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For convenience, this document gathers together nearly all the online doc for
the Control System Toolbox in PDF format for printing. This document does
not include Getting Started with the Control System Toolbox, which is available
in both printed and PDF format.
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2 LTI Models

2-2

The Control System Toolbox offers extensive tools to manipulate and analyze
linear time-invariant (LTI) models. It supports both continuous- and
discrete-time systems. Systems can be single-input/single-output (SISO) or
multiple-input/multiple-output (MIMO). In addition, you can store several LTI
models in an array under a single variable name. See Chapter 4, “Arrays of LTI
Models” for information on LTI arrays.

This section introduces key concepts about the MATLAB representation of LTI
models, including LTI objects, precedence rules for operations, and an analogy
between LTI systems and matrices. In addition, it summarizes the basic
commands you can use on LTI objects.

LTI Models
You can specify LTI models as:

• Transfer functions (TF), for example,

• Zero-pole-gain models (ZPK), for example,

• State-space models (SS), for example,

where A, B, C, and D are matrices of appropriate dimensions, x is the state
vector, and u and y are the input and output vectors.

• Frequency response data (FRD) models

FRD models consist of sampled measurements of a system’s frequency
response. For example, you can store experimentally collected frequency
response data in an FRD.

P s( ) s 2+
s2 s 10+ +
---------------------------=

H z( ) 2 z 0.5–( )
z z 0.1+( )
------------------------- z2 z 1+ +( )

z 0.2+( ) z 0.1+( )
---------------------------------------------=

xd
td

------ Ax Bu+=

y Cx Du+=
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Using LTI Models in the Control System Toolbox
You can manipulate TF, SS, and ZPK models using the arithmetic and model
interconnection operations described in Chapter 3, “Operations on LTI Models”
and analyze them using the model analysis functions, such as bode and step.
FRD models can be manipulated and analyzed in much the same way you
analyze the other model types, but analysis is restricted to frequency-domain
methods.

Using a variety of design techniques, you can design compensators for systems
specified with TF, ZPK, SS, and FRD models. These techniques include root
locus analysis, pole placement, LQG optimal control, and frequency domain
loop-shaping. For FRD models, you can either:

• Obtain an identified TF, SS, or ZPK model using system identification
techniques.

• Use frequency-domain analysis techniques.

Other Uses of FRD Models
FRD models are unique model types available in the Control System Toolbox
collection of LTI model types, in that they don’t have a parametric
representation. In addition to the standard operations you may perform on
FRD models, you can also use them to:

• Perform frequency-domain analysis on systems with nonlinearities using
describing functions.

• Validate identified models against experimental frequency response data.

LTI Objects
Depending on the type of model you use, the data for your model may consist
of a simple numerator/denominator pair for SISO transfer functions, four
matrices for state-space models, and multiple sets of zeros and poles for MIMO
zero-pole-gain models or frequency and response vectors for FRD models. For
convenience, the Control System Toolbox provides customized data structures
(LTI objects) for each type of model. These are called the TF, ZPK, SS, and FRD
objects. These four LTI objects encapsulate the model data and enable you to
manipulate LTI systems as single entities rather than collections of data
vectors or matrices.
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Creating an LTI Object: An Example
An LTI object of the type TF, ZPK, SS, or FRD is created whenever you invoke
the corresponding constructor function, tf, zpk, ss, or frd. For example,

P = tf([1 2],[1 1 10])

creates a TF object, P, that stores the numerator and denominator coefficients
of the transfer function

See “Creating LTI Models” on page 2-8 for methods for creating all of the LTI
object types.

LTI Properties and Methods
The LTI object implementation relies on MATLAB object-oriented
programming capabilities. Objects are MATLAB structures with an additional
flag indicating their class (TF, ZPK, SS, or FRD for LTI objects) and have
pre-defined fields called object properties. For LTI objects, these properties
include the model data, sample time, delay times, input or output names, and
input or output groups (see “LTI Properties” on page 2-25 for details). The
functions that operate on a particular object are called the object methods.
These may include customized versions of simple operations such as addition
or multiplication. For example,

P = tf([1 2],[1 1 10])
Q = 2 + P

performs transfer function addition.

The object-specific versions of such standard operations are called overloaded
operations. For more details on objects, methods, and object-oriented
programming, see Chapter 14, “Classes and Objects” in Using MATLAB. For
details on operations on LTI objects, see Chapter 3, “Operations on LTI
Models.”

P s( ) s 2+
s2 s 10+ +
---------------------------=

Q s( ) 2 P s( )+
2s2 3s 22+ +

s2 s 10+ +
-----------------------------------= =
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Precedence Rules
Operations like addition and commands like feedback operate on more than
one LTI model at a time. If these LTI models are represented as LTI objects of
different types (for example, the first operand is TF and the second operand is
SS), it is not obvious what type (for example, TF or SS) the resulting model
should be. Such type conflicts are resolved by precedence rules. Specifically, TF,
ZPK, SS, and FRD objects are ranked according to the precedence hierarchy.

Thus ZPK takes precedence over TF, SS takes precedence over both TF and
ZPK, and FRD takes precedence over all three. In other words, any operation
involving two or more LTI models produces:

• An FRD object if at least one operand is an FRD object

• An SS object if no operand is an FRD object and at least one operand is an
SS object

• A ZPK object if no operand is an FRD or SS object and at least one is an ZPK
object

• A TF object only if all operands are TF objects

Operations on systems of different types work as follows: the resulting type is
determined by the precedence rules, and all operands are first converted to this
type before performing the operation.

Viewing LTI Systems As Matrices
In the frequency domain, an LTI system is represented by the linear input/
output map

This map is characterized by its transfer matrix H, a function of either the
Laplace or Z-transform variable. The transfer matrix H maps inputs to
outputs, so there are as many columns as inputs and as many rows as outputs.

If you think of LTI systems in terms of (transfer) matrices, certain basic
operations on LTI systems are naturally expressed with a matrix-like syntax.
For example, the parallel connection of two LTI systems sys1 and sys2 can be
expressed as

FRD > SS > ZPK > TF

y Hu=
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sys = sys1 + sys2

because parallel connection amounts to adding the transfer matrices.
Similarly, subsystems of a given LTI model sys can be extracted using
matrix-like subscripting. For instance,

sys(3,1:2)

provides the I/O relation between the first two inputs (column indices) and the
third output (row index), which is consistent with

for .

Command Summary
The next two tables give an overview of the main commands you can apply to
LTI models.

Table 2-1:  Creating LTI Models

Command Description

drss Generate random discrete state-space model.

dss Create descriptor state-space model.

filt Create discrete filter with DSP convention.

frd Create an FRD model.

frdata Retrieve FRD model data.

get Query LTI model properties.

set Set LTI model properties.

rss Generate random continuous state-space model.

ss Create a state-space model.

y1

y2

y3

H 1 1,( ) H 2 1,( )
H 2 1,( ) H 2 2,( )
H 3 1,( ) H 3 2,( )

u1 u2=

y Hu=
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ssdata, dssdata Retrieve state-space data (respectively, descriptor
state-space data).

tf Create a transfer function.

tfdata Retrieve transfer function data.

zpk Create a zero-pole-gain model.

zpkdata Retrieve zero-pole-gain data.

Table 2-2:  Converting LTI Models

Command Description

c2d Continuous- to discrete-time conversion.

d2c Discrete- to continuous-time conversion.

d2d Resampling of discrete-time models.

frd Conversion to an FRD model.

pade Padé approximation of input delays.

ss Conversion to state space.

tf Conversion to transfer function.

zpk Conversion to zero-pole-gain.

Table 2-1:  Creating LTI Models (Continued)

Command Description



2 LTI Models

2-8

Creating LTI Models
The functions tf, zpk, ss, and frd create transfer function models,
zero-pole-gain models, state-space models, and frequency response data
models, respectively. These functions take the model data as input and produce
TF, ZPK, SS, or FRD objects that store this data in a single MATLAB variable.
This section shows how to create continuous or discrete, SISO or MIMO LTI
models with tf, zpk, ss, and frd.

Note  You can only specify TF, ZPK, and SS models for systems whose
transfer matrices have real-valued coefficients.

Transfer Function Models
This section explains how to specify continuous-time SISO and MIMO transfer
function models. The specification of discrete-time transfer function models is
a simple extension of the continuous-time case (see “Discrete-Time Models” on
page 2-19). In this section you can also read about how to specify transfer
functions consisting of pure gains.

SISO Transfer Function Models
A continuous-time SISO transfer function

is characterized by its numerator and denominator , both
polynomials of the Laplace variable s.

There are two ways to specify SISO transfer functions:

• Using the tf command

• As rational expressions in the Laplace variable s

To specify a SISO transfer function model using the tf
command, type

h = tf(num,den)

h s( ) n s( )
d s( )
-----------=

n s( ) d s( )

h s( ) n s( ) d s( )⁄=
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where num and den are row vectors listing the coefficients of the polynomials
and , respectively, when these polynomials are ordered in descending

powers of s. The resulting variable h is a TF object containing the numerator
and denominator data.

For example, you can create the transfer function by
typing

h = tf([1 0],[1 2 10])

MATLAB responds with

Transfer function:
 s

--------------
s^2 + 2 s + 10

Note the customized display used for TF objects.

You can also specify transfer functions as rational expressions in the Laplace
variable s by:

1 Defining the variable s as a special TF model

s = tf('s');

2 Entering your transfer function as a rational expression in s

For example, once s is defined with tf as in 1,

H = s/(s^2 + 2*s +10);

produces the same transfer function as

h = tf([1 0],[1 2 10]); 

Note  You need only define the variable s as a TF model once. All of the
subsequent models you create using rational expressions of s are specified as
TF objects, unless you convert the variable s to ZPK. See “Model Conversion”
on page 2-40 for more information.

n s( ) d s( )

h s( ) s s2 2s 10+ +( )⁄=
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MIMO Transfer Function Models
MIMO transfer functions are two-dimensional arrays of elementary SISO
transfer functions. There are several ways to specify MIMO transfer function
models, including:

• Concatenation of SISO transfer function models

• Using tf with cell array arguments

Consider the rational transfer matrix

.

You can specify by concatenation of its SISO entries. For instance,

h11 = tf([1 –1],[1 1]);
h21 = tf([1 2],[1 4 5]);

or, equivalently,

s = tf('s')
h11 = (s–1)/(s+1);
h21 = (s+2)/(s^2+4*s+5); 

can be concatenated to form .

H = [h11; h21]

This syntax mimics standard matrix concatenation and tends to be easier and
more readable for MIMO systems with many inputs and/or outputs. See “Model
Interconnection Functions” on page 3-16 for more details on concatenation
operations for LTI systems.

Alternatively, to define MIMO transfer functions using tf, you need two cell
arrays (say, N and D) to represent the sets of numerator and denominator
polynomials, respectively. See Chapter 13, “Structures and Cell Arrays” in
Using MATLAB for more details on cell arrays.

For example, for the rational transfer matrix , the two cell arrays N and D
should contain the row-vector representations of the polynomial entries of

H s( )

s 1–
s 1+
------------

s 2+

s2 4s 5+ +
----------------------------

=

H s( )

H s( )

H s( )
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You can specify this MIMO transfer matrix by typing

N = {[1 –1];[1 2]}; % cell array for N(s)
D = {[1 1];[1 4 5]}; % cell array for D(s)
H = tf(N,D)

MATLAB responds with

Transfer function from input to output...
      s – 1
 #1:  -----
      s + 1
 
          s + 2
 #2:  -------------
      s^2 + 4 s + 5

Notice that both N and D have the same dimensions as H. For a general MIMO
transfer matrix , the cell array entries N{i,j} and D{i,j} should be
row-vector representations of the numerator and denominator of , the

entry of the transfer matrix .

Pure Gains
You can use tfwith only one argument to specify simple gains or gain matrices
as TF objects. For example,

G = tf([1 0;2 1])

produces the gain matrix

while

E = tf

creates an empty transfer function.

N s( ) s 1–

s 2+
= D s( ) s 1+

s2 4s 5+ +
=

H s( )

H s( )
Hij s( )

ijth H s( )

G 1 0
2 1

=
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Zero-Pole-Gain Models
This section explains how to specify continuous-time SISO and MIMO
zero-pole-gain models. The specification for discrete-time zero-pole-gain
models is a simple extension of the continuous-time case. See “Discrete-Time
Models” on page 2-19.

SISO Zero-Pole-Gain Models
Continuous-time SISO zero-pole-gain models are of the form

where is a real-valued scalar (the gain), and ,..., and ,..., are the
real or complex conjugate pairs of zeros and poles of the transfer function .
This model is closely related to the transfer function representation: the zeros
are simply the numerator roots, and the poles, the denominator roots.

There are two ways to specify SISO zero-pole-gain models:

• Using the zpk command

• As rational expressions in the Laplace variable s

The syntax to specify ZPK models directly using zpk is

h = zpk(z,p,k)

where z and p are the vectors of zeros and poles, and k is the gain. This
produces a ZPK object h that encapsulates the z, p, and k data. For example,
typing

h = zpk(0, [1–i 1+i 2], –2)

produces

Zero/pole/gain:
 –2 s
--------------------
(s–2) (s^2 – 2s + 2)

You can also specify zero-pole-gain models as rational expressions in the
Laplace variable s by:

h s( ) k
s z1–( ) ... s zm–( )
s p1–( ) ... s pn–( )

-------------------------------------------------=

k z1 zm p1 pn
h s( )
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1 Defining the variable s as a ZPK model

s = zpk('s')

2 Entering the transfer function as a rational expression in s.

For example, once s is defined with zpk,

H = –2s/((s – 2)*(s^2 + 2*s + 2));

returns the same ZPK model as

h = zpk([0], [2 –1–i –1+i ], –2);

Note  You need only define the ZPK variable s once. All subsequent rational
expressions of s will be ZPK models, unless you convert the variable s to TF.
See “Model Conversion” on page 2-40 for more information on conversion to
other model types.

MIMO Zero-Pole-Gain Models
Just as with TF models, you can also specify a MIMO ZPK model by
concatenation of its SISO entries (see “Model Interconnection Functions” on
page 3-16).

You can also use the command zpk to specify MIMO ZPK models. The syntax
to create a p-by-m MIMO zero-pole-gain model using zpk is

H = zpk(Z,P,K)

where

• Z is the p-by-m cell array of zeros (Z{i,j} = zeros of )

• P is the p-by-m cell array of poles (P{i,j} = poles of )

• K is the p-by-m matrix of gains (K(i,j) = gain of )

For example, typing

Z = {[],–5;[1–i 1+i] []};

P = {0,[–1 –1];[1 2 3],[]};

Hij s( )
Hij s( )

Hij s( )
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K = [–1 3;2 0];

H = zpk(Z,P,K)

creates the two-input/two-output zero-pole-gain model

Notice that you use [] as a place-holder in Z (or P) when the corresponding
entry of has no zeros (or poles).

State-Space Models
State-space models rely on linear differential or difference equations to
describe the system dynamics. Continuous-time models are of the form

where x is the state vector and u and y are the input and output vectors. Such
models may arise from the equations of physics, from state-space
identification, or by state-space realization of the system transfer function.

Use the command ss to create state-space models

sys = ss(A,B,C,D)

For a model with Nx states, Ny outputs, and Nu inputs

• A is an Nx-by-Nx real-valued matrix.

• B is an Nx-by-Nu real-valued matrix.

• C is an Ny-by-Nx real-valued matrix.

• D is an Ny-by-Nu real-valued matrix.

This produces an SS object sys that stores the state-space matrices
. For models with a zero D matrix, you can use D = 0 (zero) as a

shorthand for a zero matrix of the appropriate dimensions.

H s( )

1–
s

------ 3 s 5+( )

s 1+( )2
--------------------

2 s2 2s– 2+( )
s 1–( ) s 2–( ) s 3–( )

--------------------------------------------------- 0

=

H s( )

xd
td

------ Ax Bu+=

y Cx Du+=

A B C and D, , ,
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As an illustration, consider the following simple model of an electric motor.

where is the angular displacement of the rotor and the driving current. The
relation between the input current and the angular velocity
is described by the state-space equations

where

This model is specified by typing

sys = ss([0 1;–5 –2],[0;3],[0 1],0)

to which MATLAB responds

a = 
                        x1           x2
           x1            0      1.00000
           x2     –5.00000     –2.00000

b = 
                        u1
           x1            0
           x2      3.00000

c = 
                        x1           x2
           y1            0      1.00000

d = 
                        u1
           y1            0

d2θ
t2d

---------- 2 θd
td

------ 5θ+ + 3I=

θ I
u I= y dθ dt⁄=

xd
td

------ Ax Bu+=

y Cx=

x
θ
θd
td

------
= A 0 1

5– 2–
= B 0

3
= C 0 1=
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In addition to the A, B, C, and D matrices, the display of state-space models
includes state names, input names, and output names. Default names (here,
x1, x2, u1, and y1) are displayed whenever you leave these unspecified. See
“LTI Properties” on page 2-25 for more information on how to specify state,
input, or output names.

Descriptor State-Space Models 
Descriptor state-space (DSS) models are a generalization of the standard
state-space models discussed above. They are of the form

The Control System Toolbox supports only descriptor systems with a
nonsingular matrix. While such models have an equivalent explicit form

it is often desirable to work with the descriptor form when the matrix is
poorly conditioned with respect to inversion.

The function dss is the counterpart of ss for descriptor state-space models.
Specifically,

sys = dss(A,B,C,D,E)

creates a continuous-time DSS model with matrix data A,B,C,D,E. For
example, consider the dynamical model

with vector of angular velocities. If the inertia matrix is poorly conditioned
with respect to inversion, you can specify this system as a descriptor model by

sys = dss(–F,eye(n),eye(n),0,J)  % n = length of vector 

E xd
td

------ Ax Bu+=

y Cx Du+=

E

xd
td

------ E 1– A( )x E 1– B( )u+=

y Cx Du+=

E

Jdω
dt
-------- Fω+ T=

y ω=

ω J

ω
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Frequency Response Data (FRD) Models 
In some instances, you may only have sampled frequency response data, rather
than a transfer function or state-space model for the system you want to
analyze or control. For information on frequency response analysis of linear
systems, see Chapter 8 of [1].

For example, suppose the frequency response function for the SISO system you
want to model is G(w). Suppose, in addition, that you perform an experiment
to evaluate G(w) at a fixed set of frequencies, . You can do this by
driving the system with a sequence of sinusoids at each of these frequencies, as
depicted below.

Here is the input frequency of each sinusoid, i = 1 ... n, and G(w) =
. The steady state output response of this system satisfies

A frequency response data (FRD) object is a model form you can use to store
frequency response data (complex frequency response, along with a
corresponding vector of frequency points) that you obtain either through
simulations or experimentally. In this example, the frequency response data is
obtained from the set of response pairs: .

Once you store your data in an FRD model, you can treat it as an LTI model,
and manipulate an FRD model in most of the same ways you manipulate TF,
SS, and ZPK models.

The basic syntax for creating a SISO FRD model is

sys = frd(response,frequencies,units)

where

• frequencies is a real vector of length Nf.

w1 w2 … wn, , ,

witsin
G(w) =

yi t( )

wi
G w( ) j G w( )∠( )exp

yi t( ) G wi( ) wit G wi( )∠+( ) i;sin 1…n= =

G wi( ) wi( , ){ } i, 1…n=
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• response is a vector of length Nf of complex frequency response values for
these frequencies.

• units is an optional string for the units of frequency: either 'rad/s' (default)
or 'Hz'

For example, the MAT-file LTIexamples.mat contains a frequency vector freq,
and a corresponding complex frequency response data vector respG. To load
this frequency-domain data and construct an FRD model, type

load LTIexamples
sys = frd(respG,freq)

Continuous-time frequency response with 1 output and 1 input
at 5 frequency points.

From input 1 to: 
Frequency(rad/s)        output 1     
----------------        --------     
        1 –0.812505 –0.000312i
        2 –0.092593 –0.462963i
        4 –0.075781 –0.001625i
        5 –0.043735 –0.000390i

The syntax for creating a MIMO FRD model is the same as for the SISO case,
except that response is a p-by-m-by-Nf multidimensional array, where p is the
number of outputs, m is the number of inputs, and Nf is the number of
frequency data points (the length of frequency).

The following table summarizes the complex-valued response data format for
FRD models.

Table 2-3:  Data Format for the Argument response in FRD Models

Model Form Response Data Format

SISO model Vector of length Nf for which response(i) is the
frequency response at the frequency frequency(i)
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Discrete-Time Models
Creating discrete-time models is very much like creating continuous-time
models, except that you must also specify a sampling period or sample time for
discrete-time models. The sample time value should be scalar and expressed in
seconds. You can also use the value –1 to leave the sample time unspecified.

To specify discrete-time LTI models using tf, zpk, ss, or frd, simply append
the desired sample time value Ts to the list of inputs.

sys1 = tf(num,den,Ts)
sys2 = zpk(z,p,k,Ts)
sys3 = ss(a,b,c,d,Ts)
sys4 = frd(response,frequency,Ts)

For example,

h = tf([1 –1],[1 –0.5],0.1)

creates the discrete-time transfer function with
sample time 0.1 seconds, and

sys = ss(A,B,C,D,0.5)

specifies the discrete-time state-space model

with sampling period 0.5 second. The vectors denote the
values of the state, input, and output vectors at the nth sample.

MIMO model
with Ny outputs
and Nu inputs

Ny-by-Nu-by-Nf multidimensional array for which
response(i,j,k) specifies the frequency response
from input j to output i at frequency frequency(k)

S1-by-...-by-Sn
array of models
with Ny outputs
and Nu inputs

Ny-by-Nu-by-S1-by-...-by-Sn multidimensional array,
for which response(i,j,k,:) specifies the array of
frequency response data from input j to output i at
frequency frequency(k)

Table 2-3:  Data Format for the Argument response in FRD Models (Continued)

Model Form Response Data Format

h z( ) z 1–( ) z 0.5–( )⁄=

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=

x n[ ] u n[ ] y n[ ], ,
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By convention, the sample time of continuous-time models is Ts = 0. Setting
Ts = –1 leaves the sample time of a discrete-time model unspecified. For
example,

h = tf([1 –0.2],[1 0.3],–1)

produces

Transfer function:
z – 0.2
-------
z + 0.3
 
Sampling time: unspecified

Note  Do not simply omit Ts in this case. This would make h a
continuous-time transfer function.

If you forget to specify the sample time when creating your model, you can still
set it to the correct value by reassigning the LTI property Ts. See “Sample
Time” on page 2-33 for more information on setting this property.

Discrete-Time TF and ZPK Models
You can specify discrete-time TF and ZPK models using tf and zpk as indicated
above. Alternatively, it is often convenient to specify such models by:

1 Defining the variable z as a particular discrete-time TF or ZPK model with
the appropriate sample time

2 Entering your TF or ZPK model directly as a rational expression in z.

This approach parallels the procedure for specifying continuous-time TF or
ZPK models using rational expressions. This procedure is described in “SISO
Transfer Function Models” on page 2-8 and “SISO Zero-Pole-Gain Models” on
page 2-12.

For example,

z = tf('z', 0.1);
H = (z+2)/(z^2 + 0.6*z + 0.9);
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creates the same TF model as

H = tf([1 2], [1 0.6 0.9], 0.1);

Similarly,

z = zpk('z', 0.1);
H = [z/(z+0.1)/(z+0.2) ; (z^2+0.2*z+0.1)/(z^2+0.2*z+0.01)]

produces the single-input, two-output ZPK model

Zero/pole/gain from input to output...
             z
 #1:  ---------------
      (z+0.1) (z+0.2)
 
      (z^2 + 0.2z + 0.1)
 #2:  ------------------
          (z+0.1)^2
 
Sampling time: 0.1

Note that:

• The syntax z = tf('z') is equivalent to z = tf('z',–1) and leaves the
sample time unspecified. The same applies to z = zpk('z').

• Once you have defined z as indicated above, any rational expressions in z
creates a discrete-time model of the same type and with the same sample
time as z.

Discrete Transfer Functions in DSP Format
In digital signal processing (DSP), it is customary to write discrete transfer
functions as rational expressions in and to order the numerator and
denominator coefficients in ascending powers of . For example, the
numerator and denominator of

would be specified as the row vectors [1 0.5] and [1 2 3], respectively. When
the numerator and denominator have different degrees, this convention

z 1–

z 1–

H z 1–( ) 1 0.5z 1–+

1 2z 1– 3z 2–+ +
----------------------------------------=
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clashes with the “descending powers of ” convention assumed by tf (see
“Transfer Function Models” on page 2-8, or tf). For example,

h = tf([1 0.5],[1 2 3])

produces the transfer function

which differs from by a factor .

To avoid such convention clashes, the Control System Toolbox offers a separate
function filt dedicated to the DSP-like specification of transfer functions. Its
syntax is

h = filt(num,den)

for discrete transfer functions with unspecified sample time, and

h = filt(num,den,Ts)

to further specify the sample time Ts. This function creates TF objects just like
tf, but expects num and den to list the numerator and denominator coefficients
in ascending powers of . For example, typing

h = filt([1 0.5],[1 2 3])

produces

Transfer function:
   1 + 0.5 z^–1
-------------------
1 + 2 z^–1 + 3 z^–2
 
Sampling time: unspecified

You can also use filt to specify MIMO transfer functions in . Just as for tf,
the input arguments num and den are then cell arrays of row vectors of
appropriate dimensions (see “Transfer Function Models” on page 2-8 for
details). Note that each row vector should comply with the “ascending powers
of ” convention.

z

z 0.5+
z2 2z 3+ +
----------------------------

H z 1–( ) z

z 1–

z 1–

z 1–
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Data Retrieval
The functions tf, zpk, ss, and frd pack the model data and sample time in a
single LTI object. Conversely, the following commands provide convenient data
retrieval for any type of TF, SS, or ZPK model sys, or FRD model sysfr.

[num,den,Ts] = tfdata(sys)  % Ts = sample time
[z,p,k,Ts] = zpkdata(sys)
[a,b,c,d,Ts] = ssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)
[response,frequency,Ts] = frdata(sysfr)

Note that:

• sys can be any type of LTI object, except an FRD model

• sysfr, the input argument to frdata, can only be an FRD model

You can use any variable names you want in the output argument list of any of
these functions. The ones listed here correspond to the model property names
described in Tables 2-2 – 2.5.

The output arguments num and den assigned to tfdata, and z and p assigned
to zpkdata, are cell arrays, even in the SISO case. These cell arrays have as
many rows as outputs, as many columns as inputs, and their ijth entry
specifies the transfer function from the jth input to the ith output. For example,

H = [tf([1 –1],[1 2 10]) , tf(1,[1 0])]

creates the one-output/two-input transfer function

Typing

[num,den] = tfdata(H);
num{1,1}, den{1,1}

displays the coefficients of the numerator and denominator of the first input
channel.

ans =
     0     1    –1
ans =

H s( ) s 1–

s2 2s 10+ +
------------------------------- 1

s
---=
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     1     2    10

Note that the same result is obtained using

H.num{1,1}, H.den{1,1}

See “Direct Property Referencing” on page 2-31 for more information about this
syntax.

To obtain the numerator and denominator of SISO systems directly as row
vectors, use the syntax

[num,den,Ts] = tfdata(sys,'v')

For example, typing

sys = tf([1 3],[1 2 5]);
[num,den] = tfdata(sys,'v')

produces

num =
 
     0     1     3

den =
 
     1     2     5

Similarly,

[z,p,k,Ts] = zpkdata(sys,'v')

returns the zeros, z, and the poles, p, as vectors for SISO systems.
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LTI Properties
The previous section shows how to create LTI objects that encapsulate the
model data and sample time. You also have the option to attribute additional
information, such as the input names or notes on the model history, to LTI
objects. This section gives a complete overview of the LTI properties, i.e., the
various pieces of information that can be attached to the TF, ZPK, SS, and FRD
objects. Type help ltiprops for online help on available LTI properties.

From a data structure standpoint, the LTI properties are the various fields in
the TF, ZPK, SS, and FRD objects. These fields have names (the property
names) and are assigned values (the property values). We distinguish between
generic properties, common to all four types of LTI objects, and model-specific
properties that pertain only to one particular type of model.

Generic Properties
The generic properties are those shared by all four types of LTI models (TF,
ZPK, SS, and FRD objects). They are listed in the table below.

Table 2-4:  Generic LTI Properties

Property Name Description Property Value

ioDelay I/O delay(s) Matrix

InputDelay Input delay(s) Vector

InputGroup Input channel groups Cell array

InputName Input channel names Cell vector of strings

Notes Notes on the model history Text

OutputDelay Output delay(s) Vector

OutputGroup Output channel groups Cell array

OutputName Output channel names Cell vector of strings

Ts Sample time Scalar

Userdata Additional data Arbitrary
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The sample time property Ts keeps track of the sample time (in seconds) of
discrete-time systems. By convention, Ts is 0 (zero) for continuous-time
systems, and Ts is –1 for discrete-time systems with unspecified sample time.
Ts is always a scalar, even for MIMO systems.

The InputDelay, OutputDelay, and ioDelay properties allow you to specify
time delays in the input or output channels, or for each input/output pair. Their
default value is zero (no delay). See “Time Delays” on page 2-43 for details on
modeling delays.

The InputName and OutputName properties enable you to give names to the
individual input and output channels. The value of each of these properties is
a cell vector of strings with as many cells as inputs or outputs. For example,
the OutputName property is set to

{ 'temperature' ; 'pressure' }

for a system with two outputs labeled temperature and pressure. The default
value is a cell of empty strings.

Using the InputGroup and OutputGroup properties of LTI objects, you can
create different groups of input or output channels, and assign names to the
groups. For example, you may want to designate the first four inputs of a
five-input model as controls, and the last input as noise. See “Input Groups
and Output Groups” on page 2-36 for more information.

Finally, Notes and Userdata are available to store additional information on
the model. The Notes property is dedicated to any text you want to supply with
your model, while the Userdata property can accommodate arbitrary
user-supplied data. They are both empty by default.

For more detailed information on how to use LTI properties, see “Additional
Insight into LTI Properties” on page 2-32.

Model-Specific Properties
The remaining LTI properties are specific to one of the four model types (TF,
ZPK, SS, or FRD). For single LTI models, these are summarized in the
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following four tables. The property values differ for LTI arrays. See set for
more information on these values.

Table 2-5:  TF-Specific Properties

Property Name Description Property Value

den Denominator(s) Real cell array of row vectors

num Numerator(s) Real cell array of row vectors

Variable Transfer function
variable

String 's', 'p', 'z', 'q', or
'z^–1'

Table 2-6:  ZPK-Specific Properties

Property Name Description Property Value

k Gains Two-dimensional real matrix

p Poles Cell array of column vectors

Variable Transfer function
variable

String 's', 'p', 'z', 'q', or
'z^–1'

z Zeros Cell array of column vectors

Table 2-7:  SS-Specific Properties

Property Name Description Property Value

a State matrix 2-D real matrix

b Input-to-state matrix 2-D real matrix

c State-to-output matrix 2-D real matrix

d Feedthrough matrix 2-D real matrix

e Descriptor matrix 2-D real matrix

Nx Number of states Scalar integer

StateName State names Cell vector of strings

A

B

C

D

E
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Most of these properties are dedicated to storing the model data. Note that the
matrix is set to [] (the empty matrix) for standard state-space models, a

storage-efficient shorthand for the true value .

The Variable property is only an attribute of TF and ZPK objects. This
property defines the frequency variable of transfer functions. The default
values are 's' (Laplace variable ) in continuous time and 'z' (Z-transform
variable ) in discrete time. Alternative choices include 'p' (equivalent to )
and 'q' or 'z^–1' for the reciprocal of the variable. The influence of
the variable choice is mostly limited to the display of TF or ZPK models. One
exception is the specification of discrete-time transfer functions with tf (see tf
for details).

Note that tf produces the same result as filt when the Variable property is
set to 'z^–1' or 'q'.

Finally, the StateName property is analogous to the InputName and OutputName
properties and keeps track of the state names in state-space models.

Setting LTI Properties
There are three ways to specify LTI property values:

• You can set properties when creating LTI models with tf, zpk, ss, or frd.

• You can set or modify the properties of an existing LTI model with set.

• You can also set property values using structure-like assignments.

This section discusses the first two options. See “Direct Property Referencing”
on page 2-31 for details on the third option.

Table 2-8:  FRD-Specific Properties

Property Name Description Property Value

Frequency Frequency data points Real-valued vector

ResponseData Frequency response Complex-valued
multidimensional array

Units Units for frequency String 'rad/s' or 'Hz'

E
E I=

s
z s

q z 1–= z
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The function set for LTI objects follows the same syntax as its Handle
Graphics counterpart. Specifically, each property is updated by a pair of
arguments

PropertyName,PropertyValue

where

• PropertyName is a string specifying the property name. You can type the
property name without regard for the case (upper or lower) of the letters in
the name. Actually, you need only type any abbreviation of the property
name that uniquely identifies the property. For example, 'user' is sufficient
to refer to the Userdata property.

• PropertyValue is the value to assign to the property (see set for details on
admissible property values).

As an illustration, consider the following simple SISO model for a heating
system with an input delay of 0.3 seconds, an input called “energy,” and an
output called “temperature.”

Figure 2-1: A Simple Heater Model

You can use a TF object to represent this delay system, and specify the time
delay, the input and output names, and the model history by setting the
corresponding LTI properties. You can either set these properties directly
when you create the LTI model with tf, or by using the set command.

For example, you can specify the delay directly when you create the model, and
then use the set command to assign InputName, OutputName, and Notes to 
sys.

sys = tf(1,[1 1],'Inputdelay',0.3);
set(sys,'inputname','energy','outputname','temperature',...

'notes','A simple heater model')

1
s 1+
------------e 0.3s–

delay

energy temperature
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Finally, you can also use the set command to obtain a listing of all settable
properties for a given LTI model type, along with valid values for these
properties. For the transfer function sys created above

set(sys)

produces

num:  Ny-by-Nu cell of row vectors (Nu = no. of inputs)
den:  Ny-by-Nu cell of row vectors (Ny = no. of outputs)
Variable:  [ 's' | 'p' | 'z' | 'z^-1' | 'q' ]
Ts:  scalar
InputDelay:  Nu-by-1 vector
OutputDelay:  Ny-by-1 vector
ioDelay:  Ny-by-Nu array (I/O delays)
InputName:  Nu-by-1 cell array of strings
OutputName:  Ny-by-1 cell array of strings
InputGroup:  M-by-2 cell array if M input groups
OutputGroup:  P-by-2 cell array if P output groups
Notes:  array or cell array of strings
UserData:  arbitrary

Accessing Property Values Using get
You access the property values of an LTI model sys with get. The syntax is

PropertyValue = get(sys,PropertyName)

where the string PropertyName is either the full property name, or any
abbreviation with enough characters to identify the property uniquely. For
example, typing

h = tf(100,[1 5 100],'inputname','voltage',...
                        'outputn','current',...
                        'notes','A simple circuit')
get(h,'notes')

produces

ans = 

    'A simple circuit'
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To display all of the properties of an LTI model sys (and their values), use the
syntax get(sys). In this example,

get(h)

produces

num = {[0 0 100]}
den = {[1 5 100]}
Variable = 's'
Ts = 0
InputDelay = 0
OutputDelay = 0
ioDelay = 0
InputName = {'voltage'}
OutputName = {'current'}
InputGroup = {0x2 cell}
OutputGroup = {0x2 cell}
Notes = {'A simple circuit'}
UserData = []

Notice that default (output) values have been assigned to any LTI properties in
this list that you have not specified.

Finally, you can also access property values using direct structure-like
referencing. This topic is explained in the next section.

Direct Property Referencing
An alternative way to query/modify property values is by structure-like
referencing. Recall that LTI objects are basic MATLAB structures except for
the additional flag that marks them as TF, ZPK, SS, or FRD objects (see “LTI
Objects” on page 2-3). The field names for LTI objects are the property names,
so you can retrieve or modify property values with the structure-like syntax.

PropertyValue = sys.PropertyName% gets property value
sys.PropertyName = PropertyValue% sets property value

These commands are respectively equivalent to

PropertyValue = get(sys,'PropertyName')
set(sys,'PropertyName',PropertyValue)

For example, type
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sys = ss(1,2,3,4,'InputName','u');
sys.a

and you get the value of the property “a” for the state-space model sys.

ans =
     1

Similarly,

sys.a = –1;

resets the state transition matrix for sys to –1.

Unlike standard MATLAB structures, you do not need to type the entire field
name or use upper-case characters. You only need to type the minimum
number of characters sufficient to identify the property name uniquely. Thus
either of the commands

sys.InputName
sys.inputn

produces

ans = 

    'u'

Any valid syntax for structures extends to LTI objects. For example, given the
TF model

h = tf(1,[1,0],'variable','p');

you can reset the numerator to by typing

h.num{1} = [1 2];

or equivalently, with

h.num{1}(2) = 2;

Additional Insight into LTI Properties
By reading this section, you can learn more about using the Ts, InputName,
OutputName, InputGroup, and OutputGroup LTI properties through a set of
examples. For basic information on Notes and Userdata, see “Generic

h p( ) 1 p⁄=

p 2+
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Properties” on page 2-25. For detailed information on the use of InputDelay, 
OutputDelay, and ioDelay, see “Time Delays” on page 2-43.

Sample Time 
The sample time property Ts is used to specify the sampling period (in seconds)
for either discrete-time or discretized continuous-time LTI models. Suppose
you want to specify

as a discrete-time transfer function model with a sampling period of 0.5
seconds. To do this, type

h = tf([1 0],[2 1 1],0.5);

This sets the Ts property to the value 0.5, as is confirmed by

h.Ts

ans =
    0.5000

For continuous-time models, the sample time property Ts is 0 by convention.
For example, type

h = tf(1,[1 0]);
get(h,'Ts')

ans =
     0

To leave the sample time of a discrete-time LTI model unspecified, set Ts to .
For example,

h = tf(1,[1 –1],–1)

produces

Transfer function:
  1
-----
z – 1
 

H z( ) z
2z2 z 1+ +
----------------------------=

1–
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Sampling time: unspecified

The same result is obtained by using the Variable property.

h = tf(1,[1 –1],'var','z')

In operations that combine several discrete-time models, all specified sample
times must be identical, and the resulting discrete-time model inherits this
common sample time. The sample time of the resultant model is unspecified if
all operands have unspecified sample times. With this inheritance rule for Ts,
the following two models are equivalent.

tf(0.1,[1 –1],0.1) + tf(1,[1 0.5],–1)

and

tf(0.1,[1 –1],0.1) + tf(1,[1 0.5],0.1)

Note that

tf(0.1,[1 –1],0.1) + tf(1,[1 0.5],0.5)

returns an error message.

??? Error using ==> lti/plus
In SYS1+SYS2, both models must have the same sample time.

Caution:   Resetting the sample time of a continuous-time LTI model sys from
zero to a nonzero value does not discretize the original model sys. The
command

set(sys,'Ts',0.1)

only affects the Ts property and does not alter the remaining model data. Use
c2d and d2c to perform continuous-to-discrete and discrete-to-continuous
conversions. For example, use

sysd = c2d(sys,0.1)

to discretize a continuous system sys at a 10Hz sampling rate.

Use d2d to change the sample time of a discrete-time system and resample it.
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Input Names and Output Names
You can use the InputName and OutputName properties (in short, I/O names) to
assign names to any or all of the input and output channels in your LTI model.

For example, you can create a SISO model with input thrust, output
velocity, and transfer function by typing

h = tf(1,[1 10]);
set(h,'inputname','thrust','outputname','velocity',...

 'variable','p')

Equivalently, you can set these properties directly by typing

h = tf(1,[1 10],'inputname','thrust',...
'outputname','velocity',...

 'variable','p')

This produces

Transfer function from input "thrust" to output "velocity":
  1
------
p + 10

Note how the display reflects the input and output names and the variable
selection.

In the MIMO case, use cell vectors of strings to specify input or output channel
names. For example, type

num = {3 , [1 2]};
den = {[1 10] , [1 0]};
H = tf(num,den);   % H(s) has one output and two inputs

set(H,'inputname',{'temperature' ; 'pressure'})

The specified input names appear in the display of H.

Transfer function from input "temperature" to output:
  3
------
s + 10
 
Transfer function from input "pressure" to output:

H p( ) 1 p 10+( )⁄=
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s + 2
-----
  s

To leave certain names undefined, use the empty string '' as in

H = tf(num,den,'inputname',{ 'temperature' ; '' })

Input Groups and Output Groups
In many applications, you may want to create several (distinct or intersecting)
groups of input or output channels and name these groups. For example, you
may want to label one set of input channels as noise and another set as
controls.

To see how input and output groups (I/O groups) work:

1 Create a random state-space model with one state, three inputs, and three
outputs.

2 Assign the first two inputs to a group named controls, the first output to a
group named temperature, and the last two outputs to a group named
measurements.

To do this, type

h = rss(1,3,3);
set(h, 'InputGroup',{[1 2] 'controls'})
set(h, 'OutputGroup', {[1] 'temperature'; [2 3] 'measurements'})
h

and MATLAB returns a state-space model of the following form.

a = 
                        x1
           x1     –0.64884
 
 
b = 
                        u1           u2           u3
           x1      0.12533            0            0
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c = 
                        x1
           y1       1.1909
           y2       1.1892
           y3            0
 
 
d = 
                        u1           u2           u3
           y1      0.32729            0 –0.1364
           y2            0            0            0
           y3            0       2.1832            0
 
I/O Groups:                        
   Group Name     I/O    Channel(s)
    controls       I        1,2    
  temperature      O         1     
  measurements     O        2,3    
                                   
Continuous-time model.

Notice that the middle column of the I/O group listing indicates whether the
group is an input group (I) or an output group (O).
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In general, to specify M input groups (or output groups), you need an M-by-2
cell array organized as follows.

Figure 2-2:  Two Column Cell Array

When you specify the cell array for input (or output) groups, keep in mind:

• Each row of this cell array designates a different input (output) group.

• You can add input (or output) groups by appending rows to the cell array.

• You can choose not to assign any of the group names when you assign the
groups, and leave off the second column of this array. In that case,

- Empty strings are assigned to the group names by default.

- If you append rows to a cell array with no group names assigned, you have
to assign empty strings ('') to the group names.

For example,

h.InputGroup = [h.InputGroup; {[3] 'disturbance'}];

adds another input group called disturbance to h.

You can use regular cell array syntax for accessing or modifying I/O group
components. For example, to delete the first output group, temperature, type

h.OutputGroup(1,:) = []

ans = 
[1x2 double]    'measurements'

Vectors of Channel Indices Group Names

{ Channels for Group 1 , Name for Group 1;

Channels for Group 2 , Name for Group 2;

Channels for Group M , Name for Group M }
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Similarly, you can add or delete channels from an existing input or output
group. Recalling that input group channels are stored in the first column of the
corresponding cell array, to add channel three to the input group controls,
type

h.inputgroup{1,1} = [h.inputgroup{1,1} 3]

or, equivalently,

h.inputgroup{1,1} = [1 2 3]
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Model Conversion
There are four LTI model types you can use with the Control System Toolbox:
TF, ZPK, SS, and FRD. This section shows how to convert models from one type
to the other.

Explicit Conversion
Model conversions are performed by tf, ss, zpk, and frd. Given any TF, SS, or
ZPK model sys, the syntax for conversion to another model type is

Notice that FRD models can’t be converted to the other model types. In
addition, you must also include a vector of frequencies (frequency) as an input
argument when converting to an FRD model.

For example, you can convert the state-space model

sys = ss(–2,1,1,3)

to a zero-pole-gain model by typing

zpk(sys)

to which MATLAB responds

Zero/pole/gain:
3 (s+2.333)
-----------
   (s+2)

Note that the transfer function of a state-space model with data is

for continuous-time models, and

sys = tf(sys) % Conversion to TF

sys = zpk(sys) % Conversion to ZPK

sys = ss(sys) % Conversion to SS

sys = frd(sys,frequency) % Conversion to FRD

A B C D, , ,( )

H s( ) D C sI A–( ) 1– B+=
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for discrete-time models.

Automatic Conversion 
Some algorithms operate only on one type of LTI model. For example, the
algorithm for zero-order-hold discretization with c2d can only be performed on
state-space models. Similarly, commands like tfdata expect one particular
type of LTI models (TF). For convenience, such commands automatically
convert LTI models to the appropriate or required model type. For example, in

sys = ss(0,1,1,0)
[num,den] = tfdata(sys)

tfdata first converts the state-space model sys to an equivalent transfer
function in order to return numerator and denominator data.

Note that conversions to state-space models are not uniquely defined. For this
reason, automatic conversions to state space are disabled when the result
depends on the choice of state coordinates, for example, in commands like
initial or kalman.

Caution About Model Conversions
When manipulating or converting LTI models, keep in mind that:

• The three LTI model types TF, ZPK, and SS, are not equally well-suited for
numerical computations. In particular, the accuracy of computations using
high-order transfer functions is often poor. Therefore, it is often preferable to
work with the state-space representation. In addition, it is often beneficial to
balance and scale state-space models using ssbal. You get this type of
balancing automatically when you convert any TF or ZPK model to state
space using ss.

• Conversions to the transfer function representation using tf may incur a
loss of accuracy. As a result, the transfer function poles may noticeably differ
from the poles of the original zero-pole-gain or state-space model.

• Conversions to state space are not uniquely defined in the SISO case, nor are
they guaranteed to produce a minimal realization in the MIMO case. For a
given state-space model sys,

H z( ) D C zI A–( ) 1– B+=
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ss(tf(sys))

may return a model with different state-space matrices, or even a different
number of states in the MIMO case. Therefore, if possible, it is best to avoid
converting back and forth between state-space and other model types.
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Time Delays
Using the ioDelay, InputDelay, and OutputDelay properties of LTI objects,
you can specify delays in both continuous- and discrete-time LTI models. With
these properties, you can, for example, represent:

• LTI models with independent delays for each input/output pair. For
example, the continuous-time model with transfer function

• State-space models with delayed inputs and/or delayed outputs. For
example,

where is the time delay between the input and the state vector ,
and is the time delay between and the output .

You can assign the delay properties ioDelay, InputDelay, and OutputDelay
either when first creating your model with the tf, zpk, ss, or frd constructors,
or later with the set command (see “LTI Properties and Methods” on page 2-4
for details).

Supported Functionality
Most analysis commands support time delays, including:

• All time and frequency response commands

• Conversions between model types

• Continuous-to-discrete conversions (c2d)

• Horizontal and vertical concatenation

• Series, parallel, and feedback interconnections of discrete-time models with
delays

H s( )
e 0.1s– 2

s
--- e 0.3s– s 1+

s 10+
---------------

10 e 0.2s– s 1–
s 5+
------------

=

x· t( ) Ax t( ) Bu t τ–( )+=

y t( ) Cx t θ–( ) Du t θ τ+( )–( )+=

τ u t( ) x t( )
θ x t( ) y t( )
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• Interconnections of continuous-time delay systems as long as the resulting
transfer function from input to output is of the form
where is a rational function of

• Padé approximation of time delays (pade)

Specifying Input/Output Delays
Using the ioDelay property, you can specify frequency-domain models with
independent delays in each entry of the transfer function. In continuous time,
such models have a transfer function of the form

where the ’s are rational functions of , and is the time delay between
input and output . See “Specifying Delays in Discrete-Time Models” on page
2-50 for details on the discrete-time counterpart. We collectively refer to the
scalars as the I/O delays.

The syntax to create above is

H = tf(num,den,'ioDelay',Tau)

or

H = zpk(z,p,k,'ioDelay',Tau)

where

• num, den (respectively, z, p, k) specify the rational part of the transfer
function

• Tau is the matrix of time delays for each I/O pair. That is, Tau(i,j) specifies
the I/O delay in seconds. Note that Tau and should have the same
row and column dimensions.

You can also use the ioDelay property in conjunction with state-space models,
as in

sys = ss(A,B,C,D,'ioDelay',Tau)

j i sτij–( ) hij s( )exp
hij s( ) s
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This creates the LTI model with the following transfer function.

Here is the entry of

Note  State-space models with I/O delays have only a frequency-domain
interpretation. They cannot, in general, be described by state-space equations
with delayed inputs and outputs.

Distillation Column Example
This example is adapted from [2] and illustrates the use of I/O delays in process
modeling. The process of interest is the distillation column depicted by the
figure below. This column is used to separate a mix of methanol and water (the
feed) into bottom products (mostly water) and a methanol-saturated distillate.

H s( ) sτij–( ) rij s( )exp=

rij s( ) i j,( )

R s( ) D C sI A–( ) 1– B+=
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Figure 2-3:  Distillation Column

Schematically, the distillation process functions as follows:

• Steam flows into the reboiler and vaporizes the bottom liquid. This vapor is
reinjected into the column and mixes with the feed

• Methanol, being more volatile than water, tends to concentrate in the vapor
moving upward. Meanwhile, water tends to flow downward and accumulate
as the bottom liquid

• The vapor exiting at the top of the column is condensed by a flow of cooling
water. Part of this condensed vapor is extracted as the distillate, and the rest
of the condensate (the reflux) is sent back to the column.

• Part of the bottom liquid is collected from the reboiler as bottom products
(waste).

The regulated output variables are:

• Percentage of methanol in the distillate

• Percentage of methanol in the bottom products.

Feed

Enriched vapor
Cooling water

Condensate

Reflux
Distillate

Vapor

Steam flow

Reboiler

Bottom liquid Bottom products

XD

XB
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The goal is to maximize by adjusting the reflux flow rate and the steam
flow rate in the reboiler.

To obtain a linearized model around the steady-state operating conditions, the
transient responses to pulses in steam and reflux flow are fitted by first-order
plus delay models. The resulting transfer function model is

Note the different time delays for each input/output pair.

You can specify this MIMO transfer function by typing

H = tf({12.8 –18.9;6.6 –19.4},...
{[16.7 1] [21 1];[10.9 1] [14.4 1]},...
'iodelay',[1 3;7 3],...
'inputname',{'R' , 'S'},...
'outputname',{'Xd' , 'Xb'})

The resulting TF model is displayed as

Transfer function from input "R" to output...
                     12.8
 Xd:  exp(–1*s) * ----------
                  16.7 s + 1
 
                     6.6
 Xb:  exp(–7*s) * ----------
                  10.9 s + 1
 
Transfer function from input "S" to output...

–18.9
 Xd:  exp(–3*s) * --------
                  21 s + 1
 

–19.4
 Xb:  exp(–3*s) * ----------
                  14.4 s + 1

XD R
S

XD s( )

XB s( )

12.8e 1s–

16.7e 1+
------------------------ 18.9e 3s–

–
21.0s 1+
-------------------------

6.6e 7s–

10.9s 1+
------------------------ 19.4e 3s–

–
14.4s 1+
-------------------------

R s( )
S s( )

=
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Specifying Delays on the Inputs or Outputs
While ideal for frequency-domain models with I/O delays, the ioDelay property
is inadequate to capture delayed inputs or outputs in state-space models. For
example, the two models

share the same transfer function

As a result, they cannot be distinguished using the ioDelay property (the I/O
delay value is 0.1 seconds in both cases). Yet, these two models have different
state trajectories since and are related by

Note that the 0.1 second delay is on the input in the first model, and on the
output in the second model.

InputDelay and OutputDelay Properties
When the state trajectory is of interest, you should use the InputDelay and
OutputDelay properties to distinguish between delays on the inputs and
delays on the outputs in state-space models. For example, you can accurately
specify the two models above by

M1 = ss(–1,1,1,0,'inputdelay',0.1)
M2 = ss(–1,1,1,0,'outputdelay',0.1)

In the MIMO case, you can specify a different delay for each input (or output)
channel by assigning a vector value to InputDelay (or OutputDelay). For
example,

sys = ss(A,[B1 B2],[C1;C2],[D11 D12;D21 D22])
sys.inputdelay = [0.1 0]
sys.outputdelay = [0.2 0.3]

creates the two-input, two-output model

M1( ) x· t( ) x– t( ) u t 0.1–( )+=

y t( ) x t( )=�
�
�

M2( ) z· t( ) z– t( ) u t( )+=

y t( ) z t 0.1–( )=�
�
�

h s( ) e 0.1s–

s 1+
----------------=

x t( ) z t( )

z t( ) x t 0.1–( )=
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You can also use the InputDelay and OutputDelay properties to conveniently
specify input or output delays in TF, ZPK, or FRD models. For example, you
can create the transfer function

by typing

s = tf('s');
H = [1/s ; 2/(s+1)]; % rational part
H.inputdelay = 0.1

The resulting model is displayed as

Transfer function from input to output...
                    1
 #1:  exp(–0.1*s) * -
                    s
 
                      2
 #2:  exp(–0.1*s) * -----
                    s + 1

By comparison, to produce an equivalent transfer function using the ioDelay
property, you would need to type

H = [1/s ; 2/(s+1)];
H.iodelay = [0.1 ; 0.1];

Notice that the 0.1 second delay is repeated twice in the I/O delay matrix. More
generally, for a TF, ZPK, or FRD model with input delays and
output delays , the equivalent I/O delay matrix is

x· t( ) Ax t( ) B1u1 t 0.1–( )+ B2u2 t( )+=

y1 t 0.2+( ) C1x t( ) D11u1 t 0.1–( ) D12u2 t( )+ +=

y2 t 0.3+( ) C2x t( ) D21u1 t 0.1–( ) D22u2 t( )+ +=

H s( )

1
s
---

2
s 1+
------------

= e 0.1s–

α1 ... αm, ,[ ]
β1 ... βp, ,[ ]
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Specifying Delays in Discrete-Time Models
You can also use the ioDelay, InputDelay, and OutputDelay properties to
specify delays in discrete-time LTI models. You specify time delays in
discrete-time models with integer multiples of the sampling period. The integer
k you supply for the time delay of a discrete-time model specifies a time delay
of k sampling periods. Such a delay contributes a factor to the transfer
function.

For example,

h = tf(1,[1 0.5 0.2],0.1,'inputdelay',3)

produces the discrete-time transfer function

Transfer function:
                 1
z^(–3) * -----------------
         z^2 + 0.5 z + 0.2
 
Sampling time: 0.1

Notice the z^(–3) factor reflecting the three-sampling-period delay on the
input.

Mapping Discrete-Time Delays to Poles at the Origin
Since discrete-time delays are equivalent to additional poles at , they can
be easily absorbed into the transfer function denominator or the state-space
equations. For example, the transfer function of the delayed integrator

is

α1 β1+ α2 β1+ ... αm β1+

α1 β2+ α2 β2+ αm β2+

: : :
α1 βp+ α2 βp+ ... αm βp+

z k–

z 0=

y k 1+[ ] y k[ ] u k 2–[ ]+=
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You can specify this model either as the first-order transfer function
with a delay of two sampling periods on the input

Ts = 1; % sampling period
H1 = tf(1,[1 –1],Ts,'inputdelay',2)

or directly as a third-order transfer function:

H2 = tf(1,[1 –1 0 0],Ts) % 1/(z^3–z^2)

While these two models are mathematically equivalent, H1 is a more efficient
representation both in terms of storage and subsequent computations.

When necessary, you can map all discrete-time delays to poles at the origin
using the command delay2z. For example,

H2 = delay2z(H1)

absorbs the input delay in H1 into the transfer function denominator to produce
the third-order transfer function

Transfer function:
    1
---------
z^3 – z^2
 
Sampling time: 1

Note that

H2.inputdelay

now returns 0 (zero).

