SIMULINK

Model-Based and System-Based Design

Modeling
—

Simulation
—

Implementation
—

Using Simulink -‘\The MathWorks

Version 5

X L8

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Using Simulink®
© COPYRIGHT 1990 - 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

New for Simulink 1
Revised for Simulink 2

Printing History: November 1990
December 1996

First printing
Second printing

January 1999 Third Printing Revised for Simulink 3 (Release 11)
November 2000 Fourth printing Revised for Simulink 4 (Release 12)
June 2001 Online only Revised for Simulink 4.1 (Release 12.1)
July 2002 Fifth Printing Revised for Simulink 5 (Release 13)

About This Guide

Tothe Reader xvi
What Is Simulink? xvi
Using This Manual xvii
Related Products xXix
Typographical Conventions xxii

1]

RunningaDemoModel 1-2
Description of the Demo 1-3
Some Things to Tryc.oiiiiiniiiiennn... 14
What This Demo Illustrates 1-5
Other Useful Demos 1-5

Building a Simple Model 1-7

Setting Simulink Preferences 1-16
Simulink Preferences 1-16

Contents

ii

Contents

How Simulink Works

What Is Simulink 2-2
Modeling Dynamic Systems 2-3
Block Diagrams0 i 2-3
Blocks ... 2-3
States . i e e 2-4
System Functions 2-4
Block Parameters, 2-5
Continuous Versus Discrete Blocks 2-6
Subsystems 2-6
Custom Blocks 2-7
Signals e 2-7
Data Typescciiii i e e e e 2-7
SOOIV . 2-8
Simulating Dynamic Systems 2-9
Model Initialization Phase 2-9
Model Execution Phase 2-10
Processing at Each Time Step 2-10
Determining Block Update Order 2-11
Atomic Versus Virtual Subsystems 2-13
SOlVers ... 2-13
Zero-Crossing Detection 2-15
Algebraic Loops i e 2-19
Modeling and Simulating Discrete Systems 2-25
Specifying Sample Time 2-25
Purely Discrete Systems 2-28
Multirate Systems 2-28
Determining Step Size for Discrete Systems 2-29
Sample Time Propagation 2-30
Invariant Constants 2-32
Mixed Continuous and Discrete Systems 2-33

Simulink Basics

3

Starting Simulink, 3-2
Opening Models, 34
Entering Simulink Commands 3-5
Using the Simulink Menu Bar to Enter Commands 3-5
Using Context-Sensitive Menus to Enter Commands 3-5
Using the Simulink Toolbar to Enter Commands 3-5
Using the MATLAB Window to Enter Commands 3-6
Undoinga Command0.0uiiiiiininnn... 3-6
Simulink Windows 3-7
Status Bar 3-7
Zooming Block Diagrams, 3-7
SavingaModel, 3-9
Saving a Model in Earlier Formats 3-9
Printing a Block Diagram 3-12
Print DialogBox 3-12
Print Command 3-13
Specifying Paper Size and Orientation 3-14
Positioning and Sizing a Diagram 3-15
Generating a Model Report 3-16
Model Report Optionscciiiiinno... 3-17
Summary of Mouse and Keyboard Actions 3-19
Manipulating Blocks 3-19
Manipulating Lines 3-20
Manipulating Signal Labels 3-20
Manipulating Annotations 3-21
Ending a Simulink Session 3-22

iii

iv

Contents

Creating a Model

4

CreatingaNewModel 4-2
Selecting Objects 4-3
Selecting One Object i ... 4-3
Selecting More Than One Object 4-3
Specifying Block Diagram Colors 4-5
Choosinga Custom Color 4-5
Defining a Custom Color 4-6
Specifying Colors Programmatically 4-6
Enabling Sample Time Colors 4-7
Connecting Blocks 4-9
Automatically Connecting Blocks 4-9
Manually Connecting Blocks 4-11
Disconnecting Blocks 4-15
Annotating Diagrams 4-16
Using TeX Formatting Commands in Annotations 4-17
Creating Subsystems 4-19
Creating a Subsystem by Adding the Subsystem Block 4-19
Creating a Subsystem by Grouping Existing Blocks 4-20
Model Navigation Commands 4-22
Window Reuse i 4-22
Labeling Subsystem Ports 4-23
Controlling Access to Subsystems 4-23
Creating Conditionally Executed Subsystems 4-25
Enabled Subsystems 4-25
Triggered Subsystems 4-30
Triggered and Enabled Subsystems 4-33
Control Flow Blocks 4-37

Model Discretizer 4-48

Requirements 4-48
Discretizing a Model from the Model Discretizer GUI 4-49
Viewing the Discretized Model 4-58
Discretizing Blocks from the Simulink Model 4-61

Discretizing a Model from the MATLAB Command Window . 4-69

Using Callback Routines 4-70
Tracing Callbacks 4-70
Creating Model Callback Functions 4-70
Creating Block Callback Functions 4-72
Port Callback Parameters 4-75

Managing Model Versions 4-76
Specifying the Current User 4-76
Model Properties DialogBox 4-78
Creating a Model Change History 4-82
Version Control Properties 4-84

Working with Blocks
5]

AboutBlocks 5-2
Block Data Tipso e 5-2
Virtual Blocks 5-2

EditingBlocks 5-4
Copying and Moving Blocks from One Window to Another ... 5-4
Moving BlocksinaModel 5-5
Copying Blocksina Model 5-6
Deleting Blocks 5-6

Setting Block Parameters 5-7
Setting Block-Specific Parameters 5-7
Block Properties DialogBox 5-8

State Properties DialogBox 5-11

vi

Contents

Changing a Block’s Appearance 5-12

Changing the Orientation ofaBlock 5-12
Resizinga Block’sIcon 5-12
Displaying Parameters Beneath a Block’s Icon 5-13
Using Drop Shadows 5-13
Manipulating Block Names 5-13
Specifying a Block’s Color 5-15
Controlling and Displaying Block Execution Order 5-16
Assigning Block Priorities 5-16
Displaying Block ExecutionOrder 5-17
Look-Up Table Editor 5-18
Browsing LUT Blocks 5-19
Editing Table Values 5-20
Displaying N-DTables 5-21
Plotting LUT Tables 5-22
Editing Custom LUT Blocks 5-23
Working with Block Libraries 5-25
Terminologyt i 5-25
Simulink Block Library, 5-25
Creatinga Library i, 5-26
Modifyinga Library0 i, 5-26
Creating a Library Link 5-26
Disabling Library Links 5-27
Modifying a Linked Subsystem 5-27
Propagating Link Modifications 5-28
Updating a Linked Block 5-28
Breaking a Link to a Library Block 5-28
Finding the Library Block for a Reference Block 5-29
Library Link Status 5-30
Displaying Library Links 5-30
Getting Information About Library Blocks 5-32
Browsing Block Libraries 5-32
Adding Libraries to the Library Browser 5-34

Working with Signals

6

SignalBasics i 6-2
About Signals 6-2
Control Signals 6-4
Signal Buses i 6-5
Signal Glossaryi i, 6-6
Determining Output Signal Dimensions 6-7
Signal and Parameter Dimension Rules 6-8
Scalar Expansion of Inputs and Parameters 6-9
Setting Signal Properties 6-10
Signal Properties DialogBox 6-11

Working with Complex Signals 6-14

Checking Signal Connections 6-15

Displaying Signals 6-16
Signal Names 6-17
Signal Labels i, 6-18
Displaying Signals Represented by Virtual Signals 6-19

Working with Signal Groups 6-20
Creating a Signal Group Set 6-20
The Signal Builder DialogBox 6-21
Editing Signal Groups 6-23
Editing Signals 6-23
Editing Waveforms 6-25
Signal Builder Time Range 6-29
Exporting Signal GroupData 6-30
Simulating with Signal Groups 6-30
Simulation Options DialogBox 6-31

vii

viil Contents

Working with Data

Working with DataTypes 7-2
Data Types Supported by Simulink 7-2
Fixed-PointData, 7-3
Block Support for Data and Numeric Signal Types 7-3
Specifying Block Parameter Data Types 7-4
Creating Signals of a Specific Data Type 74
Displaying Port Data Types 7-4
Data Type Propagation 7-5
Data Typing Rules i, 7-5
Enabling Strict Boolean Type Checking 7-6
Typecasting Signals, 7-6
Typecasting Parameters 7-6

Working with Data Objects 7-9
Data Object Classesovuiiiennniennn... 7-9
Creating Data Objects, 7-10
Accessing Data Object Properties 7-11
Invoking Data Object Methods 7-11
Saving and Loading Data Objects 7-12
Using Data Objects in Simulink Models 7-12
Creating Data Object Classes, 7-14

The Simulink Data Explorer 7-27

Associating User DatawithBlocks 7-29

Modeling with Simulink

Modeling Equations 8-2
Converting Celsius to Fahrenheit 8-2
Modeling a Simple Continuous System 8-3

Avoiding Invalid Loops 8-6

Tips for Building Models 8-8

Browsing and Searching Models

9

Finding Objects 9-2
Filter Optionst e 9-3
Search Criteria0, 94

The Model Browser, 9-8
Using the Model Browser on Windows 9-8
Using the Model Browseron UNIX 9-10

Running a Simulation

10 |

SimulationBasics 10-2
Specifying Simulation Parameters 10-3
Controlling Execution of a Simulation 10-4
Interacting with a Running Simulation 10-6

The Simulation Parameters Dialog Box 10-7
The Solver Pane 10-7
The Workspace /OPane 10-17
The Diagnostics Pane 10-24
The Advanced Pane 10-29

Diagnosing Simulation Errors 10-36
Simulation Diagnostic Viewer 10-36
Creating Custom Simulation Error Messages 10-37

ix

Improving Simulation Performance and Accuracy 10-40

Speeding Up the Simulation 10-40
Improving Simulation Accuracy 10-41
Running a Simulation Programmatically 10-42
Using the sim Command 10-42
Using the set_param Command 10-42

Analyzing Simulation Results

11

Viewing Output Trajectories 11-2
Using the Scope Block 11-2
Using Return Variables 11-2
Using the To Workspace Block 11-3

LinearizingModels 114

Finding Steady-State Points 11-7

Creating Masked Subsystems

12 |

About Masks 12-2
Mask Features 12-2
Creating Masks 124

Masked Subsystem Example 12-5
Creating Mask Dialog Box Prompts 12-6
Creating the Block Description and Help Text 12-8
Creatingthe Block Icon 12-8

Masking a Subsystem 12-10

Contents

The Mask Editor 12-12

13 |

ThelconPane 12-14
The Parameters Pane 12-17
Control TyPesoovi ittt e 12-20
The Initialization Pane 12-23
The Documentation Pane 12-25
Linking Mask Parameters to Block Parameters 12-27
Creating Dynamic Dialogs for Masked Blocks 12-28
Setting Masked Block Dialog Parameters 12-28
Predefined Masked Dialog Parameters 12-29
Simulink Debugger

Introduction 13-2
Starting the Debugger 13-3
Starting the Simulation 13-4
Using the Debugger’s Command-Line Interface 13-6
Block Indexesoo i 13-6
Accessing the MATLAB Workspace 13-6
Getting OnlineHelp 13-7
Running a Simulation 13-8
Continuing a Simulation 13-8
Running a Simulation Nonstop 13-9
Advancing tothe Next Block 13-9
Advancing to the Next Time Step 13-11

xi

xii

Contents

Setting Breakpoints 13-12

Setting Breakpoints at Blocks 13-13
Setting Breakpoints at Time Steps 13-14
Breaking on Nonfinite Values 13-15
Breaking on Step-Size Limiting Steps 13-15
Breaking at Zero Crossings 13-15
Displaying Information About the Simulation 13-17
Displaying Block I/O 13-17
Displaying Algebraic Loop Information 13-19
Displaying System States 13-20
Displaying Integration Information 13-20
Displaying Information About the Model 13-21
Displaying a Model’s Block Execution Order 13-21
DisplayingaBlock 13-22
Debugger Command Summary 13-25

Performance Tools

14 |

About the Simulink Performance Tools Option 14-2
The Simulink Accelerator 14-3
Accelerator Limitations 14-3
How the Accelerator Works 14-3
Runnning the Simulink Accelerator 14-4
Handling Changes in Model Structure 14-5
Increasing Performance of Accelerator Mode 14-6
Blocks That Do Not Show Speed Improvements 14-7

Using the Simulink Accelerator with the Simulink Debugger 14-8
Interacting with the Simulink Accelerator Programmatically 14-9

Comparing Performance 14-10
Customizing the Simulink Accelerator Build Process 14-11
Controlling S-Function Execution 14-11

Graphical Merge Tool 14-13

Comparing Models i, 14-13
The Graphical Merge Tool Window 14-16
Navigating Model Differences 14-18
Merging Model Differences 14-19
Generating a Model Differences Report 14-20
Profiler 14-21
How the Profiler Works 14-21
Enabling the Profiler 14-23
The Simulation Profile 14-24
Model Coverage Tool 14-27
How the Model Coverage Tool Works 14-27
Using the Model Coverage Tool 14-30
Creating and Running Test Cases 14-31
The Coverage Report, 14-32
Coverage Settings DialogBox 14-38
HTML Settingso e e 14-43
Model Coverage Commandsccou.... 14-44

xiii

X1V Contents

About This Guide

The following sections provide information about Simulink documentation and related products.

To the Reader (p. xvi) Introduces Simulink.

Related Products (p. xix) Describes MathWorks products that enhance or
complement Simulink.

Typographical Conventions (p. xxii) Typographical conventions used in Simulink
documentation.

About This Guide

To the Reader

xvi

Welcome to Simulink®! In the last few years, Simulink has become the most
widely used software package in academia and industry for modeling and
simulating dynamic systems.

Simulink encourages you to try things out. You can easily build models from
scratch, or take an existing model and add to it. Simulations are interactive, so
you can change parameters on the fly and immediately see what happens. You
have instant access to all the analysis tools in MATLAB®, so you can take the
results and analyze and visualize them. A goal of Simulink is to give you a
sense of the fun of modeling and simulation, through an environment that
encourages you to pose a question, model it, and see what happens.

With Simulink, you can move beyond idealized linear models to explore more
realistic nonlinear models, factoring in friction, air resistance, gear slippage,
hard stops, and the other things that describe real-world phenomena. Simulink
turns your computer into a lab for modeling and analyzing systems that simply
wouldn’t be possible or practical otherwise, whether the behavior of an
automotive clutch system, the flutter of an airplane wing, the dynamics of a
predator-prey model, or the effect of the monetary supply on the economy.

Simulink is also practical. With thousands of engineers around the world using
it to model and solve real problems, knowledge of this tool will serve you well
throughout your professional career.

What Is Simulink?

Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. It supports linear and nonlinear systems, modeled in
continuous time, sampled time, or a hybrid of the two. Systems can also be
multirate, i.e., have different parts that are sampled or updated at different
rates.

For modeling, Simulink provides a graphical user interface (GUI) for building
models as block diagrams, using click-and-drag mouse operations. With this
interface, you can draw the models just as you would with pencil and paper (or
as most textbooks depict them). This is a far cry from previous simulation
packages that require you to formulate differential equations and difference
equations in a language or program. Simulink includes a comprehensive block
library of sinks, sources, linear and nonlinear components, and connectors. You

To the Reader

can also customize and create your own blocks. For information on creating
your own blocks, see the separate Writing S-Functions guide.

Models are hierarchical, so you can build models using both top-down and
bottom-up approaches. You can view the system at a high level, then
double-click blocks to go down through the levels to see increasing levels of
model detail. This approach provides insight into how a model is organized and
how its parts interact.

After you define a model, you can simulate it, using a choice of integration
methods, either from the Simulink menus or by entering commands in the
MATLAB Command Window. The menus are particularly convenient for
interactive work, while the command-line approach is very useful for running
a batch of simulations (for example, if you are doing Monte Carlo simulations
or want to sweep a parameter across a range of values). Using scopes and other
display blocks, you can see the simulation results while the simulation is
running. In addition, you can change parameters and immediately see what
happens, for “what if” exploration. The simulation results can be put in the
MATLAB workspace for postprocessing and visualization.

Model analysis tools include linearization and trimming tools, which can be
accessed from the MATLAB command line, plus the many tools in MATLAB
and its application toolboxes. And because MATLAB and Simulink are
integrated, you can simulate, analyze, and revise your models in either
environment at any point.

Using This Manual

Because Simulink is graphical and interactive, we encourage you to jump right
in and try it.

For a useful introduction that will help you start using Simulink quickly, take
a look at “Running a Demo Model” in Chapter 1. Browse around the model,
double-click blocks that look interesting, and you will quickly get a sense of how
Simulink works. If you want a quick lesson in building a model, see “Building
a Simple Model” in Chapter 1.

For a technical introduction to Simulink, see Chapter 2, “How Simulink
Works.” This chapter introduces many key concepts that you will need to
understand in order to create and run Simulink models.

Chapter 3, “Simulink Basics,” explains how to start Simulink, open and save
models, enter commands, and perform other fundamental tasks.

xvii

About This Guide

xviii

Chapter 4, “Creating a Model,” explains in detail how to build and edit models.
Chapter 5, “Working with Blocks,” describes how to create blocks in a model.
Chapter 6, “Working with Signals,” explains how to create signals in a model.

Chapter 7, “Working with Data,” explains how to use data types and data
objects in a model.

Chapter 8, “Modeling with Simulink,” provides a brief introduction to the topic
of modeling dynamic systems with Simulink. It also describes solutions to
common modeling problems, such as efficiently modeling multirate systems.

Chapter 10, “Running a Simulation,” describes how Simulink performs a
simulation. It covers simulation parameters and the integration solvers used
for simulation, including some of the strengths and weaknesses of each solver
that should help you choose the appropriate solver for your problem. It also
discusses multirate and hybrid systems.

Chapter 11, “Analyzing Simulation Results,” discusses Simulink and MATLAB
features useful for viewing and analyzing simulation results.

Chapter 12, “Creating Masked Subsystems,” discusses methods for creating
your own blocks and using masks to customize their appearance and use.

Chapter 13, “Simulink Debugger,” explains how to use the Simulink debugger
to debug Simulink models. It also documents debugger commands.

Chapter 14, “Performance Tools,” explains how to use the Simulink accelerator
and other optional tools that improve the performance of Simulink models.

Also, see the Simulink section of the release notes in the MATLAB help
browser for information on last-minute changes and any known problems with
the current release of the Simulink software.

Related Products

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Simulink.

For more information about any of these products, see either

¢ The online documentation for that product if it is installed or if you are
reading the documentation from the CD

¢ The MathWorks Web site, at http://www.mathworks.com; see the “products”

section

The toolboxes listed below all include functions that extend the capabilities of
MATLAB. The blocksets all include blocks that extend the capabilities of

Simulink.

Product

Description

Aerospace Blockset

CDMA Reference
Blockset

Communications
Blockset

Communications Toolbox
Control System Toolbox
Dials & Gauges Blockset

DSP Blockset

Embedded Target for
Motorola® MPC555

Model, analyze, integrate, and simulate
aircraft, spacecraft, missile, weapon, and
propulsion systems

Design and simulate IS-95A mobile phone
equipment

Design and simulate communications systems

Design and analyze communications systems
Design and analyze feedback control systems

Monitor signals and control simulation
parameters with graphical instruments

Design and simulate DSP systems

Deploy production code onto the Motorola®
MPC555

Xix

About This Guide

XX

Product Description

Embedded Target for the Deploy and validate DSP designs on Texas
TI C6000™ DSP Instruments C6000 digital signal processors
Platform

Filter Design Toolbox Design and analyze advanced floating-point

Fixed-Point Blockset
LMI Control Toolbox

MATLAB
MATLAB Compiler

Model Calibration
Toolbox

Model Predictive Control
Toolbox

p-Analysis and Synthesis
Toolbox

Nonlinear Control
Design Blockset

Optimization Toolbox

SimPowerSystems

Real-Time Windows
Target

Real-Time Worksh0p®

Real-Time Workshop
Embedded Coder

and fixed-point filters
Design and simulate fixed-point systems

Design robust controllers using convex
optimization techniques

The Language of Technical Computing
Convert MATLAB M-files to C and C++ code

Calibrate complex powertrain systems

Control large, multivariable processes in the
presence of constraints

Design multivariable feedback controllers for
systems with model uncertainty

Optimize design parameters in nonlinear
control systems

Solve standard and large-scale optimization
problems

Model and simulate electrical power systems

Run Simulink and Stateflow models on a PC in
real time

Generate C code from Simulink models

Generate production code for embedded
systems

Related Products

Product

Description

Requirements
Management Interface

Robust Control Toolbox

Signal Processing
Toolbox

SimMechanics

Simulink Performance
Tools

Simulink Report
Generator

Stateflow
Stateflow Coder

System Identification
Toolbox

Virtual Reality Toolbox

xPC Target

xPC Target Embedded
Option

Use formal requirements management
systems with Simulink and MATLAB

Design robust multivariable feedback control
systems

Perform signal processing, analysis, and
algorithm development

Model and simulate mechanical systems

Manage and optimize the performance of large
Simulink models

Automatically generate documentation for
Simulink and Stateflow models

Design and simulate event-driven systems
Generate C code from Stateflow charts

Create linear dynamic models from measured
input-output data

Create and manipulate virtual reality worlds
from within MATLAB and Simulink

Perform real-time rapid prototyping using PC
hardware

Deploy real-time applications on PC hardware

xx1

About This Guide

xxii

Typographical Conventions

This manual uses some or all of these conventions.

Item

Convention

Example

Example code

Function names, syntax,
filenames, directory/folder
names, user input, items in
drop-down lists

Buttons and keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu and dialog box titles

New terms and for
emphasis

Omitted input arguments

String variables (from a
finite list)

Monospace font

Monospace font

Boldface with book title caps

Monospace bold for literals

Italics for variables

Standard text font for functions,
operators, and constants

Monospace font

Boldface with book title caps

Italics

(...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

Monospace italics

To assign the value 5 to A,
enter

A=5
The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Press the Enter key.

f = freqspace(n, 'whole')

This vector represents the
polynomial p = x% + 2x + 3.

MATLAB responds with
A =
5

Choose the File Options
menu.

An array is an ordered
collection of information.
[c,ia,ib] = union(...)

sysc = d2c(sysd, 'method")

Quick Start

The following sections use examples to give you a quick introduction to using Simulink to model and
simulate dynamic systems.

Running a Demo Model (p. 1-2) Example of how to run a Simulink model.
Building a Simple Model (p. 1-7) Example of how to build a Simulink model.

Setting Simulink Preferences (p. 1-16) How to set Simulink preferences.

1 Quick Start

Running a Demo Model

An interesting demo program provided with Simulink models the
thermodynamics of a house. To run this demo, follow these steps:

1 Start MATLAB. See your MATLAB documentation if you’re not sure how to
do this.

2 Run the demo model by typing thermo in the MATLAB command window.
This command starts up Simulink and creates a model window that contains
this model.

=10 x|

File Edit View Simulation Format Tools Help

Dollar
Gain

] e
- C2F
Heater Treioor ve.

o]

Set Point
Fahmenheit -
o Celsius Themostat Blowar Cekius to Quidoor Tarr. »
Fahmnheit
He
- o= Themo
..30 o F2c . Pt
Avg Outdoor Fahmenheit Tin
Temp [E 1o Calkius
w7
Cuaily Temp
Variation

House Themodynamics Coublke click
iDouble clickon the 27 for momr info) hem for

Simulink Help

To start and stop the simulation, use the "Start®
sakction in the *Simulation® pulldown manu

Ready 100% odeds
4

3 Double-click the Scope block labeled Thermo Plots.

The Scope block displays two plots labeled Indoor vs. Outdoor Temp and
Heat Cost ($), respectively.

4 To start the simulation, pull down the Simulation menu and choose the
Start command (or, on Microsoft Windows, click the Start button on the
Simulink toolbar). As the simulation runs, the indoor and outdoor

Running a Demo Model

temperatures appear in the Indoor vs. Outdoor Temp plot and the
cumulative heating cost appears in the Heat Cost ($) plot.

5 To stop the simulation, choose the Stop command from the Simulation
menu (or click the Pause button on the toolbar). If you want to explore other
parts of the model, look over the suggestions in “Some Things to Try” on
page 1-4.

6 When you’re finished running the simulation, close the model by choosing
Close from the File menu.

Description of the Demo

The demo models the thermodynamics of a house using a simple model. The
thermostat is set to 70 degrees Fahrenheit and is affected by the outside
temperature, which varies by applying a sine wave with amplitude of 15
degrees to a base temperature of 50 degrees. This simulates daily temperature
fluctuations.

The model uses subsystems to simplify the model diagram and create reusable
systems. A subsystem is a group of blocks that is represented by a Subsystem
block. This model contains five subsystems: one named Thermostat, one named
House, and three Temp Convert subsystems (two convert Fahrenheit to
Celsius, one converts Celsius to Fahrenheit).

The internal and external temperatures are fed into the House subsystem,
which updates the internal temperature. Double-click the House block to see
the underlying blocks in that subsystem.

Indoor Temp
Tin

House subsystem

Themodynamic ode|

1/Req
forthe Houss

Cutdoor Temp
Tout

1-3

1 Quick Start

14

The Thermostat subsystem models the operation of a thermostat, determining
when the heating system is turned on and off. Double-click the block to see the
underlying blocks in that subsystem.

0 () | Thermostat subsystem
Temr

Blower
Relayt switeh

Both the outside and inside temperatures are converted from Fahrenheit to
Celsius by identical subsystems.

"
Faheit h (*) | Fahrenheit to Celsius conversion (F2C)

Celsius
out

When the heat is on, the heating costs are computed and displayed on the Heat
Cost ($) plot on the Thermo Plots Scope. The internal temperature is displayed
on the Indoor Temp Scope.

Some Things to Try

Here are several things to try to see how the model responds to different
parameters:

¢ Each Scope block contains one or more signal display areas and controls that
enable you to select the range of the signal displayed, zoom in on a portion of
the signal, and perform other useful tasks. The horizontal axis represents
time and the vertical axis represents the signal value.

¢ The Constant block labeled Set Point (at the top left of the model) sets the
desired internal temperature. Open this block and reset the value to 80
degrees. See how the indoor temperature and heating costs change. Also,
adjust the outside temperature (the Avg Outdoor Temp block) and see how it
affects the simulation.

® Adjust the daily temperature variation by opening the Sine Wave block
labeled Daily Temp Variation and changing the Amplitude parameter.

Running a Demo Model

What This Demo lllustrates

This demo illustrates several tasks commonly used when you are building
models:

¢ Running the simulation involves specifying parameters and starting the
simulation with the Start command, described in “Diagnosing Simulation
Errors” on page 10-36.

® You can encapsulate complex groups of related blocks in a single block, called
a subsystem. See “Creating Subsystems” on page 4-19 for more information.

® You can create a customized icon and design a dialog box for a block by using
the masking feature, described in detail in Chapter 12, “Creating Masked
Subsystems.” In the thermo model, all Subsystem blocks have customized
icons created using the masking feature.

® Scope blocks display graphic output much as an actual oscilloscope does.

Other Useful Demos

Other demos illustrate useful modeling concepts. You can access these demos
from the MATLAB command window:

1 Click the Start button on the bottom left corner of the MATLAB command
window.

The Start menu appears.

<) MATLAB =lol x|

File Edit WYiew Web ‘Window Help
0O D”| I B o o | | | ? |<:urrent Directary: | 1Bst-toaster R1 2perfectibintwing. ¥ | J

f -l

A MATLAE
4}. Toolhoxes

W simulink

ﬁ Blocksets
§F Desktop Tools

@ wien

% Preferences...

@ Help -

| »

»
»
»
»
»
»

Start

1-5

1 Quick Start

2 Select Demos from the menu.

The MATLAB Help browser appears with the Demos pane selected.

File Edit Yiew Go Web ‘Window Help

Help Mavigatar 1ﬂ

- = | = Findinpage:l GDl
Praduct fiter: € 41| & Selected Seled...l

I Simulink Demos LI Add to Favorites |
Contents I Inclesx I Search Demos | Favao

- Getting Started with Demos = Sim]. k DemOS il

8- =imulink

5[] Features Simulink 15 a tool for modeling, analyzing, and simulating

(- General physical and mathernatical systems, including those with
---[“_‘| Autornotive nonlinear elements and those that make use of continuous
-] Aerospace - and discrete time. =l

3 Click the Simulink entry in the Demos pane.

The entry expands to show groups of Simulink demos. Use the browser to
navigate to demos of interest. The browser displays explanations of each demo
and includes a link to the demo itself. Click on a demo link to start the demo.

Building a Simple Model

Building a Simple Model

This example shows you how to build a model using many of the model-building
commands and actions you will use to build your own models. The instructions
for building this model in this section are brief. All the tasks are described in
more detail in the next chapter.

The model integrates a sine wave and displays the result along with the sine
wave. The block diagram of the model looks like this.

Seope

Integrtor

To create the model, first enter simulink in the MATLAB command window.
On Microsoft Windows, the Simulink Library Browser appears.

[Simulink Library Browser =0l x|
File Edit %iew Help

0 & & r |

Continuous: simulink/Continunus

- g Simulink
25| Continuous
25| Discontinuities
2| Discrete

2] Look-Up Tables

Discontinuities

. 2¢] Math Operations Discrete
.22 Model verification
- 22| Modelk-wide Uilkies Look-Up Tables

. 2] Parts & Subsystems

. 2] signal Attributes

- 2+ signal Rauting

- 28] sinks

.25 Sourees

. 2] User-Defined Functions
- N Aerospace Blockset

-\ CAM Drivers (Vector)
-\ CAM Message Blocks

- \ CDMA Reference Blockset
- W Communications Blockset
- T Cortral System Tookse

. N DSP Blockset
- T Dials & Gauges Blackset E Signal Fouting
s
e
21N

Math Operations

Model Verification

Modelwide Utiliies

Pots & Subsystems

Signal Attributes

. N Embedded Target for Matarola MPCS!
.\ Embedded Target for TI.C6000 DSP Sinks

. N Extras For MPCSSS

1 Fixed-Point Blockset -5-\- Sources
)
- T Fuzzy Logic Toolbos:
- 1@ MPC Blocks yefltal] User Defined Functions
. | Module Packaging Manager -
4 3

Ready /

1-7

1 Quick Start

1-8

On UNIX, the Simulink library window appears.

