Function: mdlInitializeConditions
* Abstract:
Initialize the states, numerator and denominator

static void mdlInitializeConditions(SimStruct *S)

int.T i;

int_T nContStates = ssGetNumContStates(S);

real_T *x0 = ssGetContStates(S);

Iint_T nCoeffs = nContStates + 1;

real _T *numBankO = ssGetRWork(S);

real T *denBankO = numBankO + nCoeffs;

Int_T *activeBank

ssGetlWork(S);

/*
* The continuous states are all initialized to zero.
*
/
for (i = 0; i < nContStates; i++) {
x0[i] = 0.0;
numBankO[i] = 0.0;
denBankO[i] = 0.0;
3
numBankO[nContStates] = 0.0;
denBankO[nContStates] = 0.0;

coefficients.

S-Function Examples

/* Function: mdIOutputs
* Abstract:

/*
* Set up the initial numerator and denominator.
*/

{
const real_T *numParam = mxGetPr(NUM(S));
int numParamLen = mxGetNumberOfElements(NUM(S));
const real_T *denParam = mxGetPr(DEN(S));
int denParamLen = mxGetNumberOfElements(DEN(S));
real_T den0 = denParam[0];
for (i = 0; i < denParamLen; i++) {
denBankO[i] = denParam[i] 7/ denO;
}
for (i = 0; 1 < numParamLen; i++) {
numBankO[i] = numParam[i] / denO;
}
}
/*

* Normalize if this transfer function has direct feedthrough.
*/
for (i = 1; i < nCoeffs; i++) {
numBankO[i] -= denBankO[i]*numBankO[0];
}

/*

* Indicate bankO is active (i.e. bankl is oldest).
*/

*activeBank = 0;

} /7* end mdlInitializeConditions */

The outputs for this block are computed by using a controllable state-

space representation of the transfer function.

static void mdlOutputs(SimStruct *S, int_T tid)

i (sslsContinuousTask(S,tid)) {

int i;

real T *num;

int nContStates = ssGetNumContStates(S);

real_T *X = ssGetContStates(S);

int. T nCoeffs = nContStates + 1;

InputReal PtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);
real _T *y = ssGetOutputPortRealSignal (S,0);
int_T *activeBank = ssGetlWork(S);

7-65

V4 Implementing Block Features

/*
* Switch banks since we"ve updated them in mdlUpdate and we"re no longer
* in a minor time step.
*/
ifT (sslsMajorTimeStep(S)) {
int_T *banksUpdated = ssGetlWork(S) + 1;
if (*banksUpdated) {

*activeBank = !'(*activeBank);
*banksUpdated = 0;
/*

* Need to tell the solvers that the derivatives are no
* longer valid.

*/

ssSetSolverNeedsReset(S);

}
}
num = ssGetRWork(S) + (*activeBank) * (2*nCoeffs);
/*
* The continuous system is evaluated using a controllable state space
* representation of the transfer function. This implies that the
* output of the system is equal to:
*
* y(t) = Cx(t) + Du(t)
* = [bl b2 ... bn]x(t) + bOu(t)
*
* where b0, bl, b2, ... are the coefficients of the numerator
* polynomial:
*
* B(s) = b0 s™n + bl s™n-1 + b2 s™n-2 + ... + bn-1 s + bn

*
/
*y = *num++ * (*uPtrs[0]);
for (i = 0; i < nContStates; i++) {
*y 4= Fnumt+ * FX++;
bs
}

} /7* end mdlOutputs */

#define MDL_UPDATE
/* Function: mdlUpdate

* Abstract:

* Every time through the simulation loop, update the

* transfer function coefficients. Here we update the oldest bank.
*/

static void mdlUpdate(SimStruct *S, int_T tid)

{

if (sslIsSampleHit(S, 1, tid)) {
int. T i;
InputRealPtrsType uPtrs ssGetlnputPortRealSignalPtrs(S,0);
int. T uldx = 1;/*1st coeff is after signal input*/

7-66

S-Function Examples

int. T nContStates = ssGetNumContStates(S);
int. T nCoeffs = nContStates + 1;
int_T bankToUpdate = IssGetlWork(S)[0];
real _T *num = ssGetRWork(S)+bankToUpdate*2*nCoeffs;
real _T *den = num + nCoeffs;
real _T den0;
int_T allZero;
/*
* Get the Ffirst denominator coefficient. It will be used
* for normalizing the numerator and denominator coefficients.
*
* IFf all inputs are zero, we probably could have unconnected
*

inputs, so use the parameter as the First denominator coefficient.
*
/
den0 = *uPtrs[uldx+nCoeffs];
if (den0 == 0.0) {
den0 = mxGetPr(DEN(S))[0];

3

/*

* Grab the numerator.
*/

allZero = 1;

for (i = 0; (i < nCoeffs) && allZero; i++) {
allZero &= *uPtrs[uldx+i] == 0.0;

}

if (allZzero) { /7* if numerator is all zero */
const real_T *numParam = mxGetPr(NUM(S));
int T numParamLen = mxGetNumberOfElements(NUM(S));
/*

* Move the input to the denominator input and
* get the denominator from the input parameter.
*/
uldx += nCoeffs;
num += nCoeffs - numParamLen;
for (i = 0; 1 < numParamLen; i++) {
*num++ = *numParam++ / denO;
}
} else {
for (i = 0; 1 < nCoeffs; i++) {
*num++ = *uPtrsfuldx++] 7/ denO;

3
3
/*
* Grab the denominator.
*/

allZero = 1;
for (i = 0; (i < nCoeffs) && allZero; i++) {

7-67

V4 Implementing Block Features

7-68

allZero &= *uPtrs[uldx+i] == 0.0;

bs
if (allZzero) { /* If denominator is all zero. */
const real_T *denParam = mxGetPr(DEN(S));
int. T denParamLen = mxGetNumberOfElements(DEN(S));

den0 = denParam[0];
for (i = 0; 1 < denParamLen; i++) {
*den++ = *denParam++ / denO;
}
} else {
for (i = 0; 1 < nCoeffs; i++) {
*den++ = *uPtrs[uldx++] 7/ denO;

}
}
/*
* Normalize if this transfer function has direct feedthrough.
*/

num = ssGetRWork(S) + bankToUpdate*2*nCoeffs;
den = num + nCoeffs;
for (i = 1; i < nCoeffs; i++) {
num[i] -= den[i]*num[0];
}

/*
* Indicate oldest bank has been updated.
*
/
ssGetlWork(S)[1] = 1;
}

} /* end mdlUpdate */

#define MDL_DERIVATIVES

/* Function: mdIDerivatives

* Abstract:
* The derivatives for this block are computed by using a controllable
* state-space representation of the transfer function.
*/
static void mdlDerivatives(SimStruct *S)
{
int_T i;
int. T nContStates = ssGetNumContStates(S);
real _T *X = ssGetContStates(S);
real _T *dx = ssGetdX(S);
int_T nCoeffs = nContStates + 1;
int. T activeBank = ssGetlWork(S)[0];
const real_T *num = ssGetRWork(S) + activeBank*(2*nCoeffs);
const real_T *den = num + nCoeffs;
InputRealPtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);

S-Function Examples

/*
* The continuous system is evaluated using a controllable state-space
* representation of the transfer function. This implies that the
* next continuous states are computed using:
*
* dx = Ax(t) + Bu(t)
* = [-al -a2 ... -an] [xX1(®)] + [u(®]
* [1 0o ... 0] [x2(v)] + [0]
* [o1 ... 0] [x3(v)] + [0]
* L - - - 1 . + .
* L - - - -] +
* L - - - -1 . + .
* [0 0 ...10] [xn(t)] + [0]
*
* where al, a2, ... are the coefficients of the numerator polynomial:
*
* A(s) =s™ + al s™n-1 + a2 s™-2 + ... + an-1 s + an
*
/
dx[0] = -den[1] * x[0] + *uPtrs[O0];
for (i = 1; i < nContStates; i++) {
dx[i] = x[i-1];
dx[0] -= den[i+1] * x[i];
3
} /* end mdIDerivatives */
/* Function: mdITerminate
* Abstract:
* Called when the simulation is terminated.
* For this block, there are no end of simulation tasks.
*
/
static void mdITerminate(SimStruct *S)
{

} /7* end mdITerminate */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-File interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

7-69

V4 Implementing Block Features

7-70

Writing S-Functions for

Real-Time Workshop

Classes of Problems Solved by S-Functions
Types of S-Functions .
Basic Files Required for Implementatlon .

Noninlined S-Functions .

S-Function Module Names for Real T|me Workshop Bunds

Writing Wrapper S-Functions
The MEX S-Function Wrapper
The TLC S-Function Wrapper
The Inlined Code . .o

Fully Inlined S-Functions .
Multiport S-Function Example

Fully Inlined S-Function with the mdIRTW Routine .

S-Function RTWdata for Generating Code with
Real-Time Workshop . .o

The Direct-Index Lookup Table Algorlthm

The Direct-Index Lookup Table Example .

. 8-14
. 8-18

. 8-19
. 8-19

. 8-21
. 8-22

. 8-23
. 8-24

8 Writing S-Functions for Real-Time Workshop

8-2

Introduction

This chapter describes how to create S-functions that work seamlessly with
both Simulink and the Real-Time Workshop. It begins with basic concepts and
concludes with an example of how to create a highly optimized direct-index
lookup table S-function block.

This chapter assumes that you understand these concepts:

=« Level 2 S-functions
= Target Language Compiler (TLC)
= The basics of how the Real-Time Workshop creates generated code

See the Target Language Compiler Reference Guide, and the Real-Time
Workshop User’s Guide for more information about these subjects.

A note on terminology: when this chapter refers actions performed by the
Target Language Compiler, including parsing, caching, creating buffers, etc.,
the name Target Language Compiler is spelled out fully. When referring to
code written in the Target Language Compiler syntax, this chapter uses the
abbreviation TLC.

Note The guidelines presented in this chapter are for Real-Time Workshop
users. Even if you do not currently use the Real-Time Workshop, we
recommend that you follow the guidelines presented in this chapter when
writing S-functions, especially if you are creating general-purpose S-functions.

Classes of Problems Solved by S-Functions

S-functions help solve various kinds of problems you may face when working
with Simulink and the Real-Time Workshop (Real-Time Workshop). These
problems include:

= Extending the set of algorithms (blocks) provided by Simulink and
Real-Time Workshop

= Interfacing legacy (hand-written) C-code with Simulink and Real-Time
Workshop

= Generating highly optimized C-code for embedded systems

Introduction

S-functions and S-function routines form an application program interface
(API) that allows you to implement generic algorithms in the Simulink
environment with a great deal of flexibility. This flexibility cannot always be
maintained when you use S-functions with the Real-Time Workshop. For
example, it is not possible to access the MATLAB workspace from an S-function
that is used with the Real-Time Workshop. However, using the techniques
presented in this chapter, you can create S-functions for most applications that
work with the generated code from the Real-Time Workshop.

Although S-functions provide a generic and flexible solution for implementing
complex algorithms in Simulink, they require significant memory and
computation resources. Most often the additional resources are acceptable for
real-time rapid prototyping systems. In many cases, though, additional
resources are unavailable in real-time embedded applications. You can
minimize memory and computational requirements by using the Target
Language Compiler technology provided with the Real-Time Workshop to
inline your S-functions.

Types of S-Functions

The implementation of S-functions changes based on your requirements. This
chapter discusses the typical problems that you may face and how to create
S-functions for applications that need to work with Simulink and the

Real-Time Workshop. These are some (informally defined) common situations:

1 “I'm not concerned with efficiency. | just want to write one version of my
algorithm and have it work in Simulink and the Real-Time Workshop
automatically.”

2 “l have a lot of hand-written code that | need to interface. | want to call my

function from Simulink and the Real-Time Workshop in an efficient manner.

or said another way:

“l want to create a block for my blockset that will be distributed throughout
my organization. I'd like it to be very maintainable with efficient code. I'd
like my algorithm to exist in one place but work with both Simulink and the
Real-Time Workshop.”

8-3

8 Writing S-Functions for Real-Time Workshop

8-4

3 “l want to implement a highly optimized algorithm in Simulink and the
Real-Time Workshop that looks like a built-in block and generates very
efficient code.”

The MathWorks has adopted terminology for these different requirements.
Respectively, the situations described above map to this terminology:

1 Noninlined S-function
2 Wrapper S-function

3 Fully inlined S-function

Noninlined S-Functions

A noninlined S-function is a C-MEX S-function that is treated identically by
Simulink and the Real-Time Workshop. In general, you implement your
algorithm once according to the S-function API. Simulink and the Real-Time
Workshop call the S-function routines (e.g., md10utputs) at the appropriate
points during model execution.

Significant memory and computation resources are required for each instance
of a noninlined S-function block. However, this routine of incorporating
algorithms into Simulink and the Real-Time Workshop is typical during the
prototyping phase of a project where efficiency is not important. The advantage
gained by foregoing efficiency is the ability to change model parameters and/or
structures rapidly.

Note that writing a noninlined S-function does not involve any TLC coding.
Noninlined S-functions are the default case for the Real-Time Workshop in the
sense that once you've built a C-MEX S-function in your model, there is no
additional preparation prior to clicking Build in the Real-Time Workshop
Page of the Simulation Parameters dialog box for your model.

Wrapper S-Functions

A wrapper S-function is ideal for interfacing hand-written code or a large
algorithm that is encapsulated within a few procedures. In this situation,
usually the procedures reside in modules that are separate from the C-MEX
S-function. The S-function module typically contains a few calls to your
procedures. Since the S-function module does not contain any parts of your
algorithm, but only calls your code, it is referred to as a wrapper S-function.

Introduction

In addition to the C-MEX S-function wrapper, you need to create a TLC
wrapper that complements your S-function. The TLC wrapper is similar to the
S-function wrapper in that it contains calls to your algorithm.

Fully Inlined S-Functions

A fully inlined S-function builds your algorithm (block) into Simulink and the
Real-Time Workshop in a manner that is indistinguishable from a built-in
block. Typically, a fully inlined S-function requires you to implement your
algorithm twice: once for Simulink (C-MEX S-function) and once for the
Real-Time Workshop (TLC file). The complexity of the TLC file depends on the
complexity of your algorithm and the level of efficiency you're trying to achieve
in the generated code. TLC files vary from simple to complex in structure.

Basic Files Required for Implementation

This section briefly describes what files and functions you’ll need to create
noninlined, wrapper, and fully inlined S-functions.

< Noninlined S-functions require the C-MEX S-function source code
(sfunction.c).

= Wrapper S-functions that inline a call to your algorithm (your C function)
require an sfunction.tlc file.

= Fully inlined S-functions require an sfunction.tlc file. Fully inlined
S-functions produce the optimal code for a parameterized S-function. This is
an S-function that operates in a specific mode dependent upon fixed
S-function parameter(s) that do not change during model execution. For a
given operating mode, the sfunction.tlc specifies the exact code that will
be generated to implement the algorithm for that mode. For example, the
direct-index lookup table S-function at the end of this chapter contains two
operating modes — one for evenly spaced x-data and one for unevenly
spaced x-data.

- Fully inlined S-functions may require the placement of the mdIRTW routine
in your S-function MEX-file, sfunction.c. The mdIRTW routine lets you
place information in model . rtw, which is the file that is processed by the
Target Language Compiler prior to executing sfunction.tlc when
generating code. This is useful when you want to introduce nontunable
parameters into your TLC file.

8-5

8 Writing S-Functions for Real-Time Workshop

8-6

For S-functions to work correctly in the Simulink environment, a certain
amount of overhead code is necessary. When the Real-Time Workshop
generates code from models that contain S-functions (without sfunction.tlc
files), it embeds some of this overhead code in the generated C code. If you want
to optimize your real-time code and eliminate some of the overhead code, you
must inline (or embed) your S-functions. This involves writing a TLC
(sfunction.tlc) file that directs the Real-Time Workshop to eliminate all
overhead code from the generated code. The Target Language Compiler, which
is part of the Real-Time Workshop, processes sfunction.tlc files to define
how to inline your S-function algorithm in the generated code.

Note The term inline should not be confused with the C++ inline keyword. In
MathWorks terminology, inline means to specify a textual string in place of
the call to the general S-function API routines (e.g., md10utputs). For example,
when we say that a TLC file is used to inline an S-function, we mean that the
generated code contains the appropriate C code that would normally appear
within the S-function routines and the S-function itself has been removed
from the build process.

Noninlined S-Functions

Noninlined S-Functions

Noninlined S-functions are identified by the absence of an sfunction.tlc file
for your S-function (sfunction.mex). When placing a noninlined S-function in
a model that is to be used with the Real-Time Workshop, the following
MATLAB API functions are supported:

= mxGetEps

= nxGetInf

= nxGetM

= mxGetN

= mxGetNaN

= mxGetPr — Note: using mxGetPr on an empty matrix does not return NULL;
rather, it returns a random value. Therefore, you should protect calls to
mxGetPr with mx1sEmpty.

= mxGetScalar

= nxGetString

= mxIsEmpty

= mxIsFinite

= mxIsInf

In addition, parameters to S-functions can only be of type double precision or
characters contained in scalars, vectors, or 2-D matrices. To obtain more
flexibility in the type of parameters you can supply to S-functions or the
operations in the S-function, you need to inline your S-function and (possibly)
use a mdIRTW S-function routine.

S-Function Module Names for Real-Time Workshop
Builds

If your S-function is built with multiple modules, you must provide the build
process names of additional modules. You can do this through the Real-Time
Workshop template makefile technology, or more conveniently by using the
set_param MATLAB command. For example, if your S-function is built with
multiple modules, as in

mex sfun_main.c sfun_modulel.c sfun_module2.c

then specify the names of the modules without the extension using the
command

8-7

8 Writing S-Functions for Real-Time Workshop

set_param(sfun_block, "SFunctionModules”, "sfun_modulel sfun_module2®)

The parameter can also be a variable as in

modules = "sfun_modulel sfun_module2*
set_param(sfun_block, "SFunctionModules®, "modules®)

or a string to be evaluated (this is needed when the modules are valid
identifiers).

set_param(sfun_block, "SFunctionModules™, sfun_modulel sfun_module2®"*")

8-8

Writing Wrapper S-Functions

Writing Wrapper S-Functions

This section describes how to create S-functions that work seamlessly with
Simulink and the Real-time Workshop using the wrapper concept. This section
begins by describing how to interface your algorithms in Simulink by writing
MEX S-function wrappers (sfunction.mex). It finishes with a description of
how to direct the Real-Time Workshop to insert your algorithm into the
generated code by creating a TLC S-function wrapper (sfunction.tlc).

The MEX S-Function Wrapper

Creating S-functions using an S-function wrapper allows you to insert your C
code algorithms in Simulink and the Real-Time Workshop with little or no
change to your original C code function. A MEX S-function wrapper is an
S-function that calls code that resides in another module. In effect, the wrapper
binds your code to Simulink. A TLC S-function wrapper is a TLC file that
specifies how the Real-Time Workshop should call your code (the same code
that was called from the C-MEX S-function wrapper).

Suppose you have an algorithm (i.e., a C function), called my_alg that resides
in the file my_alg.c. You can integrate my_alg into Simulink by creating a
MEX S-function wrapper (e.g., wrapsfcn.c). Once this is done, Simulink will
be able to call my_alg from an S-function block. However, the Simulink
S-function contains a set of empty functions that Simulink requires for various
APIl-related purposes. For example, although only md10utputs calls my_alg,
Simulink calls mdlTerminate as well, even though this S-function routine
performs no action.

You can integrate my_alg into the Real-Time Workshop generated code (i.e.,
embed the call to my_alg in the generated code) by creating a TLC S-function
wrapper (e.g., wrapsfcn.tlc). The advantage of creating a TLC S-function
wrapper is that the empty function calls can be eliminated and the overhead of
executing the md10utputs function and then the my_alg function can be
eliminated.

Wrapper S-functions are useful when creating new algorithms that are
procedural in nature or when integrating legacy code into Simulink. However,
if you want to create code that is:

= Interpretive in nature in Simulink (i.e., highly-parameterized by operating
modes)

8-9

8 Writing S-Functions for Real-Time Workshop

= Heavily optimized in the Real-Time Workshop (i.e., no extra tests to decide
what mode the code is operating in)

then you must create a fully inlined TLC file for your S-function.

8-10

Writing Wrapper S-Functions

This figure illustrates the wrapper S-function concept.

Simulink
Place the name of your

wrapper .mdl

O— wrapsfcn |—O

S-function

In Simulink, the
S-function calls
md10utputs, which in

Real-Time Workshop
wrapper .c, the generated
code, calls MdIOutputs,
which then calls my_alg.

wrapper .c

*sqe_ nqt_e_be_lqu MdlOutputs(...)
: {
: my_algQ:
' }

wrapsfcn.c In the TLC wrapper
. version of the
mdfoutputs(. - -) S-function,
‘ > 1 MdIOutputs in
|;1)-/;alg(); wrapper .exe calls
b
md10utputs in my_alg.c
wrapsfcn._mex ---
calls external real_T my_alg(real_T u)
function my_alg {
R 4_
y=f(u);
b

calls mdIOutputs.

*The dotted line above would be the path taken if the S-function did not
have a TLC wrapper file. If there is no TLC wrapper file, the generated code

Figure 8-1: How S-Functions Interface with Hand-Written Code

8-11

8 Writing S-Functions for Real-Time Workshop

8-12

Declare my_alg as
extern.

Using an S-function wrapper to import algorithms in your Simulink model
means that the S-function serves as an interface that calls your C code
algorithms from md10utputs. S-function wrappers have the advantage that you
can quickly integrate large stand-alone C code into your model without having
to make changes to the code.

This is an example of a model that includes an S-function wrapper.

wrapper [_[Ofx]

File Edit “iew Simulation Format Tools

model: wrapper 4@

Scope
wrapsfcn (1
Sin S-Function Out

Figure 8-1: An Example Model That Includes an S-Function Wrapper

There are two files associated with wrapsfcn block, the S-function wrapper and
the C code that contains the algorithm. This is the S-function wrapper code for
this example, called wrapsfcn.c.

#define S_FUNCTION_NAME wrapsfcn
#define S_FUNCTION_LEVEL 2
#include “simstruc.h”

«{ extern real_T my_alg(real_T u);

/*

* mdlInitializeSizes - initialize the sizes array
*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /*number of input arguments*/
iIT (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortWidth(S, 0, 1);
ssSetlnputPortDirectFeedThrough(S, 0, 1);

if (IssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 1);

Writing Wrapper S-Functions

Place the call to
my_algin
mdl0utputs.

/*
* mdlInitializeSampleTimes - indicate that this S-function runs
*at the rate of the source (driving block)
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime(S, O, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

/*
* mdlOutputs - compute the outputs by calling my_alg, which
*resides in another module, my_alg.c
*
/
static void mdlOutputs(SimStruct *S, int_T tid)
{
InputRealPtrsType uPtrs
real_T *y
*y = my_alg(*uPtrs[0]);

ssGetlnputPortRealSignalPtrs(S,0);
ssGetOutputPortRealSignal (S,0);

¥

/*

* mdlTerminate - called when the simulation is terminated.
*/

static void mdITerminate(SimStruct *S)

{

b

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include “simulink.c” /* MEX-file interface mechanism */

#else

#include “cg_sfun.h” /* Code generation registration function */
#endif

The S-function routine md10utputs contains a function call to my_alg, which is
the C function that contains the algorithm that the S-function performs. This
is the code for my_alg.c.

#include "tmwtypes.h"
real _T my_alg(real_T u)
{

return(u * 2.0);

}

The wrapper S-function (wrapsfcn) calls my_alg, which computesu * 2.0. To
build wrapsfcn.mex, use the following command.

mex wrapsfcn.c my_alg.c

8-13

8 Writing S-Functions for Real-Time Workshop

8-14

The TLC S-Function Wrapper

This section describes how to inline the call to my_alg in the MdIOutputs
section of the generated code. In the above example, the call to my_alg is
embedded in the mdl10utputs section as

*y = my_alg(*uPtrs[0]);

When creating a TLC S-function wrapper, the goal is to have the Real-Time
Workshop embed the same type of call in the generated code.

It is instructive to look at how the Real-Time Workshop executes S-functions
that are not inlined. A noninlined S-function is identified by the absence of the
file sfunction.tlc and the existence of sfunction.mex. When generating code
for a noninlined S-function, the Real-Time Workshop generates a call to
md10utputs through a function pointer that, in this example, then calls my_alg.

The wrapper example contains one S-function (wrapsfcn.mex). You must
compile and link an additional module, my_alg, with the generated code. To do
this, specify

set_param(“wrapper/S-Function”, "SFunctionModules®, "my_alg®)

The code generated when using grt.tlc as the system target file without
wrapsfcn.tlcis

<Generated code comments for wrapper model with noninlined wrapsfcn S-function>

#include <math._h>
#include <string.h>
#include “wrapper.h”
#include “wrapper.prm”

/* Start the model */
void MdIStart(void)
{
/* (no start code required) */

}

/* Compute block outputs */
void MdIOutputs(int_T tid)
{
/* Sin Block: <Root>/Sin */
rtB.Sin = rtP.Sin.Amplitude *
sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP._Sin.Phase);

Writing Wrapper S-Functions

Noninlined
S-functions create a
SimStruct object and
generate a call to the
S-function routine

Noninlined
S-functions require a

/* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */
{

SimStruct *rts = ssGetSFunction(rtS, 0);

sfcnOutputs(rts, tid);
}

/* Outport Block: <Root>/0ut */
rty.Out = rtB.S_Function;

}

/* Perform model update */
void MdlUpdate(int_T tid)
{

/* (no update code required) */

}

/* Terminate function */
void MdITerminate(void)

SimStruct object and sfcnTerminate(rts);

the call to the

{
/* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */
{
SimStruct *rts = ssGetSFunction(rtS, 0);
}
¥

#include “wrapper.reg”
/* [EOF] wrapper.c */

In addition to the overhead outlined above, the wrapper .reg generated file
contains the initialization of the SimStruct for the wrapper S-function block.
There is one child SimStruct for each S-function block in your model. This
overhead can be significantly reduced by creating a TLC wrapper for the
S-function.

How to Inline

The generated code makes the call to your S-function, wrapsfcn.c, in
MdIOutputs by using this code.

SimStruct *rts = ssGetSFunction(rtS, 0);
sfcnOutputs(rts, tid);

This call has a significant amount of computational overhead associated with
it. First, Simulink creates a SimStruct data structure for the S-function block.
Second, the Real-Time Workshop constructs a call through a function pointer
to execute Md10utputs, and then MdlOutputs calls my_alg. By inlining the call

8-15

8 Writing S-Functions for Real-Time Workshop

8-16

to your C algorithm (my_alg), you can eliminate both the SimStruct and the
extra function call, thereby improving the efficiency and reducing the size of
the generated code.

Inlining a wrapper S-function requires an sfunction.tlc file for the
S-function; this file must contain the function call to my_alg. This picture
shows the relationships between the algorithm, the wrapper S-function, and
the sfunction.tic file.

wrapper .c
my_alg.c
myalgQ ‘l\ngOutputs
<C code here> -
} y = my_algQ;
}
The wrapsfcn.tlc file tells the

Real-Time Workshop how to inline the
call to my_alg using this statement:

wrapsfcn.tilc

L—— = %<y> = my_alg(%<u>);

Figure 8-2: Inlining an Algorithm by Using a TLC File

To inline this call, you have to place your function call into an sfunction.tlc
file with the same name as the S-function (in this example, wrapsfcn.tlc).
This causes the Target Language Compiler to override the default method of
placing calls to your S-function in the generated code.

Writing Wrapper S-Functions

This line is placed in
wrapper .h.

This is the wrapsfcn.tlc file that inlines wrapsfcn.c.

%% File : wrapsfcn.tlc

%% Abstract:

%% Example inlined tlc file for S-function wrapsfcn.c
%%

%implements “wrapsfcn” “C”

%% Function: BlockTypeSetup
%% Abstract:
%% Create function prototype in model.h as:
%% “extern real_T my_alg(real_T u);”
%%
%function BlockTypeSetup(block, system) void
%openfile buffer
extern real_T my_alg(real_T u);
%closefile buffer
%<LibCacheFunctionPrototype(buffer)>
%endfunction %% BlockTypeSetup

%% Function: Outputs
%% Abstract:
%% y = my_algCu);
%%
%Ffunction Outputs(block, system) Output
/* %<Type> Block: %<Name> */
Y%assign u LibBlocklnputSignal (0, “*“, “*, 0)
Y%assign y LibBlockOutputSignal (0, “*, “*, 0)

This line is expanded %% PROVIDE THE CALLING STATEMENT FOR “algorithm”

and placed in
MdIOutputs within
wrapper.c.

‘{ %<y> = my_alg(%<u>);

%endfunction %% Outputs

The first section of this code directs the Real-Time Workshop to inline the
wrapsfcn S-function block and generate the code in C:

%implements "wrapsfcn'™ "C"

The next task is to tell the Real-Time Workshop that the routine, my_alg, needs
to be declared external in the generated wrapper .h file for any wrapsfcn
S-function blocks in the model. You only need to do this once for all wrapsfcn
S-function blocks, so use the BlockTypeSetup function. In this function, you tell
the Target Language Compiler to create a buffer and cache the my_alg as
extern in the wrapper.h generated header file.

The final step is the actual inlining of the call to the function my_alg. This is
done by the Outputs function. In this function, you load the input and output
and call place a direct call to my_alg. The call is embedded in wrapper.c.

8-17

23 Writing S-Functions for Real-Time Workshop

8-18

The Inlined Code

The code generated when you inline your wrapper S-function is similar to the
default generated code. The MdITerminate function no longer contains a call to
an empty function and the MdlOutputs function now directly calls my_alg.

void MdIOutputs(int_T tid)
{
/* Sin Block: <Root>/Sin */
rtB.Sin = rtP.Sin.Amplitude *
sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

/* S-Function Block: <Root>/S-Function */

Inlined call to the { rtB.S_Function = my_alg(rtB.Sin);

function my_alg.

/* Outport Block: <Root>/0ut */
rty.Out = rtB.S_Function;
3

In addition, wrapper . reg no longer creates a child SimStruct for the S-function

since the generated code is calling my_alg directly. This eliminates over 1K of
memory usage.

Fully Inlined S-Functions

Fully Inlined S-Functions

Continuing the example of the previous section, you could eliminate the call to
my_alg entirely by specifying the explicit code (i.e., 2.0*u) in wrapsfcn.tlc.
This is referred to as a fully inlined S-function. While this can improve
performance, if your C code is large this may be a lengthy task. In addition, you
now have to maintain your algorithm in two places, the C S-function itself and
the corresponding TLC file. However the performance gains may outweigh the
disadvantages. To inline the algorithm used in this example, in the Outputs
section of your wrapsfcn.tic file, instead of writing

%<y> = my_alg(%<u>);
use:

%<y> = 2.0 * Y%<u>;

This is the code produced in MdlOutputs.

void MdIOutputs(int_T tid)
{
/* Sin Block: <Root>/Sin */
rtB_Sin = rtP.Sin.Amplitude *
sin(rtP.Sin._Frequency * ssCetT(rtS) + rtP.Sin.Phase);

/* S-Function Block: <Root>/S-Function */

This is the explicit rtB.S_Function = 2.0 * rtB.Sin;
embedding of the

algorithm. /* Outport Block: <Root>/0ut */
rtY._Out = rtB.S_Function;

}

The Target Language Compiler has replaced the call to my_alg with the
algorithm itself.

Multiport S-Function Example

A more advanced multiport inlined S-function example exists in
matlabroot/simulink/src/sfun_multiport.c and
matlabroot/toolbox/simul ink/blocks/tlc_c/sfun_multiport.tlc. This
S-function demonstrates how to create a fully inlined TLC file for an S-function

8-19

8 Writing S-Functions for Real-Time Workshop

that contains multiple ports. You may find that looking at this example will aid
in the understanding of fully inlined TLC files.