Retrieving Information About Delays
There are several ways to retrieve time delay information from a given LTI
model sys:

• Use property display commands to inspect the values of the ioDelay,
InputDelay, and OutputDelay properties. For example,

H z( ) z 2–

z 1–
------------=

1 z 1–( )⁄
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sys.iodelay
get(sys,'inputdelay')

• Use the helper function hasdelay to determine if sys has any delay at all.
The syntax is

hasdelay(sys)

which returns 1 (true) if sys has any delay, and 0 (false) otherwise

• Use the function totaldelay to determine the total delay between each input
and each output (cumulative contribution of the ioDelay, InputDelay, and
OutputDelay properties). Type help totaldelay or see the Reference pages
for details.

Padé Approximation of Time Delays
The function pade computes rational approximations of time delays in
continuous-time LTI models. The syntax is

sysx = pade(sys,n)

where sys is a continuous-time model with delays, and the integer n specifies
the Padé approximation order. The resulting LTI model sysx is of the same
type as sys, but is delay free.

For models with multiple delays or a mix of input, output, and I/O delays, you
can use the syntax

sysx = pade(sys,ni,no,nio)

where the vectors ni and no, and the matrix nio specify independent
approximation orders for each input, output, and I/O delay, respectively. Set
ni=[] if there are no input delays, and similarly for no and nio.

For example, consider the “Distillation Column Example” on page 2-45. The
two-input, two-output transfer function in this example is

H s( )

12.8e 1s–

16.7e 1+
------------------------ 18.9e 3s–

–
21.0s 1+
-------------------------

6.6e 7s–

10.9s 1+
------------------------ 19.4e 3s–

–
14.4s 1+
-------------------------

=
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To compute a Padé approximation of H(s) using:

• A first-order approximation for the 1 second and 3 second delays

• A second-order approximation for the 7 second delay,

type

pade(H,[],[],[1 1;2 1])

where H is the TF representation of defined in the distillation column
example. This command produces a rational transfer function.

Transfer function from input "R" to output...
–12.8 s + 25.6

 Xd:  ---------------------
      16.7 s^2 + 34.4 s + 2
 
             6.6 s^2 – 5.657 s + 1.616
 Xb:  ---------------------------------------
      10.9 s^3 + 10.34 s^2 + 3.527 s + 0.2449
 
Transfer function from input "S" to output...
          18.9 s – 12.6
 Xd:  ----------------------
      21 s^2 + 15 s + 0.6667
 
            19.4 s – 12.93
 Xb:  --------------------------
      14.4 s^2 + 10.6 s + 0.6667

H s( )
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Simulink Block for LTI Systems
You can incorporate LTI objects into Simulink diagrams using the LTI System
block shown below.

The LTI System block can be accessed either by typing

ltiblock

at the MATLAB prompt or by selecting Control System Toolbox from the
Blocksets and Toolboxes section of the main Simulink library.

The LTI System block consists of the dialog box shown on the right in the figure
above. In the editable text box labeled LTI system variable, enter either the
variable name of an LTI object located in the MATLAB workspace (for
example, sys) or a MATLAB expression that evaluates to an LTI object (for
example, tf(1,[1 1])). The LTI System block accepts both continuous and
discrete LTI objects in either transfer function, zero-pole-gain, or state-space
form. Simulink converts the model to its state-space equivalent prior to
initializing the simulation.

Use the editable text box labeled Initial states to enter an initial state vector
for state-space models. The concept of “initial state” is not well-defined for

Double-click on the block in your 
Simulink diagram to display or 
modify model information.

This mask is linked to an LTI 
block in a Simulink diagram.
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transfer functions or zero-pole-gain models, as it depends on the choice of state
coordinates used by the realization algorithm. As a result, you cannot enter
nonzero initial states when you supply TF or ZPK models to LTI blocks in a
Simulink diagram.

Note:  

• For MIMO systems, the input delays stored in the LTI object must be either
all positive or all zero.

• LTI blocks in a Simulink diagram cannot be used for FRD models or LTI
arrays.
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You can perform basic matrix operations such as addition, multiplication, or
concatenation on LTI models. Such operations are “overloaded,” which means
that they use the same syntax as they do for matrices, but are adapted so as to
apply to the LTI model context. These overloaded operations and their
interpretation in this context are discussed in this chapter. You can read about
discretization methods in this chapter as well. The following topics and
operations on LTI models are covered in this chapter:

• Precedence and Property Inheritance

• Extracting and Modifying Subsystems

• Arithmetic Operations

• Model Interconnection Functions

• Continuous/Discrete-Time Conversions of LTI Models

• Resampling of Discrete-Time Models

These operations can be applied to LTI models of different types. As a result,
before discussing operations on LTI models, we discuss model type precedence
and how LTI model properties are inherited when models are combined using
these operations. To read about how you can apply these operations to arrays
of LTI models, see “Operations on LTI Arrays” on page 4-24. To read about the
available functions with which you can analyze LTI models, see Chapter 5,
“Model Analysis Tools,”
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Precedence and Property Inheritance
You can apply operations to LTI models of different types. The resulting type
is then determined by the rules discussed in “Precedence Rules” on page 2-5.
For example, if sys1 is a transfer function and sys2 is a state-space model,
then the result of their addition

sys = sys1 + sys2

is a state-space model, since state-space models have precedence over transfer
function models.

To supersede the precedence rules and force the result of an operation to be a
given type, for example, a transfer function (TF), you can either:

• Convert all operands to TF before performing the operation

• Convert the result to TF after performing the operation

Suppose, in the above example, you want to compute the transfer function of
sys. You can either use a priori conversion of the second operand

sys = sys1 + tf(sys2);

or a posteriori conversion of the result

sys = tf(sys1 + sys2)

Note  These alternatives are not equivalent numerically; computations are
carried out on transfer functions in the first case, and on state-space models in
the second case.

Another issue is property inheritance, that is, how the operand property values
are passed on to the result of the operation. While inheritance is partly
operation-dependent, some general rules are summarized below:

• In operations combining discrete-time LTI models, all models must have
identical or unspecified (sys.Ts = –1) sample times. Models resulting from
such operations inherit the specified sample time, if there is one.

• Most operations ignore the Notes and Userdata properties.
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• In general, when two LTI models sys1 and sys2 are combined using
operations such as +, *, [,], [;], append, and feedback, the resulting model
inherits its I/O names and I/O groups from sys1 and sys2. However,
conflicting I/O names or I/O groups are not inherited. For example, the
InputName property for sys1 + sys2 is left unspecified if sys1 and sys2 have
different InputName property values.

• A model resulting from operations on TF or ZPK models inherits its
Variable property value from the operands. Conflicts are resolved according
the following rules:

- For continuous-time models, 'p' has precedence over 's'.

- For discrete-time models, 'z^–1' has precedence over 'q' and 'z', while
'q' has precedence over 'z'.
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Extracting and Modifying Subsystems
Subsystems relate subsets of the inputs and outputs of a system. The transfer
matrix of a subsystem is a submatrix of the system transfer matrix. For
example, if sys is a system with two inputs, three outputs, and I/O relation

then gives the relation between the first input and third output.

Accordingly, use matrix-like subindexing to extract this subsystem.

SubSys = sys(3,1)

The resulting subsystem SubSys is an LTI model of the same type as sys, with
its sample time, time delay, I/O name, and I/O group property values inherited
from sys.

For example, if sys has an input group named controls consisting of channels
one, two, and three, then SubSys also has an input group named controlswith
the first channel of SubSys assigned to it.

If sys is a state-space model with matrices a, b, c, d, the subsystem sys(3,1)
is a state-space model with data a, b(:,1), c(3,:), d(3,1). Note the following
rules when extracting subystems:

• In the expression sys(3,1), the first index selects the output channel while
the second index selects the input channel.

• When extracting a subsystem from a given state-space model, the resulting
state-space model may not be minimal. Use the command sminreal to
eliminate unnecessary states in the subsystem.

You can use similar syntax to modify the LTI model sys. For example,

sys(3,1) = NewSubSys

redefines the I/O relation between the first input and third output, provided
NewSubSys is a SISO LTI model.

y Hu=

H 3 1,( )

y3 H 3,1( ) u1=
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The following rules apply when modifying LTI models:

• sys, the LTI model that has had a portion reassigned, retains its original
model type (TF, ZPK, SS, or FRD) regardless of the model type of NewSubSys.

• Subsystem assignment does not reassign any I/O names or I/O group names
of NewSubSys that are already assigned to NewSubSys.

• Reassigning parts of a MIMO state-space model generally increases its
order.

• If NewSubSys is an FRD model, then sys must also be an FRD model.
Furthermore, their frequencies must match.

Other standard matrix subindexing extends to LTI objects as well. For
example,

sys(3,1:2)

extracts the subsystem mapping the first two inputs to the third output.

sys(:,1)

selects the first input and all outputs, and

sys([1 3],:)

extracts a subsystem with the same inputs, but only the first and third outputs.

For example, consider the two-input/two-output transfer function

.

To extract the transfer function from the first input to the first output,
type

T(1,1)

Transfer function:
   1
-------
s + 0.1

T s( )

1
s 0.1+
----------------- 0

s 1–

s2 2s 2+ +
---------------------------- 1

s
---

=

T11 s( )
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Next reassign to and modify the second input channel of T
by typing

T(1,1) = tf(1,[1 0.5]);
T(:,2) = [ 1 ; tf(0.4,[1 0]) ]

Transfer function from input 1 to output...
         1
 #1:  -------
      s + 0.5
 
          s – 1
 #2:  -------------
      s^2 + 2 s + 2
 
Transfer function from input 2 to output...
 #1:  1
 
      0.4
 #2:  ---
       s

Referencing FRD Models Through Frequencies
You can extract subsystems from FRD models, as you do with other LTI model
types, by indexing into input and output (I/O) dimensions. You can also extract
subsystems by indexing into the frequencies of an FRD model.

To index into the frequencies of an FRD model, use the string 'Frequency' (or
any abbreviation, such as, 'freq', as long as it does not conflict with existing
I/O channel or group names) as a keyword. There are two ways you can specify
FRD models using frequencies:

• Using integers to index into the frequency vector of the FRD model

• Using a Boolean (logical) expression to specify desired frequency points in an
FRD model

For example, if sys is an FRD model with five frequencies, (e.g.,
sys.Frequency=[1 1.1 1.2 1.3 1.4]), then you can create a new FRD model
sys2 by indexing into the frequencies of sys as follows.

sys2 = sys('frequency', 2:3);

T11 s( ) 1 s 0.5+( )⁄
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sys2.Frequency

ans =
    1.1000
    1.2000

displays the second and third entries in the frequency vector.

Similarly, you can use logical indexing into the frequencies.

sys2 = sys('frequency',sys.Frequency >1.0 & sys.Frequency <1.15);
sys2.freq

ans =
    1.1000

You can also combine model extraction through frequencies with indexing into
the I/O dimensions. For example, if sys is an FRD model with two inputs, two
outputs, and frequency vector [2.1 4.2 5.3], with sys.Units specified in rad/
s, then

sys2 = sys(1,2,'freq',1)

specifies sys2 as a SISO FRD model, with one frequency data point, 2.1 rad/s.

Referencing Channels by Name
You can also extract subsystems using I/O group or channel names. For
example, if sys has an input group named noise, consisting of channels two,
four, and five, then

sys(1,'noise')

is equivalent to

sys(1,[2 4 5])

Similarly, if pressure is the name assigned to an output channel of the LTI
model sys, then

sys('pressure',1) = tf(1, [1 1])

reassigns the subsystem from the first input of sys to the output labeled
pressure.
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You can reference a set of channels by input or output name by using a cell
array of strings for the names. For example, if sys has one output channel
named pressure and one named temperature, then these two output channels
can be referenced using

sys({'pressure','temperature'})

Resizing LTI Systems
Resizing a system consists of adding or deleting inputs and/or outputs. To
delete the first two inputs, simply type

sys(:,1:2) = []

In deletions, at least one of the row/column indexes should be the colon (:)
selector.

To perform input/output augmentation, you can proceed by concatenation or
subassignment. Given a system sys with a single input, you can add a second
input using

sys = [sys,h];

or, equivalently, using

sys(:,2) = h;

where h is any LTI model with one input, and the same number of outputs as
sys. There is an important difference between these two options: while
concatenation obeys the precedence rules (see page 2-5), subsystem assignment
does not alter the model type. So, if sys and h are TF and SS objects,
respectively, the first statement produces a state-space model, and the second
statement produces a transfer function.

For state-space models, both concatenation and subsystem assignment
increase the model order because they assume that sys and h have
independent states. If you intend to keep the same state matrix and merely
update the input-to-state or state-to-output relations, use set instead and
modify the corresponding state-space data directly. For example,

sys = ss(a,b1,c,d1)
set(sys,'b',[b1 b2],'d',[d1 d2])
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adds a second input to the state-space model sys by appending the B and D
matrices. You should simultaneously modify both matrices with a single set 
command. Indeed, the statements

sys.b = [b1 b2]

and

set(sys,'b',[b1 b2])

cause an error because they create invalid intermediate models in which the B
and D matrices have inconsistent column dimensions.
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Arithmetic Operations
You can apply almost all arithmetic operations to LTI models, including those
shown below.

Addition and Subtraction
Adding LTI models is equivalent to connecting them in parallel. Specifically,
the LTI model

sys = sys1 + sys2

Operation Description

+ Addition

– Subtraction

* Multiplication

/ Right matrix divide

\ Left matrix divide

inv Matrix inversion

' Pertransposition

.' Transposition

^ Powers of an LTI model (as in s^2)
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represents the parallel interconnection shown below.

If sys1 and sys2 are two state-space models with data and
, the state-space data associated with sys1 + sys2 is

Scalar addition is also supported and behaves as follows: if sys1 is MIMO and
sys2 is SISO, sys1 + sys2 produces a system with the same dimensions as
sys1 whose ijth entry is sys1(i,j) + sys2.

Similarly, the subtraction of two LTI models

sys = sys1 – sys2

is depicted by the following block diagram.

sys1

sys2

u
+

+

sys

y1

y2

y

A1 B1 C1 D1, , ,
A2 B2 C2 D2, , ,

A1 0

0 A2

,
B1

B2

, C1 C2 , D1 D2+

sys1

sys2

u y
+

–

sys

y1

y2
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Multiplication
Multiplication of two LTI models connects them in series. Specifically,

sys = sys1 * sys2

returns an LTI model sys for the series interconnection shown below.

Notice the reverse orders of sys1 and sys2 in the multiplication and block
diagram. This is consistent with the way transfer matrices are combined in a
series connection: if sys1 and sys2 have transfer matrices and , then

For state-space models sys1 and sys2 with data and
, the state-space data associated with sys1*sys2 is

Finally, if sys1 is MIMO and sys2 is SISO, then sys1*sys2 or sys2*sys1 is
interpreted as an entry-by-entry scalar multiplication and produces a system
with the same dimensions as sys1, whose ijth entry is sys1(i,j)*sys2.

Inversion and Related Operations
Inversion of LTI models amounts to inverting the following input/output
relationship.

This operation is defined only for square systems (that is, systems with as
many inputs as outputs) and is performed using

inv(sys)

The resulting inverse model is of the same type as sys. Related operations
include:

u y
v

sys2 sys1

H1 H2

y H1v H1 H2u( ) H1 H2×( ) u= = =

A1 B1 C1 D1, , ,
A2 B2 C2 D2, , ,

A1 B1C2

0 A2

,
B1D2

B2

, C1 D1C2 , D1D2

y H u= → u H 1– y=
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• Left division sys1\sys2, which is equivalent to inv(sys1)*sys2

• Right division sys1/sys2, which is equivalent to sys1*inv(sys2)

For a state-space model sys with data , inv(sys) is defined only
when is a square invertible matrix, in which case its state-space data is

Transposition 
You can transpose an LTI model sys using

sys.'

This is a literal operation with the following effect:

• For TF models (with input arguments, num and den), the cell arrays num and
den are transposed.

• For ZPK models (with input arguments, z, p, and k), the cell arrays, z and p,
and the matrix k are transposed.

• For SS models (with model data ), transposition produces the
state-space model AT, CT, BT, DT.

• For FRD models (with complex frequency response matrix Response), the
matrix of frequency response data at each frequency is transposed.

Pertransposition
For a continuous-time system with transfer function , the pertransposed
system has the transfer function

The discrete-time counterpart is

Pertransposition of an LTI model sys is performed using

sys'

You can use pertransposition to obtain the Hermitian (conjugate) transpose of
the frequency response of a given system. The frequency response of the

A B C D, , ,
D

A BD 1– C ,– BD 1– , D–
1– C , D 1–

A B C D, , ,

H s( )

G s( ) H s–( )[ ]T=

G z( ) H z 1–( )[ ]T
=
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pertranspose of , , is the Hermitian transpose of the
frequency response of : .

To obtain the Hermitian transpose of the frequency response of a system sys
over a frequency range specified by the vector w, type

freqresp(sys', w);

H s( ) G s( ) H s–( )[ ]T=
H s( ) G jw( ) H jw( )H=
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Model Interconnection Functions
The Control System Toolbox provides a number of functions to help with the
model building process. These include model interconnection functions to
perform I/O concatenation ([,], [;], and append), general parallel and series
connections (parallel and series), and feedback connections (feedback and
lft). These functions are useful to model open- and closed-loop systems.

Concatenation of LTI Models
LTI model concatenation is done in a manner similar to the way you
concatenate matrices in MATLAB, using

sys = [sys1 , sys2]% horizontal concatenation
sys = [sys1 ; sys2]% vertical concatenation

Interconnection Operator Description

[,] Concatenates horizontally

[;] Concatenates vertically

append Appends models in a block diagonal
configuration

augstate Augments the output by appending states

connect Forms an SS model from a block diagonal
LTI object for an arbitrary interconnection
matrix

feedback Forms the feedback interconnection of two
models

lft Produces the LFT interconnection
(Redheffer Star product) of two models

parallel Forms the generalized parallel connection
of two models

series Forms the generalized series connection of
two models
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sys = append(sys1,sys2)% block diagonal appending

In I/O terms, horizontal and vertical concatenation have the following
block-diagram interpretations (with and denoting the transfer
matrices of sys1 and sys2).

You can use concatenation as an easy way to create MIMO transfer functions
or zero-pole-gain models. For example,

H = [ tf(1,[1 0]) 1 ; 0 tf([1 –1],[1 1]) ]

specifies

Use

append(sys1,sys2)

H1 H2

H2

y
+

+

H1u1

u2

y H1 , H2
u1

u2

=

Horizontal Concatenation

H2

H1

u

y1

y2

y1

y2

H1

H2

u=

Vertical Concatenation

H s( )

1
s
--- 1

0 s 1–
s 1+
------------

=
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to specify the block-decoupled LTI model interconnection.

See append for more information on this function.

Feedback and Other Interconnection Functions
The following LTI model interconnection functions are useful for specifying
closed- and open-loop model configurations:

• feedback puts two LTI models with compatible dimensions in a feedback
configuration.

• series connects two LTI models in series.

• parallel connects two LTI models in parallel.

• lft performs the Redheffer star product on two LTI models.

• connect works with append to apply an arbitrary interconnection scheme to
a set of LTI models.

For example, if sys1 has m inputs and p outputs, while sys2 has p inputs and
m outputs, then the negative feedback configuration of these two LTI models

sys1

sys2

Appended Models

u1

u2

y1

y2

sys1 0
0 sys2

Transfer Function

sys1

sys2

–

+
u y
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is realized with

feedback(sys1,sys2)

This specifies the LTI model with m inputs and p outputs whose I/O map is

See the reference pages online for more information on feedback, series,
parallel, lft, and connect.

I sys1 sys2⋅+( ) 1– sys1
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Continuous/Discrete Conversions of LTI Models
The function c2d discretizes continuous-time TF, SS, or ZPK models.
Conversely, d2c converts discrete-time TF, SS, or ZPK models to continuous
time. Several discretization/interpolation methods are supported, including
zero-order hold (ZOH), first-order hold (FOH), Tustin approximation with or
without frequency prewarping, and matched poles and zeros.

The syntax

sysd = c2d(sysc,Ts); % Ts = sampling period in seconds
sysc = d2c(sysd);

performs ZOH conversions by default. To use alternative conversion schemes,
specify the desired method as an extra string input:

sysd = c2d(sysc,Ts,'foh');% use first-order hold
sysc = d2c(sysd,'tustin');% use Tustin approximation

The conversion methods and their limitations are discussed next.

Zero-Order Hold
Zero-order hold (ZOH) devices convert sampled signals to continuous-time
signals for analyzing sampled continuous-time systems. The zero-order-hold
discretization of a continuous-time LTI model is depicted in the
following block diagram.

The ZOH device generates a continuous input signal u(t) by holding each
sample value u[k] constant over one sample period.

Hd z( ) H s( )

H s( )u k[ ] y k[ ]
u t( ) y t( )

ZOH
Ts

Hd z( )

u t( ) u k[ ] ,= kTs t k 1+( )Ts≤ ≤
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The signal is then fed to the continuous system , and the resulting
output is sampled every seconds to produce .

Conversely, given a discrete system , the d2c conversion produces a
continuous system whose ZOH discretization coincides with . This
inverse operation has the following limitations:

• d2c cannot operate on LTI models with poles at when the ZOH is used.

• Negative real poles in the domain are mapped to pairs of complex poles in
the domain. As a result, the d2c conversion of a discrete system with
negative real poles produces a continuous system with higher order.

The next example illustrates the behavior of d2c with real negative poles.
Consider the following discrete-time ZPK model.

hd = zpk([],–0.5,1,0.1)

Zero/pole/gain:
   1
-------
(z+0.5)
 
Sampling time: 0.1

Use d2c to convert this model to continuous-time

hc = d2c(hd)

and you get a second-order model.

Zero/pole/gain:
   4.621 (s+149.3)
---------------------
(s^2 + 13.86s + 1035)

Discretize the model again

c2d(hc,0.1)  

and you get back the original discrete-time system (up to canceling the pole/
zero pair at z=–0.5):

Zero/pole/gain:
 (z+0.5)

u t( ) H s( )
y t( ) Ts y k[ ]

Hd z( )
H s( ) Hd z( )

z 0=

z
s
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---------
(z+0.5)^2
 
Sampling time: 0.1

First-Order Hold
First-order hold (FOH) differs from ZOH by the underlying hold mechanism.
To turn the input samples into a continuous input , FOH uses linear
interpolation between samples.

This method is generally more accurate than ZOH for systems driven by
smooth inputs. Due to causality constraints, this option is only available for
c2d conversions, and not d2c conversions.

Note   This FOH method differs from standard causal FOH and is more
appropriately called triangle approximation (see [2], p. 151). It is also known
as ramp-invariant approximation because it is distortion-free for ramp inputs.

Tustin Approximation
The Tustin or bilinear approximation uses the approximation

to relate s-domain and z-domain transfer functions. In c2d conversions, the
discretization of a continuous transfer function is derived by

Similarly, the d2c conversion relies on the inverse correspondence

u k[ ] u t( )

u t( ) u k[ ]
t kTs–

Ts
------------------ u k 1+[ ] u k[ ]–( ) ,+= kTs t k 1+( )Ts≤ ≤

z e
sTs

1 sTs 2⁄+

1 sTs 2⁄–
--------------------------≈=

Hd z( ) H s( )

Hd z( ) H s'( ) , where= s'
2
Ts
------ z 1–

z 1+
------------=
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Tustin with Frequency Prewarping
This variation of the Tustin approximation uses the correspondence

This change of variable ensures the matching of the continuous- and
discrete-time frequency responses at the frequency .

Matched Poles and Zeros
The matched pole-zero method applies only to SISO systems. The continuous
and discretized systems have matching DC gains and their poles and zeros
correspond in the transformation

See [2], p. 147 for more details.

Discretization of Systems with Delays
You can also use c2d to discretize SISO or MIMO continuous-time models with
time delays. If Ts is the sampling period used for discretization:

• A delay of tau seconds in the continuous-time model is mapped to a delay of
k sampling periods in the discretized model, where k = fix(tau/Ts).

• The residual fractional delay tau – k*Ts is absorbed into the coefficients of
the discretized model (for the zero-order-hold and first-order-hold methods
only).

For example, to discretize the transfer function

H s( ) Hd z'( ), where= z'
1 sTs 2⁄+

1 sTs 2⁄–
--------------------------=

Hd z( ) H s'( ) ,= s'
ω

ωTs 2⁄( )tan
--------------------------------- z 1–

z 1+
------------=

ω

H jω( ) Hd e
jωTs( )=

z e
sTs=

H s( ) e 0.25s– 10

s2 3s 10+ +
-------------------------------=
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using zero-order hold on the input, and a 10 Hz sampling rate, type

h = tf(10,[1 3 10],'inputdelay',0.25);
hd = c2d(h,0.1)

This produces the discrete-time transfer function

Transfer function:
         0.01187 z^2 + 0.06408 z + 0.009721
z^(–2) * ----------------------------------
             z^3 – 1.655 z^2 + 0.7408 z
 
Sampling time: 0.1

Here the input delay in amounts to 2.5 times the sampling period of 0.1
seconds. Accordingly, the discretized model hd inherits an input delay of two
sampling periods, as confirmed by the value of hd.inputdelay. The residual
half-period delay is factored into the coefficients of hd by the discretization
algorithm.

The step responses of the continuous and discretized models are compared in
the figure below. This plot was produced by the command

H s( )
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step(h,'--',hd,'-')

Note   The Tustin and matched pole/zero methods are accurate only for
delays that are integer multiples of the sampling period. It is therefore
preferable to use the zoh and foh discretization methods for models with
delays.

Time (sec.)
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Step Response
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Resampling of Discrete-Time Models
You can resample a discrete-time TF, SS, or ZPK model sys1 by typing

sys2 = d2d(sys1,Ts)

The new sampling period Ts does not have to be an integer multiple of the
original sampling period. For example, typing

h1 = tf([1 0.4],[1 –0.7],0.1);
h2 = d2d(h1,0.25);

resamples h1 at the sampling period of 0.25 seconds, rather than 0.1 seconds.

You can compare the step responses of h1 and h2 by typing

step(h1,'--',h2,'-')

The resulting plot is shown on the figure below (h1 is the dashed line).
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General Model Characteristics
General model characteristics include the model type, I/O dimensions,
and continuous or discrete nature. Related commands are listed in the
table below. These commands operate on continuous- or discrete-time
LTI models or arrays of LTI models of any type.

This example illustrates the use of some of these commands. See the
related reference pages for more details.

H = tf({1 [1 –1]},{[1 0.1] [1 2 10]})

Transfer function from input 1 to output:
   1
-------
s + 0.1

General Model Characteristics Commands

class Display model type ('tf', 'zpk', 'ss', or 'frd').

hasdelay Test true if LTI model has any type of delay.

isa Test true if LTI model is of specified class.

isct Test true for continuous-time models.

isdt Test true for discrete-time models.

isempty Test true for empty LTI models.

isproper Test true for proper LTI models.

issiso Test true for SISO models.

ndims Display the number of model/array dimensions.

reshape Change the shape of an LTI array.

size Output/input/array dimensions. Used with special
syntax, size also returns the number of state
dimensions for state-space models, and the number
of frequencies in an FRD model.
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Transfer function from input 2 to output:
    s – 1
--------------
s^2 + 2 s + 10

class(H)

ans =
tf

size(H)
Transfer function with 2 input(s) and 1 output(s).

[ny,nu] = size(H)% Note: ny = number of outputs

ny =
     1
 
nu =
     2

isct(H)% Is this system continuous?
 
ans =
     1

isdt(H)% Is this system discrete?
 
ans =

0
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Model Dynamics
The Control System Toolbox offers commands to determine the system
poles, zeros, DC gain, norms, etc. You can apply these commands to
single LTI models or LTI arrays. The following table gives an overview of
these commands.

With the exception of norm, these commands are not supported for
FRD models.

Here is an example of model analysis using some of these commands.

h = tf([4 8.4 30.8 60],[1 4.12 17.4 30.8 60])

Transfer function:
     4 s^3 + 8.4 s^2 + 30.8 s + 60
---------------------------------------
s^4 + 4.12 s^3 + 17.4 s^2 + 30.8 s + 60

pole(h)

ans =
–1.7971 + 2.2137i

Model Dynamics

covar Covariance of response to white noise.

damp Natural frequency and damping of system poles.

dcgain Low-frequency (DC) gain.

dsort Sort discrete-time poles by magnitude.

esort Sort continuous-time poles by real part.

norm Norms of LTI systems ( and ).

pole, eig System poles.

pzmap Pole/zero map.

zero System transmission zeros.

H2 L∞

L∞
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–1.7971 – 2.2137i
–0.2629 + 2.7039i
–0.2629 – 2.7039i

zero(h)
ans =
  –0.0500 + 2.7382i
  –0.0500 – 2.7382i
  –2.0000 

dcgain(h)

ans =
   1

[ninf,fpeak] = norm(h,inf)% peak gain of freq. response

ninf =
1.3402 % peak gain

fpeak =
1.8537 % frequency where gain peaks

These functions also operate on LTI arrays and return arrays. For
example, the poles of a three dimensional LTI array sysarray are
obtained as follows.

sysarray = tf(rss(2,1,1,3))

Model sysarray(:,:,1,1)
=======================
Transfer function:
    -0.6201 s - 1.905
  ---------------------
  s^2 + 5.672 s + 7.405
 
Model sysarray(:,:,2,1)
=======================
Transfer function:
  0.4282 s^2 + 0.3706 s + 0.04264
  -------------------------------
      s^2 + 1.056 s + 0.1719
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Model sysarray(:,:,3,1)
=======================
Transfer function:
    0.621 s + 0.7567
  ---------------------
  s^2 + 2.942 s + 2.113

3x1 array of continuous-time transfer functions.

pole(sysarray)
ans(:,:,1) =
   -3.6337
   -2.0379
ans(:,:,2) =
   -0.8549
   -0.2011
ans(:,:,3) =
   -1.6968
   -1.2452
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State-Space Realizations
The following functions are useful to analyze, perform state coordinate
transformations on, and derive canonical state-space realizations for
single state-space LTI models or LTI arrays of state-space models.

The function ssbal uses a simple diagonal similarity transformation

to balance the state-space data . This is accomplished by
reducing the norm of the matrix.

Such balancing usually improves the numerical conditioning of
subsequent state-space computations. Note that conversions to
state-space using ss produce balanced realizations of transfer functions
and zero-pole-gain models.

By contrast, the canonical realizations produced by canon, ctrbf, or
obsvf are often badly scaled, sensitive to perturbations of the data, and

State-Space Realizations

canon Canonical state-space realizations.

ctrb Controllability matrix.

ctrbf Controllability staircase form.

gram Controllability and observability gramians.

obsv Observability matrix.

obsvf Observability staircase form.

ss2ss State coordinate transformation.

ssbal Diagonal balancing of state-space realizations.

A B C, ,( ) T 1– AT T 1– B CT, ,( )→

A B C, ,( )

T 1– AT T 1– B
CT 0
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poorly suited for state-space computations. Consequently, it is wise to
use them only for analysis purposes and not in control design algorithms.
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Introduction
In many applications, it is useful to consider collections of linear, time
invariant (LTI) models. For example, you may want to consider a model with a
single parameter that varies, such as

sys1 = tf(1, [1 1 1]);
sys2 = tf(1, [1 1 2]);
sys3 = tf(1, [1 1 3]);

and so on. A convenient way to store and analyze a collection like this is to use
LTI arrays. Continuing this example, you can create this LTI array and store
all three transfer functions in one variable.

sys_ltia = (sys1, sys2, sys3);

You can use the LTI array sys_ltia just like you would use, for example, sys1.

You can use LTI arrays to collect a set of LTI models into a single MATLAB
variable. You then use this variable to manipulate or analyze the entire
collection of models in a vectorized fashion. You access the individual models
in the collection through indexing rather than by individual model names.

LTI arrays extend the concept of single LTI models in a similar way to how
multidimensional arrays extend two-dimensional matrices in MATLAB (see
Chapter 12, “Multidimensional Arrays” in Using MATLAB).

When to Collect a Set of Models in an LTI Array
You can use LTI arrays to represent:

• A set of LTI models arising from the linearization of a nonlinear system at
several operating points

• A collection of transfer functions that depend on one or more parameters

• A set of LTI models arising from several system identification experiments
applied to one plant

• A set of gain-scheduled LTI controllers

• A list of LTI models you want to collect together under the same name

Restrictions for LTI Models Collected in an Array
For each model in an LTI array, the following properties must be the same:
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• The number of inputs and outputs

• The sample time, for discrete-time models

• The I/O names and I/O groups

Note  You cannot specify Simulink LTI blocks with LTI arrays.

Where to Find Information on LTI Arrays
The next two sections give examples that illustrate the concept of an LTI array,
its dimensions, and size. To read about how to build an LTI array, go to
“Building LTI Arrays” on page 4-12. The remainder of the chapter is devoted to
indexing and operations on LTI Arrays. You can also apply the analysis
functions in the Control System Toolbox to LTI arrays. See Chapter 5, “Model
Analysis Tools,” for more information on these functions. You can also view
response plots of LTI arrays with the LTI Viewer.
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The Concept of an LTI Array
To visualize the concept of an LTI array, consider the set of five transfer
function models shown below. In this example, each model has two inputs and
two outputs. They differ by parameter variations in the individual model
components.

Figure 5-1:  Five LTI Models to be Collected in an LTI Array

Figure 5-2:  An LTI Array Containing These Five Models

1.1
s 1+
------------ 0

0 1
s 5+
------------

1.3
s 1.1+
----------------- 0

0 1
s 5.2+
-----------------

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

1.15
s 1.3+
----------------- 0

0 1
s 5.6+
-----------------

1.09
s 1.4+
----------------- 0

0 1
s 5.8+
-----------------

1.09
s 1.4+
----------------- 0

0 1
s 5.8+
-----------------

1.15
s 1.3+
----------------- 0

0 1
s 5.6+
-----------------

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

1.3
s 1.1+
----------------- 0

0 1
s 5.2+
-----------------

1.1
s 1+
------------ 0

0 1
s 5+
------------ Each element of the LTI array 

is a model.

This LTI array embodies a 
1-by-5 list of models.
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Just as you might collect a set of two-by-two matrices in a multidimensional
array, you can collect this set of five transfer function models as a list in an LTI
array under one variable name, say, sys. Each element of the LTI array is an
LTI model.

Individual models in the LTI array sys are accessed via indexing. The general
form for the syntax you use to access data in an LTI array is

For example, you can access the third model in sys with sys(:,:,3). The
following illustrates how you can use indexing to select models or their
components from sys.

Figure 5-3:  Using Indices to Select Models and Their Components

See “Indexing Into LTI Arrays” for more information on indexing.

sysa(Outputs,Inputs,Models)

The first index 
selects the output 
channels.

The second index 
selects the input 
channels.

The remaining indices select particular 
models in the LTI array by their array 
coordinates.

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

sysa(:,:,3) selects the third model in the array.

sysa(2,2,3) selects 
the (2,2) entry of the 
third model in the array.1.09

s 1.4+
----------------- 0

0 1
s 5.8+
-----------------

1.15
s 1.3+
----------------- 0

0 1
s 5.6+
-----------------

1.11
s 1.2+
----------------- 0

0 1
s 5.4+
-----------------

1.3
s 1.1+
----------------- 0

0 1
s 5.2+
-----------------

1.1
s 1+
------------ 0

0 1
s 5+
------------
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Higher Dimensional Arrays of LTI Models
You can also collect a set of models in a two-dimensional array. The following
diagram illustrates a 2-by-3 array of six, two-output, one-input models called
m2d.

Figure 5-4:  m2d: A 2-by-3 Array of Two-Output, One-Input Models

More generally, you can organize models into a 3-D or higher-dimensional
array, in much the same way you arrange numerical data into
multidimensional arrays (see “Multidimensional Arrays” in Using MATLAB).

m2d(:,:,2,1)

m2d(:,:,1,2) m2d(:,:,1,3)

m2d(:,:,2,2) m2d(:,:,2,3)

m2d(:,:,1,3)

m2d(:,:,1,1)

m2d(:,:,1,3) extracts the model in 
the (1,3) position of the array.

3.36
s 2.9+
-----------------

7.23

3.4
s 2.86+
--------------------

7.27

3.45
s 2.81+
--------------------

7.32

3.42
s 2.84+
--------------------

7.29

Each entry in this 2-by-3 array of 
models is a two-output, one-input 
transfer function.
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Dimensions, Size, and Shape of an LTI Array
The dimensions and size of a single LTI model are determined by the output
and input channels. An array of LTI models has additional quantities that
determine its dimensions, size, and shape.

There are two sets of dimensions associated with LTI arrays:

• The I/O dimensions—the output dimension and input dimension common to
all models in the LTI array

• The array dimensions—the dimensions of the array of models itself

The size of the LTI array is determined by:

• The lengths of the I/O dimensions—the number of outputs (or inputs)
common to all models in the LTI array

• The length of each array dimension—the number of models along that array
dimension
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The next figure illustrates the concepts of dimension and size for the LTI array
m2d, a 2-by-3 array of one-input, two-output transfer function models.

Figure 5-5:  Dimensions and Size of m2d, an LTI Array 

You can load this sample LTI array into your workspace by typing

load LTIexamples
size(m2d)

2x3 array of continuous-time transfer functions
Each transfer function has 2 outputs and 1 input.

The I/O dimensions correspond to the row and column dimensions of the
transfer matrix. The two I/O dimensions are both of length 1 for SISO models.
For MIMO models the lengths of these dimensions are given by the number of
outputs and inputs of the model.

Five related quantities are pertinent to understanding the array dimensions:
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3.36
s 2.9+
-----------------

7.23

3.4
s 2.86+
--------------------

7.27

3.45
s 2.81+
--------------------

7.32

m2d(:,:,1,1) m2d(:,:,1,2) m2d(:,:,1,3)

m2d(:,:,2,1) m2d(:,:,2,2) m2d(:,:,2,3)

3.45
s 2.81+
--------------------

7.32

m2d(:,:,2,3)
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• N, the number of models in the LTI array

• K, the number of array dimensions

• , the list of lengths of the array dimensions

- is the number of models along the dimension.

• , the configuration of the models in the array

- The configuration determines the shape of the array.

- The product of these integers is N.

In the example model m2d,:

• The length of the output dimension, the first I/O dimension, is 2, since there
are two output channels in each model.

• The length of the input dimension, the second I/O dimension, is 1, since there
is only one input channel in each model.

• N, the number of models in the LTI array, is 6.

• K, the number of array dimensions, is 2.

• The array dimension lengths are [2 3].

• The array configuration is 2-by-3.

size and ndims 
You can access the dimensions and shape of an LTI array using:

• size to determine the lengths of each of the dimensions associated with an
LTI array

• ndims to determine the total number of dimensions in an LTI array

When applied to an LTI array, size returns

[Ny Nu S1 S2 ... Sk]

where

• Ny is the number of outputs common to all models in the LTI array.

• Nu is the number of inputs common to all models in the LTI array.

• S1 S2 ... Sk are the lengths of the array dimensions of a k-dimensional
array of models. Si is the number of models along the ith array dimension.

S1S2…SK
Si ith

S1 by S–– 2 by … by SK––––

S1 S2× … SK××
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Note the following when using the size function:

• By convention, a single LTI model is treated as a 1-by-1 array of models.

For single LTI models, size returns only the I/O dimensions [Ny Nu].

• For LTI arrays, size always returns at least two array dimensions. For
example, the size of a 2-by-1 LTI array in [Ny Nu 2 1]

• size ignores trailing singleton dimensions beyond the second array
dimension. For example, size returns [Ny Nu 2 3] for a 2-by-3-by-1-by-1 LTI
array of models with Ny outputs and Nu inputs.

The function ndims returns the total number of dimensions in an LTI array:

• 2, for single LTI models

• 2 + p, for LTI arrays, where p (greater than 2) is the number of array
dimensions

Note that

ndims (sys) = length(size(sys))

To see how these work on the sample 2-by-3 LTI array m2d of two-output,
one-input models, type

load LTIexamples
s = size(m2d)

s =

     2     1     2     3

Notice that size returns a vector whose entries correspond to the length of
each of the four dimensions of m2d: two outputs and one input in a 2-by-3 array
of models. Type

ndims(m2d)

ans =
     4

to see that there are indeed four dimensions attributed to this LTI array.
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reshape
Use reshape to reorganize the arrangement (array configuration) of the models
of an existing LTI array.

For example, to arrange the models in an LTI Array sys as a
array, type

reshape(sys,w1,...,wp)

where w1,...,wp are any set of integers whose product is N, the number of
models in sys.

You can reshape the LTI array m2d into a 3-by-2, a 6-by-1, or a 1-by-6 array
using reshape. For example, type

load LTIexamples
sys = reshape(m2d,6,1);
size(sys)

6x1 array of continuous-time transfer functions
Each transfer function has 2 outputs and 1 inputs.

s = size(sys)

s =
     2     1     6 1

w1 …× wp×
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Building LTI Arrays
There are several ways to build LTI arrays:

• Using a for loop to assign each model in the array

• Using stack to concatenate LTI models into an LTI array

• Using tf, zpk, ss, or frd

In addition, you can use the command rss to generate LTI arrays of random
state-space models.

Generating LTI Arrays Using rss
A convenient way to generate arrays of state-space models with the same
number of states in each model is to use rss. The syntax is

rss(N,P,M,sdim1,...,sdimk)

where

• N is the number of states of each model in the LTI array.

• P is the number of outputs of each model in the LTI array.

• M is the number of inputs of each model in the LTI array.

• sdim1,...,sdimk are the lengths of the array dimensions.

For example, to create a 4-by-2 array of random state-space models with three
states, one output, and one input, type

sys = rss(3,2,1,4,2);
size(sys)

4x2 array of continuous-time state-space models
Each model has 2 outputs, 1 input, and 3 states.

Building LTI Arrays Using for Loops
Consider the following second-order SISO transfer function that depends on
two parameters, and

.

ζ ω

H s( ) ω2

s2 2ζωs ω2+ +
---------------------------------------=
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Suppose, based on measured input and output data, you estimate confidence
intervals , and for each of the parameters, and . All of the
possible combinations of the confidence limits for these model parameter
values give rise to a set of four SISO models.

Figure 5-6:  Four LTI Models Depending on Two Parameters

You can arrange these four models in a 2-by-2 array of SISO transfer functions
called H.

Figure 5-7:  The LTI Array H

Here, for , represents the transfer function

corresponding to the parameter values and .

ω1 ω2[ , ] ζ1 ζ2[ , ] ω ζ

H11 s( )
ω1

2

s2 2ζ1ω1s ω1
2+ +

---------------------------------------------=

H21 s( )
ω2

2

s2 2ζ1ω2s ω2
2+ +

---------------------------------------------= H22 s( )
ω2

2

s2 2ζ2ω2s ω2
2+ +

---------------------------------------------=

H12 s( )
ω1

2

s2 2ζ2ω1s ω1
2+ +

---------------------------------------------=

ω1 ω2

ζ1

ζ2

H(:,:,1,1) H(:,:,1,2)

H(:,:,2,1) H(:,:,2,2)

ω1 ω2

ζ2

ζ1
Each entry of this 2-by-2 array is 
a SISO transfer function model.

i,j 1 2,{ }∈ H(:,:,i,j)

ωj
2

s2 2ζiωjs ωj
2+ +

---------------------------------------------

ζ ζi= ω ωj=
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The first two colon indices ( ) select all I/O channels from the I/O dimensions
of H. The third index of H refers to the first array dimension ( ), while the fourth
index is for the second array dimension ( ).

Suppose the limits of the ranges of values for and are [0.66,0.76] and
[1.2,1.5], respectively. Enter these at the command line.

zeta = [0.66,0.75];
w = [1.2,1.5];

Since the four models have the same parametric structure, it’s convenient to
use two nested for loops to construct the LTI array.

for i = 1:2
for j = 1:2
H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);

end
end

H now contains the four models in a 2-by-2 array. For example, to display the
transfer function in the (1,2) position of the array, type

H(:,:,1,2)

Transfer function:
       2.25
-------------------
s^2 + 1.98 s + 2.25

:
ζ

ω

ζ ω
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For the purposes of efficient computation, you can initialize an LTI array to
zero, and then reassign the entire array to the values you want to specify. The
general syntax for zero assignment of LTI arrays is

To initialize H in the above example to zero, type

H = tf(zeros(1,1,2,2));

before you implement the nested for loops.

Building LTI Arrays Using the stack Function
Another way to build LTI arrays is using the function stack. This function
operates on single LTI models as well as LTI arrays. It concatenates a list of
LTI arrays or single LTI models only along the array dimension. The general
syntax for stack is

stack(Arraydim,sys1,sys2...)

where

• Arraydim is the array dimension along which to concatenate the LTI models
or arrays.

• sys1, sys2, ... are the LTI models or LTI arrays to be concatenated.

Lengths of the array dimensionsLengths of the output/input dimensions

The maximum number of states in any model in the LTI array

sysa = tf(zeros(Ny,Nu,S1,...,SK))

sysa = zpk(zeros(Ny,Nu,S1,...,SK))

sysa = ss(zeros(Ny,Nu,S1,...,SK,Nx))

sysa = frd(zeros(Ny,Nu,Nf,S1,...,SK))

The number of frequency vectors in the FRD
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When you concatenate several models or LTI arrays along the jth array
dimension, such as in

stack(j,sys1,sys2,...,sysn)

• The lengths of the I/O dimensions of sys1,...,sysn must all match.

• The lengths of all but the jth array dimension of sys1,...,sysn must match.

For example, if two TF models sys1 and sys2 have the same number of inputs
and outputs,

sys = stack(1,sys1,sys2)

concatenates them into a 2-by-1 array of models.

There are two principles that you should keep in mind:

• stack only concatenates along an array dimension, not an I/O dimension.

• To concatenate LTI models or LTI arrays along an input or output
dimension, use the bracket notation ([,] [;]). See “Model Interconnection
Functions” for more information on the use of bracket notation to
concatenate models. See also “Special Cases for Operations on LTI Arrays”
for some examples of this type of concatenation of LTI arrays.

Here’s an example of how to build the LTI array H using the function stack.

% Set up the parameter vectors.

zeta = [0.66,0.75];
w = [1.2,1.5];

% Specify the four individual models with those parameters.
%
H11 = tf(w(1)^2,[1 2*zeta(1)*w(1) w(1)^2]);
H12 = tf(w(2)^2,[1 2*zeta(1)*w(2) w(2)^2]);
H21 = tf(w(1)^2,[1 2*zeta(2)*w(1) w(1)^2]);
H22 = tf(w(2)^2,[1 2*zeta(2)*w(2) w(2)^2]);

% Set up the LTI array using stack.

COL1 = stack(1,H11,H21); % The first column of the 2-by-2 array
COL2 = stack(1,H12,H22); % The second column of the 2-by-2 array
H = stack(2, COL1, COL2); % Concatenate the two columns of models.
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Notice that this result is very different from the single MIMO LTI model
returned by

H = [H11,H12;H21,H22];

Building LTI Arrays Using tf, zpk, ss, and frd
You can also build LTI arrays using the tf, zpk, ss, and frd constructors. You
do this by using multidimensional arrays in the input arguments for these
functions.

Specifying Arrays of TF models tf
For TF models, use

sys = tf(num,den)

where

• Both num and den are multidimensional cell arrays the same size as sys (see
“size and ndims” on page 4-9).

• sys(i,j,n1,...,nK) is the (i, j) entry of the transfer matrix for the model
located in the position of the array.

• num(i,j,n1,...,nK) is a row vector representing the numerator polynomial
of sys(i,j,n1,...,nK).

• den(i,j,n1,...,nK) is a row vector representing denominator polynomial
of sys(i,j,n1,...,nK).

See “MIMO Transfer Function Models” on page 2-10 for related information on
the specification of single TF models.

Specifying Arrays of ZPK Models Using zpk

For ZPK models, use

sys = zpk(zeros,poles,gains)

where

• Both zeros and poles are multidimensional cell arrays whose cell entries
contain the vectors of zeros and poles for each I/O pair of each model in the
LTI array.

n1 … nK, ,( )
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• gains is a multidimensional array containing the scalar gains for each I/O
pair of each model in the array.

• The dimensions (and their lengths) of zeros, poles, and gains, determine
those of the LTI array, sys.

Specifying Arrays of SS Models Using ss

To specify arrays of SS models, use

sys = ss(a,b,c,d)

where a, b, c, and d are real-valued multidimensional arrays of appropriate
dimensions. All models in the resulting array of SS models have the same
number of states, outputs, and inputs.

Note  You cannot use the ss constructor to build an array of state-space
models with different numbers of states. Use stack to build such LTI arrays.

The Size of LTI Array Data for SS Models
The size of the model data for arrays of state-space models is summarized in
the following table.

where

• is the maximum of the number of states in each model in the array.

• is the number of inputs in each model.

• is the number of outputs in each model.

• are the lengths of the array dimensions.

Data Size (Data)

a

b

c

d

Ns Ns S1S2…SK

Ns NuS1S2…SK

Ny NsS1S2… SK

Ny NuS1S2…SK

Ns

Nu

Ny

S1 S2 … SK, , ,
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Specifying Arrays of FRD Models Using frd

To specify a K-dimensional array of p-output, m-input FRD models for which
are the lengths of the array dimensions, use

sys = frd(response,frequency,units)

where

• frequency is a real vector of n frequency data points common to all FRD
models in the LTI array.

• response is a p-by-m-by-n-by- -by- -by- complex-valued
multidimensional array.

• units is the optional string specifying 'rad/s' or 'Hz'.

Note that for specifying an LTI array of SISO FRD models, response can also
be a multidimensional array of 1-by-n matrices whose remaining dimensions
determine the array dimensions of the FRD.

S1 S2 … SK, , ,

S1 … SK
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Indexing Into LTI Arrays
You can index into LTI arrays in much the same way as you would for
multidimensional arrays to:

• Access models

• Extract subsystems

• Reassign parts of an LTI array

• Delete parts of an LTI array

When you index into an LTI array sys, the indices should be organized
according to the following format

where

• Outputs are indices that select output channels.

• Inputs are indices that select input channels.

• are indices into the array dimensions that select one model or a
subset of models in the LTI array.

Note on Indexing into LTI Arrays of FRD models:  For FRD models, the
array indices can be followed by the keyword 'frequency' and some
expression selecting a subset of the frequency points as in

sys (outputs, inputs, n1,...,nk, 'frequency', SelectedFreqs)

See “Referencing FRD Models Through Frequencies” on page 3-7 for details on
frequency point selection in FRD models.

Accessing Particular Models in an LTI Array
To access any given model in an LTI array:

• Use colon arguments (:,:) for the first two indices to select all I/O channels.

sys(Outputs, Inputs, )n1 … nK, ,

n1 … nK, ,
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• The remaining indices specify the model coordinates within the array.

For example, if sys is a 5-by-2 array of state-space models defined by

sys = rss(4,3,2,5,2);

you can access (and display) the model located in the (3,2) position of the array
sys by typing

sys(:,:,3,2)

If sys is a 5-by-2 array of 3-output, 2-input FRD models, with frequency vector
[1,2,3,4,5], then you can access the response data corresponding to the
middle frequency (3 rad/s), of the model in the (3,1) position by typing

sys(:,:,3,1,'frequency',3.0)

To access all frequencies of this model in the array, you can simply type

sys(:,:,3,1)

Single Index Referencing of Array Dimensions
You can also access models using single index referencing of the array
dimensions.

For example, in the 5-by-2 LTI array sys above, you can also access the model
located in the (3,2) position by typing

sys(:,:,8)

since this model is in the eighth position if you were to list the 10 models in the
array by successively scanning through its entries along each of its columns.

For more information on single index referencing, see “Advanced Indexing”
under “M-File Programming” in the MATLAB online documentation.

Extracting LTI Arrays of Subsystems
To select a particular subset of I/O channels from all the models in an LTI
array, use the syntax described in “Extracting and Modifying Subsystems” on
page 3-5. For example,

sys = rss(4,3,2,5,2);
A = sys(1, [1 2])
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or equivalently,

A = sys(1,[1 2],:,:)

selects the first two input channels, and the first output channel in each model
of the LTI array A, and returns the resulting 5-by-2 array of one-output,
two-input subsystems.

You can also combine model selection with I/O selection within an LTI array.
For example, to access both:

• The state-space model in the (3,2) array position

• Only the portion of that model relating the second input to the first output

type

sys(1,2,3,2)

To access the subsystem from all inputs to the first two output channels of this
same array entry, type

sys(1:2,:,3,2)

Reassigning Parts of an LTI Array
You can reassign entire models or portions of models in an LTI array. For
example,

sys = rss(4,3,2,5,2); % 5X2 array of state-space models
H = rss(4,1,1,5,2); % 5X2 array of SISO models
sys(1,2) = H

reassigns the subsystem from input two to output one, for all models in the LTI
array sys. This SISO subsystem of each model in the LTI array is replaced
with the LTI array H of SISO models. This one-line assignment command is
equivalent to the following 10-step nested for loop.

for k = 1:5
for j = 1:2
sys(1,2,k,j) = H(:,:,k,j);

end
end
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Notice that you don’t have to use the array dimensions with this assignment.
This is because I/O selection applies to all models in the array when the array
indices are omitted.

Similarly, the commands

sys(:,:,3,2) = sys(:,:,4,1);
sys(1,2,3,2) = 0;

reassign the entire model in the (3,2) position of the LTI array sys and the (1,2)
subsystem of this model, respectively.

Deleting Parts of an LTI Array
You can use indexing to delete any part of an LTI array by reassigning it to be
empty ([]). For instance,

sys = rss(4,3,2,5,2);
sys(1,:) = [];
size(sys)

5x2 array of continuous-time state-space models
Each model has 2 outputs, 2 inputs, and 4 states.

deletes the first output channel from every model of this LTI array.

Similarly,

sys(:,:,[3 4],:) = []

deletes the third and fourth rows of this two-dimensional array of models.
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Operations on LTI Arrays
Using LTI arrays, you can apply almost all of the basic model operations that
work on single LTI models to entire sets of models at once. These basic
operations include:

• The arithmetic operations: +, –, *, /,\,',.'

• The functions: concatenation along I/O dimensions ([,], [;]), feedback,
append, series, parallel, and lft

When you apply any of these operations to two (or more) LTI arrays (for
example, sys1 and sys2), the operation is implemented on a model-by-model
basis. Therefore, the kth model of the resulting LTI array is derived from the
application of the given operation to the kth model of sys1 and the kth model
of sys2.

For example, if sys1 and sys2 are two LTI arrays and

sysa = op(sys1,sys2)

then the kth model in the resulting LTI array sys is obtained by adding the kth
models in sys1 to the kth model in sys2

sysa(:,:,k) = sys1(:,:,k) + sys2(:,:,k)

You can also apply any of the response plotting functions such as step, bode,
and nyquist to LTI arrays. These plotting functions are also applied on a model
by model basis.
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Example: Addition of Two LTI Arrays
The following diagram illustrates the addition of two 3-by-1 LTI arrays
sys1+sys2.