ElLibrary: simulink ! 10l =|

File Edit Yiew Format Help

v -
e ~ | |
“y AAR =X INT|
Soumas Sinks Continuous Disc it Math Signal Signal
Dperations Routing Attributes
y=flu} ®®| x Mizc
Discontinuities Look-Up UserDefined Model For= & Mode -\Wide
Tablkes Functions Verification Subsystams Ltilities

Blacksets & Simulink Black Library 5.0
Toolboxes Copyright () 19902002 The MathWarks, Inc.

To create a new model on UNIX, select Model from the New submenu of the
Simulink library window’s File menu. To create a new model on Windows,
select the New Model button on the Library Browser’s toolbar.

[Fsimulink Library Browser i] 4
File Edit Wiew Help

New model button ————p 1y 5= g0 v |

Continuous: simulink/Continuous

i El e - m
y Continuous

y Discontinuities
- 1] Discrete = %l Discontinuities

Simulink opens a new model window.

_|ol x|
File Edit WYiew Simulation Format Tools Help

DSE&| BR[|y = Nom e BB T ®
Ready [1o02 |odets v

Building a Simple Model

To create this model, you need to copy blocks into the model from the following
Simulink block libraries:

® Sources library (the Sine Wave block)

¢ Sinks library (the Scope block)

¢ Continuous library (the Integrator block)

® Signals & Systems library (the Mux block)

You can copy a Sine Wave block from the Sources library, using the Library
Browser (Windows only) or the Sources library window (UNIX or Windows).

To copy the Sine Wave block from the Library Browser, first expand the
Library Browser tree to display the blocks in the Sources library. Do this by
clicking the Sources node to display the Sources library blocks. Finally, click
the Sine Wave node to select the Sine Wave block.

Here is how the Library Browser should look after you have done this.

E Simulink Library Browser =101 x|
File Edit WYiew Help

01 = 4 Find ||

Sine Wave: Output a sine wave where the zine type determines the computational -

technique uzed. The parameters in the bwo types are related through:

Samples per period = 2%pi / [Frequency * 5 ample time)

Miurbar Af affoat samnlas — Dlhaca % G arnlae nar narind 2 (2% LI i I k ”)
=1 Tl simulink: < =1 i_i ;i Imulink library

.....] Continuous

..... 2| Discontinuities

..... 2| Discrete

..... 2 Look-Up Tables b
..... 2] Math Operations

----- 2] Model Werification

..... 2] Model-wide Utilities

..... 2] Ports & Subsystems

..... 2 signal sttributes

R andom Mumber

Fepeating Sequence

Sources library
Signal Generatar /

o8
g

arrat Bilder

..... 2] signal RDV EUI <«—— Sine Wave block
.....] sirks
----- y Sources
----- 2 User-Defined Functions - E Step

<| I _’I—I [C—

LKl

Ready

Now drag the Sine Wave block from the browser and drop it in the model

window. Simulink creates a copy of the Sine Wave block at the point where you
dropped the node icon.

1-9

1 Quick Start

1-10

To copy the Sine Wave block from the Sources library window, open the Sources
window by double-clicking the Sources icon in the Simulink library window.
(On Windows, you can open the Simulink library window by right-clicking the
Simulink node in the Library Browser and then clicking the resulting Open

Library button.)

Simulink displays the Sources library window.

lLibrary: simulink/Sources 10l =|

File Edit WYiew Format Help

Model & Subsystem Inputs

@ untitied. mat |> | simin |>
In1 Gmund From File From
Workspace

Signal Generators

oooo |—| |—|
E s

The Sine Wave block

Constant _\Signal Puks Signal Buikler
SRl Genermator
_/ L Ll
Ll
Ramp ine Wavy Stap Repeating
Sequance
Chirp Signal Random Uniform Random Band-Limited
HNumber HNumber White Noise
C‘—) 12:34 b
Clck Digital Clock

Now drag the Sine Wave block from the Sources window to your model window.

luntitled * o =]
File Edit Yiew Simulation Format Tools Help
D|@E§|%E|DQ|> IINormaI 'H@ |H{r®
Sine Wave
Ready [1o0e |odets v

Building a Simple Model

Copy the rest of the blocks in a similar manner from their respective libraries
into the model window. You can move a block from one place in the model
window to another by dragging the block. You can move a block a short distance
by selecting the block, then pressing the arrow keys.

With all the blocks copied into the model window, the model should look
something like this.

Sine Wawe jI> E
- b Scope
=

Integrtor

If you examine the block icons, you see an angle bracket on the right of the Sine
Wave block and two on the left of the Mux block. The > symbol pointing out of
a block is an output port; if the symbol points to a block, it is an input port. A
signal travels out of an output port and into an input port of another block
through a connecting line. When the blocks are connected, the port symbols
disappear.

1
Input port —» - <—— Output port

s
Integratar

Now it’s time to connect the blocks. Connect the Sine Wave block to the top
input port of the Mux block. Position the pointer over the output port on the
right side of the Sine Wave block. Notice that the cursor shape changes to
crosshairs.

1 =

1 Seope

=
Integrtor

Hold down the mouse button and move the cursor to the top input port of the
Mux block.

1-11

1 Quick Start

1-12

Notice that the line is dashed while the mouse button is down and that the
cursor shape changes to double-lined crosshairs as it approaches the Mux
block.

_
% g
Sine Wawve

1 Seope

=
Integrtor

Now release the mouse button. The blocks are connected. You can also connect
the line to the block by releasing the mouse button while the pointer is inside
the icon. If you do, the line is connected to the input port closest to the cursor’s
position.

Sine Wawve ;I E

1 Seope

=
Integrtor

If you look again at the model at the beginning of this section (see “Building a
Simple Model” on page 1-7), you’ll notice that most of the lines connect output
ports of blocks to input ports of other blocks. However, one line connects a line
to the input port of another block. This line, called a branch line, connects the
Sine Wave output to the Integrator block, and carries the same signal that
passes from the Sine Wave block to the Mux block.

Drawing a branch line is slightly different from drawing the line you just drew.
To weld a connection to an existing line, follow these steps:

1 First, position the pointer on the line between the Sine Wave and the Mux
block.

Sine Wawve ;I E
=

Seope

Integrtor

Building a Simple Model

2 Press and hold down the Ctrl key (or click the right mouse button). Press the
mouse button, then drag the pointer to the Integrator block’s input port or
over the Integrator block itself.

Sine Wawve ;I E
|_ Il 1_ i Seope
T =

Integrtor

3 Release the mouse button. Simulink draws a line between the starting point
and the Integrator block’s input port.

Integrtor

Finish making block connections. When you’re done, your model should look
something like this.

Now, open the Scope block to view the simulation output. Keeping the Scope
window open, set up Simulink to run the simulation for 10 seconds. First, set
the simulation parameters by choosing Simulation Parameters from the
Simulation menu.

1-13

1 Quick Start

1-14

On the dialog box that appears, notice that the Stop time is set to 10.0 (its
default value).

<} Simulation Parameters: untitled

Salver

‘Workspace /0 | Diagnosticsl Advancedl

Simulation time

Start fime: | 0.0 Stap time: | 10.0 < Stop time parameter
Solver options
Type: IVariabIe-step j Iode45 [Dormand-Prince] j

Mai step size: I auto Relative tolerance: | 1e-3
Min step size: I auto Absolute tolerance: I auta
Initial step size: I auta

Output options

Fiefine output j Fiefine factor: I 1

QK | Eancell Help | Aol |

Close the Simulation Parameters dialog box by clicking the OK button.
Simulink applies the parameters and closes the dialog box.

Choose Start from the Simulation menu and watch the traces of the Scope
block’s input.

Building a Simple Model

The simulation stops when it reaches the stop time specified in the Simulation
Parameters dialog box or when you choose Stop from the Simulation menu or
click the Stop button on the model window’s toolbar (Windows only).

To save this model, choose Save from the File menu and enter a filename and
location. That file contains the description of the model.

To terminate Simulink and MATLAB, choose Exit MATLAB (on a Microsoft
Windows system) or Quit MATLAB (on a UNIX system). You can also enter
quit in the MATLAB command window. If you want to leave Simulink but not
terminate MATLAB, just close all Simulink windows.

This exercise shows you how to perform some commonly used model-building
tasks. These and other tasks are described in more detail in Chapter 4,
“Creating a Model.”

1-15

1 Quick Start

Setting Simulink Preferences

The MATLAB Preferences dialog box allows you to specify default settings for
many Simulink options. To display the Preferences dialog box, select
Preferences from the Simulink File menu.

<} Preferences = B3
[#-General Simulink Preferences
BF-Command Window _ _
B EditoriDebugger Window reuse: - [miked [
- Help —Model Browser
[~ Current Directary [Show masked subsystems
—Wiorkspace . .
) ™ Shaw likrary links
— Array Editar
| GUIDE ™ Browser initially visible

F-Figure Copy Template

—Display

™ wide nonscalar lines

Simulation I Show port data types

™ Callbacktracing

QK | Cancel Help

Simulink Preferences

The Preferences dialog box allows you to specify the following Simulink
preferences.

Window reuse

Specifies whether Simulink uses existing windows or opens new windows to
display a model’s subsystems (see “Window Reuse” on page 4-22).

Model Browser

Specifies whether Simulink displays the browser when you open a model and
whether the browser shows blocks imported from subsystems and the contents
of masked subsystems (see “The Model Browser” on page 9-8).

1-16

Setting Simulink Preferences

Display

Specifies whether to use thick lines to display nonscalar connections between
blocks and whether to display port data types on the block diagram (see
“Displaying Signals” on page 6-16).

Callback tracing

Specifies whether to display the model callbacks that Simulink invokes when
simulating a model (see “Using Callback Routines” on page 4-70).

Simulink Fonts
Specifies fonts to be used for block and line labels and diagram annotations.

Solver
Specifies simulation solver options (see “The Solver Pane” on page 10-7).

Workspace

Specifies workspace options for simulating a model (see “The Workspace 1/0
Pane” on page 10-17).

Diagnostics
Specifies diagnostic options for simulating a model (see “The Diagnostics Pane”
on page 10-24).

Advanced

Specifies advanced simulation preferences (see “The Advanced Pane” on
page 10-29).

1-17

1 Quick Start

1-18

How Simulink Works

The following sections explain how Simulink models and simulates dynamic systems. This
information can be helpful in creating models and interpreting simulation results.

What Is Simulink (p. 2-2) Brief overview of Simulink.
Modeling Dynamic Systems (p. 2-3) How Simulink models a dynamic system.
Simulating Dynamic Systems (p. 2-9) How Simulink simulates a dynamic system.

Modeling and Simulating Discrete How Simulink models and simulates discrete systems.
Systems (p. 2-25)

2 How Simulink Works

2-2

What Is Simulink

Simulink is a software package that enables you to model, simulate, and
analyze systems whose outputs change over time. Such systems are often
referred to as dynamic systems. Simulink can be used to explore the behavior
of a wide range of real-world dynamic systems, including electrical circuits,
shock absorbers, braking systems, and many other electrical, mechanical, and
thermodynamic systems.

Simulating a dynamic system is a two-step process with Simulink. First, you
create a graphical model of the system to be simulated, using the Simulink
model editor. The model depicts the time-dependent mathematical
relationships among the system’s inputs, states, and outputs (see “Modeling
Dynamic Systems” on page 2-3). Then, you use Simulink to simulate the
behavior of the system over a specified time span. Simulink uses information
that you entered into the model to perform the simulation (see “Simulating
Dynamic Systems” on page 2-9).

Modeling Dynamic Systems

Modeling Dynamic Systems

Simulink provides a library browser that allows you to select blocks from
libraries of standard blocks (see “Simulink Blocks”) and a graphical editor that
allows you to draw lines connecting the blocks (see Chapter 4, “Creating a
Model”). You can model virtually any real-world dynamic system by selecting
and interconnecting the appropriate Simulink blocks.

Block Diagrams

A Simulink block diagram is a pictorial model of a dynamic system. It consists
of a set of symbols, called blocks, interconnected by lines. Each block represents
an elementary dynamic system that produces an output either continuously (a
continuous block) or at specific points in time (a discrete block). The lines
represent connections of block inputs to block outputs. Every block in a block
diagram is an instance of a specific type of block. The type of the block
determines the relationship between a block’s outputs and its inputs, states,
and time. A block diagram can contain any number of instances of any type of
block needed to model a system.

Note The MATLAB Based Books page on the MathWorks Web site includes
texts that discuss the use of block diagrams in general, and Simulink in
particular, to model dynamic systems.

Blocks

Blocks represent elementary dynamic systems that Simulink knows how to
simulate. A block comprises one or more of the following: a set of inputs, a set
of states, and a set of outputs.

x
U P (states) >y
(input) (output)

A block’s output is a function of time and the block’s inputs and states (if any).
The specific function that relates a block’s output to its inputs, states, and time
depends on the type of block of which the block is an instance.

2-3

2 How Simulink Works

States

Blocks can have states. A state is a variable that determines a block’s output
and whose current value is a function of the previous values of the block’s
states and/or inputs. A block that has a state must store previous values of the
state to compute its current state. States are thus said to be persistent. Blocks
with states are said to have memory because such blocks must store the
previous values of their states and/or inputs in order to compute the current
values of the states.

The Simulink Integrator block is an example of a block that has a state. The
Integrator block outputs the integral of the input signal from the start of the
simulation to the current time. The integral at the current time step depends
on the history of the Integrator block’s input. The integral therefore is a state
of the Integrator block and is, in fact, its only state. Another example of a block
with states is the Simulink Memory block. A Memory block stores the values of
its inputs at the current simulation time and outputs them at a later time. The
states of a Memory block are the previous values of its inputs.

The Simulink Gain block is an example of a stateless block. A Gain block
outputs its input signal multiplied by a constant called the gain. The output of
a Gain block is determined entirely by the current value of the input and the
gain, which does not vary. A Gain block therefore has no states. Other
examples of stateless blocks include the Sum and Product blocks. The output
of these blocks is purely a function of the current values of their inputs (the
sum in one case, the product in the other). Thus, these blocks have no states.

System Functions

Each Simulink block type is associated with a set of system functions that
specify the time-dependent relationships among its inputs, states, and outputs.
The system functions include

* An output function, f,, that relates the system’s outputs to its inputs, states,
and time

* An update function, f;,, that relates the future values of the system’s discrete
states to the current time, inputs, and states

® A derivative function, f;, that relates the derivatives of the system’s
continuous states to time and the present values of the block’s states and
inputs

2-4

Modeling Dynamic Systems

Symbolically, the system functions can be expressed as follows

y =f,(tx,u) Output function
Xq, | = f,(tx,u) Update function
x', = fy(tx,u) Derivative function
xC
where x =
xgq,

where ¢ is the current time, x is the block’s states, u is the block’s inputs, y is
the block’s outputs, x, is the block’s discrete derivatives, and x', is the
derivatives of the block’s continuous states. During a simulation, Simulink
invokes the system functions to compute the values of the system’s states and
outputs.

Block Parameters

Key properties of many standard blocks are parameterized. For example, the
gain of the Simulink Gain block is a parameter. Each parameterized block has
a block dialog that lets you set the values of the parameters when editing or
simulating the model. You can use MATLAB expressions to specify parameter
values. Simulink evaluates the expressions before running a simulation. You
can change the values of parameters during a simulation. This allows you to
determine interactively the most suitable value for a parameter.

A parameterized block effectively represents a family of similar blocks. For
example, when creating a model, you can set the gain parameter of each
instance of the Gain block separately so that each instance behaves differently.
Because it allows each standard block to represent a family of blocks, block
parameterization greatly increases the modeling power of the standard
Simulink libraries.

Tunable Parameters

Many block parameters are tunable. A tunable parameter is a parameter whose
value can change while Simulink is executing a model. For example, the gain
parameter of the Gain block is tunable. You can alter the block’s gain while a
simulation is running. If a parameter is not tunable and the simulation is
running, Simulink disables the dialog box control that sets the parameter.
Simulink allows you to specify that all parameters in your model are

2-5

2 How Simulink Works

nontunable except for those that you specify. This can speed up execution of
large models and enable generation of faster code from your model. See “Model
parameter configuration” on page 10-29 for more information.

Continuous Versus Discrete Blocks

The standard Simulink block set includes continuous blocks and discrete
blocks. Continuous blocks respond continuously to continuously changing
input. Discrete blocks, by contrast, respond to changes in input only at integer
multiples of a fixed interval called the block’s sample time. Discrete blocks hold
their output constant between successive sample time hits. Each discrete block
includes a sample time parameter that allows you to specify its sample rate.
Examples of continuous blocks include the Constant block and the blocks in the
Continuous block library. Examples of discrete blocks include the Discrete
Pulse Generator and the blocks in the Discrete block library.

Many Simulink blocks, for example, the Gain block, can be either continuous
or discrete, depending on whether they are driven by continuous or discrete
blocks. A block that can be either discrete or continuous is said to have an
implicit sample rate. The implicit sample time is continuous if any of the
block’s inputs are continuous. The implicit sample time is equal to the shortest
input sample time if all the input sample times are integer multiples of the
shortest time. Otherwise, the input sample time is equal to the fundamental
sample time of the inputs, where the fundamental sample time of a set of
sample times is defined as the greatest integer divisor of the set of sample
times.

Simulink can optionally color code a block diagram to indicate the sample times
of the blocks it contains, e.g., black (continuous), magenta (constant), yellow
(hybrid), red (fastest discrete), and so on. See “Mixed Continuous and Discrete
Systems” on page 2-33 for more information.

Subsystems

Simulink allows you to model a complex system as a set of interconnected
subsystems each of which is represented by a block diagram.You create a
subsystem using the Subsystem block and the Simulink model editor. You can
embed subsystems within subsystems to any depth to create hierarchical
models. You can create conditionally executed subsystems that are executed
only when a transition occurs on a triggering or enabling input (see “Creating
Conditionally Executed Subsystems” on page 4-25).

2-6

Modeling Dynamic Systems

Custom Blocks

Simulink allows you to create libraries of custom blocks that you can then use
in your models. You can create a custom block either graphically or
programmatically. To create a custom block graphically, you draw a block
diagram representing the block’s behavior, wrap this diagram in an instance of
the Simulink Subsystem block, and provide the block with a parameter dialog,
using the Simulink block mask facility. To create a block programmatically,
you create an M-file or a MEX-file that contains the block’s system functions
(see Writing S-Functions). The resulting file is called an S-function. You then
associate the S-function with instances of the Simulink S-Function block in
your model. You can add a parameter dialog to your S-Function block by
wrapping it in a Subsystem block and adding the parameter dialog to the
Subsystem block.

Signals

Simulink uses the term signal to refer to the output values of blocks. Simulink
allows you to specify a wide range of signal attributes, including signal name,
data type (e.g., 8-bit, 16-bit, or 32-bit integer), numeric type (real or complex),
and dimensionality (one-dimensional or two-dimensional array). Many blocks
can accept or output signals of any data or numeric type and dimensionality.
Others impose restrictions on the attributes of the signals they can handle.

Data Types

The term data type refers to the internal representation of data on a computer
system. Simulink can handle parameters and signals of any built-in data type
supported by MATLAB, such as int8, int32, and double (see “Working with
Data Types” on page 7-2). Further, Simulink defines two Simulink-specific
data types:

® Simulink.Parameter

® Simulink.Signal

These Simulink-specific data types capture Simulink-specific information that
is not captured by general-purpose numeric types such as int32. Simulink

allows you to create and use instances of Simulink data types, called data
objects, as parameters and signals in Simulink models.

You can extend both Simulink data types to create data types that capture
information specific to your models.

2-7

2 How Simulink Works

Note The Simulink user interface and documentation also refer to the
Simulink data types as classes to distinguish them from nonextensible data
types such as the built-in MATLAB types.

Solvers

A Simulink model specifies the time derivatives of its continuous states but not
the values of the states themselves. Thus, when simulating a system, Simulink
must compute continuous states by numerically integrating their state
derivatives. There are a variety of general-purpose numerical integration
techniques, each having advantages in specific applications. Simulink provides
implementations, called ordinary differential equation (ODE) solvers, of the
most stable, efficient, and accurate of these numerical integration methods.
You can specify the solver to use in the model or when running a simulation.

2-8

Simulating Dynamic Systems

Simulating Dynamic Systems

Simulating a dynamic system refers to the process of computing a system’s
states and outputs over a span of time, using information provided by the
system’s model. Simulink simulates a system when you choose Start from the
model editor’s Simulation menu, with the system’s model open.

Simulation of the system occurs in two phases: model initialization and model
execution.

Model Initialization Phase
During the initialization phase, Simulink

Evaluates the model’s block parameter expressions to determine their
values.

Determines signal attributes, e.g., name, data type, numeric type, and
dimensionality, not explicitly specified by the model and checks that each
block can accept the signals connected to its inputs.

Simulink uses a process called attribute propagation to determine
unspecified attributes. This process entails propagating the attributes of a
source signal to the inputs of the blocks that it drives.

Determined memory needed for work vectors, states, and run-time
parameters for each block

Performs block reduction optimizations.

Flattens the model hierarchy by replacing virtual subsystems with the
blocks that they contain (see “Atomic Versus Virtual Subsystems” on
page 2-13).

Sorts the blocks into the order in which they need to be executed during the
execution phase (see “Determining Block Update Order” on page 2-11).

Determines the sample times of all blocks in the model whose sample times
you did not explicitly specify.

Allocates and initializes memory used to store the current values of each
block’s states and outputs.

2-9

2 How Simulink Works

Model Execution Phase

The simulation now enters the model execution phase. In this phase, Simulink
successively computes the states and outputs of the system at intervals from
the simulation start time to the finish time, using information provided by the
model. The successive time points at which the states and outputs are
computed are called time steps. The length of time between steps is called the
step size. The step size depends on the type of solver (see “Solvers” on

page 2-13) used to compute the system’s continuous states, the system’s
fundamental sample time (see “Modeling and Simulating Discrete Systems” on
page 2-25), and whether the system’s continuous states have discontinuities
(see “Zero-Crossing Detection” on page 2-15).

At the start of the simulation, the model specifies the initial states and outputs
of the system to be simulated. At each step, Simulink computes new values for
the system’s inputs, states, and outputs and updates the model to reflect the
computed values. At the end of the simulation, the model reflects the final
values of the system’s inputs, states, and outputs. Simulink provides data
display and logging blocks. You can display and/or log intermediate results by
including these blocks in your model.

Processing at Each Time Step
At each time step, Simulink

1 Updates the outputs of the models’ blocks in sorted order (see “Determining
Block Update Order” on page 2-11).

Simulink computes a block’s outputs by invoking the block’s output function.
Simulink passes the current time and the block’s inputs and states to the
output function as it might require these arguments to compute the block’s
output. Simulink updates the output of a discrete block only if the current
step is an integer multiple of the block’s sample time.

2 Updates the states of the model’s blocks in sorted order.

Simulink computes a block’s discrete states by invoking its discrete state
update function. Simulink computes a block’s continuous states by
numerically integrating the time derivatives of the continuous states. It
computes the time derivatives of the states by invoking the block’s
continuous derivatives function.

2-10

Simulating Dynamic Systems

3 Optionally checks for discontinuities in the continuous states of blocks.

Simulink uses a technique called zero-crossing detection to detect
discontinuities in continuous states. See “Zero-Crossing Detection” on
page 2-15 for more information.

4 Computes the time for the next time step.

Simulink repeats steps 1 through 4 until the simulation stop time is reached.

Determining Block Update Order

During a simulation, Simulink updates the states and outputs of a model’s
blocks once per time step. The order in which the blocks are updated is
therefore critical to the validity of the results. In particular, if a block’s outputs
are a function of its inputs at the current time step, the block must be updated
after the blocks that drive its inputs. Otherwise, the block’s outputs will be
invalid. The order in which blocks are stored in a model file is not necessarily
the order in which they need to be updated during a simulation. Consequently,
Simulink sorts the blocks into the correct order during the model initialization
phase.

Direct-Feedthrough Ports

In order to create a valid update ordering, Simulink categorizes a block’s input
ports according to the relationship of outputs to inputs. An input port whose
current value determines the current value of one of the block’s outputs is
called a direct-feedthrough port. Examples of blocks that have
direct-feedthrough ports include the Gain, Product, and Sum blocks. Examples
of blocks that have non-direct-feedthrough inputs include the Integrator block
(its output is a function purely of its state), the Constant block (it does not have
an input), and the Memory block (its output is dependent on its input in the
previous time step).

2-11

2 How Simulink Works

Block Sorting Rules

Simulink uses the following basic update rules to sort the blocks:

¢ Each block must be updated before any of the blocks whose
direct-feedthrough ports it drives.

This rule ensures that the direct-feedthrough inputs to blocks will be valid
when the blocks are updated.

¢ Blocks that do not have direct feedthrough inputs can be updated in any
order as long as they are updated before any blocks whose direct-feedthrough
inputs they drive.

Putting all blocks that do not have direct-feedthrough ports at the head of
the update list in any order satisfies this rule. It thus allows Simulink to
ignore these blocks during the sorting process.

The result of applying these rules is an update list in which blocks without
direct feedthrough ports appear at the head of the list in no particular order
followed by blocks with direct-feedthrough ports in the order required to supply
valid inputs to the blocks they drive.

During the sorting process, Simulink checks for and flags the occurrence of
algebraic loops, that is, signal loops in which a direct-feedthrough output of a
block is connected directly or indirectly to the corresponding
direct-feedthrough input of the block. Such loops seemingly create a deadlock
condition, because Simulink needs the value of the direct-feedthrough input to
compute the output. However, an algebraic loop can represent a set of
simultaneous algebraic equations (hence the name) where the block’s input
and output are the unknowns. Further, these equations can have valid
solutions at each time step. Accordingly, Simulink assumes that loops
involving direct-feedthrough ports do, in fact, represent a solvable set of
algebraic equations and attempts to solve them each time the block is updated
during a simulation. For more information, see “Algebraic Loops” on page 2-19.

Block Priorities

Simulink allows you to assign update priorities to blocks (see “Assigning Block
Priorities” on page 5-16). Simulink updates higher priority blocks before lower
priority blocks. Simulink honors the priorities only if they are consistent with
its block sorting rules.

2-12

Simulating Dynamic Systems

Atomic Versus Virtual Subsystems

Subsystems can be virtual or atomic. Simulink ignores virtual subsystem
boundaries when determining block update order. By contrast, Simulink
executes all blocks within an atomic subsystem before moving on to the next
block. Conditionally executed subsystems are atomic. Unconditionally
executed subsystems are virtual by default. You can, however, designate an
unconditionally executed subsystem as atomic (see Subsystem). This is useful
if you need to ensure that a subsystem is executed in its entirety before any
other block is executed.

Solvers

Simulink simulates a dynamic system by computing its states at successive
time steps over a specified time span, using information provided by the model.
The process of computing the successive states of a system from its model is
known as solving the model. No single method of solving a model suffices for all
systems. Accordingly, Simulink provides a set of programs, known as solvers,
that each embody a particular approach to solving a model. The Simulation
Parameters dialog box allows you to choose the solver most suitable for your
model (see “Solvers” on page 10-8).

Fixed-Step Solvers Versus Variable-Step Solvers
Simulink solvers fall into two basic categories: fixed-step and variable-step.

Fixed-step solvers solve the model at regular time intervals from the beginning
to the end of the simulation. The size of the interval is known as the step size.
You can specify the step size or let the solver choose the step size. Generally
decreasing the step size increases the accuracy of the results while increasing
the time required to simulate the system.

Variable-step solvers vary the step size during the simulation, reducing the
step size to increase accuracy when a model’s states are changing rapidly and
increasing the step size to avoid taking unnecessary steps when the model’s
states are changing slowly. Computing the step size adds to the computational
overhead at each step but can reduce the total number of steps, and hence
simulation time, required to maintain a specified level of accuracy for models
with rapidly changing or piecewise continuous states.

Continuous Versus Discrete Solvers
Simulink provides both continuous and discrete solvers.

2-13

2 How Simulink Works

Continuous solvers use numerical integration to compute a model’s continuous
states at the current time step from the states at previous time steps and the
state derivatives. Continuous solvers rely on the model’s blocks to compute the
values of the model’s discrete states at each time step.

Mathematicians have developed a wide variety of numerical integration
techniques for solving the ordinary differential equations (ODEs) that
represent the continuous states of dynamic systems. Simulink provides an
extensive set of fixed-step and variable-step continuous solvers, each
implementing a specific ODE solution method (see “Solvers” on page 10-8).

Discrete solvers exist primarily to solve purely discrete models. They compute
the next simulation time step for a model and nothing else. They do not
compute continuous states and they rely on the model’s blocks to update the
model’s discrete states.

Note You can use a continuous solver, but not a discrete solver, to solve a
model that contains both continuous and discrete states. This is because a
discrete solver does not handle continuous states. If you select a discrete
solver for a continuous model, Simulink disregards your selection and uses a
continuous solver instead when solving the model.

Simulink provides two discrete solvers, a fixed-step discrete solver and a
variable-step discrete solver. The fixed-step solver by default chooses a step
size and hence simulation rate fast enough to track state changes in the fastest
block in your model. The variable-step solver adjusts the simulation step size
to keep pace with the actual rate of discrete state changes in your model. This
can avoid unnecessary steps and hence shorten simulation time for multirate
models (see “Determining Step Size for Discrete Systems” on page 2-29 for
more information).

Minor Time Steps

Some continuous solvers subdivide the simulation time span into major and
minor time steps, where a minor time step represents a subdivision of the
major time step. The solver produces a result at each major time step. It uses
results at the minor time steps to improve the accuracy of the result at the
major time step.

2-14

Simulating Dynamic Systems

Zero-Crossing Detection

When simulating a dynamic system, Simulink checks for discontinuities in the
system’s state variables at each time step, using a technique known as
zero-crossing detection. If Simulink detects a discontinuity within the current
time step, it determines the precise time at which the discontinuity occurs and
takes additional time steps before and after the discontinuity. This section
explains why zero-crossing detection is important and how it works.

Discontinuities in state variables often coincide with significant events in the
evolution of a dynamic system. For example, the instant when a bouncing ball
hits the floor coincides with a discontinuity in its position. Because
discontinuities often indicate a significant change in a dynamic system, it is
important to simulate points of discontinuity precisely. Otherwise, a
simulation could lead to false conclusions about the behavior of the system
under investigation. Consider, for example, a simulation of a bouncing ball. If
the point at which the ball hits the floor occurs between simulation steps, the
simulated ball appears to reverse position in midair. This might lead an
investigator to false conclusions about the physics of the bouncing ball.