8-20

Fully Inlined S-Function with the mdIRTW Routine

Fully Inlined S-Function with the mdIRTW Routine

You can make a more fully inlined S-function that uses the S-function mdIRTW
routine. The purpose of the mdIRTW routine is to provide the code generation
process with more information about how the S-function is to be inlined,
including:

< Renaming of tunable parameters in the generated code. This improves
readability of the code by replacing p1, p2, etc., by names of your choice.

= Creating a parameter record of a nontunable parameter for use with a TLC
file.

md IRTW does this by placing information into the model . rtw file. The mdIRTW
routine is described in the text file matlabroot/simulink/src/
sfuntmpl_doc.c.

As an example of how to use the mdIRTW function, this section discusses the
steps you must take to create a direct-index lookup S-function. Look-up tables
are a collection of ordered data points of a function. Typically, these tables use
some interpolation scheme to approximate values of the associated function
between known data points. To incorporate the example lookup table algorithm
in Simulink, the first step is to write an S-function that executes the algorithm
in mdl0utputs. To produce the most efficient C code, the next step is to create
acorresponding TLC file to eliminate computational overhead and improve the
performance of the lookup computations.

For your convenience, Simulink provides support for two general purpose
lookup 1-D and 2-D algorithms. You can use these algorithms as they are or
create a custom lookup table S-function to fit your requirements. This section
demonstrates how to create a 1-D lookup S-function (sfun_directlook.c) and
its corresponding inlined sfun_directlook.tlc file (see the Real-Time
Workshop User’'s Guide and the Target Language Compiler Reference Guide for
more details on the Target Language Compiler). This 1-D direct-index lookup
table example demonstrates the following concepts that you need to know to
create your own custom lookup tables:

= Error checking of S-function parameters

= Caching of information for the S-function that doesn’'t change during model
execution

8-21

8 Writing S-Functions for Real-Time Workshop

= How to use the mdIRTW routine to customize the Real-Time Workshop
generated code to produce the optimal code for a given set of block
parameters

< How to generate an inlined TLC file for an S-function in a combination of the
fully-inlined form and/or the wrapper form

S-Function RTWdata for Generating Code with
Real-Time Workshop

There is a property of blocks called RTwdata, which can be used by the Target
Language Compiler when inlining an S-function. RTWdata is a structure of
strings that you can attach to a block. It is saved with the model and placed in
the model . rtw file when generating code. For example, this set of MATLAB
commands,

mydata.fieldl = "information for fieldl";
mydata.field2 = "information for field2";
set_param(gcb, "RTWdata" ,mydata)
get_param(gcb, "RTWdata™)

produces this result:

ans =

fieldl: "information for fieldl”
field2: "information for field2*

Inside the model . rtw for the associated S-function block is this information.

Block {
Type "S-Function"
RTwdata {
fieldl "information for fieldl"
field2 "information for field2"
}

8-22

Fully Inlined S-Function with the mdIRTW Routine

The Direct-Index Lookup Table Algorithm

The 1-D lookup table block provided in the Simulink library uses interpolation
or extrapolation when computing outputs. This extra accuracy is not needed in
all situations. In this example, you will create a lookup table that directly
indexes the output vector (y-data vector) based on the current input (x-data)
point.

This direct 1-D lookup example computes an approximate solution, p(x), to a
partially known function f(x) at x=x0, given data point pairs (x,y) in the form of
an x data vector and a y data vector. For a given data pair (e.g., the i'th pair),
y_i =f(x_i). It is assumed that the x-data values are monotonically increasing.
If X0 is outside of the range of the x-data vector, then the first or last point will
be returned.

The parameters to the S-function are

XData, YData, XEvenlySpaced

XData and YData are double vectors of equal length representing the values of
the unknown function. XDataEvenlySpaced is a scalar, 0.0 for false and 1.0 for

true. If the XData vector is evenly spaced, then more efficient code is generated.

8-23

8 Writing S-Functions for Real-Time Workshop

The following graph illustrates how the parameters XData=[1:6],
YData=[1,2,7,4,5,9] are handled. For example, if the input (x-value) to the
S-function block is 3, then the output (y-value) is 7.

9 T T T T T T T T T

1 1 1 1 1 1 1 1 1 1
1 15 2 25 3 35 4 4.5 5 55 6

Figure 8-3: Typical Output from a Lookup Table Example

The Direct-Index Lookup Table Example

This section shows how to improve the lookup table by inlining a direct-index
S-function with a TLC file. Note that this direct-index lookup table S-function
doesn’'t require a TLC file for it to work with the Real-Time Workshop. Here the
example uses a TLC file for the direct-index lookup table S-function to reduce
the code size and increase efficiency of the generated code.

Implementation of the direct-index algorithm with inlined TLC file requires
the S-function main module, sfun_directlook.c (see page 8- 28) and a
corresponding lookup_index.c module (see page 8— 37). The lookup_index.c
module contains the GetDirectLookupIndex routine that is used to locate the

8-24

Fully Inlined S-Function with the mdIRTW Routine

index in the XData for the current x input value when the XData is unevenly
spaced. The GetDirectLookuplndex routine is called from both the S-function
and the generated code. Here the example uses the wrapper concept for sharing
C code between Simulink MEX-files and the generated code.

If the XData is evenly spaced, then both the S-function main module and the
generated code contain the lookup algorithm (not a call to the algorithm) to
compute the y-value of a given x-value because the algorithm is short. This
demonstrates the use of a fully inlined S-function for generating optimal code.

The inlined TLC file, which performs either a wrapper call or embeds the
optimal C code, is sfun_directlook.tlc (see page 8- 39).

Error Handling
In this example, the mdICheckParameters routine on page 8— 31 verifies that:

= The new parameter settings are correct.

=« XData and YData are vectors of the same length containing real finite
numbers.

= XDataEvenlySpaced is a scalar.

=« The XData vector is a monotonically increasing vector and evenly spaced if
needed.

Note that the mdl InitilizeSizes routine explicitly calls md1CheckParameters
after it has verified the number of parameters passed to the S-function are
correct. After Simulink calls mdlInitializeSizes, it will then call
mdICheckParameters whenever you change the parameters or there is a need
to re-evaluate them.

User Data Caching

The mdIStart routine on page 8- 34 illustrates how to cache information that
does not change during the simulation (or while the generated code is
executing). The example caches the value of the XDataEvenlySpaced parameter
in UserData, a field of the SimStruct. The

ssSetSFcnParamNotTunable(S, XDATAEVENLYSPACED_PIDX);

line in mdl InitializeSizes tells Simulink to disallow changes to the
XDataEvenlySpaced parameter. During execution, md10utputs accesses the
value of XDataEvenlySpaced from the UserData rather than calling the

8-25

8 Writing S-Functions for Real-Time Workshop

8-26

mxGetPr MATLAB API function. This results in a slight increase in
performance.

mdIRTW Usage

The Real-Time Workshop calls the mdIRTW routine while it (the Real-Time
Workshop) generates the model . rtw file. You can add information to the
model . rtw file about the mode in which your S-function block is operating to
produce optimal code for your Simulink model.

This example adds the following information to the model . rtw file:

= Parameters — these are items that can be modified during execution by
external mode. In this example, the XData and YData S-function parameters
can change during execution and are written using the function
ssWriteRTWParameters.

= Parameter settings — these are items that do not change during execution.
In this case the XDataEvenlySpaced S-function parameter cannot change
during execution (ssSetSFcnParamNotTunable was specified for it in
mdlInitializeSizes). This example writes it out as a parameter setting
(XSpacing) using the function ssWriteRTWParamSettings.

Example Model

Before examining the S-function and the inlined TLC file, consider the
generated code for the following model.

File Edit Yiew Sirmulation Format Tools |

Sine Wave S-Function
Parameters = [-1:1:4],[-10:100,1

S—Funct Out2

nctioni
Parameters = [-1 -5, 25,0, 1], [1:5,0

Fully Inlined S-Function with the mdIRTW Routine

When creating this model, you need to specify the following for each S-function
block.

set_param(“sfun_directlook_ex/S-Function’,”SFunctionModules”,”lookup_index”)
set_param(“sfun_directlook_ex/S-Functionl”,”SFunctionModules”,”lookup_index”)

This informs the Real-Time Workshop build process that the module
lookup_index.c is needed when creating the executable.

The generated code for the lookup table example model is

<Generated header for sfun_directlook _ex model>

#include <math.h>

#include <string.h>

#include “sfun_directlook_ex.h”
#include “sfun_directlook_ex.prm”

/* Start the model */
void MdIStart(void)

/* (no start code required) */

}

/* Compute block outputs */

void MdIOutputs(int_T tid)

{
/* local block i/0 variables */
real_T rtb_Sine_Wave;
real_T rtb_buffer2;

/* Sin Block: <Root>/Sine Wave */
rtb_Sine_Wave = rtP.Sine_Wave.Amplitude *
sin(rtP.Sine_Wave.Frequency * ssGetT(rtS) + rtP.Sine_Wave.Phase);

/* S-Function Block: <Root>/S-Function */
{
real_T *xData = &rtP.S_Function.XData[0];
real_T *yData = &rtP.S_Function.YData[0];
real_T spacing = xData[l] - xData[O0];

if (rtb_Sine_Wave <= xData[0]) {
rtb_buffer2 = yData[0];

This is the code that is } else if (rtb_Sine Wave >= yData[20]) {

inlined for the top rtb_buffer2 = yData[20];
S-function block in the } else {
int_T idx

(nt_T)((rtb_Sine_Wave - xData[0O]) / spacing);

sfun_directlook_ex. yData[idx]:

rtb_buffer2

}
}

/* Outport Block: <Root>/0utl */

8-27

8 Writing S-Functions for Real-Time Workshop

rtyY.Outl = rtb_buffer2;

/* S-Function Block: <Root>/S-Functionl */
{

real _T *xData = &rtP.S_Functionl._XData[O];

real _T *yData = &rtP.S_Functionl.YData[O];
.. . int_T idx;
This is the code that is -
inlined for the bottom idx = GetDirectLookuplndex(xData, 5, rtb_Sine_Wave);
S-function block in the rtb_buffer2 = yData[idx];
sfun_directlook_ex
model. /* Outport Block: <Root>/0ut2 */

rtY.Out2 = rtb_buffer2;
}

/* Perform model update */
void MdlUpdate(int_T tid)
{

/* (no update code required) */

}

/* Terminate function */
void MdITerminate(void)

{
/* (no terminate code required) */
}

#include “sfun_directlook_ex.reg”

/* [EOF] sfun_directlook_ex.c */

matlabroot/simulink/src/sfun_directlook.c

/*

* File - sfun_directlook.c

* Abstract:

*

* Direct 1-D lookup. Here we are trying to compute an approximate

* solution, p(x) to an unknown function f(x) at x=x0, given data point
* pairs (X,y) in the form of a x data vector and a y data vector. For a
* given data pair (say the i’th pair), we have y i1 = f(x_i). It is

* assumed that the x data values are monotonically increasing. If the
* X0 is outside of the range of the x data vector, then the Ffirst or

* last point will be returned.

*

* This function returns the “nearest” y0 point for a given x0. No

* interpolation is performed.

*

* The S-function parameters are:

* XData - double vector

* YData - double vector

8-28

Fully Inlined S-Function with the mdIRTW Routine

XDataEvenlySpacing - double scalar 0 (false) or 1 (true)
The third parameter cannot be changed during simulation.

To build:
mex sfun_directlook.c lookup_index.c

¥ Ok % %

*

* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
* $Revision: 1.3 $
*/

#define S_FUNCTION_NAME sfun_directlook
#define S_FUNCTION_LEVEL 2

#include <math.h>
#include “simstruc.h”
#include <float.h>

[*=========%*
* Defines *
———======/

#define XVECT_PIDX 0
#define YVECT_PIDX 1
#define XDATAEVENLYSPACED_PIDX 2
#define NUM_PARAMS 3

#define XVECT(S) ssGetSFcnParam(S,XVECT_PIDX)
#define YVECT(S) ssGetSFcnParam(S, YVECT_PIDX)
#define XDATAEVENLYSPACED(S) ssGetSFcnParam(S,XDATAEVENLYSPACED_PIDX)

/*=============c=%*
* misc defines *
——=—===========%/

#if 'defined(TRUE)
#define TRUE 1
#endif

#if l'defined(FALSE)
#define FALSE O

#endif

[*===========%*
* typedef’s *
4

typedef struct SFcnCache_tag {
boolean_T evenlySpaced;
} SFcnCache;

/> *
* Prototype define for the function in separate file lookup_index.c *
* */

8-29

8 Writing S-Functions for Real-Time Workshop

extern int_T GetDirectLookuplndex(const real_T *x, int_T xlen, real_T u);

/* *
* Local Utility Functions *
* */

/* Function: IsRealVect

* Abstract:

* Verify that the mxArray is a real vector.
*/

static boolean_T IsRealVect(const mxArray *m)

{

iIf (mxIsNumeric(m) &&
mxIsDouble(m) &&
ImxIsLogical(m) &&
ImxIsComplex(m) &&
ImxIsSparse(m) &&
ImxIsEmpty(m) &&
mxGetNumberOfDimensions(m) == 2 &&
(mxGetM(m) == 1 || mxGetN(m) == 1))

{
real_T *data = mxGetPr(m);
int_T numEl = mxGetNumberOfElements(m);
int_T 1i;
for (i = 0; i < numEl; i++) {
if (ImxIsFinite(data[il)) {
return(FALSE) ;
}
3
return(TRUE) ;
} else {
return(FALSE) ;
}

¥
/* end IsRealVect */

/* *
* S-function routines *
* */

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */
#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)
/* Function: mdICheckParameters

* Abstract:
* This routine will be called after mdlInitializeSizes, whenever
* parameters change or get re-evaluated. The purpose of this routine is

8-30

Fully Inlined S-Function with the mdIRTW Routine

* to verify that the new parameter settings are correct.
*
* You should add a call to this routine from mdlInitalizeSizes
* to check the parameters. After setting your sizes elements, you should:
* i (ssGetSFcnParamsCount(S) == ssGetNumSFcnParams(S)) {
* mdICheckParameters(S);
* }
*/
static void mdICheckParameters(SimStruct *S)
{

iT (MIsRealVect(XVECT(S))) {
ssSetErrorStatus(S,”1st, X-vector parameter must be a real finite
“ vector™);

return;

}

iT (MIsRealVect(YVECT(S))) {
ssSetErrorStatus(S,”2nd, Y-vector parameter must be a real finite “

“vector”);
return;
}
/*
* Verify that the dimensions of X and Y are the same.
*/

IT (mxGetNumberOfElements(XVECT(S)) != mxGetNumberOfElements(YVECT(S)) ||

mxGetNumberOfElements(XVECT(S)) == 1) {
ssSetErrorStatus(S,”X and Y-vectors must be of the same dimension **
“and have at least two elements™);

return;
}
/*
* Verify we have a valid XDataEvenlySpaced parameter.
*
/

iT (YmxIsNumeric(XDATAEVENLYSPACED(S)) 11
I (mx1sDouble (XDATAEVENLYSPACED(S)) ||
mxIsLogical (XDATAEVENLYSPACED(S))) 11
mx 1sComp lex (XDATAEVENLYSPACED(S)) |1
mxGetNumberOfElements (XDATAEVENLYSPACED(S)) != 1) {

ssSetErrorStatus(S,”3rd, X-evenly-spaced parameter must be scalar “

“(0.0=false, 1.0=true)”);

return;
¥
/*
* Verify x-data is correctly spaced.
*/
{
int. T i;

boolean_T spacingEqual;
real _T *xData = mxGetPr(XVECT(S));

8-31

8 Writing S-Functions for Real-Time Workshop

int T numEl = mxGetNumberOfElements(XVECT(S));
/*

* spacingEqual is TRUE if user XDataEvenlySpaced
*

/

spacingEqual = (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0);

if (spacingEqual) { /* XData is “evenly-spaced’ */
boolean_T badSpacing = FALSE;
real_T spacing = xData[1] - xData[O];
real_T space;

if (spacing <= 0.0) {
badSpacing = TRUE;

} else {
real_T eps = DBL_EPSILON;

for (i = 2; i < numEl; i++) {
space = xData[i] - xData[i-1];
if (space <= 0.0 ||
fabs(space-spacing) >= 128.0*eps*spacing){
badSpacing = TRUE;
break;

}

if (badSpacing) {
ssSetErrorStatus(S,”’X-vector must be an evenly spaced *
“strictly monotonically increasing vector™);
return;

} else { /* XData is “unevenly-spaced” */
for (i = 1; 1 < numEl; i++) {
if (xData[i] <= xData[i-1]) {
ssSetErrorStatus(S,”’X-vector must be a strictly “
“monotonically increasing vector”);
return;

}

¥
#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to determine the S-function
* block’s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

8-32

Fully Inlined S-Function with the mdIRTW Routine

{
ssSetNumSFcnParams(S, NUM_PARAMS); /* Number of expected parameters */
/*
* Check parameters passed in, providing the correct number was specified
* in the S-function dialog box. ITf an incorrect number of parameters
* was specified, Simulink will detect the error since ssGetNumSFcnParams
* and ssGetSFcnParamsCount will differ.
* ssGetNumSFcnParams - This sets the number of parameters your
* S-function expects.
* ssGetSFcnParamsCount - This is the number of parameters entered by
*

the user in the Simulink S-function dialog box.

#if defined(MATLAB_MEX_FILE)
iIT (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdICheckParameters(S);
iIf (ssCGetErrorStatus(S) != NULL) {

return;
}
} else {
return; /* Parameter mismatch will be reported by Simulink */
3
#endif

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

IT (IssSetNumlnputPorts(S, 1)) return;
ssSetlnputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetlnputPortTestPoint(S, 0, FALSE);
ssSetlInputPortOverWritable(S, 0, TRUE);

ifT (IssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetOutputPortTestPoint(S, 0, FALSE);
ssSetNumSampleTimes(S, 1);
ssSetSFcnParamNotTunable (S, XDATAEVENLYSPACED_PIDX);
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

} /7* mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes

* Abstract:

* The lookup inherits its sample time from the driving block.
*

/

static void mdlInitializeSampleTimes(SimStruct *S)

8-33

8 Writing S-Functions for Real-Time Workshop

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);
3} /7* end mdlInitializeSampleTimes */

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
/* Function: mdIStart

* Abstract:

* Here we cache the state (true/false) of the XDATAEVENLYSPACED parameter.
* We do this primarily to illustrate how to “cache” parameter values (or
* information that is computed from parameter values) that do not change
* for the duration of the simulation (or in the generated code). In this
* case, rather than repeated calls to mxGetPr, we save the state once.

* This results in a slight increase in performance.

*/

static void mdlStart(SimStruct *S)

{

SFcnCache *cache = malloc(sizeof(SFcnCache));

if (cache == NULL) {
ssSetErrorStatus(S,”memory allocation error™);
return;

}

ssSetUserData(S, cache);

I (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0){
cache->evenlySpaced = TRUE;

Yelse{
cache->evenlySpaced = FALSE;

}

3
#endif /* MDL_START */

/* Function: mdlOutputs

* Abstract:
* In this function, we compute the outputs of our S-function
* block. Generally outputs are placed in the output vector, ssGetY(S).
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
SFcnCache *cache = ssGetUserData(S);
real _T *xData = mxGetPr(XVECT(S));
real _T *yData = mxGetPr(YVECT(S));
InputRealPtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);
real _T *y = ssGetOutputPortRealSignal (S,0);
int_T ny = ssGetOutputPortWidth(S,0);

8-34

Fully Inlined S-Function with the mdIRTW Routine

xLen = mxGetNumberOfElements(XVECT(S));
i;

* When the XData is evenly spaced, we use the direct lookup algorithm
* to calculate the lookup
*/
if (cache->evenlySpaced) {
real_T spacing = xData[l] - xData[O];
for (i = 0; i <ny; i++) {
real_T u = *uPtrs[i];

if (u <= xDbata[0]) {
y[i] = yData[0];
} else if (u >= xData[xLen-1]) {
y[i] = yData[xLen-1];
} else {
Iint_T 1dx = (int_T)((u - xData[0])/spacing);
y[i] = yData[idx];
}

}
} else {
/*
* When the XData is unevenly spaced, we use a bisection search to
* locate the lookup index.
*/
for (i = 0; 1 < ny; i++) {
INt_T idx = GetDirectLookuplndex(xData,xLen,*uPtrs[i]);
y[i] = yData[idx];

}

} /7* end mdlOutputs */

/* Function: mdITerminate
* Abstract:

* Free the cache that was allocated in mdIStart.
*/

static void mdlTerminate(SimStruct *S)

{

SFcnCache *cache = ssGetUserData(S);
if (cache '= NULL) {
free(cache);

} /7* end mdITerminate */

#define MDL_RTW /* Change to #undef to remove function */
#if defined(MDL_RTW) && (defined(MATLAB_MEX_FILE) || defined(NRT))
/* Function: mdIRTW

8-35

8 Writing S-Functions for Real-Time Workshop

8-36

* Abstract:
* This function is called when the Real-Time Workshop is generating the
* model.rtw file. In this routine, you can call the following functions
* which add fields to the model.rtw file.
*
* Important! Since this S-function has this mdIRTW routine, it must have
* a correSponding .tlc file to work with the Real-Time Workshop. You will find
* the sfun_directlook.tlc in the same directory as sfun_directlook.dll.
*/
static void mdIRTW(SimStruct *S)
{
/*
* Write out the [X,Y] data as parameters, i.e., these values can be
* changed during execution.
*/
{
real_T *xData = mxGetPr(XVECT(S));
int_T xLen = mxGetNumberOfElements(XVECT(S));
real_T *yData = mxGetPr(YVECT(S));
int_T ylen = mxGetNumberOfElements(YVECT(S));
if (IssWriteRTWParameters(s,2,
SSWRITE_VALUE_VECT,”XData”,””,xData,xLen,
SSWRITE_VALUE_VECT,”YData”,””,yData,yLen)) {
return; /* An error occurred which will be reported by Simulink */
}
¥
/*
* Write out the spacing setting as a param setting, i.e., this cannot be
* changed during execution.
*/
{
boolean_T even = (mxGetScalar (XDATAEVENLYSPACED(S)) != 0.0);
if (IssWriteRTWParamSettings(S, 1,
SSWRITE_VALUE_QSTR,
“XSpacing”,
even ? “EvenlySpaced” : “UnEvenlySpaced”)){
return;/* An error occurred which will be reported by Simulink */
}
}
¥

#endif /* MDL_RTW */

/* *
* Required S-function trailer *
* */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include “simulink.c” /* MEX-file interface mechanism */
#else
#include “cg_sfun.h” /* Code generation registration function */

Fully Inlined S-Function with the mdIRTW Routine

#endif

/* [EOF] sfun_directlook.c */

matlabroot/simulink/src/lookup_index.c
/* File = lookup_index.c
Abstract:

Contains a routine used by the S-function sfun_directlookup.c to
compute the index in a vector for a given data value.

Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.
$Revision: 1.3 $

o X X % ok F

*/
#include “tmwtypes.h”

/*
* Function: GetDirectLookuplndex
* Abstract:
* Using a bisection search to locate the lookup index when the x-vector
* isn’t evenly spaced.
*
* Inputs:
* *X : Pointer to table, x[0]-x[xlen-1]
* xlen : Number of values in xtable
* u : input value to look up
*
* Output:
* idx : the index into the table such that:
* if u is negative
* x[idx] <= u < x[idx+1]
* else
* x[idx] < u <= x[idx+1]
*/
int_T GetDirectLookuplndex(const real_T *x, int_T xlen, real_T u)
{
Int_T idx = 0;
Iint_T bottom = O;
Iint_T top = xlen-1;
/*
* Deal with the extreme cases first:
*
* 1] u <= x[bottom] then idx = bottom
* 11] u >= x[top] then idx = top-1
*
*/
ifT (u <= x[bottom]) {
return(bottom);

} else if (u >= x[top]) {

8-37

8 Writing S-Functions for Real-Time Workshop

8-38

return(top);
3

/>

* We have: x[bottom] < u < x[top], onward
* with search for the appropriate index ...

*/
for (G3) {

idx = (bottom + top)/2;

if (u < x[idx]) {
top = idx;

} else if (u > x[idx+1]) {
bottom = idx + 1;

} else {
/*

* We have: x[idx] <= u <= x[idx+1], only need
* to do two more checks and we have the answer.

*/
if (u<0) {
/*
* We want
* ifu ==
* then
* else
*/
return((u
T else {
/*
* We want
* ifu ==
* then
* else
*/
return((u

be
}

right continuity, i.e.,
x[idx+1]

x[idx+1] <= u < x[idx+2]
x[idx] <= u < x[idx+1]

== x[idx+1]) ? (idx+1l) : idx);
left continuity, i.e.,

x[idx]

X[idx-1] < u <= x[idx]

X[idx 1 < u <= x[idx+1]

== x[idx]) ? (idx-1) : idx);

} /7* end GetDirectLookuplndex */

/* [EOF] lookup_index.c */

Fully Inlined S-Function with the mdIRTW Routine

matlabroot/toolbox/simulink/blocks/tlc_c/sfun_directlook.tlc

%% File : sfun_directlook.tlc

%% Abstract:

%% Level-2 S-function sfun_directlook block target file.

%% It is using direct lookup algorithm without interpolation.

%%
%% Copyright (c) 1994-1998 by The MathWorks, Inc. All Rights Reserved.
%% $Revision: 1.3 $

wimplements “sfun_directlook” “C”

%% Function: BlockTypeSetup
%% Abstract:

%% Place include and function prototype in the model’s header file.
%%

%function BlockTypeSetup(block, system) void

%% Add this external function’s prototype in the header of the generated
%% File.

%%

%openfile buffer

extern Int_T GetDirectLookuplndex(const real T *x, int_T xlen, real_T u);
%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%endfunction

%% Function: mdlOutputs
%% Abstract:

%% Direct 1-D lookup table S-function example.

%% Here we are trying to compute an approximate solution, p(x) to an

%% unknown function f(x) at x=x0, given data point pairs (X,y) in the

%% form of a x data vector and a y data vector. For a given data pair

%% (say the i’th pair), we have y_i = f(x_i). It is assumed that the x
%% data values are monotonically increasing. |If the first or last x is
%% outside of the range of the x data vector, then the first or last

%% point will be returned.

%%

%% This function returns the “nearest” y0 point for a given xO.

%% No interpolation is performed.

%%

%% The S-function parameters are:

%% XData

%% YData

%% XEvenlySpaced: 0 or 1

%% The third parameter cannot be changed during execution and is

%% written to the model.rtw File in XSpacing filed of the SFcnParamSettings
%% record as “EvenlySpaced” or “UnEvenlySpaced”. The first two parameters
%% can change during execution and show up in the parameter vector.

%%

8-39

8 Writing S-Functions for Real-Time Workshop

%Ffunction Outputs(block, system) Output
/* %<Type> Block: %<Name> */

{
%assign rollvars = [“U”, “Y”]
%%
%% Load XData and YData as local variables
%%
real_T *xData = %<LibBlockParameterAddr(XData, “*“, “*, 0)>;
real_T *yData = %<LibBlockParameterAddr(YData, “*, “*, 0)>;
%assign xDatalLen = SIZE(XData.Value, 1)
%%

%% When the XData is evenly spaced, we use the direct lookup algorithm
%% to locate the lookup index.
%%
%if SFcnParamSettings.XSpacing == “EvenlySpaced”
real_T spacing = xData[1] - xData[O];

%roll 1dx = RollRegions, Icv = RollThreshold, block, “Roller”, rollvars
%assign u = LibBlocklnputSignal(0, “*“, lcv, idx)
%assign y = LibBlockOutputSignal(0, “*“, lcv, idx)
if (%<u> <= xData[0]) {

%<y> = yData[O0];
} else if (%<u> >= yData[%<xDatalLen-1>]) {
%<y> = yData[%<xDatalLen-1>];
} else {
Int_T idx = (int_T)((%<u> - xData[0]) / spacing);
%<y> = yData[idx];
}
%%
%% Generate an empty line if we are not rolling,
%% so that it looks nice in the generated code.
%%
%if lcv ==

Y%endif
%endrol 1
%else
%% When the XData is unevenly spaced, we use a bisection search to
%% locate the lookup index.

int T idx;

%assign xDataAddr = LibBlockParameterAddr(XData, “*“, “*, 0)

%roll 1dx = RollRegions, Icv = RollThreshold, block, “Roller”, rollvars
%assign u = LibBlocklnputSignal(0, “*“, lcv, idx)
idx = GetDirectLookuplndex(xData, %<xDatalLen>, %<u>);

cece
’

%assign y = LibBlockOutputSignal (0, Icv, idx)
%<y> = yData[idx];

%%

%% Generate an empty line if we are not rolling,
%% so that it looks nice in the generated code.
%%

%if lcv ==

8-40

Fully Inlined S-Function with the mdIRTW Routine

Y%endif
%endroll
%endif

}

%endfunction

%% EOF: sfun_directlook.tlc

8-41

8 Writing S-Functions for Real-Time Workshop

8-42

S-Function
Callback Methods

Callback Method Reference. 92
mdICheckParameters 93
mdlDerivatives . . T B
deGetTlmeOfNextVarHlt . N4
mdlInitializeConditions 97
mdlInitializeSampleTimes 99
mdlInitializeSizes913
mdIlOutputs T B 4
deProcessParameters Co T« R R
mdISetDefauItPortCompIexS|gnaIs T © Eai |
mdISetDefaultPortDataTypes922
mdlSetDefaultPortDimensioninfo9-23
mdISetlnputPortComplexSignal9-24
mdISetlnputPortDataType925
mdISetlnputPortDimensioninfo.9-26
mdISetlnputPortFrameData9-28
mdISetlnputPortSampleTime9-29
mdISetlnputPortWidth931
mdISetOutputPortComplexSignal932
mdISetOutputPortDataType933
mdISetOutputPortDimensioninfo9-34
mdISetOutputPortSampleTime9-36
mdISetOutputPortWidth937
mdlSetWorkWidths938
mdIStart939
mdlTerminate940
mdlUpdate94

mdlZeroCrossings942

9 S-Function Callback Methods

Callback Method Reference

Every user-written S-function must implement a set of methods, called
callback methods or simply callbacks, that Simulink invokes when simulating
a model that contains the S-function. Some callback methods are optional.
Simulink invokes an optional callback only if the S-function defines the
callback. This section describes the purpose and syntax of all callback methods
that an S-function can implement. In each case, the documentation for a
callback method indicates whether it is required or optional.

9-2

mdICheckParameters

Purpose
Syntax

Arguments

Description

Example

Check the validity of an S-function’s parameters.
void mdICheckParameters(SimStruct *S)

S
Simstruct representing an S-function block.

Verifies new parameter settings whenever parameters change or are
re-evaluated during a simulation.

When a simulation is running, changes to S-function parameters can occur at
any time during the simulation loop; that is, either at the start of a simulation
step or during a simulation step. When the change occurs during a simulation
step, Simulink calls this routine twice to handle the parameter change. The
first call during the simulation step is used to verify that the parameters are
correct. After verifying the new parameters, the simulation continues using the
original parameter values until the next simulation step at which time the new
parameter values will be used. Redundant calls are needed to maintain
simulation consistency.

Note You cannot access the work, state, input, output, and other vectors in
this routine. Use this routine only to validate the parameters. Additional
processing of the parameters should be done in mdIProcessParameters.

This example checks the first S-function parameter to verify that it is a real
nonnegative scalar.

#define PARAM1(S) ssGetSFcnParam(S,0)
#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */
#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)
static void mdICheckParameters(SimStruct *S)
{
it (mxGetNumberOfElements(PARAM1(S)) = 1) {
ssSetErrorStatus(S,”’Parameter to S-function must be a scalar™);
return;
} else if (nxGetPr(PARAM1(S))[O0] < 0) {
ssSetErrorStatus(S, “Parameter to S-function must be non-negative”);
return;
}

b
#endif /* MDL_CHECK_PARAMETERS */

9-3

mdICheckParameters

In addition to the above routine, you must add a call to this routine from

mdl InitializSizes to check parameters during initialization since
mdICheckParameters is only called while the simulation is running. To do this,
in mdl InitializeSizes, after setting the number of parameters you expect in
your S-function by using ssSetNumSFcnParams, use this code:

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 1); /* Number of expected parameters */
#if defined(MATLAB_MEX_FILE)
if(ssGetNumSfcnParams(s) == ssGetSFcnParamsCount(s) {
mdICheckParameters(S);
if(ssGetErrorStates(S) !'= NULL) return;
} else {

return; /* Simulink will report a mismatch error. */

¥
#endif

}

Note The macro ssGetSfcnParamsCount returns the actual number of
parameters entered in the dialog box.