Figure 5-8:  The Addition of Two LTI Arrays

The summation of these LTI arrays

sysa = sys1+sys2

is equivalent to the following model-by-model summation.

for k = 1:3
sysa(:,:,k)=sys1(:,:,k) + sys2(:,:,k)

end

2s 6.5+

s2 6.5s 9+ +
---------------------------------

1
s 4.5+
-----------------

1
s 2.5+
-----------------

sys2sys1 + = sysa

sys1(:,:,3

sys1(:,:,2)

sys2(:,:,3) sys(:,:,3)

sys(:,:,2)

2.1
s 4+
------------

sys2(:,:,2)

2.5s 8.25+

s2 6.8s 11.31+ +
--------------------------------------------

sys(:,:,1)

=

=

1.5
s 3.9+
-----------------

sys2(:,:,1)

+

+

+
1

s 2.9+
-----------------

sys1(:,:,1

1
s 2+
------------

3.15 9.25+

s2 6.5s 10+ +
------------------------------------

=
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Note that:

• Each model in sys1 and sys2 must have the same number of inputs and
outputs. This is required for the addition of two LTI arrays.

• The lengths of the array dimensions of sys1 and sys2 must match.

Dimension Requirements 
In general, when you apply any of these basic operations to two or more LTI
arrays:

• The I/O dimensions of each of the LTI arrays must be compatible with the
requirements of the operation.

• The lengths of array dimensions must match.

The I/O dimensions of each model in the resulting LTI array are determined by
the operation being performed. See Chapter 3, “Operations on LTI Models,” for
requirements on the I/O dimensions for the various operations.

For example, if sys1 and sys2 are both 1-by-3 arrays of LTI models with two
inputs and two outputs, and sys3 is a 1-by-3 array of LTI models with two
outputs and 1 input, then

sys1 + sys2

is an LTI array with the same dimensions as sys1 and sys2.

sys1 * sys3

is a 1-by-3 array of LTI models with two outputs and one input, and

[sys1,sys3]

is a 1-by-3 array of LTI models with two outputs and three inputs.

Special Cases for Operations on LTI Arrays
There are some special cases in coding operations on LTI arrays.

Consider

sysa = op(sys1,sys2)

where op is a symbol for the operation being applied. sys1 is an LTI array, and
sysa (the result of the operation) is an LTI array with the same array
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dimensions as sys1. You can use shortcuts for coding sysa = op(sys1,sys2)
in the following cases:

• For operations that apply to LTI arrays, sys2 does not have to be an array.
It can be a single LTI model (or a gain matrix) whose I/O dimensions satisfy
the compatibility requirements for op (with those of each of the models in
sys1). In this case, op applies sys2 to each model in sys1, and the kth model
in sys satisfies
sysa(:,:,k) = op(sys1(:,:,k),sys2)

• For arithmetic operations, such as +, *, /, and \, sys2 can be either a single
SISO model, or an LTI array of SISO models, even when sys1 is an LTI array
of MIMO models. This special case relies on MATLAB’s scalar expansion
capabilities for arithmetic operations.

- When sys2 is a single SISO LTI model (or a scalar gain), op applies sys2
to sys1 on an entry-by-entry basis. The ijth entry in the kth model in sysa
satisfies

sysa(i,j,k) = op(sys1(i,j,k),sys2)

- When sys2 is an LTI array of SISO models (or a multidimensional array
of scalar gains), op applies sys2 to sys1 on an entry-by-entry basis for each
model in sysa.

sysa(i,j,k) = op(sys1(i,j,k),sys2(:,:,k))

Examples of Operations on LTI Arrays with Single LTI Models
Suppose you want to create an LTI array containing three models, where, for

in the set , each model has the form

You can do this efficiently by first setting up an LTI array h containing the
SISO models and then using concatenation to form the LTI array H of
MIMO LTI models , . To do this, type

tau = [1.1 1.2 1.3];
for i=1:3 % Form LTI array h of SISO models.

τ 1.1 1.2 1.3, ,{ } Hτ s( )

Hτ s( )

1
s τ+
----------- 0

1–
1
s
---

=

1 s τ+( )⁄
Hτ s( ) τ 1.1 1.2 1.3, ,{ }∈
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h(:,:,i)=tf(1,[1 tau]); 
end
H = [h 0; –1 tf(1,[1 0])]; %Concatenation: array h & single models
size(H)

3x1 array of continuous-time transfer functions
Each transfer function has 2 output(s) and 2 input(s).

Similarly, you can use append to perform the diagonal appending of each model
in the SISO LTI array h with a fixed single (SISO or MIMO) LTI model.

S = append(h,tf(1,[1 3])); % Append a single model to h.

specifies an LTI array S in which each model has the form

You can also combine an LTI array of MIMO models and a single MIMO LTI
model using arithmetic operations. For example, if h is the LTI array of three
SISO models defined above,

[h,h] + [tf(1,[1 0]);tf(1,[1 5])]

adds the single one-output, two-input LTI model [1/s 1/(s + 5)] to every
model in the 3-by-1 LTI array of one-output, two-input models [h,h]. The
result is a new 3-by-2 array of models.

Examples: Arithmetic Operations on LTI Arrays and SISO Models
Using the LTI array of one-output, two-input state-space models [h,h],
defined in the previous example,

tf(1,[1 3]) + [h,h]

adds a single SISO transfer function model to each entry in each model of the
LTI array of MIMO models [h,h].

Finally,

G = rand(1,1,3,1);
sysa = G + [h,h]

Sτ s( )

1
s τ+
----------- 0

0 1
s 3+
------------

=
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adds the array of scalars to each entry of each MIMO model in the LTI array
[h,h] on a model-by-model basis. This last command is equivalent to the
following for loop.

hh = [h,h];
for k = 1:3
sysa(:,:,k) = G(1,1,k) + hh(:,:,k);

end

Other Operations on LTI Arrays
You can also apply the analysis functions, such as bode, nyquist, and step, to
LTI arrays.
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The Control System Toolbox provides editors that allow you to set properties
and preferences in the SISO Design Tool, the LTI Viewer, and in any response
plots that you create from the MATLAB prompt.

Properties refer to settings that are specific to an individual response plot. This
includes the following:

• Axes labels, and limits

• Data units and scales

• Plot styles, such as grids, fonts, and axes foreground colors

• Plot characteristics, such as rise time, peak response, and gain and phase
margins.

Preferences refers to properties that persist either:

• Within a single session for a specific instance of an LTI Viewer or a SISO
Design Tool

• Across Control System Toolbox sessions

The former are called tool preferences, the latter toolbox preferences.

This document contains five sections:

• “Setting Toolbox Preferences” — Using the Toolbox Preferences Editor, you
can set features that apply to all LTI Viewers, SISO Design Tools, and
response plots you create. Settings here persist from session to session.

• “Setting Tool Preferences” — Using either the SISO Tool Editor or LT Viewer
Editor, you can set features that apply to individual instances of LTI Viewers
and SISO Design Tools.

• “Customizing Response Plot Properties” — Using the Property Editor, you
can set features that apply to individual instances of response plots

- “Property Editing for Subplots” — How to edit subplots individually using
the Property Editor.

- “Customizing Plots Inside the SISO Design Tool” — How to use the
Property Editor specific to the SISO Design Tool.
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The Property and Preferences Hierarchy
This diagram explains the hierarchy from properties, which are local, to
toolbox preferences, which are global and persist from session to session.

User Preferences

Toolbox Preferences
Persist across sessions

Tool Preferences
Specific to an instance
of a tool

Plot Properties
Specific to an instance
of a plot

Inheritance

Inheritance SISO Design ToolSISO Design Tool LTI Viewer

Response PlotResponse Plot Response PlotResponse Plot Response PlotResponse Plot

Saved
to disk

Not saved

to disk

Not saved

to disk

Response PlotResponse Plot
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The Toolbox Preferences Editor allows you to set plot preferences that will
persist from session to session. This is the highest level shown in “The Property
and Preferences Hierarchy”.

Opening the Toolbox Preferences Editor
To open the Toolbox Preferences Editor, select Toolbox Preferences under the
File menu of the LTI Viewer or the SISO Design Tool. Alternatively, you can
type

ctrlpref

at the MATLAB prompt.

Note  To get help on pages in the Control System Toolbox Preferences editor,
click on the page tabs below.

.

Figure 7-1:  The Control System Toolbox Preferences Editor
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Units Page

Note  To get help on pages in the Control System Toolbox Preferences editor,
click on the page tabs below.

Use the Units page to set preferences for the following:

• Frequency — Radians per second (rad/sec) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Style Page

Note  Click on the page tabs below to get help on pages in the Control System
Toolbox Preferences editor.
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Use the Style page to toggle grid visibility and set font preferences and axes
foreground colors for all plots you create using the Control System Toolbox.
This figure shows the Style page.

You have the following choices:

• Grid — Activate grids by default in new plots

• Font preferences — Set the font size, weight (bold), and angle (italic)

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element vector
to represent red, green, and blue (RGB) values. Vector element values can
range from 0 to 1.

If you do not want to specify RGB values numerically, press the Select
button to open the Select Colors window. See “Select colors” for more
information.

Characteristics Page

Note  Click on the page tabs below to get help on pages in the Control System
Toolbox Preferences editor.
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The Characteristics page has selections for response characteristics and phase
wrapping. This figure shows the Characteristics page with default settings.

The following are the available options for the Characteristics page:

• Response Characteristics:

- Specify settling time tolerance — You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time boundaries — The standard definition of rise time is the
time it takes the signal to go from 10% to 90% of the final value. You can
choose any percentages you like (from 0% to 100%), provided that the first
value is smaller than the second.

• Phase Wrapping — By default, the phase is not wrapped. Wrap the phrase
by unchecking this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).

SISO Tool Page

Note  Click on the page tabs below to get help on pages in the Control System
Toolbox Preferences editor.
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The SISO Tool page has settings for the SISO Design Tool. This figure shows
the SISO Tool page with default settings.

You can make the following selections:

• Compensator Format — You can select either the time-constant format or
the zero/pole/gain format. The time-constant format is

where Tz1, Tz2, ..., are the zero time constants, and Tp1, Tp2, ..., are the pole
time constants.

The zero/pole/gain format is a variation on the time-constant format.

In this case, the gain is compensator gain; z1, z2, ... and p1, p2, ..., are the zero
and pole locations, respectively.

• Bode Options — By default, the SISO Design Tool shows the plant and
sensor poles and zeros as blue x’s and o’s, respectively. Uncheck this box to
eliminate the plant’s poles and zeros from the Bode plot. Note that the
compensator poles and zeros (in red) will still appear.

dcgain
1 Tz1s+( )
1 Tp1s+( )

----------------------------× …

K
s z1+( )
s p1+( )

--------------------×
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Both the LTI Viewer and the SISO Design Tool have Tool Preferences Editors.
These editors comprise the middle layer of “The Property and Preferences
Hierarchy”.

Both editors allow you to set default characteristics for specific instances of LTI
Viewers and SISO Design Tools. If you open a new instance of either, each
defaults to the characteristics specified in the Toolbox Preferences editor.

Opening the LTI Viewer Preferences Editor
Select LTI Viewer Preferences under the Edit menu of the LTI Viewer to
open the LTI Viewer Preferences editor. This figure shows the editor open to
its first page.

Note  Click on the page tabs below to get help on LTI Viewer Preference
editor pages.

Figure 8-1:  The LTI Viewer Preferences Editor
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Units Page

Note  Click on the page tabs below to get help on LTI Viewer Preference
editor pages.

You can select the following on the Units page (shown in Figure 8-1):

• Frequency — Radians per second (rad/sec) or Hertz (Hz)

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Style Page

Note  Click on the page tabs below to get help on LTI Viewer Preference
editor pages.
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Use the Style page to toggle grid visibility and set font preferences and axes
foreground colors for all plots in the LTI Viewer. This figure shows the Style
page.

You have the following choices:

• Grid — Activate grids for all plots in the LTI Viewer

• Fonts — Set the font size, weight (bold), and angle (italic)

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element vector
to represent red, green, and blue (RGB) values. Vector element values can
range from 0 to 1.

If you do not want to specify the RGB values numerically, press the Select
button to open the Select Colors window. See “Select colors” for more
information.

Characteristics Page

Note  Click on the page tabs below to get help on LTI Viewer Preference
editor pages.
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The Characteristics page, shown below, has selections for response
characteristics and phase wrapping.

The following choices are available:

• Response Characteristics:

- Specify settling time tolerance — You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time boundaries — The standard definition of rise time is the
time it takes the signal to go from 10% to 90% of the final value. You can
choose any percentages you like (from 0% to 100%), provided that the first
value is smaller than the second.

• Phase Wrapping — By default, the phase is not wrapped. Wrap the phrase
by unchecking this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).

Parameters Page

Note  Click on the page tabs below to get help on LTI Viewer Preference
editor pages.
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Use the Parameters page, shown below, to specify input vectors for time and
frequency simulation.

The defaults are to generate time and frequency vectors for your plots
automatically. You can, however, override the defaults as follows:

• Time Vector:

- Define stop time — Specify the final time value for your simulation

- Define vector — Specify the time vector manually using equal-sized time
steps

• Frequency Vector:

- Define range — Specify the bandwidth of your response. Whether it’s in
rad/sec or Hz depends on the selection you made in the Units page.

- Define vector — Specify the vector for your frequency values. Any real,
positive, strictly monotonically increasing vector is valid.

Opening the SISO Tool Preferences Editor

Note  Click on the page tabs below to get help on SISO Tool Preference editor
pages.
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To open the SISO Tool Preferences editor, select SISO Tool Preferences
from the Edit menu of the SISO Design Tool. This window opens.

Figure 8-2:  The SISO Tool Preferences Editor

Units Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor
pages.
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The Units page has settings for the following units:

• Frequency — Radians per second (rad/sec) or Hertz (Hz)
• Magnitude — Decibels (dB) or absolute value (abs)
• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Style Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor
pages.

Use the Style page to toggle grid visibility and set font preferences and axes
foreground colors for all plots in the SISO Design Tool. This figure shows the
Style page.

Grids Panel
Check the box to activate grids for all plots in the SISO Design Tool

Fonts Panel
Set the font size, weight (bold), and angle (italic) by using the menus and
checkboxes.

Click on the Grids, Fonts, and Colors 
panels for help contents.
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Colors Panel
Specify the color vector to use for the axes foreground, which includes the X-Y
axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

Select colors. Press the Select button to open the Select Color window for the
axes foreground.

You can use this window to choose axes foreground colors without having to set
RGB (red-green-blue) values numerically. To make your selections, click on the
colored rectangles and press OK. If you want a broader range of colors, press
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the Define Custom Colors button. This extends the Select Color window, as
shown in this figure.

You can pick colors from the color spectrum located in the upper right corner of
the window. To select a custom color, follow these steps:

1 Place your cursor at a point in the color spectrum that has a color you want
to define.

2 Left-click. Notice that the hue, saturation, luminescence (lum.), red, green,
and blue fields specify the numerical values for the selected color.

3 Press Add to Custom Colors. This adds the selected color to the row of boxes
labeled Custom Color. You can now use this color just like the basic colors.

Options Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor
pages.
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The Options page, shown below, has selections for compensator format and
Bode diagrams.

You can make the following selections:

• Compensator Format — Select either the time-constant format or the
zero/pole/gain format. The time-constant format is

where Tz1, Tz2, ..., are the zero time constants, and Tp1, Tp2, ..., are the pole
time constants.

The zero/pole/gain format is a variation on the time-constant format.

In this case, the gain is compensator gain; z1, z2, ... and p1, p2, ..., are the zero
and pole locations, respectively.

• Bode Options — By default, the SISO Design Tool shows the plant and
sensor poles and zeros as blue x’s and o’s, respectively. Uncheck this box to
eliminate the plant’s poles and zeros from the Bode plot. Note that the
compensator poles and zeros (in red) will still appear.

dcgain
1 Tz1s+( )
1 Tp1s+( )

----------------------------× …

K
s z1+( )
s p1+( )

--------------------×
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Line Colors Page

Note  Click on the page tabs below to get help on SISO Tool Preference editor
pages.

The Line Colors page, shown below, has selections for specify the colors of the
lines in the response plots of the SISO Design Tool.

To change the colors of plot lines associated with parts of your model, specify a
three-element vector to represent red, green, and blue (RGB) values. Vector
element values can range from 0 to 1.

If you do not want to specify the RGB values numerically, press the Select
button to open the Select Colors window. See “Select colors” for more
information.

Click on the Select 
button for help on 
choosing colors.
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The lowest level of “The Property and Preferences Hierarchy” is setting
response plot properties. If you have created a response plot, there are two
ways to open the Property Editor:

• Double-click in the plot region

• Select Properties from the right-click menu

Before looking at the Property Editor, open a step response plot using this
commands.

load ltiexamples
step(sys_dc)

This creates a step plot. Select Properties from the right-click window. Note
that when you open the Property Editor, a black dashed box appears around
the step response, as this figure shows.

Figure 9-1:  A SISO System Step Response

The dashed line 
indicates that the 
Property Editor is 
active for this plot.
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Property Editor

Note  Click on the page tabs below to get help on pages in the Property
Editor.

This figure shows the Property Editor for this step response.

Figure 9-2:  The Property Editor for the Step Response

In general, you can change the following properties of response plots:

• Labels — Titles and X- and Y-labels

• Limits — Numerical ranges of the X and Y axes

• Units — Where applicable (e.g., rad/sec to Hertz). If you cannot customize
units, as is the case with step responses, the Property Editor will display that
no units ar available for the selected plot.

• Style — Show a grid and adjust font properties, such as font size, bold and
italics

• Characteristics — Where applicable, these include peak response, settling
time, phase and gain margins, etc. Plot characteristics change with each plot
response type. The Property Editor displays only the characteristics that
make sense for the selected response plot. For example, phase and gain
margins are not available for step responses.
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As you make changes in the Property Editor, they display immediately in the
response plot. Conversely, if you make changes in a plot using right-click
menus, the Property Editor for that plot automatically updates. The Property
Editor and its associated plot are dynamically linked.

Labels Page

Note  Click on the page tabs below to get help on pages in the Property
Editor.

To specify new text for plot titles and axis labels, type the new string in the field
next to the label you want to change. Note that the label changes immediately
as you type, so you can see how the new text looks as you are typing.

Limits Page

Note  Click on the page tabs below to get help on pages in the Property
Editor.
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The Control System Toolbox selects default values for the axes limits to make
sure that the maximum and minimum x and y values are displayed. If you want
to override the default settings, change the values in the Limits fields. The
Auto-Scale box automatically unchecks if you click on a different field. The
new limits appear immediately in the response plot.

To reestablish the default values, recheck the Auto-Scale box.

Units Page

Note  Click on the page tabs below to get help on pages in the Property
Editor.
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You can use the units page to change units in your response plot. The contents
of this page depend on the response plot associated with the editor.

Note that for step and impulse responses, there are no alternate units available
(only time and amplitude are possible in the toolbox). This table lists the
options available for the other response objects. Use the menus to toggle
between units.

Table 9-1:  Optional Unit Conversions for Response Plots

Response Plot Unit Conversions

Bode and
Bode Magnitude

Frequency in rad/sec or Hertz (Hz) using logarithmic or
linear scale
Magnitude in decibels (dB) or the absolute value
Phase in degrees or radians

Impulse None

Nichols Chart
and Nyquist
Diagram

Frequency in rad/sec or Hertz
Magnitude in decibels or the absolute value
Phase in degrees or radians

Pole/Zero Map Frequency in rad/sec or Hertz
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Style Page

Note  Click on the page tabs below to get help on pages in the Property
Editor.

Use the Style page to toggle grid visibility and set font preferences and axes
foreground colors for response plots.

You have the following choices:

• Grid — Activate grids by default in new plots

• Fonts — Set the font size, weight (bold), and angle (italic)

Singular Values Frequency in rad/sec or Hertz using logarithmic or
linear scale
Magnitude in decibels or the absolute value

Step None

Table 9-1:  Optional Unit Conversions for Response Plots

Response Plot Unit Conversions
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• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element vector
to represent red, green, and blue (RGB) values. Vector element values can
range from 0 to 1.

If you do not want to specify RGB values numerically, press the Select
button to open the Select Colors window. See “Select colors” for more
information.

Characteristics Page

Note  Click on the page tabs below to get help on pages in the Property
Editor.

The Characteristics page allows you to customize response characteristics for
plots. Each response plot has its own set of characteristics; the table below lists
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them. Use the checkboxes to activate the feature and the fields to specify rise
or settling time percentages.

Table 9-2:  Response Characteristic Options for Response Plots

Plot Customizable Feature

Bode Diagram Show peak response
Show minimum stability margins
Show all stability margins
Unwrap phase (default is wrapped)

Bode Magnitude Show peak response

Impulse Show peak response
Show settling time within xx% (specify the percentage)

Nichols Chart Show peak response
Show minimum stability margins
Show all stability margins
Unwrap phase (default is wrapped)

Nyquist
Diagram

Show peak response
Show minimum stability margins
Show all stability margins

Pole/Zero Map None

Sigma Show peak response

Step Show peak response
Show settling time within xx% (specify the percentage)
Show rise time from xx to yy% (specify the percentages)
Show steady state
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Property Editing for Subplots
If you create more than one plot in a single figure window, you can edit each
plot individually. For example, the following code creates a figure with two
plots, a step and an impulse response with two randomly selected systems.

subplot(2,1,1)
step(rss(2,1))
subplot(2,1,2)
impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot
to activate the Property Editor. You will see a dashed line appear around the
step response, indicating that it is the active plot for the editor. To switch to the
lower (impulse response) plot, just click once in the impulse response plot
region. The dashed box switches to the impulse response, and the Property
Editor updates as well.
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Customizing Plots Inside the SISO Design Tool
Customizing plots inside the SISO Design Tool is similar to how you customize
any response plot. The Control System Toolbox provides a property editor
specific to the SISO Design Tool that you can use to create custom root locus
and Bode diagrams within the SISO Design Tool.

Opening the Root Locus Plot Editor
There are three ways to open the Property Editor for root locus plots:

• Double-click in the root locus away from the curve

• Select Properties from the right-click menu

• Select Root Locus and then Properties from Edit in the menu bar

Note  Click on the page tabs below to get help on pages in the Root Locus
Property Editor.

This figure shows the Property Editor: Root Locus window.
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Labels Page

Note  Click on the page tabs below to get help on pages in the Root Locus
Property Editor.

You can use the Label page to specify plot titles and axis labels. To specify a
new label, type the string in the appropriate field. The root locus plot
automatically updates.

Limits Page

Note  Click on the page tabs below to get help on pages in the Root Locus
Property Editor.

The SISO Design Tool specifies default values for the real and imaginary axes
ranges to make sure that all the poles and zeros in your model appear in the
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root locus plot. Use the Limits page, shown below, to override the default
settings.

To change the limits, specify the new limits in the real and imaginary axes
Limits fields. The Auto-Scale checkbox automatically deactivates once you
click in a different field. Your root locus diagram updates immediately. If you
want to reapply the default limits, recheck the Auto-Scale checkboxes.

The Limit Stack panel provides support for storing and retrieving custom limit
specifications. There are four buttons available:

— Add the current limits to the stack

— Retrieve the previous stack entry

— Retrieve the next stack entry

— Remove the current limits from the stack
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Using these buttons, you can store and retrieve any number of saved custom
axes limits.

Options Page

Note  Click on the page tabs below to get help on pages in the Root Locus
Property Editor.

The Options page contains settings for adding a grid and changing the plot’s
aspect ratio. This figure shows the Options page.

Check Show grid to display a grid on the root locus. If you select Display
damping ratios as % peak overshoot, the SISO Design Tool displays the
damping ratio values along the grid lines. This figure shows both options
activated for an imported model, Gservo. If you want to verify these settings,
type

load ltiexamples 
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at the MATLAB prompt and import Gservo from the workspace into your SISO
Design Tool.

Figure 9-3:  Displaying Damping Ratio Values

The numbers displayed on the root locus gridlines are the damping ratios as a
percentage of the overshoot values.

If you check the Equal box in the Aspect Ratio panel, the x and y-axes are set
to equal limit values.

Opening the Bode Diagram Property Editor
The Property Editor for Bode diagrams is identical to the one for root locus,
with one exception, the Options page. As is the case with the root locus
Property Editor, there are three ways to open the Bode diagram property
editor:

• Double-click in the root locus away from the curve

• Select Properties from the right-click menu
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• Select Bode and then Properties from Edit in the menu bar

Note  Click on the page tabs below to get help on pages in the Bode Diagram
Property Editor.

This figure shows the Property Editor: Bode Diagram editor.

Labels Page

Note  Click on the page tabs below to get help on pages in the Bode Diagram
Property Editor.
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You can use the Label page to specify plot titles and axis labels. To specify a
new label, type the string in the appropriate field. The Bode diagram
automatically updates.

Limits Page

Note  Click on the page tabs below to get help on pages in the Bode Diagram
Property Editor.
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The Control System Toolbox sets default limits for the frequency, magnitude,
and phase scales for your plots. Use the Limits page to override the default
values.

To change the limits, specify the new values in the Limits fields for frequency,
magnitude, and phase. The Auto-Scale checkbox automatically deactivates
once you click in a different field. The Bode diagram updates immediately.

To restore the default settings, recheck the Auto-Scale boxes.

Options Page

Note  Click on the page tabs below to get help on pages in the Bode Diagram
Property Editor.
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This figure shows the Options page for Bode diagrams.

The following options are available from this page:

• Grid — Check Show grid to display grid lines.

• Magnitude/Phase — There are three radio buttons; you can toggle between
the following displays:
- Show magnitude & phase
- Show magnitude only
- Show phase only

• Response Characteristics — Check Show stability margins to display the
phase and gain margins on your Bode diagram. The margins appear as
brown stems, and the Bode diagram displays the numerical values of the
margins in one of the bottom corners of the gain and phase plots.

The Bode diagram in Figure 9-3, Displaying Damping Ratio Values, has the
stability margins displayed.
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This chapter contains four detailed case studies of control system design and
analysis using the Control System Toolbox.

• “Yaw Damper for a 747 Jet Transport” — Illustrating the classical design
process

• “Hard-Disk Read/Write Head Controller” — Illustrating classical digital
controller design

• “LQG Regulation: Rolling Mill Example” — Using linear quadratic Gaussian
techniques to regulate the beam thickness in a steel rolling mill

• “Kalman Filtering”— Kalman filtering that illustrates both steady-state and
time-varying Kalman filter design and simulation

Demonstration files for these case studies are available as jetdemo.m,
diskdemo.m, milldemo.m, and kalmdemo.m. To run any of these demonstrations,
type the corresponding name at the command line, for example,

jetdemo
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Yaw Damper for a 747 Jet Transport
This case study demonstrates the tools for classical control design by stepping
through the design of a yaw damper for a 747 jet transport aircraft.

The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A = [-0.0558   -0.9968    0.0802    0.0415
      0.5980   -0.1150   -0.0318         0
     -3.0500    0.3880   -0.4650         0
           0    0.0805    1.0000         0];

B = [ 0.0729  0.0000
     -4.7500 0.00775
      .15300  0.1430
           0         0];

C = [0     1     0     0
     0     0     0     1];

D = [0     0
     0     0];

The following commands specify this state-space model as an LTI object and
attach names to the states, inputs, and outputs.

states = {'beta' 'yaw' 'roll' 'phi'};
inputs = {'rudder' 'aileron'};
outputs = {'yaw' 'bank angle'};

sys = ss(A,B,C,D,'statename',states,...
 'inputname',inputs,...
 'outputname',outputs);

You can display the LTI model sys by typing sys. MATLAB responds with

a = 
                      beta          yaw         roll          phi
         beta      -0.0558      -0.9968       0.0802       0.0415
          yaw        0.598       -0.115      -0.0318            0
         roll        -3.05        0.388       -0.465            0
          phi            0       0.0805            1            0
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b = 
                    rudder      aileron
         beta       0.0729            0
          yaw        -4.75      0.00775
         roll        0.153        0.143
          phi            0            0
 
 
c = 
                      beta          yaw         roll          phi
          yaw            0            1            0            0
   bank angle            0            0            0            1
 
 
d = 
                    rudder      aileron
          yaw            0            0
   bank angle            0            0
 
Continuous-time model.

The model has two inputs and two outputs. The units are radians for beta
(sideslip angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and
roll (roll rate). The rudder and aileron deflections are in radians as well.

Compute the open-loop eigenvalues and plot them in the -plane.

damp(sys)

Eigenvalue            Damping     Freq. (rad/s)  
                                                         
-7.28e-003                  1.00e+000      7.28e-003    
 -5.63e-001                  1.00e+000      5.63e-001    
 -3.29e-002 + 9.47e-001i     3.48e-002      9.47e-001    
 -3.29e-002 - 9.47e-001i     3.48e-002      9.47e-001 

s
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pzmap(sys)

This model has one pair of lightly damped poles. They correspond to what is
called the “Dutch roll mode.”

Suppose you want to design a compensator that increases the damping of these
poles, so that the resulting complex poles have a damping ratio with
natural frequency rad/sec. You can do this using the Control System
toolbox analysis tools.

Open-Loop Analysis
First, perform some open-loop analysis to determine possible control
strategies. Start with the time response (you could use step or impulse here).

ζ 0.35>
ωn 1<
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impulse(sys)

The impulse response confirms that the system is lightly damped. But the time
frame is much too long because the passengers and the pilot are more
concerned about the behavior during the first few seconds rather than the first
few minutes. Next look at the response over a smaller time frame of 20 seconds.
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impulse(sys,20)

Look at the plot from aileron (input 2) to bank angle (output 2). To show only
this plot, right-click and choose I/O Selector, then click on the (2,2) entry. The
I/O Selector should look like this.
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The new figure is shown below.

The aircraft is oscillating around a nonzero bank angle. Thus, the aircraft is
turning in response to an aileron impulse. This behavior will prove important
later in this case study.

Typically, yaw dampers are designed using the yaw rate as sensed output and
the rudder as control input. Look at the corresponding frequency response.

sys11=sys('yaw','rudder') % Select I/O pair.
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bode(sys11)

From this Bode diagram, you can see that the rudder has significant effect
around the lightly damped Dutch roll mode (that is, near rad/sec).

Root Locus Design
A reasonable design objective is to provide a damping ration with a
natural frequency rad/sec. Since the simplest compensator is a static
gain, first try to determine appropriate gain values using the root locus
technique.

% Plot the root locus for the rudder to yaw channel

ω 1=

ζ 0.35>
ωn 1.0<
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rlocus(sys11)

This is the root locus for negative feedback and shows that the system goes
unstable almost immediately. If, instead, you use positive feedback, you may
be able to keep the system stable.

rlocus(-sys11)
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sgrid

This looks better. By using simple feedback, you can achieve a damping ratio
of . Click on the blue curve and move the data marker to track theζ 0.45=
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gain and damping values. To achieve a 0.45 damping ratio, the gain should be
about 2.85. This figure shows the data marker with similar values.

Next, close the SISO feedback loop.

K = 2.85;
cl11 = feedback(sys11,-K); % Note: feedback assumes negative 

 % feedback by default

Plot the closed-loop impulse response for a duration of 20 seconds, and compare
it to the open-loop impulse response.
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impulse(sys11,'b--',cl11,'r',20)

The closed-loop response settles quickly and does not oscillate much,
particularly when compared to the open-loop response.

Now close the loop on the full MIMO model and see how the response from the
aileron looks. The feedback loop involves input 1 and output 1 of the plant (use
feedback with index vectors selecting this input/output pair). At the MATLAB
prompt, type

cloop = feedback(sys,-K,1,1);
damp(cloop) % closed-loop poles

Eigenvalue            Damping     Freq. (rad/s)  

-3.42e-001                  1.00e+000      3.42e-001    
-2.97e-001 + 6.06e-001i     4.40e-001      6.75e-001    
-2.97e-001 - 6.06e-001i     4.40e-001      6.75e-001    
-1.05e+000                  1.00e+000      1.05e+000 
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Plot the MIMO impulse response.

impulse(sys,'b--',cloop,'r',20)

The yaw rate response is now well damped, but look at the plot from aileron
(input 2) to bank angle (output 2). When you move the aileron, the system no
longer continues to bank like a normal aircraft. You have over-stabilized the
spiral mode. The spiral mode is typically a very slow mode and allows the
aircraft to bank and turn without constant aileron input. Pilots are used to this
behavior and will not like your design if it does not allow them to fly normally.
This design has moved the spiral mode so that it has a faster frequency.

Washout Filter Design
What you need to do is make sure the spiral mode does not move further into
the left-half plane when you close the loop. One way flight control designers
have addressed this problem is to use a washout filter wherekH s( )

H s( ) s
s a+
------------=
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The washout filter places a zero at the origin, which constrains the spiral mode
pole to remain near the origin. We choose for a time constant of five
seconds and use the root locus technique to select the filter gain H. First specify
the fixed part of the washout by

H = zpk(0,-0.2,1);

Connect the washout in series with the design model sys11 (relation between
input 1 and output 1) to obtain the open-loop model

oloop = H * sys11;

and draw another root locus for this open-loop model.

rlocus(-oloop)
sgrid

Create and drag a data marker around the upper curve to locate the maximum
damping, which is about .

a 0.2=

s s a+( )⁄

ζ 0.3=
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This figure shows a data marker at the maximum damping ratio; the gain is
approximately 2.07.

Look at the closed-loop response from rudder to yaw rate.

K = 2.07;
cl11 = feedback(oloop,-K);
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impulse(cl11,20)

The response settles nicely but has less damping than your previous design.
Finally, you can verify that the washout filter has fixed the spiral mode
problem. First form the complete washout filter (washout + gain).

WOF = -K * H;

Then close the loop around the first I/O pair of the MIMO model sys and
simulate the impulse response.

cloop = feedback(sys,WOF,1,1);

kH s( )
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% Final closed-loop impulse response
impulse(sys,'b--',cloop,'r',20)

The bank angle response (output 2) due to an aileron impulse (input 2) now has
the desired nearly constant behavior over this short time frame. To inspect the
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response more closely, use the I/O Selector in the right-click menu to select the
(2,2) I/O pair.

Although you did not quite meet the damping specification, your design has
increased the damping of the system substantially and now allows the pilot to
fly the aircraft normally.
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Hard-Disk Read/Write Head Controller

This case study demonstrates the ability to perform classical digital control
design by going through the design of a computer hard-disk read/write head
position controller.

Using Newton’s law, a simple model for the read/write head is the differential
equation

where is the inertia of the head assembly, is the viscous damping
coefficient of the bearings, is the return spring constant, is the motor
torque constant, is the angular position of the head, and is the input
current.

Taking the Laplace transform, the transfer function from to is

Using the values kg , Nm/(rad/sec), Nm/rad,
and Nm/rad, form the transfer function description of this system.
At the MATLAB prompt, type

J = .01; C = 0.004; K = 10; Ki = .05;

Hard Disk Drive

Disk Platen

Disk Drive Motor

Read/Write
Head

Solenoid

Ω

θ

l

Jd2θ

dt2
---------- Cdθ

dt
------- Kθ+ + Kii=

J C
K Ki

θ i

i θ

H s( )
Ki

Js2 Cs K+ +
----------------------------------=

J 0.01= m2 C 0.004= K 10=
Ki 0.05=
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num = Ki;
den = [J C K];
H = tf(num,den)

MATLAB responds with

Transfer function:
         0.05
-----------------------
0.01 s^2 + 0.004 s + 10

The task here is to design a digital controller that provides accurate positioning
of the read/write head. The design is performed in the digital domain. First,
discretize the continuous plant. Because our plant will be equipped with a
digital-to-analog converter (with a zero-order hold) connected to its input, use
c2d with the 'zoh' discretization method. Type

Ts = 0.005;  % sampling period = 0.005 second
Hd = c2d(H,Ts,'zoh')

Transfer function:
6.233e-05 z + 6.229e-05
-----------------------
 z^2 - 1.973 z + 0.998
 
Sampling time: 0.005

You can compare the Bode plots of the continuous and discretized models with
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bode(H,'-',Hd,'--')

To analyze the discrete system, plot its step response, type
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step(Hd)

The system oscillates quite a bit. This is probably due to very light damping.
You can check this by computing the open-loop poles. Type

% Open-loop poles of discrete model
damp(Hd) 

Eigenvalue         Magnitude    Equiv. Damping    Equiv. Freq.
                                                                               
9.87e-01 + 1.57e-01i     9.99e-01       6.32e-03             3.16e+01        
9.87e-01 - 1.57e-01i     9.99e-01       6.32e-03             3.16e+01        

The poles have very light equivalent damping and are near the unit circle. You
need to design a compensator that increases the damping of these poles.

The simplest compensator is just a gain, so try the root locus technique to select
an appropriate feedback gain.



10 Design Case Studies

10-24

rlocus(Hd)

As shown in the root locus, the poles quickly leave the unit circle and go
unstable. You need to introduce some lead or a compensator with some zeros.
Try the compensator

with and .

The corresponding open-loop model

is obtained by the series connection

D z( ) z a+
z b+
------------=

a 0.85–= b 0=

yD z( )

Plant

u Hd z( )

Compensator
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D = zpk(0.85,0,1,Ts)
oloop = Hd * D

Now see how this compensator modifies the open-loop frequency response.

bode(Hd,'--',oloop,'-')

The plant response is the dashed line and the open-loop response with the
compensator is the solid line.

The plot above shows that the compensator has shifted up the phase plot
(added lead) in the frequency range rad/sec.

Now try the root locus again with the plant and compensator as open loop.

rlocus(oloop)
zgrid

ω 10>
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Open the Property Editor by right-clicking in the plot away from the curve.
On the Limits page, set the x-axis limits from -1 to 1.01. This figure shows the
result.

This time, the poles stay within the unit circle for some time (the lines drawn
by zgrid show the damping ratios from to 1 in steps of 0.1). Use a dataζ 0=
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marker to find the point on the curve where the gain equals 4.111e+03. This
figure shows the data marker at the correct location.

To analyze this design, form the closed-loop system and plot the closed-loop
step response.

K = 4.11e+03;
cloop = feedback(oloop,K);
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step(cloop)

This response depends on your closed loop set point. The one shown here is
relatively fast and settles in about 0.07 seconds. Therefore, this closed loop disk
drive system has a seek time of about 0.07 seconds. This is slow by today's
standards, but you also started with a very lightly damped system.

Now look at the robustness of your design. The most common classical
robustness criteria are the gain and phase margins. Use the function margin to
determine these margins. With output arguments, margin returns the gain and
phase margins as well as the corresponding crossover frequencies. Without
output argument, margin plots the Bode response and displays the margins
graphically.

To compute the margins, first form the unity-feedback open loop by connecting
the compensator , plant model, and feedback gain in series.

olk = K * oloop;

D z( ) k
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Next apply margin to this open-loop model. Type

[Gm,Pm,Wcg,Wcp] = margin(olk);
Margins = [Gm Wcg Pm Wcp]

Margins =

    3.7987  296.7978   43.2031  106.2462

To obtain the gain margin in dB, type

20*log10(Gm)

ans =
   11.5926

You can also display the margins graphically by typing

margin(olk)

u yD z( ) Plant

k

–

+

oloop
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The command produces the plot shown below.

This design is robust and can tolerate a 11 dB gain increase or a 40 degree
phase lag in the open-loop system without going unstable. By continuing this
design process, you may be able to find a compensator that stabilizes the
open-loop system and allows you to reduce the seek time.
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LQG Regulation: Rolling Mill Example
This case study demonstrates the use of the LQG design tools in a process
control application. The goal is to regulate the horizontal and vertical thickness
of the beam produced by a hot steel rolling mill. This example is adapted from
[1]. The full plant model is MIMO and the example shows the advantage of
direct MIMO LQG design over separate SISO designs for each axis. Type

milldemo

at the command line to run this demonstration interactively.

Process and Disturbance Models
The rolling mill is used to shape rectangular beams of hot metal. The desired
outgoing shape is sketched below.

rolling cylinders

shaped beam

x

y
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This shape is impressed by two pairs of rolling cylinders (one per axis)
positioned by hydraulic actuators. The gap between the two cylinders is called
the roll gap.

The objective is to maintain the beam thickness along the x- and y-axes within
the quality assurance tolerances. Variations in output thickness can arise from
the following:

• Variations in the thickness/hardness of the incoming beam

• Eccentricity in the rolling cylinders

Feedback control is necessary to reduce the effect of these disturbances.
Because the roll gap cannot be measured close to the mill stand, the rolling
force is used instead for feedback.

The input thickness disturbance is modeled as a low pass filter driven by white
noise. The eccentricity disturbance is approximately periodic and its frequency
is a function of the rolling speed. A reasonable model for this disturbance is a
second-order bandpass filter driven by white noise.

-axis

incoming beam shaped beam

rolling cylinders

rolling mill stand

x
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This leads to the following generic model for each axis of the rolling process.

Figure 10-1:  Open-loop model for x- or y-axis

The measured rolling force variation is a combination of the incremental
force delivered by the hydraulic actuator and of the disturbance forces due to
eccentricity and input thickness variation. Note that:

• The outputs of , and are the incremental forces delivered
by each component.

• An increase in hydraulic or eccentricity force reduces the output thickness
gap .

• An increase in input thickness increases this gap.

The model data for each axis is summarized below.

hydraulic actuator

eccentricity model

+

+

–

input disturbance model

+

+

+

H s( )

Fi s( )

Fe s( )

δ

wi

we

u

gx

f

u command
δ thickness gap (in mm)
f incremental rolling force
wi we, driving white noise for disturbance models

f2

f1

force-to-gap gain

f

H s( ) Fe s( ), Fi s( )

δ
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Model Data for the x-Axis

Model Data for the y-Axis

LQG Design for the x-Axis
As a first approximation, ignore the cross-coupling between the - and -axes
and treat each axis independently. That is, design one SISO LQG regulator for
each axis. The design objective is to reduce the thickness variations and
due to eccentricity and input thickness disturbances.

Start with the -axis. First specify the model components as transfer function
objects.

% Hydraulic actuator (with input "u-x")
Hx = tf(2.4e8,[1 72 90^2],'inputname','u-x')

Hx s( ) 2.4 108×

s2 72s 902
+ +

-------------------------------------=

Fix s( ) 104

s 0.05+
--------------------=

Fex s( ) 3 104× s

s2 0.125s 62
+ +

------------------------------------------=

gx 10 6–
=

Hy s( ) 7.8 108×

s2 71s 882
+ +

-------------------------------------=

Fiy s( ) 2 104×
s 0.05+
--------------------=

Fey s( ) 105 s

s2 0.19s 9.42
+ +

--------------------------------------------=

gy 0.5 10 6–×=

x y

δx δy

x
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% Input thickness/hardness disturbance model
Fix = tf(1e4,[1 0.05],'inputn','w-ix')

% Rolling eccentricity model
Fex = tf([3e4 0],[1 0.125 6^2],'inputn','w-ex')

% Gain from force to thickness gap
gx = 1e-6;

Next build the open-loop model shown in Figure 10-1 above. You could use the
function connect for this purpose, but it is easier to build this model by
elementary append and series connections.

% I/O map from inputs to forces f1 and f2
Px = append([ss(Hx) Fex],Fix)

% Add static gain from f1,f2 to outputs ”x-gap” and ”x-force” 
Px = [-gx gx;1 1] * Px

% Give names to the outputs:
set(Px,'outputn',{'x-gap' 'x-force'})

Note:   To obtain minimal state-space realizations, always convert transfer
function models to state space before connecting them. Combining transfer
functions and then converting to state space may produce nonminimal
state-space models.

The variable Px now contains an open-loop state-space model complete with
input and output names.

Px.inputname

ans = 
    'u-x'
    'w-ex'
    'w-ix'

Px.outputname
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ans = 
    'x-gap'
    'x-force'

The second output 'x-force' is the rolling force measurement. The LQG
regulator will use this measurement to drive the hydraulic actuator and reduce
disturbance-induced thickness variations .

The LQG design involves two steps:

1 Design a full-state-feedback gain that minimizes an LQ performance
measure of the form

2 Design a Kalman filter that estimates the state vector given the force
measurements 'x-force'.

The performance criterion penalizes low and high frequencies equally.
Because low-frequency variations are of primary concern, eliminate the
high-frequency content of with the low-pass filter and use the
filtered value in the LQ performance criterion.

lpf = tf(30,[1 30])

% Connect low-pass filter to first output of Px
Pxdes = append(lpf,1) * Px
set(Pxdes,'outputn',{'x-gap*' 'x-force'})

% Design the state-feedback gain using LQRY and q=1, r=1e-4
kx = lqry(Pxdes(1,1),1,1e-4)

δx

J ux( ) qδx
2 rux

2
+

� �
� �
� 	

td
0

∞

�=

J ux( )

δx 30 s 30+( )⁄
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Note:  lqry expects all inputs to be commands and all outputs to be
measurements. Here the command 'u-x' and the measurement 'x-gap*'
(filtered gap) are the first input and first output of Pxdes. Hence, use the
syntax Pxdes(1,1) to specify just the I/O relation between 'u-x' and
'x-gap*'.

Next, design the Kalman estimator with the function kalman. The process noise

has unit covariance by construction. Set the measurement noise covariance to
1000 to limit the high frequency gain, and keep only the measured output
'x-force' for estimator design.

estx = kalman(Pxdes(2,:),eye(2),1000)

Finally, connect the state-feedback gain kx and state estimator estx to form
the LQG regulator.

Regx = lqgreg(estx,kx)

This completes the LQG design for the -axis.

Let’s look at the regulator Bode response between 0.1 and 1000 rad/sec.

wx
wex

wix

=

x
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bode(Regx,{0.1 1000})

The phase response has an interesting physical interpretation. First, consider
an increase in input thickness. This low-frequency disturbance boosts both
output thickness and rolling force. Because the regulator phase is
approximately 0o at low frequencies, the feedback loop then adequately reacts
by increasing the hydraulic force to offset the thickness increase. Now consider
the effect of eccentricity. Eccentricity causes fluctuations in the roll gap (gap
between the rolling cylinders). When the roll gap is minimal, the rolling force
increases and the beam thickness diminishes. The hydraulic force must then
be reduced (negative force feedback) to restore the desired thickness. This is
exactly what the LQG regulator does as its phase drops to -180o near the
natural frequency of the eccentricity disturbance (6 rad/sec).

Next, compare the open- and closed-loop responses from disturbance to
thickness gap. Use feedback to close the loop. To help specify the feedback
connection, look at the I/O names of the plant Px and regulator Regx.

Px.inputname
ans = 
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    'u-x'
    'w-ex'
    'w-ix'
 
Regx.outputname
ans = 
    'u-x'
 
Px.outputname
ans = 
    'x-gap'
    'x-force'
 
Regx.inputname
ans = 
    'x-force'

This indicates that you must connect the first input and second output of Px to
the regulator.

clx = feedback(Px,Regx,1,2,+1) % Note: +1 for positive feedback

You are now ready to compare the open- and closed-loop Bode responses from
disturbance to thickness gap.
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bode(Px(1,2:3),'--',clx(1,2:3),'-',{0.1 100})

The dashed lines show the open-loop response. Note that the peak gain of the
eccentricity-to-gap response and the low-frequency gain of the
input-thickness-to-gap response have been reduced by about 20 dB.

Finally, use lsim to simulate the open- and closed-loop time responses to the
white noise inputs and . Choose dt=0.01 as sampling period for the
simulation, and derive equivalent discrete white noise inputs for this sampling
rate.

dt = 0.01
t = 0:dt:50  % time samples

% Generate unit-covariance driving noise wx = [w-ex;w-ix].
% Equivalent discrete covariance is 1/dt
wx = sqrt(1/dt) * randn(2,length(t))

wex wix
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lsim(Px(1,2:3),':',clx(1,2:3),'-',wx,t)

The dotted lines correspond to the open-loop response. In this simulation, the
LQG regulation reduces the peak thickness variation by a factor 4.

LQG Design for the y-Axis
The LQG design for the -axis (regulation of the thickness) follows the exact
same steps as for the -axis.

% Specify model components
Hy = tf(7.8e8,[1 71 88^2],'inputn','u-y') 
Fiy = tf(2e4,[1 0.05],'inputn','w-iy') 
Fey = tf([1e5 0],[1 0.19 9.4^2],'inputn','w-ey')
gy = 0.5e-6 % force-to-gap gain

% Build open-loop model
Py = append([ss(Hy) Fey],Fiy)
Py = [-gy gy;1 1] * Py
set(Py,'outputn',{'y-gap' 'y-force'})

y y
x



10 Design Case Studies

10-42

% State-feedback gain design
Pydes = append(lpf,1) * Py % Add low-freq. weigthing
set(Pydes,'outputn',{'y-gap*' 'y-force'})
ky = lqry(Pydes(1,1),1,1e-4)

% Kalman estimator design
esty = kalman(Pydes(2,:),eye(2),1e3)

% Form SISO LQG regulator for y-axis and close the loop
Regy = lqgreg(esty,ky)
cly = feedback(Py,Regy,1,2,+1)

Compare the open- and closed-loop response to the white noise input
disturbances.

dt = 0.01
t = 0:dt:50
wy = sqrt(1/dt) * randn(2,length(t))
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lsim(Py(1,2:3),':',cly(1,2:3),'-',wy,t)

The dotted lines correspond to the open-loop response. The simulation results
are comparable to those for the -axis.

Cross-Coupling Between Axes
The / thickness regulation, is a MIMO problem. So far you have treated
each axis separately and closed one SISO loop at a time. This design is valid as
long as the two axes are fairly decoupled. Unfortunately, this rolling mill
process exhibits some degree of cross-coupling between axes. Physically, an
increase in hydraulic force along the -axis compresses the material, which in
turn boosts the repelling force on the -axis cylinders. The result is an increase
in -thickness and an equivalent (relative) decrease in hydraulic force along
the -axis.

x

x y

x
y

y
y
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The coupling between axes is as follows.

Figure 10-2:  Coupling between the x- and y-axes

Accordingly, the thickness gaps and rolling forces are related to the outputs
of the - and -axis models by

wex

wix

uy

wey

wiy

δx

gxy

gy

ux

+

+

+

+

+

–

fx

fy

δy

+

gyx

gx

–

x-axis

model

y-axis

model

gxy 0.1=

gyx 0.4=

δx fx ..., , x y



LQG Regulation: Rolling Mill Example

10-45

Let’s see how the previous “decoupled” LQG design fares when cross-coupling
is taken into account. To build the two-axes model shown in Figure 10-2,
append the models Px and Py for the - and -axes.

P = append(Px,Py)

For convenience, reorder the inputs and outputs so that the commands and
thickness gaps appear first.

P = P([1 3 2 4],[1 4 2 3 5 6])
P.outputname

ans = 
    'x-gap'
    'y-gap'
    'x-force'
    'y-force'

Finally, place the cross-coupling matrix in series with the outputs.

gxy = 0.1; gyx = 0.4;
CCmat = [eye(2) [0 gyx*gx;gxy*gy 0] ; zeros(2) [1 -gyx;-gxy 1]]
Pc = CCmat * P
Pc.outputname = P.outputname

To simulate the closed-loop response, also form the closed-loop model by

feedin = 1:2  % first two inputs of Pc are the commands
feedout = 3:4 % last two outputs of Pc are the measurements
cl = feedback(Pc,append(Regx,Regy),feedin,feedout,+1)

You are now ready to simulate the open- and closed-loop responses to the
driving white noises wx (for the -axis) and wy (for the -axis).

wxy = [wx ; wy]

δx

δy

fx

fy

1 0 0 gyxgx

0 1 gxygy 0

0 0 1 gyx–

0 0 gxy– 1

δx

δy

fx

fy

=

cross-coupling matrix

� � � � � � � � � � � � �

x y

x y
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lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

The response reveals a severe deterioration in regulation performance along
the -axis (the peak thickness variation is about four times larger than in the
simulation without cross-coupling). Hence, designing for one loop at a time is
inadequate for this level of cross-coupling, and you must perform a joint-axis
MIMO design to correctly handle coupling effects.

MIMO LQG Design
Start with the complete two-axis state-space model Pc derived above. The
model inputs and outputs are

Pc.inputname

ans = 
    'u-x'
    'u-y'
    'w-ex'
    'w-ix'

x
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    'w_ey'
    'w_iy'

P.outputname

ans = 
    'x-gap'
    'y-gap'
    'x-force'
    'y-force'

As earlier, add low-pass filters in series with the 'x-gap' and 'y-gap' outputs
to penalize only low-frequency thickness variations.

Pdes = append(lpf,lpf,eye(2)) * Pc
Pdes.outputn = Pc.outputn

Next, design the LQ gain and state estimator as before (there are now two
commands and two measurements).

k = lqry(Pdes(1:2,1:2),eye(2),1e-4*eye(2)) % LQ gain
est = kalman(Pdes(3:4,:),eye(4),1e3*eye(2))  % Kalman estimator

RegMIMO = lqgreg(est,k)  % form MIMO LQG regulator

The resulting LQG regulator RegMIMO has two inputs and two outputs.

RegMIMO.inputname

ans = 
    'x-force'
    'y-force'

RegMIMO.outputname

ans = 
    'u-x'
    'u-y'

Plot its singular value response (principal gains).
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sigma(RegMIMO)

Next, plot the open- and closed-loop time responses to the white noise inputs
(using the MIMO LQG regulator for feedback).

% Form the closed-loop model
cl = feedback(Pc,RegMIMO,1:2,3:4,+1);

% Simulate with lsim using same noise inputs
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lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

The MIMO design is a clear improvement over the separate SISO designs for
each axis. In particular, the level of / thickness variation is now comparable
to that obtained in the decoupled case. This example illustrates the benefits of
direct MIMO design for multivariable systems.

x y
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Kalman Filtering
This final case study illustrates the use of the Control System Toolbox for
Kalman filter design and simulation. Both steady-state and time-varying
Kalman filters are considered.

Consider the discrete plant

with additive Gaussian noise on the input and data

A = [1.1269   -0.4940    0.1129
     1.0000         0         0
          0    1.0000         0];

B = [-0.3832
      0.5919
      0.5191];

C = [1 0 0]; 

Our goal is to design a Kalman filter that estimates the output given the
inputs and the noisy output measurements

where is some Gaussian white noise.

Discrete Kalman Filter
The equations of the steady-state Kalman filter for this problem are given as
follows.

Measurement update

Time update

x n 1+[ ] Ax n[ ] B u n[ ] w n[ ]+( )+=

y n[ ] Cx n[ ]=

w n[ ] u n[ ]

y n[ ]
u n[ ]

yv n[ ] Cx n[ ] v n[ ]+=

v n[ ]

x̂ n n[ ] x̂ n n 1–[ ] M yv n[ ] Cx̂ n n 1–[ ]–( )+=

x̂ n 1 n+[ ] Ax̂ n n[ ] Bu n[ ]+=
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In these equations:

• is the estimate of given past measurements up to

• is the updated estimate based on the last measurement

Given the current estimate , the time update predicts the state value at
the next sample (one-step-ahead predictor). The measurement update
then adjusts this prediction based on the new measurement . The
correction term is a function of the innovation, that is, the discrepancy.

between the measured and predicted values of . The innovation gain
is chosen to minimize the steady-state covariance of the estimation error

given the noise covariances

You can combine the time and measurement update equations into one
state-space model (the Kalman filter).

This filter generates an optimal estimate of . Note that the filter
state is .

Steady-State Design
You can design the steady-state Kalman filter described above with the
function kalman. First specify the plant model with the process noise.