To avoid such misleading conclusions, it is important that simulation steps
occur at points of discontinuity. A simulator that relies purely on solvers to
determine simulation times cannot efficiently meet this requirement.
Consider, for example, a fixed-step solver. A fixed-step solver computes the
values of state variables at integral multiples of a fixed step size. However,
there is no guarantee that a point of discontinuity will occur at an integral
multiple of the step size. You could reduce the step size to increase the
probability of hitting a discontinuity, but this would greatly increase the
execution time.

A variable-step solver appears to offer a solution. A variable-step solver adjusts
the step size dynamically, increasing the step size when a variable is changing
slowly and decreasing the step size when the variable changes rapidly. Around
a discontinuity, a variable changes extremely rapidly. Thus, in theory, a
variable-step solver should be able to hit a discontinuity precisely. The problem
is that to locate a discontinuity accurately, a variable-step solver must again
take many small steps, greatly slowing down the simulation.

How Zero-Crossing Detection Works

Simulink uses a technique known as zero-crossing detection to address this
problem. With this technique, a block can register a set of zero-crossing

2-15

2 How Simulink Works

variables with Simulink, each of which is a function of a state variable that can
have a discontinuity. The zero-crossing function passes through zero from a
positive or negative value when the corresponding discontinuity occurs. At the
end of each simulation step, Simulink asks each block that has registered
zero-crossing variables to update the variables. Simulink then checks whether
any variable has changed sign since the last step. Such a change indicates that
a discontinuity occurred in the current time step.

If any zero crossings are detected, Simulink interpolates between the previous
and current values of each variable that changed sign to estimate the times of
the zero crossings (e.g., discontinuities). Simulink then steps up to and over
each zero crossing in turn. In this way, Simulink avoids simulating exactly at
the discontinuity, where the value of the state variable might be undefined.

Zero-crossing detection enables Simulink to simulate discontinuities
accurately without resorting to excessively small step sizes. Many Simulink
blocks support zero-crossing detection. The result is fast and accurate
simulation of all systems, including systems with discontinuities.

Implementation Details

An example of a Simulink block that uses zero crossings is the Saturation
block. Zero crossings detect these state events in the Saturation block:

¢ The input signal reaches the upper limit.

¢ The input signal leaves the upper limit.

¢ The input signal reaches the lower limit.

¢ The input signal leaves the lower limit.

Simulink blocks that define their own state events are considered to have
intrinsic zero crossings. If you need explicit notification of a zero-crossing event,
use the Hit Crossing block. See “Blocks with Zero Crossings” on page 2-18 for
a list of blocks that incorporate zero crossings.

The detection of a state event depends on the construction of an internal
zero-crossing signal. This signal is not accessible by the block diagram. For the
Saturation block, the signal that is used to detect zero crossings for the upper
limit is zcSignal = UpperLimit u, where u is the input signal.

Zero-crossing signals have a direction attribute, which can have these values:

2-16

Simulating Dynamic Systems

® rising — A zero crossing occurs when a signal rises to or through zero, or when
a signal leaves zero and becomes positive.

® falling — A zero crossing occurs when a signal falls to or through zero, or
when a signal leaves zero and becomes negative.

® e¢ither — A zero crossing occurs if either a rising or falling condition occurs.

For the Saturation block’s upper limit, the direction of the zero crossing is
either. This enables the entering and leaving saturation events to be detected
using the same zero-crossing signal.

If the error tolerances are too large, it is possible for Simulink to fail to detect
a zero crossing. For example, if a zero crossing occurs within a time step, but

the values at the beginning and end of the step do not indicate a sign change,
the solver steps over the crossing without detecting it.

This figure shows a signal that crosses zero. In the first instance, the integrator
steps over the event. In the second, the solver detects the event.

WA

V%

not detected
detected

If you suspect this is happening, tighten the error tolerances to ensure that the
solver takes small enough steps. For more information, see “Error Tolerances”
on page 10-12.

Note Using the Refine output option (see “Refine output” on page 10-14)
does not help locate the missed zero crossings. You should alter the maximum
step size or output times.

Caveat

It is possible to create models that exhibit high-frequency fluctuations about a
discontinuity (chattering). Such systems typically are not physically realizable;
a massless spring, for example. Because chattering causes repeated detection

2-17

2 How Simulink Works

of zero crossings, the step sizes of the simulation become very small, essentially
halting the simulation.

If you suspect that this behavior applies to your model, you can disable
zero-crossing detection by selecting the Disable zero crossing detection
option on the Advanced pane of the Simulation Parameters dialog box (see
“Zero-crossing detection” on page 10-32). Although disabling zero-crossing
detection can alleviate the symptoms of this problem, you no longer benefit
from the increased accuracy that zero-crossing detection provides. A better
solution is to try to identify the source of the underlying problem in the model.

Blocks with Zero Crossings

Block Description of Zero Crossing

Abs One: to detect when the input signal crosses zero in either
the rising or falling direction.

Backlash Two: one to detect when the upper threshold is engaged,
and one to detect when the lower threshold is engaged.

Dead Zone Two: one to detect when the dead zone is entered (the input
signal minus the lower limit), and one to detect when the
dead zone is exited (the input signal minus the upper

limit).

Hit One: to detect when the input crosses the threshold.

Crossing

Integrator If the reset port is present, to detect when a reset occurs. If
the output is limited, there are three zero crossings: one to
detect when the upper saturation limit is reached, one to
detect when the lower saturation limit is reached, and one
to detect when saturation is left.

MinMax One: for each element of the output vector, to detect when
an input signal is the new minimum or maximum.

Relay One: if the relay is off, to detect the switch on point. If the

relay is on, to detect the switch off point.

2-18

Simulating Dynamic Systems

Block Description of Zero Crossing (Continued)

Relational One: to detect when the output changes.
Operator

Saturation Two: one to detect when the upper limit is reached or left,
and one to detect when the lower limit is reached or left.

Sign One: to detect when the input crosses through zero.
Step One: to detect the step time.

Subsystem For conditionally executed subsystems: one for the enable
port if present, and one for the trigger port, if present.

Switch One: to detect when the switch condition occurs.

Algebraic Loops

Some Simulink blocks have input ports with direct feedthrough. This means
that the output of these blocks cannot be computed without knowing the values
of the signals entering the blocks at these input ports. Some examples of blocks
with direct feedthrough inputs are as follows:

¢ The Math Function block

¢ The Gain block

¢ The Integrator block’s initial condition ports

® The Product block

® The State-Space block when there is a nonzero D matrix

¢ The Sum block

® The Transfer Fen block when the numerator and denominator are of the
same order

¢ The Zero-Pole block when there are as many zeros as poles

An algebraic loop generally occurs when an input port with direct feedthrough
is driven by the output of the same block, either directly, or by a feedback path
through other blocks with direct feedthrough. (See “Nonalgebraic
Direct-Feedthrough Loops” on page 2-21 for an example of an exception to this
general rule.) An example of an algebraic loop is this simple scalar loop.

2-19

2 How Simulink Works

2-20

u
— -+ .
-
-

Mathematically, this loop implies that the output of the Sum block is an
algebraic state z constrained to equal the first input # minus z (i.e. z = u - 2).
The solution of this simple loop is z = u/2, but most algebraic loops cannot be
solved by inspection. It is easy to create vector algebraic loops with multiple
algebraic state variables z1, z2, etc., as shown in this model.

22

>+
Ll
2l o z4z1-1 - Solve z1 Ijl
i I
-+ - fi2) zi=0 2 L
- Algebraic Constraint Displaw z1
Sum
21 —
22 zi-z1-1 Solve z2
»+ Pt g 2 > L
1 - — Algebraic Constraintt Dizplay =2
Constant Sum

The Algebraic Constraint block is a convenient way to model algebraic
equations and specify initial guesses. The Algebraic Constraint block
constrains its input signal F(z) to zero and outputs an algebraic state z. This
block outputs the value necessary to produce a zero at the input. The output
must affect the input through some feedback path. You can provide an initial
guess of the algebraic state value in the block’s dialog box to improve algebraic
loop solver efficiency.

A scalar algebraic loop represents a scalar algebraic equation or constraint of
the form F(z) = 0, where z is the output of one of the blocks in the loop and the
function F consists of the feedback path through the other blocks in the loop to
the input of the block. In the simple one-block example shown on the previous
page, F(z) = z— (u — z). In the vector loop example shown above, the equations
are

22+4+2z1-1=0
22-2z1-1=0

Simulating Dynamic Systems

Algebraic loops arise when a model includes an algebraic constraint F(z) = 0.

This constraint might arise as a consequence of the physical interconnectivity
of the system you are modeling, or it might arise because you are specifically

trying to model a differential/algebraic system (DAE).

When a model contains an algebraic loop, Simulink calls a loop solving routine
at each time step. The loop solver performs iterations to determine the solution
to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

To solve F(z) = 0, the Simulink loop solver uses Newton's method with weak
line search and rank-one updates to a Jacobian matrix of partial derivatives.
Although the method is robust, it is possible to create loops for which the loop
solver will not converge without a good initial guess for the algebraic states z.
You can specify an initial guess for a line in an algebraic loop by placing an IC
block (which is normally used to specify an initial condition for a signal) on that
line. As shown above, another way to specify an initial guess for a line in an
algebraic loop is to use an Algebraic Constraint block.

Whenever possible, use an IC block or an Algebraic Constraint block to specify
an initial guess for the algebraic state variables in a loop.

Nonalgebraic Direct-Feedthrough Loops

There are exceptions to the general rule that all loops comprising
direct-feedthrough blocks are algebraic. The exceptions are

¢ Loops involving triggered subsystems

® A loop from the output to the reset port of an integrator

A triggered subsystem holds its outputs constant between trigger events (see
“Triggered Subsystems” on page 4-30). Thus, a solver can safely use the output
from the system’s previous time step to compute its input at the current time

step. This is, in fact, what a solver does when it encounters a loop involving a
triggered subsystem, thus eliminating the need for an algebraic loop solver.

2-21

2 How Simulink Works

Note Because a solver uses a triggered subsystem’s previous output to
compute feedback inputs, the subsystem, and any block in its feedback path,
can exhibit a one-sample-time delay in its output. When simulating a system
with triggered feedback loops, Simulink displays a warning to remind you
that such delays can occur.

Consider, for example, the following system.

N (2 —m+ z
r=ul+ e ~~\DFE

Surn

This system effectively solves the equation
z=1+u

where u is the value of z the last time the subsystem was triggered. The output
of the system is a staircase function as illustrated by the display on the
system’s scope.

(020 AlE -] &

2-22

Simulating Dynamic Systems

Now consider the effect of removing the trigger from the system shown in the
previous example.

—{uz
=+

(1w
ud
Soope @—P—+ T
- s

In this case, the input at the u2 port of the adder subsystem is equal to the
subsystem’s output at the current time step for every time step. The
mathematical representation of this system

z =2z + 1

reveals that it has no mathematically valid solution.

Highlighting Algebraic Loops

You can cause Simulink to highlight algebraic loops when you update,
simulate, or debug a model. Use the ashow command to highlight algebraic
loops when debugging a model.

To cause Simulink to highlight algebraic loops that it detects when updating or
simulating a model, set the Algebraic loop diagnostic on the Diagnostics
pane of the Simulation parameters dialog box to Error (see “Configuration
options” on page 10-25 for more information). This causes Simulink to display
an error dialog (the Diagnostic Viewer) and recolor portions of the diagram that
represent the algebraic loops that it detects. Simulink uses red to color the
blocks and lines that constitute the loops. Closing the error dialog restores the
diagram to its original colors.

2-23

2 How Simulink Works

For example, he following figure shows the block diagram of the hydcyl demo
model in its original colors.

¥

—&

Pressures
p1 feliow)
P2 (purple)
Pump Piston pSI[quej.
Position (Pa)
imj

Vahe/Cylinde rPiston/Spring Assambhy

contol vake
orifice ama

The following figure shows the diagram after updating when the Algebraic
loop diagnostic is set to Error.

¥

Ll T P Pressums
% L — — x » p1 feliow)
P2 (purple)
Pump & ad ain Piston pSI[quej.
Position (Pa)
Vahe/Cylinde rPiston/Spring Assambhy {mj
contol vake
orifice ama

In this example, Simulink has colored the algebraic loop red, making it stand
out from the rest of the diagram.

k J

¥

2-24

Modeling and Simulating Discrete Systems

Modeling and Simulating Discrete Systems

Simulink has the ability to simulate discrete (sampled data) systems, including
systems whose components operate at different rates (multirate systems) and
systems that mix discrete and continuous components (hybrid systems). This

capability stems from two key Simulink features:

¢ SampleTime block parameter

Some Simulink blocks have a SampleTime parameter that you can use to
specify the block’s sample time, i.e., the rate at which it executes during
simulation. Blocks that have this parameter include all the blocks in the
Discrete library and some of the blocks in the Sources library, e.g., the Sine
Wave and Pulse Generator blocks.

® Sample-time inheritance

Most standard Simulink blocks can inherit their sample time from the blocks
connected to their inputs. Exceptions include blocks in the Continuous
library and blocks that do not have inputs (e.g., blocks from the Sources
library). In some cases, source blocks can inherit the sample time of the block
connected to its input.

The ability to specify sample times on a block-by-block basis, either directly
through the SampleTime parameter or indirectly through inheritance, enables
you to model systems containing discrete components operating at different
rates and hybrid systems containing discrete and continuous components.

Specifying Sample Time

Simulink allows you to specify the sample time of any block that has a
SampleTime parameter. You can use the block’s parameter dialog box to set
this parameter. You do this by entering the sample time in the Sample time
field on the dialog box. You can enter either the sample time alone or a vector
whose first element is the sample time and whose second element is an offset:
[Ts, Tol. Various values of the sample time and offset have special meanings.

2-25

2 How Simulink Works

The following table summarizes valid values for this parameter and how
Simulink interprets them to determine a block’s sample time.

Sample Time Usage

[T, Tol Specifies that updates occur at simulation times
0> Ts < Tsim

[Tol < Tp th =n * Tg + |Tof

where n is an integer in the range 1. .Tg;,/Ts and
Tsin is the length of the simulation. Blocks that
have a sample time greater than 0 are said to have
a discrete sample time.

The offset allows you to specify that Simulink
update the block later in the sample interval than
other blocks operating at the same rate.

[0, 0], O Specifies that updates occur at every major and
minor time step. A block that has a sample time of
0 is said to have a continuous sample time.

2-26

Modeling and Simulating Discrete Systems

Sample Time Usage

[0, 1] Specifies that updates occur only at major time
steps, skipping minor time steps (see “Minor Time
Steps” on page 2-14). This setting avoids
unnecessary computations for blocks whose sample
time cannot change between major time steps. The
sample time of a block that executes only at major
time steps is said to be fixed in minor time step.

[-1, 0], -1 If the block is not in a triggered subsystem, this
setting specifies that the block inherits its sample
time from the block connected to its input
(inheritance) or, in some cases, from the block
connected to its output (back inheritance). If the
block is in a triggered subsystem, you must set the
SampleTime parameter to this setting.

Note that specifying sample-time inheritance for a
source block can cause Simulink to assign an
inappropriate sample time to the block if the source
drives more than one block. For this reason, you
should avoid specifying sample-time inheritance for
source blocks. If you do, Simulink displays a
warning message when you update or simulate the
model.

Changing a Block’s Sample Time

You cannot change the SampleTime parameter of a block while a simulation is
running. If you want to change a block’s sample time, you must stop and restart
the simulation for the change to take effect.

Compiled Sample Time

During the compilation phase of a simulation, Simulink determines the sample
time of the block from its SampleTime parameter (if it has a SampleTime
parameter), sample-time inheritance, or block type (Continuous blocks always
have a continuous sample time). It is this compiled sample time that
determines the sample rate of a block during simulation. You can determine
the compiled sample time of any block in a model by first updating the model

2-27

2 How Simulink Works

and then getting the block’s CompiledSampleTime parameter, using the
get_param command.

Purely Discrete Systems

Purely discrete systems can be simulated using any of the solvers; there is no
difference in the solutions. To generate output points only at the sample hits,
choose one of the discrete solvers.

Multirate Systems

Multirate systems contain blocks that are sampled at different rates. These
systems can be modeled with discrete blocks or with both discrete and
continuous blocks. For example, consider this simple multirate discrete model.

=+0.1 C
=02 »
. | BTF ¥
Constant ﬂ _>®
=02

DTFZ wiz)

¥

Y

For this example the DTF1 Discrete Transfer Fen block’s Sample time is set to
[1 0.1]1, which gives it an offset of 0. 1. The DTF2 Discrete Transfer Fcn block’s
Sample time is set to 0.7, with no offset.

Starting the simulation (see “Running a Simulation Programmatically” on
page 10-42) and plotting the outputs using the stairs function

[t,x,y] = sim('multirate', 3);
stairs(t,y)

produces this plot

y@) [

2-28

Modeling and Simulating Discrete Systems

For the DTF1 block, which has an offset of 0. 1, there is no output until t = 0.1.
Because the initial conditions of the transfer functions are zero, the output of
DTF1, y(1), is zero before this time.

Determining Step Size for Discrete Systems

Simulating a discrete system requires that the simulator take a simulation
step at every sample time hit, that is, at integer multiples of the system’s
shortest sample time. Otherwise, the simulator might miss key transitions in
the system’s states. Simulink avoids this by choosing a simulation step size to
ensure that steps coincide with sample time hits. The step size that Simulink
chooses depends on the system’s fundamental sample time and the type of
solver used to simulate the system.

The fundamental sample time of a discrete system is the greatest integer
divisor of the system’s actual sample times. For example, suppose that a
system has sample times of 0.25 and 0.5 second. The fundamental sample time
in this case is 0.25 second. Suppose, instead, the sample times are 0.5 and 0.75
second. In this case, the fundamental sample time is again 0.25 second.

You can direct Simulink to use either a fixed-step or a variable-step discrete
solver to solve a discrete system. A fixed-step solver sets the simulation step
size equal to the discrete system’s fundamental sample time. A variable-step
solver varies the step size to equal the distance between actual sample time
hits. The following diagram illustrates the difference between a fixed-step and
a variable-size solver.

2-29

2 How Simulink Works

v

o>
S
o
&>

1t

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Fixed-Step Solver

B>

1t $

0.00 0.25 0.50 0.75 1.00 1.25 1.50

v

Variable-Step Solver

In the diagram, arrows indicate simulation steps and circles represent sample
time hits. As the diagram illustrates, a variable-step solver requires fewer
simulation steps to simulate a system, if the fundamental sample time is less
than any of the actual sample times of the system being simulated. On the
other hand, a fixed-step solver requires less memory to implement and is faster
if one of the system’s sample times is fundamental. This can be an advantage
in applications that entail generating code from a Simulink model (using the
Real-Time Workshop®).

Sample Time Propagation

The figure below illustrates a Discrete Filter block with a sample time of Ts
driving a Gain block.

1
_’ R
1+zz1

Dizerete Filter Gain

Because the Gain block’s output is simply the input multiplied by a constant,
its output changes at the same rate as the filter. In other words, the Gain block

2-30

Modeling and Simulating Discrete Systems

has an effective sample rate equal to that of the filter’s sample rate. This is the
fundamental mechanism behind sample time propagation in Simulink.

Simulink sets sample times for individual blocks according to these rules:

¢ Continuous blocks (e.g., Integrator, Derivative, Transfer Fcn, etc.) are, by
definition, continuous.

¢ The Constant block is, by definition, constant.

¢ Discrete blocks (e.g., Zero-Order Hold, Unit Delay, Discrete Transfer Fen,
etc.) have sample times that are explicitly specified by the user on the block
dialog boxes (see “Specifying Sample Time” on page 2-25).

¢ All other blocks have implicitly defined sample times that are based on the
sample times of their inputs. For instance, a Gain block that follows an
Integrator is treated as a continuous block, whereas a Gain block that follows
a Zero-Order Hold is treated as a discrete block having the same sample time
as the Zero-Order Hold block.

For blocks whose inputs have different sample times, if all sample times are
integer multiples of the fastest sample time, the block is assigned the sample
time of the fastest input. If a variable-step solver is being used, the block is
assigned the continuous sample time. If a fixed-step solver is being used and
the greatest common divisor of the sample times (the fundamental sample
time) can be computed, it is used. Otherwise continuous is used.

Under some circumstances, Simulink also back propagates sample times to
source blocks if it can do so without affecting the output of a simulation. For
instance, in the model below, Simulink recognizes that the Signal Generator
block is driving a Discrete-Time Integrator block, so it assigns the Signal
Generator block and the Gain block the same sample time as the Discrete-Time
Integrator block.

ooog T
oo - —
=1

Signal Discrate-Time Gain
Generator Integratar

You can verify this by selecting Sample Time Colors from the Simulink
Format menu and noting that all blocks are colored red. Because the
Discrete-Time Integrator block only looks at its input at its sample times, this

2-31

2 How Simulink Works

change does not affect the outcome of the simulation but does result in a
performance improvement.

Replacing the Discrete-Time Integrator block with a continuous Integrator
block, as shown below, and recoloring the model by choosing Update diagram
from the Edit menu cause the Signal Generator and Gain blocks to change to
continuous blocks, as indicated by their being colored black.

oooo 1
=)= > -
=

Signal Integratar Gain
Generator

Invariant Constants

Blocks either have explicitly defined sample times or inherit their sample
times from blocks that feed them or are fed by them.

Simulink assigns Constant blocks a sample time of infinity, also referred to as
a constant sample time. Other blocks have constant sample time if they receive
their input from a Constant block and do not inherit the sample time of another
block. This means that the output of these blocks does not change during the

simulation unless the parameters are explicitly modified by the model user.

For example, in this model, both the Constant and Gain blocks have constant
sample time.

Fl—s[—s =

Constant .
Fain Discrete-Time Scope
Integratar

¥

Because Simulink supports the ability to change block parameters during a
simulation, all blocks, even blocks having constant sample time, must generate
their output at the model’s effective sample time.

Note You can determine which blocks have constant sample time by selecting
Sample Time Colors from the Format menu. Blocks having constant sample
time are colored magenta.

2-32

Modeling and Simulating Discrete Systems

Because of this feature, all blocks compute their output at each sample time
hit, or, in the case of purely continuous systems, at every simulation step. For
blocks having constant sample time whose parameters do not change during a
simulation, evaluating these blocks during the simulation is inefficient and
slows down the simulation.

You can set the inline parameters option (see “Inline parameters” on

page 10-29) to remove all blocks having constant sample times from the
simulation “loop.” The effect of this feature is twofold. First, parameters for
these blocks cannot be changed during a simulation. Second, simulation speed
is improved. The speed improvement depends on model complexity, the
number of blocks with constant sample time, and the effective sampling rate of
the simulation.

Mixed Continuous and Discrete Systems

Mixed continuous and discrete systems are composed of both sampled and
continuous blocks. Such systems can be simulated using any of the integration
methods, although certain methods are more efficient and accurate than
others. For most mixed continuous and discrete systems, the Runge-Kutta
variable-step methods, ode23 and ode45, are superior to the other methods in
terms of efficiency and accuracy. Because of discontinuities associated with the
sample and hold of the discrete blocks, the ode15s and ode113 methods are not
recommended for mixed continuous and discrete systems.

2-33

2 How Simulink Works

2-34

Simulink Basics

The following sections explain how to perform basic Simulink tasks.

Starting Simulink (p. 3-2)

Opening Models (p. 3-4)

Entering Simulink Commands (p. 3-5)
Simulink Windows (p. 3-7)

Saving a Model (p. 3-9)
Printing a Block Diagram (p. 3-12)
Generating a Model Report (p. 3-16)

Summary of Mouse and Keyboard
Actions (p. 3-19)

Ending a Simulink Session (p. 3-22)

How to start Simulink.
How to open a Simulink model.
Explains various ways to execute Simulink commands.

Guide to the features of the windows used to display
Simulink models and block libraries.

How to save a Simulink model to disk.
How to print a Simulink block diagram.

How to generate an HTML report on a model’s structure
and content.

Lists key combinations and mouse actions that you can
use to execute Simulink commands.

How to end a Simulink session.

3 Simulink Basics

Starting Simulink

To start Simulink, you must first start MATLAB. Consult your MATLAB
documentation for more information. You can then start Simulink in two ways:

¢ Click the Simulink icon El on the MATLAB toolbar.
¢ Enter the simulink command at the MATLAB prompt.

On Microsoft Windows platforms, starting Simulink displays the Simulink
Library Browser.

[simulink Library Browser i =l0ix]
File Edit View Help

[& A find ||

Continuous: simulink Continuos

- B Simulink -
3 Continuous

3] Discontinuities

3] Discrete

3 Look-Up Tables

3 Math Operations

3 Model Verification

2 Model-wide Liiliies
3 Ports & Subsystems
B signal Attributes

3 Signal Routing

3 Sinks

3 Sources

3 User-Defined Functions
¥ Aerospace Blocksst

B CAN Drivers (Vector)

BB CAN Message Blocks

W8 CDMA Refersnce Blockst

Discorfinuities

Discrete.

[+

Yianilna

£

Lock-UUp Tables

Math Dperations

Model Yerification

Modelw/ide Utiities

1
2]
%A
Q)

Ports & Subsystems

W Commurnications Blockset

2
B Control System Toolbox = h: StnaAlibuize
- W DSP Blackset
[BB Dials & Gauges Blockset E Signal Routing
- W Embedded Target for Matarols MPCS! b
- B Embedded Target for TI C5000 DSP ’,;; Sinks
(- Wl Extras for MPCSSS
- W Ficed-Paint Blockset —'f\’:- Sources
= W Fuzzy Logic Tookbox k)
- T MPC Blocks yetttal] User Defined Functions
ol

- T Module Packaging Manager -
“ v

Ready /

The Library Browser displays a tree-structured view of the Simulink block
libraries installed on your system. You can build models by copying blocks from
the Library Browser into a model window (this procedure is described later in
this chapter).

3-2

Starting Simulink

On UNIX platforms, starting Simulink displays the Simulink block library
window.

ElLibrary: simulink 10l =|

File Edit Yiew Format Help

0 r - ;

Soumas Sinks Continuous Disc it Math Signal Signal
Dperations Routing Attributes

yeffuh| |y=fitu) ® A Misc
\ Q| ic
Discontinuities Look-Up UserDefined Model For= & Mode -\Wide
Tablkes Functions Verification Subsystams Ltilities

Blacksets & Simulink Black Library 5.0
Toolboxes Copyright () 19902002 The MathWarks, Inc.

The Simulink library window displays icons representing the block libraries
that come with Simulink. You can create models by copying blocks from the
library into a model window.

Note On Windows, you can display the Simulink library window by
right-clicking the Simulink node in the Library Browser window.

3-3

3 Simulink Basics

Opening Models

To edit an existing model diagram, either

¢ Click the Open button on the Library Browser’s toolbar (Windows only) or
select Open from the Simulink library window’s File menu and then choose
or enter the file name for the model to edit.

¢ Enter the name of the model (without the .md1 extension) in the MATLAB
command window. The model must be in the current directory or on the path.

Entering Simulink Commands

Entering Simulink Commands

You run Simulink and work with your model by entering commands. You can
enter commands by

¢ Selecting items from the Simulink menu bar

® Selecting items from a context-sensitive Simulink menu (Windows only)
¢ Clicking buttons on the Simulink toolbar (Windows only)

¢ Entering commands in the MATLAB command window

Using the Simulink Menu Bar to Enter Commands

The Simulink menu bar appears near the top of each model window. The menu
commands apply to the contents of that window.

Using Context-Sensitive Menus to Enter Commands

Simulink displays a context-sensitive menu when you click the right mouse
button over a model or block library window. The contents of the menu depend
on whether a block is selected. If a block is selected, the menu displays
commands that apply only to the selected block. If no block is selected, the
menu displays commands that apply to a model or library as a whole.

Using the Simulink Toolbar to Enter Commands

Model windows in the Windows version of Simulink optionally display a
toolbar beneath the Simulink menu bar. To display the toolbar, select the
Toolbar option on the Simulink View menu.

Sluntitled
File Edit WYiew Simulation Format Tools Help

O|zEdS| &R e IINormal 'H@Iﬁ”ﬁ?@ <+—Toolbor

=10l x|

Ready [1o02 |odets v

3 Simulink Basics

The toolbar contains buttons corresponding to frequently used Simulink
commands, such as those for opening, running, and closing models. You can
run such commands by clicking the corresponding button. For example, to open
a Simulink model, click the button containing the open folder icon. You can
determine which command a button executes by moving the mouse pointer
over the button. A small window appears containing text that describes the
button. The window is called a tooltip. Each button on the toolbar displays a
tooltip when the mouse pointer hovers over it. You can hide the toolbar by
clearing the Toolbar option on the Simulink View menu.

Using the MATLAB Window to Enter Commands

When you run a simulation and analyze its results, you can enter MATLAB
commands in the MATLAB command window. See Chapter 10, “Running a
Simulation” and Chapter 11, “Analyzing Simulation Results” for more
information.

Undoing a Command

You can cancel the effects of up to 101 consecutive operations by choosing Undo
from the Edit menu. You can undo these operations:

¢ Adding, deleting, or moving a block

¢ Adding, deleting, or moving a line

¢ Adding, deleting, or moving a model annotation

¢ Editing a block name

¢ Creating a subsystem (see “Undoing Subsystem Creation” on page 4-21 for

more information)

You can reverse the effects of an Undo command by choosing Redo from the
Edit menu.

3-6

Simulink Windows

Simulink Windows

Simulink uses separate windows to display a block library browser, a block
library, a model, and graphical (scope) simulation output. These windows are
not MATLAB figure windows and cannot be manipulated using Handle
Graphics® commands.

Simulink windows are sized to accommodate the most common screen
resolutions available. If you have a monitor with exceptionally high or low
resolution, you might find the window sizes too small or too large. If this is the
case, resize the window and save the model to preserve the new window
dimensions.

Status Bar

The Windows version of Simulink displays a status bar at the bottom of each
model and library window.

=10l x|

File Edit WYiew Simulation Format Tools Help

Ready [100% | | [ode45 /| 4——— Status Bar

When a simulation is running, the status bar displays the status of the
simulation, including the current simulation time and the name of the current
solver. You can display or hide the status bar by selecting or clearing the
Status Bar option on the Simulink View menu.

Zooming Block Diagrams

Simulink allows you to enlarge or shrink the view of the block diagram in the
current Simulink window. To zoom a view:

® Select Zoom In from the View menu (or type r) to enlarge the view.

® Select Zoom Out from the View menu (or type v) to shrink the view.

3-7

3 Simulink Basics

¢ Select Fit System to View from the View menu (or press the space bar) to

fit the diagram to the view.
¢ Select Normal from the View menu to view the diagram at actual size.