See matlabroot/simulink/src/sfun_errhdl.c for an example.

Languages Ada, C

See Also mdlIProcessParameters, ssGetSfcnParamsCount

mdlIDerivatives

Purpose
Syntax

Arguments

Description

Example
Languages

See Also

Compute the S-function’s derivatives.
void mdIDerivatives(SimStruct *S)

S
Simstruct representing an S-function block.

Simulink invokes this optional method at each time step to compute the
derivatives of the S-function’s continuous states. This method should store the
derivatives in the S-function’s state derivatives vector. This method can use
ssGetdX to get a pointer to the derivatives vector.

Each time the mdIDerivatives routine is called, it must explicitly set the value
of all derivatives. The derivative vector does not maintain the values from the
last call to this routine. The memory allocated to the derivative vector changes
during execution.

For an example, see matlabroot/simulink/src/csfunc.c.

Ada, C, M

ssGetdx

9-5

MmdIlGetTimeOfNextVarHit

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

9-6

Initialize the state vectors of this S-function.
void mdlGetTimeOfNextVarHit(SimStruct *S)

S
Simstruct representing an S-function block.

Simulink invokes this optional method at every major integration step to get
the time of the next sample time hit. This method should set the time of next
hit, using ssSetTNext. The time of the next hit must be greater than the
current simulation time as returned by ssGetT. The S-function must
implement this method if it operates at a discrete, variable-step sample time.

Note The time of next hit can be a function of the input signal(s).

static void mdIGetTimeOfNextVarHit(SimStruct *S)
{
time_T offset = getOffset();
time_T timeOfNextHit = ssGetT(S) + offset;
ssSetTNext(S, timeOfNextHit);

}

mdlInitializeSampleTimes, ssSetTNext, ssGetT

mdlinitializeConditions

Purpose
Syntax

Arguments

Description

Example

Initialize the state vectors of this S-function.
void mdlInitializeConditions(SimStruct *S)

S
Simstruct representing an S-function block.

Simulink invokes this optional method at the beginning of a simulation. It
should initialize the continuous and discrete states, if any, of this S-function
block. Use ssGetContStates and/or ssGetDiscStates to get the states. This
method can also perform any other initialization activities that this S-function
requires.

If this S-function resides in an enabled subsystem configured to reset states,
Simulink also calls this method when the enabled subsystem restarts
execution. This method can use ssIsFirstinitCond macro to determine if it is
being called for the first time.

This example is an S-function with both continuous and discrete states; it
initializes both sets of states to 1.0:

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove function */
#if defined(MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)
{
int i;
real_T *xcont
int. T nCStates
real_T *xdisc
int. T nDStates

= ssGetContStates(S);
= ssGetNumContStates(S);
= ssGetRealDiscStates(S);
= ssGetNumDiscStates(S);
for (i = 0; i < nCStates; i++) {

*xcont++ = 1.0;

}

for (i = 0; 1 < nDStates; i++) {
*xdisc++ = 1.0;

}

}
#endif /* MDL_INITIALIZE_CONDITIONS */

For another example which initializes only the continuous states, see
matlabroot/simulink/src/resetint.c

9-7

mdlinitializeConditions

Languages C

See Also mdIStart, sslsFirstlnitCond, ssGetContStates, ssGetDiscStates

9-8

mdlinitializeSampleTimes

Purpose
Syntax

Arguments

Description

Specify the sample rates at which this S-function operates.
void mdInitializeSampleTimes(SimStruct *S)

S
Simstruct representing an S-function block.

This method should specify the sample time and offset time for each sample
rate at which this S-function operates via the following paired macros

ssSetSampleTime(S, sampleTimelndex, sample_time)
ssSetOffsetTime(S, offsetTimelndex, offset_time)

where sampleTimelndex runs from 0 to one less than the number of sample
times specified in mdl InitializeSizes via ssSetNumSampleTimes.

If the S-function operates at one or more sample rates, this method can specify
any of the following sample time and offset values for a given sample time:

< [CONTINUOUS_SAMPLE_TIME, 0.0]

= [CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
= [discrete_sample_period, offset]
= [VARIABLE_SAMPLE_TIME, 0.0]

The upper case values are macros defined in simstruc.h.

If the S-function operates at one rate, this method can alternatively set the
sample time to one of the following sample/offset time pairs.

= [INHERITED_SAMPLE_TIME, 0.0]
< [INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

If the number of sample times is 0, Simulink assumes that the S-function
inherits its sample time from the block to which it is connected, i.e., that the
sample time is

[INHERITED_SAMPLE_TIME, 0.0]

This method can therefore return without doing anything.

9-9

mdlinitializeSampleTimes

9-10

Use the following guidelines when specifying sample times.

= A continuous function that changes during minor integration steps should
set the sample time to

[CONTINUOUS_SAMPLE_TIME, 0.0]

= A continuous function that does not change during minor integration steps
should set the sample time to

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

= A discrete function that changes at a specified rate should set the sample
time to

[discrete_sample_period, offset]

where

discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

= A discrete function that changes at a variable rate should set the sample
time to

[VARIABLE_SAMPLE_TIME, 0.0]

Simulink invokes md1GetTimeOfNextVarHit function to get the time of the
next sample hit for the variable step discrete task.

Note that VARIABLE_SAMPLE_TIME requires a variable step solver.

= To operate correctly in a triggered subsystem or a periodic system, a discrete
S-function should:
- Specify a single sample time set to
[INHERITED_SAMPLE_TIME, 0.0]

- Set the SS_DISALLOW_CONSTANT_SAMPLE_TIME simulation option in
mdlInitializeSizes

mdlinitializeSampleTimes

- Verify that it was assigned a discrete or triggered sample time in
mdlSetWorkWidths:
it (ssGetSampleTime(S, 0) == CONTINUOUS_SAMPLE_TIME) {
ssSetErrorStatus(sS,
“This block cannot be assigned a continuous sample time”);
}
After propagating sample times throughout the block diagram, Simulink
assigns the sample time
[INHERITED_SAMPLE_TIME, INHERITED_SAMPLE_TIME]

to discrete blocks residing in triggered subsystems.

If this function has no intrinsic sample time, it should set its sample time to
inherited according to the following guidelines:

= A function that changes as its input changes, even during minor integration
steps, should set its sample time to
[INHERITED_SAMPLE_TIME, 0.0]
A function that changes as its input changes, but doesn't change during

minor integration steps (i.e., held during minor steps) should set its sample
time to

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

The S-function should use the ss1sSampleHit or sslsContinuousTask macros
to check for a sample hit during execution (in md10utputs or mdlUpdate). For
example, if the block’s first sample time is continuous, the function can use the
following code-fragment to check for a sample hit.

if (sslIsContinuousTask(S,tid)) {
}

Note The function would get incorrect results if it used
sslisSampleHit(S,0,tid).

9-11

mdlinitializeSampleTimes

If the function wanted to determine if the third (discrete) task has a hit, it could
use the following code-fragment.

if (sslIsSampleHit(S,2,tid) {
3

Languages C

See Also mdlSetlnputPortSampleTime, mdlSetOutputPortSampleTime

9-12

mdlInitializeSizes

Purpose

Syntax

Arguments

Description

Specify the number of inputs, outputs, states, parameters, and other
characteristics of the S-function.

void mdlInitializeSizes(SimStruct *S)

S
Simstruct representing an S-function block.

This is the first of the S-function’s callback methods that Simulink calls. This
method should perform the following tasks:

=« Specify the number of parameters that this S-function supports, using
ssSetNumSFcnParams.

Use ssSetSFcnParamNotTunable(S,paramldx) when a parameter cannot
change during simulation, where paramldx starts at 0. When a parameter
has been specified as “not tunable,” Simulink will issue an error during
simulation (or the Real-Time Workshop external mode) if an attempt is made
to change the parameter.

= Specify the number of states that this function has, using
ssSetNumContStates and ssSetNumDiscStates.

=« Configure the block’s input ports.
This entails the following tasks.
- Specify the number of input ports that this S-function has, using
ssSetNumlnputPorts
- Specify the dimensions of the input ports.

See“Dynamically Sized Block Features” on page 9-14 for more
information.

- Specify for each input port whether it has direct feedthrough, using
ssSetlInputPortDirectFeedThrough

A port has direct feedthrough if the input is used in either the md10utputs
or md1GetTimeOfNextVarHit functions.The direct feedthrough flag for
each input port can be set to either 1=yes or 0O=no. It should be set to 1 if
the input, u, is used in the md10utput or md1GetTimeOfNextVarHit routine.
Setting the direct feedthrough flag to 0 tells Simulink that u will not be
used in either of these S-function routines. Violating this will lead to
unpredictable results.

9-13

mdlinitializeSizes

9-14

= Configure the block’s output ports.
This entails the following tasks.
- Specify the number of output ports that the block has, using
ssSetNumOutputPorts
- Specify the dimensions of the output ports
See mdISetOutputPortDimensioninfo and
ssSetOutputPortDimensionlinfo for more information.
If your S-function outputs are discrete (e.g., can only take on the values, 1
and 2), then specify SS_OPTION_DISCRETE_VALUED_OUTPUT.
= Set the number of sample times (i.e., sample rates) at which the block
operates.
There are two ways of specifying sample times:
- Port-based sample times
- Block-based sample times
See “Sample Times” on page 7-16 for a complete discussion of sample time
issues.

For multi-rate S-functions, the suggested approach to setting sample times
is via the port based sample times method. When you create a multirate
S-function, care needs to be taking to verify that when slower tasks are
preempted that your S-function correctly manages data as to avoid race
conditions. When port based sample times are specified, the block cannot
inherit a constant sample time at any port.

= Set the size of the block’s work vectors, using ssSetNumRWork,
ssSetNumlWork, ssSetNumPWork, ssSetNumModes, ssSetNumNonsampledZCs
= Set the simulation options that this block implements, using ssSetOptions.

All options have the form SS_OPTION_<name>. See ssSetOptions for
information on each option. The options should be bitwise or'd together as in

ssSetOptions(S, (SS_OPTION_namel | SS_OPTION_name2))

Dynamically Sized Block Features

You can set the parameters NumContStates, NumDiscStates, Numlnputs,
NumOutputs, NumRWork, NumlWork, NumPWork, NumModes, and NumNonsampledZCs
to a fixed nonnegative integer or tell Simulink to size them dynamically:

mdlInitializeSizes

< DYNAMICALLY_SI1ZED — Sets lengths of states, work vectors, and so on to
values inherited from the driving block. It sets widths to the actual input
width, according to the scalar expansion rules unless you use
md1SetWorkWidths to set the widths.

= 0 or positive number — Sets lengths (or widths) to the specified value. The
default is 0.

Languages Ada, C, M

Example

static void mdlInitializeSizes(SimStruct *S)

{

Iint_T nlnputPorts = 1; /* number of input ports */
Iint_T nOutputPorts = 1; /* number of output ports */
int_T needslnput = 1; /* direct feed through */
Iint_T inputPortldx = O;
int_T outputPortldx = 0;

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */
iIT (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/*

* 1T the the number of expected input parameters is not

* equal to the number of parameters entered in the

* dialog box, return. Simulink will generate an error

* indicating that there is aparameter mismatch.

*/

return;

Yelse {
mdICheckParameters(S);

if (ssGetErrorStatus(s) != NULL)
return;

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

/*
* Configure the input ports. First set the number of input
* ports.
*/
If (IssSetNumlnputPorts(S, nlnputPorts)) return;
/*
* Set input port dimensions for each input port index

9-15

mdlinitializeSizes

* starting at O.
*/
if(IssSetlnputPortDimensionInfo(S, inputPortldx,
DYNAMIC_DIMENSION)) return;
/*
* Set direct feedthrough flag (1=yes, 0=no).
*
/
ssSetlnputPortDirectFeedThrough(S, inputPortldx, needslnput);

/*

* Configure the output ports. First set the number of
* output ports.

*/

if (IssSetNumOutputPorts(S, nOutputPorts)) return;

/*

* Set output port dimensions for each output port index

* starting at O.

*/

if(IssSetOutputPortDimensionInfo(S,outputPortldx,
DYNAMIC_DIMENSION)) return;

/*
* Set the number of sample times. */
ssSetNumSampleTimes(S, 1);

/*

* Set size of the work vectors.

*/

ssSetNumRWork(S, 0); /* real vector */
ssSetNumlWork(S, 0); /* integer vector */
ssSetNumPWork(S, 0); /* pointer vector */
ssSetNumModes(S, 0); /* mode vector */
ssSetNumNonsampledZCs(S, 0); /* zero crossings */

ssSetOptions(S, 0);

} /7* end mdlInitializeSizes */

9-16

mdIlOutputs

Purpose
Syntax

Arguments

Description

Languages

See Also

Compute the signals that this block emits.
void mdlOutputs(SimStruct *S, Int_T tid)
S

Simstruct representing an S-function block.
tid

Task id

Simulink invokes this required method at each simulation time step. The
method should compute the S-function’s outputs at the current time step and
store the results in the S-function’s output signal arrays.

The tid (task ID) argument specifies the task running when the md10utputs
routine is invoked. You can use this argument in the md10utports routine of a
multirate S-Function block to encapsulate task-specific blocks of code (see
“Multirate S-Function Blocks” on page 7-21).

For an example of an md10utputs routine that works with multiple input and
output ports, see matlabroot/simulink/src/sfun_multiport.c.

A, CM

ssGetOutputPortSignal, ssGetOutputPortRealSignals,
ssGetOutputPortComplexSignal

9-17

mdIProcessParameters

Purpose
Syntax

Arguments

Description

Example

9-18

Process the S-function’s parameters.
void mdIProcessParameters(SimStruct *S)

S
Simstruct representing an S-function block.

This is an optional routine that Simulink calls after md1CheckParameters
changes and verifies parameters. The processing is done at the top of the
simulation loop when it is safe to process the changed parameters. This routine
can only be used in a C MEX S-function.

The purpose of this routine is to process newly changed parameters. An
example is to cache parameter changes in work vectors. Simulink does not call
this routine when it is used with the Real-Time Workshop. Therefore, if you use
this routine in an S-function designed for use with the Real-Time Workshop,
you must write your S-function so that it doesn’t rely on this routine. To do this,
you must inline your S-function by using the Target Language Compiler. See
“The Target Language Compiler Reference Guide” for information on inlining
S-functions.

The synopsis is

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */
#if defined(MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdIProcessParameters(SimStruct *S)

{

}
#endif /* MDL_PROCESS_PARAMETERS */

This example processes a string parameter that mdlCheckParameters has
verified to be of the form =+++* (where there could be any number of '+' or '-'
characters).

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */
#if defined(MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)
static void mdIProcessParameters(SimStruct *S)
{
int. T 1i;
char_T *plusMinusStr;
int_T nlInputPorts = ssGetNumlnputPorts(S);
int_T *iwork = ssGetlWork(S);
it ((plusMinusStr=(char_T*)malloc(nlnputPorts+1)) == NULL) {
ssSetErrorStatus(S, "Memory allocation error in mdlStart'™);
return;

mdIProcessParameters

Languages

See Also

}
IT (nxGetString(SIGNS_PARAM(S) ,plusMinusStr,nInputPorts+1l) 1= 0) {
free(plusMinusStr);
ssSetErrorStatus(S, "mxGetString error in mdiStart™);
return;
3
for (i = 0; i < nlnputPorts; i++) {
iwork[i] = plusMinusStr[i] == "+"? 1: -1;
¥
free(plusMinusStr);

by
#endif /* MDL_PROCESS_PARAMETERS */

mdIProcessParameters is called from md1Start to load the signs string prior to

the start of the simulation loop.

#define MDL_START
#i1f defined(MDL_START)
static void mdIStart(SimStruct *S)

{

mdlProcessParameters(S);

}
#endif /* MDL_START */

For more details on this example, see matlabroot/simulink/src/
sfun_multiport.c.

Ada, C, M

mdICheckParameters

9-19

mdIRTW

Purpose Generate code generation data.
Syntax void mdIRTW(SimStruct *S)
Arguments S

Simstruct representing an S-function block.

Description This function is called when the Real-Time Workshop is generating the
model.rtw file. In this method, you can call the following functions which add
fields to the model .rtw file:

= ssWriteRTWParameters

= ssWriteRTWParamSettings
= ssWriteRTWWorkVect

= ssWriteRTWStr

= ssWriteRTWStrParam

= ssWriteRTWScalarParam
= ssWriteRTWStrVectParam
= ssWriteRTWVectParam

= ssWriteRTW2dMatParam

= ssWriteRTWMxVectParam
= ssWriteRTWMx2dMatParam

Languages C

See Also ssSetlnputPortFrameData, ssSetOutputPortFrameData, ssSetErrorStatus

9-20

mdIlSetDefaultPortComplexSignals

Purpose

Syntax

Arguments

Description

Languages

See Also

Set the numeric type (real, complex, or inherited) of ports whose numeric type
cannot be determined from block connectivity.

void mdlSetDefaultPortComplexSignals(SimStruct *S)

S
Simstruct representing an S-function block.

Simulink invokes this method if the block has ports whose numeric type cannot
be determined from connectivity. (This usually happens when the block is
unconnected or is part of a feedback loop.) This method must set the data type
of all ports whose data type is not set.

If the block does not implement this method and Simulink cannot determine
the data types of any of its ports, Simulink sets the data types of all the ports
to double. If the block does not implement this method and Simulink cannot
determine the data types of some, but not all, of its ports, Simulink sets the

unknown ports to the data type of the port whose data type has the largest size.

C

ssSetOutputPortDataType, ssSetlnputPortDataType

9-21

mdIlSetDefaultPortDataTypes

Purpose

Syntax

Arguments

Description

Languages

See Also

9-22

Set the data type of ports whose data type cannot be determined from block
connectivity.

void mdlSetDefaultPortDataTypes(SimStruct *S)

S
Simstruct representing an S-function block.

Simulink invokes this method if the block has ports whose numeric type cannot
be determined from connectivity. (This usually happens when the block is
unconnected or is part of a feedback loop.) This method must set the numeric
type of all ports whose numeric type is not set.

If the block does not implement this method and at least one port is known to
be complex, Simulink sets the unknown ports to COMPLEX_YES; otherwise, it
sets the unknown ports to COMPLEX_NO.

C

ssSetOutputPortComplexSignal, ssSetlnputPortComplexSignal

mdlSetDefaultPortDimensioninfo

Purpose

Syntax

Arguments

Description

Example

Languages

See Also

Set the default dimensions of the signals accepted or emitted by an S-function’s
ports.

void mdlSetDefaultPortDimensionInfo(SimStruct *S, Iint_T port)

S
Simstruct representing an S-function block.

Simulink calls this method during signal dimension propagation when a model
does not supply enough information to determine the dimensionality of signals
that can enter or leave the block represented by S. This method should set the
dimensions of any input and output ports that are dynamically sized to default
values. If S does not implement this method, Simulink set the dimensions of
dynamically sized ports for which dimension information is unavailable to
scalar, i.e., 1-D signals containing one element.

See matlabroot/simulink/src/sfun_matadd.c for an example of how to use
this function.

C

ssSetOutputPortDimensionlnfo, ssSetOutputPortDimensionlnfo,
ssSetErrorStatus

9-23

mdISetinputPortComplexSignal

Purpose

Syntax

Arguments

Description

Languages

See Also

9-24

Set the numeric type (real, complex, or inherited) of the signals accepted by an
input port.

void mdlSetlnputPortDataType(SimStruct *S, int_T port, CSignal_T
csig)

S
Simstruct representing an S-function block.

port
Index of a port

csig
Numeric type of signal

Simulink calls this routine to set the input port signal type. The S-function
must check if the specified signal type is a valid type for the specified port. If it
is valid, the s-function must set the signal type of the specified input port.
Otherwise, it must report an error using ssSetErrorStatus. The s-function
can also set the signal type of other input and output ports with unknown
signal types. Simulink reports an error if the S-function changes the signal
type of a port whose signal type is known.

If the S-function does not implement this routine, Simulink assumes that the
S-function accepts a real or complex signal and sets the input port signal type
to the specified value.

C

ssSetlnputPortComplexSignal, ssSetErrorStatus

mdISetinputPortDataType

Purpose
Syntax

Arguments

Description

Languages

See Also

Set the data type of the signals accepted by an input port.
void mdISetlnputPortDataType (SimStruct *S, int_T port, DTypeld id)
S

Simstruct representing an S-function block.

port

Index of a port
id

Data type id

Simulink calls this routine to set the data type of port. The S-function must
check if the specified data type is a valid data type for the specified port. If it is
a valid data type, it must set the data type of the input port. Otherwise, it must
report an error using ssSetErrorStatus.

The S-function can also set the data type of other input and output ports if they
are unknown. Simulink reports an error if the S-function changes the data type
of a port whose data type has been set.

If the block does not implement this routine, Simulink assumes that the block
accepts any data type and sets the input port data type to the specified value.

C

ssSetlnputPortDataType, ssSetErrorStatus

9-25

mdISetinputPortDimensioninfo

Purpose

Syntax

Arguments

Description

Languages

9-26

Set the dimensions of the signals accepted by an input port.

void mdlSetlnputPortDimensionlnfo(SimStruct *S, int_T port,
const DimsInfo_T *dimsInfo)

S
Simstruct representing an S-function block.

port
Index of a port

dimsinfo
Structure that specifies the signal dimensions supported by port

See ssSetlnputPortDimensionlinfo for a description of this structure.

Simulink calls this method during dimension propagation with candidate
dimensions, dimsInfo, for port. If the proposed dimensions are acceptable, this
method should go ahead and set the actual port dimensions, using
ssSetlnputPortDimensioninfo. If they are unacceptable, this method should
generate an error via ssSetErrorStatus.

Note This method can set the dimensions of any other input or output port
whose dimensions derive from the dimensions of port.

By default, Simulink calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. If it cannot
completely determine the dimensionality from port connectivity, it invokes
mdISetDefaultPortDimensionlInfo. If an S-function can fully determine the
port dimensionality from partial information, the function should set the
option, SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL, in
mdlInitializeSizes, using ssSetOptions. If this option is set, Simulink
invokes mdISetInputPortDimensionlinfo even if it can only partially
determine the dimensionality of the input port from connectivity.

C

mdISetinputPortDimensioninfo

Example See matlabroot/simulink/src/sfun_matadd.c for an example of how to use
this function.

See Also ssSetlInputPortDimensionlinfo, ssSetErrorStatus

9-27

mdISetinputPortFrameData

Purpose

Syntax

Arguments

Description

Languages

See Also

9-28

Set frame data entering an input port.

void mdlSetlnputPortFrameData(SimStruct *S, Int_T port,
Frame_T frameData)

S
Simstruct representing an S-function block.

port
Index of a port

frameData
frame data

This method is called with the candidate frame setting (FRAME_YES, or
FRAME_NO) for an input port. If the proposed setting is acceptable, the method
should go ahead and set the actual frame data setting using
ssSetlnputPortFrameData. If the setting is unacceptable an error should
generated via ssSetErrorStatus. Note that any other dynamic frame input or
output ports whose frame data setting are implicitly defined by virtue of
knowing the frame data setting of the given port can also have their frame data
settings set via calls to ssSetInputPortFrameData and
ssSetOutputPortFrameData.

C

ssSetlnputPortFrameData, ssSetOutputPortFrameData, ssSetErrorStatus

mdISetinputPortSampleTime

Purpose

Syntax

Arguments

Description

Set the sample time of an input port that inherits its sample time from the port
to which it is connected.

void mdlSetInputPortSampleTime(SimStruct *S, int_T port,
real_T sampleTime, real _T offsetTime)

S
Simstruct representing an S-function block.

port
Index of a port

sampleTime
Inherited sample time for port

offsetTime
Inherited offset time for port

Simulink invokes this method with the sample time that port inherits from the
port to which it is connected. If the inherited sample time is acceptable, this
method should set the sample time of port to the inherited time, using
ssSetlnputPortSampleTime. If the sample time is unacceptable, this method
should generate an error via ssSetErrorStatus. Note that any other inherited
input or output ports whose sample times are implicitly defined by virtue of
knowing the sample time of the given port can also have their sample times set
via calls to ssSetlInputPortSampleTime or ssSetOutputPortSampleTime.

When inherited port based sample times are specified, we are guaranteed that
the sample time will be one of the following:.

Sample Time Offset Time
Continuous 0.0 0.0
Discrete period offset

where 0.0 < period < infand 0.0 <= offset < period. Constant, triggered,
and variable step sample times are not be propagated to S-functions with port-
based sample times.

9-29

mdISetinputPortSampleTime

Languages

See Also

9-30

Generally md1SetlInputPortSampleTime is called once with the input port
sample time. However, there can be cases where this function will be called
more than once. This happens when the simulation engine is converting
continuous sample times to continuous but fixed in minor steps sample times.
When this occurs, the original values of the sample times specified in
mdlInitializeSizes will be restored before calling this method again.

The final sample time specified at the port may be different from (but
equivalent to) the sample time specified by this method. This occurs when:

= The model uses a fixed step solver and the port has a continuous but fixed in
minor step sample time. In this case, Simulink converts the sample time to
the fundamental sample time for the model.

<« Simulink adjusts the sample time to be as numerically sound as possible. For
example, Simulink converts [0.2499999999999, 0] to [0.25, 0].

The S-function can examine the final sample times in
mdlInitializeSampleTimes.

C

ssSetlnputPortSampleTime, ssSetOutputPortSampleTimes,
mdlInitializeSampleTimes

mdISetinputPortWidth

Purpose
Syntax

Arguments

Description

Languages

See Also

Set the width of an input port that accepts 1-D (vector) signals.
void mdlSetlnputPortWidth (SimStruct *S, iInt_T port, int_T width)

S
Simstruct representing an S-function block.

port
Index of a port

width
Width of signal

This method is called with the candidate width for a dynamically sized port. If
the proposed width is acceptable, the method should go ahead and set the
actual port width using ssSetlnputPortWidth. If the size is unacceptable an
error should generated via ssSetErrorStatus. Note that any other
dynamically sized input or output ports whose widths are implicitly defined by
virtue of knowing the width of the given port can also have their widths set via
calls to ssSetlInputPortWidth or ssSetOutputPortWidth.

C

ssSetlnputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

9-31

mdISetOutputPortComplexSignal

Purpose
Syntax

Arguments

Description

Languages

See Also

9-32

Set the numeric type (real, complex, or inherited) of the signals accepted by an
output port.

void mdlSetOutputPortDataType(SimStruct *S, int_T port, CSignal_T
csig)

S
Simstruct representing an S-function block.

port
Index of a port

csig
Numeric type of signal

Simulink calls this routine to set the output port signal type. The S-function
must check if the specified signal type is a valid type for the specified port. If it
is valid, the s-function must set the signal type of the specified output port.
Otherwise, it must report an error using ssSetErrorStatus. The s-function
can also set the signal type of other input and output ports with unknown
signal types. Simulink reports an error if the S-function changes the signal
type of a port whose signal type is known.

If the S-function does not implement this routine, Simulink assumes that the
S-function accepts a real or complex signal and sets the output port signal type
to the specified value.

C

ssSetOutputPortComplexSignal, ssSetErrorStatus

mdISetOutputPortDataType

Purpose
Syntax

Arguments

Description

Languages

See Also

Set the data type of the signals emitted by an output port.
void mdlSetOutputPortDataType (SimStruct *S, Int_T port, DTypeld id)
S

Simstruct representing an S-function block.

port

Index of an output port
id

Data type id

Simulink calls this routine to set the data type of port. The S-function must
check if the specified data type is a valid data type for the specified port. If it is
a valid data type, it must set the data type of port. Otherwise, it must report
an error using ssSetErrorStatus.

The S-function can also set the data type of other input and output ports if their
data types have not been set. Simulink reports an error if the S-function
changes the data type of a port whose data type has been set.

If the block does not implement this method, Simulink assumes that the block
accepts any data type and sets the input port data type to the specified value.

C

ssSetOutputPortDataType, ssSetErrorStatus

9-33

mMmdISetOutputPortDimensioninfo

Purpose

Syntax

Arguments

Description

Languages

Example

9-34

Set the dimensions of the signals accepted by an output port.

void mdISetOutputPortDimensionlnfo(SimStruct *S, Int_T port, const
DimsInfo_T *dimsInfo)

S
Simstruct representing an S-function block or a Simulink model.

port
Index of a port

dimsinfo
Structure that specifies the signal dimensions supported by port

See ssSetlnputPortDimensionlinfo for a description of this structure.

Simulink calls this method with candidate dimensions, dimsiInfo, for port. If
the proposed dimensions are acceptable, this method should go ahead and set
the actual port dimensions, using ssSetOutputPortDimensionlInfo. If they are
unacceptable, this method should generate an error via ssSetErrorStatus.

Note This method can set the dimensions of any other input or output port
whose dimensions derive from the dimensions of port.

By default, Simulink calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. If it cannot
completely determine the dimensionality from port connectivity, it invokes
mdlSetDefaul tPortDimensionlInfo. If an S-function can fully determine the
port dimensionality from partial information, the function should set the
option, SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL, in
mdlInitializeSizes, using ssSetOptions. If this option is set, Simulink
invokes mdISetOutputPortDimensionlinfo even if it can only partially
determine the dimensionality of the input port from connectivity.

C

See matlabroot/simulink/src/sfun_matadd.c for an example of how to use
this function.

mdISetOutputPortDimensioninfo

See Also ssSetOutputPortDimensionlinfo, ssSetErrorStatus

9-35

mdISetOutputPortSampleTime

Purpose

Syntax

Arguments

Description

Languages

See Also

9-36

Set the sample time of an output port that inherits its sample time from the
port to which it is connected.

void mdlSetOutputPortSampleTime(SimStruct *S, int_T port,
real_T sampleTime, real T offsetTime)

S
Simstruct representing an S-function block.

port
Index of a port

sampleTime
Inherited sample time for port

offsetTime
Inherited offset time for port

Simulink calls this method with the sample time that port inherits from the
port to which it is connected. If the inherited sample time is acceptable, this
method should set the sample time of port to the inherited sample time, using
ssSetOutputPortSampleTime. If the inherited sample time is unacceptable,
this method should generate an error generated via ssSetErrorStatus. Note
that this method can set the sample time of any other input or output port
whose sample time derives from the sample time of port, using
ssSetlnputPortSampleTime or ssSetOutputPortSampleTime.

Normally, sample times are propagated forwards, however if sources feeding
this block have an inherited sample time, Simulink may choose to back

propagate known sample times to this block. When back propagating sample
times, we call this method in succession for all inherited output port signals.

See mdISetInputPortSampleTime for more information about when this
method is called.

C

ssSetOutputPortSampleTime, ssSetErrorStatus,
ssSetlnputPortSampleTime, ssSetOutputPortSampleTime,
mdlSetInputPortSampleTime

mdISetOutputPortWidth

Purpose
Syntax

Arguments

Description

Languages

See Also

Set the width of an output port that outputs 1-D (vector) signals.
void mdlSetOutputPortWidth(SimStruct *S, iInt_T port, int_T width)

S
Simstruct representing an S-function block.

port
Index of a port

width
Width of signal

This method is called with the candidate width for a dynamically sized port. If
the proposed width is acceptable, the method should go ahead and set the
actual port width using ssSetOutputPortWidth. If the size is unacceptable an
error should generated via ssSetErrorStatus. Note that any other
dynamically sized input or output ports whose widths are implicitly defined by
virtue of knowing the width of the given port can also have their widths set via
calls to ssSetlInputPortWidth or ssSetOutputPortWidth.