This is done by

% Note: set sample time to -1 to mark model as discrete
Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},...

x̂ n n 1–[ ] x n[ ] yv n 1–[ ]
x̂ n n[ ] yv n[ ]

x̂ n n[ ]
n 1+

yv n 1+[ ]

yv n 1+[ ] Cx̂ n 1+ n[ ]– C x n 1+[ ] x̂ n 1+ n[ ]–( )=

y n 1+[ ]
M

E w n[ ]w n[ ]T( ) Q ,= E v n[ ]v n[ ]T( ) R=

x̂ n 1 n+[ ] A I MC–( ) x̂ n n 1–[ ] B AM
u n[ ]
yv n[ ]

+=

ŷ n n[ ] C I MC–( ) x̂ n n 1–[ ] CM yv n[ ]+=

ŷ n n[ ] y n[ ]
x̂ n n 1–[ ]

x n 1+[ ] Ax n[ ] Bu n[ ] Bw n[ ]++= (state equation)
y n[ ] Cx n[ ]= (measurement equation)
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                          'outputname','y');

Assuming that , you can now design the discrete Kalman filter by

Q = 1; R = 1;
[kalmf,L,P,M] = kalman(Plant,Q,R);

This returns a state-space model kalmf of the filter as well as the innovation
gain

M

M =
   3.7980e-01
   8.1732e-02
  -2.5704e-01

The inputs of kalmf are and , and its outputs are the plant output and
state estimates and .

Because you are interested in the output estimate , keep only the first output
of kalmf. Type

kalmf = kalmf(1,:);
kalmf
a = 
                      x1_e         x2_e         x3_e
         x1_e       0.7683       -0.494       0.1129
         x2_e       0.6202            0            0
         x3_e    -0.081732            1            0
 
 
b = 
                         u            y
         x1_e      -0.3832       0.3586

Q R 1= =

u yv
ye ŷ n n[ ]= x̂ n n[ ]

kalmf

Kalman filter

u

x̂ n n[ ]yv

ye

ye
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         x2_e       0.5919       0.3798
         x3_e       0.5191     0.081732
 
 
c = 
                      x1_e         x2_e         x3_e
          y_e       0.6202            0            0
 
 
d = 
                         u            y
          y_e            0       0.3798
 
I/O groups:                            
      Group name      I/O    Channel(s)
      KnownInput       I         1     
     Measurement       I         2     
    OutputEstimate     O         1     
                                       
Sampling time: unspecified
Discrete-time model.

To see how the filter works, generate some input data and random noise and
compare the filtered response with the true response . You can either
generate each response separately, or generate both together. To simulate each
response separately, use lsim with the plant alone first, and then with the
plant and filter hooked up together. The joint simulation alternative is detailed
next.

The block diagram below shows how to generate both true and filtered outputs.

ye y

Plant

Kalman
filtery

u

Process noise Sensor noise

y

yv
ye
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You can construct a state-space model of this block diagram with the functions
parallel and feedback. First build a complete plant model with as
inputs and and (measurements) as outputs.

a = A;
b = [B B 0*B];
c = [C;C];
d = [0 0 0;0 0 1];
P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},...

'outputname',{'y' 'yv'});

Then use parallel to form the following parallel connection.

sys = parallel(P,kalmf,1,1,[],[])

Finally, close the sensor loop by connecting the plant output to the filter
input with positive feedback.

% Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)
% Delete yv from I/O list
SimModel = SimModel([1 3],[1 2 3])

The resulting simulation model has as inputs and as outputs.

SimModel.inputname

ans = 
    'w'

u w v, ,
y yv

P

Kalman
filter

u

y
v

w

yv

yv

ye

yv
yv

w v u, , y ye,
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    'v'
    'u'

SimModel.outputname

ans = 
    'y'
    'y_e'

You are now ready to simulate the filter behavior. Generate a sinusoidal input
and process and measurement noise vectors and .

t = [0:100]';
u = sin(t/5);

n = length(t)
randn('seed',0)
w = sqrt(Q)*randn(n,1);
v = sqrt(R)*randn(n,1);

Now simulate with lsim.

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,1);   % true response
ye = out(:,2);  % filtered response
yv = y + v;     % measured response

and compare the true and filtered responses graphically.

subplot(211), plot(t,y,'--',t,ye,'-'), 
xlabel('No. of samples'), ylabel('Output')
title('Kalman filter response')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),

u w v
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xlabel('No. of samples'), ylabel('Error')

The first plot shows the true response (dashed line) and the filtered output
(solid line). The second plot compares the measurement error (dash-dot)

with the estimation error (solid). This plot shows that the noise level has been
significantly reduced. This is confirmed by the following error covariance
computations.

MeasErr = y-yv;
MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

The error covariance before filtering (measurement error) is

MeasErrCov
 
MeasErrCov =
    1.1138

while the error covariance after filtering (estimation error) is only

y
ye
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EstErrCov
 
EstErrCov =
    0.2722

Time-Varying Kalman Filter
The time-varying Kalman filter is a generalization of the steady-state filter for
time-varying systems or LTI systems with nonstationary noise covariance.
Given the plant state and measurement equations

the time-varying Kalman filter is given by the recursions

Measurement update

Time update

with and as defined on page 10-50, and in the following.

x n 1+[ ] Ax n[ ] Bu n[ ] Gw n[ ]++=

yv n[ ] Cx n[ ] v n[ ]+=

x̂ n n[ ] x̂ n n 1–[ ] M n[ ] yv n[ ] Cx̂ n n 1–[ ]–( )+=

M n[ ] P n n 1–[ ]CT R n[ ] CP n n 1–[ ]CT
+( )

1–
=

P n n[ ] I M n[ ]C–( ) P n n 1–[ ]=

x̂ n 1 n+[ ] Ax̂ n n[ ] Bu n[ ]+=

P n 1 n+[ ] AP n n[ ]AT GQ n[ ]GT
+=

x̂ n n 1–[ ] x̂ n n[ ]

Q n[ ] E w n[ ]w n[ ]T( )=

R n[ ] E v n[ ]v n[ ]T( )=

P n n[ ] E x n[ ] x n n[ ]–{ } x n[ ] x n n[ ]–{ }T( )=

P n n 1–[ ] E x n[ ] x n n 1–[ ]–{ } x n[ ] x n n 1–[ ]–{ }T( )=
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For simplicity, we have dropped the subscripts indicating the time dependence
of the state-space matrices.

Given initial conditions and , you can iterate these equations to
perform the filtering. Note that you must update both the state estimates

and error covariance matrices at each time sample.

Time-Varying Design
Although the Control System Toolbox does not offer specific commands to
perform time-varying Kalman filtering, it is easy to implement the filter
recursions in MATLAB. This section shows how to do this for the stationary
plant considered above.

First generate noisy output measurements

% Use process noise w and measurement noise v generated above
sys = ss(A,B,C,0,-1);
y = lsim(sys,u+w);   % w = process noise
yv = y + v;          % v = measurement noise

Given the initial conditions

you can implement the time-varying filter with the following for loop.

P = B*Q*B';         % Initial error covariance
x = zeros(3,1);     % Initial condition on the state
ye = zeros(length(t),1);
ycov = zeros(length(t),1); 

for i=1:length(t)
  % Measurement update
  Mn = P*C'/(C*P*C'+R);
  x = x + Mn*(yv(i)-C*x);   % x[n|n]
  P = (eye(3)-Mn*C)*P;     % P[n|n]

  ye(i) = C*x;
  errcov(i) = C*P*C';

  % Time update

x 1 0[ ] P 1 0[ ]

x n .[ ] P n .[ ]

x 1 0[ ] 0 ,= P 1 0[ ] BQBT
=
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  x = A*x + B*u(i);        % x[n+1|n]
  P = A*P*A' + B*Q*B';     % P[n+1|n]
end

You can now compare the true and estimated output graphically.

subplot(211), plot(t,y,'--',t,ye,'-')
title('Time-varying Kalman filter response')
xlabel('No. of samples'), ylabel('Output')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-')
xlabel('No. of samples'), ylabel('Output')

The first plot shows the true response (dashed line) and the filtered response
(solid line). The second plot compares the measurement error (dash-dot)

with the estimation error (solid).

The time-varying filter also estimates the covariance errcov of the estimation
error at each sample. Plot it to see if your filter reached steady state (as
you expect with stationary input noise).

subplot(211)

y
ye

y ye–
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plot(t,errcov), ylabel('Error covar')

From this covariance plot, you can see that the output covariance did indeed
reach a steady state in about five samples. From then on, your time-varying
filter has the same performance as the steady-state version.

Compare with the estimation error covariance derived from the experimental
data. Type

EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr)

EstErrCov =
    0.2718

This value is smaller than the theoretical value errcov and close to the value
obtained for the steady-state design.

Finally, note that the final value and the steady-state value of the
innovation gain matrix coincide.

Mn, M

M n[ ] M
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Mn =
    0.3798
    0.0817
   -0.2570

M =
    0.3798
    0.0817
   -0.2570

References
[1] Grimble, M.J., Robust Industrial Control: Optimal Design Approach for
Polynomial Systems, Prentice Hall, 1994, p. 261 and pp. 443-456.
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When working with low-order SISO models (less than five states), computers
are usually quite forgiving and insensitive to numerical problems. You
generally won't encounter any numerical difficulties and MATLAB will give
you accurate answers regardless of the model or conversion method you choose.
For high order SISO models and MIMO models, however, the finite-precision
arithmetic of a computer is not so forgiving and you must exercise caution.

In general, to get a numerically accurate answer from a computer, you need:

• A well-conditioned problem

• An algorithm that is numerically stable in finite-precision arithmetic

• A good software implementation of the algorithm

A problem is said to be well-conditioned if small changes in the data cause only
small corresponding changes in the solution. If small changes in the data have
the potential to induce large changes in the solution, the problem is said to be
ill-conditioned. An algorithm is numerically stable if it does not introduce any
more sensitivity to perturbation than is already inherent in the problem. Many
numerical linear algebra algorithms can be shown to be backward stable; i.e.,
the computed solution can be shown to be (near) the exact solution of a slightly
perturbed original problem. The solution of a slightly perturbed original
problem will be close to the true solution if the problem is well-conditioned.

Thus, a stable algorithm cannot be expected to solve an ill-conditioned problem
any more accurately than the data warrant, but an unstable algorithm can
produce poor solutions even to well-conditioned problems. For further details
and references to the literature see [5].

While most of the tools in the Control System Toolbox use reliable algorithms,
some of the tools do not use stable algorithms and some solve ill-conditioned
problems. These unreliable tools work quite well on some problems (low-order
systems) but can encounter numerical difficulties, often severe, when pushed
on higher-order problems. These tools are provided because:

• They are quite useful for low-order systems, which form the bulk of
real-world engineering problems.

• Many control engineers think in terms of these tools.

• A more reliable alternative tool is usually available in this toolbox.

• They are convenient for pedagogical purposes.
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At the same time, it is important to appreciate the limitations of computer
analyses. By following a few guidelines, you can avoid certain tools and models
when they are likely to get you into trouble. The following sections try to
illustrate, through examples, some of the numerical pitfalls to be avoided. We
also encourage you to get the most out of the good algorithms by ensuring, if
possible, that your models give rise to problems that are well-conditioned.
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Conditioning and Numerical Stability
Two of the key concepts in numerical analysis are the conditioning of problems
and the stability of algorithms.

Conditioning
Consider the linear system given by

A =
0.7800 0.5630
0.9130 0.6590

b =
0.2170
0.2540

The true solution is x = [1, –1]' and you can calculate it approximately using
MATLAB.

x = A\b
x =

 1.0000
–1.0000

format long, x
x =

 0.99999999991008
–0.99999999987542

Of course, in real problems you almost never have the luxury of knowing the
true solution. This problem is very ill-conditioned. To see this, add a small
perturbation to A

E =
 0.0010  0.0010
–0.0020 –0.0010

and solve the perturbed system

xe = (A+E)\b
xe =

–5.0000
 7.3085

Ax b=

A E+( )x b=
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Notice how much the small change in the data is magnified in the solution.

One way to measure the magnification factor is by means of the quantity

called the condition number of with respect to inversion. The condition
number determines the loss in precision due to roundoff errors in Gaussian
elimination and can be used to estimate the accuracy of results obtained from
matrix inversion and linear equation solution. It arises naturally in
perturbation theories that compare the perturbed solution with the
true solution .

In MATLAB, the function cond calculates the condition number in 2-norm.
cond(A) is the ratio of the largest singular value of A to the smallest. Try it for
the example above. The usual rule is that the exponent log10(cond(A)) on the
condition number indicates the number of decimal places that the computer
can lose to roundoff errors.

IEEE standard double precision numbers have about 16 decimal digits of
accuracy, so if a matrix has a condition number of 1010, you can expect only six
digits to be accurate in the answer. If the condition number is much greater
than 1/sqrt(eps), caution is advised for subsequent computations. For IEEE
arithmetic, the machine precision, eps, is about -16, and 1/sqrt(eps) 
= 8.

Another important aspect of conditioning is that, in general, residuals are
reliable indicators of accuracy only if the problem is well-conditioned. To
illustrate, try computing the residual vector for the two candidate
solutions x = [0.999 –1.001]' and x = [0.341 –0.087]'. Notice that the
second, while clearly a much less accurate solution, gives a far smaller
residual. The conclusion is that residuals are unreliable indicators of relative
solution accuracy for ill-conditioned problems. This is a good reason to be
concerned with computing or estimating accurately the condition of your
problem.

Another simple example of an ill-conditioned problem is the -by- matrix
with ones on the first upper-diagonal.

A = diag(ones(1,n–1),1);

This matrix has eigenvalues at 0. Now consider a small perturbation of the
data consisting of adding the number to the first element in the last ( th)

A A 1–

A

A E+( ) 1– b
A 1– b

2.2 10×
6.7 10×

r Ax b–=

n n

n
2 n– n
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row of A. This perturbed matrix has n distinct eigenvalues with
. Thus, you can see that this small perturbation in the

data has been magnified by a factor on the order of to result in a rather
large perturbation in the solution (the eigenvalues of A). Further details and
related examples are to be found in [7].

It is important to realize that a matrix can be ill-conditioned with respect to
inversion but have a well-conditioned eigenproblem, and vice versa. For
example, consider an upper triangular matrix of ones (zeros below the
diagonal) given by

A = triu(ones(n));

This matrix is ill-conditioned with respect to its eigenproblem (try small
perturbations in A(n,1) for, say, n=20), but is well-conditioned with respect to
inversion (check its condition number). On the other hand, the matrix

has a well-conditioned eigenproblem, but is ill-conditioned with respect to
inversion for small .

Numerical Stability
Numerical stability is somewhat more difficult to illustrate meaningfully.
Consult the references in [5], [6], and [7] for further details. Here is one small
example to illustrate the difference between stability and conditioning.

Gaussian elimination with no pivoting for solving the linear system is
known to be numerically unstable. Consider

All computations are carried out in three-significant-figure decimal arithmetic.
The true answer is approximately

λ1 ... λn, ,
λk 1 2⁄ j2πk n⁄( )exp=

2n

A 1 1
1 1 δ+

=

δ

Ax b=

A 0.001 1.000
1.000 1.000–

= b 1.000
0.000

=

x A 1– b=

x 0.999
0.999

=
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Using row 1 as the pivot row (i.e., subtracting 1000 times row 1 from row 2) you
arrive at the equivalent triangular system.

Note that the coefficient multiplying in the second equation should be
, but because of roundoff, becomes . As a result, the second

equation yields , a good approximation, but now back-substitution
in the first equation

yields . This extremely bad approximation of is the result of
numerical instability. The problem itself can be shown to be quite
well-conditioned. Of course, MATLAB implements Gaussian elimination with
pivoting.

0.001 1.000
0 1000–

x1

x2

1.000
1000–

=

x2
1001– 1000–

x2 1.000=

0.001x1 1.000 1.000( ) 1.000( )–=

x1 0.000= x1
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Choice of LTI Model
Now turn to the implications of the results in the last section on the linear
modeling techniques used for control engineering. The Control System Toolbox
includes the following types of LTI models that are applicable to discussions of
computational reliability:

• State space

• Transfer function, polynomial form

• Transfer function, factored zero-pole-gain form

The following subsections show that state space is most preferable for
numerical computations.

State Space
The state-space representation is the most reliable LTI model to use for
computer analysis. This is one of the reasons for the popularity of “modern”
state-space control theory. Stable computer algorithms for eigenvalues,
frequency response, time response, and other properties of the
quadruple are known [5] and implemented in this toolbox. The state-space
model is also the most natural model in MATLAB's matrix environment.

Even with state-space models, however, accurate results are not guaranteed,
because of the problems of finite-word-length computer arithmetic discussed in
the last section. A well-conditioned problem is usually a prerequisite for
obtaining accurate results and makes it important to have reasonable scaling
of the data. Scaling is discussed further in the “Scaling” section later in this
chapter.

Transfer Function
Transfer function models, when expressed in terms of expanded polynomials,
tend to be inherently ill-conditioned representations of LTI systems. For
systems of order greater than 10, or with very large/small polynomial
coefficients, difficulties can be encountered with functions like roots, conv,
bode, step, or conversion functions like ss or zpk.

A B C D, , ,( )
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A major difficulty is the extreme sensitivity of the roots of a polynomial to its
coefficients. This example is adapted from Wilkinson, [6] as an illustration.
Consider the transfer function

The matrix of the companion realization of is

Despite the benign looking poles of the system (at –1,–2,..., –20) you are faced
with a rather large range in the elements of , from 1 to . But
the difficulties don’t stop here. Suppose the coefficient of in the transfer
function (or ) is perturbed from 210 to ( ).
Then, computed on a VAX (IEEE arithmetic has enough mantissa for only

), the poles of the perturbed transfer function (equivalently, the
eigenvalues of ) are

eig(A)'

ans =

Columns 1 through 7
–19.9998 –19.0019 –17.9916 –17.0217 –15.9594 –15.0516 –13.9504

Columns 8 through 14
–13.0369 –11.9805 –11.0081 –9.9976 –9.0005 –7.9999 –7.0000

Columns 15 through 20
–6.0000 –5.0000 –4.0000 –3.0000 –2.0000 –1.0000

The problem here is not roundoff. Rather, high-order polynomials are simply
intrinsically very sensitive, even when the zeros are well separated. In this
case, a relative perturbation of the order of induced relative
perturbations of the order of in some roots. But some of the roots changed

H s( ) 1
s 1+( ) s 2+( )... s 20+( )

------------------------------------------------------------- 1

s20 210s19 ... 20!+ + +
-----------------------------------------------------------= =

A H s( )

A

0 1 0 ... 0
0 0 1 ... 0
: : . . :
0 0 ... . 1
20!– . ... . 210–

=

A 20! 2.4 1018×≈
s19

A n n,( ) 210 2 23–
+ 2 23– 1.2 10 7–×≈

n 17=
A

10 9–

10 2–
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very little. This is true in general. Different roots have different sensitivities to
different perturbations. Computed roots may then be quite meaningless for a
polynomial, particularly high-order, with imprecisely known coefficients.

Finding all the roots of a polynomial (equivalently, the poles of a transfer
function or the eigenvalues of a matrix in controllable or observable canonical
form) is often an intrinsically sensitive problem. For a clear and detailed
treatment of the subject, including the tricky numerical problem of deflation,
consult [6].

It is therefore preferable to work with the factored form of polynomials when
available. To compute a state-space model of the transfer function
defined above, for example, you could expand the denominator of , convert
the transfer function model to state space, and extract the state-space data by

H1 = tf(1,poly(1:20))
H1ss = ss(H1)
[a1,b1,c1] = ssdata(H1)

However, you should rather keep the denominator in factored form and work
with the zero-pole-gain representation of .

H2 = zpk([],1:20,1)
H2ss = ss(H2)
[a2,b2,c2] = ssdata(H2)

Indeed, the resulting state matrix a2 is better conditioned.

[cond(a1) cond(a2)]

ans =
   2.7681e+03   8.8753e+01

and the conversion from zero-pole-gain to state space incurs no loss of accuracy
in the poles.

format long e
[sort(eig(a1)) sort(eig(a2))]

ans =
     9.999999999998792e-01     1.000000000000000e+00
     2.000000000001984e+00     2.000000000000000e+00
     3.000000000475623e+00     3.000000000000000e+00
     3.999999981263996e+00     4.000000000000000e+00

H s( )
H

H s( )
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     5.000000270433721e+00     5.000000000000000e+00
     5.999998194359617e+00     6.000000000000000e+00
     7.000004542844700e+00     7.000000000000000e+00
     8.000013753274901e+00     8.000000000000000e+00
     8.999848908317270e+00     9.000000000000000e+00
     1.000059459550623e+01     1.000000000000000e+01
     1.099854678336595e+01     1.100000000000000e+01
     1.200255822210095e+01     1.200000000000000e+01
     1.299647702454549e+01     1.300000000000000e+01
     1.400406940833612e+01     1.400000000000000e+01
     1.499604787386921e+01     1.500000000000000e+01
     1.600304396718421e+01     1.600000000000000e+01
     1.699828695210055e+01     1.700000000000000e+01
     1.800062935148728e+01     1.800000000000000e+01
     1.899986934359322e+01     1.900000000000000e+01
     2.000001082693916e+01     2.000000000000000e+01

There is another difficulty with transfer function models when realized in
state-space form with ss. They may give rise to badly conditioned eigenvector
matrices, even if the eigenvalues are well separated. For example, consider the
normal matrix

A = [5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4]

Its eigenvectors and eigenvalues are given as follows.

[v,d] = eig(A)

v =
    0.7071   –0.0000   –0.3162    0.6325
   –0.7071    0.0000   –0.3162    0.6325
    0.0000    0.7071    0.6325    0.3162
   –0.0000   –0.7071    0.6325    0.3162
 
d =
    1.0000         0         0         0
         0    2.0000         0         0
         0         0    5.0000         0
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         0         0         0   10.0000

The condition number (with respect to inversion) of the eigenvector matrix is

cond(v)

ans =
1.000

Now convert a state-space model with the above A matrix to transfer function
form, and back again to state-space form.

b = [1 ; 1 ; 0 ; –1];
c = [0 0 2 1];
H = tf(ss(A,b,c,0));  % transfer function
[Ac,bc,cc] = ssdata(H) % convert back to state space

The new A matrix is

Ac = 
   18.0000   –6.0625    2.8125   –1.5625
   16.0000         0         0         0
         0    4.0000         0         0
         0         0    1.0000         0

Note that Ac is not a standard companion matrix and has already been
balanced as part of the ss conversion (see ssbal for details).

Note also that the eigenvectors have changed.

[vc,dc] = eig(Ac)

vc =
   –0.5017    0.2353    0.0510    0.0109
   –0.8026    0.7531    0.4077    0.1741
   –0.3211    0.6025    0.8154    0.6963
   –0.0321    0.1205    0.4077    0.6963
 
dc = 
   10.0000         0         0         0
         0    5.0000         0         0
         0         0    2.0000         0
         0         0         0    1.0000
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The condition number of the new eigenvector matrix

cond(vc)

ans =
34.5825

is thirty times larger.

The phenomenon illustrated above is not unusual. Matrices in companion form
or controllable/observable canonical form (like Ac) typically have
worse-conditioned eigensystems than matrices in general state-space form
(like A). This means that their eigenvalues and eigenvectors are more sensitive
to perturbation. The problem generally gets far worse for higher-order systems.
Working with high-order transfer function models and converting them back
and forth to state space is numerically risky.

In summary, the main numerical problems to be aware of in dealing with
transfer function models (and hence, calculations involving polynomials) are:

• The potentially large range of numbers leads to ill-conditioned problems,
especially when such models are linked together giving high-order
polynomials.

• The pole locations are very sensitive to the coefficients of the denominator
polynomial.

• The balanced companion form produced by ss, while better than the
standard companion form, often results in ill-conditioned eigenproblems,
especially with higher-order systems.

The above statements hold even for systems with distinct poles, but are
particularly relevant when poles are multiple.

Zero-Pole-Gain Models
The third major representation used for LTI models in MATLAB is the
factored, or zero-pole-gain (ZPK) representation. It is sometimes very
convenient to describe a model in this way although most major design
methodologies tend to be oriented towards either transfer functions or
state-space.

In contrast to polynomials, the ZPK representation of systems can be more
reliable. At the very least, the ZPK representation tends to avoid the
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extraordinary arithmetic range difficulties of polynomial coefficients, as
illustrated in the “Transfer Function” section. The transformation from state
space to zero-pole-gain is stable, although the handling of infinite zeros can
sometimes be tricky, and repeated roots can cause problems.

If possible, avoid repeated switching between different model representations.
As discussed in the previous sections, when transformations between models
are not numerically stable, roundoff errors are amplified.
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Scaling
State space is the preferred model for LTI systems, especially with higher order
models. Even with state-space models, however, accurate results are not
guaranteed, because of the finite-word-length arithmetic of the computer. A
well-conditioned problem is usually a prerequisite for obtaining accurate
results.

You should generally normalize or scale the matrices of a system
to improve their conditioning. An example of a poorly scaled problem might be
a dynamic system where two states in the state vector have units of light years
and millimeters. You would expect the matrix to contain both very large and
very small numbers. Matrices containing numbers widely spread in value are
often poorly conditioned both with respect to inversion and with respect to their
eigenproblems, and inaccurate results can ensue.

Normalization also allows meaningful statements to be made about the degree
of controllability and observability of the various inputs and outputs.

A set of matrices can be normalized using diagonal scaling
matrices , , and to scale u, x, and y.

so the normalized system is

where

Choose the diagonal scaling matrices according to some appropriate
normalization procedure. One criterion is to choose the maximum range of each
of the input, state, and output variables. This method originated in the days of
analog simulation computers when , , and were forced to be between

Volts. A second method is to form scaling matrices where the diagonal

A B C D, , ,( )

A

A B C D, , ,( )
Nu Nx Ny

u Nuun= x Nxxn= y Nyyn=

x·n Anxn Bnun+=

yn Cnxn Dnun+=

An Nx
1– ANx= Bn Nx

1– BNu=

Cn Ny
1– CNx= Dn Ny

1– DNu=

un xn yn
10±
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entries are the smallest deviations that are significant to each variable. An
excellent discussion of scaling is given in the introduction to the LINPACK
Users’ Guide, [1].

Choose scaling based upon physical insight to the problem at hand. If you
choose not to scale, and for many small problems scaling is not necessary, be
aware that this choice affects the accuracy of your answers.

Finally, note that the function ssbal performs automatic scaling of the state
vector. Specifically, it seeks to minimize the norm of

by using diagonal scaling matrices . Such diagonal scaling is an economical
way to compress the numerical range and improve the conditioning of
subsequent state-space computations.

Nx
1– ANx Nx

1– B

CNx 0

Nx
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Summary
This chapter has described numerous things that can go wrong when
performing numerical computations. You won’t encounter most of these
difficulties when you solve practical lower-order problems. The problems
described here pertain to all computer analysis packages. MATLAB has some
of the best algorithms available, and, where possible, notifies you when there
are difficulties. The important points to remember are:

• State-space models are, in general, the most reliable models for subsequent
computations.

• Scaling model data can improve the accuracy of your results.

• Numerical computing is a tricky business, and virtually all computer tools
can fail under certain conditions.
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The next three chapters discuss in detail all the features of the LTI Viewer and
the SISO Design Tool. The LTI Viewer is a graphical user interface (GUI) that
allows you to display up to six response plots in a single window. The SISO
Design Tool is a GUI that facilitates the design of compensators for
single-input single-output (SISO) systems. It supports both root locus and Bode
diagram design techniques.

This document is not meant as an introduction to these tools. For an
introduction to the LTI Viewer, see Chapter 2, “Analyzing Models,” in Getting
Started with the Control System Toolbox. For an introduction to the SISO
Design Tool, see Chapter 3, “Designing Compensators,” in the same book.
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The SISO Design Tool is a graphical-user interface (GUI) that allows you to use
root-locus and Bode diagram techniques to design compensators. The SISO
Design Tool by default displays the root locus and Bode diagrams for your
imported systems. The two are dynamically linked; for example, if you change
the gain in the root locus, it immediately affects the Bode diagrams as well.

This tool is used extensively in Getting Started with the Control System
Toolbox, and in particular, you should read Chapter 4, “Designing
Compensators,” of that book to see how to do typical design tasks with the SISO
Design Tool. This document, on the other hand, is a reference that describes all
available options for the SISO Design Tool.

Type

sisotool

to open the SISO Design Tool. This picture shows the GUI and introduces some
terminology.

Figure 13-1:  The SISO Design Tool and Some Terminology

The menu bar

The tool bar.

The Current 
Compensator panel.

The Feedback 
Structure.

Root locus plot

Bode magnitude plot

Bode phase plot

Status panel
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This document describes the SISO Design Tool features left-to-right and
top-to-bottom, starting with the Menu bar and ending with the Status panel at
the bottom of the window.

If you want to match the SISO Design Tool pictures shown below, type

load ltiexamples 

at the MATLAB prompt. This loads the same set of linear models that this
document uses as examples in the GUI. The examples all use the Gservo
system for plot displays.
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Menu Bar

Note  Click on items on the menu bar pictured below to get help contents.

Most of the tasks you can do in the SISO Design Tool can be done from the
menu bar, which this picture shows.

File

Note  Click on items in the File menu pictured below to get help contents.

.

Using the File menu, you can:

• Import and export models

• Set toolbox preferences

• Print and print to figure

• Close the SISO Design Tool

The following sections describe the File menu options in turn.



Menu Bar

13-5

Import
Select Import to import models into the SISO Design Tool. Selecting Import
opens the Import System Data window, which is shown below.

Figure 13-2:  The Import System Data Window

The following sections discuss the System Name, Import from, and System
Data panels of the Import System Data window.

System Name
Use the Name field to assign a name to the imported system. The default name
is untitled.

Import From
To import models, select them from the SISO Models list and use the right
arrow buttons to place the models in G (plant), H (sensor), F (prefilter), or C
(compensator). You can import models from:

• The MATLAB Workspace

• A MAT-file

• Simulink (.mdl files)

System Data
The System Data panel performs two functions:

Press the Other button to 
switch to an alternate 
feedback structure, where C, 
the compensator, is in the 
feedback path.
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• Feedback structure specification — Press Other to toggle between placing
the compensator in the forward and feedback paths

• Model import specification — You can import models for the plant (G),
compensator (C), prefilter (F), and/or sensor (H). To import a model, select it
from the SISO model list and press the right-arrow button next to the desired
model field.

Export
Selecting Export from the File menu opens the SISO Tool Export Window.

Figure 13-3:  The SISO Tool Export Window

With this window, you can:

• Export models to the MATLAB Workspace or to a disk

• Rename models when exporting

• Save variations on models, including open and closed loop models, sensitivity
transfer functions, and state-space representations

Exporting to the Workspace
To export models to the MATLAB workspace, follow these steps:

1 Select the model you want to export from the Component list by left-clicking
the model name. To select more than one model, hold down the Shift key if



Menu Bar

13-7

they are adjacent on the list. If you want to save non-adjacent models, hold
down the Ctrl key while selecting the models.

2 For each model you want to save, specify a name in the model’s cell in the
Export As list. A default name exists if you do not want to assign a new
name.

3 Press Export to Workspace.

Exporting to a MAT-file
If you want to save your models in a MAT-file, follow steps 1 and 2 and press
Export to Disk, which opens this window.

Choose where you want to save the file in the Save as field and specify the
name you want for your MAT-file in the File name field. Press Save to save the
file.
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Toolbox Preferences
Select Toolbox Preferences to open the Control System Toolbox Preferences
menu. This picture shows the window.

Figure 13-4:  The Control System Toolbox Preferences Window

You can use this window to do the following:

• Change units

• Add grids

• Change fonts in titles, labels, and I/O names

• Change plot characteristics, where applicable

• Alter the Compensator format

• Show or hide system poles and zeros on Bode plots

Any changes you make to the toolbox preferences are saved when you close the
SISO Design Tool and when you end a MATLAB session. When you restart a
session, the changes are the new defaults for your session. These defaults are
not only for the SISO Design Tool, but for any response object (e.g., step,
impulse, nyquist) available in the Control System Toolbox.

For a discussion of properties and preferences, see Setting Plot Properties and
Preferences in the online help.

Print
Use Print to send a picture of the SISO Design Tool to your printer.
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Print to Figure
Print to Figure opens a separate figure window containing the root locus
and/or Bode diagrams in your current SISO Design Tool.

Close
Use Close to close the SISO Design Tool.

Edit

Note  Click on items in the Edit menu pictured below to get help contents.

.

Undo and Redo 
Use Undo and Redo to go back and forward in the design steps. Note that both
Undo and Redo menus change when the task you have just performed
changes. For example, if you change the compensator gain, the menu items
become Undo Gain and Redo Gain.

Root Locus and Bode Diagrams
Root Locus and Bode Diagrams replicate the functionality of the right-click
menus. See “Root Locus Right-Click Menus” and “Bode Diagram Right-Click
Menus” for complete descriptions of these menus.
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SISO Tool Preferences
SISO Tool Preferences opens the SISO Tool Preferences editor. This picture
shows the open window.

Figure 13-5:  The SISO Tool Preferences Editor

You can use this window to do the following:

• Change units

• Add plot grids, change font styles for titles, labels, etc., and change axes
foreground colors

• Change the compensator format and

For a complete description of properties and preferences, see SISO Design
Preferences.

View

Note  Click on items in the View menu pictured below to get help contents.
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Root Locus and Bode Diagrams
By default, the SISO Design Tool displays the root locus and Bode magnitude
and phase diagrams. You can deselect either to show only the root locus or the
Bode diagram.

System Data
System Data opens the window shown below.

Figure 13-6:  The System Data Window

The System Data window displays basic information about the models you’ve
imported.

Press any of these buttons to see the transfer 
function of the particular model.
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Closed Loop Poles
Use this menu item to display the closed-loop pole values of the current system.

Design History
Selecting Design History opens the Design History window, which displays all
the actions you’ve performed during a design session. You can save the history
to an ASCII flat text file.

Tools

Note  Click on items in the Tools menu pictured below to get help contents.

Loop Responses
Select Loop Responses to open an LTI Viewer that is dynamically linked to
your SISO Design Tool. When you make changes to the design in the SISO
Design Tool, the response plots in the LTI Viewer automatically change to
reflect the new design’s responses.

For examples that use LTI Viewers linked with the SISO Design Tool, see
Designing Compensators in Getting Started with the Control System Toolbox.
See the “LTI Viewer” for a complete description of all the features of the LTI
Viewer.

You have the following choices for which plot appears when opening an LTI
Viewer from the SISO Design Tool:

• Plant Output (Step) — The closed-loop step response of your system

• Control Signal (Step) — The open-loop step response of your system

• Compensator Bode — The open-loop Bode diagram for your compensator
• Closed-Loop Bode — The closed-loop Bode diagram for your system
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• Open-Loop Nyquist — The open-loop Nyquist plot for your system
• Open-Loop Nichols — The open-loop Nichols plot for your system

Customizing Loop Responses
If you choose Custom from the list of loop responses, the Response Plot Setup
window opens.

Figure 13-7:  Response Plot Setup Window

This window has many options for creating more specialized response plots,
but to use it properly you should be familiar with the basic features of the LTI
Viewer. If you are not, see Analyzing Models in Getting Started with the
Control System Toolbox or “LTI Viewer” in the online documentation.

Loop diagram. At the top of the Response Plod Setup window is a loop diagram.
This block diagram shows the feedback structure of your system. The diagram
in Figure 13-7 shows the default configuration; the compensator is in the
forward path. If your system has the compensator in the feedback path, this
window correctly displays the alternate feedback structure.

The loop block diagram shows the arrangement of the components of your
system and the input/output structure. When selecting open- and closed-loop
responses in the Contents of Plots panel, refer to the loop diagram for
definitions of the responses.

Note that window lists two transfer functions next to the loop diagram:
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• Loop transfer — This is defined as the compensator (C), the plant (G), and
the sensor (H) multiplied together (CGH). If you haven’t defined a sensor, its
default value is 1.

• Sensitivity function — This is defined as , where L is the loop transfer
function.

Some of the open- and closed-loop responses use these definitions. See
“Contents of plots” for more information.

Plots. You can have up to six plots in one LTI Viewer. By default, the Response
Plot Setup window specifies one step response plot. To reconfigure the LTI
Viewer for more plots, start by selecting “2. None” from the list of plots and
then specify a new plot type in the Change to field. Plot types available include
the following:

• Step

• Impulse

• Bode

• Bode Magnitude

• Nyquist

• Nichols

• Sigma

• Pzmap (pole/zero map)

• None (deselect a plot)

Note that you do not have to select adjacent numbers; for example, if you
specify plot #1 to be a step response, plot #2 to be none, and plot #3 to be an
impulse response, the LTI Viewer will open with two plots, a step and an
impulse response. There will not be an empty plot region.

Contents of plots. Once you have selected a plot, you can specify various open-
and closed-loop transfer functions. You can plot open-loop responses for each of
the components of your system, including your compensator (C), plant (G),
prefilter (F), or sensor (H). In addition, loop transfer and sensitivity transfer
functions are available. Their definitions are listed in the Response Plot Setup
window.

See the block diagram in Figure 13-7, Response Plot Setup Window for
definitions of the input/output points for closed-loop responses.

1
1 L+
-------------
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Continuous/Discrete Conversions
Selecting Continuous/Discrete Conversions opens the Continuous/Discrete
Conversions window, which you can use to convert between continuous to
discrete designs.You can select the following:

• Conversion method

• Sample time

• Critical frequency (where applicable)

This picture shows the window.

Figure 13-8:  The Continuous/Discrete Conversion Window

Conversion domain. If your current model is continuous-time, the upper panel of
the Continuous/Discrete Conversion window automatically selects the
Discrete time radio button. If your model is in discrete-time, see
“Discrete-time domain”.

To convert to discrete time, you must specify a positive number for the sample
time in the Sample time (sec) field.

You can perform continuous to discrete conversions on any of the components
of your model: the plant (G), the compensator (C), the prefilter (F), or the sensor
(H). Select the method you want to use from the menus next to the model
elements.
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Conversion method. The following are the available continuous-to-discrete
conversion methods:

• Zero-order hold

• First-order hold

• Tustin

• Tustin with prewarping

• Matched pole/zero

If you choose Tustin with prewarping, you must specify the critical frequency
in rad/sec.

Discrete-time domain. If you currently have a discrete-time system, the
Continuous/Discrete Conversion window looks like this figure.

You can either change the sample time of the discrete system (resampling) or
do a discrete-to-continuous conversion.

To resample your system, select Discrete time with new sample time and
specify the new sample time in the Sample time (sec) field. The sample time
must be a positive number.

To convert from discrete-time to continuous-time, you have the following
options for the conversion method:

• Zero-order hold

• Tustin
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• Tustin with prewarping

• Matched pole/zero

Again, if you choose Tustin with prewarping, you must specify the critical
frequency.

Draw a Simulink Diagram

Note:   You must have a license for Simulink to use this feature. If you do not
have Simulink, you will not see this option under the Tools menu.

Select Draw a Simulink Diagram to draw a block diagram of your system
(plant, compensator, prefilter, and sensor). For the DC motor example
described in Getting Started with the Control System Toolbox, this picture is
the result.

Compensator

Note  Click on items in the Compensator menu pictured below to get help
contents.
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Format
Selecting Format under Compensator activates the SISO Tool Preferences
editor with the Options page open. This figure shows the Options page.

Use the radio buttons to toggle between time constant and zero/pole/gain
compensator formats.

By default, the SISO Design Tool shows the plant poles and zeros on the root
locus and Bode diagrams as red x’s and o’s, respectively. Uncheck the Show
plant/sensor poles and zeros box to hide the plant and sensor poles and zeros.
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For a general description of the SISO Tool Preferences editor, see SISO Design
Tool Preferences in the online documentation.

Edit
Selecting Edit under the Compensator menu opens the Edit Compensator
window, which is shown below.

Figure 13-9:  The Edit Compensator Window

You can use this window to do the following:

• Change the compensator gain

• Change the format for specifying compensator pole and zero locations

• Add compensator poles and zeros

• Delete compensator poles and zeros

Note that you can open this window by selecting Edit Compensator from either
the Root locus or Bode Diagram right-click menus.

Changing the gain
To change the compensator gain, enter the new value in the Gain field.

Changing the format
The default is Zero/Pole Location, which means that you must specify the
numerical values of the poles and zeros, but you can change the format to
Damping/Natural Frequency. In the latter format, you must specify the
damping and the natural frequency of poles and zeros.

Use the Compensator Format menu to toggle between the two formats.
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Adding poles and zeros
To add real poles to your compensator, press Add Real Pole. This action opens
an empty field in the Poles panel. Specify the pole value in the field. To add a
pair of complex poles, press Add Complex Pole. In this case, two fields appear:
one for the real and another for the imaginary part of the poles. Note that you
must specify the a negative sign for the real part of the pole if you want to
specify a pair left-plane poles, but that the imaginary part is defined as +/-, so
you do not have to specify the sign for that part.

If you specify the damping/natural frequency format, there is no distinction
between the real and complex pole specifications. Pressing either button opens
two fields: one for specifying the damping and another for the natural
frequency. If you pressed Add Real Pole, you only need to specify the natural
frequency since the Edit Compensator window automatically places a 1 in the
damping field in this case.

Adding zeros is exactly the same; press Add Real Zero or Add Complex Zero
and proceed as above.

Deleting poles and zeros
Whenever you add poles or zeros using the Edit Compensator window, a
delete box appears to the left of the fields used to specify the pole/zero values.
Check this box anytime you want to delete the pole or zero specified next to it.

Store
Use Store to open the Store Compensator window, shown in the figure below.

To save the compensator in the MATLAB workspace, specify the name you
want to save the compensator under and press OK.
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Retrieve
Retrieve opens the Compensator Designs window, shown in the figure below.

This window lists all the compensator designs you have stored during a Control
System Toolbox session. To retrieve a stored design, left-click on the
compensator’s name to select it and press Retrieve. To delete a design, select
it and press the Delete button.

Clear
Select Clear to eliminate any compensator dynamics and set the gain to 1.

Window
The Window menu item lists all window open in MATLAB. The first item is
always the MATLAB Command Window. After that, windows you have opened
are listed in the order in which you invoked them. Any window you select from
the list become the active window.

Help
Help brings you to various places within this document. This picture shows the
Help menu.
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Each topics takes you to a different place in the online documentation:

• Main Help — The top of this document (SISO Tool Reference
documentation)

• Edit Compensator Window — “The Edit Compensator Window” section of
this document.

• Continuos/Discrete Conversions — The “Continuous/Discrete
Conversions” section of this document

• Design Constraints — The “Design Constraints” section of this document

• Preferences — Setting Plot Properties and Preferences, a separate online
document
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Tool Bar
The tool bar performs the following operations:

• Add and delete real and complex poles and zeros

• Zoom in and out

• Invoke the SISO Design Tool’s context-sensitive help

This picture shows the tool bar.

Figure 13-10:  Options Available From the Tool Bar

You can use the tool tips feature to find out what a particular icon does. Just
place your mouse over the icon in question, and you will see a brief description
of what it does.

Once you’ve selected an icon, your mouse stays in that mode until you press the
icon again.

You can reach all of these options from two other places:

• Right-click menus for root locus and Bode diagrams

• From Root Locus and Bode Diagrams under Edit in the menu bar

Return to default mode

Add a real pole

Add a real zero

Add a complex pole

Add a complex zero

Delete poles and zeros

Activate context-
sensitive help

Zoom out

Zoom in Y

Zoom in X

Zoom in X-Y



13 SISO Design Tool Reference

13-24

Current Compensator
The Current Compensator panel shows the structure of the compensator you
are designing. The default compensator structure is a unity gain with no
dynamics. Once you add poles and/or zeros, the Current Compensator panel
displays the compensator in zero/pole/gain format. This picture shows a
Current Compensator panel with Gcl1 entered as the compensator.

You can change the gain of the compensator by changing the number in the text
field. If you want to change the poles and zeros of the compensator, click on the
window to open the “The Edit Compensator Window”.
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Feedback Structure
To the right of the Current Compensator panel is the Feedback Structure
panel, which is shown in its default configuration below.

Figure 13-11:  The Feedback Structure Panel

To switch to the alternate feedback structure, press the FS button. This figure
shows the new feedback structure.

Figure 13-12:  Alternate Feedback Structure with the Compensator in the 
Feedback Loop

Pressing the +/- button toggles between positive and negative feedback signs.
Negative feedback is the default.
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Root Locus Right-Click Menus

Note  Click on items in the right-click menu pictured below to get help
contents.

.

Note that the menus are slightly different from those of the Bode diagram
right-click menus. See “Bode Diagram Right-Click Menus” for a description of
those menus.

Add
The Add menu options give you the ability to add dynamics to your
compensator design. This figure shows the Add submenu.

The following pole/zero configurations are available:

• Real Pole
• Complex Pole
• Integrator (pole at 0)
• Real Zero
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• Complex Zero
• Differentiator (zero at 0)
• Lead
• Lag
• Notch

In all but the integrator and differentiator, once you select the configuration,
your cursor changes to an ‘x’. To add the item to your compensator design, place
the x at the desired location on the plot and left-click your mouse. You will see
the root locus design automatically update to include the new compensator
dynamics.

The notch filter has three adjustable parameters. For a discussion about how
to add and adjust notch filters, see Adding a Notch Filter in Getting Started
with the Control System Toolbox.

Delete Pole/Zero
Select Delete Pole/Zero to delete poles and zeros from your compensator
design. When you make this selection, your cursor changes to an eraser. Place
the eraser over the pole or zero you want to delete and left-click your mouse.

Note the following:

• You can only delete compensator poles and zeros. Plant (G in the feedback
structure panel) poles and zeros cannot be altered.

• If you delete one of a pair of poles or zeros, the other member of the pair is
also removed.

Edit Compensator
Edit Compensator opens the Edit Compensator window, which you can use
to change the compensator gain and add or remove compensator poles and
zeros from your design. See “Edit” for a discussion of this window.
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Design Constraints
Select Design Constraints to open the Design Constraints window, which is
shown below.

You have the following options:

• Settling Time

• Peak Overshoot (%)

• Damping Ratio

• Natural Frequency

Settling Time 
You can

Peak Overshoot 

Damping Ratio 

Natural Frequency

Grid
Grid adds a grid to the root locus.
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Zoom
Selecting Zoom opens this submenu.

You have the following zooming options:

• X-Y — Enlarge a selected area in the X-Y region. To do this, select X-Y, hold
down your mouse’s left button, and drag to create a box region on the root
locus. When you release the left button, the selected area becomes the entire
plot region.

• In-X — Zoom in, X-axis only. To do this, select In-X, hold down your mouse’s
left button, and drag horizontally to create a line parallel to the X-axis. When
you release the left button, the selected area becomes the new X-axis limits.

• In-Y — Zoom in, Y-axis only. To do this, select In-Y, hold down your mouse’s
left button, and drag vertically to create a line parallel to the Y-axis. When
you release the left button, the selected area becomes the new Y-axis limits.

• Out — Select Out to undo the last zoom in that you did. If you have not done
any zooming, or if you have undid all your zoom enlargements, the Out menu
item is grayed out.



13 SISO Design Tool Reference

13-30

Properties
Properties opens the Property Editor for the root locus. This picture shows
the open window.

You can use this window to change titles and axis labels, reset axes limits, add
grid lines, and change the aspect ratio of the plot. For a complete discussion of
the Property Editor for root locus, see Customizing Plots Inside the SISO
Design Tool.

You can also activate this menu by double-clicking anywhere in the root locus
away from the curve.
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Bode Diagram Right-Click Menus

Note  Click on items in the right-click menu pictured below to get help
contents.

.

Add
The Add menu options give you the ability to add dynamics to your
compensator design. This figure shows the Add submenu.

The following pole/zero configurations are available:

• Real Pole
• Complex Pole
• Integrator (pole at 0)
• Real Zero
• Complex Zero
• Differentiator (zero at 0)
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• Lead
• Lag
• Notch

In all but the integrator and differentiator, once you select the configuration,
your cursor changes to an ‘x’. To add the item to your compensator design, place
the x at the desired location on the plot and left-click your mouse. You will see
the root locus design automatically update to include the new compensator
dynamics.

The notch filter has three adjustable parameters. For a discussion about how
to add and adjust notch filters, see Adding a Notch Filter in Getting Started
with the Control System Toolbox.

Delete Pole/Zero
Select Delete Pole/Zero to delete poles and zeros from your compensator
design. When you make this selection, your cursor changes to an eraser. Place
the eraser over the pole or zero you want to delete and left-click your mouse.

Note the following:

• You can only delete compensator poles and zeros. Plant (G in the feedback
structure panel) poles and zeros cannot be altered.

• If you delete one of a pair of poles or zeros, the other member of the pair is
also removed.

Edit Compensator
Edit Compensator opens the Edit Compensator window, which you can use
to change the compensator gain and add or remove compensator poles and
zeros from your design. See “Edit” for a discussion of this window.
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Show
Use Show to select/deselect the display of magnitude, phase, and stability
margins. This figure displays the Show submenu.

Selecting any of these three options toggles between showing and hiding the
feature. A check next to the feature means that it is currently displayed on the
Bode diagram plots.

Zoom
Selecting Zoom opens this submenu.

You have the following zooming options:

• X-Y — Enlarge a selected area in the X-Y region. To do this, select X-Y, hold
down your mouse’s left button, and drag to create a box region on the root
locus. When you release the left button, the selected area becomes the entire
plot region.

• In-X — Zoom in, X-axis only. To do this, select In-X, hold down your mouse’s
left button, and drag horizontally to create a line parallel to the X-axis. When
you release the left button, the selected area becomes the new X-axis limits.
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• In-Y — Zoom in, Y-axis only. To do this, select In-Y, hold down your mouse’s
left button, and drag vertically to create a line parallel to the Y-axis. When
you release the left button, the selected area becomes the new Y-axis limits.

• Out — Select Out to undo the last zoom in that you did. If you have not done
any zooming, or if you have undid all your zoom enlargements, the Out menu
item is grayed out.

Grid
Grid adds a grid to the Bode diagram.

Properties
Properties opens the Property Editor for Bode diagrams. This window is
exactly the same as the Property Editor for root locus, except for the Options
page, which is shown below.

The options are customized for features that apply to Bode diagrams only.

For a complete discussion of the Property Editor for Bode diagrams, see
Customizing Plots Inside the SISO Design Tool.

You can also activate this window by double-clicking anywhere in the gain or
phase plots away from the curves.
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Status Panel
The Status Panel is located at the bottom of the SISO Design Tool. It displays
the most recent action you have performed and occasionally provides advice on
how to use the SISO Design Tool.
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LTI Viewer
The LTI Viewer is a graphical user interface (GUI) that supports ten plot
responses, including step, impulse, Bode, Nyquist, Nichols, zero/pole, sigma
(singular values), lsim, and initial plots. The latter two are only available at
the initialization of the LTI Viewer; see ltiview for more information.

The LTI Viewer is configurable and can display up to six plot type and any
number of models in a single viewer. In addition, you can display information
specific to the response plots, such as peak response, gain and phase margins,
and so on.

You can open the LTI Viewer by typing

ltiview

at the MATLAB prompt. See the ltiview command for command syntax
options. You can also open an LTI Viewer from the SISO Design Tool; see
“SISO Design Tool Reference” for more information.

Note  Click on any of the plots of the LTI Viewer, shown below, to get help on
the plot. Click on the menu bar to get help on its contents. Click on the
right-click menus, also shown below, to get help on right-click menu features.
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Figure 14-1:  The LTI Viewer and Right-Click Menus for SISO and MIMO/LTI 
Array Models. Click on the Plots or the Menus for Help Contents.
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LTI Viewer Menu Bar

Note  Click on File, Edit, Window, or Help on the menu bar pictured below
to get help on the menu items.

This picture shows the LTI Viewer menu bar.

Tasks that you can perform using the LTI Viewer menu bar include:

• Importing and exporting models

• Printing plot responses

• Reconfiguring the Viewer (add or remove plot responses)

• Displaying critical values (peak responses, etc.) and markers on each plot

File

Note  Click on any of the items listed in the File menu pictured below to get
help contents.

You can use the File menu to do the following:

• Open a new LTI Viewer
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• Import and export models

• Set plot preferences for all the plots generated by the Control System Toolbox

• Print response plots

• Close the LTI Viewer

New Viewer
Select this option to open a new LTI Viewer.

Import Using the LTI Browser
Import in the File menu opens the LTI Browser, shown below.

The LTI Browser is used to import LTI models into or from the LTI Viewer
workspace.

To import a model

• Click on the desired model in the LTI Browser List. To perform multiple
selections:

a Click and drag over several variables in the list.
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b Hold the Control key and click on individual variables.

c Hold the Shift key while clicking, to select a range.
• Press the OK or Apply Button

For importing, the LTI Browser lists only the LTI models in the main MATLAB
workspace.

Export Using the LTI Viewer Export Window
Export in the File menu opens the LTI Viewer Export window, shown below.

The LTI Viewer Export window lists all the models with responses currently
displayed in your LTI Viewer. You can export models back to the MATLAB
workspace or to disk. In the latter case, the Control System Toolbox saves the
files as MAT-files.

Toolbox Preferences 
Select Toolbox Preferences to open the Toolbox Preferences Editor, which
sets preferences for all response objects in the Control System Toolbox,
including the viewer.

Print 
Print sends the entire LTI Viewer window to your printer.
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Print to Figure
Print to Figure sends a picture of the selected system to a new figure window.
Note that this new figure is a MATLAB figure window and not an LTI Viewer.

Close 
Close closes the LTI Viewer.

Edit

Note  Click on any of the items listed in the Edit menu pictured below to get
help contents.

The Edit menu contains the following options:

• Plot Configurations — Opens the “Plot Configurations Window”

• Systems — The Systems menu item has two selections:

- Refresh updates imported models to reflect any changes made in the
MATLAB workspace since you imported them.

- Delete opens the LTI Browser for System Deletion.

• Line Styles — Opens the “Line Styles Editor”

• Viewer Preferences — Opens the Viewer Preferences Editor
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Plot Configurations Window
Plot Configuration under the Edit menu opens the Plot Configurations
window.

There are six possible configurations of the LTI Viewer; you can plot up to six
response plots in a single viewer. Click the radio button to the upper left of the
configuration you want the viewer to use.

You can select among eight response types for each plot in the viewer. These
are the available response types:

• Step

• Impulse

• Bode — Plots the Bode magnitude and phase

• Bode mag. — Plots the Bode magnitude only

• Nyquist

• Nichols

• Sigma

• Pole/Zero map
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Systems
The Systems menu item has two selections, Refresh and Delete. This figure
shows the two options.

Refresh updates imported models to reflect any changes made in the MATLAB
workspace since you imported them. Delete opens the LTI Browser for System
Deletion.

Delete Using the LTI Browser for System Deletion
Delete under Systems in the Edit menu opens the LTI Browser, shown below.

To delete a model

• Click on the desired model in the LTI Browser List. To perform multiple
selections:
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a Click and drag over several variables in the list.

b Hold the Control key and click on individual variables.

c Hold the Shift key while clicking, to select a range.
• Press the OK or Apply Button

Line Styles Editor
Select Line Styles under the Edit menu to open the Line Styles editor, shown
below.

The Line Styles editor is particularly useful when you have mutiple systems
imported. You can use it change line colors, add and rearrange markers, and
alter line styes (solid, dashed, and so on).