By default, Simulink fits a block diagram to view when you open the diagram
either in the model browser’s content pane or in a separate window. If you
change a diagram’s zoom setting, Simulink saves the setting when you close
the diagram and restores the setting the next time you open the diagram. If you
want to restore the default behavior, choose Fit System to View from the View

menu the next time you open the diagram.

3-8

Saving a Model

Saving a Model

You can save a model by choosing either the Save or Save As command from
the File menu. Simulink saves the model by generating a specially formatted
file called the model file (with the .md1 extension) that contains the block
diagram and block properties.

If you are saving a model for the first time, use the Save command to provide
aname and location for the model file. Model file names must start with a letter
and can contain no more than 63 letters, numbers, and underscores. The file
name must not be the same as that of a MATLAB command.

If you are saving a model whose model file was previously saved, use the Save
command to replace the file’s contents or the Save As command to save the
model with a new name or location. You can also use the Save As command to
save the model in a format compatible with previous releases of Simulink (see
“Saving a Model in Earlier Formats” on page 3-9).

Simulink follows this procedure while saving a model:
1 Ifthe mdl file for the model already exists, it is renamed as a temporary file.

2 Simulink executes all block PreSaveFcn callback routines, then executes the
block diagram’s PreSaveFcn callback routine.

3 Simulink writes the model file to a new file using the same name and an
extension of mdl.

4 Simulink executes all block PostSaveFcn callback routines, then executes
the block diagram’s PostSaveFcn callback routine.

5 Simulink deletes the temporary file.

If an error occurs during this process, Simulink renames the temporary file to
the name of the original model file, writes the current version of the model to a
file with an .err extension, and issues an error message. Simulink performs
steps 2 through 4 even if an error occurs in an earlier step.

Saving a Model in Earlier Formats

The Save As command allows you to save a model created with the latest
version of Simulink in formats used by earlier versions of Simulink, including

3-9

3 Simulink Basics

3-10

Simulink 3 (R11), Simulink 4 (R12), and Simulink 4.1 (R12.1). You might want
to do this, for example, if you need to make a model available to colleagues who
have access only to one of these earlier versions of Simulink.

To save a model in earlier format:
1 Select Save As from the Simulink File menu.

Simulink displays the Save As dialog box.

21|

Save in: I@ simgeneral j - = EB-

dblpendz.md| lights.mdl therma,

hardstop,mdl onecart.mdl toilet, me
[8] bounce. mdl heedeyl.mdl penddema. md| wdp.md|
countersdema,md| heedeyl4,mdl simppend. md|

dblcarttmdl Frydlib.mdl simquat.mdl
dblpend1, mdl hydrod.mdl slprimes.mdl

1| | >
File name: |hydcyl.mdl Save I
Cancel |

2 Select a format from the Save as type list on the dialog box.

3 Click the Save button.

When saving a model in an earlier version’s format, Simulink saves the model
in that format regardless of whether the model contains blocks and features
that were introduced after that version. If the model does contain blocks or use
features that postdate the earlier version, the model might not give correct
results when run by the earlier version. For example, matrix and frame signals
do not work in R11, because R11 does not have matrix and frame support.
Similarly, models that contain unconditionally executed subsystems marked
“Treat as atomic unit” might produce different results in R11, because R11 does
not support unconditionally executed atomic subsystems.

The command converts blocks that postdate the earlier version into empty
masked subsystem blocks colored yellow. For example, post-R11 blocks include

Saving a Model

¢ Look-Up Table (n-D)

¢ Assertion

¢ Rate Transition

¢ PreLook-Up Index Search
¢ Interpolation (n-D)

¢ Direct Look-Up Table (n-D)
¢ Polynomial

e Matrix Concatenation

¢ Signal Specification

® Bus Creator

¢ If, Whilelterator, Forlterator, Assignment
® SwitchCase

¢ Bitwise Logical Operator

Post-R11 blocks from Simulink blocksets appear as unlinked blocks.

3-11

3 Simulink Basics

Printing a Block Diagram

3-12

You can print a block diagram by selecting Print from the File menu (on a
Microsoft Windows system) or by using the print command in the MATLAB
command window (on all platforms).

On a Microsoft Windows system, the Print menu item prints the block diagram
in the current window.

Print Dialog Box

When you select the Print menu item, the Print dialog box appears. The Print
dialog box enables you to selectively print systems within your model. Using
the dialog box, you can print

® The current system only

¢ The current system and all systems above it in the model hierarchy

® The current system and all systems below it in the model hierarchy, with the
option of looking into the contents of masked and library blocks

¢ All systems in the model, with the option of looking into the contents of
masked and library blocks

¢ An overlay frame on each diagram
The portion of the Print dialog box that supports selective printing is similar

on supported platforms. This figure shows how it looks on a Microsoft Windows
system. In this figure, only the current system is to be printed.

— Optionz
o o o e
Current sgﬁm Current system Current system Al zystems
5 and abowve and belaw

A I S

™ Include Print Log 7| ook under mash dislog

I | Expand urigue lbramliks

Printing a Block Diagram

When you select either the Current system and below or All systems option,
two check boxes become enabled. In this figure, All systems is selected.

— Optionz
. . . =
Current system Current system Current system Al systems
. and ab:oue and bglow
L A
™ Include Print Log [Look under mask dialog
[Expand unigue library links
I™ Frame: |D:\W5hoolborsimulinksimulinksldefaulfram . |

ak. I Cancel |

Selecting the Look Under Mask Dialog check box prints the contents of
masked subsystems when encountered at or below the level of the current
block. When you are printing all systems, the top-level system is considered the
current block, so Simulink looks under any masked blocks encountered.

Selecting the Expand Unique Library Links check box prints the contents of
library blocks when those blocks are systems. Only one copy is printed

regardless of how many copies of the block are contained in the model. For more
information about libraries, see “Working with Block Libraries” on page 5-25.

The print log lists the blocks and systems printed. To print the print log, select
the Include Print Log check box.

Selecting the Frame check box prints a title block frame on each diagram.
Enter the path to the title block frame in the adjacent edit box. You can create
a customized title block frame, using MATLAB’s frame editor. See frameedit
in the online MATLAB reference for information on using the frame editor to
create title block frames.

Print Command
The format of the print command is

print -ssys -device filename

3-13

3 Simulink Basics

sys is the name of the system to be printed. The system name must be preceded
by the s switch identifier and is the only required argument. sys must be open
or must have been open during the current session. If the system name
contains spaces or takes more than one line, you need to specify the name as a
string. See the examples below.

device specifies a device type. For a list and description of device types, see
Using MATLAB Graphics.

filename is the PostScript file to which the output is saved. If filename exists,
it is replaced. If filename does not include an extension, an appropriate one is
appended.

For example, this command prints a system named untitled.

print -suntitled

This command prints the contents of a subsystem named Sub1 in the current
system.

print -sSub1

This command prints the contents of a subsystem named Requisite Friction.
print (['-sRequisite Friction'])
The next example prints a system named Friction Model, a subsystem whose

name appears on two lines. The first command assigns the newline character
to a variable; the second prints the system.

cr = sprintf('\n');
print (['-sFriction' cr 'Model'])
To print the currently selected subsystem, enter

print(['-s', gcb])

Specifying Paper Size and Orientation

Simulink lets you specify the type and orientation of the paper used to print a
model diagram. You can do this on all platforms by setting the model’s
PaperType and PaperOrientation properties, respectively (see “Model and
Block Parameters” in the online documentation), using the set_param
command. You can set the paper orientation alone, using MATLAB’s orient

3-14

Printing a Block Diagram

command. On Windows, the Print and Printer Setup dialog boxes lets you set
the page type and orientation properties as well.

Positioning and Sizing a Diagram

You can use a model’s PaperPositionMode and PaperPosition parameters to
position and size the model’s diagram on the printed page. The value of the
PaperPosition parameter is a vector of form [left bottom width height].
The first two elements specify the bottom left corner of a rectangular area on
the page, measured from the page’s bottom left corner. The last two elements
specify the width and height of the rectangle. When the model’s
PaperPositionMode is manual, Simulink positions (and scales, if necessary)
the model’s diagram to fit inside the specified print rectangle. For example, the
following commands

vdp

set_param('vdp', 'PaperType', 'usletter')
set_param('vdp', 'PaperOrientation', 'landscape')
set_param('vdp', 'PaperPositionMode', 'manual')
set_param('vdp', 'PaperPosition', [0.5 0.5 4 4])
print -svdp

print the block diagram of the vdp sample model in the lower left corner of a
U.S. letter-size page in landscape orientation.

If PaperPositionMode is auto, Simulink centers the model diagram on the
printed page, scaling the diagram, if necessary, to fit the page.

3-15

3 Simulink Basics

Generating a Model Report

A Simulink model report is an HTML document that describes a model’s
structure and content. The report includes block diagrams of the model and its
subsystems and the settings of its block parameters.

To generate a report for the current model:
1 Select Print details from the model’s File menu.

The Print Details dialog box appears.

<) Print Details - fuelsys ; =10l x]
File lacationfnaming options

Directary & Current (pwd)
& Temparary tempdin)

" Cther: IlIEI attoastenR1 Zperfectihintwiniz

[Incrernent filenarme to prevent ovenwriting old files

Syst

tting options

-t " Currentand above € Currentand below © Entire model

The dialog box allows you to select various report options (see “Model Report
Options” on page 3-17).

2 Select the desired report options on the dialog box.

3 Select Print.

Simulink generates the HTML report and displays the in your system’s default
HTML browser.

3-16

Cenerating a Model Report

While generating the report, Simulink displays status messages on a messages
pane that replaces the options pane on the Print Details dialog box.

<} Print Details - fuelsys : g =10l |
|3) Impartant messages {running a loop) LI
Looping on madel "fuelsys”
Looping on machine "fuelsys"
Looping on systerm "fuelsys”
Could not find any "Block” abjects for summary tahle.

You can select the detail level of the messages from the list at the top of the
messages pane. When the report generation process begins, the Print button
on the Print Details dialog box changes to a Stop button. Clicking this button
terminates the report generation. When the report generation process finishes,
the Stop button changes to an Options button. Clicking this button redisplays
the report generation options, allowing you to generate another report without
having to reopen the Print Details dialog box.

Model Report Options

The Print Details dialog box allows you to select the following report options.

Directory

The directory where Simulink stores the HTML report that it generates. The
options include your system’s temporary directory (the default), your system’s

current directory, or another directory whose path you specify in the adjacent
edit field.

Increment filename to prevent overwriting old files

Creates a unique report file name each time you generate a report for the same
model in the current session. This preserves each report.

3-17

3 Simulink Basics

Current object
Include only the currently selected object in the report.

Current and above

Include the current object and all levels of the model above the current object
in the report.

Current and below
Include the current object and all levels below the current object in the report.

Entire model
Include the entire model in the report.

Look under mask dialog
Include the contents of masked subsystems in the report.

Expand unique library links

Include the contents of library blocks that are subsystems. The report includes
a library subsystem only once even if it occurs in more than one place in the
model.

3-18

Summary of Mouse and Keyboard Actions

Summary of Mouse and Keyboard Actions

These tables summarize the use of the mouse and keyboard to manipulate
blocks, lines, and signal labels. LMB means press the left mouse button; CMB,
the center mouse button; and RMB, the right mouse button.

Manipulating Blocks
The following table lists mouse and keyboard actions that apply to blocks.

Task Microsoft Windows UNIX

Select one block LMB LMB

Select multiple Shift + LMB Shift + LMB; or CMB
blocks alone

Copy block from Drag block Drag block

another window

Move block Drag block Drag block

Duplicate block Ctrl + LMB and drag; Ctrl + LMB and drag;

Connect blocks

Disconnect block

Open selected
subsystem

Go to parent of
selected subsystem

or RMB and drag
LMB
Shift + drag block

Enter

Esc

or RMB and drag
LMB

Shift + drag block; or
CMB and drag

Return

Esc

3-19

3 Simulink Basics

Manipulating Lines
The following table lists mouse and keyboard actions that apply to lines.

3-20

Task Microsoft Windows UNIX
Select one line LMB LMB
Select multiple lines Shift + LMB Shift + LMB; or CMB

Draw branch line

Route lines around
blocks

Move line segment
Move vertex

Create line
segments

Ctrl + drag line; or
RMB and drag line

Shift + draw line
segments

Drag segment
Drag vertex

Shift + drag line

alone

Ctrl + drag line; or
RMB + drag line

Shift + draw line
segments; or CMB and
draw segments

Drag segment
Drag vertex

Shift + drag line; or
CMB + drag line

Manipulating Signal Labels
The next table lists mouse and keyboard actions that apply to signal labels.

Action

Microsoft Windows

UNIX

Create signal label

Copy signal label
Move signal label
Edit signal label

Delete signal label

Double-click line, then
enter label

Ctrl + drag label
Drag label
Click in label, then edit

Shift + click label, then
press Delete

Double-click line, then
enter label

Ctrl + drag label
Drag label
Click in label, then edit

Shift + click label, then
press Delete

Summary of Mouse and Keyboard Actions

Manipulating Annotations

The next table lists mouse and keyboard actions that apply to annotations.

Action

Microsoft Windows

UNIX

Create annotation

Copy annotation
Move annotation
Edit annotation

Delete annotation

Double-click in
diagram, then enter
text

Ctrl + drag label
Drag label
Click in text, then edit

Shift + select
annotation, then press
Delete

Double-click in
diagram, then enter
text

Ctrl + drag label
Drag label
Click in text, then edit

Shift + select
annotation, then press
Delete

3-21

3 Simulink Basics

Ending a Simulink Session

Terminate a Simulink session by closing all Simulink windows.

Terminate a MATLAB session by choosing one of these commands from the
File menu:

® On a Microsoft Windows system: Exit MATLAB
¢ On a UNIX system: Quit MATLAB

3-22

Creating a Model

The following sections explain how to create Simulink models of dynamic systems.

Creating a New Model (p. 4-2)
Selecting Objects (p. 4-3)

Specifying Block Diagram Colors
(p. 4-5)

Connecting Blocks (p. 4-9)
Annotating Diagrams (p. 4-16)
Creating Subsystems (p. 4-19)

Creating Conditionally Executed
Subsystems (p. 4-25)

Model Discretizer (p. 4-48)
Using Callback Routines (p. 4-70)
Managing Model Versions (p. 4-76)

How to create a new model.
How to select objects in a model.

How to specify the colors of blocks, lines, and annotations
and the background of the diagram.

How to draw connections between blocks.
How to add annotations to a block diagram.
How to create subsystems.

How to create subsystems that are executed only when
specified events occur or conditions are satisfied.

How to create a discrete model from a continuous model.
How to use callback routines to customize a model.

How to use version control systems to manage and track
development of Simulink models.

4 Creating a Model

Creating a New Model

To create a new model, click the New button on the Library Browser’s toolbar
(Windows only) or choose New from the library window’s File menu and select
Model. You can move the window as you do other windows. Chapter 1, “Quick
Start” describes how to build a simple model. “Modeling Equations” on page 8-2
describes how to build systems that model equations.

Selecting Obijects

Selecting Objects

Many model building actions, such as copying a block or deleting a line, require
that you first select one or more blocks and lines (objects).

Selecting One Object

To select an object, click it. Small black square “handles” appear at the corners
of a selected block and near the end points of a selected line. For example, the
figure below shows a selected Sine Wave block and a selected line.

R ——

Sine Wawve

When you select an object by clicking it, any other selected objects are
deselected.

Selecting More Than One Object

You can select more than one object either by selecting objects one at a time, by
selecting objects located near each other using a bounding box, or by selecting
the entire model.

Selecting Multiple Objects One at a Time

To select more than one object by selecting each object individually, hold down
the Shift key and click each object to be selected. To deselect a selected object,
click the object again while holding down the Shift key.

Selecting Multiple Objects Using a Bounding Box

An easy way to select more than one object in the same area of the window is
to draw a bounding box around the objects:

1 Define the starting corner of a bounding box by positioning the pointer at
one corner of the box, then pressing and holding down the mouse button.
Notice the shape of the cursor.

.|

]
7]

Sine Wawve
Scope

4 Creating a Model

2 Drag the pointer to the opposite corner of the box. A dotted rectangle
encloses the selected blocks and lines.

Sine Wawve
Scope

3 Release the mouse button. All blocks and lines at least partially enclosed by
the bounding box are selected.

Ft—
]

Sine Wawve =
Scope

Selecting the Entire Model

To select all objects in the active window, choose Select All from the Edit
menu. You cannot create a subsystem by selecting blocks and lines in this way.
For more information, see “Creating Subsystems” on page 4-19.

4-4

Specifying Block Diagram Colors

Specifying Block Diagram Colors

Simulink allows you to specify the foreground and background colors of any
block or annotation in a diagram, as well as the diagram’s background color. To
set the background color of a block diagram, select Screen color from the
Simulink Format menu. To set the background color of a block or annotation
or group of such items, first select the item or items. Then select Background
color from the Simulink Format menu. To set the foreground color of a block
or annotation, first select the item. Then select Foreground color from the
Simulink Format menu.

In all cases, Simulink displays a menu of color choices. Choose the desired color
from the menu. If you select a color other than Custom, Simulink changes the
background or foreground color of the diagram or diagram element to the
selected color.

Choosing a Custom Color

If you choose Custom, Simulink displays the Simulink Choose Custom Color
dialog box.

Basic colors:

J 55 ¢

il il il |

I

I

L
[l .

LCustom colors:

N o o
N o

Define Custom Colors »» |

Cancel |

The dialog box displays a palette of basic colors and a palette of custom colors
that you previously defined. If you have not previously created any custom
colors, the custom color palette is all white. To choose a color from either
palette, click the color, and then click the OK button.

4 Creating a Model

4-6

Defining a Custom Color

To define a custom color, click the Define Custom Colors button on the
Choose Custom Color dialog box. The dialog box expands to display a custom
color definer.

Choose Custom Color EHE

Basic colors: H turati
| - Hue-saturation cursor

L Uil |
IR
e 0 |
WO Wl el
LCustom colors: L .
||: F F F F F F F Hug:lﬁ Bed:ﬁ uminescence cursor
ﬁat:lm Green: |205
Wefife Eustonm Calars >3 | ColarlS glid Lurr: IE Blue: W
Cancel | Add ta Custom Colors |

The color definer allows you to specify a custom color by

¢ Entering the red, green, and blue components of the color as values between
0 (darkest) and 255 (brightest)

¢ Entering hue, saturation, and luminescence components of the color as
values in the range 0 to 255

¢ Moving the hue-saturation cursor to select the hue and saturation of the
desired color and the luminescence cursor to select the luminescence of the
desired color

The color that you have defined in any of these ways appears in the

Color | Solid box. To redefine a color in the Custom colors palette, select the
color and define a new color, using the color definer. Then click the Add to
Custom Colors button on the color definer.

Specifying Colors Programmatically

You can use the set_param command at the MATLAB command line or in an
M-file program to set parameters that determine the background color of a
diagram and the background color and foreground color of diagram elements.

Specifying Block Diagram Colors

The following table summarizes the parameters that control block diagram
colors.

Parameter Determines

ScreenColor Background color of block diagram
BackgroundColor Background color of blocks and annotations
ForegroundColor Foreground color of blocks and annotations

You can set these parameters to any of the following values:

® 'plack', 'white', 'red', 'green', 'blue’, 'cyan', 'magenta’', 'yellow',
‘gray', 'lightBlue’, 'orange’', 'darkGreen’

®'[r,g,b]"
where r, g, and b are the red, green, and blue components of the color
normalized to the range 0.0 to 1.0.

For example, the following command sets the background color of the currently
selected system or subsystem to a light green color:

set_param(gcs, 'ScreenColor', '[0.3, 0.9, 0.5]"')

Enabling Sample Time Colors

Simulink can color code the blocks and lines in your model to indicate the
sample rates at which the blocks operate.

Color Use

Black Continuous blocks

Magenta Constant blocks

Yellow Hybrid (subsystems grouping blocks, or Mux or Demux
blocks grouping signals with varying sample times)

Red Fastest discrete sample time

Green Second fastest discrete sample time

4-7

4 Creating a Model

4-8

Color Use

Blue Third fastest discrete sample time
Light Blue Fourth fastest discrete sample time

Dark Green Fifth fastest discrete sample time

Orange Sixth fastest discrete sample time
Cyan Blocks in triggered subsystems
Gray Fixed in minor step

To enable the sample time colors feature, select Sample Time Colors from the
Format menu.

Simulink does not automatically recolor the model with each change you make
to it, so you must select Update Diagram from the Edit menu to explicitly
update the model coloration. To return to your original coloring, disable sample
time coloration by again choosing Sample Time Colors.

When you use sample time colors, the color assigned to each block depends on
its sample time with respect to other sample times in the model.

It is important to note that Mux and Demux blocks are simply grouping
operators; signals passing through them retain their timing information. For
this reason, the lines emanating from a Demux block can have different colors
if they are driven by sources having different sample times. In this case, the
Mux and Demusx blocks are color coded as hybrids (yellow) to indicate that they
handle signals with multiple rates.

Similarly, Subsystem blocks that contain blocks with differing sample times
are also colored as hybrids, because there is no single rate associated with
them. If all the blocks within a subsystem run at a single rate, the Subsystem
block is colored according to that rate.

Connecting Blocks

Connecting Blocks

Simulink block diagrams use lines to represent pathways for signals among
blocks in a model (see “Annotating Diagrams” on page 4-16 for information on
signals). Simulink can connect blocks for you or you can connect the blocks
yourself by drawing lines from their output ports to their input ports.

Automatically Connecting Blocks

You can command Simulink to connect blocks automatically. This eliminates
the need for you to draw the connecting lines yourself. When connecting blocks,
Simulink routes lines around intervening blocks to avoid cluttering the
diagram.

Connecting Two Blocks
To autoconnect two blocks:

1 Select the source block.

2 Hold down Ctrl and left-click the destination block.

Simulink connects the source block to the destination block, routing the line
around intervening blocks if necessary.

4-9

4 Creating a Model

When connecting two blocks, Simulink draws as many connections as possible
between the two blocks as illustrated in the following example.

thtl L] L]
[-
ot s " "
SubBystem

FubSysten

Before autoconnect After autoconnect

Connecting Groups of Blocks

Simulink can connect a group of source blocks to a destination block or a source
block to a group of destination blocks.

To connect a group of source blocks to a destination block:

1 Select the source blocks.

Sine Wave
Sine Wavel

Sine Wave §%
Sine Wavel [=]

To connect a source block to a group of destination blocks:

1 Select the destination blocks.

Displayl

4-10

Connecting Blocks

2 Hold down Ctrl and left-click the source block.

Manually Connecting Blocks

Simulink allows you to draw lines manually between blocks or between lines
and blocks. You might want to do this if you need to control the path of the line
or to create a branch line.

Drawing a Line Between Blocks
To connect the output port of one block to the input port of another block:

1 Position the cursor over the first block’s output port. It is not necessary to
position the cursor precisely on the port. The cursor shape changes to
crosshairs.

- >

Constant &ain

2 Press and hold down the mouse button.

3 Drag the pointer to the second block’s input port. You can position the cursor
on or near the port or in the block. If you position the cursor in the block, the
line is connected to the closest input port. The cursor shape changes to
double crosshairs.

[1—H>

Constant & ain

4 Release the mouse button. Simulink replaces the port symbols by a
connecting line with an arrow showing the direction of the signal flow. You
can create lines either from output to input, or from input to output. The
arrow is drawn at the appropriate input port, and the signal is the same.

4-11

4 Creating a Model

>

Constant G ain

Simulink draws connecting lines using horizontal and vertical line segments.
To draw a diagonal line, hold down the Shift key while drawing the line.

Drawing a Branch Line

A branch line is a line that starts from an existing line and carries its signal to
the input port of a block. Both the existing line and the branch line carry the

same signal. Using branch lines enables you to cause one signal to be carried

to more than one block.

In this example, the output of the Product block goes to both the Scope block
and the To Workspace block.

=
Product
fodu Scope
To MWiofkspace

To add a branch line, follow these steps:
1 Position the pointer on the line where you want the branch line to start.
2 While holding down the Ctrl key, press and hold down the left mouse button.

3 Drag the pointer to the input port of the target block, then release the mouse
button and the Ctrl key.

You can also use the right mouse button instead of holding down the left mouse
button and the Ctrl key.

Drawing a Line Segment

You might want to draw a line with segments exactly where you want them
instead of where Simulink draws them. Or you might want to draw a line
before you copy the block to which the line is connected. You can do either by
drawing line segments.

4-12

Connecting Blocks

To draw a line segment, you draw a line that ends in an unoccupied area of the
diagram. An arrow appears on the unconnected end of the line. To add another
line segment, position the cursor over the end of the segment and draw another
segment. Simulink draws the segments as horizontal and vertical lines. To

draw diagonal line segments, hold down the Shift key while you draw the lines.

Moving a Line Segment
To move a line segment, follow these steps:

1 Position the pointer on the segment you want to move.

Product

2 Press and hold down the left mouse button.

=—=;D
B

‘::' Product

4

Sine Wiave

-
|

Constant

3 Drag the pointer to the desired location.

P =
LA . >
Sine Wave Froduct

hind

_ =

Constant

4 Release the mouse button.

4-13

4 Creating a Model

Sine Wave Froduct

i,

Constant

To move the segment connected to an input port, position the pointer over the
port and drag the end of the segment to the new location. You cannot move the
segment connected to an output port.

Moving a Line Vertex
To move a vertex of a line, follow these steps:

1 Position the pointer on the vertex, then press and hold down the mouse
button. The cursor changes to a circle that encloses the vertex.

o

Scope

2 Drag the pointer to the desired location.

=
*\9’

Constant

Scope

3 Release the mouse button.

E* —
Constant _ Scope

Inserting Blocks in a Line

You can insert a block in a line by dropping the block on the line. Simulink
inserts the block for you at the point where you drop the block. The block that
you insert can have only one input and one output.

4-14

Connecting Blocks

To insert a block in a line:

1 Position the pointer over the block and press the left mouse button.

<]
Y

1 T
-
Le=T
I, |
¥ ny "
Sine Wave Soope

3 Release the mouse button to drop the block on the line. Simulink inserts the
block where you dropped it.

) .l —

Disconnecting Blocks

To disconnect a block from its connecting lines, hold down the Shift key, then
drag the block to a new location.

4-15

4 Creating a Model

4-16

Annotating Diagrams

Annotations provide textual information about a model. You can add an
annotation to any unoccupied area of your block diagram.

This sample model .
shows a constant signal < Annotations
heing input to a Scope.

(-

[] >
Constant / -
This block generates This block displays its input

a_constantsignal graphically in 3 window that
with a walue of 1. looks like an oscilloscope.

To create a model annotation, double-click an unoccupied area of the block
diagram. A small rectangle appears and the cursor changes to an insertion
point. Start typing the annotation contents. Each line is centered within the
rectangle that surrounds the annotation.

To move an annotation, drag it to a new location.

To edit an annotation, select it:

¢ To replace the annotation on a Microsoft Windows or UNIX system, click the
annotation, then double-click or drag the cursor to select it. Then, enter the
new annotation.

¢ To insert characters, click between two characters to position the insertion
point, then insert text.

® To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete an annotation, hold down the Shift key while you select the
annotation, then press the Delete or Backspace key.

To change the font of all or part of an annotation, select the text in the
annotation you want to change, then choose Font from the Format menu.
Select a font and size from the dialog box.

To change the text alignment (e.g., left, center, or right) of the annotation,
select the annotation and choose Text Alignment from the model window’s

Annotating Diagrams

Format or context menu. Then choose one of the alignment options (e.g.,
Center) from the Text Alignment submenu.

Using TeX Formatting Commands in Annotations

You can use TeX formatting commands to include mathematical and other
symbols and Greek letters in block diagram annotations.

Linearization of Double Pendul
81" = -19. 5200781 + 302400782 ol »

1 'S
92" = 392400761 -132 6603762 B oot
eta

W=

where

thetal dot2 thetat dot

81 = position of top joint

82 = position of bottom joint
¥ - -18.6200

Gain

-137.3400

F

Gaini

thetaZ

A
> {2)
]

thetaZ dot2 thetaZ dot

To use TeX commands in an annotation:
1 Select the annotation.

2 Select Enable TeX Commands from the Edit menu on the model window.

4-17

4 Creating a Model

3 Enter or edit the text of the annotation, using TeX commands where needed
to achieve the desired appearance.

Linearization of Double Pendulum

‘thetat" = -19.6200%thetat + 39 2400™thetaZ
thetaz" = 30 2400™thetat - 132 6603™theta?

where

tthetat = position of top joint
ttheta? = position of bottom joint

See “Mathematical Symbols, Greek Letters, and TeX Characters” in the
MATLAB documentation for information on the TeX formatting commands
supported by Simulink.

4 Deselect the annotation by clicking outside it or typing Esec.

Simulink displays the formatted text.

Linearization of Double Pendulum

81" = -19.6200701 + 30.2400762
B2" = 30.2400%81 -132 6603782

where

81 = position of top joint
82 = position of bottom joint

4-18

Creating Subsystems

Creating Subsystems

As your model increases in size and complexity, you can simplify it by grouping
blocks into subsystems. Using subsystems has these advantages:

¢ It helps reduce the number of blocks displayed in your model window.

¢ It allows you to keep functionally related blocks together.

¢ It enables you to establish a hierarchical block diagram, where a Subsystem
block is on one layer and the blocks that make up the subsystem are on
another.

You can create a subsystem in two ways:

® Add a Subsystem block to your model, then open that block and add the
blocks it contains to the subsystem window.

¢ Add the blocks that make up the subsystem, then group those blocks into a
subsystem.

Ci'ealzing a Subsystem by Adding the Subsystem
Bloc

To create a subsystem before adding the blocks it contains, add a Subsystem
block to the model, then add the blocks that make up the subsystem:

1 Copy the Subsystem block from the Signals & Systems library into your
model.

2 Open the Subsystem block by double-clicking it.

Simulink opens the subsystem in the current or a new model window,
depending on the model window reuse mode that you selected (see “Window
Reuse” on page 4-22).

4-19

4 Creating a Model

4-20

3 In the empty Subsystem window, create the subsystem. Use Inport blocks to
represent input from outside the subsystem and Outport blocks to represent
external output.

For example, the subsystem shown includes a Sum block and Inport and
Outport blocks to represent input to and output from the subsystem.

- .
) g D1ut

I Sum

Creating a Subsystem by Grouping Existing Blocks

If your model already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Enclose the blocks and connecting lines that you want to include in the
subsystem within a bounding box. You cannot specify the blocks to be
grouped by selecting them individually or by using the Select All command.
For more information, see “Selecting Multiple Objects Using a Bounding
Box” on page 4-3.