C

ssSetlnputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

9-37

mdIlSetWorkWidths

Purpose

Syntax

Arguments

Description

Languages

See Also

9-38

Specify the sizes of the work vectors and create the runtime parameters
required by this S-function.

void mdlSetWorkWidths(SimStruct *S)

S
Simstruct representing an S-function block.

Simulink calls this optional method to enable this S-function to set the sizes of
state and work vectors that it needs to store global data and to create runtime
parameters (see “Run-Time Parameters” on page 7-6). Simulink invokes this
method after it has determined the input port width, output port width, and
sample times of the S-function. This allows the S-function to size the state and
work vectors based on the number and sizes of inputs and outputs and/or the
number of sample times. This method specify the state and work vector sizes
via the macros ssNumContStates, ssSetNumDiscStates, ssSetNumRWork,
ssSetNumlIWork, ssSetNumPWork, ssSetNumModes, and
ssSetNumNonsampledZCs.

The S-function needs to implement this method only if it does not know the
sizes of all the work vectors it requires when Simulink invokes the function’s
mdl InitializeSizes method. If this S-function implements
mdISetWorkWidths, it should initialize the sizes of any work vectors that it
needs to DYNAMICALLY_SIZED in mdlIntializeSizes, even for those whose
exact size it knows at that point. The S-function should then specify the actual
size in md1SetWorkWidths.

Ada, C

mdlIntializeSizes

mdlStart

Purpose
Syntax

Arguments

Description

Languages

See Also

Initialize the state vectors of this S-function.
void mdIStart(SimStruct *S)

S
Simstruct representing an S-function block.

Simulink invokes this optional method at the beginning of a simulation. It
should initialize the continuous and discrete states, if any, of this S-function
block. Use ssGetContStates and/or ssGetDiscStates to get the states. This

method can also perform any other initialization activities that this S-function
requires.

Ada, C

mdlInitializeConditions, ssGetContStates, ssGetDiscStates

9-39

mdlTerminate

Purpose
Syntax

Arguments

Description

Languages

Example

9-40

Perform any actions required at termination of the simulation.
void mdlTerminate(SimStruct *S)

S
Simstruct representing an S-function block.

This method should perform any actions, such as freeing memory, that must be
performed at the end of simulation or when an S-function block is destroyed
(e.g., when it is deleted from a model). The option
SS_OPTION_CALL_TERMINATE_ON_EXIT (see ssSetOptions) determines
whether Simulink invokes this method. If this option is not set, Simulink
invokes mdlTerminate at the end of simulation only if the md1Start method of
at least one block in the model has executed during simulation. If this option is
set, Simulink always invokes the mdITerminate method at the end of a
simulation run and whenever it destroys a block.

Ada, C, M

Suppose your S-function allocates blocks of memory in mdlStart and saves
pointers to the blocks in a PWork vector. The following code fragment would free
this memory.

{

int i;
for (i = 0; i<ssGetNumPWork(S); i++) {
if (ssGetPWorkvValue(S,i) '= NULL) {
free(ssGetPWorkValue(S,i));
}
}
}

mdlUpdate

Purpose
Syntax

Arguments

Description

Example
Languages

See Also

Update a block’s states.
void mdlUpdate(SimStruct *S, int_T tid)

S
Simstruct representing an S-function block.

tid
Task ID

Simulink invokes this optional method at each major simulation time step. The
method should compute the S-function’s states at the current time step and

store the states in the S-function’s state vector. The method can also perform
any other tasks that the S-function needs to perform at each major time step.

Use this code if your S-function has one or more discrete states or does not have
direct feedthrough.

The reason for this is that most S-functions that do not have discrete states but
do have direct feedthrough do not have update functions. Therefore, Simulink
is able to eliminate the need for the extra call in these circumstances.

If your S-function needs to have its mdlUpdate routine called and it does not
satisfy either of the above two conditions, specify that it has a discrete state
using the ssSetNumDiscStates macro in the mdl InitializeSizes function.

The tid (task ID) argument specifies the task running when the md10utputs
routine is invoked. You can use this argument in the mdlUpdate routine of a
multirate S-Function block to encapsulate task-specific blocks of code (see
“Multirate S-Function Blocks” on page 7-21).

For an example, see matlabroot/simulink/src/dsfunc.c

Ada, C, M

mdIDerivatives, ssGetContStates, ssGetDiscStates

9-41

mdIlZeroCrossings

Purpose
Syntax

Arguments

Description

Example
Languages

See Also

9-42

Update zero-crossing vector.
void mdlZeroCrossings(SimStruct *S)

S
Simstruct representing an S-function block.

An S-function needs to provide this optional method only if it does zero-crossing
detection. This method should update the S-function’s zero-crossing vector,
using ssGetNonsampleZCs.

You can use the optional md1ZeroCrossings routine, when your S-function has
registered the CONTINUOUS_SAMPLE_TIME and has nonsampled zero crossings
(ssGetNumNonsampledZCs(S) > 0). The mdlZeroCrossings routine is used to
provide Simulink with signals that are to be tracked for zero crossings. These
are typically:

= Continuous signals entering the S-function

= Internally generated signals that cross zero when a discontinuity would
normally occur in md10utputs

Thus, the zero crossing signals are used to locate the discontinuities and end
the current time step at the point of the zero crossing. To provide Simulink with
zero crossing signal(s), md1ZeroCrossings updates the ssGetNonsamplezZCs(S)
vector.

See matlabroot/simulink/src/sfun_zc.c.

C

mdl InitializeSizes, ssGetNonsampleZCs

SimStruct Functions

Introduction .
Language Support
The SimStruct .

SimStruct Macros and Functions Listed by Usage .

Miscellaneous .

Error Handling and Status
1/0 Port

Dialog Box Parameters
Run-Time Parameters
Sample Time

State and Work Vector
Simulation Information .
Function Call

Data Type

Real-Time Workshop

Macro Reference .

. 10-2
. 10-2
. 10-2

. 10-3
. 10-3
. 10-3
. 10-4
. 10-6
. 10-7
. 10-8

. 10-9
10-12
10-12
10-13
10-13

10-15

10 SimStruct Functions

10-2

Introduction

Simulink provides a set of functions for accessing the fields of an S-function’s
simulation data structure (SimStruct). S-function callback methods use these
functions to store and retrieve information about an S-function.

This reference describes the syntax and usage of each SimStruct function. The
descriptions appear alphabetically by name to facilitate location of a particular
macro. This section also provides listings of functions by usage to speed
location of macros for specific purposes, such as implementing data type
support.

Language Support

Some SimStruct functions are available only in some of the languages
supported by Simulink.The reference page for each SimStruct function lists the
languages in which it is available. If the SimStruct function is available in C,
the reference page gives its C syntax. Otherwise, it gives its syntax in the
language in which it is available.

Note Most SimStruct functions available in C are implemented as C macros.

The SimStruct

The file matlabroot/simulink/include/simstruc.h is a C language header
file that defines the Simulink data structure and the SimStruct access macros.
It encapsulates all the data relating to the model or S-function, including block
parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model. Each
S-function in the model has its own SimStruct associated with it. The
organization of these SimStructs is much like a directory tree. The SimStruct
associated with the model is the root SimStruct. The SimStructs associated
with the S-functions are the child SimStructs.

SimStruct Macros and Functions Listed by Usage

SimStruct Macros and Functions Listed by Usage

This section groups SimStruct macros by usage.

Miscellaneous

Macro Description

ssGetMode IName Get the name of an S-function block or
model containing the S-function.

ssGetParentSS Get the parent of an S-function.

ssGetPath Get the path of an S-function or the model
containing the S-function.

ssGetRootSS Return the root (model) SimStruct.

ssSetOptions Set various simulation options.

ssSetPlacementGroup Specify the execution order of a sink or

source S-function.

Error Handling and Status

Macros

Description

ssGetSimMode

ssGetSolverName

sslsVariableStepSolver

ssPrintf

Determine context in which an S-function is
being invoked: normal simulation,
external-mode simulation, model editor, etc.

Get name of the solver being used for the
simulation.

Determine if the current solver is a variable
step solver.

Print a variable-content msg.

10-3

10 SimStruct Functions

10-4

Macros Description
ssSetErrorStatus Report errors.
ssWarning Display a warning message.
170 Port
Macro Description

ssGetlInputPortBufferDstPort

ssGetlInputPortConnected

ssGetlInputPortDirectFeedThrough

ssGetlInputPortOffsetTime

ssGetlInputPortRealSignalPtrs

ssGetlInputPortSampleTime

ssGetlInputPortSignalPtrs

ssGetlInputPortWidth

ssGetNumlnputPorts

ssGetNumOutputPorts

Determine the output port that is
overwriting an input port’s memory
buffer.

Determine if an S-function block port
is connected to a nonvirtual block.

Determine if an input port has direct
feedthrough.

Determine the offset time of an input
port.

Access the signal elements connected
to an input port.

Determine the sample time of an
input port.

Get pointers to input signal elements
of type other than double.

Determine the width of an input port.

Determine how many input ports a
block has.

Can be used in any routine (except
mdlInitializeSizes) to determine
how many output ports you have set.

SimStruct Macros and Functions Listed by Usage

Macro

Description

ssGetOutputPortOffsetTime

ssGetOutputPortRealSignal

ssGetOutputPortSample

Time

ssGetOutputPortWidth

ssSetlInputPortDirectFeedThrough

ssSetlInputPortOffsetTime

ssSetlinputPortOver

Writable

ssSetlInputPortReusable

ssSetlInputPortSampleTime
ssSetlInputPortWidth

ssSetNumlnputPorts

ssSetNumOutputPorts

ssSetOutputPortComplexSignal

ssSetOutputPortDataType

Determine the offset time of an
output port.

Access the elements of a signal
connected to an output port.

Determine the sample time of an
output port.

Determine the width of an output
port.

Specify that an input port is a direct
feedthrough port.

Specify the sample time offset for an
input port.

Specify whether an input port is
overwritable by an output port.

Specify whether an input port’s
memory buffer can be reused by other
signals in the model.

Set the sample time of an input port.
Set width of an input port.

Set the number of input ports on an
S-function block.

Specify the number of output ports on
an S-function block.

Specify the numeric type (real or
complex) of this port.

Specify the data type of an output
port.

10-5

10 SimStruct Functions

10-6

Macro

Description

ssSetOutputPortOffsetTime

ssSetOutputPortReusable

ssSetOutputPortSample

Time

ssSetOutputPortWidth

ssSetOutputPortDimensioninfo

ssSetOutputPortMatrixDimensions

ssSetOutputPortVectorDimension

Specify the sample time offset value
of an output port.

Specify whether an output port’s
memory can be reused.

Specify the sample time of an output
port.

Specify width of a 1-D (vector) output
port.

Specify the dimensions of an output
port.

Specify the dimensions of a 2-D
(matrix) signal.

Specify the dimension of a 1-2
(vector) signal.

Dialog Box Parameters

These macros enable an S-function to access and set the tunability of
parameters that a user specifies in the S-function’s dialog box.

Macro

Description

ssGetDTypeldFromMxArray

Returns the Simulink data type of a dialog

parameter.

ssGetNumSFcnParams

Get the number of parameters that an

S-function expects.

ssGetSFcnParam

Get a parameter entered by a user in the

S-function block dialog box.

ssSetNumSFcnParams

Set the number of parameters that an

S-function expects.

SimStruct Macros and Functions Listed by Usage

Macro

Description

ssGetSfcnParamCount

ssSetSFcnParamNotTunable

ssSetSFcnParamTunable

Get the actual number of parameters
specified by the user.

Obsolete.

Specify the tunability of a dialog box
parameter.

Run-Time Parameters

These macros allow you to create, update, and access run-time parameters
corresponding to a block’s dialog parameters.

Macro

Description

ssGetNumRunT imeParams

ssGetRunTimeParaminfo

ssRegAl lTunableParamsAsR

unTimeParams

ssSetNumRunTimeParams

ssSetRunTimeParaminfo

ssUpdateAl ITunableParams
AsRunTimeParams

ssUpdateRunTimeParamData

ssUpdateRunTimeParamlnfo

Gets the number of run-time parameters
created by this S-function.

Gets attributes of a specified run-time
parameter.

Register all tunable dialog parameters as
run-time parameters.

Specify the number of run-time parameters
to be created by this S-function.

Specify attributes of a specified run-time
parameter.

Update all run-time parameters
corresponding to tunable dialog
parameters.

Update the value of a specified run-time
parameter.

Update the attributes of a specified
run-time from the attributes of the
corresponding dialog parameters.

10-7

10 SimStruct Functions

Sample Time

Macro Description

ssGetTNext Get the time of the next sample hitin a
discrete S-function with a variable sample
time.

ssGetNumSampleTimes Get the number of sample times an

S-function has.

sslIsContinuousTask Determine if a specified rate is the
continuous rate.

sslsSampleHit Determine the sample rate at which an
S-function is operating.

sslsSpecialSampleHit Determine if the current sample time hits
two specified rates.

ssSetNumSampleTimes Set the number of sample times an
S-function has.

ssSetOffsetTime Specify the offset of a sample time.

ssSetSampleTime Specify a sample time for an S-function.

ssSetTNext Specify time of next sample hit in an
S-function.

10-8

SimStruct Macros and Functions Listed by Usage

State and Work Vector

Macro Description
ssGetContStates Get an S-function’s continuous states.
ssGetDiscStates Get an S-function’s discrete states.

ssGetDWorkComplexSignal

ssGetDWorkDataType

ssGetDWorkName

ssGetDWorkUsedAsDState

ssGetDWorkWidth

ssGetdX

ssGetliWork

ssGetModeVector

ssGetNonsampledZCs

ssGetNumContStates

ssGetNumDiscStates

ssGetNumDWork

Determine whether the elements of a data
type work vector are real or complex
numbers.

Get the data type of a data type work
vector.

Get the name of a data type work vector.

Determine whether a data type work vector
is used as a discrete state vector.

Get the size of a data type work vector.

Get the derivatives of the continuous states
of an S-function.

Get an S-function’s integer-valued (int_T)
work vector.

Get an S-function’s mode work vector.

Get an S-function’s zero-crossing signals
vector.

Determine the number of continuous states
that an S-function has.

Determine the number of discrete states
that an S-function has.

Get the number of data type work vectors
used by a block

10-9

10 SimStruct Functions

10-10

Macro Description

ssGetNumlWork Get the size of an S-function’s integer work
vector.

ssGetNumModes Determine the size of an S-function’s mode

ssGetNumNonsampledZCs

ssGetNumPWork

ssGetNumRWork

ssGetPWork

ssGetRealDiscStates

ssGetRWork

ssSetDWorkComplexSignal

ssSetDWorkDataType

ssSetDWorkName

ssSetDWorkUsedAsDState

ssSetDWorkWidth

ssSetNumContStates

vector.

Determine the number of nonsampled zero
crossings that an S-function detects.

Determine the size of an S-function’s
pointer work vector.

Determine the size of an S-function’s
real-valued (real _T) work vector.

Get an S-function’s pointer (void *) work
vector.

Get the real (real_T) values of an
S-function’s discrete state vector.

Get an S-function’s real-valued (real_T)
work vector.

Specify whether the elements of a data type
work vector are real or complex.

Specify the data type of a data type work
vector.

Specify the name of a data type work
vector.

Specify that a data type work vector is used
as a discrete state vector.

Specify the width of a data type work
vector.

Specify the number of continuous states
that an S-function has.

SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetNumDiscStates Specify the number of discrete states a that
an S-function has.

ssSetNumDWork Specify the number of data type work
vectors used by a block.

ssSetNumlWork Specify the size of an S-function’s integer
(int_T) work vector.

ssSetNumModes Specify the number of operating modes that

ssSetNumNonsampledZCs

ssSetNumPWork

ssSetNumRWork

an S-function has.

Specify the number of zero crossings that an
S-function detects.

Specify the size of an S-function’s pointer
(void *) work vector.

Specify the size of an S-function’s real
(real _T) work vector.

10-11

10 SimStruct Functions

Simulation Information

Macro

Description

ssGetT
ssGetTaskTime
ssGetTFinal

ssGetTStart

sslisMajorTimeStep

sslIsMinorTimeStep

ssSetSolverNeedsReset

ssSetStopRequested

Get the current base simulation time.
Get the current time for a task.
Get the end time of the current simulation.

Get the start time of the current
simulation.

Determine if the current time step is a
major time step.

Determine if the current time step is a
minor time step.

Ask Simulink to reset the solver.

Ask Simulink to terminate the simulation
at the end of the current time step.

Function Call

Macro

Description

ssCallISystemWithTid

ssSetCal 1SystemOutput

Execute a function-call subsystem
connected to an S-function.

Specify that an output port element issues a
function call.

10-12

SimStruct Macros and Functions Listed by Usage

Data Type
Macro Description
ssGetDataTypeld Get the id for a data type.
ssGetDataTypeName Get a data type’s name.
ssGetDataTypeSize Get a data type’s size.
ssGetDataTypeZero Get the zero representation of a data type.

ssGetlnputPortDataType

ssGetNumDataTypes

ssGetOutputPortDataType

ssGetOutputPortSignal

ssRegisterDataType
ssSetDataTypeSize

ssSetDataTypeZero

ssSetinputPortDataType

Get the data type of an input port.

Get the number of data types defined by an
S-function or the model.

Get the data type of an output port.

Get an output signal of any type except
double.

Register a data type.
Specify the size of a data type.

Specify the zero representation of a data
type.

Specify the data type of signals accepted by
an input port.

Real-Time Workshop

Macro

Description

ssWriteRTWParameter

ssWriteRTWParamSettings

Write tunable parameters to the
S-function’s model . rtw file.

Write settings for the S-function’s
parameters to the model . rtw file.

10-13

10 SimStruct Functions

10-14

Macro Description

ssWriteRTWWorkVect Write the S-function’s work vectors to the
model . rtw file.

ssWriteRTWStr Write a string to the S-function’s model . rtw
file.

ssWriteRTWStrParam Write a string parameter to the S-function’s

ssWriteRTWScalarParam

ssWriteRTWStrVectParam

ssWriteRTWVectParam

ssWriteRTW2dMatParam

ssWriteRTWMxVectParam

ssWriteRTWMx2dMatParam

model . rtw file.

Write a scalar parameter to the S-function’s
model . rtw file.

Write a string vector parameter to the
S-function’s model . rtw file

Write a Simulink vector parameter to the
S-function’s model . rtw file.

Write a Simulink matrix parameter to the
S-function’s model . rtw file.

Write a MATLAB vector parameter to the
S-function’s model . rtw file.

Write a MATLAB matrix parameter to the
S-function’s model . rtw file.

Macro Reference

Macro Reference

This section contains descriptions of each SimStruct macro.

10-15

ssCallExternalModeFcn

Purpose Invoke the external mode function for an S-function.
Syntax void ssCal lExternalModeFcn(SimStruct *S, SFunExtModeFcn *fcn)
Arguments S

SimStruct representing an S-function block or a Simulink model.

fcn
external mode function

Description Specifies the external mode function for S.
Languages C
See Also ssSetExternalModeFcn

10-16

ssCallSystemWithTid

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify that an output port is issuing a function call.
ssCallSystemWithTid(SimStruct *S, port_index, tid)
S

SimStruct representing an S-function block or a Simulink model.

port_index
Index of port that is issuing the function call

tid
Task ID.
Use in md10utputs to execute a function-call subsystem connected to the

S-function. The invoking syntax is:

if (IssCallSystemWithTid(S,index, tid)) {

/* Error occurred which will be reported by Simulink */

return;

}

C

ssSetCal 1SystemOutput

10-17

ssGetAbsTol

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

10-18

Get the absolute tolerances used by the model’s variable step solver.
real_T *ssGetAbsTol (SimStruct *S)

S
SimStruct representing an S-function block.

Use inmdlStart to get the absolute tolerances used by the variable step solver
for this simulation. Returns a pointer to an array that contains the tolerance
for each continuous state.

Note Absolute tolerances are not allocated for fixed step solvers. Therefore,
you should not invoke this macro until you have verified that the simulation is
using a variable step solver, using sslsVariableStepSolver.

C, C++

int isVarSolver = sslsVariableStepSolver(S);
if (isvVarSolver) {

real_T *absTol = ssGetAbsTol(S);

int nCStates = ssGetNumContStates(S);

absTol[0] = whatever_value;

absTol[nCStates-1] = whatever_value;

ssGetStateAbsTol, sslsVariableStepSolver

ssGetContStateAddress

Purpose
Ada Syntax

Arguments

Description

Languages

See Also

Get the address of a block’s continuous states.
ssGetContStateAddress(S : in SimStruct) return System._Address

S
SimStruct representing an S-function block.

Can be used in the simulation loop, mdlInitializeConditions, or mdIStart
routines to get the address of the S-function’s continuous state vector. This
vector has length ssGetNumContStates(S). Typically, this vector is initialized
in mdlInitializeConditions and used in mdl0utputs.

Ada

ssGetNumContStates, ssGetRealDiscStates, ssGetdX,
mdlInitializeConditions, mdlStart

10-19

ssGetContStates

Purpose
Syntax

Arguments

Description

Languages

See Also

10-20

Get a block’s continuous states.
real_T *ssGetContStates(SimStruct *S)

S
SimStruct representing an S-function block.

Can be used in the simulation loop, mdlInitializeConditions, or mdIStart
routines to get the real _T continuous state vector. This vector has length
ssGetNumContStates(S). Typically, this vector is initialized in

mdl InitializeConditions and used in mdlOutputs.

C

ssGetNumContStates, ssGetRealDiscStates, ssGetdX,
mdlInitializeConditions, mdlStart

ssGetDataTypeName

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

Get the name of a data type.
char *ssGetDataTypeName(SimStruct *S, DTypeld id)

S
SimStruct representing an S-function block.
id
ID of data type
Returns the name of the data type specified by id, if id is valid. Otherwise, this
macro returns NULL and reports an error. Because this macro reports any error
that occurs, you do not need to use ssSetErrorStatus to report the error.
The following example gets the name of a custom data type.

const char *dtypeName = ssGetDataName(S, id);

if(dtypeName == NULL) return;
C

ssRegisterDataType

10-21

ssGetDataTypeld

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

10-22

Get the id of a data type.
DTypelD ssGetDataTypeld(SimStruct *S, char *name)
S

SimStruct representing an S-function block.

name
Name of data type

Returns the id of the data type specified by name, if name is a registered type
name. Otherwise, this macro returns INVALID_DTYPE_ID L and reports an
error. Because this macro reports any error that occurs, you do not need to use
ssSetErrorStatus to report the error.

C

The following example gets the id of the data type named Color.

int_T id = ssGetDataTypeld (S, “Color™);
if(id == INVALID_DTYPE_ID) return;

ssRegisterDataType

ssGetDataTypeSize

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

Get the size of a custom data type.

GetDataTypeSize(SimStruct *S, DTypeld id)

S

SimStruct representing an S-function block.

id

ID of data type

Returns the size of the data type specified by id, if id is valid and the data types

size has been set. Otherwise, this macro returns INVALID_DTYPE_SIZE and
reports an error.

Note Because this macro reports any error that occurs when it is invoked,
you do not need to use ssSetErrorStatus to report the error.

C

The following example gets the size of the int16 data type.

int_T size = ssGetDataTypeSize(S, SS_INT16);
if(size == INVALID_DTYPE_SIZE) return;

ssSetDataTypeSize

10-23

ssGetDatalTypeZero

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

10-24

Get the zero representation of a data type.

void* ssGetDataTypeZero(SimStruct *S, DTypeld id)

S

SimStruct representing an S-function block.

id

ID of data type

Returns a pointer to the zero representation of the data type specified by id, if
id is valid and the data type’s size has been set. Otherwise, this macro returns

NULL and reports an error. Because this macro reports any error that occurs,
you do not need to use ssSetErrorStatus to report the error.

C

The following example gets the zero representation of a custom data type.

const void *myZero = ssGetDataTypeZero(S, id);
if(myZero == NULL) return;

ssRegisterDataType, ssSetDataTypeSize, ssSetDataTypeZero

ssGetDiscStates

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a block’s discrete states.
real_T *ssGetDiscStates(SimStruct *S)

S
SimStruct representing an S-function block.

Returns a block’s discrete state vector has an array of real_T elements of
length ssGetNumDiscStates(S). Typically, the state vector is initialized in
mdlInitializeConditions, updated in mdlUpdate, and used in md10utputs.
You can use this macro in the simulation loop, mdl InitializeConditions, or
mdIStart routines.

C

ssGetNumDiscStates, mdlInitializeConditions, mdlUpdate, mdlOutputs,
mdlStart

10-25

ssGetDTypeldFromMxArray

Purpose
Syntax

Arguments

Description

10-26

Get the data type of an S-function parameter.
DTypeld ssGetDTypeldFromMxArray(const mxArray *m)

m
MATLAB array representing the parameter

Returns the data type of an S-function parameter represented by a MATLAB
array. This macro returns an enumerated type representing the data type. The
enumerated type, DTypeld, is defined in simstruc.h. The following table shows
the equivalency of Simulink, MATLAB, and C data types.

Simulink Data Type MATLAB DATA TYPE

Dtypeld mxClassID C- Data Type
SS_DOUBLE mxDOUBLE_CLASS real T
SS_SINGLE mxSINGLE_CLASS real32_T
SS_INT8 mxINT8_CLASS int8 T
SS_UINTS mxUINT8_CLASS uint8_ T
SS_INT16 mxINT16_CLASS intls T
SS_UINT16 mxUINT16_CLASS uintle_ T
SS_INT32 mxINT32_CLASS int32_T
SS_UINT32 mxUINT32_CLASS uint32_T
SS_BOOLEAN mxUINT8_CLASS+ logical boolean_T

ssGetDTypeldFromMxArray returns INVALID _DTYPE_ID if the mxClassld does
not map to any built-in Simulink data type id. For example, if mxld ==
mxSTRUCT_CLASS, the return value is INVALID_DTYPE_ID. Otherwise the return
value is one of the enum values in Bui ItInDTypeld. For example if mxld ==
mxUINT16_CLASS, the return value is SS_UINT16.

ssGetDTypeldFromMxArray

Note Use ssGetSFcnParam to get the array representing the parameter.

Example See the example in matlabroot/simul ink/src/sfun_dtype_param.c to learn
how to use a data typed parameters in an S-function.

Languages C

See Also ssGetSFcnParam

10-27

ssGetDWorkComplexSignal

Purpose

Syntax

Arguments

Description

Languages

See Also

10-28

Determine whether the elements of a data type work vector are real or complex
numbers.

CSignal_T ssGetDWorkComplexSignal (SimStruct *S, int_T vector)

S
SimStruct representing an S-function block.

vector
Index of a data type work vector, where the index isone of 0, 1, 2, ...
ssGetNumDWork(S)

Returns COMPLEX_YES if the specified vector contains complex numbers;
otherwise, COMPLEX_NO

C, C++

ssSetDWorkComplexSignal

ssGetDWorkDataType

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the data type of a data type work vector.
DTypeld ssGetDWorkDataType(SimStruct *S, int_T vector)

S
SimStruct representing an S-function block.

vector
Index of a data type work vector, where the index isone of 0, 1, 2, ...
ssGetNumDWork(S)

Returns the data type of the specified data type work vectoer.
C, C++

ssSetDWorkDataType

10-29

ssGetDWorkName

Purpose
Syntax

Arguments

Description
Languages

See Also

10-30

Get the name of a data type work vector.
char_T *ssSetDWorkName(SimStruct *S, int_T vector)

S
SimStruct representing an S-function block.

name

Index of the work vector, where the index isone of 0, 1, 2, ...

ssGetNumDWork(S)
Returns the name of the specified data type work vector.
C, C++

ssSetDWorkName

ssGetDWorkUsedAsDState

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether a data type work vector is used as a discrete state vector.
int_T ssGetDWorkUsedAsDState(SimStruct *S, int_T vector)

S
SimStruct representing an S-function block.

vector
Index of a data type work vector, where the index isone of 0, 1, 2, ...
ssGetNumDWork(S)

Returns SS_DWORK_USED_AS DSTATE if this vector is used to store a block’s
discrete states.

C, C++

sSetDWorkUsedAsDState

10-31

ssGetDWorkWidth

Purpose
Syntax

Arguments

Description
Languages

See Also

10-32

Get the size of a data type work vector.
int_T ssGetDWorkWidth(SimStruct *S, Int_T vector)

S
SimStruct representing an S-function block.

vector
Index of a work vector, where the index isone of 0, 1, 2, . . . ssGetNumDWork(S)

Returns the number of elements in the specified work vector.
C, C++

ssSetDWorkWidth

ssGetdX

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the derivatives of a block’s continuous states.
ssGetContStates(SimStruct *S)

S
SimStruct representing an S-function block.

Use in mdIDerivatives to get the derivatives of a block’s continuous states.
This macro returns a vector that has length ssGetNumContStates(S).

C

ssGetNumContStates, ssGetContStates

10-33

ssGetErrorStatus

Purpose
C Syntax
Ada Syntax

Arguments

Description
Languages

See Also

10-34

Get a string that identifies the last error.
const char_T *ssGetContStates(SimStruct *S)
const char_T *ssGetContStates(SimStruct *S)

S
SimStruct representing an S-function block.

Returns a string that identifies the last error.
Ada, C

ssSetErrorString

ssGetlnputPortBufferDstPort

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine the output port that is sharing this input port's buffer.
ssGetlnputPortBufferDstPort(SimStruct *S, iInt_T inputPortldx)

S
SimStruct representing an S-function block.

inputPortldx
Index of port overwritten by an output port.

Use in any run-time S-function callback routine to determine the output port
that is overwriting the specified input port. This can be used when you have
specified the following:

= The input port and some output port on an S-Function are not test points
(ssSetlnputPortTestPoint and ssSetOutputPortTestPoint)

<« The input port is overwritable (ssSetInputPortOverWritable)

If you have this set of conditions, Simulink may use the same memory buffer

for an input port and an output port. Simulink determines which ports share

memory buffers. Use this function any time after model initialization to get the
index of the output port that reuses the specified input port’s buffer. If none of

the S-function’s output ports reuse this input port buffer, this macro returns
INVALID_PORT_IDX (= -1).

C

ssSetNumlnputPorts, ssSetlnputPOrtOverWritable

10-35

ssGetlnputPortConnected

Purpose
Syntax

Arguments

Description

Languages

See Also

10-36

Determine whether a port is connected to a nonvirtual block.
int_T ssGetlnputPortConnected(SimStruct *S, int_T port)

S
SimStruct representing an S-function block or a Simulink model.

port
Port whose connection status is needed.

Returns true if the specified port on the block represented by S is connected to
a nonvirtual block. Can be invoked anywhere exceptin mdlInitializeSizesor
mdICheckParameters. The S-function must have previously set the number of
input ports in mdl InitializeSizes, using ssSetNumlnputPorts.

C

ssSetNumlnputPorts

ssGetlnputPortComplexSignal

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the numeric type (complex or real) of an input port.
DTypeld ssGetlnputPortDataType(SimStruct *S,input_T port)

S
SimStruct representing an S-function block.

port
Index of an input port

Returns the numeric type of port:.
C

ssSetlInputPortComplexSignal

10-37

ssGetinputPortDataType

Purpose Get the data type of an input port.
C Syntax DTypeld ssGetlnputPortDataType(SimStruct *S,input_T port)
Ada Syntax function ssGetlnputPortDataType(S : in SimStruct; port : in Integer

:= 0) return Integer;

Arguments S
SimStruct representing an S-function block or a Simulink model.

port
Index of an input port

Description Returns the data type of the input port specified by port.
Languages Ada, C
See Also ssSetlnputPortDataType

10-38

ssGetlnputPortDimensioninfo

Purpose
Syntax

Arguments

Description
Languages

See Also

Specify information about the dimensionality of an input port.