The Linestyle Preferences window allows you to customize the appearance of
the response plots by specifying:

• The line property used to distinguish different systems, inputs, or outputs

• The order in which these line properties are applied

Each LTI Viewer has its own Linestyle Preferences window.
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Setting Preferences
You can use the “Distinguish by” matrix to specify the line property that will
vary throughout the response plots. You can group mutliple plot curves by
systems, inputs, outputs, or channels (individual input/output relationships).
Note that the Line Styles editor uses radio buttons, which means that you can
only assign one property setting for each grouping (system, input, etc.).

Ordering Properties
The Order field allows you to change the default property order used when
applying the different line properties. You can reorder the colors, markers, and
linestyles (e.g., solid or dashed).

To change any of the property orders, press the up or down arrow button to the
left of the associated property list to move the selected property up or down in
the list

Viewer Preferences
Viewer Preferences opens the LTI Viewer Preferences editor, which you can
use to set response plot defaults for the LTI Viewer that is currently open.

For a complete description of the LTI Viewer Preference editor, as well as all
the property and preference editors available in the Control System Toolbox,
see Setting Plot Properties and Preferences in the online documentation. To go
directly to the LTI Viewer Preferences editor documentation, see LTI Viewer
Preferences in the same document.

Window
Use the Window menu to select which of your MATLAB windows is active.
This menu lists any window associated with MATLAB and the Control System
Toolbox. The MATLAB Command Window is always listed first.

Help
The Help menu links to this help file.
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Right-Click Menus for SISO Systems

Note  Click on items in the right-click menu pictured below for help contents.

This right-click menu appears when you have a SISO system imported into
your LTI Viewer. If you have a MIMO system, or an LTI array containing
multiple models, there are additional menu options. See “Right-Click Menus
for MIMO and LTI Arrays” for more information.

You can use the right-click menus to perform the following tasks:

• Change the plot type in the viewer

• Select and deselect imported models for display

• Add or remove grid lines

• Zoom in on areas of plots

• Open the Property Editor
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Plot Type

Select which plot type you want to display. The LTI Viewer shows a check to
mark which plot is currently displayed. These are the available options:

• Step — Step response

• Impulse — Impulse response

• Bode — Magnitude and phase plots

• Bode Mag. — Magnitude only

• Nyquist — Nyquist diagram

• Nichols — Nichols chart

• Sigma — Singular values plot

• Pole/Zero — Pole/Zero map

You cannot switch to Lsim or Initial. To access these options, use 'lsim' and
'initial' flags when invoking the LTI Viewer. See ltiview for more
information.
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Systems

Use Systems to select which of the imported systems to display. Selecting a
system causes a check mark to appear beside the system. To deselect a system,
select it again; the menu toggles between selected and deselected.

Characteristics
The Characteristics menu changes for each plot response type. The next
sections describe the menu for each of the eight plot types.
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Step Response
Step plots the model’s response to a step input.

You can display the following types of information in the step response:

• Peak Response — The largest deviation from the steady-state value of the
step response

• Settling Time — The time required for the step response to decline and stay
at 5% of its final value

• Rise Time — The time require for the step response to rise from 10% to 90%
of its final value

• Steady-State — The final value for the step response
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Impulse Response
Impulse Response plots the model’s response to an impulse.

The LTI Viewer can display the following types of information in the impulse
response:

• Peak Response — The maximum positive deviation from the steady-state
value of the impulse response

• Settling Time — The time required for the step response to decline and stay
at 5% of its final value
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Bode Diagram
Bode plots the open-loop Bode phase and magnitude diagrams for the model.

The LTI Viewer can display the following types of information in the Bode
diagram:

• Peak Response — The maximum value of the Bode magnitude plot over the
specified region

• Stability Margins — The phase and gain margins. The gain margin is
defined to the gain (in dB) when the phase first crosses -180°. The phase
margin is the distance, in degrees, of the phase from -180° when the gain
magnitude is 0 dB.
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Bode Magnitude
Bode Magnitude plots the Bode magnitude diagram for the model.

The LTI Viewer can display the Peak Response, which is the maximum value
of the Bode magnitude in decibels (dB), over the specified range of the diagram.



Right-Click Menus for SISO Systems

14-19

Nyquist Diagrams 
Nyquist plots the Nyquist diagram for the model.

The LTI Viewer can display the following types of information in the Nyquist
diagram:

• Peak Response — The maximum value of the Nyquist diagram over the
specified region

• Stability Margins — The gain and phase margins for the Nyquist diagram.
The gain margin is the distance from the origin to the phase crossover of the
Nyquist curve. The phase crossover is where the curve meets the real axis.
The phase margin is the angle subtended by the real axis and the gain
crossover on the circle of radius 1.
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Nichols Charts
Nichols plots the Nichols Chart for the model.

The LTI Viewer can display the following types of information in the Nichols
chart:

• Peak Response — The maximum value of the Nichols chart in the plotted
region.

• Stability Margins — The gain and phase margins for the Nichols chart.
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Sigma
Sigma plots the singular values for the model.

The LTI Viewer can display the Peak Response, which is the largest
magnitude of the Sigma plot over the plotted region.
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Pole/Zero
Pole/Zero plots the poles and zeros of the model with ‘x’ for poles and ‘o’ for
zeros. There are no Characteristics available for pole-zero plots.

Grid
The Grid command activates a grid appropriate to the plot in the region you
select.

Zoom
The Zoom command zooms in and out of the plot region selected.

There are four options:

• In-X — Zoom in on the specified strip of the x axis.

• In-Y — Zoom in on the specified strip of the y axis.

• X-Y — Zoom in on the specified box region of the x and y axes.

• Out — Zoom out.

When you select In-X or In-Y, left-click the mouse to specify the region of the x
or y axis that you want to zoom in on. Similarly, for the X-Y option, left-click
and drag your mouse to create a rectangular region that you want to zoom in
on.
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Out restores the previous appearance of the plot. Note that Out is grey when
you have reached the limit of zooming out.

Properties
Use Properties to open the Property Editor. This GUI allows you to customize
labels, axes limits and units, grids and font styles, and response characteristics
(e.g., rise time) for your plot.

For a full description of the Property Editor, see Setting Response Plot
Properties online.
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Right-Click Menus for MIMO and LTI Arrays
All of the menu options described in “Right-Click Menus for SISO Systems”
hold when you have imported a MIMO model or LTI Array containing multiple
models.

Note, however, that when you have a MIMO model or LTI array displayed, the
right-click menus contain additional options: Axis Grouping and I/O selector.
These features allow you to quickly reshuffle multiple plots in a single LTI
Viewer

Note  Click on items in the right-click menu pictured below to get help
contents.

.
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Axis Grouping
You can usse Axis Grouping to change the grouping of plots in your LTI Viewer.
This picture shows the menu options.

There are four options:

• None — By default, there is no axis grouping. For example, if you display the
step responses for a 3-input, 2- output system, there will be six plots in your
LTI Viewer.

• All — Groups all the responses into a single plot

• Inputs — Groups all the responses by inputs. For example, for a 3-input,
2-output system, selecting Inputs reconfigures the viewer so that there are 3
plots. Each plot contains two curves.

• Outputs — Groups all the responses by outputs. For example, for a 3-input,
2-output system, selecting Inputs reconfigures the viewer so that there are 2
plots. Each plot contains three curves.

I/O Selector
I/O Selector opens the I/O Selector window, shown below.

The I/O Selector window contains buttons corresponding to each I/O pair. In
this example, there are 2 inputs and 3 outputs, so there are six buttons. By
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default, all the I/O pairs are selected. If you click on a button, that I/O pair
alone is displayed in the LTI Viewer. The other buttons automatically deselect.

To select a column of inputs, click on the input name above the column. The
names are U(1), U(2), and so on. The LTI Viewer displays the responses from
the specified input to all the outputs.

To select a row of output, click on the output name to the left of the row. The
names are Y(1), Y(2), and so on. The LTI Viewer displays the responses from
all the inputs to the specified output.

To reestablish the default setting, click [all]. The LTI Viewer displays all the
I/O pairs.
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Status Panel
The Status Panel is located at the bottom of the LTI Viewer. It contains useful
information about changes you have made to the LTI Viewer.
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All the response plots that the Control System Toolbox creates have right-click
menus available. The plots include the following:

• bode
• bodemag
• impulse

• initial

• nichols
• nyquist
• pzmap
• sigma
• step

Note  Click on any of the items in the right-click menus, shown below, to get
help on the feature.

Figure 15-1:  Right-Click Menus for SISO and MIMO/LTI Array Models.

You can do the following using the right-click menus for response plots:

• Select and deselect imported systems

• Change plot characteristics

• Add and remove grid lines

• Zoom in and out of selected plot regions

• Open the Property Editor the the selected plot

• In the MIMO/LTI array case:
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- regroup the plots

- Select subsets of I/O pairs
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Right-Click Menus for SIXXSO Systems
When you create a response plot for a SISO system, you have available a set of
right-click menu options, which are desribed in the following sections.

Systems

Use Systems to select which of the imported systems to display. Selecting a
system causes a check mark to appear beside the system. To deselect a system,
select it again; the menu toggles between selected and deselected.

Characteristics
The Characteristics menu changes for each plot response type. This picture
shows the options for a step response.

The following table lists the characteristics available for each response plot
type.

Table 15-1:  Options Available from the Characteristics Menu

Function Characteristics

bode Peak Response

bodemag Peak Response

impulse Peak Response
Settling Time



Right-Click Menus for SIXXSO Systems

15-5

Grid

The Grid command activates a grid appropriate to the plot in the region you
select.

initial Peak Response

nichols Peak Response

nyquist Peak Response

pzmap None

sigma Peak Response

step Peak Response
Settling Time
Rise Time
Steady State

Table 15-1:  Options Available from the Characteristics Menu

Function Characteristics
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Zoom
The Zoom command zooms in and out of the plot region selected.

There are four options:

• In-X — Zoom in on the specified strip of the x axis.

• In-Y — Zoom in on the specified strip of the y axis.

• X-Y — Zoom in on the specified box region of the x and y axes.

• Out — Zoom out.

When you select In-X or In-Y, left-click the mouse to specify the region of the x
or y axis that you want to zoom in on. Similarly, for the X-Y option, left-click
and drag your mouse to create a rectangular region that you want to zoom in
on.

Out restores the previous appearance of the plot. Note that Out is grey when
you have reached the limit of zooming out.

Properties

Use Properties to open the Property Editor. This GUI allows you to customize
labels, axes limits and units, grids and font styles, and response characteristics
(e.g., rise time) for your plot.
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For a full description of the Property Editor, see Setting Response Plot
Properties online.
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Right-Click Menus for MIMO and LTI Arrays
All of the menu options described in “Right-Click Menus for SIXXSO Systems”
hold when you have generated a response plot for a MIMO model or an LTI
Array.

Note, however, that when you have a MIMO model or LTI array displayed, the
right-click menus contain additional options: Axis Grouping and I/O selector.
These features allow you to quickly reshuffle multiple plots in a single window.

Note  Click on items in the right-click menu pictured below to get help
contents.

.

Axis Grouping
You can usse Axis Grouping to change the grouping of plots in a single plot
window. This picture shows the menu options.

There are four options:
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• None — By default, there is no axis grouping. For example, if you display the
step responses for a 3-input, 2- output system, there will be six plots in your
window.

• All — Groups all the responses into a single plot

• Inputs — Groups all the responses by inputs. For example, for a 3-input,
2-output system, selecting Inputs reconfigures the viewer so that there are 3
plots. Each plot contains two curves.

• Outputs — Groups all the responses by outputs. For example, for a 3-input,
2-output system, selecting Inputs reconfigures the viewer so that there are 2
plots. Each plot contains three curves.

I/O Selector
I/O Selector opens the I/O Selector window, shown below.

The I/O Selector window contains buttons corresponding to each I/O pair. In
this example, there are 2 inputs and 3 outputs, so there are six buttons. By
default, all the I/O pairs are selected. If you click on a button, that I/O pair
alone is displayed in the plot window. The other buttons automatically
deselect.

To select a column of inputs, click on the input name above the column. The
names are U(1), U(2), and so on. The plot window displays the responses from
the specified input to all the outputs.

To select a row of output, click on the output name to the left of the row. The
names are Y(1), Y(2), and so on. The plot window displays the responses from
all the inputs to the specified output.

To reestablish the default setting, click [all]. The plot window displays all the
I/O pairs.
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This chapter contains detailed descriptions of all Control System Toolbox
functions. It begins with a list of functions grouped by subject area and
continues with the reference entries in alphabetical order. Information is also
available through the online Help facility.
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Functions by Category 

Table 16-1:  LTI Models

Function Name Description

drss Generate random discrete state-space model

dss Create descriptor state-space model

filt Create discrete filter with DSP convention

frd Create a frequency response data (FRD) model

frdata Retrieve data from an FRD model

get Query LTI model properties

rss Generate random continuous state-space model

set Set LTI model properties

ss Create state-space model

ssdata, dssdata Retrieve state-space data

tf Create transfer function

tfdata Retrieve transfer function data

totaldelay Provide the aggregate delay for an LTI model

zpk Create zero-pole-gain model

zpkdata Retrieve zero-pole-gain data
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Table 16-2:  Model Characteristics

Function Name Description

class Display model type ('tf', 'zpk', 'ss', or 'frd')

hasdelay Test true if LTI model has any type of delay

isa Test true if LTI model is of specified type

isct Test true for continuous-time models

isdt Test true for discrete-time models

isempty Test true for empty LTI models

isproper Test true for proper LTI models

issiso Test true for SISO models

ndims Display the number of model/array dimensions

size Display output/input/array dimensions

Table 16-3:  Model Conversion 

Function Name Description

c2d Convert from continuous- to discrete-time models

chgunits Convert the units property for FRD models

d2c Convert from discrete- to continuous-time models

d2d Resample discrete-time models

delay2z Convert delays in discrete-time models or FRD
models

frd Convert to a frequency response data model
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pade Compute the Padé approximation of delays

reshape Change the shape of an LTI array

residue Provide partial fraction expansion

ss Convert to a state space model

tf Convert to a transfer function model

zpk Convert to a zero-pole-gain model

Table 16-4:  Model Order Reduction

Function Name Description

balreal Calculate an I/O balanced realization

minreal Calculate minimal realization or eliminate
pole/zero pairs

modred Delete states in I/O balanced realization

sminreal Calculate structured model reduction

Table 16-5:  State-Space Realizations

Function Name Description

canon Canonical state-space realizations

ctrb Controllability matrix

ctrbf Controllability staircase form

gram Controllability and observability grammians

Table 16-3:  Model Conversion  (Continued)

Function Name Description
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obsv Observability matrix

obsvf Observability staircase form

ss2ss State coordinate transformation.

ssbal Diagonal balancing of state-space realizations.

Table 16-6:  Model Dynamics

Function Name Description

damp Calculate natural frequency and damping

dcgain Calculate low-frequency (DC) gain

covar Calculate covariance of response to white noise

dsort Sort discrete-time poles by magnitude

esort Sort continuous-time poles by real part

norm Calculate norms of LTI models ( and )

pole, eig Calculate the poles of an LTI model

pzmap Plot the pole/zero map of an LTI model

rlocus Calculate and plot root locus

roots Calculate roots of polynomial

sgrid,zgrid Superimpose s- and z-plane grids for root locus or
pole/zero maps

zero Calculate zeros of an LTI model

Table 16-5:  State-Space Realizations (Continued)

Function Name Description

H2 L∞
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Table 16-7:  Model Interconnections

Function Name Description

append Append models in a block diagonal configuration

augstate Augment output by appending states

connect Connect the subsystems of a block-diagonal model
according to an interconnection scheme of your
choice

feedback Calculate the feedback connection of models

lft Form the LFT interconnection (star product)

ord2 Generate second-order model

parallel Create a generalized parallel connection

series Create a generalized series connection

stack Stack LTI models into a model array

Table 16-8:  Time Response

Function Name Description

gensig Generate an input signal

impulse Calculate and plot impulse response

initial Calculate and plot initial condition response

lsim Simulate response of LTI model to arbitrary inputs

ltiview Open the LTI Viewer for linear response analysis

step Calculate step response
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Table 16-9:  Time Delays

Function Name Description

delay2z Convert delays in discrete-time models or FRD models

pade Compute the Padé approximation of delays

totaldelay Provide the aggregate delay for an LTI model

Table 16-10:  Frequency Response

Function Name Description

allmargin Calculate all crossover frequencies and associated
gain, phase, and delay margins

bode Calculate and plot Bode response

bodemag Calculate and plot Bode magnitude only

evalfr Evaluate response at single complex frequency

freqresp Evaluate frequency response for selected
frequencies

interp Interpolate FRD model between frequency points

linspace Create a vector of evenly spaced frequencies

logspace Create a vector of logarithmically spaced
frequencies

ltiview Open the LTI Viewer for linear response analysis

margin Calculate gain and phase margins

ngrid Superimpose grid lines on a Nichols plot

nichols Calculate Nichols plot
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nyquist Calculate Nyquist plot

sigma Calculate singular value plot

Table 16-11:  SISO Feedback Design

Function Name Description

allmargin Calculate all crossover frequencies and associated gain,
phase, and delay margins

margin Calculate gain and phase margins

rlocus Calculate and plot root locus

sisotool Open the SISO Design Tool

Table 16-12:  Pole Placement

Function Name Description

acker Calculate SISO pole placement design

place Calculate MIMO pole placement design

estim Form state estimator given estimator gain

reg Form output-feedback compensator given
state-feedback and estimator gains

Table 16-13:  LQG Design 

Function Name Description

lqr Calculate the LQ-optimal gain for continuous
models

dlqr Calculate the LQ-optimal gain for discrete models

Table 16-10:  Frequency Response (Continued)

Function Name Description
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lqry Calculate the LQ-optimal gain with output
weighting

lqrd Calculate the discrete LQ gain for continuous
models

kalman Calculate the Kalman estimator

kalmd Calculate the discrete Kalman estimator for
continuous models

lqgreg Form LQG regulator given LQ gain and Kalman
filter

Table 16-14:  Equation Solvers

Function Name Description

care Solve continuous-time algebraic Riccati equations

dare Solve discrete-time algebraic Riccati equations

lyap Solve continuous-time Lyapunov equations

dlyap Solve discrete-time Lyapunov equations

Table 16-15:  Graphical User Interfaces for Control System Analysis and 
Design

Function Name Description

ltiview Open the LTI Viewer for linear response analysis

sisotool Open the SISO Design GUI

Table 16-13:  LQG Design  (Continued)

Function Name Description
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16ackerPurpose Pole placement design for single-input systems

Syntax k = acker(A,b,p)

Description Given the single-input system

and a vector p of desired closed-loop pole locations, acker (A,b,p)uses
Ackermann’s formula [1] to calculate a gain vector k such that the state
feedback places the closed-loop poles at the locations p. In other
words, the eigenvalues of match the entries of p (up to ordering). Here
A is the state transmitter matrix and b is the input to state transmission vector.

You can also use acker for estimator gain selection by transposing the matrix
A and substituting c' for b when y = cx is a single output.

l = acker(a',c',p).'

Limitations acker is limited to single-input systems and the pair must be
controllable.

Note that this method is not numerically reliable and starts to break down
rapidly for problems of order greater than 5 or for weakly controllable systems.
See place for a more general and reliable alternative.

See Also lqr Optimal LQ regulator
place Pole placement design
rlocus Root locus design

References [1] Kailath, T., Linear Systems, Prentice-Hall, 1980, p. 201.

x· Ax bu+=

u kx–=
A bk–

A b,( )
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16allmarginPurpose Compute all crossover frequencies and corresponding stability margins

Syntax S = allmargin(sys)

Description allmargin computes the gain, phase, and delay margins and the corresponding
crossover frequencies of the SISO open-loop model sys. allmargin is applicable
to any SISO model, including models with delays.

The output S is a structure with the following fields:

• GMFrequency — All -180 degree crossover frequencies (in rad/sec)

• GainMargin — Corresponding gain margins, defined as 1/G where G is the
gain at crossover

• PMFrequency — All 0 dB crossover frequencies in rad/sec

• PhaseMargin — Corresponding phase margins in degrees

• DMFrequency and DelayMargin — Critical frequencies and the
corresponding delay margins. Delay margins are given in seconds for
continuous-time systems and multiples of the sample time for discrete-time
systems.

• Stable — 1 if the nominal closed-loop system is stable, 0 otherwise.

See Also ltimodels Help on LTI models
ltiview LTI system viewer
margin Gain and phase margins for SISO open-loop systems
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16appendPurpose Group LTI models by appending their inputs and outputs

Syntax sys = append(sys1,sys2,...,sysN)

Description append appends the inputs and outputs of the LTI models sys1,...,sysN to form
the augmented model sys depicted below.

For systems with transfer functions ,..., , the resulting system sys
has the block-diagonal transfer function

For state-space models sys1 and sys2 with data
and , append(sys1,sys2) produces the following state-space
model.

:
:

sys1

sys2

sysN

u1

u2

uN

y1

y2

yN

sys

H1 s( ) HN s( )

H1 s( ) 0 .. 0

0 H2 s( ) . :

: . . 0
0 .. 0 HN s( )

A1 B1 C1 D1, , ,( )
A2 B2 C2 D2, , ,( )
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Arguments The input arguments sys1,..., sysN can be LTI models of any type. Regular
matrices are also accepted as a representation of static gains, but there should
be at least one LTI object in the input list. The LTI models should be either all
continuous, or all discrete with the same sample time. When appending models
of different types, the resulting type is determined by the precedence rules (see
Precedence Rules for details).

There is no limitation on the number of inputs.

Example The commands

sys1 = tf(1,[1 0])
sys2 = ss(1,2,3,4)
sys = append(sys1,10,sys2)

produce the state-space model

sys

a = 
                        x1           x2
           x1            0            0
           x2            0      1.00000

b = 
                        u1           u2           u3
           x1      1.00000            0            0
           x2            0            0      2.00000

c = 
                        x1           x2
           y1      1.00000            0

x·1

x·2

A1 0

0 A2

x1

x2

B1 0

0 B2

u1

u2

+=

y1

y2

C1 0

0 C2

x1

x2

D1 0

0 D2

u1

u2

+=
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           y2            0            0
           y3            0      3.00000
 
d = 
                        u1           u2           u3
           y1            0            0            0
           y2            0     10.00000            0
           y3            0            0      4.00000
 
Continuous-time system.

See Also connect Modeling of block diagram interconnections
feedback Feedback connection
parallel Parallel connection
series Series connection
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16augstatePurpose Append the state vector to the output vector

Syntax asys = augstate(sys)

Description Given a state-space model sys with equations

(or their discrete-time counterpart), augstate appends the states to the
outputs to form the model

This command prepares the plant so that you can use the feedback command
to close the loop on a full-state feedback .

Limitation Because augstate is only meaningful for state-space models, it cannot be used
with TF, ZPK or FRD models.

See Also feedback Feedback connection
parallel Parallel connection
series Series connection
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16balrealPurpose Input/output balancing of state-space realizations

Syntax sysb = balreal(sys)
[sysb,g,T,Ti] = balreal(sys)

Description sysb = balreal(sys) produces a balanced realization sysb of the LTI model
sys with equal and diagonal controllability and observability grammians (see
gram for a definition of grammian). balreal handles both continuous and
discrete systems. If sys is not a state-space model, it is first and automatically
converted to state space using ss.

[sysb,g,T,Ti] = balreal(sys) also returns the vector g containing the
diagonal of the balanced grammian, the state similarity transformation

used to convert sys to sysb, and the inverse
transformation .

If the system is normalized properly, the diagonal g of the joint grammian can
be used to reduce the model order. Because g reflects the combined
controllability and observability of individual states of the balanced model, you
can delete those states with a small g(i) while retaining the most important
input-output characteristics of the original system. Use modred to perform the
state elimination.

Example Consider the zero-pole-gain model

sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)
 
Zero/pole/gain:
   (s+10) (s+20.01)
----------------------
(s+5) (s+9.9) (s+20.1)

A state-space realization with balanced grammians is obtained by

[sysb,g] = balreal(sys)

The diagonal entries of the joint grammian are

g'
 
ans =

xb Tx=
Ti T 1–

=
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   1.0062e-01   6.8039e-05   1.0055e-05

which indicates that the last two states of sysb are weakly coupled to the input
and output. You can then delete these states by

sysr = modred(sysb,[2 3],'del')

to obtain the following first-order approximation of the original system.

zpk(sysr)

Zero/pole/gain:
 1.0001
--------
(s+4.97)

Compare the Bode responses of the original and reduced-order models.
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bode(sys,'-',sysr,'x')

Algorithm Consider the model

with controllability and observability grammians and . The state
coordinate transformation produces the equivalent model

and transforms the grammians to

Frequency (rad/sec)
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The function balreal computes a particular similarity transformation
such that

See [1,2] for details on the algorithm.

Limitations The LTI model sys must be stable. In addition, controllability and
observability are required for state-space models.

See Also gram Controllability and observability grammians
minreal Minimal realizations
modred Model order reduction

References [1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, “Computation of System
Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms,” IEEE Trans. Automatic Control, AC-32 (1987),
pp. 115–122.

[2] Moore, B., “Principal Component Analysis in Linear Systems:
Controllability, Observability, and Model Reduction,” IEEE Transactions on
Automatic Control, AC-26 (1981), pp. 17–31.

[3] Laub, A.J., “Computation of Balancing Transformations,” Proc. ACC, San
Francisco, Vol.1, paper FA8-E, 1980.

Wc TWcTT
= , Wo T T– WoT 1–

=

T

Wc Wo diag g( )= =
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16bodePurpose Compute the Bode frequency response of LTI models

Syntax bode(sys)
bode(sys,w)

bode(sys1,sys2,...,sysN)
bode(sys1,sys2,...,sysN,w)
bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[mag,phase,w] = bode(sys)

Description bode computes the magnitude and phase of the frequency response of LTI
models. When invoked without left-hand arguments, bode produces a Bode plot
on the screen. The magnitude is plotted in decibels (dB), and the phase in
degrees. The decibel calculation for mag is computed as 20log10 ,
where is the system’s frequency response. Bode plots are used to
analyze system properties such as the gain margin, phase margin, DC gain,
bandwidth, disturbance rejection, and stability.

bode(sys) plots the Bode response of an arbitrary LTI model sys. This model
can be continuous or discrete, and SISO or MIMO. In the MIMO case, bode
produces an array of Bode plots, each plot showing the Bode response of one
particular I/O channel. The frequency range is determined automatically based
on the system poles and zeros.

bode(sys,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set
w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. All frequencies should be specified in radians/sec.

bode(sys1,sys2,...,sysN) or bode(sys1,sys2,...,sysN,w) plots the Bode
responses of several LTI models on a single figure. All systems must have the
same number of inputs and outputs, but may otherwise be a mix of continuous
and discrete systems. This syntax is useful to compare the Bode responses of
multiple systems.

bode(sys1,'PlotStyle1',...,sysN,'PlotStyleN') specifies which color,
linestyle, and/or marker should be used to plot each system. For example,

bode(sys1,'r--',sys2,'gx')

H jω( )( )
H jω( )
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uses red dashed lines for the first system sys1 and green 'x' markers for the
second system sys2.

When invoked with left-hand arguments

[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays with the
frequency as the last dimension (see “Arguments” below for details). You can
convert the magnitude to decibels by

magdb = 20*log10(mag)

Remark If sys is an FRD model, bode(sys,w), w can only include frequencies in
sys.frequency.

Arguments The output arguments mag and phase are 3-D arrays with dimensions

For SISO systems, mag(1,1,k) and phase(1,1,k) give the magnitude and
phase of the response at the frequency = w(k).

MIMO systems are treated as arrays of SISO systems and the magnitudes and
phases are computed for each SISO entry hij independently (hij is the transfer
function from input j to output i). The values mag(i,j,k) and phase(i,j,k)
then characterize the response of hij at the frequency w(k).

Example You can plot the Bode response of the continuous SISO system

number of outputs( ) number of inputs( )× length of w( )×

ωk

mag(1,1,k) h jωk( )=

phase(1,1,k) h jωk( )∠=

mag(i,j,k) hij jωk( )=

phase(i,j,k) hij jωk( )∠=
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by typing

g = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(g)

To plot the response on a wider frequency range, for example, from 0.1 to 100
rad/sec, type

bode(g,{0.1 , 100})

You can also discretize this system using zero-order hold and the sample time
second, and compare the continuous and discretized responses by

typing

gd = c2d(g,0.5)

H s( ) s2 0.1s 7.5+ +

s4 0.12s3 9s2
+ +

---------------------------------------------=

Ts 0.5=
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bode(g,'r',gd,'b--')

Algorithm For continuous-time systems, bode computes the frequency response by
evaluating the transfer function on the imaginary axis . Only
positive frequencies are considered. For state-space models, the frequency
response is

When numerically safe, is diagonalized for maximum speed. Otherwise,
is reduced to upper Hessenberg form and the linear equation
is solved at each frequency point, taking advantage of the Hessenberg
structure. The reduction to Hessenberg form provides a good compromise
between efficiency and reliability. See [1] for more details on this technique.

For discrete-time systems, the frequency response is obtained by evaluating
the transfer function on the unit circle. To facilitate interpretation, the
upper-half of the unit circle is parametrized as

H s( ) s jω=
ω

D C jω A–( ) 1– B+ , ω 0≥

A A
jω A–( )X B=

H z( )

z e
jωTs= , 0 ω ωN≤ ≤ π

Ts
------=
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where is the sample time. is called the Nyquist frequency. The
equivalent “continuous-time frequency” is then used as the -axis variable.
Because

is periodic with period , bode plots the response only up to the Nyquist
frequency . If the sample time is unspecified, the default value is
assumed.

Diagnostics If the system has a pole on the axis (or unit circle in the discrete case) and
w happens to contain this frequency point, the gain is infinite, is
singular, and bode produces the warning message

Singularity in freq. response due to jw-axis or unit circle pole.

See Also evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
nyquist Nyquist plot
sigma Singular value plot

References [1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,”
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407–408.

Ts ωN
ω x

H e
jωTs( )

2ωN
ωN Ts 1=

jω
jωI A–
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16bodemagPurpose Compute the Bode magnitude response of LTI models

Syntax bodemag(sys)
bodemag(sys,{wmin,wmax})
bodemag(sys,w)

bodemag(sys1,sys2,...,sysN,w)
bodemag(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

Description bodemag(sys) plots the magnitude of the frequency response of the LTI model
SYS (Bode plot without the phase diagram). The frequency range and number
of points are chosen automatically.

bodemag(sys,{wmin,wmax}) draws the magnitude plot for frequencies between
wmin and wmax (in radians/second).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in
radians/second, at which the frequency response is to be evaluated.

bodemag(sys1,sys2,...,sysN,w) shows the frequency response magnitude of
several LTI models sys1,sys2,...,sysN on a single plot. The frequency vector
w is optional. You can also specify a color, line style, and marker for each model,
as in

       bodemag(sys1,'r',sys2,'y--',sys3,'gx').

See Also bode Compute the Bode frequency response of LTI models
ltiview Open an LTI Viewer
ltimodels Help on LTI models
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16c2dPurpose Discretize continuous-time systems

Syntax sysd = c2d(sys,Ts)
sysd = c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,method)

Description sysd = c2d(sys,Ts) discretizes the continuous-time LTI model sys using
zero-order hold on the inputs and a sample time of Ts seconds.

sysd = c2d(sys,Ts,method) gives access to alternative discretization
schemes. The string method selects the discretization method among the
following:

Refer to “Continuous/Discrete Conversions of LTI Models” in Chapter 3 for
more detail on these discretization methods.

c2d supports MIMO systems (except for the 'matched' method) as well as LTI
models with delays with some restrictions for 'matched' and 'tustin'
methods.

[sysd,G] = c2d(sys,Ts,method) returns a matrix G that maps the continuous
initial conditions and to their discrete counterparts and
according to

'zoh' Zero-order hold. The control inputs are assumed piecewise
constant over the sampling period Ts.

'foh' Triangle approximation (modified first-order hold, see [1], p.
151). The control inputs are assumed piecewise linear over
the sampling period Ts.

'tustin' Bilinear (Tustin) approximation.

'prewarp' Tustin approximation with frequency prewarping.

'matched' Matched pole-zero method. See [1], p. 147.

x0 u0 x 0[ ] u 0[ ]

u 0[ ] u0=

x 0[ ] G
x0

u0

⋅=
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Example Consider the system

with input delay second. To discretize this system using the
triangle approximation with sample time second, type

H = tf([1 -1],[1 4 5],'inputdelay',0.35)

Transfer function:
                   s - 1
exp(-0.35*s) * -------------
               s^2 + 4 s + 5

Hd = c2d(H,0.1,'foh')

Transfer function:
0.0115 z^3 + 0.0456 z^2 - 0.0562 z - 0.009104
---------------------------------------------
        z^6 - 1.629 z^5 + 0.6703 z^4

Sampling time: 0.1

The next command compares the continuous and discretized step responses.

H s( ) s 1–

s2 4s 5+ +
----------------------------=

Td 0.35=
Ts 0.1=
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step(H,'-',Hd,'--')

See Also d2c Discrete to continuous conversion
d2d Resampling of discrete systems-

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.
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16canonPurpose Compute canonical state-space realizations

Syntax csys = canon(sys,'type')
[csys,T] = canon(sys,'type')

Description canon computes a canonical state-space model for the continuous or discrete
LTI system sys. Two types of canonical forms are supported.

Modal Form
csys = canon(sys,'modal') returns a realization csys in modal form, that is,
where the real eigenvalues appear on the diagonal of the matrix and the
complex conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of .
For a system with eigenvalues , the modal matrix is of the
form

Companion Form
csys = canon(sys,'companion') produces a companion realization of sys
where the characteristic polynomial of the system appears explicitly in the
rightmost column of the matrix. For a system with characteristic polynomial

the corresponding companion matrix is

A
A

λ1 σ jω λ2,±,( ) A

λ1 0 0 0

0 σ ω 0
0 ω– σ 0
0 0 0 λ2

A

p s( ) sn a1sn 1– ... an 1– s an+ + + +=

A

A

0 0 .. .. 0 an–

1 0 0 .. 0 an 1––

0 1 0 . : :
: 0 . . : :
0 . . 1 0 a2–

0 .. .. 0 1 a1–

=
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For state-space models sys,

[csys,T] = canon(a,b,c,d,'type')

also returns the state coordinate transformation T relating the original state
vector and the canonical state vector .

This syntax returns T=[] when sys is not a state-space model.

Algorithm Transfer functions or zero-pole-gain models are first converted to state space
using ss.

The transformation to modal form uses the matrix of eigenvectors of the
matrix. The modal form is then obtained as

The state transformation returned is the inverse of .

The reduction to companion form uses a state similarity transformation based
on the controllability matrix [1].

Limitations The modal transformation requires that the matrix be diagonalizable. A
sufficient condition for diagonalizability is that has no repeated eigenvalues.

The companion transformation requires that the system be controllable from
the first input. The companion form is often poorly conditioned for most
state-space computations; avoid using it when possible.

See Also ctrb Controllability matrix
ctrbf Controllability canonical form
ss2ss State similarity transformation

References [1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

x xc

xc Tx=

P A

xc
· P 1– APxc P 1– Bu+=

y CPxc Du+=

T P

A
A
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16carePurpose Solve continuous-time algebraic Riccati equations (CARE)

Syntax [X,L,G,rr] = care(A,B,Q)
[X,L,G,rr] = care(A,B,Q,R,S,E)

[X,L,G,report] = care(A,B,Q,...,'report')
[X1,X2,L,report] = care(A,B,Q,...,'implicit')

Description [X,L,G,rr] = care(A,B,Q) computes the unique solution of the algebraic
Riccati equation

such that has all its eigenvalues in the open left-half plane. The
matrix is symmetric and called the stabilizing solution of .
[X,L,G,rr] = care(A,B,Q) also returns:

• The eigenvalues L of

• The gain matrix 

• The relative residual rr defined by

[X,L,G,rr] = care(A,B,Q,R,S,E) solves the more general Riccati equation

Here the gain matrix is and the “closed-loop”
eigenvalues are L = eig(A-B*G,E).

Two additional syntaxes are provided to help develop applications such as
-optimal control design.

[X,L,G,report] = care(A,B,Q,...,'report')turns off the error messages
when the solution fails to exist and returns a failure report instead.

The value of report is:

• -1 when the associated Hamiltonian pencil has eigenvalues on or very near
the imaginary axis (failure)

• -2 when there is no finite solution, i.e., with singular
(failure)

X

Ric X( ) ATX XA XBBTX– Q+ + 0= =

A BBTX–
X Ric X( ) 0=

A BBTX–

G BTX=

rr
Ric X( ) F

X F
---------------------------=

Ric X( ) ATXE ETXA ETXB S+( )R 1– BTXE ST
+( )– Q+ + 0= =

G R 1– BTXE ST
+( )=

H∞

X

X X2X1
1–

= X1
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• The relative residual defined above when the solution exists (success)

Alternatively, [X1,X2,L,report] = care(A,B,Q,...,'implicit') also turns
off error messages but now returns in implicit form.

Note that this syntax returns report = 0 when successful.

Examples Example 1
Given

you can solve the Riccati equation

by

a = [-3 2;1 1]
b = [0 ; 1]
c = [1 -1]
r = 3
[x,l,g] = care(a,b,c'*c,r)

This yields the solution

x

x =
    0.5895    1.8216
    1.8216    8.8188

You can verify that this solution is indeed stabilizing by comparing the
eigenvalues of a and a-b*g.

[eig(a) eig(a-b*g)]
 
ans =

rr

X

X X2X1
1–

=

A 3– 2
1 1

= B 0
1

= C 1 1–= R 3=

ATX XA XBR 1– B
T

X– CTC+ + 0=
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   -3.4495   -3.5026
    1.4495   -1.4370

Finally, note that the variable l contains the closed-loop eigenvalues
eig(a-b*g).

l

l =
   -3.5026
   -1.4370

Example 2
To solve the -like Riccati equation

rewrite it in the care format as

You can now compute the stabilizing solution by

B = [B1 , B2]
m1 = size(B1,2)
m2 = size(B2,2)
R = [-g^2*eye(m1) zeros(m1,m2) ; zeros(m2,m1) eye(m2)]

X = care(A,B,C'*C,R)

Algorithm care implements the algorithms described in [1]. It works with the
Hamiltonian matrix when is well-conditioned and ; otherwise it uses
the extended Hamiltonian pencil and QZ algorithm.

Limitations The pair must be stabilizable (that is, all unstable modes are
controllable). In addition, the associated Hamiltonian matrix or pencil must

H∞

ATX XA X γ 2– B1B1
T B2B2

T
–( )X+ + CTC+ 0=

ATX XA X B1 B2,[ ] γ 2– I– 0
0 I

1–
B1

T

B2
T

X– CTC+ + 0=

B
R

� � � � �

� � � � �

X

R E I=

A B,( )
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have no eigenvalue on the imaginary axis. Sufficient conditions for this to hold
are detectable when and , or

See Also dare Solve discrete-time Riccati equations
lyap Solve continuous-time Lyapunov equations

References [1] Arnold, W.F., III and A.J. Laub, “Generalized Eigenproblem Algorithms
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984),
pp. 1746–1754.

Q A,( ) S 0= R 0>

Q S

ST R
0>
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16chgunitsPurpose Convert the frequency units of an FRD model

Syntax sys = chgunits(sys,units) 

Description sys = chgunits(sys,units) converts the units of the frequency points stored
in an FRD model, sys to units, where units is either of the strings 'Hz' or
'rad/s'. This operation changes the assigned frequencies by applying the
appropriate (2*pi) scaling factor, and the 'Units' property is updated.

If the 'Units' field already matches units, no conversion is made.

Example w = logspace(1,2,2);
sys = rss(3,1,1);
sys = frd(sys,w)

From input 'input 1' to:

  Frequency(rad/s)        output 1     
  ----------------        --------     

          10         0.293773+0.001033i

         100         0.294404+0.000109i

Continuous-time frequency response data.

sys = chgunits(sys,'Hz')
sys.freq

ans =
    1.5915
   15.9155

See Also frd Create or convert to an FRD model
get Get the properties of an LTI model
set Set the properties of an LTI model
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16connectPurpose Derive state-space model from block diagram description

Syntax sysc = connect(sys,Q,inputs,outputs)

Description Complex dynamical systems are often given in block diagram form. For
systems of even moderate complexity, it can be quite difficult to find the
state-space model required in order to bring certain analysis and design tools
into use. Starting with a block diagram description, you can use append and
connect to construct a state-space model of the system.

First, use

sys = append(sys1,sys2,...,sysN)

to specify each block sysj in the diagram and form a block-diagonal,
unconnected LTI model sys of the diagram.

Next, use

sysc = connect(sys,Q,inputs,outputs)

to connect the blocks together and derive a state-space model sysc for the
overall interconnection. The arguments Q, inputs, and outputs have the
following purpose:

• The matrix Q indicates how the blocks on the diagram are connected. It has
a row for each input of sys, where the first element of each row is the input
number. The subsequent elements of each row specify where the block input
gets its summing inputs; negative elements indicate minus inputs to the
summing junction. For example, if input 7 gets its inputs from the outputs 2,
15, and 6, where the input from output 15 is negative, the corresponding row
of Q is [7  2 -15  6]. Short rows can be padded with trailing zeros (see
example below).

• Given sys and Q, connect computes a state-space model of the
interconnection with the same inputs and outputs as sys (that is, the
concatenation of all block inputs and outputs). The index vectors inputs and
outputs then indicate which of the inputs and outputs in the large
unconnected system are external inputs and outputs of the block diagram.
For example, if the external inputs are inputs 1, 2, and 15 of sys, and the
external outputs are outputs 2 and 7 of sys, then inputs and outputs should
be set to
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inputs = [1 2 15]; 
outputs = [2 7]; 

The final model sysc has these particular inputs and outputs.

Since it is easy to make a mistake entering all the data required for a large
model, be sure to verify your model in as many ways as you can. Here are some
suggestions:

• Make sure the poles of the unconnected model sys match the poles of the
various blocks in the diagram.

• Check that the final poles and DC gains are reasonable.

• Plot the step and bode responses of sysc and compare them with your
expectations.

If you need to work extensively with block diagrams, Simulink is a much easier
and more comprehensive tool for model building.

Example Consider the following block diagram

Given the matrices of the state-space model sys2

A = [ -9.0201  17.7791 
-1.6943  3.2138 ];

B = [ -.5112  .5362
-.002  -1.8470];

C = [ -3.2897  2.4544

x· Ax Bu+=

y Cx Du+=

2 s 1+( )
s 2+

--------------------

10
s 5+
------------

y1

y2u2

u1

uc

sys1

sys2

sys3

+

–
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-13.5009  18.0745];
D = [-.5476  -.1410

-.6459  .2958 ];

Define the three blocks as individual LTI models.

sys1 = tf(10,[1 5],'inputname','uc')
sys2 = ss(A,B,C,D,'inputname',{'u1' 'u2'},...

'outputname',{'y1' 'y2'})
sys3 = zpk(-1,-2,2)

Next append these blocks to form the unconnected model sys.

sys = append(sys1,sys2,sys3)

This produces the block-diagonal model

sys
 
a = 
                        x1           x2           x3           x4
           x1           -5            0            0            0
           x2            0      -9.0201       17.779            0
           x3            0      -1.6943       3.2138            0
           x4            0            0            0           -2
 
 
b = 
                        uc           u1           u2            ?
           x1            4            0            0            0
           x2            0      -0.5112       0.5362            0
           x3            0       -0.002       -1.847            0
           x4            0            0            0       1.4142

c = 
                        x1           x2           x3           x4
            ?          2.5            0            0            0
           y1            0      -3.2897       2.4544            0
           y2            0      -13.501       18.075            0
            ?            0            0            0      -1.4142
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d = 
                        uc           u1           u2            ?
            ?            0            0            0            0
           y1            0      -0.5476       -0.141            0
           y2            0      -0.6459       0.2958            0
            ?            0            0            0            2
 
Continuous-time system.

Note that the ordering of the inputs and outputs is the same as the block
ordering you chose. Unnamed inputs or outputs are denoted by ?.

To derive the overall block diagram model from sys, specify the
interconnections and the external inputs and outputs. You need to connect
outputs 1 and 4 into input 3 (u2), and output 3 (y2) into input 4. The
interconnection matrix Q is therefore

Q = [3 1 -4
4 3 0];

Note that the second row of Q has been padded with a trailing zero. The block
diagram has two external inputs uc and u1 (inputs 1 and 2 of sys), and two
external outputs y1 and y2 (outputs 2 and 3 of sys). Accordingly, set inputs
and outputs as follows.

inputs = [1 2];
outputs = [2 3];

You can obtain a state-space model for the overall interconnection by typing

sysc = connect(sys,Q,inputs,outputs)

a = 
                        x1           x2           x3           x4
           x1           -5            0            0            0
           x2      0.84223     0.076636       5.6007      0.47644
           x3      -2.9012      -33.029       45.164      -1.6411
           x4      0.65708      -11.996        16.06      -1.6283
 
 
b = 
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                        uc           u1
           x1            4            0
           x2            0    -0.076001
           x3            0      -1.5011
           x4            0     -0.57391
 
 
c = 
                        x1           x2           x3           x4
           y1     -0.22148      -5.6818       5.6568     -0.12529
           y2      0.46463      -8.4826       11.356      0.26283
 
 
d = 
                        uc           u1
           y1            0     -0.66204
           y2            0     -0.40582
 
Continuous-time system.

Note that the inputs and outputs are as desired.

See Also append Append LTI systems
feedback Feedback connection
minreal Minimal state-space realization
parallel Parallel connection
series Series connection

References [1] Edwards, J.W., “A Fortran Program for the Analysis of Linear Continuous
and Sampled-Data Systems,” NASA Report TM X56038, Dryden Research
Center, 1976.
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16covarPurpose Output and state covariance of a system driven by white noise

Syntax [P,Q] = covar(sys,W)

Description covar calculates the stationary covariance of the output of an LTI model sys
driven by Gaussian white noise inputs . This function handles both
continuous- and discrete-time cases.

P = covar(sys,W) returns the steady-state output response covariance

given the noise intensity

[P,Q] = covar(sys,W) also returns the steady-state state covariance

when sys is a state-space model (otherwise Q is set to []).

When applied to an N-dimensional LTI array sys, covar returns
multi-dimensional arrays P, Q such that

P(:,:,i1,...iN) and Q(:,:,i1,...iN) are the covariance matrices for the
model sys(:,:,i1,...iN).

Example Compute the output response covariance of the discrete SISO system

due to Gaussian white noise of intensity W = 5. Type

sys = tf([2 1],[1 0.2 0.5],0.1);
p = covar(sys,5)

and MATLAB returns

y
w

P E yyT( )=

E w t( )w τ( )T( ) W δ t τ–( )= (continuous time)

E w k[ ]w l[ ]T( ) W δkl= (discrete time)

Q E xxT( )=

H z( ) 2z 1+

z2 0.2z 0.5+ +
-------------------------------------- ,= Ts 0.1=
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p =
30.3167

You can compare this output of covar to simulation results.

randn('seed',0)
w = sqrt(5)∗randn(1,1000); % 1000 samples

% Simulate response to w with LSIM:
y = lsim(sys,w);

% Compute covariance of y values
psim = sum(y .∗ y)/length(w);

This yields

psim = 
32.6269

The two covariance values p and psim do not agree perfectly due to the finite
simulation horizon.

Algorithm Transfer functions and zero-pole-gain models are first converted to state space
with ss.

For continuous-time state-space models

is obtained by solving the Lyapunov equation

The output response covariance is finite only when and then
.

In discrete time, the state covariance solves the discrete Lyapunov equation

and is given by

x· Ax Bw+=

y Cx Dw+=

Q

AQ QAT BWBT
+ + 0=

P D 0=
P CQCT

=

AQAT Q– BWBT
+ 0=

P P CQCT DWDT
+=
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Note that is well defined for nonzero in the discrete case.

Limitations The state and output covariances are defined for stable systems only. For
continuous systems, the output response covariance is finite only when the

matrix is zero (strictly proper system).

See Also dlyap Solver for discrete-time Lyapunov equations
lyap Solver for continuous-time Lyapunov equations

References [1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere
Publishing, 1975, pp. 458-459.

P D

P
D
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16ctrbPurpose Form the controllability matrix

Syntax Co = ctrb(A,B)
Co = ctrb(sys)

Description ctrb computes the controllability matrix for state-space systems. For an
n-by-n matrix A and an n-by-m matrix B, ctrb(A,B) returns the controllability
matrix

(16-1)

where has n rows and nm columns.

Co = ctrb(sys) calculates the controllability matrix of the state-space LTI
object sys. This syntax is equivalent to executing

Co = ctrb(sys.A,sys.B)

The system is controllable if Co has full rank n.

Example Check if the system with the following data

A =
     1     1
     4    -2

B =
     1    -1
     1    -1

is controllable. Type

Co=ctrb(A,B);

% Number of uncontrollable states
unco=length(A)-rank(Co)

and MATLAB returns

unco =
     1

Co B AB A2B … An 1– B=

Co
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Limitations Estimating the rank of the controllability matrix is ill-conditioned; that is, it is
very sensitive to round-off errors and errors in the data. An indication of this
can be seen from this simple example.

This pair is controllable if but if , where eps is the relative
machine precision. ctrb(A,B) returns

which is not full rank. For cases like these, it is better to determine the
controllability of a system using ctrbf.

See Also ctrbf Compute the controllability staircase form
obsv Compute the observability matrix

A 1 δ
0 1

,= B 1
δ

=

δ 0≠ δ eps<

B AB
1 1
δ δ

=
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16ctrbfPurpose Compute the controllability staircase form

Syntax [Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C)
[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C,tol)

Description If the controllability matrix of has rank , where n is the size of
, then there exists a similarity transformation such that

where is unitary, and the transformed system has a staircase form, in which
the uncontrollable modes, if there are any, are in the upper left corner.

where is controllable, all eigenvalues of are uncontrollable, and

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C) decomposes the state-space system
represented by A, B, and C into the controllability staircase form, Abar, Bbar,
and Cbar, described above. T is the similarity transformation matrix and k is a
vector of length n, where n is the order of the system represented by A. Each
entry of k represents the number of controllable states factored out during each
step of the transformation matrix calculation. The number of nonzero elements
in k indicates how many iterations were necessary to calculate T, and sum(k) is
the number of states in , the controllable portion of Abar.

ctrbf(A,B,C,tol) uses the tolerance tol when calculating the controllable/
uncontrollable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(A,1)*eps.

Example Compute the controllability staircase form for

A =
     1     1
     4    -2

A B,( ) r n≤
A

A TATT,= B TB,= C CTT
=

T

A
Auc 0

A21 Ac

,= B 0
Bc

,= C Cnc Cc=

Ac Bc,( ) Auc

Cc sI Ac–( ) 1– Bc C sI A–( ) 1– B.=

Ac
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B =
     1    -1
     1    -1

C =
     1     0
     0     1

and locate the uncontrollable mode.

[Abar,Bbar,Cbar,T,k]=ctrbf(A,B,C)

Abar =
   -3.0000         0
   -3.0000    2.0000

Bbar =
    0.0000    0.0000
    1.4142   -1.4142

Cbar =
   -0.7071    0.7071
    0.7071    0.7071

T =
   -0.7071    0.7071
    0.7071    0.7071
k =
     1     0

The decomposed system Abar shows an uncontrollable mode located at –3 and
a controllable mode located at 2.

Algorithm ctrbf is an M-file that implements the Staircase Algorithm of [1].

See Also ctrb Form the controllability matrix
minreal Minimum realization and pole-zero cancellation

References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley,
1970.



d2c

16-49

16d2cPurpose Convert discrete-time LTI models to continuous time

Syntax sysc = d2c(sysd)
sysc = d2c(sysd,method)

Description d2c converts LTI models from discrete to continuous time using one of the
following conversion methods:

The string method specifies the conversion method. If method is omitted then
zero-order hold ('zoh') is assumed. See “Continuous/Discrete Conversions of
LTI Models” in Chapter 3 of this manual and reference [1] for more details on
the conversion methods.

Example Consider the discrete-time model with transfer function

and sample time second. You can derive a continuous-time
zero-order-hold equivalent model by typing

Hc = d2c(H)

Discretizing the resulting model Hcwith the zero-order hold method (this is the
default method) and sampling period gives back the original discrete
model . To see this, type

c2d(Hc,0.1)

To use the Tustin approximation instead of zero-order hold, type

Hc = d2c(H,'tustin')

As with zero-order hold, the inverse discretization operation

'zoh' Zero-order hold on the inputs. The control inputs are
assumed piecewise constant over the sampling period.

'tustin' Bilinear (Tustin) approximation to the derivative.

'prewarp' Tustin approximation with frequency prewarping.

'matched' Matched pole-zero method of [1] (for SISO systems only).

H z( ) z 1–

z2 z 0.3+ +
-----------------------------=

Ts 0.1=

Ts 0.1=
H z( )
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c2d(Hc,0.1,'tustin')

gives back the original .

Algorithm The 'zoh' conversion is performed in state space and relies on the matrix
logarithm (see logm in Using MATLAB).

Limitations The Tustin approximation is not defined for systems with poles at and
is ill-conditioned for systems with poles near .

The zero-order hold method cannot handle systems with poles at . In
addition, the 'zoh' conversion increases the model order for systems with
negative real poles, [2]. This is necessary because the matrix logarithm maps
real negative poles to complex poles. As a result, a discrete model with a single
pole at would be transformed to a continuous model with a single
complex pole at . Such a model is not meaningful
because of its complex time response.

To ensure that all complex poles of the continuous model come in conjugate
pairs, d2c replaces negative real poles with a pair of complex conjugate
poles near . The conversion then yields a continuous model with higher
order. For example, the discrete model with transfer function

and sample time 0.1 second is converted by typing

Ts = 0.1
H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
Hc = d2c(H) 

MATLAB responds with

Warning: System order was increased to handle real negative poles.
 
Zero/pole/gain:
  -33.6556 (s-6.273) (s^2 + 28.29s + 1041)
--------------------------------------------
(s^2 + 9.163s + 637.3) (s^2 + 13.86s + 1035)

Convert Hc back to discrete time by typing

H z( )

z 1–=
z 1–=

z 0=

z 0.5–=
0.5–( )log 0.6931– jπ+≈

z α–=
α–

H z( ) z 0.2+

z 0.5+( ) z2 z 0.4+ +( )
---------------------------------------------------------=
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c2d(Hc,Ts)

yielding

Zero/pole/gain:
     (z+0.5) (z+0.2)
-------------------------
(z+0.5)^2 (z^2 + z + 0.4)
 
Sampling time: 0.1

This discrete model coincides with after canceling the pole/zero pair at
.

See Also c2d Continuous- to discrete-time conversion
d2d Resampling of discrete models
logm Matrix logarithm

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

[2] Kollár, I., G.F. Franklin, and R. Pintelon, “On the Equivalence of z-domain
and s-domain Models in System Identification,” Proceedings of the IEEE
Instrumentation and Measurement Technology Conference, Brussels, Belgium,
June, 1996, Vol. 1, pp. 14-19.