For example, this figure shows a model that represents a counter. The Sum
and Unit Delay blocks are selected within a bounding box.

: - simau
Constant | + z v

Sum Unit Drelay To Wokspace

When you release the mouse button, the two blocks and all the connecting
lines are selected.

Creating Subsystems

2 Choose Create Subsystem from the Edit menu. Simulink replaces the
selected blocks with a Subsystem block.

This figure shows the model after you choose the Create Subsystem
command (and resize the Subsystem block so the port labels are readable).

Constant To Warkspace

Subsystem

If you open the Subsystem block, Simulink displays the underlying system, as
shown below. Notice that Simulink adds Inport and Outport blocks to
represent input from and output to blocks outside the subsystem.

1 + 1

Sum Unit Delay outt

As with all blocks, you can change the name of the Subsystem block. You can
also customize the icon and dialog box for the block using the masking feature,
described in Chapter 12, “Creating Masked Subsystems.”

Undoing Subsystem Creation

To undo creation of a subsystem by grouping blocks, select Undo from the Edit
menu. You can undo creation of a subsystem that you have subsequently
edited. However, the Undo command does not undo any nongraphical changes
that you made to the blocks, such as changing the value of a block parameter
or the name of a block. Simulink alerts you to this limitation by displaying a
warning dialog box before undoing creation of a modified subsystem.

4-21

4 Creating a Model

Model Navigation Commands

Subsystems allow you to create a hierarchical model comprising many layers.
You can navigate this hierarchy, using the Simulink Model Browser (see “The
Model Browser” on page 9-8) and/or the following model navigation commands:

* Open

The Open command opens the currently selected subsystem. To execute the
command, choose Open from the Simulink Edit menu, press Enter, or
double-click the subsystem.

¢ Open block in new window

Opens the currently selected subsystem regardless of Simulink’s window
reuse settings (see “Window Reuse” on page 4-22).

® Go to Parent

The Go to Parent command displays the parent of the subsystem displayed
in the current window. To execute the command, press Esc or select Go to
Parent from the Simulink View menu.

Window Reuse

You can specify whether Simulink’s model navigation commands use the
current window or a new window to display a subsystem or its parent. Reusing
windows avoids cluttering your screen with windows. Creating a window for
each subsystem allows you to view subsystems side by side with their parents
or siblings. To specify your preference regarding window reuse, select
Preferences from the Simulink File menu and then select one of the following
Window reuse type options listed in the Simulink Preferences dialog box.

Reuse

Type Open Action Go to Parent (Esc) Action

none Subsystem appears in a new Parent window moves to the
window. front.

reuse Subsystem replaces the Parent window replaces

parent in the current window. subsystem in current window

4-22

Creating Subsystems

Reuse

Type Open Action Go to Parent (Esc) Action

replace Subsystem appears in a new Parent window appears.
window. Parent window Subsystem window
disappears. disappears.

mixed Subsystem appearsinitsown Parent window rises to front.
window. Subsystem window

disappears.

Labeling Subsystem Ports

Simulink labels ports on a Subsystem block. The labels are the names of Inport
and Outport blocks that connect the subsystem to blocks outside the subsystem
through these ports.

You can hide (or show) the port labels by

¢ Selecting the Subsystem block, then choosing Hide Port Labels (or Show
Port Labels) from the Format menu

¢ Selecting an Inport or Outport block in the subsystem and choosing Hide
Name (or Show Name) from the Format menu

¢ Selecting the Show port labels option in the Subsystem block’s parameter
dialog

This figure shows two models. The subsystem on the left contains two Inport
blocks and one Outport block. The Subsystem block on the right shows the
labeled ports.

In1 1 Out
z +
(;j—b Sain outd In2
n
Sum Subsystemn
Subsystem with Inport and Outport blocks Subsystemn with labeled ports

Controlling Access to Subsystems

Simulink allows you to control user access to subsystems that reside in
libraries. In particular, you can prevent a user from viewing or modifying the

4-23

4 Creating a Model

contents of a library subsystem while still allowing the user to employ the
subsystem in a model.

To control access to a library subsystem, open the subsystem’s parameter
dialog box and set its Access parameter to either ReadOnly or NoReadOrWrite.
The first option allows a user to view the contents of the library subsystem and
make local copies but prevents the user from modifying the original library
copy. The second option prevents the user from viewing the contents of,
creating local copies, or modifying the permissions of the library subsystem.
See the Subsystem block for more information on subsystem access options.
Note that both options allow a user to use the library system in models by
creating links (see “Working with Block Libraries” on page 5-25).

4-24

Creating Conditionally Executed Subsystems

Creating Conditionally Executed Subsystems

A conditionally executed subsystem is a subsystem whose execution depends on
the value of an input signal. The signal that controls whether a subsystem
executes is called the control signal. The signal enters the Subsystem block at
the control input.

Conditionally executed subsystems can be very useful when you are building
complex models that contain components whose execution depends on other
components.

Simulink supports three types of conditionally executed subsystems:

® An enabled subsystem executes while the control signal is positive. It starts
execution at the time step where the control signal crosses zero (from the
negative to the positive direction) and continues execution while the control
signal remains positive. Enabled subsystems are described in more detail in
“Enabled Subsystems” on page 4-25.

® A triggered subsystem executes once each time a trigger event occurs. A
trigger event can occur on the rising or falling edge of a trigger signal, which
can be continuous or discrete. Triggered subsystems are described in more
detail in “Triggered Subsystems” on page 4-30.

® A triggered and enabled subsystem executes once on the time step when a
trigger event occurs if the enable control signal has a positive value at that
step. See “Triggered and Enabled Subsystems” on page 4-33 for more
information.

® A control flow statement executes C-like control flow logic under the
supervision of a control flow block. In all cases, the blocks executed reside in
a controlled subsystem. In the case of if-else and switch control flow, the
control block resides outside the controlled subsystem and issues a control
signal to an Action Port block residing inside the controlled subsystem. In
the case of while, do-while, and for control flow, a block with iterative
control resides inside the subsystem, which it controls without an apparent

control signal. See “Control Flow Blocks” on page 4-37 for more information.

Enabled Subsystems

Enabled subsystems are subsystems that execute at each simulation step
where the control signal has a positive value.

4-25

4 Creating a Model

An enabled subsystem has a single control input, which can be scalar or vector
valued:

e If the input is a scalar, the subsystem executes if the input value is greater
than zero.

¢ If the input is a vector, the subsystem executes if any of the vector elements
is greater than zero.

For example, if the control input signal is a sine wave, the subsystem is
alternately enabled and disabled, as shown in this figure. An up arrow signifies
enable, a down arrow disable.

Simulink uses the zero-crossing slope method to determine whether an enable
is to occur. If the signal crosses zero and the slope is positive, the subsystem is
enabled. If the slope is negative at the zero crossing, the subsystem is disabled.

Creating an Enabled Subsystem

You create an enabled subsystem by copying an Enable block from the Signals
& Systems library into a subsystem. Simulink adds an enable symbol and an
enable control input port to the Subsystem block icon.

Subsystem
Setting Output Values While the Subsystem Is Disabled. Although an enabled

subsystem does not execute while it is disabled, the output signal is still
available to other blocks. While an enabled subsystem is disabled, you can

4-26

Creating Conditionally Executed Subsystems

choose to hold the subsystem outputs at their previous values or reset them to
their initial conditions.

Open each Outport block’s dialog box and select one of the choices for the
Output when disabled parameter, as shown in the dialog box following:
¢ Choose held to cause the output to maintain its most recent value.

® Choose reset to cause the output to revert to its initial condition. Set the
Initial output to the initial value of the output.

— Outport

Provide an output port for a subsystem or model. The 'Dutput when
dizabled' and 'Initial output' parameters only apply to conditionally executed
subgpstems. When a conditionally executed subsystem iz disabled, the
output iz either held at itz last value or zet ta the 'Initial output’. The Initial
output' parameter can be specified as the empty matrix, []. in which caze
the initial output is equal to the output of the block feeding the outport.

=
F

Fart nurnber:
|1

Select an option fo set the Outport output while the
Output when dizabled ‘7subsystem is disub|ed.

Initial output:

Y| The initial condition and the value when reset.
QK I Cancel | Help | Apply |

Setting States When the Subsystem Becomes Reenabled. When an enabled subsystem
executes, you can choose whether to hold the subsystem states at their previous
values or reset them to their initial conditions.

To do this, open the Enable block dialog box and select one of the choices for the
States when enabling parameter, as shown in the dialog box following:

® Choose held to cause the states to maintain their most recent values.

® Choose reset to cause the states to revert to their initial conditions.

Param
Enable Part

(Place thiz block in a subsystem to create an enabled subspstem. ‘

Enable

=
F

Statez when enabling: Ih Id j
™ Show output port

QK I Cancel | Help | Lppli |

Select an option to set the states when the subsystem is
reenabled.

4-27

4 Creating a Model

Outputting the Enable Control Signal. An option on the Enable block dialog box lets
you output the enable control signal. To output the control signal, select the
Show output port check box.

Block Parameters: Enable

Enable Part
(Place thiz block in a subsystem to create an enabled subspstem. ‘
States when enabling: Iheld j
5 I
QK I Cancel | Help | Apply |

This feature allows you to pass the control signal down into the enabled
subsystem, which can be useful where logic within the enabled subsystem is
dependent on the value or values contained in the control signal.

Blocks an Enabled Subsystem Can Contain

An enabled subsystem can contain any block, whether continuous or discrete.
Discrete blocks in an enabled subsystem execute only when the subsystem
executes, and only when their sample times are synchronized with the
simulation sample time. Enabled subsystems and the model use a common
clock.

Note Enabled subsystems can contain Goto blocks. However, only state ports
can connect to Goto blocks in an enabled subsystem. See the Simulink demo
model, clutch, for an example of how to use Goto blocks in an enabled
subsystem.

For example, this system contains four discrete blocks and a control signal. The
discrete blocks are

¢ Block A, which has a sample time of 0.25 second

¢ Block B, which has a sample time of 0.5 second

¢ Block C, within the enabled subsystem, which has a sample time of 0.125
second

¢ Block D, also within the enabled subsystem, which has a sample time of 0.25
second

4-28

Creating Conditionally Executed Subsystems

The enable control signal is generated by a Pulse Generator block, labeled

Signal E, which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875

second.

| =

-l
|

M

IE—D -

ﬂ_ﬂ_ﬂ Signal E

o

Sine Wiawe Block & Dizplay
Ts=025
1
- iz owz >]
z
Random Blogk B Seope
Humber Ts=05 Subsystem’ -

Enable
1
(T —m -~ i
Ind z Dutt
blodk C
Ts=0.125
1
(2w - w2
Inz z Outz
black D
Ts=0.25

| | | I
1

- —— + — l :
Signal E | 0 | S I
Block D __|_L_|__A_|_
Block C | _|_ L _A_ A _‘_
Block B _:_L_:_i_:_
Block A —— — = -

l l | | l

0 125 .25 375 .50 .625

Time (sec)

Blocks A and B execute independently of the enable control signal because they
are not part of the enabled subsystem. When the enable control signal becomes
positive, blocks C and D execute at their assigned sample rates until the enable

A - Start of execution
for a block

4-29

4 Creating a Model

control signal becomes zero again. Note that block C does not execute at 0.875
second when the enable control signal changes to zero.

Triggered Subsystems

Triggered subsystems are subsystems that execute each time a trigger event
occurs.

A triggered subsystem has a single control input, called the trigger input, that
determines whether the subsystem executes. You can choose from three types
of trigger events to force a triggered subsystem to begin execution:

® rising triggers execution of the subsystem when the control signal rises from
a negative or zero value to a positive value (or zero if the initial value is
negative).

¢ falling triggers execution of the subsystem when the control signal falls from
a positive or a zero value to a negative value (or zero if the initial value is
positive).

¢ either triggers execution of the subsystem when the signal is either rising or
falling.

Note In the case of discrete systems, a signal’s rising or falling from zero is
considered a trigger event only if the signal has remained at zero for more
than one time step preceding the rise or fall. This eliminates false triggers
caused by control signal sampling.

For example, in the following timing diagram for a discrete system, a rising
trigger (R) does not occur at time step 3 because the signal has remained at zero
for only one time step when the rise occurs.

4-30

Creating Conditionally Executed Subsystems

o
[-
N

I)

Signal Level

A simple example of a triggered subsystem is illustrated.

ﬂ_ﬂ_ﬂ_ Trigger
Signal

Yy -
£
B—}In Out = simout
Sine Wave . To Wokspace
Subsysterm © T 7 - - -

Trigger

CO— - D

In = Out

Unit Crelay

In this example, the subsystem is triggered on the rising edge of the square

wave trigger control signal.

Creating a Triggered Subsystem

You create a triggered subsystem by copying the Trigger block from the Signals
& Systems library into a subsystem. Simulink adds a trigger symbol and a

trigger control input port to the Subsystem block icon.

+

Subsystem

To select the trigger type, open the Trigger block dialog box and select one of

the choices for the Trigger type parameter, as shown in the dialog box

following:

4-31

4 Creating a Model

Block Parameters: Trigger
" Trigger Port ‘

Flace thiz block in a subsystem to create a triggered subsystem.

=
F

Trigger type: |rising j
I Show outel (i Select the trigger type from these choices.

either

A

[utput data by

QK I Cancel | Help | Lppli |

Simulink uses different symbols on the Trigger and Subsystem blocks to
indicate rising and falling triggers (or either). This figure shows the trigger
symbols on Subsystem blocks.

EY T £t
Subsyste m with Subsyste m with Subsyste m with
Rising trigger Falling trigger Rising ar Falling
trigger

Outputs and States Between Trigger Events. Unlike enabled subsystems, triggered
subsystems always hold their outputs at the last value between triggering
events. Also, triggered subsystems cannot reset their states when triggered;
states of any discrete blocks are held between trigger events.

Outputting the Trigger Control Signal. An option on the Trigger block dialog box lets
you output the trigger control signal. To output the control signal, select the
Show output port check box.

Block Parameters: Trigger
" Trigger Port ‘

Flace thiz block in a subsystem to create a triggered subsystem.

=
F

Trigger type: I rizing j

ol St < Select this check box to show the output port.

Output deta type: - [EXTENNAMAR ~ |
QK I Cancel | Help | Apply |

The Output data type field allows you to specify the data type of the output
signal as auto, int8, or double. The auto option causes the data type of the

4-32

Creating Conditionally Executed Subsystems

output signal to be set to the data type (either int8 or double) of the port to
which the signal is connected.

Function-Call Subsystems

You can create a triggered subsystem whose execution is determined by logic
internal to an S-function instead of by the value of a signal. These subsystems
are called function-call subsystems. For more information about function-call
subsystems, see “Function-Call Subsystems” in the “Implementing Block
Features” section of Writing S-Functions.

Blocks That a Triggered Subsystem Can Contain

Triggered systems execute only at specific times during a simulation. As a
result, the only blocks that are suitable for use in a triggered subsystem are

¢ Blocks with inherited sample time, such as the Logical Operator block or the
Gain block

¢ Discrete blocks having their sample times set to -1, which indicates that the
sample time is inherited from the driving block

Triggered and Enabled Subsystems

A third kind of conditionally executed subsystem combines both types of
conditional execution. The behavior of this type of subsystem, called a ¢triggered
and enabled subsystem, is a combination of the enabled subsystem and the
triggered subsystem, as shown by this flow diagram.

4-33

4 Creating a Model

4-34

Trigger event

Is
the enable
input signal
>07?

Don’t execute the subsystem

Execute the subsystem

A triggered and enabled subsystem contains both an enable input port and a
trigger input port. When the trigger event occurs, Simulink checks the enable
input port to evaluate the enable control signal. Ifits value is greater than zero,
Simulink executes the subsystem. If both inputs are vectors, the subsystem
executes if at least one element of each vector is nonzero.

The subsystem executes once at the time step at which the trigger event occurs.

Creating a Triggered and Enabled Subsystem

You create a triggered and enabled subsystem by dragging both the Enable and
Trigger blocks from the Signals & Systems library into an existing subsystem.
Simulink adds enable and trigger symbols and enable and trigger and enable
control inputs to the Subsystem block icon.

n +

Subsystem

You can set output values when a triggered and enabled subsystem is disabled
as you would for an enabled subsystem. For more information, see “Setting
Output Values While the Subsystem Is Disabled” on page 4-26. Also, you can
specify what the values of the states are when the subsystem is reenabled. See
“Setting States When the Subsystem Becomes Reenabled” on page 4-27.

Creating Conditionally Executed Subsystems

Set the parameters for the Enable and Trigger blocks separately. The
procedures are the same as those described for the individual blocks.

A Sample Triggered and Enabled Subsystem

A simple example of a triggered and enabled subsystem is illustrated in the
model below.

Enable

Trigger
Signal a3

Signal

Sine Wave Display

° Subsystem .

Enable Trigger

1
In = Out
Unit Delay

Creating Alternately Executing Subsystems

You can use conditionally executed subsystems in combination with Merge
blocks to create sets of subsystems that execute alternately, depending on the
current state of the model. For example, the following figure shows a model
that uses two enabled blocks and a Merge block to model an inverter, that is, a
device that converts AC current to pulsating DC current.

4-35

4 Creating a Model

4-36

.
Sine Wave ¢ S
n Erzble
i Outl—
o -_.._____ — In Gain Ot
M ;FJZI-_
% Meme —
M Soops
Hain ™| R
R —
| P Encble
-“—-____ In Gain o

In this example, the block labeled “pos” is enabled when the AC waveform is
positive; it passes the waveform unchanged to its output. The block labeled
“neg” is enabled when the waveform is negative; it inverts the waveform. The
Merge block passes the output of the currently enabled block to the Mux block,
which passes the output, along with the original waveform, to the Scope block.

The Scope creates the following display.

<) Scope =] B3
l@mopp ABB B L &

Creating Conditionally Executed Subsystems

Control Flow Blocks

The control flow blocks are used to implement the logic of the following C-like

control flow statements in Simulink:

® for
e if-else
® switch

e while (includes while and do-while control flow statements)

Although all the preceding control flow statements are implementable in
Stateflow, these blocks are intended to provide Simulink users with tools that

meet their needs for simpler logical requirements.

Creating Conditional Control Flow Statements

You create C-like conditional control flow statements using ordinary

subsystems and the following blocks from the Subsystems library.

C Statement

Blocks Used

if-else

switch

If, Action Port

Switch Case, Action Port

If-Else Control Flow Statements. The following diagram depicts a generalized

if-else control flow statement implementation in Simulink.

it =

dzaitjuz > 0

it {}

lzait { 1

ﬁ Action subsystern 2

dze{}

Action subsystenn 3

ﬁ Action subsystemn 1

-
-
s

-
-

it

It4ction

blocks for
if condition

4-37

4 Creating a Model

Construct a Simulink if-else control flow statement as follows:

¢ Provide data inputs to the If block for constructing if-else conditions.

Inputs to the If block are set in the If block properties dialog. Internally, they
are designated as u1, u2,..., un and are used to construct output
conditions.

¢ Set output port if-else conditions for the If block.

Output ports for the If block are also set in its properties dialog. You use the
input values ui, u2, ..., untoexpress conditions for the if, elseif, and else
condition fields in the dialog. Of these, only the if field is required. You can
enter multiple elseif conditions and select a check box to enable the else
condition.

¢ Connect each condition output port to an Action subsystem.

Each if, elseif, and else condition output port on the If block is connected to
a subsystem to be executed if the port’s case is true. You create these
subsystems by placing an Action Port block in a subsystem. This creates an
atomic Action subsystem with a port named Action, which you then connect
to a condition on the If block. Once connected, the subsystem takes on the
identity of the condition it is connected to and behaves like an enabled
subsystem.

For more detailed information, see the reference topics for the If and Action
Port blocks.

Note All blocks in an Action subsystem driven by an If or Switch Case block
must run at the same rate as the driving block.

4-38

Creating Conditionally Executed Subsystems

Switch Control Flow Statements. The following diagram depicts a generalized
switch control flow statement implementation in Simulink.

case[1]: It .

- v

ase |} CaEeACtion
e ul care[2]
- ; Action subsystam 1 blocks for
- - -
s {1} - caszel[1] condition
defadt: el
l Action subsystem 2

Switzh -case defaut: {}

Action subsyster 3

Construct a Simulink switch control flow statement as follows:

¢ Provide a data input to the argument input of the Switch Case block.

The input to the Switch Case block is the argument to the switch control flow
statement. This value determines the appropriate case to execute.
Noninteger inputs to this port are truncated.

® Add cases to the Switch Case block based on the numeric value of the
argument input.

You add cases to the Switch Case block through the properties dialog of the
Switch Case block. Cases can be single or multivalued. You can also add an
optional default case, which is true if no other cases are true. Once added,
these cases appear as output ports on the Switch Case block.

® Connect each Switch Case block case output port to an Action subsystem.

Each case output of the Switch Case block is connected to a subsystem to be
executed if the port’s case is true. You create these subsystems by placing an
Action Port block in a subsystem. This creates an atomic subsystem with a
port named Action, which you then connect to a condition on the Switch Case
block. Once connected, the subsystem takes on the identity of the condition
and behaves like an enabled subsystem. Place all the block programming
executed for that case in this subsystem.

For more detailed information, see the reference topics for the Switch Case and
Action Port blocks.

4-39

4 Creating a Model

Note After the subsystem for a particular case is executed, an implied break
is executed that exits the switch control flow statement altogether. Simulink
switch control flow statement implementations do not exhibit “fall through”
behavior like C switch statements.

Creating lterator Control Flow Statements

You create C-like iterator control flow statements using subsystems and the
following blocks from the Subsystems library.

C Statement Blocks Used
do-while While Iterator
for For Iterator
while While Iterator

While Control Flow Statements

The following diagram depicts a generalized C-like while control flow
statement implementation in Simulink.

- | cord while {

) L
In1 Whike Ite mtor
Irtwhile { ...}

Whil subsystem ~_
.

S L= blocks to erecute _—

~
-
-

In a Simulink while control flow statement, the While Iterator block iterates
the contents of a While subsystem, an atomic subsystem. For each iteration of

4-40

Creating Conditionally Executed Subsystems

the While Iterator block, the block programming of the While subsystem
executes one complete path through its blocks.

Construct a Simulink while control flow statement as follows:

¢ Place a While Iterator block in a subsystem.

The host subsystem becomes a while control flow statement as indicated by
its new label, while {...}. These subsystems behave like triggered
subsystems. This subsystem is host to the block programming you want to
iterate with the While Iterator block.

¢ Provide a data input for the initial condition data input port of the While
Iterator block.
The While Iterator block requires an initial condition data input (labeled IC)
for its first iteration. This must originate outside the While subsystem. If
this value is nonzero, the first iteration takes place.

¢ Provide data input for the conditions port of the While Iterator block.

Conditions for the remaining iterations are passed to the data input port
labeled cond. Input for this port must originate inside the While subsystem.
® You can set the While Iterator block to output its iterator value through its
properties dialog.
The iterator value is 1 for the first iteration and is incremented by 1 for each
succeeding iteration.
® You can change the iteration of the While Iterator block to do-while through
its properties dialog.
This changes the label of the host subsystem to do {...} while. With a
do-while iteration, the While Iteration block no longer has an initial
condition (IC) port, because all blocks in the subsystem are executed once
before the condition port (labeled cond) is checked.

For specific details, see the reference topic for the While Iterator block.

4-41

4 Creating a Model

4-42

For Control Flow Statements. The following diagram depicts a generalized for
control flow statement implementation in Simulink.

-
-
- - » Fo
- r
+ < Itemtor
In1
For ltemtor

In forf ...}
Forsubsystem T .

T blacks to execute —

In a Simulink for control flow statement, the For Iterator block iterates the
contents of a For Iterator Subsystem, an atomic subsystem. For each iteration
of the For Iterator block, the block programming of the For Iterator Subsystem
executes one complete path through its blocks.

Construct a Simulink for control flow statement as follows:

® Drag a For Iterator Subsystem block from the Library Browser or Library
window into your model.

® You can set the For Iterator block to take external or internal input for the
number of iterations it executes.
Through the properties dialog of the For Iterator block you can set it to take
input for the number of iterations through the port labeled N. This input
must come from outside the For Iterator Subsystem.
You can also set the number of iterations directly in the properties dialog.
® You can set the For Iterator block to output its iterator value for use in the
block programming of the For Iterator Subsystem.
The iterator value is 1 for the first iteration and is incremented by 1 for each
succeeding iteration.
The For Iterator block works well with the Assignment block to reassign values

in a vector or matrix. This is demonstrated in the following example. Note the
matrix dimensions in the data being passed.

Creating Conditionally Executed Subsystems

e pabelESlliy gorgy o p2be

Cutd

Constant
- Forsubsystem -
/" el
/,” H‘xﬂ__
- -
- -
f;/ -\"\-\.__\k
/a/ -H-'\-\._H_
4’/ -H--\'"

- T
. -
- —

= 1=

A

bial U st | doutd doub cou
3 Ao e 2 N e [21 e [
" g Sekstor |_|2 = YRGC) R
5 . Sutl
Selector Trgonometriz
Faor double
ltemtar

¥

Funetion
For

Azsignment

The above example outputs the sin value of an input 2-by-5 matrix (2 rows, 5
columns) using a For subsystem containing an Assignment block. The process
is as follows:

1 A 2-by-5 matrix is input to the Selector block and the Assignment block.

2 The Selector block strips off a 2-by-1 matrix from the input matrix at the
column value indicated by the current iteration value of the For Iterator
block.

3 The sine of the 2-by-1 matrix is taken.

4 The sine value 2-by-1 matrix is passed to an Assignment block.

4-43

4 Creating a Model

5 The Assignment block, which takes the original 2-by-5 matrix as one of its
inputs, assigns the 2-by-1 matrix back into the original matrix at the column
location indicated by the iteration value.

The rows specified for reassignment in the property dialog for the
Assignment block in the above example are [1,2]. Because there are only two
rows in the original matrix, you could also have specified -1 for the rows, i.e.,
all rows.

Note Experienced Simulink users will note that the sin block is already
capable of taking the sine of a matrix. The above example uses the sin block
only as an example of changing each element of a matrix with the
collaboration of an Assignment block and a For Iterator block.

Comparing Stateflow and Control Flow Statements

Stateflow already possesses the logical capabilities of the Simulink control flow
statements. It can call Function-Call subsystems (see “Function-Call
Subsystems” on page 4-33) on condition or iteratively. However, since
Stateflow provides a great deal more in logical sophistication, if your
requirements are simpler, you might find the capabilities of the Simulink
control flow blocks sufficient for your needs. In addition, the control flow
statements offer a few advantages, which are listed in the following topics.

Sample Times. The Function-Call subsystems that Stateflow can call are
triggered subsystems. Triggered subsystems inherit their sample times from
the calling block. However, the Action subsystems used in if-else and switch
control flow statements and the While and For subsystems that make upwhile
and for control flow statements are enabled subsystems. Enabled subsystems
can have their own sample times independent of the calling block. This also
allows you to use more categories of blocks in your iterated subsystem than in
a Function-Call subsystem.

Resetting of States When Reenabled. Simulink control flow statement blocks allow
you to retain or reset (to their initial values) the values of states for Action, For,
and While subsystems when they are reenabled. For detailed information, see
the references for the While Iterator and For Iterator blocks regarding the

4-44

Creating Conditionally Executed Subsystems

parameter States when starting and the reference for the Action Port block
regarding the parameter States when execution is resumed.

Using Stateflow with the Control Flow Blocks

You might want to consider the possibility of using Stateflow and the Simulink
control flow blocks together. The following sections contain some examples that
give you a few suggestions on how to combine the two.

Using Stateflow with If-Else or Switch Subsystems. In the following model, Stateflow
places one of a variety of values in a Stateflow data object. Upon chart
termination, a Simulink if control flow statement uses that data to make a
conditional decision.

case[1]

data_in Ia%dam_out ul case[2]:

defaut: v
SwitzhCase case: |}
Ghan win outf—
case: {4 action_1
2 [otp—oro
¥

defadt {} | @eten 2
i ot

action_default

In this case, control is given to a Switch Case block, which uses the value to
choose one of several case subsystems to execute.

Using Stateflow with While Subsystems. In the following diagram, Stateflow

computes the value of a data object that is available to a condition input of a
While Iterator block in do-while mode.

4-45

4 Creating a Model

4-46

dor { ... bwhile
Lt While subsystem “-HM
- -~
- i
- -
f/ - -
do {
e o
T wehile]
While temtor
remainder of
subsystem
blocks
Shart
out EEI it

The While Iterator block has iterative control over its host subsystem, which
includes the Stateflow Chart block. In do-while mode, the While block is
guaranteed to operate for its first iteration value (= 1). During that time, the
Stateflow chart is awakened and sets a data value used by the While Iterator
block, which is evaluated as a condition for the next while iteration.

In the following diagram, the While block is now set in while mode. In this
mode, the While Iterator block must have input to its initial condition port in
order to execute its first iteration value. This value must come from outside the
While subsystem.

Creating Conditionally Executed Subsystems

I while { ... 3 Out

— While subsystem R

Pe{ coed while §

oy

While temdor
remainder of
subsystem
blocks
Chart

If the initial condition is true, the While Iterator block wakes up the Stateflow
chart and executes it to termination. During that time the Stateflow chart sets
data, which the While Iterator condition port uses as a condition for the next
iteration.

4-47

4 Creating a Model

Model Discretizer

The Model Discretizer selectively replaces continuous Simulink blocks with
discrete equivalents. Discretization is a critical step in digital controller design
and for hardware in-the-loop simulations. You can use this tool to prepare
continuous models for use with the Real-Time Workshop Embedded Coder,
which supports only discrete blocks.

The Model Discretizer enables you to

¢ Identify a model’s continuous blocks.
® Change a block’s parameters from continuous to discrete.

¢ Apply discretization settings to all continuous blocks in the model or to
selected blocks.

¢ Create configurable subsystems that contain multiple discretization
candidates along with the original continuous block(s).

¢ Switch among the different discretization candidates and evaluate the
resulting model simulations.

Requirements

To use the Model Discretizer, you must have the Control System Toolbox,
Version 5.2, installed.

4-48

Model Discretizer

Discretizing a Model from the Model Discretizer GUI

To discretize a model, follow these steps:

¢ “Start the Model Discretizer” on page 4-50
¢ “Specify the Transform Method” on page 4-50

® “Specify the Sample Time” on page 4-51
® “Specify the Discretization Method” on page 4-51
¢ “Discretize the Blocks” on page 4-55

The f14 model, shown below, demonstrates the steps in discretizing a model.