DimsInfo_T *ssGetlnputPortDimensionlnfo(SimStruct *S,

S
SimStruct representing an S-function block.

port
Index of an input port

Gets the dimension information for port.
C, C++

ssSetlnputPortDimensionlnfo

int_T port)

10-39

ssGetlnputPortDimensions

Purpose
Syntax

Arguments

Description

Languages

See Also

10-40

Get the dimensions of the signal accepted by an input port.
int_T *ssGetlnputPortDimensions(SimStruct *S, int_T port)

S
SimStruct representing an S-function block.

port
Index of an input port

Returns an array of integers that specifies the dimensions of the signal
accepted by port, e.g., [4 2] for a 4-by-2 matrix array. The size of the
dimensions array is equal to the number of signal dimensions accepted by the
port, e.g., 1 for a vector signal or 2 for a matrix signal.

C

ssGetlnputPortNumDimensions

ssGetlnputPortDirectFeedThrough

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Determine whether a port has direct feedthrough.
int_T ssGetlnputPortDirectFeedThrough(SimStruct *S, int_T port)

function ssGetlnputPortDirectFeedThrough(S : in SimStruct;
port : in Integer := 0) return Boolean;

S
SimStruct representing an S-function block.

port
Index of port whose direct feedthrough property is required.

Use in any routine (except mdl InitializeSizes) todetermineif an input port
has direct feedthrough.

Ada, C

ssSetlnputPortDirectFeedThrough

10-41

ssGetlnputPortFrameData

Purpose Determine if a port accepts signal frames.
Syntax int_T ssGetlnputPortFrameData(SimStruct *S, iInt_T port)
Arguments S

SimStruct representing an S-function block.

port
Index of an input port

Description Returns one of the following

- -1
Port accepts either frame or unframed input.
=0
Port accepts unframed input only.
-1
Port accepts frame input only.

Languages C

See Also ssSetlnputPortFrameData, mdlSetlnputPortFrameData

10-42

ssGetlnputPortNumbDimensions

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the dimensionality of the signals accepted by an input port.
int_T ssGetlnputPortNumDimensions(SimStruct *S, int_T port)

S
SimStruct representing an S-function block.

port
Index of an input port

Returns the number of dimensionspafrt or DYNAMICALLY_SI1ZED, if the number of
dimensions is unknown.

C

ssGetlnputPortDimensions

10-43

ssGetlnputPortOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

10-44

Get the offset time of an input port.
ssGetlnputPortOffsetTime(SimStruct *S, inputPortldx)

S
SimStruct representing an S-function block.

inputPortldx
Index of port whose offset time is required.

Use in any routine (except mdlInitializeSizes) to determine the offset time
of an input port. This should only be used if you have specified the sample times
as port-based.

C

ssSetlnputPortOffsetTime, ssGetlnputPortSampleTime

ssGetlnputPortOverWritable

Purpose
C Syntax

Ada Syntax

Arguments

Description
Languages

See Also

Determine whether an input port can be overwritten.

int_T ssGetlnputPortOverWritable(SimStruct *S, int_T port)

function ssGetlnputPortOverWritable(S : in SimStruct; port :

Integer := 0) return Boolean;

S
SimStruct representing an S-function block or a Simulink model.

port
Index of the input port whose overwritability is being set.

Returns true if input port can be overwritten.
Ada, C

ssSetlnputPortOverWritable

10-45

ssGetlnputPortRealSignal

Purpose Get the address of a real, contiguous signal entering an input port.
Syntax const real T *ssGetlnputPortRealSignal (SimStruct *S, inputPortldx)
Arguments S

SimStruct representing an S-function block.
inputPortldx
Index of port whose sample time is required.

Description Returns the address of a real signal on the specified input port. A method
should use this macro only if the input signal is known to be real and
mdl IntializeSizes has specified that the elements of the input signal be
contiguous, using ssSetlInputPortRequiredContiguous.

Languages C, C++

Example The following code demonstrates the use of ssGetInputPortRealSignal.

ninputPorts = ssGetNumlnputPorts(S);
for (i = 0; i1 < ninputPorts; i++) {
int_T nu = ssGetlnputPortWidth(S,1);
if (ssGetlnputPortRequiredContiguous(S,i)) {

const real _T *u = ssGetlnputPortRealSignal(S,i);
UselnputVectorInSomeFunction(u, nu);

} else {

InputPtrsType u = ssGetlnputPortSignalPtrs(S,i);
for G = 0; j <nu; j++) {
UselnputInSomeFunction(C*u[j]);

}
}

See Also ssSetlnputPortRequiredContiguous, ssGetlnputPortSignal,
mdl IntializeSizes

10-46

ssGetlnputPortRealSignalPtrs

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

Get pointers to signals of type double connected to an input port.

InputRealPtrsType ssGetlnputPortRealSignalPtrs(SimStruct *S,
int T port)

S
SimStruct representing an S-function block.

port
Index of port whose signal is required.

Returns pointers to the elements of a signal of type double connected to port.
The input port index starts at 0 and ends at the number of input ports minus
1. This macro returns a pointer to an array of pointers to the real_T input
signal elements. The length of the array of pointers is equal to the width of the
input port.

C

The following example read all input port signals.
int. T i,j;
int_T nlnputPorts = ssGetNumlnputPorts(S);
for (i = 0; i1 < nlnputPorts; i++) {
InputRealPtrsType uPtrs =
ssGetlInputPortRealSignal (S,1);
int_T nu = ssGetlnputPortWidth(S,1);
for g = 0; jJ < nu; j++) {
SomeFunctionToUselnputSignalElement(*uPtrs
Lb:
}
}

ssGetlnputPortWidth, ssGetlnputPortDataType,
ssGetlnputPortSignalPtrs

10-47

ssGetlnputPortRequiredContiguous

Purpose Determine whether the signal elements entering a port must be contiguous.
Syntax int_T ssSetlnputPortRequiredContiguous(SimStruct *S, Int_T port)
Arguments S

SimStruct representing an S-function block or a Simulink model.

port
Index of an input port

Description Returns true if the signal elements entering the specified port must occupy
contiguous areas of memory. If the elements are contiguous, a method can
access the elements of the signal simply by incrementing the signal pointer
returned by ssGetlnputPortSignal.

Note The default setting for this flag is false. Hence, the default method for
accessing the input signals is ssGetlnputSignalPtrs.

Languages C, C++

See Also ssSetlnputPortRequiredContiguous, ssGetlnputPortSignal,
ssGetlnputPortSignalPtrs

10-48

ssGetlnputPortReusable

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether memory allocated to input port is reusable.
int_T ssGetlnputPortReusable(SimStruct *S, Int_T port)

S
SimStruct representing an S-function block or a Simulink model.

inputPortldx
Index of the input port

Returns TRUE if input port memory buffer can be reused by other signals in
the model.

C, C++

ssSetlInputPortReusable

10-49

ssGetlnputPortSampleTime

Purpose
Syntax

Arguments

Description

Languages

See Also

10-50

Get the sample time of an input port.
ssGetlnputPortSampleTime(SimStruct *S, inputPortldx)

S
SimStruct representing an S-function block.

inputPortldx
Index of port whose sample time is required.

Use in any routine (except mdl Initial izeSizes) to determine the sample time
of an input port. You should use this macro only if you have specified the
sample times as port-based.

C

ssSetlnputPortSampleTime, ssGetlnputPortOffsetTime

ssGetlnputPortSampleTimelndex

Purpose

Syntax

Arguments

Description
Languages

See Also

Get the sample time index of an input port.

int_T ssGetlnputPortSampleTimelndex(SimStruct *S,
int_T inputPortldx)

S
SimStruct representing an S-function block or a Simulink model.

inputPortldx
Index of the input port whose sample time index is being set.

Returns the index of the sample time for the port.
C, C++

ssSetlnputPortSampleTimelndex

10-51

ssGetlnputPortSignal

Purpose Get the address of a contiguous signal entering an input port.
Syntax const void* ssGetlnputPortSignal (SimStruct *S, inputPortldx)
Arguments S

SimStruct representing an S-function block.
inputPortldx
Index of port whose sample time is required.

Description Returns the address of the specified input port. A method should use this
macro only if mdl IntializeSizes has specified that the elements of the input
signal be contiguous, using ssSetlInputPortRequiredContiguous

Languages C, C++

Example The following code demonstrates the use of ssGetlnputPortSignal.

ninputPorts = ssGetNumlnputPorts(S);
for (i = 0; 1 < nlnputPorts; i++) {
int_T nu = ssGetlnputPortWidth(S,1);

if (ssGetlnputPortRequiredContiguous(S,i)) {

const void *u = ssGetlnputPortSignal(S,i);
UselnputVectorInSomeFunction(u, nu);

} else {

InputPtrsType u = ssGetlnputPortSignalPtrs(S,i);
for G = 0; j <nu; j++) {
UselnputlnSomeFunction(C*u[j]):;

3

}

If you know that the inputs are always real_T signals, the
ssGetlnputPortSignal line in the above code snippet would be:

const real _T *u = ssGetlnputPortRealSignal(S,i);

10-52

ssGetlnputPortSignal

See Also ssSetlInputPortRequiredContiguous, ssGetlnputPortRealSignal

10-53

ssGetlnputPortSignalAddress

Purpose

Syntax

Arguments

Description
Languages

Example

See Also

10-54

Get address of an input port's signal.

function ssGetlnputPortSignalAddress(S : in SimStruct;
port : in Integer := 0) return System.Address;

S
SimStruct representing an S-function block.

port
Index of an input port

Returns the address of the signal connected to port.
Ada

The following code gets the signal connected to a block’s input port.

uWidth : Integer := ssGetlnputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real_T;
for U"Address use ssGetlnputPortSignalAddress(S,0);

sGetlnputPortWidth

ssGetlnputPortSignalPtrs

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

Get pointers to an input port’s signal elements.
InputPtrsType ssGetlnputPortSignalPtrs(SimStruct *S, int_ T port)

S
SimStruct representing an S-function block.

port
Index of an input port

Returns a pointer to an array of signal element pointers for the specified input
port. For example, if the input port width is 5, this function returns a pointer
to a 5-element pointer array. Each element in the pointer array points to the

specific element of the input signal.

You must use ssGetlnputPortRealSignalPtrs to get pointers to signals of
type double (real_T).

C

Assume that the input port data types are int8_T.

int_T nlnputPorts = ssGetNumlnputPorts(S);
for (i = 0; 1 < nlnputPorts; i++) {
InputPtrsType u ssGetlInputPortSignalPtrs(S,i);
InputInt8PtrsType ulnt8 = (Inputlnt8PtrsType)u;
int_T nu = ssGetlnputPortWidth(S,i);
for G =0; jJ < nu; j++) {
/* u[j] is an int8_T pointer that points to the j-th element
of the input signal.
*/
UselnputlnSomeFunction(*u[j]);
}

ssGetlInputPortRealSignalPtrs

10-55

ssGetlnputPortwWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

10-56

Get the width of an input port.
int_T ssGetlnputPortWidth(SimStruct *S, iInt_T port)

function ssGetlnputPortWidth(S : in SimStruct;
port : in Integer := 0) return Integer;

S
SimStruct representing an S-function block.

port
Index of port whose width is required.

Get the input port number of elements. If the input port is a 1-D array with w
elements, this function returns w. If the input port is an M-by-N matrix, this
function returns m*n. If m or n is unknown, this function returns
DYNAMICALLY_SIZED. Use in any routine (except mdlInitializeSizes) to
determine the width of an input port.

Ada, C

ssSetlnputPortWidth

ssGetlIWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a block’s integer work vector.
ssGetlWork(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the integer work vector used by the block represented by S. The vector
consists of elements of type int_T and is of length ssGetNumRWork(S).
Typically, this vector is initialized in md1Start or mdlInitializeConditions,
updated in mdlUpdate, and used in md10utputs. You can use this macro in the
simulation loop, mdl InitializeConditions, or mdlStart routines.

C

ssGetNumlWork

10-57

ssGetModelName

Purpose Get the model name.
Syntax ssGetMode IName (SimStruct *S)
Arguments S

SimStruct representing an S-function block or a Simulink model.

Description If S is a SimStruct for an S-function block, this macro returns the name of the
S-function MEX-file associated with the block. If S is the root SimStruct, this
macro returns the name of the Simulink block diagram.

Languages C

See Also ssGetPath

10-58

ssGetModeVector

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the mode vector.
int_T *ssGetModeVector(SimStruct *S)

S
SimStruct representing an S-function block.

Returns a pointer (int_T *) to the mode vector.

This vector has length ssGetNumModes(S). Typically, this vector is initialized in
mdlInitializeConditions if the default value of zero isn't acceptable. It is
then used in md10utputs in conjunction with nonsampled zero crossings to
determine when the output function should change mode. For example
consider an absolute value function. When the input is negative, negate it to
create a positive value, otherwise take no action. This function has two modes.
The output function should be designed not to change modes during minor time
steps. The mode vector may also be used in the mdlZeroCrossings routine to
determine the current mode.

C, C++

ssSetNumModes

10-59

ssGetModeVectorValue

Purpose Get an element of a block’s mode vector.
Syntax int_T ssGetModeVectorValue(SimStruct *S, element)
Arguments S

SimStruct representing an S-function block.

elementx
Index of a mode vector element

Description Returns the specified mode vector element.
Languages C, C++
See Also ssSetModeVectorValue, ssGetModeVector

10-60

ssGetNonsampledZCs

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

Get the zero-crossing signal values.
ssGetNumNonSampledZCs(SimStruct *S)

S
SimStruct representing an S-function block.

Returns a pointer to the vector containing the current values of the signals that
the variable-step solver monitors for zero crossings. The variable step solver
tracks the signs of these signals to bracket points where they cross zero. The
solver then takes simulation time steps at the points where the zero crossings
occur. This vector has length ssGetNumNonsampledZCs(S).

The following excerpt from matlabroot/simulink/src/sfun_zc.c illustrates
usage of this macro to update the zero-crossing array in the md1ZeroCrossings
callback function.

static void mdlZeroCrossings(SimStruct *S)

{
int T i;
real_T *zcSignals = ssGetNonsampledZCs(S);
InputRealPtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,0);
int_T nZCSignals = ssGetNumNonsampledZCs(S);
for (i = 0; 1 < nZCSignals; i++) {
zcSignals[i] = *uPtrs[i];
3
}
C

ssGetNumNonsampledZCs

10-61

ssGetNumContStates

Purpose
C Syntax
Ada Syntax

Arguments
Description

Languages

See Also

10-62

Get the number of continuous states that a block has.
int_T ssGetNumContStates(SimStruct *S)
function ssGetNumContStates(S : in SimStruct) return Integer;

S
SimStruct representing an S-function block or model.

Returns the number of continuous states in the block or model represented by
S.You can use this macro in any routine except mdl InitializeSizes.

Ada, C

ssSetNumContStates, ssGetNumDiscStates, ssGetContStates

ssGetNumbDataTypes

Purpose

Syntax

Arguments

Description

Languages

See Also

Get number of data types registered for this simulation, including built-in
types.

int_T ssGetNumDataTypes(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the number of data types registered for this simulation. This includes
all custom data types registered by custom S-function blocks and all built-in
data types.

Note S-functions register their data types in their implementations of the
mdl InitializeSize callback function. Therefore, to ensure that this macro
returns an accurate count, your S-function should invoke it only after the
point in the simulation at which Simulink invokes the mdlInitializeSize
callback function.

C

ssRegisterDataType

10-63

ssGetNumDiscStates

Purpose
Syntax

Arguments

Description

Languages

See Also

10-64

Get the number of discrete states that a block has.
int_T ssGetNumDiscStates(SimStruct *S)

S
SimStruct representing an S-function block.

Use in any routine (except mdl InitializeSizes) to determine the number of
discrete states that the S-function has.

C

ssSetNumDiscStates, ssGetNumContStates

ssGetNumDWork

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the number of data type work vectors used by a block.
int_T ssGetNumDWork(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the number of data type work vectors used by S.
C, C++

ssSetNumbDWork

10-65

ssGetNumlinputPorts

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

10-66

Get the number of input ports that a block has.
int_T ssGetNumlnputPorts(SimStruct *S)
function ssGetNumlnputPorts(S : in SimStruct) return Integer;

S
SimStruct representing an S-function block.

Use in any routine (except mdl Initial izeSizes) to determine how many input
ports a block has.

Ada, C

ssGetNumOutputPorts

ssGetNumIWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the size of a block’s integer work vector.
int_T ssGetNumlWork(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the size of the integer (int_T) work vector used by the block
represented by S. You can use this macro in any routine except
mdlInitializeSizes

C

ssSetNumlWork, ssGetNumRWork

10-67

ssGetNumModes

Purpose Get the size of the mode vector.
Syntax ssGetNumModes(SimStruct *S)
Arguments S

SimStruct representing an S-function block.

Description Returns the size of the modes vector. You can use this macro in any routine
except mdlInitializeSizes

Languages C

See Also ssSetNumNonsampledZCs, ssGetNonsampledZCs

10-68

ssGetNumNonsampledZCs

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the size of the zero-crossing vector.
ssGetNumNonSampledZCs(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the size of the zero-crossing vector. You can use this macro in any
routine except mdl InitializeSizes

C

ssSetNumNonsampledZCs, ssGetNonsampledZCs

10-69

ssGetNumOutputPorts

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

10-70

Get the number of output ports that a block has.
int_T ssGetNumOutputPorts(SimStruct *S)
function ssGetNumOutputPorts(S : in SimStruct) return Integer;

S
SimStruct representing an S-function block.

Use in any routine (except mdlInitializeSizes) to determine how many
output ports a block has.

Ada, C

ssGetNumlnputPorts

ssGetNumParameters

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the number of parameters that this block has.
function ssGetNumParameters(S : in SimStruct) return Integer;

S
SimStruct representing an S-function block.

Returns the number of parameters that this block has.
Ada

ssGetParameterName

10-71

ssGetNumRunTimeParams

Purpose Get the number of run-time parameters created by this S-function.
Syntax int_ T ssGetNumRunTimeParams(SimStruct *S)
Arguments S

SimStruct representing an S-function block.

Description Use this function to get the number of run-time parameters created by this
S-function.

Languages C

See Also ssSetNumRunT imeParams

10-72

ssGetNumPWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the size of a block’s pointer work vector.
int_T ssGetNumPWork(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the size of the pointer work vector used by the block represented by S.

You can use this macro in any routine except mdlInitializeSizes
C

ssSetNumPWork

10-73

ssGetNumRWork

Purpose
Syntax

Arguments

Description

Languages

See Also

10-74

Get the size of a block’s floating-point work vector.
int_T ssGetNumRWork(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the size of the floating-point (real_T) work vector used by the block
represented by S. You can use this macro in any routine except
mdlInitializeSizes

C

ssSetNumRWork

ssGetNumSampleTimes

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the number of sample times that a block has.
int_T ssGetNumOutputPorts(SimStruct *S)

S
SimStruct representing an S-function block.

Use in any routine (except mdl InitializeSizes) to determine the number of
sample times S has.

C

ssSetNumSampleTimes

10-75

ssGetNumSFcnParams

Purpose Get the number of parameters that an S-function block expects.
Syntax int_T ssGetNumSFcnParams(SimStruct *S)
Arguments S

SimStruct representing an S-function block.

Description Returns the number of parameters that S expects the user to enter.
Languages C
See Also ssSetSFcnNumSFcnParams

10-76

ssGetOutputPortBeingMerged

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether the output of this block is connected to a Merge block.
int_T ssGetOutputPortBeingMerged(SimStruct *S, int_T port)

S
SimStruct representing an S-function block or a Simulink model.

port
Index of the output port

Returns TRUE if this output port signal is being merged with other signals
(this happens if the S-function block output port is directly or via connection
type blocks is connected to a Merge block). This macro retursn the correct
answer in and after the S-function's mdl1SetWorkWidths method.

C, C++

mdlSetWorkWidths

10-77

ssGetOutputPortComplexSignal

Purpose Get the numeric type (complex or real) of an output port.
Syntax DTypeld ssGetOutputPortDataType(SimStruct *S,input_T port)
Arguments S

SimStruct representing an S-function block.

port
Index of an output port

Description Returns the numeric type of port: COMPLEX_NO (real signal), COMPLEX_YES
(complex signal) or COMPLEX_INHERITED (dynamically determined).

Languages C

See Also ssSetOutputPortComplexSignal

10-78

ssGetOutputPortDataType

Purpose
C Syntax

Ada Syntax

Arguments

Description
Languages

See Also

Get the data type of an output port.
DTypeld ssSetOutputPortDataType(SimStruct *S,input_T port)

function ssGetOutputPortDataType (S : in SimStruct;
port - in Integer := 0) return Integer;

S
SimStruct representing an S-function block or a Simulink model.

port
Index of an output port

Returns the data type of the output port specified by port.
Ada, C

ssSetOutputPortDataType

10-79

ssGetOutputPortDimensions

Purpose
Syntax

Arguments

Description

Languages

See Also

10-80

Get the dimensions of the signal leaving an output port.
int_T *ssGetOutputPortDimensions(SimStruct *S, int_T port)

S
SimStruct representing an S-function block.

port
Index of an output port

Returns an array of integers that specifies the dimensions of the signal leaving
port, e.g., [4 2] for a 4-by-2 matrix array. The size of the dimensions array is
equal to the number of signal dimensions accepted by the port, e.g., 1 for a
vector signal or 2 for a matrix signal.

C

ssGetOutputPortNumDimensions

ssGetOutputPortFrameData

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine if a port accepts signal frames.
int_T ssGetOutputPortFrameData(SimStruct *S, iInt_T port)

S
SimStruct representing an S-function block.

port
Index of an output port

Returns one of the following

- -1
Port outputs either frame or unframed data.
=0
Port outputs unframed data only.
-1
Port outputs frame data only.

C

ssSetOutputPortFrameData, mdlSetOutputPortFrameData

10-81

ssGetOutputPortNumDimensions

Purpose Get the offset time of an output port.
Syntax int_T ssGetOutputPortNumDimensions(SimStruct *S, int_T port)
Arguments S

SimStruct representing an S-function block.

port
Index of output port.

Description Returns number of dimensions of port.
Languages C
See Also ssSetOutputPortDimensioninfo

10-82

ssGetOutputPortOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the offset time of an output port.
real_T ssGetOutputPortOffsetTime(SimStruct *S,outputPortldx)

S
SimStruct representing an S-function block.

outputPortldx
Index of output port.

Use in any routine (except mdl Initial izeSizes) to determine the sample time
of an output port. This macro should only be used if you have specified
port-based sample times.

C

ssSetOutputOffsetTime, ssGetOutputPortSampleTime

10-83

ssGetOutputPortRealSignal

Purpose

Syntax

Arguments

Description

Example

Languages

See Also

10-84

Get a pointer to an output signal of type double (real_T).

real_T *ssGetOutputPortRealSignal (SimStruct *S, iInt_T port)

S
SimStruct representing an S-function block.

port
Index of output port.

Use in any simulation loop routine, mdl InitializeConditions, or mdlStart to
access an output port signal where the output port index starts at 0 and must
be less than the number of output ports. This returns a contiguous real_T
vector of length equal to the width of the output port.

To write to all output ports, you would use
int. T i,j;
int_T nOutputPorts = ssGetNumOutputPorts(S);
for (i = 0; 1 < nOutputPorts; i++) {
real_T *y = ssGetOutputPortRealSignal(S,i);
int_T ny = ssGetOutputPortWidth(S,i);
for G =0; jJ <ny; j++) {
y[J]1 = SomeFunctionToFillInOutput();
}

}

C

ssGetlnputPortRealSignalPtrs

ssGetOutputPortReusable

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether memory allocated to output port is reusable.
int_T ssGetOutputPortReusable(SimStruct *S, int_T port)

S
SimStruct representing an S-function block or a Simulink model.

port
Index of the output port

Returns TRUE if output port memory buffer can be reused by other signals in
the model.

C, C++

ssSetOutputPortReusable

10-85

ssGetOutputPortSampleTime

Purpose Get the sample time of an output port.
Syntax ssGetOutputPortSampleTime(SimStruct *S,outputPortldx)
Arguments S

SimStruct representing an S-function block.

outputPortldx
Index of output port.

Description Use in any routine (except mdl Initial izeSizes) to determine the sample time
of an output port. This macro should only be used if you have specified
port-based sample times.

Languages C

See Also ssSetOutputSampleTime

10-86

ssGetOutputPortSignal

Purpose

Syntax

Arguments

Description

Example

Languages

See Also

Get the vector of signal elements emitted by an output port.
void *ssGetOutputPortSignal (SimStruct *S, int_T port)

S
SimStruct representing an S-function block.

port
Index of output port.

Returns a pointer to the vector of signal elements output by port.

Note If the port outputs a signal of type double (real_T), you must use
ssGetOutputPortRealSignal to get the signal vector.

Assume that the output port data types are int16_T.

nOutputPorts = ssGetNumOutputPorts(S);
for (i = 0; i1 < nOutputPorts; i++) {

intle T *y = (intl6_T *)ssGetOutputPortSignal(S,i);
int T ny = ssGetOutputPortWidth(S,i);

for G =05 J <ny; j+) {

SomeFunctionToFillInOutput(yLil):;

3
¥

C

ssGetOutputPortRealSignal

10-87

ssGetOutputPortSignalAddress

Purpose

Syntax

Arguments

Description
Languages

Example

See Also

10-88

Get address of an output port’s signal.

ssGetOutputPortSignalAddress(S : in SimStruct; port : in Integer :

0) return System._Address

S
SimStruct representing an S-function block.

port
Index of an output port

Returns the address of the signal connected to port.

Ada

The following code gets the signal connected to a block’s input port.

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. ywWidth-1) of Real_T;
for Y"Address use ssGetOutputPortSignalAddress(S,0);

ssGetOutputPortWidth

ssGetOutputPortWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Get the width of an output port.
int_T ssGetOutputPortWidth(SimStruct *S, int_T port)
function ssGetOutputPortWidth(S : in SimStruct; port : in Integer

:= 0) return Integer;

S
SimStruct representing an S-function block.

outputPortldx
Index of output port.

Use in any routine (except mdl InitializeSizes) todetermine the width of an
output port where the output port index starts at 0 and must be less than the
number of output ports.

Ada, C

ssSetOutputPortWidth

10-89

ssGetPath

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

10-90

Get the path of a block.
const char_T *ssGetPath(SimStruct *S)
function ssGetPath(S : in SimStruct) return String;

S
SimStruct representing an S-function block or a Simulink model.

If S is an S-function block, this macro returns the full Simulink path to the
block. If S is the root SimStruct of the model, this macro returns the model
name. In a C MEX S-function, in mdlInitializeSizes, if

strcmp(ssGetModelName(S),ssGetPath(S))==

the S-function is being called from MATLAB and is not part of a simulation.
Ada, C

ssGetModeIName

ssGetParentSS

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the parent of a SimStruct.
SimStruct *ssGetParentSS(SimStruct *S)

S
SimStruct representing an S-function block or a Simulink model.

Returns the parent SimStruct of S, or NULL if S is the root SimStruct.

Note There is one SimStruct for each S-Function in your model and one for
the model itself. The structures are arranged as a tree with the model
SimStruct as the root. User-written S-functions should not use the
ssGetParentSS macro.

C

ssGetRoot

10-91

ssGetPlacementGroup

Purpose
Syntax

Arguments

Description

Languages

See Also

10-92

Get the name of the placement group of a block.
const char *ssGetPlacementGroup(SimStruct *S)

S

SimStruct representing an S-function block or a Simulink model. The block
must be either a source block (i.e., a block without input ports) or a sink block
(i.e., a block without output ports).

Use this macro in mdlInitializeSizes to get the name of this block’s
placement group.

Note This macro is typically used to create Real-Time Workshop device
driver blocks.

C

ssGetPlacementGroup

ssGetPWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a block’s pointer work vector.
ssGetPWork(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the pointer work vector used by the block represented by S. The vector
consists of elements of type void * and is of length ssGetNumRWork(S).
Typically, this vector is initialized in md1Start or mdlInitializeConditions,
updated in mdlUpdate, and used in md10utputs. You can use this macro in the
simulation loop, mdl InitializeConditions, or mdlStart routines.

C

ssGetNumPWork

10-93

ssGetRealDiscStates

Purpose Get a block’s discrete state vector.
Syntax real_T *ssGetRealDiscStates(SimStruct *S)
Arguments S

SimStruct representing an S-function block.

Description Same as ssGetDiscStates.
Languages C
See Also ssGetDiscStates

10-94

ssGetRootSS

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the root of a SimStruct hierarchy.
SimStruct *ssGetRootSS(SimStruct *S)

S
SimStruct representing an S-function block or a Simulink model.

Returns the root of the SimStruct hierarchy containing S.
C

ssGetParent

10-95

ssGetRunTimeParamIinfo

Purpose
Syntax

Arguments

Description

Languages

See Also

10-96

Gets the attributes of a run-time parameter.
ssParamRec *ssSetRunTimeParamInfo(SimStruct *S, Int_T param)

S
SimStruct representing an S-function block.

param
Index of a run-time parameter

Returns the attributes of the run-time parameter specified by param. See the
documentation for ssSetRunTimeParamlnfo for a description of the ssParamRec
structure returned by this function.

C

ssSetRunTimeParamlnfo

ssGetRWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a block’s floating-point work vector.
ssGetRWork(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the floating-point work vector used by the block represented by S. The
vector consists of elements of type real_T and is of length ssGetNumRWork(S).
Typically, this vector is initialized in md1Start or mdlInitializeConditions,
updated in mdlUpdate, and used in md10utputs. You can use this macro in the
simulation loop, mdl InitializeConditions, or mdlStart routines.

C

ssGetNumRWork

10-97

ssGetSampleTimeOffset

Purpose Get the period of the current sample time.
Syntax function ssGetSampleTimeOffset(S : iIn SimStruct) return time_T;
Arguments S

SimStruct representing an S-function block.

Description Returns the offset of the current sample time.
Languages Ada
See Also ssGetSampleTimePeriod

10-98

ssGetSampleTimePeriod

Purpose

Syntax

Arguments

Description
Languages

See Also

Get the period of the current sample time.

function ssGetSampleTimePeriod(S : in SimStruct) return time_T;

S
SimStruct representing an S-function block.
Returns the period of the current sample time.

Ada

ssGetSampleTimeOffset

10-99

ssGetSFcnParam

Purpose
Syntax

Arguments

Description

Languages

See Also

10-100

Get a parameter of an S-function block.
const mxArray *ssGetSFcnParam(SimStruct *S, int_T index)

S
SimStruct representing an S-function block.

index
Index of the parameter to be returned.

Use in any routine to access a parameter entered in the S-function’s block
dialog box where index starts at 0 and is less than ssGetSFcnParamsCount(S).

C

ssGetSFcnParamsCount

ssGetSFcnParamsCount

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the number of block dialog parameters that an S-function block has.
ssGetSFcnParamsCount(SimStruct *S)

S
SimStruct representing an S-function block.

Returns the number of parameters that a user can set for the block represented

by S.
C

ssGetNumSFcnParams

10-101

ssGetSimMode

Purpose
Syntax

Arguments

Description

Languages

See Also

10-102

Get the simulation mode an S-function block.
ssGetSimMode(SimStruct *S)

S
SimStruct representing an S-function block or a Simulink model.

Returns the simulation mode of the block represented by S:

<« SS_SIMMODE_NORMAL

Running in a normal Simulink simulation
= SS_SIMMODE_SIZES_CALL_ONLY

Invoked by editor to obtain number of ports
< SS_SIMMODE_RTWGEN

Generating code
< SS_SIMMODE_EXTERNAL

External mode simulation

C

ssGetSolverName

ssGetSolverName

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the name of the solver being used to solve the S-function.
ssGetSolverName(SimStruct *S)

S
SimStruct representing an S-function block or a Simulink model.

Returns a pointer (char *) to the name of the solver being used to solve the
S-function represented by S.

C

ssGetSimMode, sslsVariableStepSolver

10-103

ssGetStateAbsTol

Purpose

Syntax

Arguments

Description

Languages

See Also

10-104

Get the absolute tolerance used by the model’s variable step solver for a
specified state.

real_T ssGetStateAbsTol(SimStruct *S, int_T state)

S
SimStruct representing an S-function block.