H z( )
z 0.5–=
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16d2dPurpose Resample discrete-time LTI models or add input delays

Syntax sys1 = d2d(sys,Ts)

Description sys1 = d2d(sys,Ts) resamples the discrete-time LTI model sys to produce an
equivalent discrete-time model sys1with the new sample time Ts (in seconds). 
The resampling assumes zero-order hold on the inputs and is equivalent to
consecutive d2c and c2d conversions.

sys1 = c2d(d2c(sys),Ts)

Example Consider the zero-pole-gain model

with sample time 0.1 second. You can resample this model at 0.05 second by
typing

H = zpk(0.7,0.5,1,0.1)
H2 = d2d(H,0.05)

Zero/pole/gain:
(z-0.8243)
----------
(z-0.7071)
 
Sampling time: 0.05

Note that the inverse resampling operation, performed by typing d2d(H2,0.1),
yields back the initial model .

Zero/pole/gain:
(z-0.7)
-------
(z-0.5)
 
Sampling time: 0.1

See Also c2d Continuous- to discrete-time conversion
d2c Discrete- to continuous-time conversion

H z( ) z 0.7–
z 0.5–
-----------------=

H z( )



damp

16-53

16dampPurpose Compute damping factors and natural frequencies

Syntax [Wn,Z] = damp(sys)
[Wn,Z,P] = damp(sys)

Description damp calculates the damping factor and natural frequencies of the poles of an
LTI model sys. When invoked without lefthand arguments, a table of the
eigenvalues in increasing frequency, along with their damping factors and
natural frequencies, is displayed on the screen.

[Wn,Z] = damp(sys) returns column vectors Wn and Z containing the natural
frequencies and damping factors of the poles of sys. For discrete-time
systems with poles and sample time , damp computes “equivalent”
continuous-time poles by solving

The values Wn and Z are then relative to the continuous-time poles . Both Wn
and Z are empty if the sample time is unspecified.

[Wn,Z,P] = damp(sys) returns an additional vector P containing the (true)
poles of sys. Note that P returns the same values as pole(sys) (up to
reordering).

Example Compute and display the eigenvalues, natural frequencies, and damping
factors of the continuous transfer function

Type

H = tf([2 5 1],[1 2 3])

Transfer function:
2 s^2 + 5 s + 1
---------------
 s^2 + 2 s + 3

Type

ωn ζ
z Ts

s

z e
sTs=

s

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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damp(H)

and MATLAB returns

Eigenvalue            Damping     Freq. (rad/s)  
                                                         
-1.00e+000 + 1.41e+000i     5.77e-001      1.73e+000    
-1.00e+000 - 1.41e+000i     5.77e-001      1.73e+000 

See Also eig Calculate eigenvalues and eigenvectors
esort,dsort Sort system poles
pole Compute system poles
pzmap Pole-zero map
zero Compute (transmission) zeros
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16darePurpose Solve discrete-time algebraic Riccati equations (DARE)

Syntax [X,L,G,rr] = dare(A,B,Q,R)
[X,L,G,rr] = dare(A,B,Q,R,S,E)

[X,L,G,report] = dare(A,B,Q,...,'report')
[X1,X2,L,report] = dare(A,B,Q,...,'implicit')

Description [X,L,G,rr] = dare(A,B,Q,R) computes the unique solution of the
discrete-time algebraic Riccati equation

such that the “closed-loop” matrix

has all its eigenvalues inside the unit disk. The matrix is symmetric and
called the stabilizing solution of . [X,L,G,rr] = dare(A,B,Q,R)
also returns:

• The eigenvalues L of

• The gain matrix

• The relative residual rr defined by

[X,L,G,rr] = dare(A,B,Q,R,S,E) solves the more general DARE:

The corresponding gain matrix and closed-loop eigenvalues are

X

Ric X( ) ATXA X– ATXB BTXB R+( )
1–
BTXA– Q+ 0= =

Acl A B BTXB R+( )
1–
BTXA–=

X
Ric X( ) 0=

Acl

G BTXB R+( )
1–
BTXA=

rr
Ric X( ) F

X F
---------------------------=

ATXA ETXE– ATXB S+( ) BTXB R+( )
1–

BTXA ST
+( )– Q+ 0=

G BTXB R+( )
1–

BTXA ST
+( )=
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and L = eig(A-B*G,E).

Two additional syntaxes are provided to help develop applications such as
-optimal control design.

[X,L,G,report] = dare(A,B,Q,...,'report') turns off the error messages
when the solution fails to exist and returns a failure report instead. The
value of report is:

• -1 when the associated symplectic pencil has eigenvalues on or very near the
unit circle (failure)

• -2 when there is no finite solution, that is, with singular
(failure)

• The relative residual defined above when the solution exists (success)

Alternatively, [X1,X2,L,report] = dare(A,B,Q,...,'implicit') also turns
off error messages but now returns in implicit form as

Note that this syntax returns report = 0 when successful.

Algorithm dare implements the algorithms described in [1]. It uses the QZ algorithm to
deflate the extended symplectic pencil and compute its stable invariant
subspace.

Limitations The pair must be stabilizable (that is, all eigenvalues of outside the
unit disk must be controllable). In addition, the associated symplectic pencil
must have no eigenvalue on the unit circle. Sufficient conditions for this to hold
are detectable when and , or

See Also care Solve continuous-time Riccati equations
dlyap Solve discrete-time Lyapunov equations

H∞

X

X X2X1
1–

= X1

rr

X

X X2X1
1–

=

A B,( ) A

Q A,( ) S 0= R 0>

Q S

ST R
0>



dare

16-57

References [1] Arnold, W.F., III and A.J. Laub, “Generalized Eigenproblem Algorithms
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984), pp.
1746–1754.
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16dcgainPurpose Compute low frequency (DC) gain of LTI system

Syntax k = dcgain(sys)

Description k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time
The continuous-time DC gain is the transfer function value at the frequency

. For state-space models with matrices , this value is

Discrete Time
The discrete-time DC gain is the transfer function value at . For
state-space models with matrices , this value is

Remark The DC gain is infinite for systems with integrators.

Example To compute the DC gain of the MIMO transfer function

type

H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])]
dcgain(H)

ans =
    1.0000   -0.3333
    1.0000   -0.6667

See Also evalfr Evaluates frequency response at single frequency
norm LTI system norms

s 0= A B C D, , ,( )

K D CA 1– B–=

z 1=
A B C D, , ,( )

K D C I A–( ) 1– B+=

H s( )
1 s 1–

s2 s 3+ +
------------------------

1
s 1+
------------ s 2+

s 3–
------------

=
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16delay2zPurpose Replace delays of discrete-time TF, SS, or ZPK models by poles at z=0, or
replace delays of FRD models by a phase shift

Syntax sys = delay2z(sys) 

Description sys = delay2z(sys) maps all time delays to poles at z=0 for discrete-time TF,
ZPK, or SS models sys. Specifically, a delay of k sampling periods is replaced
by (1/z)^k in the transfer function corresponding to the model.

For FRD models, delay2z absorbs all time delays into the frequency response
data, and is applicable to both continuous- and discrete-time FRDs.

Example z=tf('z',-1);
sys=(-.4*z -.1)/(z^2 + 1.05*z + .08)

Transfer function:

-0.4 z - 0.1
-------------------
z^2 + 1.05 z + 0.08

Sampling time: unspecified

sys.InputDelay = 1;
sys = delay2z(sys)

Transfer function:

     -0.4 z - 0.1
-----------------------
z^3 + 1.05 z^2 + 0.08 z

Sampling time: unspecified

See Also hasdelay True for LTI models with delays
pade Pade approximation of time delays
totaldelay Combine delays for an LTI model
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16dlqrPurpose Design linear-quadratic (LQ) state-feedback regulator for discrete-time plant

Syntax [K,S,e] = dlqr(a,b,Q,R)
[K,S,e] = dlqr(a,b,Q,R,N)

Description [K,S,e] = dlqr(a,b,Q,R,N) calculates the optimal gain matrix K such that
the state-feedback law

minimizes the quadratic cost function

for the discrete-time state-space mode

l

The default value N=0 is assumed when N is omitted.

In addition to the state-feedback gain K, dlqr returns the infinite horizon
solution S of the associated discrete-time Riccati equation

and the closed-loop eigenvalues e = eig(a-b*K). Note that K is derived from
S by

Limitations The problem data must satisfy:

• The pair is stabilizable.

• and .

• has no unobservable mode on the unit circle.

See Also dare Solve discrete Riccati equations
lqgreg LQG regulator

u n[ ] Kx n[ ]–=

J u( ) x n[ ]TQx n[ ] u n[ ]TRu n[ ] 2x n[ ]TNu n[ ]+ +( )

n 1=

∞

�=

x n 1+[ ] Ax n[ ] Bu n[ ]+=

ATSA S– ATSB N+( ) BTSB R+( )
1–

BTSA NT
+( )– Q+ 0=

K BTSB R+( )
1–

BTSA NT
+( )=

A B,( )
R 0> Q NR 1– NT

– 0≥
Q NR 1– NT

– A BR 1– NT
–,( )
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lqr State-feedback LQ regulator for continuous plant
lqrd Discrete LQ regulator for continuous plant
lqry State-feedback LQ regulator with output weighting
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16dlyapPurpose Solve discrete-time Lyapunov equations

Syntax X = dlyap(A,Q)

Description dlyap solves the discrete-time Lyapunov equation

where and are -by- matrices.

The solution is symmetric when is symmetric, and positive definite when
is positive definite and has all its eigenvalues inside the unit disk.

Diagnostics The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues
of satisfy for all .

If this condition is violated, dlyap produces the error message

Solution does not exist or is not unique.

See Also covar Covariance of system response to white noise
lyap Solve continuous Lyapunov equations

ATXA X– Q+ 0=

A Q n n

X Q
Q A

α1 α2 ... αn, , , A αiαj 1≠ i j,( )
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16drssPurpose Generate stable random discrete test models

Syntax sys = drss(n)
sys = drss(n,p)
sys = drss(n,p,m)
sys = drss(n,p,m,s1,...sn)

Description sys = drss(n) produces a random n-th order stable model with one input and
one output, and returns the model in the state-space object sys.

drss(n,p) produces a random n-th order stable model with one input and p
outputs.

drss(n,m,p) generates a random n-th order stable model with m inputs and p
outputs.

drss(n,p,m,s1,...sn) generates a s1–by–sn array of random n-th order
stable model with m inputs and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has
an unspecified sampling time. To generate transfer function or zero-pole-gain
systems, convert sys using tf or zpk.

Example Generate a random discrete LTI system with three states, two inputs, and two
outputs.

sys = drss(3,2,2)
 
a = 
                        x1           x2           x3
           x1      0.38630     -0.21458     -0.09914
           x2     -0.23390     -0.15220     -0.06572
           x3     -0.03412      0.11394     -0.22618

b = 
                        u1           u2
           x1      0.98833      0.51551
           x2            0      0.33395
           x3      0.42350      0.43291
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c = 
                        x1           x2           x3
           y1      0.22595      0.76037            0
           y2            0            0            0
 
d = 
                        u1           u2
           y1            0      0.68085
           y2      0.78333      0.46110
 
Sampling time: unspecified
Discrete-time system.

See Also rss Generate stable random continuous test models
tf Convert LTI systems to transfer functions form
zpk Convert LTI systems to zero-pole-gain form
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16dsortPurpose Sort discrete-time poles by magnitude

Syntax s = dsort(p)
[s,ndx] = dsort(p)

Description dsort sorts the discrete-time poles contained in the vector p in descending
order by magnitude. Unstable poles appear first.

When called with one lefthand argument, dsort returns the sorted poles in s.

[s,ndx] = dsort(p) also returns the vector ndx containing the indices used in
the sort.

Example Sort the following discrete poles.

p =
  -0.2410 + 0.5573i
  -0.2410 - 0.5573i
   0.1503         
  -0.0972         
  -0.2590 

s = dsort(p)

s =
  -0.2410 + 0.5573i
  -0.2410 - 0.5573i
  -0.2590         
   0.1503         
  -0.0972 

Limitations The poles in the vector p must appear in complex conjugate pairs.

See Also eig Calculate eigenvalues and eigenvectors
esort, sort Sort system poles
pole Compute system poles
pzmap Pole-zero map
zero Compute (transmission) zeros
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16dssPurpose Specify descriptor state-space models

Syntax sys = dss(a,b,c,d,e)
sys = dss(a,b,c,d,e,Ts)
sys = dss(a,b,c,d,e,ltisys)

sys = dss(a,b,c,d,e,'Property1',Value1,...,'PropertyN',ValueN)
sys = dss(a,b,c,d,e,Ts,'Property1',Value1,...,'PropertyN',ValueN)

Description sys = dss(a,b,c,d,e) creates the continuous-time descriptor state-space
model

The matrix must be nonsingular. The output sys is an SS model storing the
model data (see “LTI Objects” on page 2-3). Note that ss produces the same
type of object. If the matrix , do can simply set d to the scalar 0 (zero).

sys = dss(a,b,c,d,e,Ts) creates the discrete-time descriptor model

with sample time Ts (in seconds).

sys = dss(a,b,c,d,e,ltisys) creates a descriptor model with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “LTI Properties” on page 2-26 for an overview of generic LTI properties.

Any of the previous syntaxes can be followed by property name/property value
pairs

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or some notes on the model history. See set and the example
below for details.

Example The command

Ex· Ax Bu+=

y Cx Du+=

E

D 0=

Ex n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=
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sys = dss(1,2,3,4,5,'td',0.1,'inputname','voltage',...
'notes','Just an example')

creates the model

with a 0.1 second input delay. The input is labeled 'voltage', and a note is
attached to tell you that this is just an example.

See Also dssdata Retrieve matrices of descriptor model
get Get properties of LTI models
set Set properties of LTI models
ss Specify (regular) state-space models

5x· x 2u+=

y 3x 4u+=

A B C D E, , , ,
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16dssdataPurpose Quick access to descriptor state-space data

Syntax [a,b,c,d,e] = dssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)

Description [a,b,c,d,e] = dssdata(sys) extracts the descriptor matrix data
from the state-space model sys. If sys is a transfer function or

zero-pole-gain model, it is first converted to state space. Note that dssdata is
then equivalent to ssdata because it always returns .

[a,b,c,d,e,Ts] = dssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.notes

See Also dss Specify descriptor state-space models
get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A B C D E, , , ,( )

E I=
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16esortPurpose Sort continuous-time poles by real part

Syntax s = esort(p)
[s,ndx] = esort(p)

Description esort sorts the continuous-time poles contained in the vector p by real part.
Unstable eigenvalues appear first and the remaining poles are ordered by
decreasing real parts.

When called with one left-hand argument, s = esort(p) returns the sorted
eigenvalues in s.

[s,ndx] = esort(p) returns the additional argument ndx, a vector containing
the indices used in the sort.

Example Sort the following continuous eigenvalues.

p
p =
  -0.2410+ 0.5573i
  -0.2410- 0.5573i
   0.1503         
  -0.0972         
  -0.2590 

esort(p)

ans =
   0.1503         
  -0.0972         
  -0.2410+ 0.5573i
  -0.2410- 0.5573i
  -0.2590 

Limitations The eigenvalues in the vector p must appear in complex conjugate pairs.

See Also dsort, sort Sort system poles
eig Calculate eigenvalues and eigenvectors
pole Compute system poles
pzmap Pole-zero map
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zero Compute (transmission) zeros
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16estimPurpose Form state estimator given estimator gain

Syntax est = estim(sys,L)
est = estim(sys,L,sensors,known)

Description est = estim(sys,L) produces a state/output estimator est given the plant
state-space model sys and the estimator gain L. All inputs of sys are
assumed stochastic (process and/or measurement noise), and all outputs are
measured. The estimator est is returned in state-space form (SS object). For a
continuous-time plant sys with equations

estim generates plant output and state estimates and as given by the
following model.

The discrete-time estimator has similar equations.

est = estim(sys,L,sensors,known) handles more general plants sys with
both known inputs and stochastic inputs , and both measured outputs
and nonmeasured outputs .

The index vectors sensors and known specify which outputs are measured
and which inputs are known. The resulting estimator est uses both and

to produce the output and state estimates.

w
y

x· Ax Bw+=

y Cx Dw+=

ŷ x̂

x̂
·

Ax̂ L y Cx̂–( )+=

ŷ
x̂

C
I

x̂=

u w y
z

x· Ax B1w B2u+ +=

z
y

C1

C2

x
D11

D21

w
D12

D22

u+ +=

y
u u

y
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estim handles both continuous- and discrete-time cases. You can use the
functions place (pole placement) or kalman (Kalman filtering) to design an
adequate estimator gain . Note that the estimator poles (eigenvalues of

) should be faster than the plant dynamics (eigenvalues of ) to ensure
accurate estimation.

Example Consider a state-space model sys with seven outputs and four inputs. Suppose
you designed a Kalman gain matrix using outputs 4, 7, and 1 of the plant as
sensor measurements, and inputs 1,4, and 3 of the plant as known
(deterministic) inputs. You can then form the Kalman estimator by

sensors = [4,7,1];
known = [1,4,3];
est = estim(sys,L,sensors,known)

See the function kalman for direct Kalman estimator design.

See Also kalman Design Kalman estimator
place Pole placement
reg Form regulator given state-feedback and estimator

gains

x̂
·

Ax̂ B2u L y C2x̂ D22u––( )+ +=

ŷ
x̂

C2

I
x̂ D22

0
u+=

est
u (known)

y (sensors)

ŷ

x̂

L
A LC– A

L
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16evalfrPurpose Evaluate frequency response at a single (complex) frequency

Syntax frsp = evalfr(sys,f)

Description frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK
model sys at the complex number f. For state-space models with data

, the result is

evalfr is a simplified version of freqresp meant for quick evaluation of the
response at a single point. Use freqresp to compute the frequency response
over a set of frequencies.

Example To evaluate the discrete-time transfer function

at , type

H = tf([1 -1],[1 1 1],-1)
z = 1+j
evalfr(H,z)

ans =
  2.3077e-01 +  1.5385e-01i

Limitations The response is not finite when f is a pole of sys.

See Also bode Bode frequency response
freqresp Frequency response over a set of frequencies
sigma Singular value response

A B C D, , ,( )

H f( ) D C fI A–( ) 1– B+=

H z( ) z 1–

z2 z 1+ +
------------------------=

z 1 j+=
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16feedbackPurpose Feedback connection of two LTI models

Syntax sys = feedback(sys1,sys2)
sys = feedback(sys1,sys2,sign)
sys = feedback(sys1,sys2,feedin,feedout,sign)

Description sys = feedback(sys1,sys2) returns an LTI model sys for the negative
feedback interconnection.

The closed-loop model sys has as input vector and as output vector. The
LTI models sys1 and sys2 must be both continuous or both discrete with
identical sample times. Precedence rules are used to determine the resulting
model type (see Precedence Rules).

To apply positive feedback, use the syntax

sys = feedback(sys1,sys2,+1)

By default, feedback(sys1,sys2) assumes negative feedback and is
equivalent to feedback(sys1,sys2,-1).

Finally,

sys = feedback(sys1,sys2,feedin,feedout)

sys1

sys2

-

+
u y

u y
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computes a closed-loop model sys for the more general feedback loop.

The vector feedin contains indices into the input vector of sys1 and specifies
which inputs are involved in the feedback loop. Similarly, feedout specifies
which outputs of sys1 are used for feedback. The resulting LTI model sys has
the same inputs and outputs as sys1 (with their order preserved). As before,
negative feedback is applied by default and you must use

sys = feedback(sys1,sys2,feedin,feedout,+1)

to apply positive feedback.

For more complicated feedback structures, use append and connect.

Remark You can specify static gains as regular matrices, for example,

sys = feedback(sys1,2)

However, at least one of the two arguments sys1 and sys2 should be an LTI
object. For feedback loops involving two static gains k1 and k2, use the syntax

sys = feedback(tf(k1),k2)

sys1

sys2

-

+
u y

v z

sys

u
y
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Examples Example 1

To connect the plant

with the controller

using negative feedback, type

G = tf([2 5 1],[1 2 3],'inputname','torque',...
'outputname','velocity');

H = zpk(-2,-10,5)
Cloop = feedback(G,H)

and MATLAB returns

Zero/pole/gain from input "torque" to output "velocity":
0.18182 (s+10) (s+2.281) (s+0.2192)
-----------------------------------
 (s+3.419) (s^2 + 1.763s + 1.064)

The result is a zero-pole-gain model as expected from the precedence rules.
Note that Cloop inherited the input and output names from G.

-

+
G

H

velocitytorque

G s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=

H s( ) 5 s 2+( )
s 10+

--------------------=
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Example 2
Consider a state-space plant P with five inputs and four outputs and a
state-space feedback controller Kwith three inputs and two outputs. To connect
outputs 1, 3, and 4 of the plant to the controller inputs, and the controller
outputs to inputs 4 and 2 of the plant, use

feedin = [4 2];
feedout = [1 3 4];
Cloop = feedback(P,K,feedin,feedout)

Example 3
You can form the following negative-feedback loops

by

Cloop = feedback(G,1) % left diagram
Cloop = feedback(1,G) % right diagram

Limitations The feedback connection should be free of algebraic loop. If and are the
feedthrough matrices of sys1 and sys2, this condition is equivalent to:

• nonsingular when using negative feedback

• nonsingular when using positive feedback.

See Also series Series connection
parallel Parallel connection
connect Derive state-space model for block diagram

interconnection

G

G

D1 D2

I D1D2+

I D1D2–
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16filtPurpose Specify discrete transfer functions in DSP format

Syntax sys = filt(num,den)
sys = filt(num,den,Ts)
sys = filt(M)

sys = filt(num,den,'Property1',Value1,...,'PropertyN',ValueN)
sys = filt(num,den,Ts,'Property1',Value1,...,'PropertyN',ValueN)

Description In digital signal processing (DSP), it is customary to write transfer functions
as rational expressions in and to order the numerator and denominator
terms in ascending powers of , for example,

The function filt is provided to facilitate the specification of transfer functions
in DSP format.

sys = filt(num,den) creates a discrete-time transfer function sys with
numerator(s) num and denominator(s) den. The sample time is left unspecified
(sys.Ts = -1) and the output sys is a TF object.

sys = filt(num,den,Ts) further specifies the sample time Ts (in seconds).

sys = filt(M) specifies a static filter with gain matrix M.

Any of the previous syntaxes can be followed by property name/property value
pairs of the form

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or the transfer function variable. See LTI Properties and the set
entry for additional information on LTI properties and admissible property
values.

Arguments For SISO transfer functions, num and den are row vectors containing the
numerator and denominator coefficients ordered in ascending powers of .
For example, den = [1 0.4 2] represents the polynomial .

z 1–

z 1–

H z 1–( ) 2 z 1–
+

1 0.4z 1– 2z 2–
+ +

---------------------------------------------=

z 1–

1 0.4z 1– 2z 2–
+ +
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MIMO transfer functions are regarded as arrays of SISO transfer functions
(one per I/O channel), each of which is characterized by its numerator and
denominator. The input arguments num and den are then cell arrays of row
vectors such that:

• num and den have as many rows as outputs and as many columns as inputs.

• Their entries num{i,j} and den{i,j} specify the numerator and
denominator of the transfer function from input j to output i.

If all SISO entries have the same denominator, you can also set den to the row
vector representation of this common denominator. See also MIMO Transfer
Function Models for alternative ways to specify MIMO transfer functions.

Remark filt behaves as tf with the Variable property set to 'z^-1' or 'q'. See tf
entry below for details.

Example Typing the commands

num = {1 , [1 0.3]}
den = {[1 1 2] ,[5 2]}
H = filt(num,den,'inputname',{'channel1' 'channel2'})

creates the two-input digital filter

with unspecified sample time and input names 'channel1' and 'channel2'.

See Also tf Create transfer functions
zpk Create zero-pole-gain models
ss Create state-space models

i j,( )

H z 1–( ) 1

1 z 1– 2z 2–
+ +

------------------------------------ 1 0.3z 1–
+

5 2z 1–
+

--------------------------=
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16frdPurpose Create a frequency response data (FRD) object or convert another model type
to an FRD model

Syntax sys = frd(response,frequency)
sys = frd(response,frequency,Ts)
sys = frd
sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency)
sysfrd = frd(sys,frequency,'Units',units)

Description sys = frd(response,frequency) creates an FRD model sys from the
frequency response data stored in the multidimensional array response. The
vector frequency represents the underlying frequencies for the frequency
response data. See Table 16-16, Data Format for the Argument response in
FRD Models.

sys = frd(response,frequency,Ts) creates a discrete-time FRD model sys
with scalar sample time Ts. Set Ts = -1 to create a discrete-time FRD model
without specifying the sample time.

sys = frd creates an empty FRD model.

The input argument list for any of these syntaxes can be followed by property
name/property value pairs of the form

'PropertyName',PropertyValue

You can use these extra arguments to set the various properties of FRD models
(see the set command, or LTI Properties and Model-Specific Properties). These
properties include 'Units'. The default units for FRD models are in 'rad/s'.

To force an FRD model sys to inherit all of its generic LTI properties from any
existing LTI model refsys, use the syntax

sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency) converts a TF, SS, or ZPK model to an FRD
model. The frequency response is computed at the frequencies provided by the
vector frequency.
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sysfrd = frd(sys,frequency,'Units',units)converts an FRD model from a
TF, SS, or ZPK model while specifying the units for frequency to be units
('rad/s' or 'Hz').

Arguments When you specify a SISO or MIMO FRD model, or an array of FRD models, the
input argument frequency is always a vector of length Nf, where Nf is the
number of frequency data points in the FRD. The specification of the input
argument response is summarized in the following table.

Remarks See Frequency Response Data (FRD) Models for more information on single
FRD models, and Creating LTI Models for information on building arrays of
FRD models.

Example Type the commands

freq = logspace(1,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq)

to create a SISO FRD model.

See Also chgunits Change units for an FRD model
frdata Quick access to data for an FRD model
set Set the properties for an LTI model
ss Create state-space models

Table 16-16:  Data Format for the Argument response in FRD Models

Model Form Response Data Format

SISO model Vector of length Nf for which response(i) is the
frequency response at the frequency frequency(i)

MIMO model
with Ny outputs
and Nu inputs

Ny-by-Nu-by-Nf multidimensional array for which
response(i,j,k) specifies the frequency response
from input j to output i at frequency frequency(k)

S1-by-...-by-Sn
array of models
with Ny outputs
and Nu inputs

Multidimensional array of size [Ny Nu S1 ... Sn] for
which response(i,j,k,:) specifies the array of
frequency response data from input j to output i at
frequency frequency(k)
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tf Create transfer functions
zpk Create zero-pole-gain models
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16frdataPurpose Quick access to data for a frequency response data object

Syntax [response,freq] = frdata(sys)
[response,freq,Ts] = frdata(sys)
[response,freq] = frdata(sys,'v')

Description [response,freq] = frdata(sys) returns the response data and frequency
samples of the FRD model sys. For an FRD model with Ny outputs and Nu
inputs at Nf frequencies:

• response is an Ny-by-Nu-by-Nf multidimensional array where the (i,j)
entry specifies the response from input j to output i.

• freq is a column vector of length Nf that contains the frequency samples of
the FRD model.

See Table 11-14, “Data Format for the Argument response in FRD Models,” on
page 80 for more information on the data format for FRD response data.

For SISO FRD models, the syntax

[response,freq] = frdata(sys,'v')

forces frdata to return the response data and frequencies directly as column
vectors rather than as cell arrays (see example below).

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.

Other properties of sys can be accessed with get or by direct structure-like
referencing (e.g., sys.Units).

Arguments The input argument sys to frdata must be an FRD model.

Example Typing the commands

freq = logspace(1,2,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq);
[resp,freq] = frdata(sys,'v')

returns the FRD model data

resp = 
0.2040 + 0.4565i
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   2.4359 - 4.3665i

freq =
    10
   100

See Also frd Create or convert to FRD models
get Get the properties for an LTI model
set Set model properties
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16freqrespPurpose Compute frequency response over grid of frequencies

Syntax H = freqresp(sys,w)

Description H = freqresp(sys,w) computes the frequency response of the LTI model sys
at the real frequency points specified by the vector w. The frequencies must be
in radians/sec. For single LTI Models, freqresp(sys,w) returns a 3-D array H
with the frequency as the last dimension (see “Arguments” below). For LTI
arrays of size [Ny Nu S1 ... Sn], freqresp(sys,w) returns a
[Ny-by-Nu-by-S1-by-...-by-Sn] length (w) array.

In continuous time, the response at a frequency ω is the transfer function value
at . For state-space models, this value is given by

In discrete time, the real frequencies w(1),..., w(N) are mapped to points on the
unit circle using the transformation

where is the sample time. The transfer function is then evaluated at the
resulting values. The default is used for models with unspecified
sample time.

Remark If sys is an FRD model, freqresp(sys,w), w can only include frequencies in
sys.frequency. Interpolation and extrapolation are not supported. To
interpolate an FRD model, use interp.

Arguments The output argument H is a 3-D array with dimensions

For SISO systems, H(1,1,k) gives the scalar response at the frequency w(k).
For MIMO systems, the frequency response at w(k) is H(:,:,k), a matrix with
as many rows as outputs and as many columns as inputs.

Example Compute the frequency response of

s jω=

H jω( ) D C jωI A–( ) 1– B+=

z e
jωTs=

Ts
z Ts 1=

number of outputs( ) number of inputs( )× length of w( )×
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at the frequencies . Type

w = [1 10 100]
H = freqresp(P,w)

H(:,:,1) =
 
        0            0.5000- 0.5000i
  -0.2000+ 0.6000i   1.0000         
 
 
H(:,:,2) =
 
        0            0.0099- 0.0990i
   0.9423+ 0.2885i   1.0000         
 
 
H(:,:,3) =
 
        0            0.0001- 0.0100i
   0.9994+ 0.0300i   1.0000 

The three displayed matrices are the values of for

The third index in the 3-D array H is relative to the frequency vector w, so you
can extract the frequency response at rad/sec by

H(:,:,w==10)

ans =
        0            0.0099- 0.0990i
   0.9423+ 0.2885i   1.0000 

P s( )
0 1

s 1+
------------

s 1–
s 2+
------------ 1

=

ω 1 10 100, ,=

P jω( )

ω 1,= ω 10,= ω 100=

ω 10=
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Algorithm For transfer functions or zero-pole-gain models, freqresp evaluates the
numerator(s) and denominator(s) at the specified frequency points. For
continuous-time state-space models , the frequency response is

For efficiency, is reduced to upper Hessenberg form and the linear
equation is solved at each frequency point, taking advantage
of the Hessenberg structure. The reduction to Hessenberg form provides a good
compromise between efficiency and reliability. See [1] for more details on this
technique.

Diagnostics If the system has a pole on the axis (or unit circle in the discrete-time case)
and w happens to contain this frequency point, the gain is infinite, is
singular, and freqresp produces the following warning message.

Singularity in freq. response due to jw-axis or unit circle pole.

See Also evalfr Response at single complex frequency
bode Bode plot
nyquist Nyquist plot
nichols Nichols plot
sigma Singular value plot
ltiview LTI system viewer
interp Interpolate FRD model between frequency points

 References [1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,”
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

A B C D, , ,( )

D C jω A–( ) 1– B ,+ ω ω1 ... ωN, ,=

A
jω A–( )X B=

jω
jωI A–
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16gensigPurpose Generate test input signals for lsim

Syntax [u,t] = gensig(type,tau)
[u,t] = gensig(type,tau,Tf,Ts)

Description [u,t] = gensig(type,tau) generates a scalar signal u of class type and with
period tau (in seconds). The following types of signals are available.

gensig returns a vector t of time samples and the vector u of signal values at
these samples. All generated signals have unit amplitude.

[u,t] = gensig(type,tau,Tf,Ts) also specifies the time duration Tf of the
signal and the spacing Ts between the time samples t.

You can feed the outputs u and t directly to lsim and simulate the response of
a single-input linear system to the specified signal. Since t is uniquely
determined by Tf and Ts, you can also generate inputs for multi-input systems
by repeated calls to gensig.

Example Generate a square wave with period 5 seconds, duration 30 seconds, and
sampling every 0.1 seconds.

[u,t] = gensig('square',5,30,0.1)

Plot the resulting signal.

plot(t,u)

type = 'sin' Sine wave.

type = 'square' Square wave.

type = 'pulse' Periodic pulse.
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axis([0 30 -1 2])

See Also lsim Simulate response to arbitrary inputs
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16getPurpose Access/query LTI property values

Syntax Value = get(sys,'PropertyName')
get(sys)
Struct = get(sys)

Description Value = get(sys,'PropertyName') returns the current value of the property
PropertyName of the LTI model sys. The string 'PropertyName' can be the full
property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user'). You can specify any generic LTI property,
or any property specific to the model sys (see “LTI Properties” for details on
generic and model-specific LTI properties).

Struct = get(sys) converts the TF, SS, or ZPK object sys into a standard
MATLAB structure with the property names as field names and the property
values as field values.

Without left-hand argument,

get(sys)

displays all properties of sys and their values.

Example Consider the discrete-time SISO transfer function defined by

h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')

You can display all LTI properties of h with

get(h)
num = {[0 1]}
den = {[1 2]}

        Variable = 'z'
        Ts = 0.1
        InputDelay = 0
        OutputDelay = 0
        ioDelay = 0
        InputName = {'voltage'}
        OutputName = {''}
        InputGroup = {0x2 cell}
        OutputGroup = {0x2 cell}



get

16-91

        Notes = {}
        UserData = 'hello'

or query only about the numerator and sample time values by

get(h,'num')

ans = 
    [1x2 double]

and

get(h,'ts')

ans =
    0.1000

Because the numerator data (num property) is always stored as a cell array, the
first command evaluates to a cell array containing the row vector [0 1].

Remark An alternative to the syntax

Value = get(sys,'PropertyName')

is the structure-like referencing

Value = sys.PropertyName

For example,

sys.Ts
sys.a
sys.user

return the values of the sample time, matrix, and UserData property of the
(state-space) model sys.

See Also frdata Quick access to frequency response data
set Set/modify LTI properties
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A
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16gramPurpose Compute controllability and observability state-space
models:descriptor;state-space models:quick data retrievalgrammians

Syntax Wc = gram(sys,'c')
Wo = gram(sys,'o')

Description gram calculates controllability and observability grammians. You can use
grammians to study the controllability and observability properties of
state-space models and for model reduction [1,2]. They have better numerical
properties than the controllability and observability matrices formed by ctrb
and obsv.

Given the continuous-time state-space model

the controllability grammian is defined by

and the observability grammian by

The discrete-time counterparts are

The controllability grammian is positive definite if and only if is
controllable. Similarly, the observability grammian is positive definite if and
only if is observable.

Use the commands

Wc = gram(sys,'c') % controllability grammian
Wo = gram(sys,'o') % observability grammian

x· Ax Bu+=

y Cx Du+=

Wc eAτBBTeATτ τd
0

∞

�=

Wo eATτCTCeAτ τd
0

∞

�=

Wc AkBBT AT( )
k

,

k 0=

∞

�= Wo AT( )
k
CTCAk

k 0=

∞

�=

A B,( )

C A,( )
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to compute the grammians of a continuous or discrete system. The LTI model
sys must be in state-space form.

Algorithm The controllability grammian is obtained by solving the continuous-time
Lyapunov equation

or its discrete-time counterpart

Similarly, the observability grammian solves the Lyapunov equation

in continuous time, and the Lyapunov equation

in discrete time.

Limitations The matrix must be stable (all eigenvalues have negative real part in
continuous time, and magnitude strictly less than one in discrete time).

See Also balreal Grammian-based balancing of state-space realizations
ctrb Controllability matrix
lyap, dlyap Lyapunov equation solvers
obsv Observability matrix

 References [1] Kailath, T., Linear Systems, Prentice-Hall, 1980.

Wc

AWc WcAT BBT
+ + 0=

AWcAT Wc– BBT
+ 0=

Wo

ATWo WoA CTC+ + 0=

ATWoA Wo– CTC+ 0=

A
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16hasdelayPurpose Test if an LTI model has time delays

Syntax hasdelay(sys)

Description hasdelay(sys) returns 1 (true) if the LTI model sys has input delays, output
delays, or I/O delays, and 0 (false) otherwise.

See Also delay2z Changes transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information

totaldelay Combines delays for an LTI model
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16impulsePurpose Compute the impulse response of LTI models

Syntax impulse(sys)
impulse(sys,t)

impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,t)
impulse(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[y,t,x] = impulse(sys)

Description impulse calculates the unit impulse response of a linear system. The impulse
response is the response to a Dirac input for continuous-time systems and
to a unit pulse at for discrete-time systems. Zero initial state is assumed
in the state-space case. When invoked without left-hand arguments, this
function plots the impulse response on the screen.

impulse(sys) plots the impulse response of an arbitrary LTI model sys. This
model can be continuous or discrete, and SISO or MIMO. The impulse response
of multi-input systems is the collection of impulse responses for each input
channel. The duration of simulation is determined automatically to display the
transient behavior of the response.

impulse(sys,t) sets the simulation horizon explicitly. You can specify either
a final time t = Tfinal (in seconds), or a vector of evenly spaced time samples
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see “Algorithm”), so make sure to choose dt small enough to capture
transient phenomena.

To plot the impulse responses of several LTI models sys1,..., sysN on a single
figure, use

impulse(sys1,sys2,...,sysN) 
impulse(sys1,sys2,...,sysN,t)

δ t( )
t 0=
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As with bode or plot, you can specify a particular color, linestyle, and/or
marker for each system, for example,

impulse(sys1,'y:',sys2,'g--')

See “Plotting and Comparing Multiple Systems” on and the bode entry in this
chapter for more details.

When invoked with lefthand arguments,

[y,t] = impulse(sys)
[y,t,x] = impulse(sys) % for state-space models only
y = impulse(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. For single-input systems, y has as many rows as time samples (length
of t), and as many columns as outputs. In the multi-input case, the impulse
responses of each input channel are stacked up along the third dimension of y.
The dimensions of y are then

and y(:,:,j) gives the response to an impulse disturbance entering the jth
input channel. Similarly, the dimensions of x are

Example To plot the impulse response of the second-order state-space model

use the following commands.

a = [-0.5572 -0.7814;0.7814  0];
b = [1 -1;0 2];
c = [1.9691  6.4493];

length of t( ) number of outputs( ) number of inputs( )××

length of t( ) number of states( ) number of inputs( )××

x·1

x·2

0.5572– 0.7814–

0.7814 0

x1

x2

1 1–

0 2

u1

u2

+=

y 1.9691 6.4493
x1

x2

=
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sys = ss(a,b,c,0);
impulse(sys)

The left plot shows the impulse response of the first input channel, and the
right plot shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by

[y,t] = impulse(sys)

Because this system has two inputs, y is a 3-D array with dimensions

size(y)

ans =
   101     1     2

(the first dimension is the length of t). The impulse response of the first input
channel is then accessed by

y(:,:,1)
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Algorithm Continuous-time models are first converted to state space. The impulse
response of a single-input state-space model

is equivalent to the following unforced response with initial state .

To simulate this response, the system is discretized using zero-order hold on
the inputs. The sampling period is chosen automatically based on the system
dynamics, except when a time vector t = 0:dt:Tf is supplied (dt is then used
as sampling period).

Limitations The impulse response of a continuous system with nonzero matrix is infinite
at . impulse ignores this discontinuity and returns the lower continuity
value at .

See Also ltiview LTI system viewer
step Step response
initial Free response to initial condition
lsim Simulate response to arbitrary inputs

x· Ax bu+=

y Cx=

b

x· Ax ,= x 0( ) b=

y Cx=

D
t 0=

Cb t 0=
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16initialPurpose Compute the initial condition response of state-space models

Syntax initial(sys,x0)
initial(sys,x0,t)

initial(sys1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,t)
initial(sys1,'PlotStyle1',...,sysN,'PlotStyleN',x0)

[y,t,x] = initial(sys,x0)

Description initial calculates the unforced response of a state-space model with an initial
condition on the states.

This function is applicable to either continuous- or discrete-time models. When
invoked without lefthand arguments, initial plots the initial condition
response on the screen.

initial(sys,x0) plots the response of sys to an initial condition x0 on the
states. sys can be any state-space model (continuous or discrete, SISO or
MIMO, with or without inputs). The duration of simulation is determined
automatically to reflect adequately the response transients.

initial(sys,x0,t) explicitly sets the simulation horizon. You can specify
either a final time t = Tfinal (in seconds), or a vector of evenly spaced time
samples of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see impulse), so make sure to choose dt small enough to capture
transient phenomena.

To plot the initial condition responses of several LTI models on a single figure,
use

x· Ax ,= x 0( ) x0=

y Cx=
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initial(sys1,sys2,...,sysN,x0) 
initial(sys1,sys2,...,sysN,x0,t)

(see impulse for details).

When invoked with lefthand arguments,

[y,t,x] = initial(sys,x0)
[y,t,x] = initial(sys,x0,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x. No plot is drawn on the screen. The array y has as many
rows as time samples (length of t) and as many columns as outputs. Similarly,
x has length(t) rows and as many columns as states.

Example Plot the response of the state-space model

to the initial condition

a = [-0.5572   -0.7814;0.7814  0];
c = [1.9691  6.4493];
x0 = [1 ; 0]

sys = ss(a,[],c,[]);

x·1

x·2

0.5572– 0.7814–

0.7814 0

x1

x2

=

y 1.9691 6.4493
x1

x2

=

x 0( ) 1
0

=
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initial(sys,x0)

See Also impulse Impulse response
lsim Simulate response to arbitrary inputs
ltiview LTI system viewer
step Step response
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16interpPurpose Interpolate an FRD model between frequency points

Syntax isys = interp(sys,freqs) interpolates the frequency response data
contained in the FRD model sys at the frequencies freqs. interp, which is an
overloaded version of the MATLAB function interp, uses linear interpolation
and returns an FRD model isys containing the interpolated data at the new
frequencies freqs.

You should express the frequency values freqs in the same units as
sys.frequency. The frequency values must lie between the smallest and
largest frequency points in sys (extrapolation is not supported).

freqresp Frequency response of LTI models
ltimodels Help on LTI models
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16invPurpose Invert LTI systems

Syntax isys = inv(sys)

Description inv inverts the input/output relation

to produce the LTI system with the transfer matrix .

This operation is defined only for square systems (same number of inputs and
outputs) with an invertible feedthrough matrix . inv handles both
continuous- and discrete-time systems.

Example Consider

At the MATLAB prompt, type

H = [1 tf(1,[1 1]);0 1]
Hi = inv(H)

to invert it. MATLAB returns

Transfer function from input 1 to output...
 #1:  1
 
 #2:  0
 
Transfer function from input 2 to output...
       -1
 #1:  -----
      s + 1
 
 #2:  1

You can verify that

y G s( )u=

H s( ) G s( ) 1–
=

u H s( )y=

D

H s( ) 1 1
s 1+
------------

0 1

=
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H * Hi

is the identity transfer function (static gain I).

Limitations Do not use inv to model feedback connections such as

While it seems reasonable to evaluate the corresponding closed-loop transfer
function as

inv(1+g*h) * g

this typically leads to nonminimal closed-loop models. For example,

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

yields a third-order closed-loop model with an unstable pole-zero cancellation
at s = 1.

cloop

Zero/pole/gain:
      s (s-1)
-------------------
(s-1) (s^2 + s + 1)

Use feedback to avoid such pitfalls.

cloop = feedback(g,h)

Zero/pole/gain:
      s
-------------
(s^2 + s + 1)

-

+
G

H

I GH+( ) 1– G
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16isct, isdtPurpose Determine whether an LTI model is continuous or discrete

Syntax boo = isct(sys)
boo = isdt(sys)

Description boo = isct(sys) returns 1 (true) if the LTI model sys is continuous and 0
(false) otherwise. sys is continuous if its sample time is zero, that is, sys.Ts=0.

boo = isdt(sys) returns 1 (true) if sys is discrete and 0 (false) otherwise.
Discrete-time LTI models have a nonzero sample time, except for empty models
and static gains, which are regarded as either continuous or discrete as long as
their sample time is not explicitly set to a nonzero value. Thus both

isct(tf(10))
isdt(tf(10)) 

are true. However, if you explicitly label a gain as discrete, for example, by
typing

g = tf(10,'ts',0.01)

isct(g) now returns false and only isdt(g) is true.

See Also isa Determine LTI model type
isempty True for empty LTI models
isproper True for proper LTI models
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16isemptyPurpose Test if an LTI model is empty

Syntax boo = isempty(sys)

Description isempty(sys) returns 1 (true) if the LTI model sys has no input or no output,
and 0 (false) otherwise.

Example Both commands

isempty(tf) % tf by itself returns an empty transfer function
isempty(ss(1,2,[],[]))

return 1 (true) while

isempty(ss(1,2,3,4))

returns 0 (false).

See Also issiso True for SISO systems
size I/O dimensions and array dimensions of LTI models
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16isproperPurpose Test if an LTI model is proper

Syntax boo = isproper(sys)

Description isproper(sys) returns 1 (true) if the LTI model sys is proper and 0 (false)
otherwise.

State-space models are always proper. SISO transfer functions or
zero-pole-gain models are proper if the degree of their numerator is less than
or equal to the degree of their denominator. MIMO transfer functions are
proper if all their SISO entries are proper.

Example The following commands

isproper(tf([1 0],1))  % transfer function s
isproper(tf([1 0],[1 1])) % transfer function s/(s+1)

return false and true, respectively.
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16issisoPurpose Test if an LTI model is single-input/single-output (SISO)

Syntax boo = issiso(sys)

Description issiso(sys) returns 1 (true) if the LTI model sys is SISO and 0 (false)
otherwise.

See Also isempty True for empty LTI models
size I/O dimensions and array dimensions of LTI models
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16kalmanPurpose Design continuous- or discrete-time Kalman estimator

Syntax [kest,L,P] = kalman(sys,Qn,Rn,Nn)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn) % discrete time only
[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)

Description kalman designs a Kalman state estimator given a state-space model of the
plant and the process and measurement noise covariance data. The Kalman
estimator is the optimal solution to the following continuous or discrete
estimation problems.

Continuous-Time Estimation

Given the continuous plant

with known inputs and process and measurement white noise
satisfying

construct a state estimate that minimizes the steady-state error
covariance

The optimal solution is the Kalman filter with equations

where the filter gain is determined by solving an algebraic Riccati equation.
This estimator uses the known inputs and the measurements to generate

x· Ax Bu Gw+ += (state equation)
yv Cx Du Hw v+ + += (measurement equation)

u w v,

E w( ) E v( ) 0 , E wwT( ) Q ,= E vvT( ) R= , E wvT( ) N== =

x̂ t( )

P E x x̂–{ } x x̂–{ }T( )
t ∞→
lim=

x̂
·

Ax̂ Bu L yv Cx̂– Du–( )+ +=

ŷ
x̂

C
I

x̂ D
0

u+=

L
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the output and state estimates and . Note that estimates the true plant
output

Discrete-Time Estimation

Given the discrete plant

and the noise covariance data

the Kalman estimator has equations

y x y

y Cx Du Hw+ +=

w

u

v

+

yv

x̂

Plant
y

Kalman
filter

u
ŷ

(Measurement noise)

Kalman estimator

x n 1+[ ] Ax n[ ] Bu n[ ] Gw n[ ]++=

yv n[ ] Cx n[ ] Du n[ ] Hw n[ ] v n[ ]+ + +=
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and generates optimal “current” output and state estimates and
using all available measurements including . The gain matrices and

are derived by solving a discrete Riccati equation. The innovation gain
is used to update the prediction using the new measurement .

Usage [kest,L,P] = kalman(sys,Qn,Rn,Nn) returns a state-space model kest of the
Kalman estimator given the plant model sys and the noise covariance data Qn,
Rn, Nn (matrices above). sys must be a state-space model with matrices

The resulting estimator kest has as inputs and (or their
discrete-time counterparts) as outputs. You can omit the last input argument
Nn when .

The function kalman handles both continuous and discrete problems and
produces a continuous estimator when sys is continuous, and a discrete
estimator otherwise. In continuous time, kalman also returns the Kalman gain
L and the steady-state error covariance matrix P. Note that P is the solution of
the associated Riccati equation. In discrete time, the syntax

[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn)

returns the filter gain and innovations gain , as well as the steady-state
error covariances

Finally, use the syntaxes

[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn,sensors,known)

y n n[ ] x n n[ ]
yv n[ ] L

M M
x̂ n n 1–[ ] yv n[ ]

x̂ n n[ ] x̂ n n 1–[ ] M yv n[ ] Cx̂ n n 1–[ ]– Du n[ ]–( )+=

innovation

� � � � � � � � � � � � �

Q R N, ,

A B G C D H, , ,

u yv;[ ] ŷ ; x̂[ ]

N 0=

L M

P E e n n 1–[ ]e n n 1–[ ]T( ) ,
n ∞→
lim= e n n 1–[ ] x n[ ] x n n 1–[ ]–=

Z E e n n[ ]e n n[ ]T( ) ,
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lim= e n n[ ] x n[ ] x n n[ ]–=
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for more general plants sys where the known inputs and stochastic inputs
are mixed together, and not all outputs are measured. The index vectors

sensors and known then specify which outputs of sys are measured and
which inputs are known. All other inputs are assumed stochastic.

Example See LQG Design for the x-Axis and Kalman Filtering for examples that use the
kalman function.

Limitations The plant and noise data must satisfy:

• detectable

• and

• has no uncontrollable mode on the imaginary
axis (or unit circle in discrete time)

with the notation

See Also care Solve continuous-time Riccati equations
dare Solve discrete-time Riccati equations
estim Form estimator given estimator gain
kalmd Discrete Kalman estimator for continuous plant
lqgreg Assemble LQG regulator
lqr Design state-feedback LQ regulator

 References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

u
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16kalmdPurpose Design discrete Kalman estimator for continuous plant

Syntax [kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)

Description kalmd designs a discrete-time Kalman estimator that has response
characteristics similar to a continuous-time estimator designed with kalman.
This command is useful to derive a discrete estimator for digital
implementation after a satisfactory continuous estimator has been designed.

[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts) produces a discrete Kalman
estimator kest with sample time Ts for the continuous-time plant

with process noise and measurement noise satisfying

The estimator kest is derived as follows. The continuous plant sys is first
discretized using zero-order hold with sample time Ts (see c2d entry), and the
continuous noise covariance matrices and are replaced by their discrete
equivalents

The integral is computed using the matrix exponential formulas in [2]. A
discrete-time estimator is then designed for the discretized plant and noise. See
kalman for details on discrete-time Kalman estimation.

kalmd also returns the estimator gains L and M, and the discrete error
covariance matrices P and Z (see kalman for details).

Limitations The discretized problem data should satisfy the requirements for kalman.

See Also kalman Design Kalman estimator

x· Ax Bu Gw+ += (state equation)
yv Cx Du v+ += (measurement equation)

w v

E w( ) E v( ) 0 , E wwT( ) Qn ,= E vvT( ) Rn= , E wvT( ) 0== =

Qn Rn

Qd eAτGQGTeATτ τd
0

Ts

�=

Rd R Ts⁄=
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lqgreg Assemble LQG regulator
lqrd Discrete LQ-optimal gain for continuous plant

 References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,”
IEEE Trans. Automatic Control, AC-15, October 1970.
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16lftPurpose Redheffer star product (linear fractional transformation) of two LTI models

Syntax sys = lft(sys1,sys2)
sys = lft(sys1,sys2,nu,ny)

Description lft forms the star product or linear fractional transformation (LFT) of two LTI
models or LTI arrays. Such interconnections are widely used in robust control
techniques.

sys = lft(sys1,sys2,nu,ny) forms the star product sys of the two LTI
models (or LTI arrays) sys1 and sys2. The star product amounts to the
following feedback connection for single LTI models (or for each model in an
LTI array).

This feedback loop connects the first nu outputs of sys2 to the last nu inputs of
sys1 (signals ), and the last ny outputs of sys1 to the first ny inputs of sys2
(signals ). The resulting system sys maps the input vector to the
output vector .

The abbreviated syntax

sys = lft(sys1,sys2)

sys1

sys2

sys

z1

z2w2

w1

u

uy

y

u
y w1 ; w2[ ]

z1 ; z2[ ]
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produces:

• The lower LFT of sys1 and sys2 if sys2 has fewer inputs and outputs than
sys1. This amounts to deleting and in the above diagram.

• The upper LFT of sys1 and sys2 if sys1 has fewer inputs and outputs than
sys2. This amounts to deleting and in the above diagram.

Algorithm The closed-loop model is derived by elementary state-space manipulations.

Limitations There should be no algebraic loop in the feedback connection.

See Also connect Derive state-space model for block diagram
interconnection

feedback Feedback connection

w2 z2

w1 z1

sys1

sys2

u
y u

y

z1

z2w2

w1

sys1

sys2

Lower LFT connection Upper LFT connection
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16lqgregPurpose Form LQG regulator given state-feedback gain and Kalman estimator

Syntax rlqg = lqgreg(kest,k)
rlqg = lqgreg(kest,k,'current') % discrete-time only

rlqg = lqgreg(kest,k,controls)

Description lqgreg forms the LQG regulator by connecting the Kalman estimator designed
with kalman and the optimal state-feedback gain designed with lqr, dlqr, or
lqry. The LQG regulator minimizes some quadratic cost function that trades
off regulation performance and control effort. This regulator is dynamic and
relies on noisy output measurements to generate the regulating commands.

In continuous time, the LQG regulator generates the commands

where is the Kalman state estimate. The regulator state-space equations are

where is the vector of plant output measurements (see kalman for
background and notation). The diagram below shows this dynamic regulator in
relation to the plant.

u Kx̂–=

x̂

x̂
·

A LC– B LD–( )K– x̂ Lyv+=

u Kx̂–=

yv
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In discrete time, you can form the LQG regulator using either the prediction
of based on measurements up to , or the current state

estimate based on all available measurements including . While
the regulator

is always well-defined, the current regulator

is causal only when is invertible (see kalman for the notation). In
addition, practical implementations of the current regulator should allow for
the processing time required to compute once the measurements
become available (this amounts to a time delay in the feedback loop).

Usage rlqg = lqgreg(kest,k) returns the LQG regulator rlqg (a state-space model)
given the Kalman estimator kest and the state-feedback gain matrix k. The
same function handles both continuous- and discrete-time cases. Use
consistent tools to design kest and k:

• Continuous regulator for continuous plant: use lqr or lqry and kalman.

• Discrete regulator for discrete plant: use dlqr or lqry and kalman.

u

y

+

+x̂
K–

LQG regulator

u

Plant

Measurement
noise

Kalman
filter

Process
noise

yv

x̂ n n 1–[ ] x n[ ] yv n 1–[ ]
x̂ n n[ ] yv n[ ]

u n[ ] Kx̂ n n 1–[ ]–=

u n[ ] Kx̂ n n[ ]–=

I KMD–

u n[ ] yv n[ ]
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• Discrete regulator for continuous plant: use lqrd and kalmd.

In discrete time, lqgreg produces the regulator

by default (see “Description”). To form the “current” LQG regulator instead, use

the syntax

rlqg = lqgreg(kest,k,'current')

This syntax is meaningful only for discrete-time problems.

rlqg = lqgreg(kest,k,controls) handles estimators that have access to
additional known plant inputs . The index vector controls then specifies
which estimator inputs are the controls , and the resulting LQG regulator
rlqg has and as inputs (see figure below).

Note:   Always use positive feedback to connect the LQG regulator to the
plant.