File Edit WYiew Simulation Format Tools Help

=10l x|

DSE&| BR[| r = Nom || g8 &

BET®

-
Stick Input _’qp"‘:"g“"ce@
. Pilat G fome
Mz pilat Seope
cakulation
Stick Input gri
1 "
—{alpta (md) Bevator Cormand (deg) Hie] e Blevator Deflection d ideg) Mz Pilot (g)
Ta.s+1
g (rdiec) Vertical Vieaoity w (ftises) |4
Actuztor
Contmlier adel
>—p Viertical (GUst wELSt (fiiser)
Angle of
Attack
Fitch Fate q {mdises) -1
wg R | gl Fiotary Gust qEust (mdises P 1ilo —>®
og st alpha irmd)
A=t
Crnyden Wind Crnarics
Giust hodels hiq fodel
F-14 Flight Contmol
(Double click on the *?* for mor info) -
) Double click
hem for
To start and stop the simulation, use the "Stan® and Simulink Help
Stop selkections in the "Simulation® pull-down menu.
Ready [1o02 |odets

4 Creating a Model

4-50

Start the Model Discretizer

To open the tool, select Model Discretizer from the Tools menu in a Simulink
model. This displays the Simulink Model Discretizer window.

stimulink Model 10l =|
File ‘“iew Discretize Help
o | %) %t oH | S
D|‘?§:J"?§:TKJ|ZJ ﬂ|@
Contains continuous hlock: pDiscretization setting
W4 Current selection: 14
@ Actuator Model
=12 Aircraft Dynamics Mg | Transform method: |zer0-0rderh0|d LI
-2 Controller RUR— o
2] Dryden wind Gust M| | 23MRIEHME: :
#-# Nz pilot calculation |1.D |Hz LI
b 0 Filat
Replace current selection with:
|Discrete blocks (Enter parameters in s-domain) LI
|Newdiscrete subsystem LI b4
Store Settings | %ﬂ
rDiscretization statu
Continuous blocks in model: 12
Total blocks transformed: 1]
Continuous blocks in current selection: 12
Blocks transformed in current selection: 0
4 | >l
[Simulink Model Discretizer

Alternatively, you can open the Model Discretizer from the MATLAB command
window using the slmdldiscui function.

The following command opens the Simulink Model Discretizer window with
the 14 model.

slmdldiscui('f14")

To open a new Simulink model or library from the Model Discretizer, select
Load model from the File menu.

Specify the Transform Method

The transform method specifies the type of algorithms used in the
discretization. For more information on the different transform methods, see

Model Discretizer

Continuous/Discrete Conversions of LTI Models in the Control Systems
Toolbox documentation.

The Transform method drop-down list contains the following options:

® zero-order hold
Zero-order hold on the inputs.
e first-order hold
Linear interpolation of inputs.
® tustin
Bilinear (Tustin) approximation.
® tustin with prewarping
Tustin approximation with frequency prewarping.

® matched pole-zero

Matched pole-zero method (for SISO systems only).

Specify the Sample Time

Enter the sample time in the Sample time field.

You can specify an offset time by entering a two-element vector for discrete
blocks or configurable subsystems. The first element is the sample time and the
second element is the offset time. For example, an entry of [1.0 0.1] would

specify a 1.0 second sample time with a 0.1 second offset. If no offset is
specified, the default is zero.

You can enter workspace variables when discretizing blocks in the s-domain.
See “Discrete blocks (Enter parameters in s-domain)” on page 4-52.

Specify the Discretization Method

Specify the discretization method in the Replace current selection with field.
The options are

® Discrete blocks (Enter parameters in s-domain)

Creates a discrete block whose parameters are retained from the
corresponding continuous block.

® Discrete blocks (Enter parameters in z-domain)

Creates a discrete block whose parameters are “hard-coded” values placed
directly into the block’s dialog.

4-51

4 Creating a Model

® Configurable subsystem (Enter parameters in s-domain)
Create multiple discretization candidates using s-domain values for the
current selection. A configurable subsystem can consist of one or more
blocks.

® Configurable subsystem (Enter parameters in z-domain)

Create multiple discretization candidates in z-domain for the current
selection. A configurable subsystem can consist of one or more blocks.

Discrete blocks (Enter parameters in s-domain). Creates a discrete block whose
parameters are retained from the corresponding continuous block. The sample
time and the discretization parameters are also on the block’s parameter
dialog.

The block is implemented as a masked discrete block that uses c2d to
transform the continuous parameters to discrete parameters in the mask
initialization code.

These blocks have the unique capability of reverting to continuous behavior if
the sample time is changed to zero. Entering the sample time as a workspace
variable (Ts , for example) allows for easy changeover from continuous to
discrete and back again. See “Specify the Sample Time” on page 4-51.

Note Parameters are not tunable when Inline parameters is selected in the
model’s Simulation Parameters dialog box.

4-52

Model Discretizer

The figure below shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the s-domain. The Block
Parameters dialog box for each block is shown below the block.

tustin

s+1
E| Block Parameters: -t E |
— Transfer Fon r DiscretizedT ransferFen [mask] [link)
Matrix expresszion for numerator, vector expression for denominator. Continuous mask usges c2d to transform parameters onto the Digcrete

Output width equals the number of rows in the numerator. Coefficients are Transfer function block inside.
for descending powers of s

l MHumerator [enter in s-domain:]
Nurmerater. Im

(@]

Denominator [enter in s-domain:]

Denaminator: I“ 1
1]
I S ample time:
Ahsolute tolerance: |1
Iauln
Method Itustm j
(1] Cancel Help Lppli
Ok I Cancel | Help | Aply |

Discrete blocks (Enter parameters in z-domain). Creates a discrete block whose
parameters are “hard-coded” values placed directly into the block’s dialog. The
model discretizer uses the c2d function to obtain the discretized parameters, if
needed.

For more help on the c2d function, type the following in the Command Window:

help cad

4-53

4 Creating a Model

4-54

The figure below shows a continuous Transfer Function block next to a
Transfer Function block that has been discretized in the z-domain. The Block
Parameters dialog box for each block is shown below the block.

=+1 +0.5

i~ Transfer Fen i~ Discrete Transfer Fon
I atrizx expression for numerator, vector expression for denominator. I atriz expression for numerator, vector expression for denominator. Output
Output width equals the number of raws in the numerator. Coefficients are width equals the number of rows in the numerator. Coefficients are for
for descending powers of 5. descending powers of z.
P P
Humeratar: Humeratar:
D] D]
Denarminator: Denarminator:
|[1 1] |[1 05]
Abzolute tolerance: Sample time [-1 for inherited):
Iauta |1
aK Cancel Help Apply aK Cancel Help Apply

Note If you want to recover exactly the original continuous parameter values
after the Model Discretization session, you should enter parameters in the
s-domain.

Configurable subsystem (Enter parameters in s-domain). Create multiple
discretization candidates using s-domain values for the current selection. A
configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active when
this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.

Configurable subsystem (Enter parameters in z-domain). Create multiple
discretization candidates in z-domain for the current selection. A configurable
subsystem can consist of one or more blocks.

Model Discretizer

The Location for block in configurable subsystem field becomes active when
this option is selected. This option allows you to either create a new
configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or
libraries for the configurable subsystem option.

Configurable subsystems are stored in a library containing the discretization
candidates and the original continuous block. The library will be named <model
name>_disc_lib and it will be stored in the current directory. For example a
library containing a configurable subsystem created from the f14 model will be
named f14_disc_1lib.

If multiple libraries are created from the same model, then the filenames will
increment accordingly. For example, the second configurable subsystem
library created from the f14 model will be named f14_disc_1ib2.

You can open a configurable subsystem library by right-clicking on the
subsystem in the Simulink model and selecting Link options -> Go to library
block from the pop-up menu.

Discretize the Blocks

To discretize blocks that are linked to a library, you must either discretize the
blocks in the library itself or disable the library links in the model window.

You can open the library from the Model Discretizer by selecting Load model
from the File menu.

You can disable the library links by right-clicking on the block and selecting
Link options -> Disable link from the pop-up menu.

There are two methods for discretizing blocks.
Select Blocks and Discretize.
1 Select a block or blocks in the Model Discretizer tree view pane.

To choose multiple blocks, press and hold the Ctrl button on the keyboard
while selecting the blocks.

4-55

4 Creating a Model

Note You must select blocks from the Model Discretizer tree view. Clicking
on blocks in the Simulink editor does not select them for discretization.

2 Select Discretize current block from the Discretize menu if a single block
is selected or select Discretize selected blocks from the Discretize menu if
multiple blocks are selected.

You can also discretize the current block by clicking the Discretize button,
shown below.

2l

Store the Discretization Settings and Apply Them to Selected Blocks in the Model.
1 Enter the discretization settings for the current block.
2 Click Store Settings.

This adds the current block with its discretization settings to the group of
preset blocks.

3 Repeat steps 1 and 2, as necessary.

4 Select Discretize preset blocks from the Discretize menu.

Deleting a Discretization Candidate from a Configurable Subsystem

You can delete a discretization candidate from a configurable subsystem by
selecting it in the Location for block in configurable subsystem field and
clicking the Delete button, shown below.

]

4-56

Model Discretizer

Undoing a Discretization
To undo a discretization, click the Undo discretization button, shown below.

=l

Alternatively, you can select Undo discretization from the Discretize menu.

This operation undoes discretizations in the current selection and its children.
For example, performing the undo operation on a subsystem will remove
discretization from all blocks in all levels of the subsystem’s hierarchy.

4-57

4 Creating a Model

Viewing the Discretized Model

The Model Discretizer displays the model in a hierarchical tree view.

Viewing Discretized Blocks

The block’s icon in the tree view becomes highlighted with a “z” when the block
has been discretized. The figure below shows that the Aircraft Dynamics Model
subsystem has been discretized into a configurable subsystem with three
discretization candidates. The other blocks in this f14 model have not been
discretized.

imulink Model Discretizer 10l =|

File ‘“iew Discretize Help

o | %) G4 ru| S

D|‘?§:J"?§:TKJ|ZJ ﬂ|@

Contains continuous hlock: pDiscretization setting
ﬁiﬂ“ Current selection: Aircraft Dynamics Maodel
& Actuator Model
=24 Aircraft Dynamics Md | Transform method: |zer0-0rderh0|d LI
~-ig Transfar Fen 1 _—
Transfer Fong || SAMple time: o0
=2+ Contraller |1.D |Hz =
Alpha-zensor Lo
Pitch Rate Lead F | Replace current selection with:

Proportianal plus| | [=onfigurable subsystem (Parameters in s-domain) = |
& Stick Prefilter
[—ZI---E Diryden ¥ind Gust M| | Location for block in configurable subsystem:
e Q-gust model
Wi-gust model

Aircraft Dynamics Model discrete version 1 LI X

B2 Nz pilot calculation Mew discrete subsystem
- Derivative Alrcraft Dyna vodel discrete version 1 £
""" & Derivative |Aircraft Dynamics Model discrete version 2
""" @ Pilat [aircraft Dynamics Model discrate version 3
Confinuous Blocks in moder: T2
Total blocks transformed: 2
Continuous blocks in current selection: 2
Blocks transformed in current selection: 2
T ol

[Simulink Model Discretizer

4-58

Model Discretizer

The following figure shows the Aircraft Dynamics Model subsystem of the f14
demo model after discretization into a configurable subsystem containing the
original continuous model and three discretization candidates.

File Edit View Simulation Format Tools Help

D& s+ |0 mmEs &) » 5 [Nomd |

w
Filot @ force {gh
a

Stick Input

Pilat G fome

Mz pilat Scapa
u cakulation
|: Stck Input (r)
—elalpha (Rd Blevator Gommand dec) Hae] 1] Elevator Defiection d deg) Hz Filt g}
=g [rdieec) et Varical Vidloeity w {fUsee)
Comtmlkr Actuatar
hiode!
Vertioal G Ust wGust (fisept F”E‘
Open block
Fitch Fate q (radisec
Wa Ftary Gust qGust (mdize Cut
o s Coov
At Clear
Dryd=n Wfind I\ Dynamios odel
Aircraft Dynamics Maodel
— Alreraft Dynamics Model discrete warsion 1 IMask mararmetess. ..
Alrcraft Dynamics Model discrete version 2 Block parameters...
i ; . ; .)
v Aircraft Dynamics Model discrete version 3 Block properties. ..
To start and stop the simulation, use the *Start’ and Simulink H ‘
“Sanp" szlectinns in the "Simulton” pulldown meny. {_ Real-Time Workshop »

[Mask sUbsystem -
'l tmder mnasl

100%

4-59

4 Creating a Model

The following figure shows the library containing the Aircraft Dynamics Model
configurable subsystem with the original continuous model and three
discretization candidates.

E!Lihrary: f14_disc_lib ;Iglll

File Edit WYiew Formatb Help

DSHS| 2R (2 BE

Templae
[Elavator Detection d [deg) [Elavator Detection d [deg) [Elavator Detection d [deg) [Elavator Dalaction d (deg)
Wartical Velosity w fte) Wartical Velosity w fte) Wartical Velosity w fte) Wartical Velosity w fte) Wartical Welosity w[lec)
[V artical GUst wELsE e [V artical GUst wELsE e [V artical GUst wELsE e [V artical Uk WELBE (b ec)
Fiteh Fate q radised] b Fibch Fabe q radied) b q
[Feobary Gt qEUsE rad e Fuobary) Fuobary) [Fuobary Gust qEust [adies)
pr— Fircratt Fircratt Fircratt Fircratt
o rora Diyriaem ics Diyriaem ics Diyriaem ics Dyranmics
i Mol Mol Mol Mol
(Conigrie 5) disoree version 1 dsoree version 2 dgoree version
Aincraft Oy ramics Model dacrebe version 3
Ready B0% Locked v

Refreshing Model Discretizer View of the Model

To refresh the Model Discretizer’s tree view of the model when the model has
been changed, click the Refresh button, shown below.

2

Alternatively, you can select Refresh from the View menu.

4-60

Model Discretizer

Discretizing Blocks from the Simulink Model

You can replace continuous blocks in a Simulink model with the equivalent
blocks discretized in the s-domain using the Discretizing library.

The procedure below shows how to replace a continuous Transfer Fen block in
the Aircraft Dynamics Model subsystem of the f14 model with a discretized
Transfer Fen block from the Discretizing Library. The block is discretized in
the s-domain with a zero-order hold transform method and a 2 second sample
time.

1 Open the f14 model.

2 Open the Aircraft Dynamics Model subsystem in the 14 model.

E!fl-{.-"nircraft Dynamics Model - |EI|1|
File Edit WYiew Simulation Format Tools Help
D|D“‘E§|%E|""Jf‘|> IINormaI 'l|@|ﬁ||nﬁ®
Elevator
Deflection
d (deg)
f
= >D)
Vertical Gust sIw Vertical Veleity
wiiust (frzac) Transter Fen 2 w iftis=c)
Ua
Tk ol
f
Fiotary Gust s Pitsh Rate
qGust (mdfsec) Transfer Fen.d q (mdfzac)
Ready [1o02 |odets v

4-61

4 Creating a Model

3 Open the Discretizing library window.

Enter discretizing at the MATLAB command prompt. The Library:
discretizing window opens. This library contains s-domain discretized

blocks.
SlLibrary: discretizing 10l =|
File Edit WYiew Formatb Help
il
Distretized _ Discretized Distretized
Repeating Sequence Signal Genemtor Ghip Signal
- tustin tustin Tustin
tustin | # = AxtBu a1 2(=-1)
duidt = Gt Du - juknii
1P
Dissretzed Dizs retized Py m—
Derhiaithie = Etize Dise etized
State-Space
P Trnsfer Fen Fem-Pok
tustin
2
z F =s{(1,[1 100
Discretzed - -
Discretzed
Trnzport Delay 2 LTI System
- ‘
Diseetred Discretzed
Varable Trnsport Delay
Trnsporn Delay
Sirmulink Discretzer Libmny 1.0
Sopyrght () 19902002 The hathWors, Inc.

4 Add the Discretized Transfer Fcn block to the f14/Aircraft Dynamics Model
window.

a Click the Discretized Transfer Fen block in Library: discretizing
window.

b Drag it into the fl14/Aireraft Dynamics Model window.

4-62

Model Discretizer

= F14/Aircraft Dynamics Model _|EI|1|
File Edit WYiew Simulation Format Tools Help
DEE&| %R » = |Nom e RE T ®
Elevator
Deflection
d deq)
f
oy L O
Vertical Gust sIw Vertical Veleity
wiiust (frzac) Transter Fen 2 w iftis=c)
Ua
LT
f
Fiotary Gust s Pitsh Rate
qGust (mdfsec) Transfer Fen.d q (mdfzac)
tustin
al
s+1
Discretzed
Trnsfer Fen
Ready [1o02 [[|odets v

5 Open the parameter dialog box for the Transfer Fen.1 block.

Double-click the Transfer Fen.1 block in the f14/Aircraft Dynamics Model
window. The Block Parameters: Transfer Fen.1 dialog box opens.

Block Parameters: Transfer Fcn.l |

r Transfer Fcn

b4 atri expression for numeratar, vector expression for denominatar.
Output width equals the number of rows in the numerator. Coefficients are
for dezcending powers of &

=) |
F

Murneratar:
]
D enominatar:
j[1.al

Absolute tolerance:

Iauto

QK I Cancel Help Apply

4-63

4 Creating a Model

6 Open the parameter dialog box for the Discretized Transfer Fen block.

Double-click the Discretized Transfer Fen block in the f14/Aireraft
Dynamics Model window. The Block Parameters: Discretized Transfer
Fen dialog box opens.

Block Parameters: Discretized Transfer Fen |

r— DiscretizedT ransferFon [mask] [link]

Continuous mask uses c2d to ransform parameters onto the Discrete
Transfer function block inside.

Mumerator [enter in s-domain:]

]

Denominator [enter in s-domain:]
0]

Absolute tolerance:

Iauto

Sample time:
1

Method: Itustin j

QK I Cancel | Help | Apply |

Copy the parameter information from the Transfer Fcn.1 block’s dialog box
to the Discretized Transfer Fen block’s dialog box.

Block Parameters: Discretized Transfer Fen |

r— DiscretizedT ransferFon [mask] [link]

Continuous mask uses c2d to ransform parameters onto the Discrete
Transfer function block inside.

.
F

Mumerator [enter in s-domain:]
]

Denominator [enter in s-domain:]
j[1.al

Absolute tolerance:

Iauto

Sample time:
1

Method: Itustin j

QK I Cancel Help Apply |

4-64

Model Discretizer

Enter 2 in the Sample time field.
Select zoh from the Method drop-down list.

The parameter dialog box for the Discretized Transfer Fen. now looks like
this.

Block Parameters: Discretized Transfer Fen |

r— DiscretizedT ransferFon [mask] [link]

Continuous mask uses c2d to ransform parameters onto the Discrete
Transfer function block inside.

.
F

Mumerator [enter in s-domain:]
]
Denominator [enter in s-domain:]
j[1.al

Absolute tolerance:

Iauto

Sample time:
2

Metvoc: [T - |
QK I Cancel | Help | Apply |

4-65

4 Creating a Model

9 Click OK.
The f14/Aircraft Dynamics Model window now looks like this.
~1ol |

| mE T+ &

E!fl-{.-"nircraft Dynamics Model
File Edit WYiew Simulation Format Tools Help
DSE&| BR[| r = Nom || g &

Elewator
Ceflection
d ideg)
4
= >
2
Vertical Gust o Vertical Veleity
wiiust ftisec Trnster Fon 2 w {ftis=c)
Uo g
Tk ol
4
Lk
Ritary Giust =t Pitoh Rate
qGust (mdfsec) Transfer Fen.d q (mdfzac)
oh
1
=-hig
Disc retzed
Trnsfar Fen
Ready [1o02 |odets v

4-66

Model Discretizer

10 Delete the original Transfer Fen.1 block.

a Click the Transfer Fen.1 block.

b Press the Delete key. The f14/Aircraft Dynamics Model window now
looks like this.

Z1F14/ Aircraft Dynamics Model 10l =|
File Edit WYiew Simulation Format Tools Help
DEE&| %R » = |Nom e RE T ®
Elevator
Deflection
d ideq)
-
=-Zw - .
Werical Gust Werical Velbcity
waiust (ftisec) Transter Fon.2 w iftisec)
N |4
------------------ ¥ s Do
Rotary Gust Pitch Rate
qGust (mdfsec) q (mdfzac)
zoh
1
=-hig
Discretzed
Trnsfer Fen
Ready [1o02 |odets v

4-67

4 Creating a Model

11 Add the Discretized Transfer Fen block to the model.

a Click the Discretized Transfer Fen block.

b Drag the Discretized Transfer Fen block into position to complete the
model. The f14/Aircraft Dynamics Model window now looks like this.

E!fl-{.-"nircraft Dynamics Model - |EI|1|
File Edit WYiew Simulation Format Tools Help
DEE&| %R » = |Nom e RE T ®
Elevator
Deflection
d (deg)
f
oy L O
Vertical Gust sIw Vertical Veleity
wiiust (frzac) Transter Fen 2 w iftis=c)
Ua
Tk ol
zoh
1
Fiotary Gust =t Pitsh Rate
qGust (mdfsec) Disc retized q (mdfzac)
Trnsfer Fen.l
Ready [1o02 |odets v

4-68

Model Discretizer

Discretizing a Model from the MATLAB Command
Window

Use the s1discmdl function to discretize Simulink models from the MATLAB
Command Window. You can specify the transform method, the sample time,
and the discretization method with the s1ldiscmdl function.

For example, the following command discretizes the f14 model in the s-domain
with a 1 second sample time using a zero-order hold transform method.

sldiscmdl('f14',1.0,'zoh")

For more information on the sldiscmdl function, see the reference pages in
Simulink Model Construction Commands.

4-69

4 Creating a Model

4-70

Using Callback Routines

You can define MATLAB expressions that execute when the block diagram or
a block is acted upon in a particular way. These expressions, called callback
routines, are associated with block, port, or model parameters. For example,
the callback associated with a block’s OpenFcn parameter is executed when the
model user double-clicks on that block’s name or the path changes.

Tracing Callbacks

Callback tracing allows you to determine the callbacks Simulink invokes and
in what order Simulink invokes them when you open or simulate a model. To
enable callback tracing, select the Callback tracing option on the Simulink
Preferences dialog box (see “Setting Simulink Preferences” on page 1-16) or
execute set_param(0, 'CallbackTracing', 'on'). This option causes
Simulink to list callbacks in the MATLAB command window as they are
invoked.

Creating Model Callback Functions

You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Model Properties dialog box (see
“Callbacks Pane” on page 4-79) to create model callbacks interactively. To
create a callback programmatically, use the set_param command to assign a
MATLAB expression that implements the function to the model parameter
corresponding to the callback (see “Model Callback Parameters” on page 4-71).

For example, this command evaluates the variable testvar when the user
double-clicks the Test block in mymodel.

set_param('mymodel/Test', 'OpenFcn', testvar)

You can examine the clutch system (clutch.mdl) for routines associated with
many model callbacks.

Using Callback Routines

Model Callback Parameters

The following table lists the model parameters used to specify model callback
routines and indicates when the corresponding callback routines are executed.

Parameter When Executed

CloseFcn Before the block diagram is closed.

PostLoadFcn After the model is loaded. Defining a callback
routine for this parameter might be useful for
generating an interface that requires that the
model has already been loaded.

InitFcn Called at start of model simulation.

PostSaveFcn After the model is saved.

PrelLoadFcn Before the model is loaded. Defining a callback
routine for this parameter might be useful for
loading variables used by the model.

PreSaveFcn Before the model is saved.

StartFcn Before the simulation starts.

StopFcn After the simulation stops. Output is written to

workspace variables and files before the StopFcn is
executed.

4-71

4 Creating a Model

Creating Block Callback Functions

You can create model callback functions interactively or programmatically.
Use the Callbacks pane of the model’s Block Properties dialog box (see
“Callbacks Pane” on page 5-10) to create model callbacks interactively. To
create a callback programmatically, use the set _param command to assign a
MATLAB expression that implements the function to the block parameter
corresponding to the callback (see “Block Callback Parameters” on page 4-72).

Note A callback for a masked subsystem cannot directly reference the
parameters of the masked subsystem (see “About Masks” on page 12-2). The
reason? Simulink evaluates block callbacks in a model’s base workspace
whereas the mask parameters reside in the masked subsystem’s private
workspace. A block callback, however, can use get_param to obtain the value
of a mask parameter, e.g., get_param(gcb, 'gain'), where gain is the name
of a mask parameter of the current block.

Block Callback Parameters

This table lists the parameters for which you can define block callback
routines, and indicates when those callback routines are executed. Routines
that are executed before or after actions take place occur immediately before or
after the action.

Parameter When Executed

CloseFcn When the block is closed using the close system
command.

CopyFcn After a block is copied. The callback is recursive for

Subsystem blocks (that is, if you copy a Subsystem
block that contains a block for which the CopyFcn
parameter is defined, the routine is also executed).
The routine is also executed if an add_block
command is used to copy the block.

DeleteFcn Before a block is deleted. This callback is recursive
for Subsystem blocks.

4-72

Using Callback Routines

Parameter

When Executed

DestroyFcn

InitFcn

LoadFcn

ModelCloseFcn

MoveFcn

NameChangeFcn

OpenFcn

ParentCloseFcn

PreSaveFcn

PostSaveFcn

When the block has been destroyed.

Before the block diagram is compiled and before
block parameters are evaluated.

After the block diagram is loaded. This callback is
recursive for Subsystem blocks.

Before the block diagram is closed. This callback is
recursive for Subsystem blocks.

When the block is moved or resized.

After a block’s name and/or path changes. When a
Subsystem block’s path is changed, it recursively
calls this function for all blocks it contains after
calling its own NameChangeFcn routine.

When the block is opened. This parameter is
generally used with Subsystem blocks. The routine
is executed when you double-click the block or
when an open_system command is called with the
block as an argument. The OpenFcn parameter
overrides the normal behavior associated with
opening a block, which is to display the block’s
dialog box or to open the subsystem.

Before closing a subsystem containing the block or
when the block is made part of a new subsystem
using the new_system command (see new_systemin
the “Model Creation Commands” section of the
Simulink online help).

Before the block diagram is saved. This callback is
recursive for Subsystem blocks.

After the block diagram is saved. This callback is
recursive for Subsystem blocks.

4-73

4 Creating a Model

Parameter When Executed

StartFcn After the block diagram is compiled and before the
simulation starts. In the case of an S-Function
block, StartFcn executes immediately before the
first execution of the block’s md1ProcessParameters
function. See “S-Function Callback Methods” in
Writing S-Functions for more information.

StopFcn At any termination of the simulation. In the case of
an S-Function block, StopFcn executes after the
block’s md1Terminate function executes. See
“S-Function Callback Methods” in Writing
S-Functions for more information.

UndoDeleteFcn When a block delete is undone.

4-74

Using Callback Routines

Port Callback Parameters

Block input and output ports have a single callback parameter,
ConnectionCallback. This parameter allows you to set callbacks on ports that
are triggered every time the connectivity of those ports changes. Examples of
connectivity changes include deletion of blocks connected to the port and
deletion, disconnection, or connection of branches or lines to the port.

Use get_param to get the port handle of a port and set_param to set the
callback on the port. For example, suppose the currently selected block has a
single input port. The following code fragment sets foo as the connection
callback on the input port.

phs = get_param(gcb, 'PortHandles');
set_param(phs.Inport, 'ConnectionCallback', 'foo');

The first argument of the callback function must be a port handle. The callback
function can have other arguments (and a return value) as well. For example,
the following is a valid callback function signature.

function foo(port, otherArgi, otherArg2)

4-75

4 Creating a Model

4-76

Managing Model Versions

Simulink has features that help you to manage multiple versions of a model.

® As you edit a model, Simulink generates version control information about
the model, including a version number, who created and last updated the
model, and an optional change history. Simulink saves the automatically
generated version control information with the model. See “Version Control
Properties” on page 4-84 for more information.

¢ The Simulink Model Parameters dialog box lets you edit some of the version
control information stored in the model and select various version control
options (see “Model Properties Dialog Box” on page 4-78).

¢ The Simulink Model Info block lets you display version control information,
including information maintained by an external version control system, as
an annotation block in a model diagram.

¢ Simulink version control parameters let you access version control
information from the MATLAB command line or an M-file.

¢ The Source Control submenu of the Simulink File menu allows you to check
models into and out of your source control system. See “Interfacing with
Source Control Systems” in the MATLAB documentation for more
information.

Specifying the Current User

When you create or updates a model, Simulink logs your name in the model for
version control purposes. Simulink assumes that your name is specified by at
least one of the following environment variables: USER, USERNAME, LOGIN, or
LOGNAME. If your system does not define any of these variables, Simulink does
not update the user name in the model.

UNIX systems define the USER environment variable and set its value to the
name you use to log on to your system. Thus, if you are using a UNIX system,
you do not have to do anything to enable Simulink to identify you as the current
user. Windows systems, on the other hand, might define some or none of the
“user name” environment variables that Simulink expects, depending on the
version of Windows installed on your system and whether it is connected to a
network. Use the MATLAB command getenv to determine which of the
environment variables is defined. For example, enter

Managing Model Versions

getenv('user')

at the MATLAB command line to determine whether the USER environment
variable exists on your Windows system. If not, you must set it yourself. On
Windows 98, set the value by entering the following line

set user=yourname
in your system’s autoexec.bat file, where yourname is the name by which you

want to be identified in a model file. Save the file autoexec.bat and reboot
your computer for the changes to take effect.

Note The autoexec.bat file typically is found in the c:\ directory on your
system’s hard disk.

On Windows NT and 2000, use the Environment variables pane of the System
Properties dialog box to set the USER environment variable (if it is not already
defined).