Use in mdIStart to get the absolute tolerance for a particular state.

Note Absolute tolerances are not allocated for fixed step solvers. Therefore,
you should not invoke this macro until you have verified that the simulation is
using a variable step solver, using sslsvariableStepSolver.

C, C++

ssGetAbsTol, sslsVariableStepSolver

ssGetT

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

Get the current simulation time.
ssGetT(SimStruct *S)
function ssGetT(S : in SimStruct) return Real _T;

S
SimStruct representing an S-function block.

Returns the current base simulation time (time_T) for the model. You can use
this macro in md10utputs and mdlUpdate to compute the output of your block.

Note Use this macro only if your block operates at the base rate of the model,
for example, if your block operates at a single, continuous rate. If your block
operates at multiple rates or operates at a single rate that is different from
the model’s base, use ssGetTaskTime to get the correct time for the current
task.

Ada, C

ssGetTaskTime, ssGetTStart, ssGetTFinal

10-105

ssGetTNext

Purpose Get the time of the next sample hit.
Syntax time T ssGetTNext(SimStruct *S)
Arguments S

SimStruct representing an S-function block

Description Returns the next time that a sample hit occurs in a discrete S-function with a
variable sample time.

Languages C

See Also ssSetTNext, mdIGetTimeOfNextVarHit

10-106

ssGetTaskTime

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the current time for the current task.
ssGetTaskTime(SimStruct *S, st_index)

S
SimStruct representing an S-function block.

st_index

Index of the sample time corresponding to the task for which the current time
is to be returned.

Returns the current time (time_T) of the task corresponding to the sample rate
specified by st_index. You can use this macro in md10utputs and mdlUpdate to
compute the output of your block.

C

ssGetT

10-107

ssGetTFinal

Purpose Get the simulation stop time.

C Syntax time T ssGetTFinal (SimStruct *S)

Ada Syntax function ssGetTFinal(S : in SimStruct) return Real T;
Arguments S

SimStruct representing an S-function block.

Description Returns the stop time of the current simulation.
Languages Ada, C
See Also ssGetT, ssGetTStart

10-108

ssGetTStart

Purpose
C Syntax
Ada Syntax

Arguments

Description
Languages

See Also

Get the simulation start time.
time_T ssGetTStart(SimStruct *S)
function ssGetTStart(S : in SimStruct) return Real _T;

S
SimStruct representing an S-function block.

Returns the start time of the current simulation.
Ada, C

ssGetT, ssGetTFinal

10-109

ssisContinuousTask

Purpose
Syntax

Arguments

Description

Languages

See Also

10-110

Determine if a task is continuous.
sslsContinuousTask(SimStruct *S,st_index,tid)

S

SimStruct representing an S-function block

tid

task ID

Use in md10utputs or mdlUpdate when your S-function has multiple sample
times to determine if your S-function is executing in the continuous task. This
should not be used in single rate S-functions, or if you did not register a
continuous sample time.

C

ssSetNumContStates

ssGetUserData

Purpose
Syntax

Arguments

Description
Languages

See Also

Access user data.
void ssGetUserData(SimStruct *S, void * data)

S
SimStruct representing an S-function block.

data
User data

Retrieves pointer to user data.
C, C++

ssSetUserData

10-111

ssIsFirstinitCond

Purpose Determine whether this is the first call to mdlInitializeConditions.
Syntax int_T ssGetFirstInitCond(SimStruct *S)
Arguments S

SimStruct representing an S-function block.

Description Returns true if the current simulation time is equal to the simulation start
time.

Languages C

See Also mdlInitializeConditions

10-112

sslsMajorTimeStep

Purpose
C Syntax
Ada Syntax

Arguments

Description
Languages

See Also

Determine if the simulation is in a major step.
int_T sslsMajorTimeStep(SimStruct *S)
function sslisMajorTimeStep(S : in SimStruct) return Boolean;

S
SimStruct representing an S-function block

Returns 1 if the simulation is in a major time step.
Ada, C

ssIsMinorTimeStep

10-113

ssIlsMinorTimeStep

Purpose Determine if the simulation is in a minor step.
Syntax int_T sslsMinorTimeStep(SimStruct *S)
Arguments S

SimStruct representing an S-function block

Description Returns 1 if the simulation is in a minor time step.
Languages C
See Also sslsMajorTimeStep

10-114

sslsSampleHit

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine if sample is hit.
sslsSampleHit(SimStruct *S,st_index,tid)
S

SimStruct representing an S-function block

st_index
Index of the sample time

tid

task ID

Use in md10utputs or mdlUpdate when your S-function has multiple sample
times to determine what task your S-function is executing in. This should not
be used in single rate S-functions or for an st_index corresponding to a
continuous task.

C

sslsContinuousTask, sslsSpecialSampleHit

10-115

ssisSpecialSampleHit

Purpose
Syntax

Arguments

Description

Languages

See Also

10-116

Determine if sample is hit.
sslsSpecialSampleHit(SimStruct *S, stil, sti2, tid)
S

SimStruct representing an S-function block

stil
Index of the sample time

sti2

Index of the sample time
tid

task ID

Returns true if a sample hit has occurred at stil and a sample hit has also
occurred at sti2 in the same time step. You can used this macro in mdlUpdate
and mdI0utputs to ensure the validity of data shared by multiple tasks running
at different rates. For more information, see “Synchronizing Multirate
S-Function Blocks” on page 7-22.

C

sslsSampleHit

sslsVariableStepSolver

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the name of the solver being used to solve the S-function.
ssGetSolverName(SimStruct *S)

S
SimStruct representing an S-function block or a Simulink model.

Returns 1 if the solver being used to solve S is a variable step solver. This is
useful when creating S-functions that have zero crossings and an inherited
sample time.

C

ssGetSimMode, ssGetSolverName

10-117

ssPrintf

Purpose Print a variable-content message.
Syntax ssPrintf(msg, ...)
Arguments msg

Message. Must be a string with optional variable replacement parameters.

Optional replacement arguments.

Description Prints variable-content msg. This macro expands to mexPrintf when the
S-function is compiled via mex for use with Simulink. When the S-function is
compiled for use with the Real-Time Workshop, this macro expands to printf,
if the target has stdio facilities; otherwise, it becomes a call to an empty
function (rtPrintfNoOp). In the case of Real-Time Workshop, you can avoid a
call altogether, using the SS_STD10_AVAILABLE macro, €.g.,

#if defined(SS_STDIO_AVAILABLE)

ssPrintf("'my message ...");
#endif
Languages C
See Also ssWarning

10-118

ssRegAllTunableParamsAsRunTimeParams

Purpose

Syntax

Arguments

Description

Languages

See Also

Register all tunable parameters as run-time parameters.

void ssRegAllTunableParamsAsRunTimeParams(S,
const char_T *names[]))

S
SimStruct representing an S-function block.

names
Array of names for the run-time parameters

Use this function in md1SetWorkWidths to register all tunable dialog
parameters as run-time parameters. Specify the names of the run-time
versions of the parameters in the names array.

Note Simulink assumes that the names array is always available. Therefore,
you must allocate the names array in such a way that it persists throughout
the simulation.

You can register dialog parameters individually as run-time parameters, using
ssSetNumRunTimeParameters and ssSetRunTimeParamlnfo.

C

mdISetWorkWidths, ssSetNumRunTimeParameters, ssSetRunTimeParamlnfo

10-119

ssRegisterDataType

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

10-120

Register a custom data type.
Dtypeld ssRegisterDataType(SimStruct *S, char *name)

S
SimStruct representing an S-function block.

name
Name of custom data type

Register a custom data type. Each data type must be a valid MATLAB
identifier. That is, the first char is an alpha and all subsequent characters are
alphanumeric or “_". The name length must be less than 32. Data types must
be registered in mdl InitializeSizes.

If the registration is successful, the function returns the DataTypeld associated
with the registered data type, otherwise, it reports an error and returns
INVALID_DTYPE_ID

After registering the data type, you must specify its size, using
ssSetDataTypeSize.

Note You can call this function to get the data type id associated with a
registered data type.

The following example registers a custom data type named Color.

Dtypeld id = ssRegisterDataType(S, “Color”);
if(id == INVALID_DTYPE_ID) return;

C

ssSetDataTypeSize

ssSetCallSystemOutput

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify that an output port is issuing a function call.
ssSetCal 1SystemOutput(SimStruct *S, port_index)

S
SimStruct representing an S-function block or a Simulink model.

port_index
Index of port that is issuing the function call

Use in mdlInitial izeSampleTimes to specify that the output port element
specified by index is issuing a function call by using

ssCal 1SystemWithTid(S, index, tid). The index specified starts at 0 and
must be less than ssGetOutputPortWidth(s,0).

C

ssCallSystemWithTid

10-121

ssSetDataTypeSize

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

10-122

Set the size of a custom data type.

int_T ssSetDataTypeSize(SimStruct *S, DTypeld id, Int_T size)
S

SimStruct representing an S-function block.

id

ID of data type

size

Size of the custom data type in bytes

Sets the size of the data type specified by id to size. If the call is successful,
the macro returns 1 (true), otherwise, it returns 0 (false).Use this macro in
mdl InitializeSizes to set the size of a data type you have registered.

The following example registers and sets the size of the custom data type
named Color to four bytes.

int T status;
Dtypeld id;

id = ssRegisterDataType(SimStruct *S, “Color™);
if(id == INVALID DTYPE_ID) return;

status = ssSetDataTypeSize(S, id, 4);
if(status == 0) return;

C

ssRegisterDataType, ssGetDataTypeSize

ssSetDataTypeZero

Purpose
Syntax

Arguments

Description

Languages

Example

Set zero representation of a data type.
int_T ssSetDataTypeZero(SimStruct *S, DTypeld id, void* zero)

S

SimStruct representing an S-function block.
id

ID of data type

zero
Zero representation of the data type specified by id

Sets the zero representation of the data type specified by id to zero and
returns 1 (true), if id valid, and the size of the data type has been set, and the
zero representation has not already been set. Otherwise, this macro returns 0
(false) and reports an error. Because this macro reports any error that occurs,
you do not need to use ssSetErrorStatus to report the error.

Note This macro makes a copy of the zero representation of the data type for
Simulink’s use. Thus, your S-function does not have to maintain the original
in memory.

C

The following example registers and sets the size and zero representation of a
custom data type named myDataType.

typedef struct{
int8_T a;
uintl6_T b;

}myStruct;

int_T status;
Dtypeld id;
myStruct tmp;

id = ssRegisterDataType(S, “myDataType”);

10-123

ssSetDataTypeZero

if(id == INVALID_DTYPE_ID) return;

status = ssSetDataTypeSize(S, id, sizeof(tmp));
if(status == 0) return;

tmp.a = 0;
tmp.b = 1;
status = ssSetDataTypeZero(S, id, &tmp);

if(status == 0) return;

See Also ssRegisterDataType, ssSetDataTypeSize, ssGetDataTypeZero

10-124

ssSetDWorkComplexSignal

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify whether the elements of a data type work vector are real or complex.

void ssSetDWorkComplexSignal (SimStruct *S, int_T vector,
CSignal_T numType)

S
SimStruct representing an S-function block.

vector
Index of a data type work vector, where the index isone of 0, 1, 2, ...
ssGetNumDWork(S)

numType
Numeric type, either COMPLEX_YES or COMPLEX_NO.

Use in mdlInitializeSizes or mdISetWorkWidths to specify whether the

values of the specified work vector are complex numbers (COMPLEX_YES) or real

numbers (COMPLEX_NO, the default).
C, C++

ssSetDWorkDataType, ssGetNumDWork

10-125

ssSetDWorkDataType

Purpose
Syntax

Arguments

Description

Languages

See Also

10-126

Specify the data type of a data type work vector.
void ssSetDWorkDataType(SimStruct *S, int_T vector, DTypeld dtID)
S

SimStruct representing an S-function block.

vector
Index of a data type work vector, where the index isone of 0, 1, 2, . ..
ssGetNumDWork(S)

dtiD
Id of a data type

Use in mdlInitializeSizes or mdISetWorkWidths to set the data type of the
specified work vector.

C, C++

ssSetDWorkWidth, ssGetNumDWork

ssSetDWorkName

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the name of a data type work vector.

void ssSetDWorkName(SimStruct *S, int_T vector, char_T *name)

S

SimStruct representing an S-function block.

name

Index of the work vector, where the index isone of 0, 1,2, . ..
ssGetNumDWork(S)

name

Name of work vector.

Use in mdl InitializeSizes or in md1SetWorkWidths to specify a name for the
specified data type work vector. The Real-Time Workshop uses this name to
label the work vector in generated code. If you do not specify a name, the
Real-Time Workshop generates a name for the work vector.

C, C++

ssGetDWorkName, ssSetNumDWork

10-127

ssSetDWorkUsedAsDState

Purpose

Syntax

Arguments

Description

Languages

See Also

10-128

Specify that a data type work vector is used as a discrete state vector.

void ssSetDWorkUsedAsDState(SimStruct *S, int_T vector,
int_T usage)

S
SimStruct representing an S-function block.

vector
Index of a data type work vector, where the index isone of 0, 1, 2, . ..

ssGetNumDWork(S)

Usage
How this vector is used

Use in mdlInitializeSizes or mdISetWorkwidths to specify the usage of the
specified work vector, either SS_DWORK_USED_AS_DSTATE (used to store the
block’s discrete states) or SS_DWORK_USED_AS_DWORK (used as a work vector, the
default).

Note Specify the usage as SS_DWORK_USED_AS_DSTATE if the following
conditions are true. You want to use the vector to store discrete states and
and you want Simulink to log the discrete states to the workspace at the end
of a simulation, if the user has selected the Save to Workspace option on
Simulink’s Simulation Parameters dialog.

C, C++

sGetDWorkUsedAsDState

ssSetDWorkWidth

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the width of a data type work vector.
void ssSetDWorkWidth(SimStruct *S, int_T vector, int_T width)

S
SimStruct representing an S-function block.

vector
Index of the work vector, where the index isoneof 0, 1, 2, ...
ssGetNumDWork(S)

width
Number of elements in the work vector.

Use in mdlInitializeSizes or in mdISetWorkWidths to set the number of
elements in the specified data type work vector.

C, C++

ssGetDWorkWidth, ssSetDWorkDataType, ssSetNumDWork

10-129

ssSetErrorStatus

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

10-130

Report an error.
void ssSetErrorStatus(SimStruct *S, const char_T *msg)
procedure ssSetErrorStatus(S : in SimStruct; msg : in String);

S

SimStruct representing an S-function block or a Simulink model.
msg

Error message

Use this function to report errors that occur in your S-function, e.g.,

ssSetErrorStatus(S, "error message');
return;

Note The error message string must be in persistent memory; it cannot be a
local variable.

Ada, C

ssWarning

ssSetExternalModeFcn

Purpose
Syntax

Arguments

Description
Languages

See Also

Specify the external mode function for an S-function.
void ssSetExternalModeFcn(SimStruct *S, SFunExtModeFcn *fcn)

S
SimStruct representing an S-function block or a Simulink model.

fcn
external mode function

Specifies the external mode function for S.
C

ssCal lExternalModeFcn

10-131

ssSetinputPortComplexSignal

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

10-132

Set the numeric type (real or complex) of an input port.

void ssSetlnputPortComplexSignal (SimStruct *S, input_T port,
CSignal _T csig)

S
SimStruct representing an S-function block or a Simulink model.

port
Index of an input port

csignal

Numeric type of the signals accepted by port. Valid values are COMPLEX_NO
(real signal), COMPLEX_YES (complex signal), COMPLEX_INHERITED (numeric type
inherited from driving block).

Use this function in mdl Initial izeSizes to initialize input port signal type. If
the numeric type of the input port is inherited from the block to which it is
connected, set the numeric type to COMPLEX_INHERITED. The default numeric
type of an input port is real.

C

Assume that an S-function has three input ports. The first input port accepts
real (non-complex) signals. The second input port accepts complex signal. The
third port accepts signals of either type. The following example specifies the
correct numeric type for each port.

ssSetlInputPortComplexSignal (S, 0, COMPLEX_NO)
ssSetlInputPortComplexSignal (S, 1, COMPLEX_ YES)
ssSetlInputPortComplexSignal (S, 2, COMPLEX_ INHERITED)

ssGetlnputPortComplexSignal

ssSetinputPortDataType

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

Example

See Also

Set the data type of an input port.
void ssSetlnputPortDataType(SimStruct *S,input_T port, DTypeld id)

procedure ssSetlnputPortDataType(S : in SimStruct;
port - in Integer := 0; id : in Integer);

S
SimStruct representing an S-function block or a Simulink model.

port

Index of an input port

id

Id of data type accepted by port

Use this function in mdl InitializeSizes to set the data type of the input port

specified by port. If the input port’'s data type is inherited from the block
connected to the port, set the data type to DYNAMICALLY_TYPED.

Note The data type of an input port is double (real_T) by default.

Ada, C

Suppose that you want to create an S-function with two input ports, the first of
which inherits its data type the driving block and the second of which accepts
inputs of type int8_T. The following code sets up the data types.

ssSetlnputPortDataType(S, 0, DYNAMICALLY_TYPED)
ssSetlnputPortDataType(S, 1, SS_INT8)

ssGetlInputPortDataType

10-133

ssSetinputPortDimensioninfo

Purpose

Syntax

Arguments

10-134

Specify information about the dimensionality of an input port.

void ssSetlnputPortDimensionInfo(SimStruct *S, iInt_T port,
DimsInfo_T *dimsInfo)

S
SimStruct representing an S-function block.

port
Index of an input port

dimsiInfo

Structure of type DimslInfo_T that specifies the dimensionality of the signals
accepted by port.

The structure is defined as

typedef struct Dimsinfo_tag{
int width;/* number of elements */
int numDims/* Number of dimensions */
int *dims;/* Dimensions. */
[snip]

}DimsInfo_T;

where:

= numDims specifies the number of dimensions of the signal, e.g., 1 for a 1-D
(vector) signal or 2 for a 2-D (matrix) signal, or DYNAMICALLY_SIZED if the
number of dimensions is determined dynamically

= dims is an integer array that specifies the size of each dimension, e.g., [2 3]
for a 2-by-3 matrix signal, or DYNAMICALLY_SI1ZED for each dimension that
is determined dynamically, e.g., [2 DYNAMICALL_SIZED]

= width equals the total number of elements in the signal, e.g., 12 for a 3-by-4
matrix signal or 8 for an 8-element vector signal, or DYNAMICALLY_SIZED if
the total number of elements is determined dynamically

Note Use the macro, DECL_AND_INIT_DIMSINFO, to declare and initialize an
instance of this structure.

ssSetlnputPortDimensioninfo

Description Specifies the dimension information for port. Use this function in
mdlInitializeSizes to initialize the input port dimension information. If you
want the port to inherit its dimensions from the port to which it is connected,
specify DYNAMIC_DIMENSION as the dimsInfo for port.

Languages C

Example The following example specifies that input port 0 accepts 2-by-2 matrix signals.

DECL_AND_INIT_DIMSINFO(di);
di.numDims = 2;
int dims[2];

dims[0] = 2;
dims[1] = 2;
di.dims = &dims;
di.width = 4;

ssSetlnputPortDimensionInfo(S, 0, &di);

See Also ssSetinputPortMatrixDimensions, ssSetlnputPortVectorDimensions

10-135

ssSetinputPortFrameData

Purpose

Syntax

Arguments

Description

Languages

See Also

10-136

Specify whether a port accepts signal frames.

void ssSetlnputPortFrameData(SimStruct *S, iInt_T port,
int_T acceptsFrames)

S
SimStruct representing an S-function block.

port
Index of an input port

acceptsFrames
Type of signal accepted by port. Acceptable values are -1 (either frame or
unframed input), 0 (unframed input only), 1 (framed input only).

Use in md1SetlInputPortFrameData to specify whether a port accepts frame
data only, unframed data only, or both.

C

ssGetlnputPortFrameData, mdlSetlnputPortFrameData

ssSetlnputPortDirectFeedThrough

Purpose

C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Specify the direct feedthrough status of a block’s ports.

void ssSetlnputPortDirectFeedThrough(SimStruct *S, Int_T port,
int_T dirFeed)

procedure ssSetlnputPortDirectFeedThrough(S : in SimStruct; port :
in Integer := 0; dirFeed : in Boolean);

S
SimStruct representing an S-function block or a Simulink model.

port
Index of the input port whose direct feedthrough property is being set.

dirFeed
Direct feedthrough status of block specified by inputPortldx.

Use in mdlInitial izeSizes (after ssSetNumlnputPorts) to specify the direct
feedthrough (0 or 1) for each input port index. If not specified, the default direct
feedthrough is 0. Setting direct feedthrough to 0 for an input port is equivalent
to saying that the corresponding input port signal is not used in md10utputs or
mdIGetTimeOfNextvarHit. If it is used, you may or may not see a delay of one
simulation step in the input signal. This may cause the simulation solver to
issue an error due to simulation inconsistencies.

Ada, C

ssSetlnputPorts

10-137

ssSetlnputPortMatrixDimensions

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

10-138

Specify dimension information for an input port that accepts matrix signals.

void ssSetlnputPortMatrixDimensions(SimStruct *S, Int_T port, int_T
m, Int_T n)

S
SimStruct representing an S-function block.

port
Index of an input port

m
Row dimension of matrix signals accepted by port or DYNAMICALLY_SI1ZED

n
Column dimension of matrix signals accepted by port or DYNAMICALLY_SI1ZED

Specifies that port accepts an m-by-n matrix signal. If either dimension is
DYNAMICALLY_SIZED, the other must be DYNAMICALLY_SIZED or 1.

C

The following example specifies that input port 0 accepts 2-by-2 matrix signals.

ssSetlnputPortMatrixDimensions(S, 0, 2, 2);

ssSetlnputPortDimensionlnfo

ssSetlnputPortOffsetTime

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the offset time of an input port.

void ssSetlnputPortOffsetTime(SimStruct *S,
int_T inputPortldx, int_T period)

S
SimStruct representing an S-function block or a Simulink model.

inputPortldx
Index of the input port whose offset time is being set.

offset
Offset time

Use inmdlInitializeSizes (after ssSetNumlnputPorts) to specify the sample
time offset for each input port index. You can use this macro in conjunction with
ssSetlInputPortSampleTime if you have specified port-based sample times for
your S-function.

C

ssSetNumlnputPorts, ssSetlnputPortSampleTime

10-139

ssSetinputPortOverWritable

Purpose Specify whether an input port can be overwritten.

C Syntax void ssSetlnputPortOverWritable(SimStruct *S, int_T port, int T
isOverwritable)

Ada Syntax procedure ssSetlnputPortOverWritable(S : in SimStruct; port : in
Integer := 0; isOverwritable : in Boolean);

Arguments S

SimStruct representing an S-function block or a Simulink model.

port
Index of the input port whose overwritability is being set.

isOverwritable
Value specifying whether port is overwritable.

Description Use in mdl InitializeSizes (after ssSetNumlnputPorts) to specify whether
the input port is overwritable by an output port. The default is
isOverwritable=0, which means that the input port does not share memory
with an output port. When isOverwritable=1, the input port shares memory
with an output port.

Note ssSetlnputPortReusable and ssSetOutputPortReusable must both be
set to 0, meaning that neither port involved can have global and persistent

memory.
Languages Ada, C
See Also ssSetNumlnputPorts, ssSetlnputPortReusable,

ssSetOutputPortReusable, ssGetlnputPortBufferDstPort

10-140

ssSetlnputPortReusable

Purpose

Syntax

Arguments

Description

Specify whether where memory allocated to port is reusable.

void ssSetlnputPortReusable(SimStruct *S, int_T port, int T
isReusable)

S
SimStruct representing an S-function block or a Simulink model.

inputPortldx
Index of the input port whose reusability is being set.

isReusable
Value specifying whether port is reusable.

Use in mdlInitial izeSizes (after ssSetNumlnputPorts) to specify whether
the input port memory buffer can be reused by other signals in the model. This
macro can take on two values:

= Off (isReusable=0) — specifies that the input port is not reusable. This is the
default.

= On (isReusable=1) — specifies that the input port is reusable.

In Simulink, reusable signals share the same memory space. When this macro
is turned on, the input port signal to the S-function may be reused by other
signals in the model. This reuse results in less memory use during Simulink
simulation and more efficiency in the Real-Time Workshop generated code.

You must use caution when using this macro; you can safely turn it on only if
the S-function reads its input port signal in its md10utputs routine and does
not access this input port signal until the next call to mdl10utputs.

When an S-functions’s input port signal is reused, other signals in the model
overwrite it prior to the execution of mdlUpdate, mdIDerivatives, or other
run-time S-function routines. For example, if the S-function reads the input
port signal in its mdlUpdate routine, or reads the input port signal in the

md I0utputs routine and expects this value to be persistent until the execution
of its mdlUpdate routine, turning this attribute on is incorrect and will lead to
erroneous results.

The default setting, off, is safe. It prevents any reuse of the S-function input
port signals, which means that the inport port signals have the same value in

10-141

ssSetlnputPortReusable

Languages

See Also

10-142

any run-time S-function routine during a single execution of the simulation
loop.

Note that this is a suggestion and not a requirement for the Simulink engine.
If Simulink cannot resolve buffer reuse in local memory, it resets value=0 and
places the input port signals into global memory

C

ssSetNumlnputPorts, ssSetlnputPortOverwritable,
ssSetOutputPortReusable

ssSetlnputPortRequiredContiguous

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify that the signal elements entering a port must be contiguous.
void ssSetlnputPortRequiredContiguous(SimStruct *S, int_T port)

S
SimStruct representing an S-function block or a Simulink model.

port
Index of an input port

Specifies that the signal elements entering the specified port must occupy
contiguous areas of memory. This allows a method to access the elements of the
signal simply by incrementing the signal pointer returned by
ssGetlInputPortSignal. The S-function can set the value of this attribute as
early as in the mdl InitializeSizes method and at the latest in the
mdISetWorkwidths method.

Note The default setting for this flag is false. Hence, the default method for
accessing the input signals is ssGetlnputSignalPtrs.

C, C++

mdlInitializeSizes, mdlSetWorkWidths, ssGetlnputPortSignal,
ssGetlnputPortSignalPtrs

10-143

ssSetinputPortSampleTime

Purpose

Syntax

Arguments

Description

Languages

See Also

10-144

Specify the sample time of an input port.
ssSetlnputPortSampleTime(SimStruct *S, inputPortldx,period)
S

SimStruct representing an S-function block or a Simulink model.

inputPortldx
Index of the input port whose sample time is being set.

period

Sample period.

Use inmdlInitializeSizes (after ssSetNumlnputPorts) to specify the sample
time period as continuous or as a discrete value for each input port. Input port
index numbers start at 0 and end at the total number of input ports minus 1.
You should use this macro only if you have specified port-based sample times.

C

ssSetNumlnputPorts, ssSetlnputPortOffsetTime

ssSetlnputPortSampleTimelndex

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the sample time index of an input port.

void ssSetlnputPortSampleTimelndex(SimStruct *S,
int_T inputPortldx, int_T sampleTimeldx)

S
SimStruct representing an S-function block or a Simulink model.

inputPortldx
Index of the input port whose sample time index is being set.

sampleTimeldx
Sample time index.

Use inmdl InitializeSizes (after ssSetNumlnputPorts) to specify the index of
the sample time for the port to be used in mdl10utputs and mdl0utputs when
checking for sample hits.

Note This should only be used when the PORT_BASED_SAMPLE_TIMES has been
specified for ssSetNumSampleTimes in mdlInitializeSizes.

C, C++

ssGetlnputPortSampleTimelndex, mdlInitializeSizes,
ssSetNumlnputPorts, mdlOutputs, mdlOutputs

10-145

ssSetlnputPortVectorDimension

Purpose Specify dimension information for an input port that accepts vector signals.

Syntax void ssSetlnputPortVectorDimension(SimStruct *S, int_T port, int_T
w)

Arguments S

SimStruct representing an S-function block.

port
Index of an input port

W
Width of vector or DYNAMICALLY_SI1ZED

Description Specifies that port accepts a w-element vector signal.

Note This macro and ssSetlInputPortWidth are functionally identical.

Languages C
Example The following example specifies that input port 0 accepts an 8-element matrix
signal.

ssSetlInputPortVectorDimension(S, 0, 8);

See Also ssSetlnputPortDimensioninfo, ssSetlnputPortWidth

10-146

ssSetlnputPortWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Specify the number of input ports that a block has.
void ssSetlnputPortWidth(SimStruct *S, int_T port, Int_T width)

procedure ssSetlnputPortWidth (S : in SimStruct;
port : in Integer := 0; width : in Integer);

S
SimStruct representing an S-function block or a Simulink model.

port
Index of the input port whose width is being set.

width
Width of input port.

Use in mdlInitial izeSizes (after ssSetNumlnputPorts) to specify a nonzero
positive integer width or DYNAMICALLY_SI1ZED for each input port index starting
at Or

Ada, C

ssSetNumlnputPorts, ssSetOutputPortWidth

10-147

ssSetModeVectorValue

Purpose Set an element of a block’s mode vector.
Syntax void ssSetModeVectorValue(SimStruct *S, int_T element, int_T value)
Arguments S

SimStruct representing an S-function block.

element
Index of a mode vector element

value
Mode vector value

Description Sets the specified mode vector element to the specified value.
Languages C, C++
See Also ssGetModeVectorValue, ssGetModeVector

10-148

ssSetNumContStates

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

Specify the number of continuous states that a block has.
void ssSetNumContStates(SimStruct *S, int_T n)
procedure ssSetNumContStates(S : in SimStruct; n : in Integer);

S
SimStruct representing an S-function block.

n
Number of continuous states to be set for the block represented by S.

Use in mdI InitializeSizes to specify the number of continuous states as 0, a
positive integer, or DYNAMICALLY_SI1ZED. If you specify DYNAMICALLY_SI1ZED, you
can specify the true (positive integer) width in mdISetWorkwidths, otherwise
the width to is the width of the signal passing through the block. If your
S-function has continuous states, it needs to return the derivatives of the states
in mdIDerivatives so that the solvers can integrate them. Continuous states
are logged if the States option is checked on the Workspace 1/0O pane of the
Simulation Parameters dialog box.

Ada, C

ssSetNumDiscStates, ssGetNumContStates

10-149

ssSetNumDiscStates

Purpose

Syntax

Arguments

Description

Languages

See Also

10-150

Specify the number of discrete states that a block has.

ssSetNumDiscStates(SimStruct *S, int_T nDiscStates)

S
SimStruct representing an S-function block.

nDiscStates
Number of discrete states to be set for the block represented by S.

Use in mdlInitializeSizes to specify the number of discrete states as 0, a
positive integer, or DYNAMICALLY_SI1ZED. If you specify DYNAMICALLY_SI1ZED, you
can specify the true (positive integer) width in mdISetWorkwidths, otherwise
the width used is the width of the signal passing through the block. If your
S-function has discrete states, it should return the next discrete state (in place)
in mdlUpdate. Discrete states are logged if the States is checked on the
Workspace 1/0 page of the Simulation Parameters dialog box.

C

ssSetNumContStates, ssGetNumDiscStates

ssSetNumDWork

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the number of data type work vectors used by a block.

void ssSetNumDWork(SimStruct *S, int_T nDWork)

S
SimStruct representing an S-function block.

DWork
Number of data type work vectors.

Use inmdl InitializeSizes to specify the number of data type work vectors as
0, a positive integer, or DYNAMICALLY_SIZED. If you specify DYNAMICALLY_SI1ZED,
you can specify the true (positive integer) number of vectors in
mdISetWorkWidths.

You can specify the size and data type of each work vector, using the macros
ssSetDWorkWidth and ssSetDWorkDataType, respectively. You can also specify
that the work vector holds complex values, using ssSetDWorkComplexSignal.
C, C++

ssGetNumDWork, ssSetDWorkWidth, ssSetDWorkDataType,
ssSetDWorkComplexSignal

10-151

ssSetNuminputPorts

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

10-152

Specify the number of input ports that a block has.
void ssSetNumlnputPorts(SimStruct *S, int_T nlnputPorts)

procedure ssSetNumlnputPorts(S : in SimStruct;
ninputPorts : in Integer);

S
SimStruct representing an S-function block.

ninputPorts
Number of input ports on the block represented by S. Must be a nonnegative
integer.