Example See the example LQG Regulation.

u n[ ] Kx̂ n n 1–[ ]–=

u n[ ] Kx̂ n n[ ]–=

ud
u

ud yv

x̂

u

yv

Kalman

estimator
ud K– u

LQG regulator
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See Also kalman Kalman estimator design
kalmd Discrete Kalman estimator for continuous plant
lqr, dlqr State-feedback LQ regulator
lqrd Discrete LQ regulator for continuous plant
lqry LQ regulator with output weighting
reg Form regulator given state-feedback and estimator

gains
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16lqrPurpose Design linear-quadratic (LQ) state-feedback regulator for continuous plant

Syntax [K,S,e] = lqr(A,B,Q,R)
[K,S,e] = lqr(A,B,Q,R,N)

Description [K,S,e] = lqr(A,B,Q,R,N) calculates the optimal gain matrix K such that the
state-feedback law

minimizes the quadratic cost function

for the continuous-time state-space model

The default value N=0 is assumed when N is omitted.

In addition to the state-feedback gain K, lqr returns the solution S of the
associated Riccati equation

and the closed-loop eigenvalues e = eig(A-B*K). Note that is derived from
by

Limitations The problem data must satisfy:

• The pair is stabilizable.

• and .

• has no unobservable mode on the imaginary
axis.

See Also care Solve continuous Riccati equations
dlqr State-feedback LQ regulator for discrete plant
lqgreg Form LQG regulator
lqrd Discrete LQ regulator for continuous plant
lqry State-feedback LQ regulator with output weighting

u Kx–=

J u( ) xTQx uTRu 2xTNu+ +( ) td
0

∞

�=

x· Ax Bu+=

ATS SA SB N+( )R 1– BTS NT
+( )– Q+ + 0=

K
S

K R 1– BTS NT
+( )=

A B,( )
R 0> Q NR 1– NT
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16lqrdPurpose Design discrete LQ regulator for continuous plant

Syntax [Kd,S,e] = lqrd(A,B,Q,R,Ts)
[Kd,S,e] = lqrd(A,B,Q,R,N,Ts)

Description lqrd designs a discrete full-state-feedback regulator that has response
characteristics similar to a continuous state-feedback regulator designed using
lqr. This command is useful to design a gain matrix for digital implementation
after a satisfactory continuous state-feedback gain has been designed.

[Kd,S,e] = lqrd(A,B,Q,R,Ts) calculates the discrete state-feedback law

that minimizes a discrete cost function equivalent to the continuous cost
function

The matrices A and B specify the continuous plant dynamics

and Ts specifies the sample time of the discrete regulator. Also returned are the
solution S of the discrete Riccati equation for the discretized problem and the
discrete closed-loop eigenvalues e = eig(Ad-Bd*Kd).

[Kd,S,e] = lqrd(A,B,Q,R,N,Ts) solves the more general problem with a
cross-coupling term in the cost function.

Algorithm The equivalent discrete gain matrix Kd is determined by discretizing the
continuous plant and weighting matrices using the sample time Ts and the
zero-order hold approximation.

With the notation

u n[ ] Kdx n[ ]–=

J xTQx uTRu+( ) td
0

∞

�=

x· Ax Bu+=

J xTQx uTRu 2xTNu+ +( ) td
0

∞

�=
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the discretized plant has equations

and the weighting matrices for the equivalent discrete cost function are

The integrals are computed using matrix exponential formulas due to Van
Loan (see [2]). The plant is discretized using c2d and the gain matrix is
computed from the discretized data using dlqr.

Limitations The discretized problem data should meet the requirements for dlqr.

See Also c2d Discretization of LTI model
dlqr State-feedback LQ regulator for discrete plant
kalmd Discrete Kalman estimator for continuous plant
lqr State-feedback LQ regulator for continuous plant

References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1980, pp. 439–440

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,”
IEEE Trans. Automatic Control, AC-15, October 1970.
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16lqryPurpose Linear-quadratic (LQ) state-feedback regulator with output weighting

Syntax [K,S,e] = lqry(sys,Q,R)
[K,S,e] = lqry(sys,Q,R,N)

Description Given the plant

or its discrete-time counterpart, lqry designs a state-feedback control

that minimizes the quadratic cost function with output weighting

(or its discrete-time counterpart). The function lqry is equivalent to lqr or
dlqr with weighting matrices:

[K,S,e] = lqry(sys,Q,R,N) returns the optimal gain matrix K, the Riccati
solution S, and the closed-loop eigenvalues e = eig(A-B*K). The state-space
model sys specifies the continuous- or discrete-time plant data .
The default value N=0 is assumed when N is omitted.

Example See LQG Design for the x-Axis for an example.

Limitations The data must satisfy the requirements for lqr or dlqr.

See Also lqr State-feedback LQ regulator for continuous plant
dlqr State-feedback LQ regulator for discrete plant
kalman Kalman estimator design
lqgreg Form LQG regulator
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16lsimPurpose Simulate LTI model response to arbitrary inputs

Syntax lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,'zoh')
lsim(sys,u,t,x0,'foh')

lsim(sys1,sys2,...,sysN,u,t)
lsim(sys1,sys2,...,sysN,u,t,x0)
lsim(sys1,'PlotStyle1',...,sysN,'PlotStyleN',u,t)

[y,t,x] = lsim(sys,u,t,x0)

Description lsim simulates the (time) response of continuous or discrete linear systems to
arbitrary inputs. When invoked without left-hand arguments, lsim plots the
response on the screen.

lsim(sys,u,t) produces a plot of the time response of the LTI model sys to the
input time history t,u. The vector t specifies the time samples for the
simulation and consists of regularly spaced time samples.

t = 0:dt:Tfinal

The matrix u must have as many rows as time samples (length(t)) and as
many columns as system inputs. Each row u(i,:) specifies the input value(s)
at the time sample t(i).

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete
time, u must be sampled at the same rate as the system (t is then redundant
and can be omitted or set to the empty matrix). In continuous time, the time
sampling dt=t(2)-t(1) is used to discretize the continuous model. If dt is too
large (undersampling), lsim issues a warning suggesting that you use a more
appropriate sample time, but will use the specified sample time. See Algorithm
on page 116 for a discussion of sample times.

lsim(sys,u,t,x0) further specifies an initial condition x0 for the system
states. This syntax applies only to state-space models.

lsim(sys,u,t,x0,'zoh') or lsim(sys,u,t,x0,'foh') explicitly specifies how
the input values should be interpolated between samples (zero-order hold or
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linear interpolation). By default, lsim selects the interpolation method
automatically based on the smoothness of the signal U.

Finally,

lsim(sys1,sys2,...,sysN,u,t)

simulates the responses of several LTI models to the same input history t,u and
plots these responses on a single figure. As with bode or plot, you can specify
a particular color, linestyle, and/or marker for each system, for example,

lsim(sys1,'y:',sys2,'g--',u,t,x0)

The multisystem behavior is similar to that of bode or step.

When invoked with left-hand arguments,

[y,t] = lsim(sys,u,t)
[y,t,x] = lsim(sys,u,t) % for state-space models only
[y,t,x] = lsim(sys,u,t,x0) % with initial state

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. The matrix y has as many rows as time samples (length(t)) and as
many columns as system outputs. The same holds for x with “outputs” replaced
by states. Note that the output tmay differ from the specified time vector when
the input data is undersampled (see “Algorithm”).

Example Simulate and plot the response of the system

to a square wave with period of four seconds. First generate the square wave
with gensig. Sample every 0.1 second during 10 seconds:

[u,t] = gensig('square',4,10,0.1);

Then simulate with lsim.

H s( )

2s2 5s 1+ +

s2 2s 3+ +
-------------------------------

s 1–

s2 s 5+ +
------------------------

=
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H = [tf([2 5 1],[1 2 3]) ; tf([1 -1],[1 1 5])]
lsim(H,u,t)

Algorithm Discrete-time systems are simulated with ltitr (state space) or filter
(transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh' or
'foh' method ('foh' is used for smooth input signals and 'zoh' for
discontinuous signals such as pulses or square waves). The sampling period is
set to the spacing dt between the user-supplied time samples t.

The choice of sampling period can drastically affect simulation results. To
illustrate why, consider the second-order model

To simulate its response to a square wave with period 1 second, you can proceed
as follows:

H s( ) ω2

s2 2s ω2
+ +

------------------------------- ,= ω 62.83=
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w2 = 62.83^2
h = tf(w2,[1 2 w2])
t = 0:0.1:5; % vector of time samples
u = (rem(t,1)>=0.5); % square wave values
lsim(h,u,t)

lsim evaluates the specified sample time, gives this warning

Warning: Input signal is undersampled. Sample every 0.016 sec or 
faster.

and produces this plot.

To improve on this response, discretize using the recommended sampling
period:

dt=0.016;
ts=0:dt:5;
us = (rem(ts,1)>=0.5)
hd = c2d(h,dt)

H s( )
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lsim(hd,us,ts)

This response exhibits strong oscillatory behavior hidden from the
undersampled version.

See Also gensig Generate test input signals for lsim
impulse Impulse response
initial Free response to initial condition
ltiview LTI system viewer
step Step response
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16ltimodelsPurpose Help on LTI models

Syntax ltimodels

ltimodels(modeltype)

Description ltimodels displays general information on the various types of LTI models
supported in the Control System Toolbox.

ltimodels(modeltype) gives additional details and examples for each type of
LTI model. The string modeltype selects the model type among the following:

• tf — Transfer functions (TF objects)

• zpk — Zero-pole-gain models (ZPK objects)

• ss — State-space models (SS objects)

• frd — Frequency response data models (FRD objects).

Note that you can type

ltimodels zpk

as a shorthand for

ltimodels('zpk')

 See Also frd Create or convert to FRD models
ltiprops Help on LTI model properties
ss Create or convert to a state-space model
tf Create or convert to a transfer function model
zpk Create or convert to a zero/pole/gain model
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16ltipropsPurpose Help on LTI model properties

Syntax ltimodels

ltimodels(modeltype)

Description ltiprops displays details on the generic properties of LTI models.

ltiprops(modeltype) gives details on the properties specific to the various
types of LTI models. The string modeltype selects the model type among the
following:

• tf' — transfer functions (TF objects)

• zpk — zero-pole-gain models (ZPK objects)

• ss — state-space models (SS objects)

• frd — frequency response data (FRD objects).

Note that you can type

ltiprops tf

as a shorthand for

ltiprops('tf')

See also get Get the properties for an LTI model
ltimodels Help on LTI models
set Set or modify LTI model properties
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16ltiviewPurpose Initialize an LTI Viewer for LTI system response analysis

Syntax ltiview 
ltiview(sys1,sys2,...,sysn)
ltiview('plottype',sys1,sys2,...,sysn)
ltiview('plottype',sys,extras)
ltiview('clear',viewers) 
ltiview('current',sys1,sys2,...,sysn,viewers) 

Description ltiview when invoked without input arguments, initializes a new LTI Viewer
for LTI system response analysis.

ltiview(sys1,sys2,...,sysn) opens an LTI Viewer containing the step
response of the LTI models sys1,sys2,...,sysn. You can specify a distinctive
color, line style, and marker for each system, as in

       sys1 = rss(3,2,2);
       sys2 = rss(4,2,2);
       ltiview(sys1,'r-*',sys2,'m--');

ltiview('plottype',sys) initializes an LTI Viewer containing the LTI
response type indicated by plottype for the LTI model sys. The string
plottype can be any one of the following:

'step'
'impulse'
'initial'
'lsim'
'pzmap'
'bode'
'nyquist'
'nichols'
'sigma'

or,

plottype can be a cell vector containing up to six of these plot types. For
example,

ltiview({'step';'nyquist'},sys)

displays the plots of both of these response types for a given system sys.
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ltiview(plottype,sys,extras) allows the additional input arguments
supported by the various LTI model response functions to be passed to the
ltiview command.

extras is one or more input arguments as specified by the function named in
plottype. These arguments may be required or optional, depending on the type
of LTI response. For example, if plottype is 'step' then extras may be the
desired final time, Tfinal, as shown below.

ltiview('step',sys,Tfinal)

However, if plottype is 'initial', the extras arguments must contain the
initial conditions x0 and may contain other arguments, such as Tfinal.

ltiview('initial',sys,x0,Tfinal)

See the individual references pages of each possible plottype commands for a
list of appropriate arguments for extras.

ltiview('clear',viewers) clears the plots and data from the LTI Viewers
with handles viewers.

ltiview('current',sys1,sys2,...,sysn,viewers) adds the responses of the
systems sys1,sys2,...,sysn to the LTI Viewers with handles viewers. If
these new systems do not have the same I/O dimensions as those currently in
the LTI Viewer, the LTI Viewer is first cleared and only the new responses are
shown.

Finally,

ltiview(plottype,sys1,sys2,...sysN)
ltiview(plottype,sys1,PlotStyle1,sys2,PlotStyle2,...)
ltiview(plottype,sys1,sys2,...sysN,extras)

initializes an LTI Viewer containing the responses of multiple LTI models,
using the plot styles in PlotStyle, when applicable. See the individual
reference pages of the LTI response functions for more information on
specifying plot styles.

See Also bode Bode response
impulse Impulse response
initial Response to initial condition
lsim Simulate LTI model response to arbitrary inputs
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nichols Nichols response
nyquist Nyquist response
pzmap Pole/zero map
sigma Singular value response
step Step response
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16lyapPurpose Solve continuous-time Lyapunov equations

Syntax X = lyap(A,Q)
X = lyap(A,B,C)

Description lyap solves the special and general forms of the Lyapunov matrix equation.
Lyapunov equations arise in several areas of control, including stability theory
and the study of the RMS behavior of systems.

X = lyap(A,Q) solves the Lyapunov equation

where and are square matrices of identical sizes. The solution X is a
symmetric matrix if is.

X = lyap(A,B,C) solves the generalized Lyapunov equation (also called
Sylvester equation).

The matrices must have compatible dimensions but need not be
square.

Algorithm lyap transforms the and matrices to complex Schur form, computes the
solution of the resulting triangular system, and transforms this solution back
[1].

Limitations The continuous Lyapunov equation has a (unique) solution if the eigenvalues
of and of satisfy

If this condition is violated, lyap produces the error message

Solution does not exist or is not unique.

See Also covar Covariance of system response to white noise
dlyap Solve discrete Lyapunov equations

AX XAT Q+ + 0=

A Q
Q

AX XB C+ + 0=

A B C, ,

A B

α1 α2 ... αn, , , A β1 β2 ... βn, , , B

αi βj 0≠+ for all pairs i j,( )
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 References [1] Bartels, R.H. and G.W. Stewart, “Solution of the Matrix Equation AX + XB
= C,” Comm. of the ACM, Vol. 15, No. 9, 1972.

[2] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere
Publishing, 1975. pp. 328–338.
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16marginPurpose Compute gain and phase margins and associated crossover frequencies

Syntax [Gm,Pm,Wcg,Wcp] = margin(sys)
[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w)
margin(sys)

Description margin calculates the minimum gain margin, phase margin, and associated
crossover frequencies of SISO open-loop models. The gain and phase margins
indicate the relative stability of the control system when the loop is closed.
When invoked without left-hand arguments, margin produces a Bode plot and
displays the margins on this plot.

The gain margin is the amount of gain increase required to make the loop gain
unity at the frequency where the phase angle is –180°. In other words, the gain
margin is if is the gain at the –180° phase frequency. Similarly, the
phase margin is the difference between the phase of the response and –180°
when the loop gain is 1.0. The frequency at which the magnitude is 1.0 is called
the unity-gain frequency or crossover frequency. It is generally found that gain
margins of three or more combined with phase margins between 30 and 60
degrees result in reasonable trade-offs between bandwidth and stability.

[Gm,Pm,Wcg,Wcp] = margin(sys) computes the gain margin Gm, the phase
margin Pm, and the corresponding crossover frequencies Wcg and Wcp, given the
SISO open-loop model sys. This function handles both continuous- and
discrete-time cases. When faced with several crossover frequencies, margin
returns the smallest gain and phase margins.

[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w) derives the gain and phase
margins from the Bode frequency response data (magnitude, phase, and
frequency vector). Interpolation is performed between the frequency points to
estimate the margin values. This approach is generally less accurate.

When invoked without left-hand argument,

margin(sys)

plots the open-loop Bode response with the gain and phase margins marked by
vertical lines.

1 g⁄ g
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Example You can compute the gain and phase margins of the open-loop discrete-time
transfer function. Type

hd = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1)

MATLAB responds with

Transfer function:
 0.04798 z + 0.0464
---------------------
z^2 - 1.81 z + 0.9048
 
Sampling time: 0.1

Type

[Gm,Pm,Wcg,Wcp] = margin(hd);
[Gm,Pm,Wcg,Wcp]

and MATLAB returns

ans =
2.0517   13.5711    5.4374    4.3544

You can also display these margins graphically.
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margin(hd)

Algorithm The phase margin is computed using theory, and the gain margin by
solving for the frequency .

See Also bode Bode frequency response
ltiview LTI system viewer

H∞
H jω( ) H jω( )= ω
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16minrealPurpose Minimal realization or pole-zero cancellation

Syntax sysr = minreal(sys)
sysr = minreal(sys,tol)
[sysr,u] = minreal(sys,tol)

Description sysr = minreal(sys) eliminates uncontrollable or unobservable state in
state-space models, or cancels pole-zero pairs in transfer functions or
zero-pole-gain models. The output sysr has minimal order and the same
response characteristics as the original model sys.

sysr = minreal(sys,tol) specifies the tolerance used for state elimination or
pole-zero cancellation. The default value is tol = sqrt(eps) and increasing
this tolerance forces additional cancellations.

[sysr,u] = minreal(sys,tol) returns, for state-space model sys, an
orthogonal matrix U such that (U*A*U',U*B,C*U') is a Kalman decomposition
of (A,B,C)

Example The commands

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g

produce the nonminimal zero-pole-gain model by typing cloop.

Zero/pole/gain:
      s (s-1)
-------------------
(s-1) (s^2 + s + 1)

To cancel the pole-zero pair at , type

cloop = minreal(cloop)

and MATLAB returns

Zero/pole/gain:
      s
-------------
(s^2 + s + 1)

s 1=



minreal

16-141

Algorithm Pole-zero cancellation is a straightforward search through the poles and zeros
looking for matches that are within tolerance. Transfer functions are first
converted to zero-pole-gain form.

See Also balreal Grammian-based input/output balancing
modred Model order reduction
sminreal Structured model reduction
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16modredPurpose Model order reduction

Syntax rsys = modred(sys,elim)
rsys = modred(sys,elim,'mdc')
rsys = modred(sys,elim,'del')

Description modred reduces the order of a continuous or discrete state-space model sys.
This function is usually used in conjunction with balreal. Two order reduction
techniques are available:

• rsys = modred(sys,elim) or rsys = modred(sys,elim,'mdc') produces a
reduced-order model rsyswith matching DC gain (or equivalently, matching
steady state in the step response). The index vector elim specifies the states
to be eliminated. The resulting model rsys has length(elim) fewer states.
This technique consists of setting the derivative of the eliminated states to
zero and solving for the remaining states.

• rsys = modred(sys,elim,'del')simply deletes the states specified by elim.
While this method does not guarantee matching DC gains, it tends to
produce better approximations in the frequency domain (see example below).

If the state-space model sys has been balanced with balreal and the
grammians have small diagonal entries, you can reduce the model order by
eliminating the last states with modred.

Example Consider the continuous fourth-order model

To reduce its order, first compute a balanced state-space realization with
balreal by typing

h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65])
[hb,g] = balreal(h)
g'

MATLAB returns

ans =
   1.3938e-01   9.5482e-03   6.2712e-04   7.3245e-06

m
m

h s( ) s3 11s2 36s 26+ + +

s4 14.6+ s
3

74.96s2 153.7s 99.65+ + +
------------------------------------------------------------------------------------------------------=
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The last three diagonal entries of the balanced grammians are small, so
eliminate the last three states with modred using both matched DC gain and
direct deletion methods.

hmdc = modred(hb,2:4,'mdc')
hdel = modred(hb,2:4,'del')

Both hmdc and hdel are first-order models. Compare their Bode responses
against that of the original model .

bode(h,'-',hmdc,'x',hdel,'*')

The reduced-order model hdel is clearly a better frequency-domain
approximation of . Now compare the step responses.

h s( )

h s( )
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step(h,'-',hmdc,'-.',hdel,'--')

While hdel accurately reflects the transient behavior, only hmdc gives the true
steady-state response.

Algorithm The algorithm for the matched DC gain method is as follows. For
continuous-time models

the state vector is partitioned into , to be kept, and , to be eliminated.

x· Ax Bu+=

y Cx Du+=

x1 x2

x·1

x·2

A11 A12

A21 A22

x1

x2

B1

B2

u+=

y C1 C2 x Du+=
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Next, the derivative of is set to zero and the resulting equation is solved for
. The reduced-order model is given by

The discrete-time case is treated similarly by setting

Limitations With the matched DC gain method, must be invertible in continuous time,
and must be invertible in discrete time.

See Also balreal Input/output balancing of state-space models
minreal Minimal state-space realizations

x2
x1

x·1 A11 A12A22
1– A21–[ ]x1 B1 A12A22

1– B2–[ ]u+=

y C1 C2A22
1– A21–[ ]x D C2A22

1– B2–[ ]u+=

x2 n 1+[ ] x2 n[ ]=

A22
I A22–
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16ndimsPurpose Provide the number of the dimensions of an LTI model or LTI array

Syntax n = ndims(sys)

Description n = ndims(sys) is the number of dimensions of an LTI model or an array of
LTI models sys. A single LTI model has two dimensions (one for outputs, and
one for inputs). An LTI array has 2+p dimensions, where is the number
of array dimensions. For example, a 2-by-3-by-4 array of models has 2+3=5
dimensions.

ndims(sys) = length(size(sys))

Example sys = rss(3,1,1,3);
ndims(sys)

ans =
     4

ndims returns 4 for this 3-by-1 array of SISO models.

See Also size Returns a vector containing the lengths of the
dimensions of an LTI array or model

p 2≥
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16ngridPurpose Superimpose a Nichols chart on a Nichols plot

Syntax ngrid

Description ngrid superimposes Nichols chart grid lines over the Nichols frequency
response of a SISO LTI system. The range of the Nichols grid lines is set to
encompass the entire Nichols frequency response.

The chart relates the complex number to , where is any
complex number. For SISO systems, when is a point on the open-loop
frequency response, then

is the corresponding value of the closed-loop frequency response assuming unit
negative feedback.

If the current axis is empty, ngrid generates a new Nichols chart grid in the
region –40 dB to 40 dB in magnitude and –360 degrees to 0 degrees in phase.
If the current axis does not contain a SISO Nichols frequency response, ngrid
returns a warning.

Example Plot the Nichols response with Nichols grid lines for the system.

Type

H = tf([-4 48 -18 250 600],[1 30 282 525 60])

MATLAB returns

Transfer function:
- 4 s^4 + 48 s^3 - 18 s^2 + 250 s + 600
---------------------------------------
  s^4 + 30 s^3 + 282 s^2 + 525 s + 60

Type

nichols(H)

H 1 H+( )⁄ H H
H

H
1 H+
--------------

H s( ) 4s4
– 48s3 18s2

– 250s 600+ + +

s4 30s3 282s2 525s 60+ + + +
---------------------------------------------------------------------------------------=



ngrid

16-148

ngrid

See Also nichols Nichols plots
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16nicholsPurpose Compute Nichols frequency response of LTI models

Syntax nichols(sys)
nichols(sys,w)

nichols(sys1,sys2,...,sysN)
nichols(sys1,sys2,...,sysN,w)
nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

Description nichols computes the frequency response of an LTI model and plots it in the
Nichols coordinates. Nichols plots are useful to analyze open- and closed-loop
properties of SISO systems, but offer little insight into MIMO control loops.
Use ngrid to superimpose a Nichols chart on an existing SISO Nichols plot.

nichols(sys) produces a Nichols plot of the LTI model sys. This model can be
continuous or discrete, SISO or MIMO. In the MIMO case, nichols produces
an array of Nichols plots, each plot showing the response of one particular I/O
channel. The frequency range and gridding are determined automatically
based on the system poles and zeros.

nichols(sys,w) explicitly specifies the frequency range or frequency points to
be used for the plot. To focus on a particular frequency interval [wmin,wmax],
set w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. Frequencies should be specified in radians/sec.

nichols(sys1,sys2,...,sysN) or nichols(sys1,sys2,...,sysN,w)
superimposes the Nichols plots of several LTI models on a single figure. All
systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax

nichols(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with left-hand arguments,
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[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays similar to
those produced by bode (see the bode reference page). They have dimensions

Example Plot the Nichols response of the system

num = [-4 48 -18 250 600];
den = [1 30 282 525 60];
H = tf(num,den)

nichols(H); ngrid

number of outputs( ) number of inputs( )× length of w( )×

H s( ) 4s4
– 48s3 18s2

– 250s 600+ + +

s4 30s3 282s2 525s 60+ + + +
---------------------------------------------------------------------------------------=
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The right-click menu for Nichols plots includes the Tight option under Zoom.
You can use this to clip unbounded branches of the Nichols plot.

Algorithm See bode.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
ngrid Grid on Nichols plot
nyquist Nyquist plot
sigma Singular value plot
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16normPurpose Compute LTI model norms

Syntax norm(sys)
norm(sys,2)

norm(sys,inf)
norm(sys,inf,tol)
[ninf,fpeak] = norm(sys)

Description norm computes the or norm of a continuous- or discrete-time LTI model.

H2 Norm
The norm of a stable continuous system with transfer function , is the
root-mean-square of its impulse response, or equivalently

This norm measures the steady-state covariance (or power) of the output
response to unit white noise inputs .

Infinity Norm
The infinity norm is the peak gain of the frequency response, that is,

where denotes the largest singular value of a matrix.

The discrete-time counterpart is

H2 L∞

H2 H s( )

H 2
1

2π
------ Trace H jω( )HH jω( )( ) ωd

∞–

∞

�=

y Hw= w

H 2
2 E y t( )Ty t( ){ } ,

t ∞→
lim= E w t( )w τ( )T( ) δ t τ–( )I=

H s( ) ∞ max H jω( )=
ω

(SISO case)

H s( ) ∞ max σmax H jω( )( )=
ω

(MIMO case)

σmax .( )
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Usage norm(sys) or norm(sys,2) both return the norm of the TF, SS, or ZPK
model sys. This norm is infinite in the following cases:

• sys is unstable.

• sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the
frequency ).

Note that norm(sys) produces the same result as

sqrt(trace(covar(sys,1)))

norm(sys,inf) computes the infinity norm of any type of LTI model sys. This
norm is infinite if sys has poles on the imaginary axis in continuous time, or on
the unit circle in discrete time.

norm(sys,inf,tol) sets the desired relative accuracy on the computed
infinity norm (the default value is tol=1e-2).

[ninf,fpeak] = norm(sys,inf) also returns the frequency fpeak where the
gain achieves its peak value.

Example Consider the discrete-time transfer function

with sample time 0.1 second. Compute its norm by typing

H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
norm(H)

ans =
    1.2438

Compute its infinity norm by typing

[ninf,fpeak] = norm(H,inf)

H z( ) ∞ max σmax H ejθ( )( )=
θ 0 π,[ ]∈

H2

ω ∞=

H z( ) z3 2.841z2
– 2.875z 1.004–+

z3 2.417z2
– 2.003z 0.5488–+

---------------------------------------------------------------------------------=

H2
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ninf =
    2.5488
 
fpeak =
    3.0844

These values are confirmed by the Bode plot of .

bode(H)

The gain indeed peaks at approximately 3 rad/sec and its peak value in dB is
found by typing

20*log10(ninf)

MATLAB returns

ans =

H z( )

Frequency (rad/sec)
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    8.1268

Algorithm norm uses the same algorithm as covar for the norm, and the algorithm of
[1] for the infinity norm. sys is first converted to state space.

See Also bode Bode plot
freqresp Frequency response computation
sigma Singular value plot

 References [1] Bruisma, N.A. and M. Steinbuch, “A Fast Algorithm to Compute the
-Norm of a Transfer Function Matrix,” System Control Letters, 14 (1990),

pp. 287–293.

H2

H∞
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16nyquistPurpose Compute Nyquist frequency response of LTI models

Syntax nyquist(sys)
nyquist(sys,w)

nyquist(sys1,sys2,...,sysN)
nyquist(sys1,sys2,...,sysN,w)
nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

Description nyquist calculates the Nyquist frequency response of LTI models. When
invoked without left-hand arguments, nyquist produces a Nyquist plot on the
screen. Nyquist plots are used to analyze system properties including gain
margin, phase margin, and stability.

nyquist(sys) plots the Nyquist response of an arbitrary LTI model sys. This
model can be continuous or discrete, and SISO or MIMO. In the MIMO case,
nyquist produces an array of Nyquist plots, each plot showing the response of
one particular I/O channel. The frequency points are chosen automatically
based on the system poles and zeros.

nyquist(sys,w) explicitly specifies the frequency range or frequency points to
be used for the plot. To focus on a particular frequency interval [wmin,wmax],
set w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. Frequencies should be specified in rad/sec.

nyquist(sys1,sys2,...,sysN) or nyquist(sys1,sys2,...,sysN,w)
superimposes the Nyquist plots of several LTI models on a single figure. All
systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax

nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with left-hand arguments



nyquist

16-157

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

return the real and imaginary parts of the frequency response at the
frequencies w (in rad/sec). re and im are 3-D arrays with the frequency as last
dimension (see “Arguments” below for details).

Arguments The output arguments re and im are 3-D arrays with dimensions

For SISO systems, the scalars re(1,1,k) and im(1,1,k) are the real and
imaginary parts of the response at the frequency .

For MIMO systems with transfer function , re(:,:,k) and im(:,:,k)
give the real and imaginary parts of (both arrays with as many rows
as outputs and as many columns as inputs). Thus,

where is the transfer function from input to output .

Example Plot the Nyquist response of the system

H = tf([2 5 1],[1 2 3])

number of outputs( ) number of inputs( )× length of w( )×

ωk w(k)=

re(1,1,k) Re h jωk( )( )=

im(1,1,k) Im h jωk( )( )=

H s( )
H jωk( )

re(i,j,k) Re hij jωk( )( )=

im(i,j,k) Im hij jωk( )( )=

hij j i

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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nyquist(H)

You have two zoom options available from the right-click menu that apply
specifically to Nyquist plots:

• Tight —Clips unbounded branches of the Nyquist plot, but still includes the
critical point (-1, 0)

• On (-1,0) — Zooms around the critical point (-1,0)
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Also, click anywhere on the curve to activate data markers that display the real
and imaginary values at a given frequency. This figure shows the nyquist plot
with a data marker.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
sigma Singular value plot
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16obsvPurpose Form the observability matrix

Syntax Ob = obsv(A,B)
Ob = obsv(sys)

Description obsv computes the observability matrix for state-space systems. For an n-by-n
matrix A and a p-by-n matrix C, obsv(A,C) returns the observability matrix

with n columns and np rows.

Ob = obsv(sys) calculates the observability matrix of the state-space model
sys. This syntax is equivalent to executing

Ob = obsv(sys.A,sys.C)

The model is observable if Ob has full rank n.

Example Determine if the pair

A =
     1     1
     4    -2

C =
     1     0
     0     1

is observable. Type

Ob = obsv(A,C);

% Number of unobservable states
unob = length(A)-rank(Ob)

Ob

C
CA

CA2

:

CAn 1–

=
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MATLAB responds with

unob =
     0

See Also obsvf Compute the observability staircase form
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16obsvfPurpose Compute the observability staircase form

Syntax [Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C,tol)

Description If the observability matrix of (A,C) has rank , where n is the size of A, then
there exists a similarity transformation such that

where is unitary and the transformed system has a staircase form with the
unobservable modes, if any, in the upper left corner.

where is observable, and the eigenvalues of are the unobservable
modes.

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C) decomposes the state-space system
with matrices A, B, and C into the observability staircase form Abar, Bbar, and
Cbar, as described above. T is the similarity transformation matrix and k is a
vector of length n, where n is the number of states in A. Each entry of k
represents the number of observable states factored out during each step of the
transformation matrix calculation [1]. The number of nonzero elements in k
indicates how many iterations were necessary to calculate T, and sum(k) is the
number of states in , the observable portion of Abar.

obsvf(A,B,C,tol) uses the tolerance tol when calculating the observable/
unobservable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(a,1)*eps.

Example Form the observability staircase form of

A =
     1     1
     4    -2

B =

r n≤

A TATT,= B TB,= C CTT
=

T

A
Ano A12

0 Ao

,= B
Bno

Bo

,= C 0 Co=

Co Ao,( ) Ano

Ao
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     1    -1
     1    -1

C =
     1     0
     0     1

by typing

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)

Abar =
     1     1
     4    -2
Bbar =
     1     1
     1    -1
Cbar =
     1     0
     0     1
T =
     1     0
     0     1
k =
     2     0

Algorithm obsvf is an M-file that implements the Staircase Algorithm of [1] by calling
ctrbf and using duality.

See Also ctrbf Compute the controllability staircase form
obsv Calculate the observability matrix

 References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley,
1970.
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16ord2Purpose Generate continuous second-order systems

Syntax [A,B,C,D] = ord2(wn,z)
[num,den] = ord2(wn,z)

Description [A,B,C,D] = ord2(wn,z) generates the state-space description (A,B,C,D) of
the second-order system

given the natural frequency wn ( ) and damping factor z ( ). Use ss to turn
this description into a state-space object.

[num,den] = ord2(wn,z) returns the numerator and denominator of the
second-order transfer function. Use tf to form the corresponding transfer
function object.

Example To generate an LTI model of the second-order transfer function with damping
factor and natural frequency , type

[num,den] = ord2(2.4,0.4)

num =
     1
den =
    1.0000    1.9200    5.7600

sys = tf(num,den)

Transfer function:
         1
-------------------
s^2 + 1.92 s + 5.76

See Also rss Generate random stable continuous models
ss Create a state-space LTI model
tf Create a transfer function LTI model

h s( ) 1

s2 2ζωns ωn
2

+ +
---------------------------------------------=

ωn ζ

ζ 0.4= ωn 2.4 rad/sec.=
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16padePurpose Compute the Padé approximation of models with time delays

Syntax [num,den] = pade(T,N)
pade(T,N)

sysx = pade(sys,N)
sysx = pade(sys,NI,NO,Nio)

Description pade approximates time delays by rational LTI models. Such approximations
are useful to model time delay effects such as transport and computation
delays within the context of continuous-time systems. The Laplace transform
of an time delay of seconds is . This exponential transfer function
is approximated by a rational transfer function using the Padé approximation
formulas [1].

[num,den] = pade(T,N) returns the Nth-order (diagonal) Padé approximation
of the continuous-time I/O delay in transfer function form. The row
vectors num and den contain the numerator and denominator coefficients in
descending powers of . Both are Nth-order polynomials.

When invoked without output arguments,

pade(T,N)

plots the step and phase responses of the Nth-order Padé approximation and
compares them with the exact responses of the model with I/O delay T. Note
that the Padé approximation has unit gain at all frequencies.

sysx = pade(sys,N) produces a delay-free approximation sysx of the
continuous delay system sys. All delays are replaced by their Nth-order Padé
approximation. See Time Delays for details on LTI models with delays.

sysx = pade(sys,NI,NO,Nio) specifies independent approximation orders for
each input, output, and I/O delay. These approximation orders are given by the
arrays of integers NI, NO, and Nio, such that:

• NI(j) is the approximation order for the j-th input channel.

• NO(i) is the approximation order for the i-th output channel.

• Nio(i,j) is the approximation order for the I/O delay from input j to output
i.

T sT–( )exp

sT–( )exp

s
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You can use scalar values to specify uniform approximation orders, and [] if
there are no input, output, or I/O delays.

Example Compute a third-order Padé approximation of a 0.1 second I/O delay and
compare the time and frequency responses of the true delay and its
approximation. To do this, type

pade(0.1,3)

Limitations High-order Padé approximations produce transfer functions with clustered
poles. Because such pole configurations tend to be very sensitive to
perturbations, Padé approximations with order N>10 should be avoided.

See Also c2d Discretization of continuous system
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delay2z Changes transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information

 References [1] Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 1989, pp. 557–558.
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16parallelPurpose Parallel connection of two LTI models

Syntax sys = parallel(sys1,sys2)
sys = parallel(sys1,sys2,inp1,inp2,out1,out2)

Description parallel connects two LTI models in parallel. This function accepts any type
of LTI model. The two systems must be either both continuous or both discrete
with identical sample time. Static gains are neutral and can be specified as
regular matrices.

sys = parallel(sys1,sys2) forms the basic parallel connection shown below.

This command is equivalent to the direct addition

sys = sys1 + sys2

(See Addition and Subtraction for details on LTI system addition.)

sys1

sys2

u y
+

+

sys
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sys = parallel(sys1,sys2,inp1,inp2,out1,out2) forms the more general
parallel connection.

The index vectors inp1 and inp2 specify which inputs of sys1 and which
inputs of sys2 are connected. Similarly, the index vectors out1 and out2
specify which outputs of sys1 and which outputs of sys2 are summed.
The resulting model sys has as inputs and as
outputs.

Example See Kalman Filtering for an example.

See Also append Append LTI systems
feedback Feedback connection
series Series connection

sys1

sys2

+
+

sys

u

u2

u1

y2

y1

y

z1
v1

z2
v2

u1
u2

y1 y2
v1 u v2;;[ ] z1 y z2;;[ ]
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16placePurpose Pole placement design

Syntax K = place(A,B,p)
[K,prec,message] = place(A,B,p)

Description Given the single- or multi-input system

and a vector p of desired self-conjugate closed-loop pole locations, place
computes a gain matrix K such that the state feedback places the
closed-loop poles at the locations p. In other words, the eigenvalues of
match the entries of p (up to the ordering).

K = place(A,B,p) computes a feedback gain matrix K that achieves the
desired closed-loop pole locations p, assuming all the inputs of the plant are
control inputs. The length of p must match the row size of A. place works for
multi-input systems and is based on the algorithm from [1]. This algorithm
uses the extra degrees of freedom to find a solution that minimizes the
sensitivity of the closed-loop poles to perturbations in or .

[K,prec,message] = place(A,B,p) also returns prec, an estimate of how
closely the eigenvalues of match the specified locations p (prec
measures the number of accurate decimal digits in the actual closed-loop
poles). If some nonzero closed-loop pole is more than 10% off from the desired
location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix
and substituting C' for B.

l = place(A',C',p).'

Example Consider a state-space system (a,b,c,d) with two inputs, three outputs, and
three states. You can compute the feedback gain matrix needed to place the
closed-loop poles at p = [1.1 23 5.0] by

p = [1 1.23 5.0];
K = place(a,b,p)

x· Ax Bu+=

u Kx–=
A BK–

A B

A BK–
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Algorithm place uses the algorithm of [1] which, for multi-input systems, optimizes the
choice of eigenvectors for a robust solution. We recommend place rather than
acker even for single-input systems.

In high-order problems, some choices of pole locations result in very large
gains. The sensitivity problems attached with large gains suggest caution in
the use of pole placement techniques. See [2] for results from numerical testing.

See Also acker Pole placement using Ackermann’s formula
lqr State-feedback LQ regulator design
rlocus Root locus design

 References [1] Kautsky, J. and N.K. Nichols, “Robust Pole Assignment in Linear State
Feedback,” Int. J. Control, 41 (1985), pp. 1129–1155.

[2] Laub, A.J. and M. Wette, Algorithms and Software for Pole Assignment and
Observers, UCRL-15646 Rev. 1, EE Dept., Univ. of Calif., Santa Barbara, CA,
Sept. 1984.
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16polePurpose Compute the poles of an LTI system

Syntax p = pole(sys)

Description pole computes the poles p of the SISO or MIMO LTI model sys.

Algorithm For state-space models, the poles are the eigenvalues of the matrix, or the
generalized eigenvalues of in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are simply the
denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are
computed as the union of the poles for each SISO entry. If some columns or
rows have a common denominator, the roots of this denominator are counted
only once.

Limitations Multiple poles are numerically sensitive and cannot be computed to high
accuracy. A pole with multiplicity typically gives rise to a cluster of
computed poles distributed on a circle with center and radius of order

where is the relative machine precision (eps).

See Also damp Damping and natural frequency of system poles
esort, dsort Sort system poles
pzmap Pole-zero map
zero Compute (transmission) zeros

A
A λE–

λ m
λ

ρ ε1 m⁄≈

ε
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16pzmapPurpose Compute the pole-zero map of an LTI model

Syntax pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)

Description pzmap(sys) plots the pole-zero map of the continuous- or discrete-time LTI
model sys. For SISO systems, pzmap plots the transfer function poles and zeros.
For MIMO systems, it plots the system poles and transmission zeros. The poles
are plotted as x’s and the zeros are plotted as o’s.

pzmap(sys1,sys2,...,sysN) plots the pole-zero map of several LTI models on
a single figure. The LTI models can have different numbers of inputs and
outputs and can be a mix of continuous and discrete systems.

When invoked without left-hand arguments,

[p,z] = pzmap(sys)

returns the system poles and (transmission) zeros in the column vectors p and
z. No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant damping ratio
and natural frequency in the - or -plane.

Example Plot the poles and zeros of the continuous-time system.

H = tf([2 5 1],[1 2 3]); sgrid

s z

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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pzmap(H)

Algorithm pzmap uses a combination of pole and zero.

See Also damp Damping and natural frequency of system poles
esort, dsort Sort system poles
pole Compute system poles
rlocus Root locus
sgrid, zgrid Plot lines of constant damping and natural frequency
zero Compute system (transmission) zeros
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16regPurpose Form regulator given state-feedback and estimator gains

Syntax rsys = reg(sys,K,L)
rsys = reg(sys,K,L,sensors,known,controls)

Description rsys = reg(sys,K,L) forms a dynamic regulator or compensator rsys given a
state-space model sys of the plant, a state-feedback gain matrix K, and an
estimator gain matrix L. The gains K and L are typically designed using pole
placement or LQG techniques. The function reg handles both continuous- and
discrete-time cases.

This syntax assumes that all inputs of sys are controls, and all outputs are
measured. The regulator rsys is obtained by connecting the state-feedback law

and the state estimator with gain matrix L (see estim). For a plant
with equations

this yields the regulator

u K– x=

x· Ax Bu+=

y Cx Du+=

x̂
·

A LC– B LD–( )K– x̂ Ly+=

u Kx̂–=
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This regulator should be connected to the plant using positive feedback.

rsys = reg(sys,K,L,sensors,known,controls) handles more general
regulation problems where:

• The plant inputs consist of controls , known inputs , and stochastic
inputs .

• Only a subset of the plant outputs is measured.

The index vectors sensors, known, and controls specify , , and as
subsets of the outputs and inputs of sys. The resulting regulator uses
as inputs to generate the commands (see figure below).

u

y

x̂
K–

Regulator

u

Plant

y

State
Estimator

u ud
w

y

y ud u
ud ; y[ ]

u

x̂

u

y

ud K– u

Regulator rsys

Estimator

(gain L)
(known)

(sensors)
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Example Given a continuous-time state-space model

sys = ss(A,B,C,D) 

with seven outputs and four inputs, suppose you have designed:

• A state-feedback controller gain K using inputs 1, 2, and 4 of the plant as
control inputs

• A state estimator with gain L using outputs 4, 7, and 1 of the plant as
sensors, and input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the complete
regulation system by

controls = [1,2,4];
sensors = [4,7,1];
known = [3];
regulator = reg(sys,K,L,sensors,known,controls)

See Also estim Form state estimator given estimator gain
kalman Kalman estimator design
lqgreg Form LQG regulator
lqr, dlqr State-feedback LQ regulator
place Pole placement



reshape

16-178

16reshapePurpose Change the shape of an LTI array

Syntax sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1 s2 ... sk])

Description sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape(sys,[s1 
s2 ... sk])) reshapes the LTI array sys into an s1-by-s2-by...-sk array of LTI
models. Equivalently, sys = reshape(sys,[s1 s2 ... sk]) reshapes the LTI
array sys into an s1-by-s2-by...-sk array of LTI models. With either syntax,
there must be s1*s2*...*sk models in sys to begin with.

Example sys = rss(4,1,1,2,3);
size(sys)

2x3 array of state-space models
Each model has 1 output, 1 input, and 4 states.

sys1 = reshape(sys,6);
size(sys1)

6x1 array of state-space models
Each model has 1 output, 1 input, and 4 states.

See Also ndims Provide the number of dimensions of an LTI array
size Provide the lengths of each dimension of an LTI array
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16rlocusPurpose Evans root locus

Syntax rlocus(sys)
rlocus(sys,k)
rlocus(sys1,sys2,...)

[r,k] = rlocus(sys)
r = rlocus(sys,k)

Description rlocus computes the Evans root locus of a SISO open-loop model. The root
locus gives the closed-loop pole trajectories as a function of the feedback gain

(assuming negative feedback). Root loci are used to study the effects of
varying feedback gains on closed-loop pole locations. In turn, these locations
provide indirect information on the time and frequency responses.

rlocus(sys) calculates and plots the root locus of the open-loop SISO model
sys. This function can be applied to any of the following negative feedback loops
by setting sys appropriately.

If sys has transfer function

k

G

k

G

Fk

sys = G sys = F * G

C

k

G

sys = G * C

–

–

–

+

+

+
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the closed-loop poles are the roots of

rlocus adaptively selects a set of positive gains to produce a smooth plot.
Alternatively,

rlocus(sys,k)

uses the user-specified vector k of gains to plot the root locus.

rlocus(sys1,sys2,...) draws the root loci of multiple LTI models sys1, 
sys2,... on a single plot. You can specify a color, line style, and marker for
each model, as in

rlocus(sys1,'r',sys2,'y:',sys3,'gx').

When invoked with output arguments,

[r,k] = rlocus(sys)
r = rlocus(sys,k)

return the vector k of selected gains and the complex root locations r for these
gains. The matrix r has length(k) columns and its jth column lists the
closed-loop roots for the gain k(j).

Example Find and plot the root-locus of the following system.

h = tf([2 5 1],[1 2 3]);

h s( ) n s( )
d s( )
-----------=

d s( ) k n s( )+ 0=

k

h s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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rlocus(h)

You can use the right-click menu for rlocus to add grid lines, zoom in or out,
and invoke the Property Editor to customize the plot. Also, click anywhere on
the curve to activate a data marker that displays the gain value, pole, damping,
overshoot, and frequency at the selected point.

See Also pole System poles
pzmap Pole-zero map
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16rssPurpose Generate stable random continuous test models

Syntax sys = rss(n)
sys = rss(n,p)
sys = rss(n,p,m)
sys = rss(n,p,m,s1,...,sn)

Description rss(n) produces a stable random n-th order model with one input and one
output and returns the model in the state-space object sys.

rss(n,p) produces a random nth order stable model with one input and p
outputs, and rss(n,m,p) produces a random n-th order stable model with m
inputs and p outputs. The output sys is always a state-space model.

rss(n,p,m,s1,...,sn)produces an s1-by-...-by-sn array of random n-th
order stable state-space models with m inputs and p outputs.

Use tf, frd, or zpk to convert the state-space object sys to transfer function,
frequency response, or zero-pole-gain form.

Example Obtain a stable random continuous LTI model with three states, two inputs,
and two outputs by typing

sys = rss(3,2,2)

a = 
                        x1           x2           x3
           x1     -0.54175      0.09729      0.08304
           x2      0.09729     -0.89491      0.58707
           x3      0.08304      0.58707     -1.95271
 
b = 
                        u1           u2
           x1     -0.88844     -2.41459
           x2            0     -0.69435
           x3     -0.07162     -1.39139
 
c = 
                        x1           x2           x3
           y1      0.32965      0.14718            0
           y2      0.59854     -0.10144      0.02805
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d = 
                        u1           u2
           y1     -0.87631     -0.32758
           y2            0            0
 
Continuous-time system.

See Also drss Generate stable random discrete test models
frd Convert LTI systems to frequency response form
tf Convert LTI systems to transfer function form
zpk Convert LTI systems to zero-pole-gain form
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16seriesPurpose Series connection of two LTI models

Syntax sys = series(sys1,sys2)
sys = series(sys1,sys2,outputs1,inputs2)

Description series connects two LTI models in series. This function accepts any type of
LTI model. The two systems must be either both continuous or both discrete
with identical sample time. Static gains are neutral and can be specified as
regular matrices.

sys = series(sys1,sys2) forms the basic series connection shown below.

This command is equivalent to the direct multiplication

sys = sys2 * sys1

See Multiplication for details on multiplication of LTI models.

sys = series(sys1,sys2,outputs1,inputs2) forms the more general series
connection.

sys1 sys2u y

sys

sys1

sys2

y1 u2

v2

z1

sys

u

y
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The index vectors outputs1 and inputs2 indicate which outputs of sys1 and
which inputs of sys2 should be connected. The resulting model sys has
as input and as output.

Example Consider a state-space system sys1 with five inputs and four outputs and
another system sys2 with two inputs and three outputs. Connect the two
systems in series by connecting outputs 2 and 4 of sys1 with inputs 1 and 2 of
sys2.

outputs1 = [2 4];
inputs2 = [1 2];
sys = series(sys1,sys2,outputs2,inputs1)

See Also append Append LTI systems
feedback Feedback connection
parallel Parallel connection

y1
u2 u
y
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16setPurpose Set or modify LTI model properties

Syntax set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)

set(sys,'Property')
set(sys)

Description set is used to set or modify the properties of an LTI model (see LTI Properties
for background on LTI properties). Like its Handle Graphics counterpart, set
uses property name/property value pairs to update property values.

set(sys,'Property',Value) assigns the value Value to the property of the
LTI model sys specified by the string 'Property'. This string can be the full
property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user'). The specified property must be compatible
with the model type. For example, if sys is a transfer function, Variable is a
valid property but StateName is not (see Model-Specific Properties for details).

set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple
property values with a single statement. Each property name/property value
pair updates one particular property.

set(sys,'Property') displays admissible values for the property specified by
'Property'. See “Property Values” below for an overview of legitimate LTI
property values.

set(sys) displays all assignable properties of sys and their admissible values.

Example Consider the SISO state-space model created by

sys = ss(1,2,3,4);

You can add an input delay of 0.1 second, label the input as torque, reset the
matrix to zero, and store its DC gain in the 'Userdata' property by

set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys))

Note that set does not require any output argument. Check the result with get 
by typing

D
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get(sys)

a = 1
        b = 2
        c = 3
        d = 0
        e = []
        Nx = 1
        StateName = {''}
        Ts = 0
        InputDelay = 0.1
        OutputDelay = 0
        ioDelay = 0
        InputName = {'torque'}
        OutputName = {''}
        InputGroup = {0x2 cell}
        OutputGroup = {0x2 cell}
        Notes = {}
        UserData = -6

Property 
Values

The following table lists the admissible values for each LTI property. and
denotes the number of inputs and outputs of the underlying LTI model. For

K-dimensional LTI arrays, let denote the array dimensions.

Nu
Ny

S1 S2 … SK, , ,
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Table 16-17:  LTI Properties

Property Name Admissible Property Values

Ts • 0 (zero) for continuous-time systems

• Sample time in seconds for discrete-time systems

• -1 or [] for discrete systems with unspecified sample time

Note: Resetting the sample time property does not alter the model data. Use
c2d, d2c, or d2d for discrete/continuous and discrete/discrete conversions.

ioDelay Input/Output delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when all I/O pairs have the same delay

• -by- matrix to specify independent delay times for each I/O pair

• Array of size -by- -by- -by-. . .-by- to specify different I/O delays
for each model in an LTI array.

InputDelay Input delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when or system has uniform input delay

• Vector of length to specify independent delay times for each input
channel

• Array of size -by- -by- -by-. . .-by- to specify different input
delays for each model in an LTI array.

Ny Nu

Ny Nu S1 Sn

Nu 1=

Nu

Ny Nu S1 Sn



set

16-189

OutputDelay Output delays specified with

• Nonnegative real numbers for continuous-time models (seconds)

• Integers for discrete-time models (number of sample periods)

• Scalar when  or system has uniform output delay

• Vector of length to specify independent delay times for each output
channel

• Array of size -by- -by- -by-. . .-by- to specify different output
delays for each model in an LTI array.

Notes String, array of strings, or cell array of strings

UserData Arbitrary MATLAB variable

InputName • String for single-input systems, for example, 'thrust'

• Cell vector of strings for multi-input systems (with as many cells as inputs),
for example, {'u';'w'} for a two-input system

• Padded array of strings with as many rows as inputs, for example,
['rudder ' ; 'aileron']

OutputName Same as InputName (with “input” replaced by “output”)

InputGroup Cell array. See Input Groups and Output Groups.

OutputGroup Same as InputGroup

Table 16-17:  LTI Properties (Continued)

Property Name Admissible Property Values

Ny 1=

Ny

Ny Nu S1 Sn

Table 16-18:  State-Space Model Properties

Property Name Admissible Property Values

StateName Same as InputName (with Input replaced by State)
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a, b, c, d, e Real-valued state-space matrices (multidimensional arrays, in the case of
LTI arrays) with compatible dimensions for the number of states, inputs,
and outputs. See The Size of LTI Array Data for SS Models.

Nx • Scalar integer representing the number of states for single LTI models or
LTI arrays with the same number of states in each model

• -by- -by- -dimensional array of integers when all of the models of
an LTI array do not have the same number of states

Table 16-18:  State-Space Model Properties (Continued)

Property Name Admissible Property Values

S1 … SK

Table 16-19:  TF Model Properties

Property Name Admissible Property Values

num, den • Real-valued row vectors for the coefficients of the numerator or
denominator polynomials in the SISO case. List the coefficients in
descending powers of the variable or by default, and in ascending
powers of when the Variable property is set to 'q' or 'z^-1' (see
note below).

• -by- cell arrays of real-valued row vectors in the MIMO case, for
example,
{[1 2];[1 0 3]} for a two-output/one-input transfer function

• -by- -by- -by- -by- -dimensional real-valued cell arrays for
MIMO LTI arrays

Variable • String 's' (default) or 'p' for continuous-time systems

• String 'z' (default), 'q', or 'z^-1' for discrete-time systems

s z
q z 1–

=

Ny Nu

Ny Nu S1 … SK
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Remark For discrete-time transfer functions, the convention used to represent the
numerator and denominator depends on the choice of variable (see the tf entry
for details). Like tf, the syntax for set changes to remain consistent with the
choice of variable. For example, if the Variable property is set to 'z' (the
default),

set(h,'num',[1 2],'den',[1 3 4])

produces the transfer function

Table 16-20:  ZPK Model Properties

Property Name Admissible Property Values

z, p • Vectors of zeros and poles (either real-valued or complex conjugate pairs of
them) in SISO case

• -by- cell arrays of vectors (entries are real-valued or in complex
conjugate pairs) in MIMO case, for example, z = {[],[-1 0]} for a model
with two inputs and one output

• -by- -by- -by- -by- -dimensional cell arrays for MIMO LTI
arrays

Variable • String 's' (default) or 'p' for continuous-time systems

• String 'z' (default), 'q', or 'z^-1' for discrete-time systems

Ny Nu

Ny Nu S1 … SK

Table 16-21:  FRD Model Properties

Property Name Admissible Property Values

Frequency Real-valued vector of length -by-1, where is the number of
frequencies

Response • -by- -by- -dimensional array of complex data for single LTI models

• -by- -by- -by- -by- -by- -dimensional array for LTI arrays

Units String 'rad/s' (default), or 'Hz'

Nf Nf

Ny Nu Nf

Ny Nu Nf S1 … SK
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However, if you change the Variable to 'z^-1' (or 'q') by

set(h,'Variable','z^-1'),

the same command

set(h,'num',[1 2],'den',[1 3 4])

now interprets the row vectors [1 2] and [1 3 4] as the polynomials
and and produces:

Note  Because the resulting transfer functions are different, make sure to use
the convention consistent with your choice of variable.