System Properties EHE
Startup/Shutdown I Hardware Frafiles | Uzer Profiles |
General I Perfarmance Erwiranment

Sustem Yariables:

‘Wariable | Walue |;|
as Windows MT

Osz2LibPath CAWIMM T hapstem32hoz2hdll; J
Path cohusribingd: oshbinntd:hemacs-20.3. 14bin;..
PATHEXT [COM:ExE.BAT.PL

PROCESSOR_AR... =86 LI
User Variables for paulk:

‘Wariable | Walue |;|
MATLAR d:rid

MSDevDir D:4DevStudiohShared DE

path cohwuzribingd: reshbinnt;d: hemacs-20.3.14bin;... J
TEMP CATEMP

TMF CATEMP jhd|
ariable: IUSEH
Yalue: Iyoumame

Set Delete |

QK | Cancel | Apply |

4-77

4 Creating a Model

To display the System Properties dialog box, select Start->Settings->Control
Panel to open the Control Panel. Double-click the System icon. To set the USER
variable, enter USER in the Variable field and enter your login name in the
Value field. Click Set to save the new environment variable. Then click OK to
close the dialog box.

Model Properties Dialog Box

The Model Properties dialog box allows you to set various version control
parameters and model callback functions. To display the dialog box, choose
Model Properties from the Simulink File menu.

<) Model Properties: triggeredloop =] B3

Summary | callbacks | History |

Creatar: |pau|k

Created: |Fri Mov 19 145:13:13 1999

Model description:

Triggered loop example. -

Ll

Ok | Cancel | Help | Apply I

The dialog box includes the following panes.

Summary Pane
The Summary pane lets you edit the following version control parameters.

4-78

Managing Model Versions

Creator. Name of the person who created this model. Simulink sets this
property to the value of the USER environment variable when you create the
model. Edit this field to change the value.

Created. Date and time this model was created.

Model description. Description of the model.

Callbacks Pane

The Callbacks pane lets you specify functions to be invoked by Simulink at
specific points in the simulation of the model.

<) Model Properties: triggeredloop =] B3

Summary Callbacks | Histary |

Maodel pre-laad function:

Model initialization function:

Simulation start function:

Simulation stop function:

Model pre-save function:

Ok | Cancel | Help | Apply |

Enter the names of any callback functions you want to be invoked in the
appropriate fields. See “Creating Model Callback Functions” on page 4-70 for
information on the callback functions listed on this pane.

4-79

4 Creating a Model

4-80

History Pane

The History pane allows you to enable, view, and edit this model’s change
history.

<) Model Properties: triggeredloop =] B3
Summary | Callbacks ~ Histary |

~Wersion information

|View current values d|
Model version: 1.6
Last saved by. paulk
Last saved on: Mon Apr 02 16:43:03 2001

~Model history

paulk-- Won Apr 02 16:43:03 2001 -- Version 1.6 =
Feplaced discrete pulse generator with new unified pulze generatol

Lo Ll

FPrompt to update model histary: |When saving model

Ok | Cancel | Help | Apply |

The History pane has two panels: the Version information panel and the
Model History panel.

Version Information Panel

The contents of the Version information panel depend on the item selected in
the list at the top of the panel. When View current values is selected, the
panel shows the following fields.

Model version. Version number for this model. You cannot edit this field.
Last saved by. Name of the person who last saved this model. Simulink sets the

value of this parameter to the value of the USER environment variable when you
save a model. You cannot edit this field.

Managing Model Versions

Last saved date. Date that this model was last saved. Simulink sets the value of
this parameter to the system date and time whenever you save a model. You
cannot edit this field.

When Edit format strings is selected, the Version information panel shows
the format strings for each of the fields listed when View current valuesis
selected.

<) Model Properties: triggeredloop =] B3
Summary | Callbacks ~ Histary |

~Wersion information
Edit forrmat strings LI

Model version: |1.%=Autolncrement6=

Last saved by. [%=Auto=

Last saved on: |%=Auto=

~Model history

paulk-- Won Apr 02 16:43:03 2001 -- Version 1.6 =
Feplaced discrete pulse generator with new unified pul

Feplaced digital pulse generator with new unified pulse

-

FPrompt to update model histary: IWhen saving model vI

Ok | Cancel | Help | Apply |

Model version. Enter a format string describing the format used to display the
model version number in the Model Properties pane and in Model Info blocks.
The value of this parameter can be any text string. The text string can include
occurrences of the tag %<AutoIncrement:#> where # is an integer. Simulink
replaces the tag with an integer when displaying the model’s version number.
For example, it displays the tag

1.%<AutoIncrement:2>

as

1.2

4-81

4 Creating a Model

4-82

Simulink increments # by 1 when saving the model. For example, when you
save the model,

1.%<1.%<AutoIncrement:2>

becomes

1.%<1.%<AutoIncrement:3>

and Simulink reports the model version number as 1.3.

Last saved by. Enter a format string describing the format used to display the
Last saved by value in the History pane and the ModifiedBy entry in the
history log and Model Info blocks. The value of this field can be any string. The
string can include the tag %<Auto>. Simulink replaces occurrences of this tag
with the current value of the USER environment variable.

Last saved on. Enter a format string describing the format used to display the
Last saved on date in the History pane and the ModifiedOn entry in the
history log and the in Model Info blocks. The value of this field can be any
string. The string can contain the tag %<Auto>. Simulink replaces occurrences
of this tag with the current date and time.

Model History Panel

The model history panel contains a scrollable text field and an option list. The
text field displays the history for the model in a scrollable text field. To change
the model history, edit the contents of this field. The option list allows you to
enable or disable Simulink’s model history feature. To enable the history
feature, select When saving model from the Prompt to update model history
list. This causes Simulink to prompt you to enter a comment when saving the
model. Typically you would enter any changes that you have made to the model
since the last time you saved it. Simulink stores this information in the model’s
change history log. See “Creating a Model Change History” on page 4-82 for
more information. To disable the change history feature, select Never from the
Prompt to update model history list.

Creating a Model Change History

Simulink allows you to create and store a record of changes to a model in the
model itself. Simulink compiles the history automatically from comments that
you or other users enter when they save changes to a model.

Managing Model Versions

Logging Changes

To start a change history, select Prompt for Comments When Save for the
Modified history update option from the History pane on the Simulink
Model Properties dialog box. The next time you save the model, Simulink
displays a Log Change dialog box.

+ |Log Change: vdp_modelinfo [%]

Modified Comment:

Paulk. -- Mon Jul 27 17:22:51 1333

¥ Show thiz dialog box nest time when save
V' Include "Modified Cormments" in "Modified History'

Save |

To add an item to the model’s change history, enter the item in the Modified
Comments edit field and click Save. If you do not want to enter an item for this
session, clear the Include “Modified Contents” in “Modified History” option.
To discontinue change logging, clear the Show this dialog box next time
when save option.

Editing the Change History

To edit the change history for a model, click the Edit button on the History
pane of the Simulink Model Properties dialog box. Simulink displays the
model’s history in a Modification History dialog box.

4-83

4 Creating a Model

+ | Modification History: vdp_modelinfo

Moditied histary:
Paulk. -- Mon Jul 27 17:22:51 1938

Paulk, - ThuJul 23 16:08:31 1998
Changed creator.

Paulk, - ThuJul 23 15:25:33 1998
Added Modellnfo block.

QK | Cancel | Apply |

Edit the history displayed in the dialog and select Apply or OK to save the
changes.

Version Control Properties

Simulink stores version control information as model parameters in a model.
You can access this information from the MATLAB command line or from an
M-file, using the Simulink get param command. The following table describes
the model parameters used by Simulink to store version control information.

Property Description

Created Date created.

Creator Name of the person who created this model.
ModifiedBy Person who last modified this model.
ModifiedByFormat Format of the ModifiedBy parameter. Value

can be any string. The string can include
the tag %<Auto>. Simulink replaces the tag
with the current value of the USER
environment variable.

ModifiedDate Date modified.

4-84

Managing Model Versions

Property

Description

ModifiedDateFormat

ModifiedComment

ModifiedHistory

ModelVersion

ModelVersionFormat

Description

LastModificationDate

Format of the ModifiedDate parameter.
Value can be any string. The string can
include the tag %<Auto>. Simulink replaces
the tag with the current date and time
when saving the model.

Comment entered by user who last updated
this model.

History of changes to this model.

Version number.

Format of model version number. Can be
any string. The string can contain the tag
%<AutoIncrement:#> where # is an integer.
Simulink replaces the tag with # when
displaying the version number. It
increments # when saving the model.

Description of model.

Date last modified.

4-85

4 Creating a Model

4-86

Working with Blocks

This section explores the following block-related topics.

“About Blocks” on page 5-2

“Editing Blocks” on page 5-4
“Setting Block Parameters” on page 5-7

“Changing a Block’s Appearance” on
page 5-12

“Controlling and Displaying Block
Execution Order” on page 5-16

“Look-Up Table Editor” on page 5-18

“Working with Block Libraries” on
page 5-25

Explains the difference between virtual and nonvirtual
blocks.

How to cut and paste blocks.
How to set parameters that determine a block’s behavior.

How to change the size, orientation, color, and labeling of
a block.

How to set a block’s execution priority and display its
execution order.

How to change the elements of look-up table blocks.

How to create and use block libraries.

5 Working with Blocks

About Blocks

5-2

Blocks are the elements from which Simulink models are built. You can model
virtually any dynamic system by creating and interconnecting blocks in
appropriate ways. This section discusses how to use blocks to build models of
dynamic systems.

Block Data Tips

On Microsoft Windows, Simulink displays information about a block in a
pop-up window when you allow the pointer to hover over the block in the
diagram view. To disable this feature or control what information a data tip
includes, select Block data tips options from the Simulink View menu.

Virtual Blocks

When creating models, you need to be aware that Simulink blocks fall into two
basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an
active role in the simulation of a system. If you add or remove a nonvirtual
block, you change the model’s behavior. Virtual blocks, by contrast, play no
active role in the simulation; they help organize a model graphically. Some
Simulink blocks are virtual in some circumstances and nonvirtual in others.
Such blocks are called conditionally virtual blocks. The following table lists
Simulink virtual and conditionally virtual blocks.

Table 5-1: Virtual and Conditionally Virtual Blocks

Block Name Condition Under Which Block Is Virtual
Bus Selector Always virtual.
Demux Always virtual.
Enable Port Always virtual.
From Always virtual.
Goto Always virtual.

Goto Tag Visibility Always virtual.

Ground Always virtual.

About Blocks

Table 5-1: Virtual and Conditionally Virtual Blocks (Continued)

Block Name

Condition Under Which Block Is Virtual

Inport

Mux

Outport

Selector

Subsystem

Terminator

Trigger Port

Virtual unless the block resides in a conditionally
executed subsystem and has a direct connection to
an outport block.

Always virtual.

Virtual when the block resides within any
subsystem block (conditional or not), and does not
reside in the root (top-level) Simulink window.

Virtual except in matrix mode.

Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option is
selected.

Always virtual.

Virtual when the outport port is not present.

5-3

5 Working with Blocks

Editing Blocks

The Simulink Editor allows you to cut and paste blocks in and between models.

Copying and Moving Blocks from One Window to
Another

As you build your model, you often copy blocks from Simulink block libraries or
other libraries or models into your model window. To do this, follow these steps:

1 Open the appropriate block library or model window.

2 Drag the block to copy into the target model window. To drag a block,
position the cursor over the block icon, then press and hold down the mouse
button. Move the cursor into the target window, then release the mouse
button.

You can also drag blocks from the Simulink Library Browser into a model
window. See “Browsing Block Libraries” on page 5-32 for more information.

Note Simulink hides the names of Sum, Mux, Demux, Bus Creator, and Bus
Selector blocks when you copy them from the Simulink block library to a
model. This is done to avoid unnecessarily cluttering the model diagram. (The
shapes of these blocks clearly indicate their respective functions.)

You can also copy blocks by using the Copy and Paste commands from the Edit
menu:

1 Select the block you want to copy.
2 Choose Copy from the Edit menu.
3 Make the target model window the active window.

4 Choose Paste from the Edit menu.

Simulink assigns a name to each copied block. If it is the first block of its type
in the model, its name is the same as its name in the source window. For

Editing Blocks

example, if you copy the Gain block from the Math library into your model
window, the name of the new block is Gain. If your model already contains a
block named Gain, Simulink adds a sequence number to the block name (for
example, Gainl, Gain2). You can rename blocks; see “Manipulating Block
Names” on page 5-13.

When you copy a block, the new block inherits all the original block’s parameter
values.

Simulink uses an invisible five-pixel grid to simplify the alignment of blocks.
All blocks within a model snap to a line on the grid. You can move a block
slightly up, down, left, or right by selecting the block and pressing the arrow
keys.

You can display the grid in the model window by typing the following command
in the MATLAB window.

set_param('<model name>', 'showgrid','on')
To change the grid spacing, enter
set_param('<model name>', 'gridspacing',<number of pixels>)
For example, to change the grid spacing to 20 pixels, enter
set_param('<model name>', 'gridspacing',20)

For either of the above commands, you can also select the model, then enter gcs
instead of <model name>.

You can copy or move blocks to compatible applications (such as word
processing programs) using the Copy, Cut, and Paste commands. These
commands copy only the graphic representation of the blocks, not their
parameters.

Moving blocks from one window to another is similar to copying blocks, except
that you hold down the Shift key while you select the blocks.

You can use the Undo command from the Edit menu to remove an added block.

Moving Blocks in a Model

To move a single block from one place to another in a model window, drag the
block to a new location. Simulink automatically repositions lines connected to
the moved block.

5-5

5 Working with Blocks

To move more than one block, including connecting lines:

1 Select the blocks and lines. If you need information about how to select more
than one block, see “Selecting More Than One Object” on page 4-3.

2 Drag the objects to their new location and release the mouse button.

Copying Blocks in a Model

You can copy blocks in a model as follows. While holding down the Ctrl key,
select the block with the left mouse button, then drag it to a new location. You
can also do this by dragging the block using the right mouse button. Duplicated
blocks have the same parameter values as the original blocks. Sequence
numbers are added to the new block names.

Deleting Blocks

To delete one or more blocks, select the blocks to be deleted and press the
Delete or Backspace key. You can also choose Clear or Cut from the Edit
menu. The Cut command writes the blocks into the clipboard, which enables
you to paste them into a model. Using the Delete or Backspace key or the
Clear command does not enable you to paste the block later.

You can use the Undo command from the Edit menu to replace a deleted block.

Sefting Block Parameters

Setting Block Parameters

All Simulink blocks have a common set of parameters, called block properties,
that you can set (see “Common Block Parameters” in the online Simulink help).
See “Block Properties Dialog Box” on page 5-8 for information on setting block
properties. In addition, many blocks have one or more block-specific
parameters that you can set (see “Block-Specific Parameters” in the online
Simulink reference). By setting these parameters, you can customize the
behavior of the block to meet the specific requirements of your model.

Setting Block-Specific Parameters

Every block that has block-specific parameters has a dialog box that you can
use to view and set the parameters. You can display this dialog by selecting the
block in the model window and choosing BLOCK Parameters from the model
window’s Edit menu or from the model window’s context (right-click) menu,
where BLOCK is the name of the block you selected, e.g., Constant
Parameters. You can also display a block’s parameter dialog box by
double-clicking its icon in the model or library window.

Note This holds true for all blocks with parameter dialog boxes except for the
Subsystem block. You must use the model window’s Edit menu or context
menu to display a Subsystem block’s parameter dialog.

For information on the parameter dialog of a specific block, see the block’s
documentation in the “Simulink Blocks” in the online Simulink help.

You can set any block parameter, using the Simulink set_param command. See
set_param in the online Simulink help for details.

You can use any MATLAB constant, variable, or expression that evaluates to
an acceptable result when specifying the value of a parameter in a block
parameter dialog or a set_param command. You can also use variables or
expressions that evaluate to Simulink data objects as parameters (see “Using
Data Objects as Parameters” on page 7-12).

5-7

5 Working with Blocks

Block Properties Dialog Box

This dialog box lets you set a block’s properties. To display this dialog, select
the block in the model window and then select Block Properties from the Edit
menu.

-) Block Properties: Product i]

Block &nnotation | Callbacks |

General

Information

General block properties.

Description: test field that is generally used for saving comments about the
block.

Fririty: specifies the block's sequencing during execution relative to other
blocks with priorities in the same window.

Tag: a general text field as label which iz saved with the block.

Description:

Pricrity:

Tag:

QK | Cancel | Help | Apply |

The dialog box contains the following tabbed panes.

General Pane
This pane allows you to set the following properties.

Description. Brief description of the block’s purpose.

Priority. Execution priority of this block relative to other blocks in the model.
See “Assigning Block Priorities” on page 5-16 for more information.

Tag. Text that is assigned to the block’s Tag parameter and saved with the
block in the model. You can the tag to create your own block-specific label for a
block.

5-8

Sefting Block Parameters

Block Annotation Pane

The block annotation pane allows you to display the values of selected
parameters of a block in an annotation that appears beneath the block’s icon.

+} Block Properties: Product

General | Block &nnotation

Information

Callbacks |

Block annotation iz a gt of string shown below the block name. Available
block property tokens are listed on the left for uzer to choose from. The
annotation text can be edited on the right side edit field. See example spntax

ot the bottarn.

Block property tokens:

Block:
BackgroundCalors
*%<BlockDescription:
*%<BlockType>
#<DataTypelveride.
*<Description:
*<Diagnostics>
*<DropShadow:
*%<ForegroundColors
#«<Handle:»
#<Hilitedncestors:
*<|nputSameD T
*<|nputs>
F«LinkStatus:
%<LockScale:
FeMask:
ehaskTypes

|

°/nginM axF verflovﬁﬂ
4 »

Enter text and tokens for annotation:

=101

Example spntas:
Mame=%<Mame:

Ok

| Cancel | Help |

Enter the text of the annotation in the text field that appears on the right side
of the pane. The text can include block property tokens, for example

%<Name>

Priority =

%s<priority>

of the form %<param> where param is the name of a parameter of the block.

When displaying the annotation, Simulink replaces the tokens with the values
of the corrresponding parameters, e.g.,

Product
Priorty = 2

5-9

5 Working with Blocks

5-10

The block property tag list on the left side of the pane lists all the tags that are
valid for the currently selected block. To include one of the listed tags in the
annotation, select the tag and then click the button between the taglist and the
annotation field.

You can also create block annotations programmatically. See “Creating Block
Annotations Programmatically” on page 5-11.

Callbacks Pane

The Callbacks Pane allows you to specify implementations for a block’s
callbacks (see “Using Callback Routines” on page 4-70).

.-__:fﬁ:BIock Properties: Sum :0 - | Ellll

Generall Elock P.nnotationl Callbacksl

— Usage

To create or edit a callback function for this block, select it in the callback
list (helow, left). Then enter MATLAB code that implements the function in
the content pane (below, right). The callback name’s suffix indicates its
status: “(has saved content).

Callback functions list: Content of callback function: "ClipboardFcn®

CliphoardFcn
CloseFcn
CopyFcn
DeleteFcn
DestroyFcn
InitFcn

LoadFcn
ModelCloseFcn
roveFcn
MNameChangeFcn
OpenFcn
FParentCloseFcn

I

Ok | Cancel| Help | |

To specify an implementation for a callback, select the callback in the callback
list on the left side of the pane. Then enter MATLAB commands that
implement the callback in the righthand field. Click OK or Append to save the
change. Simulink appends an asterisk to the name of the saved callback to
indicate that it has been implemented.

Sefting Block Parameters

Creating Block Annotations Programmatically

You can use a block’s AttributesFormatString parameter to display selected
parameters of a block beneath the block as an “attributes format string,” i.e. a
string that specifies values of the block’s attributes (parameters). The “Model
and Block Parameters” section in the online Simulink reference describes the
parameters that a block can have. Use Simulink’s set_param command to set
this parameter to the desired attributes format string.

The attributes format string can be any text string that has embedded
parameter names. An embedded parameter name is a parameter name
preceded by %< and followed by >, for example, %<priority>. Simulink displays
the attributes format string beneath the block’s icon, replacing each parameter
name with the corresponding parameter value. You can use line-feed
characters (\n) to display each parameter on a separate line. For example,
specifying the attributes format string

pri=%<priority>\ngain=%<Gain>

for a Gain block displays

[’
Gain

pri=i0
gain=1

If a parameter’s value is not a string or an integer, Simulink displays N/S (not
supported) for the parameter’s value. If the parameter name is invalid,
Simulink displays ??? as the parameter value.

State Properties Dialog Box

The State Properties dialog box allows you to specify code generation options
for certain blocks with discrete states. To get help on using this dialog box, you
must install the Real-Time Workshop documentation. See “Block States:
Storing and Interfacing” in the online documentation for The Real-Time
Workshop for more information.

5-11

5 Working with Blocks

Changing a Block’s Appearance

5-12

The Simulink Editor allows you to change the size, orientation, color, and label
location of a block in a block diagram.

Changing the Orientation of a Block

By default, signals flow through a block from left to right. Input ports are on
the left, and output ports are on the right. You can change the orientation of a
block by choosing one of these commands from the Format menu:

¢ The Flip Block command rotates the block 180 degrees.
¢ The Rotate Block command rotates a block clockwise 90 degrees.
The figure below shows how Simulink orders ports after changing the

orientation of a block using the Rotate Block and Flip Block menu items. The
text in the blocks shows their orientation.

1 2 3
V V. V R
Rot%.y Down otate
4 1
1 Left] Right
2> to 4—— Flip —p | to K2
3 >R1ght * Left 3
Rotate Up %‘3
AN A
1 2 /3\

Resizing a Block’s Icon

To change the size of a block, select it, then drag any of its selection handles.
While you hold down the mouse button, a dotted rectangle shows the new block
size. When you release the mouse button, the block is resized.

Changing a Block's Appearance

For example, the figure below shows a Signal Generator block being resized.
The lower-right handle was selected and dragged to the cursor position. When
the mouse button is released, the block takes its new size.

This figure shows a block being resized.

ooog] i
[=Y=] :

Signal
enerator |

Displaying Parameters Beneath a Block’s Icon

You can cause Simulink to display one or more of a block’s parameters beneath
the block’s icon in a block diagram. You specify the parameters to be displayed
in the following ways:

® By entering an attributes format string in the Attributes format string field
of the block’s Block Properties dialog box (see “Block Properties Dialog Box”
on page 5-8)

¢ By setting the value of the block’s AttributesFormatString property to the
format string, using set_param

Using Drop Shadows

You can add a drop shadow to a block by selecting the block, then choosing
Show Drop Shadow from the Format menu. When you select a block with a
drop shadow, the menu item changes to Hide Drop Shadow. The figure below
shows a Subsystem block with a drop shadow.

M

Manipulating Block Names

All block names in a model must be unique and must contain at least one
character. By default, block names appear below blocks whose ports are on the
sides, and to the left of blocks whose ports are on the top and bottom, as this
figure shows.

5-13

5 Working with Blocks

5-14

)D} Top to boﬂomv

N
Left ta right

Changing Block Names

You can edit a block name in one of these ways:

¢ To replace the block name on a Microsoft Windows or UNIX system, click the
block name, double-click or drag the cursor to select the entire name, then
enter the new name.

¢ To insert characters, click between two characters to position the insertion
point, then insert text.

¢ To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

When you click the pointer anywhere else in the model or take any other action,
the name is accepted or rejected. If you try to change the name of a block to a
name that already exists or to a name with no characters, Simulink displays
an error message.

You can modify the font used in a block name by selecting the block, then
choosing the Font menu item from the Format menu. Select a font from the
Set Font dialog box. This procedure also changes the font of text on the block
icon.

You can cancel edits to a block name by choosing Undo from the Edit menu.

Note If you change the name of a library block, all links to that block become
unresolved.

Changing the Location of a Block Name
You can change the location of the name of a selected block in two ways:

¢ By dragging the block name to the opposite side of the block.

Changing a Block's Appearance

® By choosing the Flip Name command from the Format menu. This
command changes the location of the block name to the opposite side of the
block.

For more information about block orientation, see “Changing the Orientation
of a Block” on page 5-12.

Changing Whether a Block Name Appears
To change whether the name of a selected block is displayed, choose a menu
item from the Format menu:

¢ The Hide Name menu item hides a visible block name. When you select Hide
Name, it changes to Show Name when that block is selected.

¢ The Show Name menu item shows a hidden block name.
Specifying a Block’s Color

See “Specifying Block Diagram Colors” on page 4-5 for information on how to
set the color of a block.

5-15

5 Working with Blocks

Controlling and Displaying Block Execution Order

5-16

The Simulink Editor allows you to control and display the order in which
Simulink executes blocks.

Assigning Block Priorities

You can assign execution priorities to nonvirtual blocks or virtual subsystem
blocks in a model (see “Virtual Blocks” on page 5-2). Higher priority blocks
execute before lower priority blocks, though not necessarily before blocks that
have no assigned priority.

You can assign block priorities interactively or programmatically. To set
priorities programmatically, use the command

set_param(b, 'Priority','n')

where b is a block path and n is any valid integer. (Negative numbers and 0 are
valid priority values.) The lower the number, the higher the priority; that is, 2
is higher priority than 3. To set a block’s priority interactively, enter the
priority in the Priority field of the block’s Block Properties dialog box (see
“Block Properties Dialog Box” on page 5-8).

Simulink honors the block priorities that you specify only if they are consistent
with Simulink's block sorting algorithm (see “Determining Block Update
Order” on page 2-11). If the specified priorities are inconsistent, Simulink
ignores the specified priority and places the block in an appropriate location in
the block execution order. If Simulink is unable to honor a block priority, it
displays a Block Priority Violation diagnostic message (see “The
Diagnostics Pane” on page 10-24).

Controlling and Displaying Block Execution Order

Displaying Block Execution Order

To display the execution order of blocks during simulation, select Execution
order from the Simulink Format menu. Selecting this option causes Simulink
to display a number in the top right corner of each block in a block diagram.

Elvdp

File Edit “iew Simulation Format Tools

Help

IS[=] E3

D& R o = REE ®| P = [Nom 4|

wan der Pol Equation

The van der Pol Equation
(Double-click an the " for mare info)

Double-click
here for
Simulink Help

To start and stop the simulation, use the
selection in the "Simulation" pull-down menu

Out1

Scope

Ready R0

|odedf

4

The number indicates the execution order of the block relative to other blocks
in the diagram. For example, 1 indicates that the block is the first block
executed on every time step, 2 indicates that the block is the second block
executed on every time step, and so on.

5-17

5 Working with Blocks

Look-Up Table Editor

The Look-Up Table Editor allows you to inspect and change the table elements
of any look-up table (LUT) block in a model (see “Look-Up Tables” in the online
Simulink documentation), including custom LUT blocks that you have created,
using the Simulink Mask Editor (see “Editing Custom LUT Blocks” on

page 5-23). You can also use a block’s parameter dialog to edit its table.
However, that requires you to open the subsystem containing the block first
and than its parameter dialog box first The LUT editor allows you to skip these

steps. This section explains how to open and use the LUT editor to edit LUT
blocks.

Note You cannot use the LUT Editor to change the dimensions of a look-up
table. You must use the block’s parameter dialog box for this purpose.

To open the editor, select Look-up table editor from the Simulink Tools menu.
The editor appears.

<} Look-Up Table Editor: fuelsys /fuel rate controller/Airflow calculat = |EI|1|
File Plot Help
Lf\gdemi Block Parameters Data:
fuelsys | | |[ereapoints [-coumn—» (1) (2) (3)
[Table blocks: --Row-- 0.05 0.1 0.15 =
;ifl fuel rate controller (13 50 -0.055635 0.0184533 0.041948
-2 %"ﬂow calculation (2 75 -0.0022828 0.046509) 0.061466
| Ramp Rate (KD @ 100 0.025693| 0.061797) 0.072524
- 2] Sensor correction and F () 125 0.043518] 0.07201 0.0802
| throttle cormmand (5} 150 0.0562649 0.079685 0.086183
(B} 175 0.0661149 0.08591 0.0912
T 0N nn741A70 nna177al nno&R1 7_l_'|
S o= =

The editor contains two panes. The pane on the left is a LUT block browser. It
allows you to browse and select LUT blocks in any open model (see “Browsing
LUT Blocks” on page 5-19). The pane on the right allows you to edit the selected
block’s look-up table (“Editing Table Values” on page 5-20).

5-18

Look-Up Table Editor

Browsing LUT Blocks

The Models list in the upper left corner of the LUT Editor lists the names of all
models open in the current MATLAB session.To browse any open model’s LUT
table blocks, select the model’s name from the list. A tree-structured view of the
selected model’s LUT blocks appears in the Table blocks field beneath the
Models list.

Models:

fuelsys - g
[Tahle hlocks:
juizfiicl rate controller
[#1- 28 Airflow calculation
-2 Sensor correction and Fy
L thrattle cornmand

JE1 I]

The tree view initially lists all the LUT blocks that reside at the model’s root
level. It also displays any subsystems that contain LUT blocks. Clicking the
expand button (+) to the left of the subsystem’s name expands the tree to show
the LUT blocks in that subsystem. The expanded view also shows any
subsystems in the expanded subsystem. You can continue expanding
subsystem nodes in this manner to display LUT blocks at any level in the model
hierarchy.

Clicking any LUT block in the LUT block tree view displays the block’s look-up
table in the right hand pane, allowing you to edit the table (see“Editing Table
Values” on page 5-20).

Note If you want to browse the LUT blocks in a model that is not currently
open, you can command the LUT Editor to open the model. To do this, select
Open from the LUT Editor’s File menu.

5-19

5 Working with Blocks

Editing Table Values

The Block parameters data table view of the LUT Editor allows you to edit
the look-up table of the LUT block currently selected in the adjacent tree view.

Block Parameters Data:

Breakpoints | --Calumn--= {13 3] (3
--Row-- 0.05 0.1 0.15 o
(1) 50 -0.055635 0.018533) 0.041948
[#3) 75 -0.0022828) 0046509 0.061466
(3 100 0.025693] 0.061797| 0.072524
4 125 0.0435189 0.0720 0.0802
() 150 0.056269| 0.079685) 0.086183
(6} 175 0.0661189 0.08591 0.0912
’ T 200 nn7a1a7l nnat?7al nnask ?_>|_vl

The table view displays the entire table if it is one- or two-dimensional or a
two-dimensional slice of the table if the table has more than two dimensions
(see “Displaying N-D Tables” on page 5-21). To change any of the displayed
values, double-click the value. The LUT Editor replaces the value with an edit
field containing the value. Edit the value, then press Return or click outside
the field to confirm the change.

The LUT Editor records your changes in a copy of the table that it maintains.
To update the copy maintained by the LUT block itself, select Update block
data from the LUT Editor’s File menu. To restore the LUT Editor ‘s copy to the
values stored in the block, select Reload block data from the File menu.

5-20

Look-Up Table Editor

Displaying N-D Tables

If the look-up table of the LUT block currently selected in the LUT Editor’s tree
view has more than two dimensions, the editor’s table view displays a
two-dimensional slice of the table.