Used in mdl InitializeSizes to set to the number of input ports to a
nonnegative integer. It should be invoked using

if (IssSetNumlnputPorts(S,nInputPorts)) return;

where ssSetNumlInputPorts returns O if nlnputPorts is negative or an error
occurred while creating the ports. When this occurs, Simulink displays an
error.

Ada, C

ssSetlnputPortWidth, ssSetNumOutputPorts

ssSetNumIWork

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the size of a block’s integer work vector.

void ssSetNumlWork(SimStruct *S, int_T nlWork)

S
SimStruct representing an S-function block.

nlWork
Number of elements in the integer work vector.

Use in mdlInitial izeSizes to specify the number of int_T work vector
elements as 0, a positive integer, or DYNAMICALLY_SI1ZED. If you specify
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
mdISetWorkWidths, otherwise the width used is the width of the signal passing
through the block.

C

ssSetNumRWork, ssSetNumPWork

10-153

ssSetNumModes

Purpose

Syntax

Arguments

Description

Languages

See Also

10-154

Specifies the size of the block’s mode vector.

ssSetNumModes(SimStruct *S,nModes)

S
SimStruct representing an S-function block.

nModes
Size of the mode vector for the block represented by S. Valid values are 0, a
positive integer, or DYNAMICALLY_SIZED.

Sets the size of the block’s mode vector to nModes. If nModes is
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
mdISetWorkWidths, otherwise the width used is the width of the signal passing
through the block. Use this macro in mdl Initial izeSizes to specify the
number of int_T elements in the mode vector. Simulink allocates the mode
vector and initializes its elements to 0. If the default value of 0 is not
appropriate, you can set the elements of the array to other initial values in
mdl InitializeConditions. Use ssGetModeVector to access the mode vector

The mode vector, combined with zero-crossing detection, allows you to create
blocks that have distinct operating modes, depending on the current values of
input or output signals. For example, consider a block that outputs the absolute
value of its input. Such a block operates in two distinct modes, depending on
whether its input is positive or negative. If the input is positive, the block
outputs the input unchanged. If the input is negative, the block outputs the
negative of the input. You can use zero-crossing detection to detect when the
input changes sign and update the single-element mode vector accordingly (for
example, by setting its element to O for negative input and 1 for positive input).
You can then use the mode vector in mdl0utputs to determine the mode in
which the block is currently operating.

C

ssGetNumModes, ssGetModeVector

ssSetNumNonsampledZCs

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the number of states for which a block detects zero crossings that occur
between sample points.

ssSetNumNonsampledZCs(SimStruct *S, nNonsampledZCs)

S
SimStruct representing an S-function block.

nNonsampledZCs
Number of nonsampled zero crossings that a block detects.

Use inmdl InitializeSizes to specify the number of states for which the block
detects nonsampled zero crossings (real_T) as 0, a positive integer, or
DYNAMICALLY_SIZED. If you specify DYNAMICALLY_SIZED, you can specify the
true (positive integer) width in md1SetWorkWidths, otherwise the width to be
used will be the width of the signal passing through the block.

C

ssSetNumModes

10-155

ssSetNumOutputPorts

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

10-156

Specify the number of output ports that a block has.
void ssSetNumlnputPorts(SimStruct *S, int_T nOutputPorts)

procedure ssSetNumOutputPorts(S : in SimStruct;
nOutputPorts : in Integer);

S
SimStruct representing an S-function block.

nOutputPorts
Number of output ports on the block represented by S. Must be a nonnegative
integer.

Use in mdlInitializeSizes to set to the number of output ports to a
nonnegative integer. It should be invoked using

if (IssSetNumOutputPorts(S,nOutputPorts)) return;

where ssSetNumOutputPorts returns a O if nOutputPorts is negative or an
error occurred while creating the ports. When this occurs, and you return out
of your S-function, Simulink will display an error message.

Ada, C

ssSetlnputPortWidth, ssSetNumlnputPorts

ssSetNumPWork

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the size of a block’s pointer work vector.

void ssSetNumPWork(SimStruct *S, int_T nPWork)

S
SimStruct representing an S-function block.

nPWork
Number of elements to be allocated to the pointer work vector of the block
represented by S.

Use in mdlInitial izeSizes to specify the number of pointer (void *) work
vector elements as 0, a positive integer, or DYNAMICALLY_SI1ZED. If you specify
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
mdISetWorkWidths, otherwise the width used is the width of the signal passing
through the block.

C

ssSetNumlWork, ssSetNumPWork

10-157

ssSetNumRunTimeParams

Purpose
Syntax

Arguments

Description

Languages

See Also

10-158

Specify the number of run-time parameters created by this S-function.
void ssSetNumRunTimeParams(S, int_ T num)

S
SimStruct representing an S-function block.

num
Number of run-time parameters

Use this function in md1SetWorkWidths to specify the number of run-time
parameters created by this S-function.

C

mdISetWorkWidths, ssGetNumRunTimeParams, ssSetRunTimeParamlnfo

ssSetNumRWork

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the size of a block’s floating-point work vector.

void ssSetNumRWork(SimStruct *S, int_T nRWork)

S
SimStruct representing an S-function block.

nRWork
Number of elements in the floating-point work vector.

Use in mdlInitial izeSizes to specify the number of real_T work vector
elements as 0, a positive integer, or DYNAMICALLY_SI1ZED. If you specify
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
mdISetWorkWidths, otherwise the width used is the width of the signal passing
through the block.

C

ssSetNumlWork, ssSetNumPWork

10-159

ssSetNumSampleTimes

Purpose Specify the number of sample times that an S-function block has.
Syntax void ssSetNumSampleTimes(SimStruct *S, int_T nSampleTimes)
Arguments S

SimStruct representing an S-function block.

nSampleTimes
Number of sample times that S has.

Description Use in mdl InitializeSizes to set the number of sample times S has. This
must be a positive integer greater than 0.

Languages C

See Also ssGetNumSampleTimes

10-160

ssSetNumSFcnParams

Purpose

Syntax

Arguments

Description
Languages

See Also

Specify the number of parameters that an S-function block has.

ssSetNumSFcnParams(SimStruct *S, int_T nSFcnParams)

S
SimStruct representing an S-function block.

nSFcnParams
Number of parameters that S has.

Use in mdlInitial izeSizes to set the number of S-function parameters.
C

ssGetSFcnNumParams

10-161

ssSetOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

10-162

Set the offset time of a block.
ssSetOffsetTime(SimStruct *S, st_index, period)

S
SimStruct representing an S-function block.

st_index
Index of sample time whose offset is to be set.

offset
Offset of the sample time specified by st_index

Use this macro in mdl Initial izeSizes to specify the offset of the sample time
where st_index starts at O.

C

ssSetSampleTime, ssSetlnputPortOffsetTime, ssSetOutputPortOffsetTime

ssSetOptions

Purpose
Syntax

Arguments

Description

Specify S-function options.
void ssSetOptions(SimStruct *S, uint_T options)

S
SimStruct representing an S-function block.

options
Options

Use in mdlInitial izeSizes to specifiy S-function options (see below). The
options must be joined using the OR operator. For example:

ssSetOption(S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_DISCRETE_VALUED_OUTPUT));

S-Function Options
An S-function can specify the following options, using ssSetOptions:

= SS_OPTION_EXCEPTION_FREE_CODE
If your S-function does not use mexErrMsgTxt, mxCal loc, or any other
routines that can throw an exception when called, you can set this option for
improved performance.

« SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE
Similar to SS_OPTION_EXCEPTION_FREE_CODE except it only applies to the
“run-time” routines: md1GetTimeOfNextVarHit, mdl0utputs, mdlUpdate, and
mdIDerivatives.

= SS_OPTION_DISCRETE_VALUED OUTPUT
Specify this if your S-function has discrete valued outputs. This is checked
when your S-function is placed within an algebraic loop. If your S-function
has discrete valued outputs, then its outputs will not be assigned algebraic
variables.

= SS_OPTION_PLACE_ASAP

Used to specify that your S-function should be placed as soon as possible.
This is typically used by devices connecting to hardware.

10-163

ssSetOptions

10-164

= SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION

Used to specify that the input to your S-function input ports can be either 1
or the size specified by the port, which is usually referred to as the block
width.

= SS _OPTION_DISALLOW_CONSTANT_SAMPLE_TIME
Use to disable an S-function block from inheriting a constant sample time.
= SS_OPTION_ASYNCHRONOUS
This option applies only to S-functions that have 0 or 1 input ports and 1
output port. The output port must be configured to perform function calls on
every element. If any of these requirements are not met, the

SS_OPTION_ASYNCHRONOUS is ignored. Use this option when driving
function-call subsystems that will be attached to interrupt service routines.

= SS_OPTION_ASYNC_RATE_TRANSITION
Use this when your S-function converts a signal from one rate to another
rate.

<« SS_OPTION_RATE_TRANSITION
Use this option when your S-function is behaving as a unit delay or a ZOH.
This macro support these two operations only. It identifies a unit delay by the

presence of mdlUpdate; if ndlUpdate is absent, the operation is taken to be
ZOH.

« SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED

Use this when you have registered multiple sample times
(ssSetNumSampleTimes > 1) to specify the rate at when each input and
output port is running at. The simulation engine needs this information
when checking for illegal rate transitions.

= SS_OPTION_SFUNCTION_INLINED_FOR_RTW

Set this if you have a . tlc file for your S-function and do not have a mdIRTW
method. Setting option has no effect if you have a mdIRTW method.

= SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL

Indicates that the S-function can handle dynamically dimensioned signals.
See mdISetlInputPortDimensions, mdlSetOutputPortDimensions, or
mdlSetDefaultPortDimensions for more information.

ssSetOptions

= SS_OPTION_FORCE_NONINLINED_FCNCALL

Use this flag if the block requires that all function-call subsystems that it
calls should be generated as procedures instead of possibly being generated
as inlined code.

« SS_OPTION_USE_TLC_WITH_ACCELERATOR

Use this to force the Accelerator to use the TLC inlining code for a S-function
which will speed up execution of the S-function. By default, the Accelerator
will use the mex version of the S-function even though a TLC file for the
S-function exists. This option should not be set for device driver blocks (A/D)
or when there is an incompatability between running the mex Start/
InitializeConditions functions together with the TLC Outputs/Update/
Derivatives.

= SS_OPTION_SIM_VIEWING_DEVICE
This S-function is a SimViewingDevice. As long as it meets the other
requirement for this type of block (no states, no outputs, etc), it will be
considered to be an external mode block (show up in the external mode GUI
and no code is generated for it). During an external mode simulation, this
block is run on the host only.

= SS_OPTION_CALL_TERMINATE_ON_EXIT
This option allows S-function authors to better manage the data cached in
run-time parameters and UserData. Setting this option guarantees that the

mdITerminate functioniscalled ifmdlInitializeSizes iscalled. This means
that mdITerminate is called:

- When a simulation ends.

Note that it does not matter if the simulation failed and at what stage the
simulation failed. Therefore, if the mdI1SetWorkwidths of some block errors
out, the model’s other blocks have a chance to free the memory during a
call to mdITerminate.

- Every time an S-function block is destroyed.
- If the user is editing the S-function graphically.

If this option is not set, mdITerminate is called only if at least one of the
blocks has had its mdlStart called.

10-165

ssSetOptions

« SS_OPTION_REQ_ INPUT_SAMPLE_TIME_MATCH

Use this to option to specify that the input signal sample time(s) match the
sample time assigned to the block input port. For example,

S-function
src(0-1) ® Pport-based Ts = 1

generates an error if this option is set. If the block (or input port) sample
time is inherited, then there will be no error generated.

Languages C, C++

10-166

ssSetOutputPortComplexSignal

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

Set the numeric type (real or complex) of an output port.

void ssSetOutputPortComplexSignal (SimStruct *S, input_T port,
CSignal_T csig)

S
SimStruct representing an S-function block or a Simulink model.

port
Index of an output port

csignal

Numeric type of the signals emitted by port. VValid values are COMPLEX_NO (real
signal), COMPLEX_YES (complex signal), COMPLEX_INHERITED (dynamically
determined).

Use this function in mdl Initial izeSizes to initialize input port signal type. If
the numeric type of the input port is determined dynamically, e.g., by a
parameter setting, set the numeric type to COMPLEX_INHERITED. The default
numeric type of an output port is real.

C

Assume that an S-function has three output ports. The first output port emits
real (non-complex) signals. The second input port emits a complex signal. The
third port emits signals of a type determined by a parameter setting. The
following example specifies the correct numeric type for each port.

ssSetOutputPortComplexSignal (S, 0, COMPLEX_NO)
ssSetOutputPortComplexSignal (S, 1, COMPLEX_YES)
ssSetOutputPortComplexSignal (S, 2, COMPLEX_INHERITED)

ssGetOutputPortComplexSignal

10-167

ssSetOutputPortDataType

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

Example

See Also

10-168

Set the data type of an output port.
void ssSetOutputPortDataType(SimStruct *S, input_T port, DTypeld id)

procedure ssSetOutputPortDataType(S : in SimStruct;
port : in Integer := 0; id : in Integer);

S
SimStruct representing an S-function block or a Simulink model.

port
Index of an input port

id
Id of data type accepted by port

Use this function inmdl Initial izeSizes to set the data type of the output port
specified by port. If the input port’'s data type is determined dynamically, for
example, from the data type of a block parameter, set the data type to
DYNAMICALLY_TYPED

Note The data type of an output port is double (real_T) by default.

Ada, C

Suppose that you want to create an S-function with two input ports, the first of
which gets its data type from a block parameter and the second of which
outputs signals of type intl16_T. The following code sets up the data types.

ssSetlInputPortDataType(S, 0, DYNAMICALLY_TYPED)
ssSetlInputPortDataType(S, 1, SS_INT16)

ssGetOutputPortDataType

ssSetOutputPortDimensioninfo

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

Specify information about the dimensionality of an output port.

void ssSetlnputPortDimensionInfoSimStruct *S, iInt_T port,
DimsInfo_T *dimsInfo)

S
SimStruct representing an S-function block.

port
Index of an output port

dimsinfo
Structure of type DimsInfo_T that specifies the dimensionality of the signals
emitted by port

See ssSetlnputPortDimensionInfo for a description of this structure.
Specifies the dimension information for port. Use this function in
mdlInitializeSizes to initialize the output port dimension info. If you want

the port to inherit its dimensionality from the block to which it is connected,
specify DYNAMIC_DIMENSION as the dimsInfo for port.

C

The following example specifies that input port 0 accepts 2-by-2 matrix signals.

DECL_AND_INIT_DIMSINFO(di);
di.numDims = 2;
int dims[2];

dims[0] = 2;
dims[1] = 2;
di.dims = &dims;
di.width = 4;

ssSetOutputPortDimensioninfo(S, 0, &di);

ssSetlnputPortDimensionlnfo

10-169

ssSetOutputPortFrameData

Purpose

Syntax

Arguments

Description

Languages

See Also

10-170

Specify whether a port outputs framed data.

void ssSetOutputPortFrameData(SimStruct *S, int_T port,
int_T outputsFrames)

S
SimStruct representing an S-function block.

port
Index of an output port

outputsFrames
Type of signal output by port. Acceptable values are -1 (either frame or
unframed input), 0 (unframed input only), 1 (framed input only).

Use in md1SetlInputPortFrameData to specify whether an output port issues
frame data only, unframed data only, or both.

C

ssGetOutputPortFrameData, mdlSetlnputPortFrameData

ssSetOutputPortMatrixDimensions

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

Specify dimension information for an output port that emits matrix signals.

void ssSetOutputPortMatrixDimensions(SimStruct *S, Int_T port,
int_ T m, Iin_T n)

S
SimStruct representing an S-function block.

port
Index of an input port

m
Row dimension of matrix signals emitted by port or DYNAMICALLY_SIZED

n
Column dimension of matrix signals emitted by port or DYNAMICALLY_SIZED

Specifies that port emits an m-by-n matrix signal. If either dimension is
DYNAMICALLY_SIZED, the other must be DYNAMICALLY_SIZED or 1.

C

The following example specifies that input port 0 emits 2-by-2 matrix signals.

ssSetOutputPortDimensioninfo(S, 0, 2, 2);

ssSetOutputPortDimensioninfo

10-171

ssSetOutputPortOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

10-172

Specify the offset time of an output port.
ssSetOutputPortOffsetTime(SimStruct *S,outputPortldx,offset)
S

SimStruct representing an S-function block.

outputPortldx
Index of the output port whose sample time is being set.

period
Sample time of output port.

Use in mdlInitializeSizes (after ssSetNumOutputPorts) to specify the
sample time offset value for each output port index. This should only be used if
you have specified the S-function’s sample times as port-based.

C

ssSetNumOutputPorts, ssSetOutputPortSampleTime

ssSetOutputPortReusable

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify that an output port is reusable.
ssSetOutputPortReusable(SimStruct *S,outputPortldx, isReusable)

S
SimStruct representing an S-function block.

outputPortldx
Index of the output port whose reusability is being set.

isReusable
Value specifying reusability of port

Use in mdlInitial izeSizes (after ssSetNumOutputPorts) to specify whether
output ports have a test point. This macro can take on two values:

= Off (isReusable=0) — specifies that the output port is not reusable. This is
the default.

= On (isReusable=1) — specifies that the output port is reusable.

In Simulink, reusable signals share the same memory space. When this macro
is turned on, the output port signal to the S-function may be reused by other
signals in the model. This reuse results in less memory use during Simulink
simulation and more efficiency in the Real-Time Workshop generated code.

When you mark an output port as reusable, your S-function must update the
output once in mdl0utputs. It cannot expect the previous output value to be
persistent.

By default, the output port signals are not reusable. This forces Simulink’s
simulation engine (and the Real-Time Workshop) to allocate global memory for
these output port signals. Hence this memory is only written to by your
S-function and persists between model execution steps.

C

ssSetNumOutputPorts, ssSetlnputPortReusable

10-173

ssSetOutputPortSampleTime

Purpose
Syntax

Arguments

Description

Languages

See Also

10-174

Specify the sample time of an output port.
ssSetOutputPortSampleTime(SimStruct *S,outputPortldx,period)
S

SimStruct representing an S-function block.

outputPortldx
Index of the output port whose sample time is being set.

period
Sample time of output port.

Use in mdlInitializeSizes (after ssSetNumOutputPorts) to specify the
sample time period as continuous or as a discrete value for each output port
index. This should only be used if you have specified port-based sample times.

C

ssSetNumOutputPorts, ssSetOutputPortOffsetTime

ssSetOutputPortVectorDimension

Purpose

Syntax

Arguments

Description

Example

Languages

See Also

Specify dimension information for an output port that emits vector signals.

void ssSetOutputPortVectorDimension(SimStruct *S, iInt_T port, int_T
w)

S
SimStruct representing an S-function block.

port
Index of an output port

W
Width of vector or DYNAMICALLY_SIZED

Specifies that port emits a w-element vector signal.

Note This macro and ssSetOutputPortWidth are functionally identical.

The following example specifies that output port 0 emits an 8-element matrix
signal.

ssSetOutputPortVectorDimension(S, 0, 8);
C

ssSetOutputPortDimensionInfo, ssSetOutputPortWidth

10-175

ssSetOutputPortwWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

10-176

Specify the width of an output port.
void ssSetOutputPortWidth(SimStruct *S, Int_T port, int_T width)

procedurw ssSetOutputPortWidth(S : in SimStruct;
port : in Integer := 0; Width : in Integer);

S
SimStruct representing an S-function block.

port
Index of the output port whose width is being set.

width
Width of output port.

Use in mdlInitializeSizes (after ssSetNumOutputPorts) to specify a nonzero
positive integer width or DYNAMICALLY_SI1ZED for each output port index
starting at 0.

Ada, C

ssSetNumOutputPorts, ssSetlnputPortWidth

ssSetParameterName

Purpose

Syntax

Arguments

Description

Languages

Set the name of a parameter.

procedure ssSetParameterName (S : in SimStruct; Parameter :

Integer; Name : in String);
S
SimStruct representing an S-function block.

Parameter
Index of a parameter

Name
Name of the parameter

Sets the name of Parameter to Name.

Ada

in

10-177

ssSetParameterTunable

Purpose

Syntax

Arguments

Description

Languages

10-178

Set the tunability of a parameter.

procedure ssSetParameterTunable (S : in SimStruct; Parameter :

Integer; IsTunable : in Boolean);

S
SimStruct representing an S-function block.

Parameter
Index of a parameter

IsTunable
true indicates that the parameter is tunable.

Sets the tunability of Parameter to the value of IsTunable.

Ada

in

ssSetPlacementGroup

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the name of the placement group of a block.
void ssSetPlacementGroup(SimStruct *S, const char *groupName)

S

SimStruct representing an S-function block. The block must be either a source
block (i.e., a block without input ports) or a sink block (i.e., a block without
output ports).

groupName
Name of placement group name of the block represented by S.

Use this macro to specify the name of the placement group to which the block
represented by S belongs. S-functions that share the same placement group
name are placed adjacent to each other in the block execution order list for the
model. This macro should be invoked in mdl InitializeSizes.

Note This macro is typically used to create Real-Time Workshop device
driver blocks.

C

ssGetPlacementGroup

10-179

ssSetRunTimeParaminfo

Purpose

Syntax

Arguments

Description

10-180

Specify the attributes of a run-time parameter.

void ssSetRunTimeParamlnfo(SimStruct *S, int_T param, ssParamRec
*info)

S
SimStruct representing an S-function block.

param
Index of a run-time parameter

Use this function in md1SetWorkWidths or mdlProcessParameters to specify
information about a run-time parameter. Use a ssParamRec structure to pass
the parameter attributes to the function.

ssParamRec Structure
The simstruc.h macro defines this structure as follows.

typedef struct ssParamRec_tag {
const char *name;
int_ T nDimensions;
int_ T *dimensions;
DTypeld dataTypeld;
boolean_T complexSignal;

void *data;

const void *dataAttributes;

int T nDIgParamlIndices;

int T *dlgParamlndices;

TransformedFlag transformed; /* Transformed status */
boolean_T outputAsMatrix; /* Write out parameter as a

vector (false)
* [default] or a matrix (true)
*/
} ssParamRec;

The record contains the following fields.

name. Name of the parameter. This must point to persistent memory. Do not
set to a local variable (static char name[32] or strings hame are okay).

nDimensions. Number of dimensions that this parameter has

ssSetRunTimeParamIinfo

dimensions. Array giving the size of each dimension of the parameter

dataTypeld. Data type of the parameter. For built-in data types, see
BuiltInDTypeld in simstruc_types.h.

complexSignal. Specifies whether this parameter has complex numbers (TRUE) or
real numbers (FALSE) as values.

data. Pointer to value of this run-time parameter. If the parameter is a vector
or matrix or a complex number, this field points to an array of values
representing the parameter elements. Complex Simulink signals are store
interleaved. Likewise complex run-time parameters must be stored
interleaved. Note that mxArrays store the real and complex parts of complex
matrices as two separate contiguous pieces of data instead of interleaving the
real and complex parts.

dataAttributes. The data attributes pointer is a persistent storage location where
the S-function can store additional information describing the data and then
recover this information later (potentially in a different function).

nDIgParamindices.
Number of dialog parameters used to compute this run-time parameter.

digParamindices. Indices of dialog parameters used to compute this run-time
parameter

transformed. Specifies the relationship between this run-time parameter and
the dialog parameters specified by dlgParamindices. This field may have any
of the following values defined by TransformFlag in simstruc.h.

= RTPARAM_NOT_TRANSFORMED
Specifies that this run-time parameter corresponds to a single dialog
parameter (nDialogParamlndices is one) and has the same value as the
dialog parameter.

= RTPARAM_TRANSFORMED
Specifies that the value of this run-time parameter depends on the values of
multiple dialog parameters (nDialogParamindices > 1) or that this
run-time parameter corresponds to one dialog parameter but has a different
value or data type.

10-181

ssSetRunTimeParaminfo

Languages

See Also

10-182

= RTPARAM_MAKE_TRANSFORMED_TUNABLE

Specifies that this run-time parameter corresponds to a single tunable dialog
parameter (nDialogParamindices is one) and that the run-time parameter’s
value or data type differs from the dialog parameter’s. During code
generation, Real-Time Workshop writes the data type and value of the
run-time parameter (rather than the dialog parameter) out to the Real-Time
Workshop file. For example, suppose that the dialog parameter contains a
workspace variable, k, of type double and value 1. Further, suppose the
S-function sets the data type of the corresponding run-time variable to int8
and the run-time parameter’s value to 2. In this case, during code generation,
the Real-Time Workshop writes k out to the Real-Time Workshop file as an
int8 variable with an initial value of 2.

outputAsMatrix. Specifies whether to write the value(s) of this parameter out to
the model . rtw file has a matrix (TRUE) or as a vector (FALSE).

C

md1SetWorkWidths, mdIProcessParameters, ssGetNumRumTimeParams,
ssGetRunTimeParamlnfo

ssSetSampleTime

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Set the period of a sample time.
void ssSetSampleTime(SimStruct *S, st_index, time_T period)

procedure ssSetSampleTime(S : in SimStruct; Period : in time_T;
st_index : in time_T := 0.0);

S
SimStruct representing an S-function block.

st_index
Index of sample time whose period is to be set.

period
Period of the sample time specified by st_index

Use this macro in mdl InitializeSizes to specify the “period” of the sample
time where st_index starts at 0.

Ada, C

ssGetSampleTime, ssSetlnputPortSampleTime, ssSetOutputPortSampleTime,
ssSetOffsetTime

10-183

ssSetSFcnParamNotTunable

Purpose
Syntax

Arguments

Description

Languages

See Also

10-184

Make a block parameter untunable.
void ssSetSFcnParamNotTunable(SimStruct *S, Int_T index)

S
SimStruct representing an S-function block.

index
Index of parameter to be made untunable.

Use this macro in mdlInitializeSizes to specify that a parameter doesn'’t
change during the simulation, where index starts at 0 and is less than
ssGetSFcnParamsCount(S). This will improve efficiency and provide error
handling in the event that an attempt is made to change the parameter.

Note This macro is obsolete. It is provided only for compatibility with
S-functions created with earlier versions of Simulink

C

ssSetSFcnParamTunable, ssGetSFcnParamsCount

ssSetSFcnParamTunable

Purpose

Syntax

Arguments

Description

Languages

See Also

Make a block parameter tunable.

void ssSetSFcnParamTunable(SimStruct *S, Int_T param,
int_T isTunable)

S
SimStruct representing an S-function block.

param
Index of parameter

isTunable
Valid values are 1 (tunable) or 0 (not tunable)

Use this macro in mdl Initial izeSizes to specify whether a user can change a
dialog parameter during the simulation. The parameter index starts at 0 and
is less than ssGetSFcnParamsCount(S). This improves efficiency and provide
errors handling in the event that an attempt is made to change the parameter.

Note Dialog parameters are tunable by default. However, an S-function
should declare the tunability of all parameters, whether tunable or not, to
avoid programming errors. If the user enables the simulation diagnostic,
S-function upgrade needed, Simulink issues the diagnostic whenever it
encounters an S-function that fails to specify the tunability of all its
parameters.

C

ssGetSFcnParamsCount

10-185

ssSetSolverNeedsReset

Purpose
Syntax

Arguments

Description

Languages

10-186

Ask Simulink to reset the solver.
ssSetSolverNeedsReset(SimStruct *S)

S
SimStruct representing an S-function block or a Simulink model.

Use this macro to inform the solvers that the equations that are being
integrated have changed. This macro differs slightly in format from the other
macros in that you don't specify a value; this was by design so that invoking it
always requests a reset.

C

ssSetStopRequested

Purpose
Syntax

Arguments

Description

Languages

See Also

Set the simulation stop requested flag.
ssSetStopRequested(SimStruct *S, val)

S
SimStruct representing an S-function block or a Simulink model.

val
Boolean value (int_T) specifying whether stopping the simulation has been
requested (1) or not (0).

Sets the simulation stop requested flag to val. If val is not zero, Simulink halts
the simulation at the end of the current time step.

C

ssGetStopRequested

10-187

ssSetTNext

Purpose
Syntax

Arguments

Description

Languages

See Also

10-188

Set the time of the next sample hit.
void ssSetTNext(SimStruct *S, time_T tnext)

S
SimStruct representing an S-function block

tnext
Time of the next sample hit

A discrete S-function with a variable sample time should use this macro in
md1GetTimeOfNextVarHit to specify the time of the next sample hit.

C

ssGetTNext, ssGetT, mdlGetTimeOfNextVarHit

ssSetUserData

Purpose
Syntax

Arguments

Description
Languages

See Also

Specify user data.
void ssSetUserData(SimStruct *S, void * data)

S
SimStruct representing an S-function block.

data
User data

Specifies user data.
C, C++

ssGetUserData

10-189

ssSetVectorMode

Purpose Specify the vector mode that an S-function supports.
Syntax void ssSetVectorMode(SimStruct *S, ssVectorMode mode)
Arguments S

SimStruct representing an S-function block.

mode
vector mode

Description Specifies the types of vector-like signals that an S-function block’s input and
output ports support. Simulink uses this information during signal dimension
propagation to check the validity of signals connected to the block or emitted
by the block. The enumerate type, ssVectorMode, defines the set of values that
mode can have.

Mode Value Signal Dimensionality Supported
SS_UNKNOWN_MODE Unknown
SS 1 D OR_COL_VECT 1-D (vector) or single-column 2-D (column
vector)
SS 1 D OR_ROW_VECT 1-D or single-row 2-D (row vector) signals
SS_ 1 D ROW_OR_COL_VECT Vector or row or column vector
SS 1 D VECT Vector
SS_COL_VECT Column vector
SS_ROW_VECT Row vector
Languages C
Example See simulink/src/sfun_bitop.c for examples that use this macro.

10-190

ssUpdateAllTunableParamsAsRunTimeParams

Purpose

Syntax
Arguments

Description

Languages

See Also

Updates the values of run-time parameters to be the same as those of the
corresponding tunable dialog parameters.

void ssUpdateAllTunableParamsAsRunTimeParams(SimStruct *S)

S

Use this macro in the S-function’s mdlIProcessParameters method to update
the values of all run-time parameters created by the

ssRegAl ITunableParamsAsRunTimeParam macro.

C

mdlProcessParameters, ssUpdateRunTimeParaminfo,
ssRegAl ITunableParamsAsRunTimeParams

10-191

ssUpdateRunTimeParamData

Purpose
Syntax

Arguments

Description

Languages

See Also

10-192

Updates the value of a run-time parameter.
void ssUpdateRunTimeParamInfo(SimStruct *S, int_T param, void *data)
S

SimStruct representing an S-function block.

param
Index of a run-time parameter

data
New value of the parameter

Use this macro in the S-function’s mdlIProcessParameters method to update
the value of the run-time parameter specified by param.

C
mdIProcessParameters, ssGetRunTimeParamlnfo,

ssUpdateAl ITunableParamsAsRunTimeParams,
ssRegAl ITunableParamsAsRunTimeParams

ssUpdateRunTimeParamlinfo

Purpose

Syntax

Arguments

Description

Languages

See Also

Updates the attributes of a run-time parameter.

void ssUpdateRunTimeParamInfo(SimStruct *S, int_T param, ssParamRec
*info)

S
SimStruct representing an S-function block.

param
Index of a run-time parameter

info
Attributes of the run-time parameter

Use this macro in the S-function’s mdlIProcessParameters method to update
specific run-time parameters. For each parameter to be updated, the method
should first obtain a pointer to the parameter’s attributes record (ssParamRec),
using ssGetRunTimeParaminfo. The method should then update the record and
pass it back to Simulink, using this macro.

Note If you used ssRegAl ITunableParamsAsRunTimeParams to create the
run-time parameters, use ssUpdateAl ITunableParamsAsRunTimeParams to
update the parameters.