See Also get Access/query LTI model properties
frd Specify a frequency response data model
ss Specify a state-space model
tf Specify a transfer function
zpk Specify a zero-pole-gain model

h z( ) z 2+
z2 3z 4+ +
----------------------------=

1 2z 1–
+

1 3z 1– 4z 2–
+ +

h z 1–( ) 1 2z 1–
+

1 3z 1– 4z 2–
+ +

---------------------------------------- zh z( )= =
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16sgridPurpose Generate an s-plane grid of constant damping factors and natural frequencies

Syntax sgrid
sgrid(z,wn)

Description sgrid generates, for pole-zero and root locus plots, a grid of constant damping
factors from zero to one in steps of 0.1 and natural frequencies from zero to 10
rad/sec in steps of one rad/sec, and plots the grid over the current axis. If the
current axis contains a continuous s-plane root locus diagram or pole-zero map,
sgrid draws the grid over the plot.

sgrid(z,wn) plots a grid of constant damping factor and natural frequency
lines for the damping factors and natural frequencies in the vectors z and wn,
respectively. If the current axis contains a continuous s-plane root locus
diagram or pole-zero map, sgrid(z,wn) draws the grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate the
same s-plane grid.

Example Plot s-plane grid lines on the root locus for the following system.

You can do this by typing

H = tf([2 5 1],[1 2 3])

Transfer function:
2 s^2 + 5 s + 1
---------------
 s^2 + 2 s + 3

rlocus(H)
sgrid

H s( ) 2s2 5s 1+ +

s2 2s 3+ +
-------------------------------=
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See Also pzmap Plot pole-zero map
rlocus Plot root locus
zgrid Generate z-plane grid lines



sigma

16-195

16sigmaPurpose Singular values of the frequency response of LTI models

Syntax sigma(sys)
sigma(sys,w)
sigma(sys,w,type)

sigma(sys1,sys2,...,sysN)
sigma(sys1,sys2,...,sysN,w)
sigma(sys1,sys2,...,sysN,w,type)
sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[sv,w] = sigma(sys)
sv = sigma(sys,w)

Description sigma calculates the singular values of the frequency response of an LTI model.
For an FRD model, sys, sigma computes the singular values of sys.Response
at the frequencies, sys.frequency. For continuous-time TF, SS, or ZPK models
with transfer function , sigma computes the singular values of as
a function of the frequency . For discrete-time TF, SS, or ZPK models with
transfer function and sample time , sigma computes the singular
values of

for frequencies between 0 and the Nyquist frequency .

The singular values of the frequency response extend the Bode magnitude
response for MIMO systems and are useful in robustness analysis. The
singular value response of a SISO system is identical to its Bode magnitude
response. When invoked without output arguments, sigma produces a singular
value plot on the screen.

sigma(sys) plots the singular values of the frequency response of an arbitrary
LTI model sys. This model can be continuous or discrete, and SISO or MIMO.
The frequency points are chosen automatically based on the system poles and
zeros, or from sys.frequency if sys is an FRD.

sigma(sys,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set

H s( ) H jω( )
ω

H z( ) Ts

H e
jωTs( )

ω ωN π Ts⁄=
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w = {wmin,wmax}. To use particular frequency points, set w to the
corresponding vector of frequencies. Use logspace to generate logarithmically
spaced frequency vectors. The frequencies must be specified in rad/sec.

sigma(sys,[],type) or sigma(sys,w,type) plots the following modified
singular value responses:

These options are available only for square systems, that is, with the same
number of inputs and outputs.

To superimpose the singular value plots of several LTI models on a single
figure, use

sigma(sys1,sys2,...,sysN)
sigma(sys1,sys2,...,sysN,[],type) % modified SV plot
sigma(sys1,sys2,...,sysN,w) % specify frequency range/grid

The models sys1,sys2,...,sysN need not have the same number of inputs
and outputs. Each model can be either continuous- or discrete-time. You can
also specify a distinctive color, linestyle, and/or marker for each system plot
with the syntax

sigma(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with output arguments,

[sv,w] = sigma(sys)
sv = sigma(sys,w)

return the singular values sv of the frequency response at the frequencies w.
For a system with Nu input and Ny outputs, the array sv has min(Nu,Ny) rows
and as many columns as frequency points (length of w). The singular values at
the frequency w(k) are given by sv(:,k).

type = 1 Singular values of the frequency response , where is
the frequency response of sys.

type = 2 Singular values of the frequency response .

type = 3 Singular values of the frequency response .

H 1– H

I H+

I H 1–
+
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Example Plot the singular value responses of

and .

You can do this by typing

H = [0 tf([3 0],[1 1 10]) ; tf([1 1],[1 5]) tf(2,[1 6])]

subplot(211)
sigma(H)
subplot(212)

H s( )
0 3s

s2 s 10+ +
---------------------------

s 1+
s 5+
------------ 2

s 6+
------------

=

I H s( )+
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sigma(H,[],2)

Algorithm sigma uses the svd function in MATLAB to compute the singular values of a
complex matrix.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
nyquist Nyquist plot
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16sisotoolPurpose Initialize the SISO Design Tool

Syntax sisotool
sisotool(plant)
sisotool(plant,comp)
sisotool(views)
sisotool(views,plant,comp)
sisotool(views,plant,comp,options)

Description When invoked without input arguments, sisotool opens a SISO Design GUI
for interactive compensator design. This GUI allows you to design a
single-input/single-output (SISO) compensator using root locus and Bode
diagram techniques.

By default, the SISO Design Tool:

• Opens root locus and Bode diagrams.

• Places the compensator, C, in the forward path in series with the plant, P.

• Assumes the prefilter, F, and the sensor, H, are unity gains. If you want to
include F and H in the design model, open the Import Model window and
select the models you want to use for each. Once you specify F, P, and H, they
are fixed in the feedback structure.
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This picture shows the SISO Design Tool.

sisotool(plant) opens the SISO Design Tool with plant imported. If your
plant is any SISO LTI object (created with ss, tf, or zpk) that exists in the
MATLAB workspace, sisotool(plant) initializes a SISO Design Tool with
the plant model P set to plant and initializes the plant model P to plant (any
SISO LTI object).

sisotool(plant,comp) initializes both the plant model P to plant and the
compenensator C to comp. Both plant and comp must be SISO LTI models.

sisotool(views) or sisotool(views,plant,comp) specifies the initial
configuration of the SISO Design Tool. The argument views can be any of the
following strings (or combination thereof):

• 'rlocus' — Root Locus plot

• 'bode' — Bode diagrams of the open-loop response

Compensator 
description: The default 
compensator is K=1.

Use the right-click menu s 
to maipulate the 
compensator design and 
the plots’ appearances. 
Right-click in any plot 
region to open the menu.

The status bar provides 
useful information.

Use the menu bar to import/export models, and to 
edit them. Right-click menu functionality is available 
under the Edit menu.

The feedback structure: Click on FS to change the feedback 
structure. Click on +/- to change the feedback sign.
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For example

        sisotool('bode')

opens a SISO Design Tool with only the Bode Diagrams on.

sisotool(plant,comp,options) allows you to override the default
compensator location and feedback sign by using an extra input argument
options with the following fields:

• options.Location = 'forward' — Compensator in the forward loop

• options.Location = 'feedback' — Compensator in the feedback loop

• options.Sign = −1 — Negative feedback

• options.Sign = 1 — Positive feedback

You can design compensators for one of the following two feedback loop
configurations.

Figure 16-1:  The SISO Design Tool Supports Two Feedback Structures.

For more details on the SISO Design Tool, see “Designing Compensators” in
Getting Started with the Control System Toolbox.

See Also bode Select gain from the root locus plot
ltiview Open an LTI Viewer
rlocus Plot root locus

Compensator in the Compensator in the
Feedback PathForward Path
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16sizePurpose Provide the output/input/array dimensions of LTI models, the model order of
TF, SS, and ZPK models, and the number of frequencies of FRD models

Syntax size(sys)
d = size(sys)
Ny = size(sys,1)
Nu = size(sys,2)
Sk = size(sys,2+k)
Ns = size(sys,'order')
Nf = size(sys,'frequency')

Description When invoked without output arguments, size(sys) returns a vector of the
number of outputs and inputs for a single LTI model. The lengths of the array
dimensions are also included in the response to size when sys is an LTI array.
size is the overloaded version of the MATLAB function size for LTI objects.

d = size(sys) returns:

• The row vector d = [Ny Nu] for a single LTI model sys with Ny outputs and
Nu inputs

• The row vector d = [Ny Nu S1 S2 ... Sp] for an S1-by-S2-by-...-by-Sp array
of LTI models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.

Nu = size(sys,2) returns the number of inputs of sys.

Sk = size(sys,2+k) returns the length of the k-th array dimension when sys
is an LTI array.

Ns = size(sys,'order') returns the model order of a TF, SS, or ZPK model. This
is the same as the number of states for state-space models. When sys is an LTI
array, ns is the maximum order of all of the models in the LTI array.

Nf = size(sys,'frequency') returns the number of frequencies when sys is
an FRD. This is the same as the length of sys.frequency.

Example Consider the random LTI array of state-space models

sys = rss(5,3,2,3);

Its dimensions are obtained by typing
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size(sys)

3x1 array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

See Also isempty Test if LTI model is empty
issiso Test if LTI model is SISO
ndims Number of dimensions of an LTI array
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16sminrealPurpose Perform model reduction based on structure

Syntax msys = sminreal(sys)

Description msys = sminreal(sys) eliminates the states of the state-space model sys that
don’t affect the input/output response. All of the states of the resulting
state-space model msys are also states of sys and the input/output response of
msys is equivalent to that of sys.

sminreal eliminates only structurally non minimal states, i.e., states that can
be discarded by looking only at hard zero entries in the A, B, and C matrices.
Such structurally nonminimal states arise, for example, when linearizing a
Simulink model that includes some unconnected state-space or transfer
function blocks.

Remark The model resulting from sminreal(sys) is not necessarily minimal, and may
have a higher order than one resulting from minreal(sys). However,
sminreal(sys) retains the state structure of sys, while, in general,
minreal(sys) does not.

Example Suppose you concatenate two SS models, sys1 and sys2.

sys = [sys1,sys2];

This operation is depicted in the diagram below.

If you extract the subsystem sys1 from sys, with

sys(1,1)

+ y

u

v

sys1

sys2
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all of the states of sys, including those of sys2 are retained. To eliminate the
unobservable states from sys2, while retaining the states of sys1, type

sminreal(sys(1,1))

See Also minreal Model reduction by removing unobservable/
uncontrollable states or cancelling pole/zero pairs
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16ssPurpose Specify state-space models or convert an LTI model to state space

Syntax sys = ss(a,b,c,d)
sys = ss(a,b,c,d,Ts)
sys = ss(d)
sys = ss(a,b,c,d,ltisys)

sys = ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)
sys = ss(a,b,c,d,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys_ss = ss(sys)
sys_ss = ss(sys,'minimal')

Description ss is used to create real-valued state-space models (SS objects) or to convert
transfer function or zero-pole-gain models to state space.

Creation of State-Space Models

sys = ss(a,b,c,d) creates the continuous-time state-space model

For a model with Nx states, Ny outputs, and Nu inputs:

• a is an Nx-by-Nx real-valued matrix.

• b is an Nx-by-Nu real-valued matrix.

• c is an Ny-by-Nx real-valued matrix.

• d is an Ny-by-Nu real-valued matrix.

The output sys is an SS model that stores the model data (see “State-Space
Models” on page 2-14). If , you can simply set d to the scalar 0 (zero),
regardless of the dimension.

sys = ss(a,b,c,d,Ts) creates the discrete-time model

x· Ax Bu+=

y Cx Du+=

D 0=

x n 1+[ ] Ax n[ ] Bu n[ ]+=

y n[ ] Cx n[ ] Du n[ ]+=
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with sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample
time unspecified.

sys = ss(d) specifies a static gain matrix and is equivalent to

sys = ss([],[],[],d)

sys = ss(a,b,c,d,ltisys) creates a state-space model with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

See “Building LTI Arrays” on page 4-12 for information on how to build arrays
of state-space models.

Any of the previous syntaxes can be followed by property name/property value
pairs.

'PropertyName',PropertyValue

Each pair specifies a particular LTI property of the model, for example, the
input names or some notes on the model history. See the set entry and the
example below for details. Note that

sys = ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)

is equivalent to the sequence of commands.

sys = ss(a,b,c,d)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Conversion to State Space

sys_ss = ss(sys) converts an arbitrary TF or ZPK model sys to state space.
The output sys_ss is an equivalent state-space model (SS object). This
operation is known as state-space realization.

sys_ss = ss(sys,'minimal') produces a state-space realization with no
uncontrollable or unobservable states. This is equivalent to sys_ss = 
minreal(ss(sys)).

Examples Example 1
The command

D
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sys = ss(A,B,C,D,0.05,'statename',{'position' 'velocity'},...
'inputname','force',...
'notes','Created 10/15/96')

creates a discrete-time model with matrices and sample time 0.05
second. This model has two states labeled position and velocity, and one
input labeled force (the dimensions of should be consistent with
these numbers of states and inputs). Finally, a note is attached with the date
of creation of the model.

Example 2
Compute a state-space realization of the transfer function

by typing

H = [tf([1 1],[1 3 3 2]) ; tf([1 0 3],[1 1 1])];
sys = ss(H);
size(sys)

State-space model with 2 outputs, 1 input, and 5 states.

Note that the number of states is equal to the cumulative order of the SISO
entries of H(s).

To obtain a minimal realization of H(s), type

sys = ss(H,'min');
size(sys)

State-space model with 2 outputs, 1 input, and 3 states.

The resulting state-space model order has order three, the minimum number
of states needed to represent H(s). This can be seen directly by factoring H(s)
as the product of a first order system with a second order one.

A B C D, , ,

A B C D, , ,

H s( )

s 1+

s3 3s2 3s 2+ + +
-------------------------------------------

s2 3+

s2 s 1+ +
------------------------

=



ss

16-209

See Also dss Specify descriptor state-space models.
frd Specify FRD models or convert to an FRD.
get Get properties of LTI models.
set Set properties of LTI models.
ssdata Retrieve the matrices of state-space model.
tf Specify transfer functions or convert to TF.
zpk Specify zero-pole-gain models or convert to ZPK.

H s( )
1

s 2+
------------ 0

0 1

s 1+

s2 s 1+ +
------------------------

s2 3+

s2 s 1+ +
------------------------

=

A B C D, , ,
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16ss2ssPurpose State coordinate transformation for state-space models

Syntax sysT = ss2ss(sys,T)

Description Given a state-space model sys with equations

(or their discrete-time counterpart), ss2ss performs the similarity
transformation on the state vector and produces the equivalent
state-space model sysT with equations.

sysT = ss2ss(sys,T) returns the transformed state-space model sysT given
sys and the state coordinate transformation T. The model sys must be in
state-space form and the matrix T must be invertible. ss2ss is applicable to
both continuous- and discrete-time models.

Example Perform a similarity transform to improve the conditioning of the matrix.

T = balance(sys.a)
sysb = ss2ss(sys,inv(T))

See ssbal for a more direct approach.

See Also balreal Grammian-based I/O balancing
canon Canonical state-space realizations
ssbal Balancing of state-space models using diagonal

similarity transformations

x· Ax Bu+=

y Cx Du+=

x Tx= x

x· TAT 1– x TBu+=

y CT 1– x Du+=

A
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16ssbalPurpose Balance state-space models using a diagonal similarity transformation

Syntax [sysb,T] = ssbal(sys)
[sysb,T] = ssbal(sys,condT)

Description Given a state-space model sys with matrices ,

[sysb,T] = ssbal(sys)

computes a diagonal similarity transformation and a scalar such that

has approximately equal row and column norms. ssbal returns the balanced
model sysb with matrices

and the state transformation where is the new state.

[sysb,T] = ssbal(sys,condT) specifies an upper bound condT on the
condition number of . Since balancing with ill-conditioned can
inadvertently magnify rounding errors, condT gives control over the worst-case
roundoff amplification factor. The default value is condT=Inf.

ssbal returns an error if the state-space model sys has varying state
dimensions.

Example Consider the continuous-time state-space model with the following data.

a = [1 1e4 1e2;0 1e2 1e5;10 1 0];
b = [1;1;1];
c = [0.1 10 1e2];
sys = ss(a,b,c,0)

A B C D, , ,( )

T α

TAT 1– TB α⁄

αCT 1– 0

TAT 1– TB α⁄ αCT 1– D,, ,( )

x Tx= x

T T

A
1 104 102

0 102 105

10 1 0

,= B
1
1
1

,= C 0.1 10 100=
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Balance this model with ssbal by typing

ssbal(sys)

a = 
                        x1           x2           x3
           x1            1         2500      0.39063
           x2            0          100       1562.5
           x3         2560           64            0
 
 
b = 
                        u1
           x1        0.125
           x2          0.5
           x3           32
 
 
c = 
                        x1           x2           x3
           y1          0.8           20        3.125
 
 
d = 
                        u1
           y1            0
 
Continuous-time system.

Direct inspection shows that the range of numerical values has been
compressed by a factor 100 and that the and matrices now have nearly
equal norms.

Algorithm ssbal uses the MATLAB function balance to compute and .

See Also balreal Grammian-based I/O balancing
ss2ss State coordinate transformation

B C

T α
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16ssdataPurpose Quick access to state-space model data

Syntax [a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)

Description [a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array)
data from the state-space model (LTI array) sys. If sys is a
transfer function or zero-pole-gain model (LTI array), it is first converted to
state space. See Table 11-16, “State-Space Model Properties,” on page 11-195
for more information on the format of state-space model data.

[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.statename

See Also dssdata Quick access to descriptor state-space data
get Get properties of LTI models
set Set model properties
ss Specify state-space models
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data

A B C D, , ,( )
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16stackPurpose Build an LTI array by stacking LTI models or LTI arrays along array
dimensions of an LTI array

Syntax sys = stack(arraydim,sys1,sys2,...)

Description sys = stack(arraydim,sys1,sys2,...) produces an array of LTI models sys
by stacking (concatenating) the LTI models (or LTI arrays) sys1,sys2,...
along the array dimension arraydim. All models must have the same number
of inputs and outputs (the same I/O dimensions). The I/O dimensions are not
counted in the array dimensions. See “Dimensions, Size, and Shape of an LTI
Array” on page 4-7, and “Building LTI Arrays Using the stack Function” on
page 4-15 for more information.

Example If sys1 and sys2 are two LTI models with the same I/O dimensions:

• stack(1,sys1,sys2) produces a 2-by-1 LTI array.

• stack(2,sys1,sys2) produces a 1-by-2 LTI array.

• stack(3,sys1,sys2) produces a 1-by-1-by-2 LTI array.
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16stepPurpose Step response of LTI systems

Syntax step(sys)
step(sys,t)

step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,t)
step(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

[y,t,x] = step(sys)

Description step calculates the unit step response of a linear system. Zero initial state is
assumed in the state-space case. When invoked with no output arguments, this
function plots the step response on the screen.

step(sys) plots the step response of an arbitrary LTI model sys. This model
can be continuous or discrete, and SISO or MIMO. The step response of
multi-input systems is the collection of step responses for each input channel.
The duration of simulation is determined automatically based on the system
poles and zeros.

step(sys,t) sets the simulation horizon explicitly. You can specify either a
final time t = Tfinal (in seconds), or a vector of evenly spaced time samples
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see “Algorithm”), so make sure to choose dt small enough to capture
transient phenomena.

To plot the step responses of several LTI models sys1,..., sysN on a single
figure, use

step(sys1,sys2,...,sysN) 
step(sys1,sys2,...,sysN,t)
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All systems must have the same number of inputs and outputs but may
otherwise be a mix of continuous- and discrete-time systems. This syntax is
useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, and/or marker for each
system. For example,

step(sys1,'y:',sys2,'g--')

plots the step response of sys1 with a dotted yellow line and the step response
of sys2 with a green dashed line.

When invoked with output arguments,

[y,t] = step(sys)
[y,t,x] = step(sys) % for state-space models only
y = step(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. For single-input systems, y has as many rows as time samples (length
of t), and as many columns as outputs. In the multi-input case, the step
responses of each input channel are stacked up along the third dimension of y.
The dimensions of y are then

and y(:,:,j) gives the response to a unit step command injected in the jth
input channel. Similarly, the dimensions of x are

Example Plot the step response of the following second-order state-space model.

length of t( ) number of outputs( ) number of inputs( )××

length of t( ) number of states( ) number of inputs( )××

x·1

x·2

0.5572– 0.7814–

0.7814 0

x1

x2

1 1–

0 2

u1

u2

+=

y 1.9691 6.4493
x1

x2

=
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a = [-0.5572   -0.7814;0.7814  0];
b = [1 -1;0 2];
c = [1.9691  6.4493];
sys = ss(a,b,c,0);
step(sys)

The left plot shows the step response of the first input channel, and the right
plot shows the step response of the second input channel.

Algorithm Continuous-time models are converted to state space and discretized using
zero-order hold on the inputs. The sampling period is chosen automatically
based on the system dynamics, except when a time vector t = 0:dt:Tf is
supplied (dt is then used as sampling period).

See Also impulse Impulse response
initial Free response to initial condition
lsim Simulate response to arbitrary inputs
ltiview LTI system viewer
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16tfPurpose Specify transfer functions or convert LTI model to transfer function form

Syntax sys = tf(num,den)
sys = tf(num,den,Ts)
sys = tf(M)
sys = tf(num,den,ltisys)

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)
sys = tf(num,den,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys = tf('s')
sys = tf('z')

tfsys = tf(sys)
tfsys = tf(sys,'inv') % for state-space sys only

Description tf is used to create real-valued transfer function models (TF objects) or to
convert state-space or zero-pole-gain models to transfer function form.

Creation of Transfer Functions

sys = tf(num,den) creates a continuous-time transfer function with
numerator(s) and denominator(s) specified by num and den. The output sys is a
TF object storing the transfer function data (see “Transfer Function Models” on
page 2-8).

In the SISO case, num and den are the real-valued row vectors of numerator and
denominator coefficients ordered in descending powers of . These two vectors
need not have equal length and the transfer function need not be proper. For
example, h = tf([1 0],1) specifies the pure derivative .

To create MIMO transfer functions, specify the numerator and denominator of
each SISO entry. In this case:

• num and den are cell arrays of row vectors with as many rows as outputs and
as many columns as inputs.

• The row vectors num{i,j} and den{i,j} specify the numerator and
denominator of the transfer function from input j to output i (with the SISO
convention).

s

h s( ) s=
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If all SISO entries of a MIMO transfer function have the same denominator,
you can set den to the row vector representation of this common denominator.
See “Examples” for more details.

sys = tf(num,den,Ts) creates a discrete-time transfer function with sample
time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time
unspecified. The input arguments num and den are as in the continuous-time
case and must list the numerator and denominator coefficients in descending
powers of .

sys = tf(M) creates a static gain M (scalar or matrix).

sys = tf(num,den,ltisys) creates a transfer function with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

There are several ways to create LTI arrays of transfer functions. To create
arrays of SISO or MIMO TF models, either specify the numerator and
denominator of each SISO entry using multidimensional cell arrays, or use a
for loop to successively assign each TF model in the array. See “Building LTI
Arrays” on page 4-12 for more information.

Any of the previous syntaxes can be followed by property name/property value
pairs

'Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or the transfer function variable. See set entry and the example
below for details. Note that

sys = tf(num,den,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for

sys = tf(num,den)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Transfer Functions as Rational Expressions in s or z
You can also use real-valued rational expressions to create a TF model. To do
so, first type either:

z
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• s = tf('s') to specify a TF model using a rational function in the Laplace
variable, s.

• z = tf('z',Ts) to specify a TF model with sample time Ts using a rational
function in the discrete-time variable, z.

Once you specify either of these variables, you can specify TF models directly
as rational expressions in the variable s or z by entering your transfer function
as a rational expression in either s or z.

Conversion to Transfer Function

tfsys = tf(sys) converts an arbitrary SS or ZPK LTI model sys to transfer
function form. The output tfsys (TF object) is the transfer function of sys. By
default, tf uses zero to compute the numerators when converting a state-space
model to transfer function form. Alternatively,

tfsys = tf(sys,'inv')

uses inversion formulas for state-space models to derive the numerators. This
algorithm is faster but less accurate for high-order models with low gain at

.

Examples Example 1
Create the two-output/one-input transfer function

with input current and outputs torque and ang velocity.

To do this, type

num = {[1 1] ; 1}
den = {[1 2 2] ; [1 0]}
H = tf(num,den,'inputn','current',...

'outputn',{'torque' 'ang. velocity'},...
 'variable','p')

s 0=

H p( )

p 1+

p2 2p 2+ +
-----------------------------

1
p
---

=
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Transfer function from input "current" to output...
              p + 1
 torque:  -------------
          p^2 + 2 p + 2
 
                 1
 ang. velocity:  -
                 p

Note how setting the 'variable' property to 'p' causes the result to be
displayed as a transfer function of the variable .

Example 2
To use a rational expression to create a SISO TF model, type

s = tf('s');
H = s/(s^2 + 2*s +10);

This produces the same transfer function as

h = tf([1 0],[1 2 10]);

Example 3
Specify the discrete MIMO transfer function

with common denominator and sample time of 0.2 seconds.

nums = {1 [1 0];[-1 2] 3}
Ts = 0.2
H = tf(nums,[1 0.3],Ts) % Note: row vector for common den. d(z)

Example 4
Compute the transfer function of the state-space model with the following data.

p

H z( )

1
z 0.3+
----------------- z

z 0.3+
-----------------

z– 2+
z 0.3+
----------------- 3

z 0.3+
-----------------

=

d z( ) z 0.3+=
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To do this, type

sys = ss([-2 -1;1 -2],[1 1;2 -1],[1 0],[0 1])
tf(sys) 

Transfer function from input 1 to output:
      s
-------------
s^2 + 4 s + 5
 
Transfer function from input 2 to output:
s^2 + 5 s + 8
-------------
s^2 + 4 s + 5

Example 5

You can use a for loop to specify a 10-by-1 array of SISO TF models.

s = tf('s')
H = tf(zeros(1,1,10));                                                   

for k=1:10,                                                              
H(:,:,k) = k/(s^2+s+k);                                               

end                                                                      

The first statement pre-allocates the TF array and fills it with zero transfer
functions.

Discrete-Time 
Conventions

The control and digital signal processing (DSP) communities tend to use
different conventions to specify discrete transfer functions. Most control
engineers use the variable and order the numerator and denominator terms
in descending powers of , for example,

A 2– 1–

1 2–
,= B 1 1

2 1–
,= C 1 0 ,= D 0 1=

z
z

h z( ) z2

z2 2z 3+ +
----------------------------=
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The polynomials and are then specified by the row vectors
[1 0 0] and [1 2 3], respectively. By contrast, DSP engineers prefer to write
this transfer function as

and specify its numerator as 1 (instead of [1 0 0]) and its denominator as
[1 2 3].

tf switches convention based on your choice of variable (value of the
'Variable' property).

For example,

g = tf([1 1],[1 2 3],0.1)

specifies the discrete transfer function

because is the default variable. In contrast,

h = tf([1 1],[1 2 3],0.1,'variable','z^-1')

uses the DSP convention and creates

Variable Convention

'z' (default) Use the row vector [ak ... a1 a0] to specify the
polynomial (coefficients ordered in
descending powers of ).

'z^-1', 'q' Use the row vector [b0 b1 ... bk] to specify the
polynomial (coefficients in
ascending powers of or ).

z2 z2 2z 3+ +

h z 1–( ) 1

1 2z 1– 3z 2–
+ +

----------------------------------------=

akzk ... a1z a0+ + +
z

b0 b1z 1– ... bkz k–
+ + +

z 1– q

g z( ) z 1+

z2 2z 3+ +
----------------------------=

z

h z 1–( ) 1 z 1–
+

1 2z 1– 3z 2–
+ +

---------------------------------------- zg z( )= =
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See also filt for direct specification of discrete transfer functions using the
DSP convention.

Note that tf stores data so that the numerator and denominator lengths are
made equal. Specifically, tf stores the values

num = [0 1 1]; den = [1 2 3]

for g (the numerator is padded with zeros on the left) and the values

num = [1 1 0]; den = [1 2 3]

for h (the numerator is padded with zeros on the right).

Algorithm tf uses the MATLAB function poly to convert zero-pole-gain models, and the
functions zero and pole to convert state-space models.

See Also filt Specify discrete transfer functions in DSP format
frd Specify a frequency response data model
get Get properties of LTI models
set Set properties of LTI models
ss Specify state-space models or convert to state space
tfdata Retrieve transfer function data
zpk Specify zero-pole-gain models or convert to ZPK
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16tfdataPurpose Quick access to transfer function data

Syntax [num,den] = tfdata(sys)
[num,den] = tfdata(sys,'v')
[num,den,Ts] = tfdata(sys)

Description [num,den] = tfdata(sys) returns the numerator(s) and denominator(s) of
the transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or
ZPK models) sys. For single LTI models, the outputs num and den of tfdata are
cell arrays with the following characteristics:

• num and den have as many rows as outputs and as many columns as inputs.

• The (i,j) entries num{i,j} and den{i,j} are row vectors specifying the
numerator and denominator coefficients of the transfer function from input
j to output i. These coefficients are ordered in descending powers of or .

For arrays sys of LTI models, num and den are multidimensional cell arrays
with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer
function form using tf. See Table 11-15, “LTI Properties,” on page 11-194 for
more information on the format of transfer function model data.

For SISO transfer functions, the syntax

[num,den] = tfdata(sys,'v')

forces tfdata to return the numerator and denominator directly as row vectors
rather than as cell arrays (see example below).

[num,den,Ts] = tfdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.Ts
sys.variable

Example Given the SISO transfer function

h = tf([1 1],[1 2 5])

s z
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you can extract the numerator and denominator coefficients by typing

[num,den] = tfdata(h,'v')

num =
     0     1     1
 
den =
     1     2     5

This syntax returns two row vectors.

If you turn h into a MIMO transfer function by typing

H = [h ; tf(1,[1 1])]

the command

[num,den] = tfdata(H)

now returns two cell arrays with the numerator/denominator data for each
SISO entry. Use celldisp to visualize this data. Type

celldisp(num)

and MATLAB returns the numerator vectors of the entries of H.

num{1} =
     0     1     1
 
num{2} =
     0     1

Similarly, for the denominators, type

celldisp(den)

den{1} =
     1     2     5
 
den{2} =
     1     1

See Also get Get properties of LTI models
ssdata Quick access to state-space data
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tf Specify transfer functions
zpkdata Quick access to zero-pole-gain data
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16totaldelayPurpose Return the total combined I/O delays for an LTI model

Syntax td = totaldelay(sys)

Description td = totaldelay(sys) returns the total combined I/O delays for an LTI model
sys. The matrix td combines contributions from the InputDelay, OutputDelay,
and ioDelay properties, (see set on page 11-192 or type ltiprops for details on
these properties).

Delays are expressed in seconds for continuous-time models, and as integer
multiples of the sample period for discrete-time models. To obtain the delay
times in seconds, multiply td by the sample time sys.Ts.

Example sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2;          % 2 sec input delay
sys.outputd = 1.5;          % 1.5 sec output delay
td = totaldelay(sys)

td =
    3.5000

The resulting I/O map is

This is equivalent to assigning an I/O delay of 3.5 seconds to the original model
sys.

See Also delay2z Change transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information

hasdelay True for LTI models with delays

e 2s– 1
s
---e 1.5s–× e 3.5s– 1

s
---=
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16zeroPurpose Transmission zeros of LTI models

Syntax z = zero(sys)
[z,gain] = zero(sys)

Description zero computes the zeros of SISO systems and the transmission zeros of MIMO
systems. For a MIMO system with matrices , the transmission
zeros are the complex values for which the normal rank of

drops.

z = zero(sys) returns the (transmission) zeros of the LTI model sys as a
column vector.

[z,gain] = zero(sys) also returns the gain (in the zero-pole-gain sense) if
sys is a SISO system.

Algorithm The transmission zeros are computed using the algorithm in [1].

See Also pole Compute the poles of an LTI model
pzmap Compute the pole-zero map

References [1] Emami-Naeini, A. and P. Van Dooren, “Computation of Zeros of Linear
Multivariable Systems,” Automatica, 18 (1982), pp. 415–430.

A B C D, , ,( )
λ

A λI– B
C D



zgrid

16-230

16zgridPurpose Generate a z-plane grid of constant damping factors and natural frequencies

Syntax zgrid
zgrid(z,wn)

Description zgrid generates, for root locus and pole-zero maps, a grid of constant damping
factors from zero to one in steps of 0.1 and natural frequencies from zero to
in steps of , and plots the grid over the current axis. If the current axis
contains a discrete z-plane root locus diagram or pole-zero map, zgrid draws
the grid over the plot without altering the current axis limits.

zgrid(z,wn) plots a grid of constant damping factor and natural frequency
lines for the damping factors and normalized natural frequencies in the vectors
z and wn, respectively. If the current axis contains a discrete z-plane root locus
diagram or pole-zero map, zgrid(z,wn) draws the grid over the plot. The
frequency lines for unnormalized (true) frequencies can be plotted using

zgrid(z,wn/Ts)

where Ts is the sample time.

zgrid([],[]) draws the unit circle.

Alternatively, you can select Grid from the right-click menu to generate the
same z-plane grid.

Example Plot z-plane grid lines on the root locus for the system

by typing

H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

Transfer function:
2 z^2 - 3.4 z + 1.5
-------------------
 z^2 - 1.6 z + 0.8

Sampling time: unspecified

π
π 10⁄

H z( ) 2z2 3.4z– 1.5+

z2 1.6z– 0.8+
-----------------------------------------=
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To see the z-plane grid on the root locus plot, type

rlocus(H)
zgrid
axis('square')

See Also pzmap Plot pole-zero map of LTI systems
rlocus Plot root locus
sgrid Generate s-plane grid lines
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16zpkPurpose Specify zero-pole-gain models or convert LTI model to zero-pole-gain form

Syntax sys = zpk(z,p,k)
sys = zpk(z,p,k,Ts)
sys = zpk(M)
sys = zpk(z,p,k,ltisys)

sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)
sys = zpk(z,p,k,Ts,'Property1',Value1,...,'PropertyN',ValueN)

sys = zpk('s')
sys = zpk('z')

zsys = zpk(sys)
zsys = zpk(sys,'inv') % for state-space sys only

Description zpk is used to create zero-pole-gain models (ZPK objects) or to convert TF or SS
models to zero-pole-gain form.

Creation of Zero-Pole-Gain Models

sys = zpk(z,p,k) creates a continuous-time zero-pole-gain model with zeros
z, poles p, and gain(s) k. The output sys is a ZPK object storing the model data
(see “LTI Objects” on page 2-3).

In the SISO case, z and p are the vectors of real or complex conjugate zeros and
poles, and k is the real-valued scalar gain.

Set z or p to [] for systems without zeros or poles. These two vectors need not
have equal length and the model need not be proper (that is, have an excess of
poles).

You can also use rational expressions to create a ZPK model. To do so, use
either:

• s = zpk('s') to specify a ZPK model from a rational transfer function of the
Laplace variable, s.

h s( ) k s z 1( )–( ) s z 2( )–( )... s z m( )–( )
s p 1( )–( ) s p 2( )–( )... s p n( )–( )

----------------------------------------------------------------------------------=
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• z = zpk('z',Ts) to specify a ZPK model with sample time Ts from a rational
transfer function of the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly
as real-valued rational expressions in the variable s or z.

To create a MIMO zero-pole-gain model, specify the zeros, poles, and gain of
each SISO entry of this model. In this case:

• z and p are cell arrays of vectors with as many rows as outputs and as many
columns as inputs, and k is a matrix with as many rows as outputs and as
many columns as inputs.

• The vectors z{i,j} and p{i,j} specify the zeros and poles of the transfer
function from input j to output i.

• k(i,j) specifies the (scalar) gain of the transfer function from input j to
output i.

See below for a MIMO example.

sys = zpk(z,p,k,Ts) creates a discrete-time zero-pole-gain model with
sample time Ts (in seconds). Set Ts = -1 or Ts = [] to leave the sample time
unspecified. The input arguments z, p, k are as in the continuous-time case.

sys = zpk(M) specifies a static gain M.

sys = zpk(z,p,k,ltisys) creates a zero-pole-gain model with generic LTI
properties inherited from the LTI model ltisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

To create an array of ZPK models, use a for loop, or use multidimensional cell
arrays for z and p, and a multidimensional array for k.

Any of the previous syntaxes can be followed by property name/property value
pairs.

'PropertyName',PropertyValue

Each pair specifies a particular LTI property of the model, for example, the
input names or the input delay time. See set entry and the example below for
details. Note that
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sys = zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)

is a shortcut for the following sequence of commands.

sys = zpk(z,p,k)
set(sys,'Property1',Value1,...,'PropertyN',ValueN)

Zero-Pole-Gain Models as Rational Expressions in s or z
You can also use rational expressions to create a ZPK model. To do so, first type
either:

• s = zpk('s') to specify a ZPK model using a rational function in the Laplace
variable, s.

• z = zpk('z',Ts) to specify a ZPK model with sample time Ts using a
rational function in the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly
as rational expressions in the variable s or z by entering your transfer function
as a rational expression in either s or z.

Conversion to Zero-Pole-Gain Form

zsys = zpk(sys) converts an arbitrary LTI model sys to zero-pole-gain form.
The output zsys is a ZPK object. By default, zpk uses zero to compute the zeros
when converting from state-space to zero-pole-gain. Alternatively,

zsys = zpk(sys,'inv')

uses inversion formulas for state-space models to compute the zeros. This
algorithm is faster but less accurate for high-order models with low gain at

.

Variable 
Selection

As for transfer functions, you can specify which variable to use in the display
of zero-pole-gain models. Available choices include (default) and for
continuous-time models, and (default), , or for discrete-time
models. Reassign the 'Variable' property to override the defaults. Changing
the variable affects only the display of zero-pole-gain models.

Example Example 1
Specify the following zero-pole-gain model.

s 0=

s p
z z 1– q z 1–

=
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To do this, type

z = {[] ; -0.5}
p = {0.3 ; [0.1+i 0.1-i]}
k = [1 ; 2]
H = zpk(z,p,k,-1) % unspecified sample time

Example 2
Convert the transfer function

h = tf([-10 20 0],[1 7 20 28 19 5])

Transfer function:
             -10 s^2 + 20 s
----------------------------------------
s^5 + 7 s^4 + 20 s^3 + 28 s^2 + 19 s + 5

to zero-pole-gain form by typing

zpk(h)

Zero/pole/gain:
     -10 s (s-2)
----------------------
(s+1)^3 (s^2 + 4s + 5)

Example 3
Create a discrete-time ZPK model from a rational expression in the variable z,
by typing

z = zpk('z',0.1); 
H = (z+.1)*(z+.2)/(z^2+.6*z+.09)

Zero/pole/gain:
(z+0.1) (z+0.2)
---------------

H z( )

1
z 0.3–
-----------------

2 z 0.5+( )
z 0.1– j+( ) z 0.1– j–( )

------------------------------------------------------------

=
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   (z+0.3)^2
 
Sampling time: 0.1

Algorithm zpk uses the MATLAB function roots to convert transfer functions and the
functions zero and pole to convert state-space models.

See Also frd Convert to frequency response data models
get Get properties of LTI models
set Set properties of LTI models
ss Convert to state-space models
tf Convert to TF transfer function models
zpkdata Retrieve zero-pole-gain data
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16zpkdataPurpose Quick access to zero-pole-gain data

Syntax [z,p,k] = zpkdata(sys)
[z,p,k] = zpkdata(sys,'v')
[z,p,k,Ts,Td] = zpkdata(sys)

Description [z,p,k] = zpkdata(sys) returns the zeros z, poles p, and gain(s) k of the zero-
pole-gain model sys. The outputs z and p are cell arrays with the following
characteristics:

• z and p have as many rows as outputs and as many columns as inputs.

• The (i,j) entries z{i,j} and p{i,j} are the (column) vectors of zeros and
poles of the transfer function from input j to output i.

The output k is a matrix with as many rows as outputs and as many columns
as inputs such that k(i,j) is the gain of the transfer function from input j to
output i. If sys is a transfer function or state-space model, it is first converted
to zero-pole-gain form using zpk. See Table 11-15, “LTI Properties,” on page
11-194 for more information on the format of state-space model data.

For SISO zero-pole-gain models, the syntax

[z,p,k] = zpkdata(sys,'v')

forces zpkdata to return the zeros and poles directly as column vectors rather
than as cell arrays (see example below).

[z,p,k,Ts,Td] = zpkdata(sys) also returns the sample time Ts and the
input delay data Td. For continuous-time models, Td is a row vector with one
entry per input channel (Td(j) indicates by how many seconds the jth input is
delayed). For discrete-time models, Td is the empty matrix [] (see d2d for
delays in discrete systems).

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.Ts
sys.inputname

Example Given a zero-pole-gain model with two outputs and one input

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
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Zero/pole/gain from input to output...
         1
 #1:  -------
      (z-0.3)
 
           2 (z+0.5)
 #2:  -------------------
      (z^2 - 0.2z + 1.01)
 
Sampling time: unspecified

you can extract the zero/pole/gain data embedded in H with

[z,p,k] = zpkdata(H)

z = 
    [      0]
    [-0.5000]
p = 
    [    0.3000]
    [2x1 double]
k =
     1
     2

To access the zeros and poles of the second output channel of H, get the content
of the second cell in z and p by typing

z{2,1}

ans =
   -0.5000

p{2,1}

ans =
   0.1000+ 1.0000i
   0.1000- 1.0000i

See Also get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
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zpk Specify zero-pole-gain models
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natural 16-53
Nyquist 16-25

frequency response 2-17
at single frequency (evalfr) 16-73
Bode plot 16-21
discrete-time frequency 16-24
freqresp 16-85
magnitude 16-21
MIMO 16-21
Nichols chart (ngrid) 16-147
Nichols plot 16-149
Nyquist plot 16-156
phase 16-21
plotting 16-21
singular value plot 16-195
viewing the gain and phase margins 16-137
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G
gain 2-11

feedthrough 2-27
low frequency (DC) 16-58
property

LTI properties gain 2-27
state-feedback gain 16-60

gain margins 10-28, 16-21
gensig 16-88
get 2-30, 16-90
gram 16-92
gramian (gram) 16-17
group. See I/O groups

H
Hamiltonian matrix and pencil 16-32
hasdelay 2-52, 16-94

I
I/O

concatenation 3-16
delays 2-25, 2-43, 2-44, 16-188
dimensions 4-2, 16-202

LTI arrays 5-7
groups 2-25

referencing models by group name 3-8
names 2-25, 2-35

conflicts, naming 3-4
referencing models by 3-8

relation 3-5
impulse 16-95
impulse response 16-95
indexing into LTI arrays 5-20

single index access 5-20
inheritance 3-3, 16-66

initial 16-99
initial condition 16-99
innovation 16-111
input 2-2

delays 2-25, 2-43, 2-48, 16-188
Dirac impulse 16-95
groups 2-25
names 2-25, 16-189

See also InputName

number of inputs 4-2, 16-202
pulse 16-88
sine wave 16-88
square wave 16-88

InputDelay. See delays
InputGroup 2-25, 2-26

conflicts, naming 3-4
See also I/O groups

InputName 2-32, 2-35
conflicts, naming 3-4
See also I/O names

interconnection. See model building
inv 16-103
inversion 16-103

limitations 16-104
model 3-13

ioDelayMatrix. See delay
isct 16-105
isdt 16-105
isempty 16-106
isproper 16-107
issiso 16-108

K
Kalman

filtering 10-50
kalman 16-109



Index

I-5

Kalman estimator
continuous 10-36
current 16-111
discrete 10-50, 16-109
innovation 16-111
steady-state 16-109
time-varying 10-57

kalmd 16-113

L
LFT (linear-fractional transformation) 16-115
LQG (linear quadratic-gaussian) method

continuous LQ regulator 10-36, 16-121
cost function 10-36, 16-60
current regulator 16-118
design 10-31, 10-46
discrete LQ regulator 16-60
Kalman state estimator 16-109
LQ-optimal gain 10-36, 16-121
optimal state-feedback gain 16-121
regulator 10-31, 16-117

lqr 16-121
lqrd 16-122
lqry 16-124
lsim 16-125
LTI (linear time-invariant) 2-2
LTI arrays 5-1

accessing models 5-20
analysis functions 5-29
array dimensions 5-7
building 5-15, 16-214
building LTI arrays 5-12
building with rss 5-12
building with tf, zpk, ss, and frd 5-17
concatenation 5-15, 16-214
conversion, model.See conversion

deleting parts of 5-23
dimensions, size, and shape 5-7
extracting subsystems 5-21
indexing into 5-20
interconnection functions 5-24
model dimensions 5-7
operations on 5-24

dimension requirements 5-26
special cases 5-26

reassigning parts of 5-22
right-click menus 15-8
shape, changing 16-178
size 5-7
stack 5-15, 16-214

LTI models
addition 3-11

scalar 3-12
building 3-16
characteristics 4-2
comparing multiple models 16-21
concatenation

effects on model order 3-9
horizontal 3-16
vertical 3-16

continuous 4-2
conversion 2-40, 3-3

continuous/discrete 3-20
See also conversion, model

creating 2-8
dimensions 16-146
discrete 2-19, 4-2, 16-105
discrete random 16-63
discretization, matched poles/zeros 3-23
empty 2-11, 4-2, 16-106
frd 16-80
functions, analysis 4-4
I/O group or channel name, referencing by 3-8
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interconnection functions 3-16
inversion 3-13
model data, accessing 2-23
model order reduction 16-142
model order reduction (balanced realization)

16-17
modifying 3-5
multiplication 3-13
ndims 16-146
norms 16-152
operations 3-1

precedence rules 3-3
See also operations

proper transfer function 4-2, 16-107
random 16-182
resizing 3-9
second-order 16-164
SISO 16-108
ss 16-206
subsystem, modifying 3-9
subtraction 3-12
type 4-2
zpk 16-232

LTI objects 2-25, 2-31
constructing 2-4
methods 2-4
properties. See LTI properties
See also LTI models

LTI properties 2-4, 2-25, 2-32
accessing property values (get) 2-30, 2-31,

16-90
admissible values 16-187
displaying properties 2-31, 16-90
generic properties 2-25
I/O groups. See I/O, groups
I/O names. See I/O, names
inheritance 3-3, 16-66

model-specific properties 2-26
online help (ltiprops) 2-25
property names 2-25, 2-29, 16-90, 16-186
property values 2-25, 2-30, 16-90, 16-186

setting 2-28, 16-186
sample time 3-3
variable property 3-4

LTI Viewer 14-2, 16-132
Preferences Editor 8-2

ltiview 16-132
lyap 16-135
Lyapunov equation 16-43, 16-93

continuous 16-135
discrete 16-62

M
map, I/O 3-5
margin 16-137
margins, gain and phase 10-28, 16-21
matched pole-zero 16-27
methods 2-4
MIMO 2-2, 3-17, 16-95
MIMO systems

right-click menus 15-8
minreal 16-140
model building 3-16

appending LTI models 16-13
feedback connection 10-12, 16-74
modeling block diagrams (connect) 16-37
parallel connection 3-12, 10-54, 16-168
series connection 3-13, 10-15, 16-184

model dynamics, function list 4-4
model order reduction 16-142

balanced realization 16-17
modeling. See model building
modred 16-142
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multiplication 3-13
scalar 3-13

N
natural frequency 16-53
ndims 16-146
ngrid 16-147
Nichols

chart 16-147
plot (nichols) 16-149

nichols 16-149
noise

measurement 16-71
process 16-71
white 16-42

norm 16-152
norms of LTI systems (norm) 16-152
Notes 2-26
numerator

property 2-27, 16-190
specification 2-8, 2-10, 2-21, 16-78
value 2-23, 16-91

numerical stability 11-6
Nyquist

frequency 16-25
plot (nyquist) 16-156

nyquist 16-156

O
object-oriented programming 2-4
objects. See LTI objects
observability

matrix (ctrb) 16-160
staircase form 16-162

obsv 16-160

obsvf 16-162
operations on LTI models

addition 3-11
append 3-16
append 16-13
arithmetic 3-11
augmenting state with outputs 16-16
concatenation 2-10, 3-9, 3-16
diagonal building 16-13
extracting a subsystem 2-6
inversion 3-13, 16-103
multiplication 3-13
overloaded 2-4
pertransposition 3-14
precedence 3-3
resizing 3-9
sorting the poles 16-65
subsystem, extraction 3-5
subtraction 3-12
transposition 3-14

ord2 16-164
output 2-2

covariance 16-42
delays 2-25, 2-43, 2-48, 16-189
groups 2-25
names 2-25, 16-189
names. See also OutputName

number of outputs 4-2, 16-202

OutputDelay. See delays
OutputGroup 2-25, 2-26

group names, conflicts 3-4
See also I/O, groups

OutputName 2-32
conflicts, naming 3-4
See also I/O, names
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P
pade 16-165
Padé approximation (pade) 2-52, 16-165
parallel 16-168
parallel connection 3-12, 10-54, 16-168
pertransposition 3-14
phase margins 10-28, 16-21
place 16-170
plot customization 9-3
plotting

multiple systems 16-21
Nichols chart (ngrid) 16-147
s-plane grid (sgrid) 16-193
z-plane grid (zgrid) 16-230

pole 16-172
pole placement 16-170
poles 2-12

computing 16-172
damping 16-53
equivalent continuous poles 16-53
multiple 16-172
natural frequency 16-53
pole-zero map 16-173
property 2-27
sorting by magnitude (dsort) 16-65
s-plane grid (sgrid) 16-193
z-plane grid (zgrid) 16-230

pole-zero
cancellation 16-140
map (pzmap) 16-173

precedence rules 2-5, 3-3
preferences and properties 6-2
proper transfer function 4-2, 16-107
properties

sample time 3-3
variable 3-4

properties and preferences 6-2

properties. See LTI properties
Property Editor 9-3
pulse 16-88
pzmap 16-173

R
random models 16-182
realization

state coordinate transformation 4-7, 16-210
state coordinate transformation (canonical)

16-31
realizations 4-7, 16-207

balanced 4-7, 16-17
canonical 4-7, 16-30
companion form 16-30
minimal 16-140
modal form 16-30

reduced-order models 16-142
balanced realization 16-17

regulation 10-31, 16-175
resampling 3-26
resampling (d2d) 16-52
reshape 16-178
response, I/O 3-5
Riccati equation

continuous (care) 16-32
discrete (dare) 16-55
for LQG design 16-111
Η∞-like 16-34
stabilizing solution 16-32

right-click menus
MIMO sytems and LTI arrays 15-8
SISO systems 15-4

rlocus 16-179
rmodel 16-182
robustness 10-28
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root locus
design 10-9, 10-24
plot (rlocus) 16-179
See also Root Locus Design GUI

rss 16-182
building an LTI array with 5-12

S
sample time 2-19, 2-25, 2-26, 2-33, 3-3

accessing 2-23
resampling 3-26, 16-52
setting 2-34, 16-188
unspecified 2-26, 16-25

scaling 11-15
second-order model 16-164
series 16-184
series connection 3-13, 10-15, 16-184
set 2-28, 16-186
simulation of linear systems. See time response
sine wave 16-88
singular value plot (bode) 16-195
SISO 2-2, 4-2, 16-108
SISO Design Tool 13-2, 16-199

customizing plots 9-11
Preferences Editor 8-7

SISO systems
right-click menus 15-4

square wave 16-88
SS 3-14
ss 2-14, 16-206
SS models 3-14
SS objects. See state-space models
stability

numerical 11-6
stability margins

margin 16-137

pole 16-172
pzmap 16-173

stabilizable 16-34
stabilizing, Riccati equation 16-32
stack 5-15, 16-214
state 2-14

augmenting with outputs 16-16
covariance 16-42
discrete estimator 16-113
estimator 16-109
feedback 16-60
matrix 2-27
names 2-27, 16-189
number of states 16-202
transformation 4-7, 16-210
transformation (canonical) 16-31
uncontrollable 16-140
unobservable 16-140, 16-162
vector 2-2

state-space models 2-2, 2-3, 11-8
balancing 4-7, 16-17
conditioning 11-4
conversion to 2-40

See also conversion
descriptor 2-16, 2-23, 16-66, 16-68
discrete random

discrete-time models 16-63
dss 16-66
initial condition response 16-99
matrices 2-14
model data 2-14
quick data retrieval 2-23
quick data retrieval (dssdata) 16-68
random

continuous-time 16-182
realizations 4-7, 16-207
scaling 11-15
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specification 2-14, 16-206
ss 2-14, 16-206
transfer functions of 2-40

step response 16-215
subsystem 2-6, 3-5
subsystem operations on LTI models

subsystem, modifying 3-9
subtraction 3-12
Sylvester equation 16-135
symplectic pencil 16-56

T
Td. See delays
tf 2-8, 16-218
TF objects. See transfer functions
tfdata

output, form of 2-23
time delays. See delays
time response

final time 16-95
impulse response (impulse) 16-95
initial condition response (initial) 16-99
MIMO 16-95
response to arbitrary inputs (lsim) 16-125
step response (step) 16-215
to white noise 16-42

time-varying Kalman filter 10-57
Toolbox Preferences Editor 6-2
totaldelay 2-52, 16-228
transfer functions 2-2, 2-3, 11-8

common denominator 16-219
constructing with rational expressions 2-9
conversion to 2-40
denominator 2-8
discrete-time 2-19, 2-21, 16-78
discrete-time random 16-63

DSP convention 2-21, 16-78
filt 2-22, 16-78
MIMO 2-10, 3-17, 16-218
numerator 2-8
quick data retrieval 2-23
quick data retrieval (tfdata) 16-225
random 16-182
specification 2-8, 16-218
static gain 2-11, 16-219
tf 2-8, 16-218
TF object, display for 2-9
variable property 2-27, 3-4

transmission zeros. See zeros
transposition 3-14
triangle approximation 3-22, 16-27
Ts. See sample time
Tustin approximation 3-22, 16-27

with frequency prewarping 3-23, 16-27
tzero. See zero

U
Userdata 2-26

V
variable property 3-4

Z
zero 16-229
zero-order hold (ZOH) 3-20, 10-21, 16-27

with delays 3-23
zero-pole-gain (ZPK) models 2-2, 2-3, 11-13

conversion to 2-40
MIMO 2-13, 3-17, 16-233
quick data retrieval 2-23
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quick data retrieval (zpkdata) 16-237
specification 2-12, 16-232
static gain 16-233
zpk 2-12, 16-232

zeros 2-12
computing 16-229
pole-zero map 16-173
property 2-27
transmission 16-229

zpk 2-12, 16-232
ZPK objects. See zero-pole-gain (ZPK) models
zpkdata

output, form of 2-23
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