C

mdIProcessParameters, ssGetRunTimeParaminfo,
ssUpdateAl ITunableParamsAsRunTimeParams,
ssRegAl lTunableParamsAsRunTimeParams

10-193

ssWarning

Purpose
Syntax

Arguments

Description

Languages

See Also

10-194

Display a warning message.
ssWarning(SimStruct *S, msg)

S
SimStruct representing an S-function block or a Simulink model.

msg
Warning message.

Displays msg. Expands to mexWarnMsgTxt when compiled for use with
Simulink. When compiled for use with the Real-Time Workshop, expands to
printF(""Warning:%s from "%s"\n'",msg, ssGetPath(S));, if the target has
stdio facilities; otherwise, it expands to a comment.

C

ssSetErrorMessage, ssPrintf

ssWriteRTWMxVectParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a vector parameter in MATLAB format to the model . rtw file.

int_T ssWriteRTWMxVectParam(SimStruct *S, const char_T *name,
const void *rValue, const void *iValue, int_T dataType, int_T
size)

S
SimStruct representing an S-function block.

name
Parameter name

rValue
Real values of parameter

cvValue
Complex values of parameter

dataType
Data type of parameter elements (see “Specifying Data Type Info” on
page 10-199)

size
Number of elements in vector

Use this function in mdIRTW to write a vector parameter in Simulink format to
this S-function’s model . rtw file. This function returns TRUE if successful.

C

mdIRTW, ssWriteRTWMxVectParam

10-195

ssWriteRTWMx2dMatParam

Purpose Write a matrix parameter in MATLAB format to the model . rtw file.

Syntax int_T ssWriteRTWMx2dMatParam(SimStruct *S, const char_T *name,
const void *rValue, const void *iValue, int_T dataType, Int_ T
nRows, int_T nCols)

Arguments S
SimStruct representing an S-function block.

name
Parameter name

rValue
Real elements of parameter array

ivalue
Imaginary elements of parameter array

dataType
Data type of parameter elements (see “Specifying Data Type Info” on
page 10-199)

nRows
Number of rows in matrix

nColumns
Number of columns in matrix

Description Use this function in md IRTW to write a matrix parameter in MATLAB format to
this S-function’s model . rtw file. This function returns TRUE if successful.

Languages C

See Also mdIRTW, ssWriteRTW2dMatParam

10-196

ssWriteRTWParameters

Purpose

Syntax

Arguments

Description

Write tunable parameter information to model . rtw file.

int_T ssWriteRTWParameters(SimStruct *S, iInt_T nParams, Int_ T
paramType, const char_T *paramName, const char_T *stringlnfo,

--)

S
SimStruct representing an S-function block.

nParams
Number of tunable parameters

paramType
Type of parameter (see “Parameter Type-Specific Arguments”)

paramName
Name of parameter

stringlnfo
General information about the parameter, such as how it was derived

Remaining arguments depend on parameter type (see “Parameter
Type-Specific Arguments”).

Use this function in mdIRTW to write tunable parameter information to this
S-function’s model . rtw file. This function returns TRUE if successful.

Note This function is provided for compatibility with S-functions that do not
use run-time parameters. It is suggested that you use run-time parameters
(see “Run-Time Parameters” on page 7-6). If you do use run-time parameters,
you do not need to use this function.

Parameter Type-Specific Arguments

This section lists the parameter-specific arguments required by each
parameter type.

10-197

ssWriteRTWParameters

= SS_WRITE_VALUE_VECT (vector parameter)

Argument

Description

const real_T *valueVect

int_T vectLen

Pointer to array of vector values

Length of vector

= SSWRITE_VALUE_2DMAT (matrix parameter)

Argument

Description

const real_T *valueMat
int_T nRows

int_T nCols

Pointer to array of matrix elements
Number of rows in matrix

Number of columns in matrix

= SSWRITE_VALUE_DTYPE_2DMAT

Argument

Description

const real_T *valueMat
int_T nRows
int_T nCols

int_T dtinfo

Pointer to array of matrix elements
Number of rows in matrix
Number of columns in matrix

Data type of matrix elements (see
“Specifying Data Type Info” on
page 10-199)

« SSWRITE_VALUE_DTYPE_ML_VECT

Argument

Description

const void *rvValueVect

const void *iValueVect

Real component of complex vector

Imaginary component of complex vector

10-198

ssWriteRTWParameters

Example

Argument Description
int_T vectLen Length of vector
int_T dtinfo Data type of vector (see “Specifying Data

Type Info” on page 10-199)

« SSWRITE_VALUE_DTYPE_ML_2DMAT

Argument Description

const void *rvalueMat Real component of complex matrix
const void *ivalueMat Imaginary component of complex matrix
int_T nRows Number of rows in matrix

int_T nCols Number of columns in matrix

int_T dtinfo Data type of matrix

Specifying Data Type Info
The data type of value argument passed to the ssWriteRTW macros is obtained
using

DTINFO(dTypeld, isComplex),

where dTypeld can be any one of the enum values in Buitl InDTypelD
(SS_DOUBLE, SS_SINGLE, SS_INT8, SS_UINTS8, SS_INT16, SS_UINT16, SS_INT32,
SS_UINT32, SS_BOOLEAN) defined in simstuc_types.h. The isComplex
argument is either 0 or 1.

For example, DTINFO(SS_INT32,0) is a noncomplex 32-bit signed integer.

If isComplex==1, it is assumed that the array of values has the real and
imaginary parts arranged in an interleaved manner (i.e., Simulink format). If
you prefer to pass the real and imaginary parts as two separate arrays, you
should use the macros ssWriteRTWMxVectParam or ssWriteRTWMx2dMatParam.

See simulink/src/sfun_multiport.c for an example that uses this function.

10-199

ssWriteRTWParameters

Languages C

See Also md IRTW

10-200

ssWriteRTWParamSettings

Purpose

Syntax

Arguments

Description

Write tunable parameter settings to model . rtw file.

int_T ssWriteRTWParamSettings(SimStruct *S, iInt_T nParamSettings,
int_T paramType, const char_T *settingName, ...)

S
SimStruct representing an S-function block.

nParamSettings
Number of tunable parameter settings

settingType
Type of parameter (see “Parameter Setting Type-Specific Arguments”)

settingName
Name of parameter setting

Remaining arguments depend on parameter type (see “Parameter Setting
Type-Specific Arguments”).

Use this function in mdIRTW to write tunable parameter setting information to
this S-function’s model . rtw file. This function returns TRUE if successful.

Parameter Setting Type-Specific Arguments

This section lists the parameter-specific arguments required by each
parameter type.

= SSWRITE_VALUE_STR (unquoted string)

Argument Description

const char_T *value string (Example: U.S.A.)

< SSWRITE_VALUE_QSTR (quoted string)

Argument Description

const char_T *value string (Example: “U.S.A.")

10-201

ssWriteRTWParamSettings

< SSWRITE_VALUE_VECT_STR (vector of strings)

Argument Description
const char_T *value Vector of strings (e.g., ["'USA™, "Mexico'])
int_T nltemslInVect Size of vector

<« SSWRITE_VALUE_NUM (number)

Argument Description

const real_T value Number (e.g., 2)

= SSWRITE_VALUE_VECT (vector of numbers)

Argument Description
const real T *value Vector of numbers (e.g., [300, 100])
int_T vectLen Size of vector

< SSWRITE_VALUE_2DMAT (matrix of numbers)

Argument Description

const real_T *value Matrix of numbers (e.g.,
[[170, 130],[60, 401])

int_T nRows Number of rows in vector

int_T nCols Number of columns in vector

10-202

ssWriteRTWParamSettings

< SSWRITE_VALUE_DTYPE_NUM (data typed number)

Argument Description
const void *value Number (e.g., [3+4i])
int_ T dtinfo Data type (see “Specifying Data Type Info”

on page 10-199)

= SSWRITE_VALUE_DTYPE_VECT (data typed vector)

Argument Description

const void *value Data typed vector (e.g., [1+2i, 3+4i])
int_T vectLen Size of vector

int_T dtinfo Data type (see “Specifying Data Type Info”

on page 10-199)

= SSWRITE_VALUE_DTYPE_2DMAT (data typed matrix)

Argument Description

const void *value Matrix (e.g., [1+2i 3+4i; 5 6])

int_T nRows Number of rows in matrix

int_T nCols Number of columns in matrix

int_ T dtinfo Data type (see “Specifying Data Type Info”

on page 10-199)

< SSWRITE_VALUE_DTYPE_ML_VECTOR (data typed MATLAB vector)

Argument Description
const void *Rvalue Real component of vector (e.g., [1 3])
const void *1Value Imaginary component of vector (e.g., [2 5])

10-203

ssWriteRTWParamSettings

Argument

Description

int_T vectlLen

int_T dtinfo

Number of elements in vector

Data type (see “Specifying Data Type Info”
on page 10-199)

= SSWRITE_VALUE_DTYPE_ML_2DMAT (data typed MATLAB matrix)

Argument

Description

const void *RValue
const void *1Value
int_T nRows
int_T nCols

int_T dtinfo

Real component of matrix (e.g., [1 5 3 6])
Real component of matrix (e.g., [2 04 0])
Number of rows in matrix

Number of columns in matrix

Data type (see “Specifying Data Type Info”
on page 10-199)

Example
Languages C
See Also md IRTW

10-204

See simulink/src/sfun_multiport.c for an example that uses this function.

ssWriteRTWScalarParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a scalar parameter to the model . rtw file.

Iint_T ssWriteRTWStr(SimStruct *S, const char_T *name,
const void *value)

S
SimStruct representing an S-function block.

name
Parameter name

value
Parameter value

Use this function in mdIRTW to write scalar parameters to this S-function’s
model _rtw file. This function returns TRUE if successful.

C

mdIRTW

10-205

ssWriteRTWStr

Purpose Write a string to the model . rtw file.
Syntax Int_T ssWriteRTWStr(SimStruct *S, const char_T *str)
Arguments S
SimStruct representing an S-function block.
str
String
Description Use this function in md IRTW to write strings to this S-function’s model . rtw file.

This function returns TRUE if successful.
Languages C

See Also md IRTW

10-206

ssWriteRTWStrParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a string parameter to the model . rtw file.

Iint_T ssWriteRTWStr(SimStruct *S, const char_T *name,
const char_T *value)

S
SimStruct representing an S-function block.

name
Parameter name

value
Parameter value

Use this function in mdIRTW to write string parameters to this S-function’s
model _rtw file. This function returns TRUE if successful.

C

mdIRTW

10-207

ssWriteRTWStrVectParam

Purpose

Syntax

Arguments

Description

Languages

See Also

10-208

Write a string vector parameter to the model . rtw file.

int_T ssWriteRTWStrVectParam(SimStruct *S, const char_T *name,
const void *value, iInt_T size)

S
SimStruct representing an S-function block.

name
Parameter name

value
Parameter values

size
Number of elements in vector

Use this function in mdIRTW to write a vector of string parameters to this
S-function’s model . rtw file. This function returns TRUE if successful.

C

mdIRTW

ssWriteRTWVectParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a vector parameter to the model . rtw file.

int_T ssWriteRTWStrVectParam(SimStruct *S, const char_T *name,
const void *value, iInt_T dataType, Int_T size)

S
SimStruct representing an S-function block.

name
Parameter name

value
Parameter values

dataType
Data type of parameter elements (see “Specifying Data Type Info” on
page 10-199)

size
Number of elements in vector

Use this function in mdIRTW to write a vector parameter in Simulink format to
this S-function’s model . rtw file. This function returns TRUE if successful.

C

mdIRTW, ssWriteRTWMxVectParam

10-209

ssWriteRTWWorkVect

Purpose

Syntax

Arguments

Description

Languages

See Also

10-210

Write work vectors to model . rtw file.

int_T ssWriteRTWWorkVect(SimStruct *S, const char_T *vectName,
int_T nNames, constchar_T *namel, int_T sizel,
const char_T * nameN, int_T sizeN)

S
SimStruct representing an S-function block.

vectName
Name of work vector (must be “Rwork”, “IWork” or “PWork”)

settingType
Type of parameter (see “Parameter Setting Type-Specific Arguments”)

namel ... nameN
Names of groups of work vector elements

sizel ... sizeN
Size of each element group (the total of the sizes must equal the size of the work
vector

Use this function in mdIRTW to write work vectors to this S-function’s model . rtw
file. This function returns TRUE if successful.

C

mdIRTW

ssWriteRTW2dMatParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a matrix parameter to the model . rtw file.

int_T ssWriteRTW2dMatParam(SimStruct *S, const char_T *name,
const void *value, iInt_T dataType, Iint_T nRows, int_T nCols)

S
SimStruct representing an S-function block.

name
Parameter name

value
Parameter values

dataType
Data type of parameter elements (see “Specifying Data Type Info” on
page 10-199)

nRows
Number of rows in matrix

nColumns
Number of columns in matrix

Use this function in mdIRTW to write a vector of numeric parameters to this
S-function’s model . rtw file. This function returns TRUE if successful.

C

mdIRTW

10-211

ssWriteRTwW2dMatParam

10-212

A

additional parameters for S-functions 2-19

B

block-based sample times 7-16

C

C MEX S-functions 1-2, 4-1, 5-1, 6-1

callback methods 1-9

continuous block, setting sample time 7-21

continuous state S-function example (C MEX)
7-34

continuous state S-function example (M-file) 2-8

D
direct feedthrough 1-11

direct index lookup table example 8-24

discrete state S-function example (C MEX) 7-38
discrete state S-function example (M-file) 2-11
dynamically sized inputs 1-12

E

examples
continuous state S-function (C MEX) 7-34
continuous state S-function (M-file) 2-8
direct index lookup table 8-24
discrete state S-function (C MEX) 7-38
discrete state S-function (M-file) 2-11
hybrid system S-function (C MEX) 7-42
hybrid system S-function (M-file) 2-13
pointer work vector 7-26
sample time for continuous block 7-21
sample time for hybrid block 7-22

Index

variable step S-function (C MEX) 7-45
variable step S-function (M-file) 2-16
exception free code 7-31

H

hybrid block, setting sample time 7-22

hybrid system S-function example (C MEX) 7-42
hybrid system S-function example (M-file) 2-13

input arguments for M-file S-functions 2-6
inputs, dynamically sized 1-12

M

masked multiport S-functions 7-13
matrix.h 3-10

mdICheckParameters 9-3
mdIDerivatives 9-5
md1GetTimeOfNextVarHit 9-6
mdlInitializeConditions 9-7
mdlInitializeSampleTimes 9-9
mdlInitializeSizes 1-12, 2-4, 9-13
mdlOutput function 7-21

mdlOutputs 9-17
mdlProcessParameters 9-18

md IRTW 8-21, 9-20
mdlSetDefaultPortComplexSignals 9-21
mdlSetDefaultPortDataTypes 9-22
mdlSetDefaultPortDimensioninfo 9-23
mdISetInputPortComplexSignal 9-24
mdISetInputPortDataType 9-25
mdlSetInputPortDimensionlinfo 9-26
mdlSetInputPortFrameData 9-28

Index

mdlSetInputPortSampleTime 9-29
mdlSetInputPortWidth 9-31
mdISetOutputPortComplexSignal 9-32
mdISetOutputPortDataType 9-33
mdlSetOutputPortDimensionlinfo 9-34
md1SetOutputPortSampleTime 9-36
md1SetOutputPortWidth 9-37
mdlSetWorkWidths 9-38

mdlStart 9-39

mdITerminate 9-40

mdlUpdate 7-21, 9-41
mdlZeroCrossings 9-42

memory and work vectors 7-24

mex utility 1-2

mex.h 3-10

M-file S-function routines 2-2

mixedm.c example 7-42

multirate S-Function blocks 7-21

@)
options, S-function 10-163

P

parameters

passing to S-functions 1-3
parameters, S-function 2-19
penddemo demo 1-5
pointer work vector, example 7-26
port-based sample times 7-19

R
re-entrancy 7-24
run-time routines 7-32

S
S_FUNCTION_LEVEL 2, #deFine 3-9

S_FUNCTION_NAME, #define 3-9
sample times
block-based 7-16
continuous block, example 7-21
hybrid block, example 7-22
port-based 7-19
S-Function block 1-2
multirate 7-21
S-function options 10-163
S-function routines 1-8
M-file 2-2
S-functions
additional parameters 2-19
C MEX 1-2, 4-1, 5-1, 6-1
definition 1-2
direct feedthrough 1-11
exception free code 7-31
inlined 8-7, 8-19
input arguments for M-files 2-6
masked multiport 7-13
parameter field 7-3
purpose 1-5
routines 1-8
run-time routines 7-32
types of 8-3
using in models 1-2
when to use 1-5
wrapper 8-9
sfuntmpl.c template 3-9
simsizes function 2-4
simulation loop 1-6
simulation stages 1-6
simulink.c 3-11
sizes structure 1-12, 2-4

Index

SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION
10-164
SS_OPTION_ALLOW_PARTIAL_DIMENSIONS_CALL
10-164
SS_OPTION_ASYNC_RATE_TRANSITION 10-164
SS_OPTION_ASYNCHRONOUS 10-164
SS_OPTION_CALL_TERMINATE_ON_EXIT 10-165
SS_OPTION_DISALLOW_CONSTANT SAMPLE_TIME
10-164
SS_OPTION_DISCRETE_VALUED_OUTPUT 10-163
SS_OPTION_EXCEPTION_FREE_CODE 10-163
SS_OPTION_FORCE_NONINLINED FCNCALL
10-165
SS_OPTION_PLACE_ASAP 10-163
SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED
10-164
SS_OPTION_RATE_TRANSITION 10-164
SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE
10-163
SS_OPTION_SFUNCTION_INLINED_FOR_RTW
10-164
SS_OPTION_SIM_VIEWING_DEVICE 10-165
SS_OPTION_USE_TLC_WITH_ACCELERATOR
10-165
ssCallSystemWithTid 10-17
ssGetContStateAddress 10-19
ssGetContStates 10-20
ssGetDataTypeld 10-22
ssGetDataTypeName 10-21
ssGetDataTypeSize 10-23
ssGetdataTypeZero 10-24
ssGetDiscStates 10-25
ssGetDTypeldFromMxArray 10-26
ssGetDWorkComplexSignal 10-28
ssGetDWorkDataType 10-29
ssGetDWorkUsedAsDState 10-31
ssGetDWorkWidth 10-32

ssGetdX 10-33

ssGetErrorStatus 10-34
ssGetlnputPortBufferDstPort 10-35
ssGetlnputPortComplexSignal 10-37
ssGetlnputPortConnected 10-36
ssGetlInputPortDataType 10-38
ssGetlInputPortDimensions 10-40
ssGetlInputPortDirectFeedThrough 10-41
ssGetlnputPortFrameData 10-42
ssGetlnputPortNumDimensions 10-43
ssGetlnputPortOffsetTime 10-44
ssGetlInputPortRealSignal 10-46
ssGetlInputPortRealSignalPtrs 10-47
ssGetlInputPortReusable 10-49
ssGetlnputPortSampleTime 10-50
ssGetlnputPortSampleTimelndex 10-51
ssGetlnputPortSignal 10-52
ssGetlInputPortSignalAddress 10-54
ssGetlInputPortSignalPtrs 10-55
ssGetlInputPortWidth 10-56
ssGetlWork 10-57

ssGetMode IName 10-58
ssGetModeVector 10-59
ssGetModeVectorValue 10-60
ssGetNonsampledZCs 10-61
ssGetNumbWork 10-65
ssGetOutputPortBeingMerged 10-77
ssGetOutputPortDimensions 10-80
ssGetOutputPortFrameData 10-83
ssGetOutputPortReusable 10-85
ssGetSFcnParamsCount 10-101
ssGetUserData 10-111

ssParamRec 10-96, 10-180
ssSetDWorkComplexSignal 10-125
ssSetDWorkDataType 10-126
ssSetDWorkName 10-30, 10-127
ssSetDWorkUsedAsDState 10-128

Index

ssSetDWorkWidth 10-129
ssSetErrorStatus 10-130
ssSetExternalModeFcn 10-16, 10-131
ssSetlInputPortDimensioninfo 10-134
ssSetlnputPortDirectFeedThrough 10-137
ssSetlnputPortFrameData 10-136
ssSetlnputPortOffsetTime 10-139
ssSetlnputPortRequiredContiguous 10-48,
10-143
ssSetlInputPortReusable 10-141
ssSetlInputPortSampleTime 10-144
ssSetlnputPortSampleTimelndex 10-145
ssSetModeVectorValue 10-148
ssSetNumDWork 10-151
ssSetNumNonsampledZCs 10-155
ssSetNumSFcnParams 10-161
ssSetSFcnParamNotTunable 10-184
ssSetUserData 10-189
synchronizing multirate S-Function blocks 7-22

T
tmwtypes.h 3-10

\%
variable step S-function example (C MEX) 7-45

variable step S-function example (M-file) 2-16

W

work vectors 7-24

	Overview of S-Functions
	Introduction
	What Is an S-Function?
	Using S-Functions in Models
	Passing Parameters to S-Functions
	When to Use an S-Function
	How S-Functions Work
	Implementing S-Functions
	S-Function Concepts
	S-Function Examples

	Writing M S-Functions
	Introduction
	S-Function Arguments
	S-Function Outputs
	Defining S-Function Block Characteristics
	A Simple M-File S-Function Example

	Examples of M-File S-Functions
	Example - Continuous State S-Function
	Example - Discrete State S-Function
	Example - Hybrid System S-Functions
	Example - Variable Sample Time S-Functions
	Processing S-Function Parameters

	Writing S-Functions in C
	Introduction
	Example of a Basic C MEX S-Function

	Templates for C S-Functions
	S-Function Source File Requirements
	The SimStruct
	Compiling C S-Functions

	How Simulink Interacts with C S-Functions
	Process View
	Data View

	Writing Callback Methods
	Converting Level 1 C MEX S-Functions to Level 2
	Obsolete Macros

	Creating C++ S-Functions
	Overview
	Source File Format
	Making C++ Objects Persistent
	Building C++ S-Functions

	Creating Ada S-Functions
	Introduction
	Ada S-Function Source File Format
	Ada S-Function Specification
	Ada S-Function Body

	Writing Callback Methods in Ada
	Callbacks Invoked By Simulink
	Implementing Callbacks
	Omitting Optional Callback Methods
	SimStruct Functions

	Building an Ada S-Function
	Using an Ada S-Function in a Model
	Example of an Ada S-Function

	Creating Fortran S-Functions
	Introduction
	Level 1 Versus Level 2 S-Functions

	Creating Level 1 Fortran S-Functions
	The Fortran MEX Template File
	Example
	Inline Code Generation Example

	Creating Level 2 Fortran S-Functions
	Template File
	C/Fortran Interfacing Tips
	Constructing the Gateway
	An Example C-MEX S-Function Calling Fortran Code

	Porting Legacy Code
	Find the States
	Sample Times
	Multiple Instances
	Use Flints If Needed
	Considerations for Real Time

	Implementing Block Features
	Introduction
	Dialog Parameters
	Tunable Parameters

	Run-Time Parameters
	Creating Run-Time Parameters
	Updating Run-Time Parameters

	Input and Output Ports
	Creating Input Ports
	Creating Output Ports
	Scalar Expansion of Inputs
	Masked Multiport S-Functions

	Custom Data Types
	Sample Times
	Block-Based Sample Times
	Port-Based Sample Times
	Specifying the Number of Sample Times in mdlInitializeSizes
	Hybrid Block-Based and Port-Based Sample Times
	Multirate S-Function Blocks
	Synchronizing Multirate S-Function Blocks

	Work Vectors
	Work Vectors and Zero Crossings
	An Example Involving a Pointer Work Vector
	Memory Allocation

	Function-Call Subsystems
	Handling Errors
	Exception Free Code
	ssSetErrorStatus Termination Criteria

	S-Function Examples
	Example - Continuous State S-Function
	Example - Discrete State S-Function
	Example - Hybrid System S-Functions
	Example - Variable Step S-Function
	Example - Zero Crossing S-Function
	Example - Time Varying Continuous Transfer Function

	Writing S-Functions for Real-Time Workshop
	Introduction
	Classes of Problems Solved by S-Functions
	Types of S-Functions
	Basic Files Required for Implementation

	Noninlined S-Functions
	S-Function Module Names for Real-Time Workshop Builds

	Writing Wrapper S-Functions
	The MEX S-Function Wrapper
	The TLC S-Function Wrapper
	The Inlined Code

	Fully Inlined S-Functions
	Multiport S-Function Example

	Fully Inlined S-Function with the mdlRTW Routine
	S-Function RTWdata for Generating Code with Real-Time Workshop
	The Direct-Index Lookup Table Algorithm
	The Direct-Index Lookup Table Example

	S-Function Callback Methods
	Callback Method Reference
	mdlCheckParameters
	mdlDerivatives
	mdlGetTimeOfNextVarHit
	mdlInitializeConditions
	mdlInitializeSampleTimes
	mdlInitializeSizes
	mdlOutputs
	mdlProcessParameters
	mdlRTW
	mdlSetDefaultPortComplexSignals
	mdlSetDefaultPortDataTypes
	mdlSetDefaultPortDimensionInfo
	mdlSetInputPortComplexSignal
	mdlSetInputPortDataType
	mdlSetInputPortDimensionInfo
	mdlSetInputPortFrameData
	mdlSetInputPortSampleTime
	mdlSetInputPortWidth
	mdlSetOutputPortComplexSignal
	mdlSetOutputPortDataType
	mdlSetOutputPortDimensionInfo
	mdlSetOutputPortSampleTime
	mdlSetOutputPortWidth
	mdlSetWorkWidths
	mdlStart
	mdlTerminate
	mdlUpdate
	mdlZeroCrossings

	SimStruct Functions
	Introduction
	Language Support
	The SimStruct

	SimStruct Macros and Functions Listed by Usage
	Miscellaneous
	Error Handling and Status
	I/O Port
	Dialog Box Parameters
	Run-Time Parameters
	Sample Time
	State and Work Vector
	Simulation Information�
	Function Call
	Data Type
	Real-Time Workshop

	Macro Reference
	ssCallExternalModeFcn
	ssCallSystemWithTid
	ssGetAbsTol
	ssGetContStateAddress
	ssGetContStates
	ssGetDataTypeName
	ssGetDataTypeId
	ssGetDataTypeSize
	ssGetDataTypeZero
	ssGetDiscStates
	ssGetDTypeIdFromMxArray
	ssGetDWorkComplexSignal
	ssGetDWorkDataType
	ssGetDWorkName
	ssGetDWorkUsedAsDState
	ssGetDWorkWidth
	ssGetdX
	ssGetErrorStatus
	ssGetInputPortBufferDstPort
	ssGetInputPortConnected
	ssGetInputPortComplexSignal
	ssGetInputPortDataType
	ssGetInputPortDimensionInfo
	ssGetInputPortDimensions
	ssGetInputPortDirectFeedThrough
	ssGetInputPortFrameData
	ssGetInputPortNumDimensions
	ssGetInputPortOffsetTime
	ssGetInputPortOverWritable
	ssGetInputPortRealSignal
	ssGetInputPortRealSignalPtrs
	ssGetInputPortRequiredContiguous
	ssGetInputPortReusable
	ssGetInputPortSampleTime
	ssGetInputPortSampleTimeIndex
	ssGetInputPortSignal
	ssGetInputPortSignalAddress
	ssGetInputPortSignalPtrs
	ssGetInputPortWidth
	ssGetIWork
	ssGetModelName
	ssGetModeVector
	ssGetModeVectorValue
	ssGetNonsampledZCs
	ssGetNumContStates
	ssGetNumDataTypes
	ssGetNumDiscStates
	ssGetNumDWork
	ssGetNumInputPorts
	ssGetNumIWork
	ssGetNumModes
	ssGetNumNonsampledZCs
	ssGetNumOutputPorts
	ssGetNumParameters
	ssGetNumRunTimeParams
	ssGetNumPWork
	ssGetNumRWork
	ssGetNumSampleTimes
	ssGetNumSFcnParams
	ssGetOutputPortBeingMerged
	ssGetOutputPortComplexSignal
	ssGetOutputPortDataType
	ssGetOutputPortDimensions
	ssGetOutputPortFrameData
	ssGetOutputPortNumDimensions
	ssGetOutputPortOffsetTime
	ssGetOutputPortRealSignal
	ssGetOutputPortReusable
	ssGetOutputPortSampleTime
	ssGetOutputPortSignal
	ssGetOutputPortSignalAddress
	ssGetOutputPortWidth
	ssGetPath
	ssGetParentSS
	ssGetPlacementGroup
	ssGetPWork
	ssGetRealDiscStates
	ssGetRootSS
	ssGetRunTimeParamInfo
	ssGetRWork
	ssGetSampleTimeOffset
	ssGetSampleTimePeriod
	ssGetSFcnParam
	ssGetSFcnParamsCount
	ssGetSimMode
	ssGetSolverName
	ssGetStateAbsTol
	ssGetT
	ssGetTNext
	ssGetTaskTime
	ssGetTFinal
	ssGetTStart
	ssIsContinuousTask
	ssGetUserData
	ssIsFirstInitCond
	ssIsMajorTimeStep
	ssIsMinorTimeStep
	ssIsSampleHit
	ssIsSpecialSampleHit
	ssIsVariableStepSolver
	ssPrintf
	ssRegAllTunableParamsAsRunTimeParams
	ssRegisterDataType
	ssSetCallSystemOutput
	ssSetDataTypeSize
	ssSetDataTypeZero
	ssSetDWorkComplexSignal
	ssSetDWorkDataType
	ssSetDWorkName
	ssSetDWorkUsedAsDState
	ssSetDWorkWidth
	ssSetErrorStatus
	ssSetExternalModeFcn
	ssSetInputPortComplexSignal
	ssSetInputPortDataType
	ssSetInputPortDimensionInfo
	ssSetInputPortFrameData
	ssSetInputPortDirectFeedThrough
	ssSetInputPortMatrixDimensions
	ssSetInputPortOffsetTime
	ssSetInputPortOverWritable
	ssSetInputPortReusable
	ssSetInputPortRequiredContiguous
	ssSetInputPortSampleTime
	ssSetInputPortSampleTimeIndex
	ssSetInputPortVectorDimension
	ssSetInputPortWidth
	ssSetModeVectorValue
	ssSetNumContStates
	ssSetNumDiscStates
	ssSetNumDWork
	ssSetNumInputPorts
	ssSetNumIWork
	ssSetNumModes
	ssSetNumNonsampledZCs
	ssSetNumOutputPorts
	ssSetNumPWork
	ssSetNumRunTimeParams
	ssSetNumRWork
	ssSetNumSampleTimes
	ssSetNumSFcnParams
	ssSetOffsetTime
	ssSetOptions
	ssSetOutputPortComplexSignal
	ssSetOutputPortDataType
	ssSetOutputPortDimensionInfo
	ssSetOutputPortFrameData
	ssSetOutputPortMatrixDimensions
	ssSetOutputPortOffsetTime
	ssSetOutputPortReusable
	ssSetOutputPortSampleTime
	ssSetOutputPortVectorDimension
	ssSetOutputPortWidth
	ssSetParameterName
	ssSetParameterTunable
	ssSetPlacementGroup
	ssSetRunTimeParamInfo
	ssSetSampleTime
	ssSetSFcnParamNotTunable
	ssSetSFcnParamTunable
	ssSetSolverNeedsReset
	ssSetStopRequested
	ssSetTNext
	ssSetUserData
	ssSetVectorMode
	ssUpdateAllTunableParamsAsRunTimeParams
	ssUpdateRunTimeParamData
	ssUpdateRunTimeParamInfo
	ssWarning
	ssWriteRTWMxVectParam
	ssWriteRTWMx2dMatParam
	ssWriteRTWParameters
	ssWriteRTWParamSettings
	ssWriteRTWScalarParam
	ssWriteRTWStr
	ssWriteRTWStrParam
	ssWriteRTWStrVectParam
	ssWriteRTWVectParam
	ssWriteRTWWorkVect
	ssWriteRTW2dMatParam

	Index