Block Parameters Data:

4] o] 3 G

2401 2421 2441 2461 -

2402 2422 24437 2462

2403 2423 2443 2463

2404 2424 2444 2464

2405 2425 2445 2465

2406 2426 2446 2466

2407 2427 2447 2467

2408 2428 2448 2468

2408 2429 24459 24649 LI
n-D Data Dimension Selectar: viewing table data: ¢, 1,7)
Dimension size 20 4 5 7
Select 2-D slice 2 = 2 = 1 = i -
Select row axis o e el (e
Select column axis ol o el (e

The n-D Data Dimension Selector beneath the table specifies which slice
currently appears and allows you to select another slice. The selector consists
of a 4-by-N array of controls where N is the number of dimensions in the look-up
table. Each column corresponds to a dimension of the look-up table. The first
column corresponds to the first dimension of the table, the second column to the
second dimension of the table, and so on. The top row of the selector array
displays the size of each dimension. The remaining rows specify which
dimensions of the table correspond to the row and column axes of the slice and
the indices that select the slice from the remaining dimensions.

To select another slice of the table, click the Select row axis and Select
column axis radio buttons in the columns that correspond to the dimensions
that you want to view. Then select the indexes of the slice from the popup index
lists in the remaining columns.

5-21

5 Working with Blocks

For example, the following selector displays slice (:,: ,1,7) of a 4-D table.

n-D Data Dimension Selectar: viewing table data: ¢, 1,7)

Dimension size 20 4 5 7
Select 2-D slice 2 = 2 = 1 = i -
Select row axis o e el (e
Select column axis ol o el (e

Plotting LUT Tables

Select Linear or Mesh from the Plot menu of the LUT Editor to display a
linear or mesh plot of the table or table slice currently displayed in the editor’s

table view.
<} Look-Up Table Editor: fuelsys/fuel rate controller/Airflow calculation/Pumping Con: ;|g|5|
File Plat Help
Lf\gdemi Block Parameters Data:
fuelsys Ll EI Breakpoints [-Column--= (1) (2 &)} 4y {
[Table blocks: --Row-- 0.05 0.1 0.15 0.2 0.~
_iifl fuel rate cantraller (1} 50 -0.055635 0.0184533 0.041948 0.052676 0.c
-2F| Airflow calculation @ 75 -0.0022828 0.046500 0.061466) 0.067964) 0.0
|E 5 d {3 100 0.025693 0.061797 0.072524 0.076908 0.c
/2] Sensor correction and F () 125 0043518 0.07201 00802 0083314 OO
| throttle cormmand (5} 150 0.0562649 0.079685 0.086183 0.088452 0.c
(B} 175 0.0661149 0.08591 0.0912 0.092865 0.c
(7} 200 0.074157 0.0912249 0.095612 0.096824 0.c
(8 250 0.08697 010024 010335 010393 _DI_VI
4 | »
4| | »

025

02r

0151

01r

005+

005+

01
0

5-22

Look-Up Table Editor

Editing Custom LUT Blocks

You can use the LUT Editor to edit custom look-up table blocks that you or
others have created. To do this, you must first configure the LUT Editor to

recognize the custom LUT blocks in your model. Once you have configured the
LUT Editor to recognize the custom blocks, you can edit them as if they were

standard blocks.

To configure the LUT editor to recognize custom LUT blocks, select Configure
from the editor’s File menu. The Look-Up Table Blocks Type Configuration

dialog box appears.

<} Look-Up Table Blocks Type Configuration

v Lse Simulink default look-up table blacks list

x|

|n] Block Type Maszk Type Breakpoint Mame Tahle Mame Mumber of dimens...| Explicit dimensions
1 |Lookup Inputvalues Qutputvalues

2 |5-Function Fixed-Paint Look-... [#LookUpData LookUpData

3 |5-Function Fixed-Paint Look-... |RowLookUpData,... (TableLookUpData

4 |3-Function Fixed-Point Look-...

5 |5-Function LookupldsSearch |bpData

B |5-Function LookupMDDirect mxTable masktahDims explicitMumDims
T |5-Function LookupMDinterp bp1,bp2,bp3 bpd b tahleData numbDimsPopups... [explicitNumDims
8 |5-Function LookupMDinterpldx tahle numbDimsPopups... [explicitNumDims
9 |5-Function S-function: sftahle2 [xindex_idxyindex_i... [tahle_idx

10 |S-Function S-function: sfun_di... [<VECT WECT

11 |SuhSystem Lookup Table {2-0 [xy t

12 |SuhSystem Repeating table rep_seq_t rep_seq_y

Add

Rermoye |

Ok | Cancel |

By default the dialog box displays a table of the types of LUT blocks that the
LUT Editor currently recognizes. By default these are the standard Simulink
LUT blocks. Each row of the table displays key attributes of a LUT block type.

Adding a Custom LUT Type
To add a custom block to the list of recognized types,

1 Select the Add button on the dialog box.

A new row appears at the bottom of the block type table.

5-23

5 Working with Blocks

2 Enter information for the custom block in the new row under the following

headings.
Field Name Description
Block Type Block type of the custom LUT block. The block type
is the value of the block’s BlockType parameter.
Mask Type Mask type in this field. The mask type is the value

of the block’s MaskType parameter.

Breakpoint Name Names of the custom LUT block’s parameters that
store its breakpoints.

Table Name Name of the block parameter that stores the
custom block’s look-up table.

Number of Leave empty.

dimensions

Explicit Dimensions Leave empty.

3 Select OK.

Removing Custom LUT Types

To remove a custom LUT type from the list of types recognized by the LUT
Editor, select the custom type’s entry in the table in the Look-Up Table Blocks
Type Configuration dialog box. Then select Remove. To remove all custom
LUT types, check the check box labeled Use Simulink default look-up table
blocks list at the top of the dialog box.

5-24

Working with Block Libraries

Working with Block Libraries

Libraries enable users to copy blocks into their models from external libraries
and automatically update the copied blocks when the source blocks change.
Using libraries allows users who develop their own block libraries, or who use
those provided by others (such as blocksets), to ensure that their models
automatically include the most recent versions of these blocks.

Terminology
It is important to understand the terminology used with this feature.

Library — A collection of library blocks. A library must be explicitly created
using New Library from the File menu.

Library block — A block in a library.
Reference block — A copy of a library block.

Link — The connection between the reference block and its library block that
allows Simulink to update the reference block when the library block changes.

Copy — The operation that creates a reference block from either a library block
or another reference block.

This figure illustrates this terminology.

link
= *L
e v il o
library Py reference
block block
Library (Source) Model or Library (Destination)

Simulink Block Library

Simulink comes with a library of standard blocks called the Simulink block
library. See “Starting Simulink” on page 3-2 for information on displaying and
using this library.

5-25

5 Working with Blocks

5-26

Creating a Library

To create a library, select Library from the New submenu of the File menu.
Simulink displays a new window, labeled Library: untitled. If an untitled
window already appears, a sequence number is appended.

You can create a library from the command line using this command:

new_system('newlib', 'Library")

This command creates a new library named 'newlib'. To display the library,
use the open_system command. These commands are described in “Model
Construction Commands” in the online Simulink reference.

The library must be named (saved) before you can copy blocks from it. See
“Adding Libraries to the Library Browser” on page 5-34 for information on how
to point the Library Browser to your new library.

Modifying a Library

When you open a library, it is automatically locked and you cannot modify its
contents. To unlock the library, select Unlock Library from the Edit menu.
Closing the library window locks the library.

Creating a Library Link

To create a link to a library block in a model, copy the block’s icon from the
library to the model (see “Copying and Moving Blocks from One Window to
Another” on page 5-4) or by dragging the block from the Library Browser (see
“Browsing Block Libraries” on page 5-32) into the model window.

When you copy a library block into a model or another library, Simulink creates
alink to the library block. The reference block is a copy of the library block. You
can change the values of the reference block’s parameters but you cannot mask
the block or, if it is masked, edit the mask. Also, you cannot set callback
parameters for a reference block. If the link is to a subsystem, you can modify
the contents of the reference subsystem (see “Modifying a Linked Subsystem”
on page 5-27).

The library and reference blocks are linked by name; that is, the reference block
is linked to the specific block and library whose names are in effect at the time
the copy is made.

Working with Block Libraries

If Simulink is unable to find either the library block or the source library on
your MATLAB path when it attempts to update the reference block, the link
becomes unresolved. Simulink issues an error message and displays these
blocks using red dashed lines. The error message is

Failed to find block "source-block-name"
in library "source-library-name"
referenced by block
"reference-block-path".

The unresolved reference block is displayed like this (colored red).

i Bad Link I)

F.Teference Block Name

To fix a bad link, you must do one of the following:

¢ Delete the unlinked reference block and copy the library block back into your
model.

¢ Add the directory that contains the required library to the MATLAB path
and select Update Diagram from the Edit menu.

¢ Double-click the reference block. On the dialog box that appears, correct the
pathname and click Apply or Close.

Disabling Library Links

Simulink allows you to disable linked blocks in a model. Simulink ignores
disabled links when simulating a model. To disable a link, select the link,
choose Link options from the model window’s Edit or context menu, then
choose Disable link. To restore a disabled link, choose Restore link from the
Link Options menu.

Modifying a Linked Subsystem

Simulink allows you to modify subsystems that are library links. If your
modifications alter the structure of the subsystem, you must disable the link
from the reference block to the library block. If you attempt to modify the
structure of a subsystem link, Simulink prompts you to disable the link.
Examples of structural modifications include adding or deleting a block or line

5-27

5 Working with Blocks

5-28

or changing the number of ports on a block. Examples of nonstructural changes
include changes to parameter values that do not affect the structure of the
subsystem.

Propagating Link Modifications

Simulink allows a model to have active links with nonstructural but not
structural changes. If you restore a link that has structural changes, Simulink
prompts you to either propagate or discard the changes. If you choose to
propagate the changes, Simulink updates the library block with the changes
made in the reference block. If you choose to discard the changes, Simulink
replaces the modified reference block with the original library block. In either

case, the end result is that the reference block is an exact copy of the library
block.

If you restore a link with nonstructural changes, Simulink enables the link
without prompting you to propagate or discard the changes. If you want to
propagate or discard the changes at a later time, select the reference block,
choose Link options from the model window’s Edit or context menu, then
choose Propagate/Discard changes. If you want to view the nonstructural
parameter differences between a reference block and its corresponding library
block, choose View changes from the Link options menu.

Updating a Linked Block

Simulink updates out-of-date reference blocks in a model or library at these
times:

¢ When the model or library is loaded

® When you select Update Diagram from the Edit menu or run the simulation

® When you query the LinkStatus parameter of a block, using the get_param
command (see “Library Link Status” on page 5-30)

® When you use the find_system command

Breaking a Link to a Library Block

You can break the link between a reference block and its library block to cause
the reference block to become a simple copy of the library block, unlinked to the
library block. Changes to the library block no longer affect the block. Breaking

Working with Block Libraries

links to library blocks may enable you to transport a model as a stand-alone
model, without the libraries.

To break the link between a reference block and its library block, first disable
the block. Then select the block and choose Break Library Link from the Link
options menu. You can also break the link between a reference block and its
library block from the command line by changing the value of the LinkStatus
parameter to 'none’' using this command:

set_param('refblock', 'LinkStatus', 'none')

You can save a system and break all links between reference blocks and library
blocks using this command:

save_system('sys', 'newname', 'BreakLinks')

Note Breaking library links in a model does not guarantee that you can run
the model stand-alone, especially if the model includes blocks from third-party
libraries or optional Simulink blocksets. It is possible that a library block
invokes functions supplied with the library and hence can run only if the
library is installed on the system running the model. Further, breaking a link
can cause a model to fail when you install a new version of the library on a
system. For example, suppose a block invokes a function that is supplied with
the library. Now suppose that a new version of the library eliminates the
function. Running a model with an unlinked copy of the block results in
invocation of a now nonexistent function, causing the simulation to fail. To
avoid such problems, you should generally avoid breaking links to third-party
libraries and optional Simulink blocksets.

Finding the Library Block for a Reference Block

To find the source library and block linked to a reference block, select the
reference block, then choose Go To Library Link from the Link options
submenu of the model window’s Edit or context menu. If the library is open,
Simulink selects and highlights the library block and makes the source library
the active window. If the library is not open, Simulink opens it and selects the
library block.

5-29

5 Working with Blocks

Library Link Status

All blocks have a LinkStatus parameter that indicates whether the block is a
reference block. The parameter can have these values.

Status Description
none Block is not a reference block.
resolved Link is resolved.

unresolved Link is unresolved.
implicit Block is within a linked block.

inactive Link is disabled.

Displaying Library Links
Simulink optionally displays an arrow in the bottom left corner of each icon
that represents a library link in a model.

/ library link

1
i > TR
U A =05
Sine Wave Discrete Display
Transfar Fon

[with initial states)

This arrow allows you to tell at a glance whether an icon represents a link to a
library block or a local instance of a block. To enable display of library links,
select Library Link Display from the model window’s Format menu and then
select either User (displays only links to user libraries) or All (displays all
links).

5-30

Working with Block Libraries

The color of the link arrow indicates the status of the link.

Color Status

Black Active link

Grey Inactive link

Red Active and modified

5-31

5 Working with Blocks

5-32

Getting Information About Library Blocks

Use the libinfo command to get information about reference blocks in a
system. The format for the command is

libdata = libinfo(sys)

where sys is the name of the system. The command returns a structure of size
n-by-1, where n is the number of library blocks in sys. Each element of the
structure has four fields:

® Block, the block path

e Library, the library name

® ReferenceBlock, the reference block path

e LinkStatus, the link status, either 'resolved' or 'unresolved'

Browsing Block Libraries

The Library Browser lets you quickly locate and copy library blocks into a
model. To display the Library Browser, click the Library Browser button in
the toolbar of the MATLAB desktop or Simulink model window or enter
simulink at the MATLAB command line.

Note The Library Browser is available only on Microsoft Windows platforms.

Working with Block Libraries

The Library Browser contains three panes.

[simulink Library Browser 10l =l
File Edit Wiew Help

01 = & Find ||

Continuous: simulink/Continuous

Documentation Pane

A

.....] Continuous

----- 2 Discontinuities
..... | Discrete

..... 2 Look-Up Tables
..... 2] Math Operations
----- 2 Model Werification
..... 2] Model-wide Utilities
----- 2 Ports & Subsystems
..... 2 signal sttributes
..... 2+ signal Routing

| v

Discontinuities

Discrete

Look-Up Tables

Math Dperations

Model Verification

I 2 FLF

----- y Sources

----- 2 User-Defined Functions
- §| Aerospace Elocksst Misc Modeltwfide Utilities
----- El CAN Drivers (Vector)
----- B AN Message Blocks
- i COM Reference Blockset
- W Communications Elacksst
----- B Control System Toolbox
[+ W D3P Blocksst

- El Dials & Gauges Blockset

- W Embedded Target For Motorola MPCS!
[N Embedded Target for TI C6000 DSP
£
£
£

Ports & Subsystems

|
Z5
It

Signal Attributes

Signal Routing

FTLE

Sinks

LA

+|-- W Extras for MPCS55
. W Fixed-Point Blockset
+- N Fuzzy Logic Toolbox

..... B vec eidfs Usé
----- El Module Packaging Manager ¥
| v

Fiy

Sources

wha ([ats

-Defined Functions

Tree Pane Icon Pane

The tree pane displays all the block libraries installed on your system. The icon
pane displays the icons of the blocks that reside in the library currently
selected in the tree pane. The documentation pane displays documentation for
the block selected in the icon pane.

You can locate blocks either by navigating the Library Browser’s library tree
or by using the Library Browser’s search facility.

5-33

5 Working with Blocks

5-34

Navigating the Library Tree

The library tree displays a list of all the block libraries installed on the system.
You can view or hide the contents of libraries by expanding or collapsing the
tree using the mouse or keyboard. To expand/collapse the tree, click the +/-
buttons next to library entries or select an entry and press the +/- or right/left
arrow key on your keyboard. Use the up/down arrow keys to move up or down
the tree.

Searching Libraries

To find a particular block, enter the block’s name in the edit field next to the
Library Browser’s Find button, then click the Find button.

Opening a Library
To open a library, right-click the library’s entry in the browser. Simulink

displays an Open Library button. Select the Open Library button to open the
library.

Creating and Opening Models

To create a model, select the New button on the Library Browser’s toolbar. To
open an existing model, select the Open button on the toolbar.

Copying Blocks

To copy a block from the Library Browser into a model, select the block in the
browser, drag the selected block into the model window, and drop it where you
want to create the copy.

Displaying Help on a Block
To display help on a block, right-click the block in the Library Browser and
select the button that subsequently pops up.

Pinning the Library Browser

To keep the Library Browser above all other windows on your desktop, select
the PushPin button on the browser’s toolbar.

Adding Libraries to the Library Browser

If you want a library that you have created to appear in the Library Browser,
you must create an slblocks.m file that describes the library in the directory

Working with Block Libraries

that contains it. The easiest way to create an slblocks.m file is to use an
existing slblocks.m file as a template. You can find all existing slblocks.m
files on your system by typing

which('slblocks.m', '-all')

at the MATLAB command prompt. Copy any of the displayed files to your
library’s directory. Then open the copy, edit it, following the instructions
included in the file, and save the result. Finally, add your library’s directory to
the MATLAB path, if necessary. The next time you open the Library Browser,
your library should appear among the libraries displayed in the browser.

5-35

5 Working with Blocks

5-36

Working with Signals

This section describes how to create and use Simulink signals.

Signal Basics (p. 6-2)

Working with Complex Signals
(p. 6-14)

Checking Signal Connections (p. 6-15)

Displaying Signals (p. 6-16)
Working with Signal Groups (p. 6-20)

Explores key signal concepts, include signal data types,
signal buses, virtual signals, signal dimensions, and
signal properties.

How to create and use signals whose values are complex
numbers.

How to check whether blocks can accept the signals you
have created.

How to display signal characteristics on a block diagram.

How to create and use interchangeable groups of signals,
for example, to test a model.

6 Working with Signals

6-2

Signal Basics

This section provides an overview of Simulink signals and explains how to
specify, display, and check the validity of signal connections.

About Signals

Signals are the streams of values that appear at the outputs of Simulink blocks
when a model is simulated. It is useful to think of signals as traveling along the
lines that connect the blocks in a model diagram. But note that the lines in a
Simulink model represent logical, not physical, connections among blocks.
Thus, the analogy between Simulink signals and electrical signals is not
complete. Electrical signals, for example, take time to cross a wire. The output
of a Simulink block, by contrast, appears instantaneously at the input of the
block to which it is connected.

Signal Dimensions

Simulink blocks can output one- or two-dimensional signals. A
one-dimensional (1-D) signal consists of a stream of one-dimensional arrays
output at a frequency of one array (vector) per simulation time step. A
two-dimensional (2-D) signal consists of a stream of two-dimensional arrays
emitted at a frequency of one 2-D array (matrix) per block sample time. The
Simulink user interface and documentation generally refer to 1-D signals as
vectors and 2-D signals as matrices. A one-element array is frequently referred
to as a scalar. A row vector is a 2-D array that has one row. A column vector is
a 2-D array that has one column.

Simulink blocks vary in the dimensionality of the signals they can accept or
output during simulation. Some blocks can accept or output signals of any
dimensions. Some can accept or output only scalar or vector signals. To
determine the signal dimensionality of a particular block, see the block’s
description in “Simulink Blocks” in the online Simulink help. See “Determining
Output Signal Dimensions” on page 6-7 for information on what determines
the dimensions of output signals for blocks that can output nonscalar signals.

Signal Data Types

Data type refers to the format used to represent signal values internally. The
data type of Simulink signals is double by default. However, you can create
signals of other data types. Simulink supports the same range of data types as
MATLAB. See “Working with Data Types” on page 7-2 for more information.

Signal Basics

Complex Signals

The values of Simulink signals can be complex numbers. A signal whose values
are complex numbers is called a complex signal. See “Working with Complex
Signals” on page 6-14 for information on creating and manipulating complex
signals.

Virtual Signals

A virtual signal is a signal that represents another signal graphically. Virtual
blocks, such as a Bus Creator or Subsystem block (see “Virtual Blocks” on
page 5-2), generate virtual signals. Like virtual blocks, virtual signals allow
you to simplify your model graphically. For example, using a Bus Creator
block, you can reduce a large number of nonvirtual signals (i.e., signals
originating from nonvirtual blocks) to a single virtual signal, thereby making
your model easier to understand. You can think of a virtual signal as a tie wrap
that bundles together a number of signals.

Virtual signals are purely graphical entities. They have no mathematical or
physical significance. Simulink ignores them when simulating a model.

Whenever you run or update a model, Simulink determines the nonvirtual
signal(s) represented by the model’s virtual signal(s), using a procedure known
as signal propagation. When running the model, Simulink uses the
corresponding nonvirtual signal(s), determined via signal propagation, to drive
the blocks to which the virtual signals are connected. Consider, for example,
the following model.

1 : [4]
=1 <52y ’{ =4 *
cl =1 Di=playl
=3
2 -
Z
=7 LS B ’{ =5

oz =FE Di=plays

6-3

6 Working with Signals

The signals driving Gain blocks G1 and G2 are virtual signals corresponding to
signals s2 and s1, respectively. Simulink determines this automatically
whenever you update or simulate the model.

The Show Propagated Signals option (see “Signal Properties Dialog Box” on
page 6-11) displays the nonvirtual signals represented by virtual signals in the
labels of the virtual signals.

1 : [4]
=1 <52y ’{ =4 *
cl =1 Di=playl
s34g1, 52%
2 -
Z
=7 LS B ’{ =5

oz =FE Di=playZ

Note Virtual signals can represent virtual as well as nonvirtual signals. For
example, you can use a Bus Creator block to combine multiple virtual and
nonvirtual signals into a single virtual signal. If during signal propagation
Simulink determines that a component of a virtual signal is itself virtual,
Simulink determines its nonvirtual components using signal propagation.
This process continues until Simulink has determined all nonvirtual
components of a virtual signal.

Control Signals

A control signal is a signal used by one block to initiate execution of another
block, e.g., a function-call or action subsystem. When you update or start
simulation of a block diagram, Simulink uses a dash-dot pattern to redraw

6-4

Signal Basics

lines representing the diagram’s control signals as illustrated in the following
example.

Control signal

it =0

P

Signal Buses
You can use Bus Creator and Bus Selector blocks to create signal buses.

Signal Bus

1 P —— Y

=1 LSk =g

cl 1l Displayl

s3esl, sir

- a——. I

z <=1 =5

52
=E Di=playE

A signal bus is a virtual signal that represents a set of signals. It is analogous
to a bundle of wires held together by tie wraps. Simulink uses a special line

style to display signal buses. If you select Signal Dimensions from the Format
menu, Simulink displays the number of signal components carried by the bus.

6-5

6 Working with Signals

Signal Glossary

The following table summarizes the terminology used to describe signals in the
Simulink user interface and documentation.

6-6

Term Meaning

Complex signal Signal whose values are complex numbers.

Data type Format used to represent signal values internally.
See “Working with Data Types” on page 7-2 for
more information.

Matrix Two-dimensional signal array.

Real signal

Signal whose values are real (as opposed to
complex) numbers.

Scalar One-element array, i.e., a one-element, 1-D or 2-D
array.
Signal bus Signal created by a Mux or Demux block.

Signal propagation

Process used by Simulink to determine attributes of
signals and blocks, such as data types, labels,
sample time, dimensionality, and so on, that are
determined by connectivity.

Size Number of elements that a signal contains. The size
of a matrix (2-D) signal is generally expressed as
M-by-N where M is the number of columns and N is
the number of rows making up the signal.

Vector One-dimensional signal array.

Virtual signal Signal that represents another signal or set of
signals.

Width Size of a vector signal.

Signal Basics

Determining Output Signal Dimensions

If a block can emit nonscalar signals, the dimensions of the signals that the
block outputs depend on the block’s parameters, if the block is a source block;
otherwise, the output dimensions depend on the dimensions of the block’s input
and parameters.

Determining the Output Dimensions of Source Blocks

A source block is a block that has no inputs. Examples of source blocks include
the Constant block and the Sine Wave block. See the “Sources Library” table in
the online Simulink help for a complete listing of Simulink source blocks. The
output dimensions of a source block are the same as those of its output value
parameters if the block’s Interpret Vector Parameters as 1-D parameter is off
(i.e., not selected in the block’s parameter dialog box). If the Interpret Vector
Parameters as 1-D parameter is on, the output dimensions equal the output
value parameter dimensions unless the parameter dimensions are N-by-1 or
1-by-N. In the latter case, the block outputs a vector signal of width N.

As an example of how a source block’s output value parameter(s) and Interpret
Vector Parameters as 1-D parameter determine the dimensionality of its
output, consider the Constant block. This block outputs a constant signal equal
to its Constant value parameter. The following table illustrates how the
dimensionality of the Constant value parameter and the setting of the
Interpret Vector Parameters as 1-D parameter determine the dimensionality
of the block’s output.

Constant Value Interpret Vector Output
Parameters as 1-D

2-D scalar off 2-D scalar

2-D scalar on 1-D scalar

1-by-N matrix off 1-by-N matrix

1-by-N matrix on N-element vector

N-by-1 matrix off N-by-1 matrix

N-by-1 matrix on N-element vector

6-7

6 Working with Signals

6-8

Constant Value Interpret Vector Output
Parameters as 1-D

M-by-N matrix off M-by-N matrix

M-by-N matrix on M-by-N matrix

Simulink source blocks allow you to specify the dimensions of the signals that

they output. You can therefore use them to introduce signals of various
dimensions into your model.

Determining the Output Dimensions of Nonsource Blocks

If a block has inputs, the dimensions of its outputs are, after scalar expansion,
the same as those of its inputs. (All inputs must have the same dimensions, as

discussed in the next section.)

Signal and Parameter Dimension Rules

When creating a Simulink model, you must observe the following rules
regarding signal and parameter dimensions.

Input Signal Dimension Rule

All nonscalar inputs to a block must have the same dimensions.

A block can have a mix of scalar and nonscalar inputs as long as all the
nonscalar inputs have the same dimensions. Simulink expands the scalar

inputs to have the same dimensions as the nonscalar inputs (see “Scalar
Expansion of Inputs” on page 6-9), thus preserving the general rule.

Block Parameter Dimension Rule

In general, a block’s parameters must have the same dimensions as the
corresponding inputs.

Two seeming exceptions exist to this general rule:

¢ A block can have scalar parameters corresponding to nonscalar inputs. In
this case, Simulink expands a scalar parameter to have the same dimensions

as the corresponding input (see “Scalar Expansion of Parameters” on
page 6-10), thus preserving the general rule.

Signal Basics

¢ If an input is a vector, the corresponding parameter can be either an N-by-1
or a 1-by-N matrix. In this case, Simulink applies the N matrix elements to
the corresponding elements of the input vector. This exception allows use of
MATLAB row or column vectors, which are actually 1-by-N or N-by-1
matrices, respectively, to specify parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules

Simulink converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

e If a vector signal is connected to an input that requires a matrix, Simulink
converts the vector to a one-row or one-column matrix.

¢ If a one-column or one-row matrix is connected to an input that requires a
vector, Simulink converts the matrix to a vector.

¢ If the inputs to a block consist of a mixture of vectors and matrices and the
matrix inputs all have one column or one row, Simulink converts the vectors
to matrices having one column or one row, respectively.

Note You can configure Simulink to display a warning or error message if a
vector or matrix conversion occurs during a simulation. See “Configuration
options” on page 10-25 for more information.

Scalar Expansion of Inputs and Parameters

Scalar expansion is the conversion of a scalar value into a nonscalar array of
the same dimensions. Many Simulink blocks support scalar expansion of
inputs and parameters. Block descriptions in the “Simulink Blocks” section in
the online Simulink help indicate whether Simulink applies scalar expansion
to a block’s inputs and parameters.

Scalar Expansion of Inputs

Scalar expansion of inputs refers to the expansion of scalar inputs to match the
dimensions of other nonscalar inputs or nonscalar parameters.When the input
to a block is a mix of scalar and nonscalar signals, Simulink expands the scalar
inputs into nonscalar signals having the same dimensions as the other

6-9

6 Working with Signals

nonscalar inputs. The elements of an expanded signal equal the value of the
scalar from which the signal was expanded.

The following model illustrates scalar expansion of inputs. This model adds
scalar and vector inputs. The input from block Constant1 is scalar expanded to
match the size of the vector input from the Constant block. The input is
expanded to the vector [3 3 3].

KEEN -

R
Constant L]

.—” +
. Scope

Constanti

Sum

When a block’s output is a function of a parameter and the parameter is
nonscalar, Simulink expands a scalar input to match the dimensions of the
parameter. For example, Simulink expands a scalar input to a Gain block to
match the dimensions of a nonscalar gain parameter.

Scalar Expansion of Parameters

If a block has a nonscalar input and a corresponding parameter is a scalar,
Simulink expands the scalar parameter to have the same number of elements
as the input. Each element of the expanded parameter equals the value of the
original scalar. Simulink then applies each element of the expanded parameter
to the corresponding input element.

This example shows that a scalar parameter (the Gain) is expanded to a vector
of identically valued elements to match the size of the block input, a
three-element vector.

1123 :Ia ool [1

Constant Gain

Scope

Setting Signal Properties

Signals have properties. Use the Signal Properties dialog box to view or set a
signal’s properties. To display the dialog box, select the line that carries the
signal and choose Signal Properties from the Simulink Edit menu.

6-10

Signal Basics

Signal Properties Dialog Box

The Signal Properties dialog box lets you view and edit signal properties.

+ Signal Properties: a IH[=] B3
rDiocumentation
Signal name: Show propagated signals: lﬂ
| a
Drescription:

Document link:

rSignal monitoring and code generation options

I Displayable [Test Paint)

RTw storage class: IAUtU jv

B storage pe qualifier:

QK | Eancell Help | Apply |

The dialog box includes the following controls.

Signal name
Name of signal.

Show propagated signals

Note This option appears only for signals that originate from a virtual block

other than a Bus Selector block.

6-11

6 Working with Signals

Show propagated signal names. You can select one of the following options:

Option Description

off Do not display signals represented by a virtual signal in the
signal’s label.

on Display the virtual and nonvirtual signals represented by a
virtual signal in the signal’s label. For example, suppose
that virtual signal s1 represents a nonvirtual signal s2 and
a virtual signal s3. If this option is selected, s1’s label is
s1<s2, s3>.

all Display all the nonvirtual signals that a virtual signal
represents either directly or indirectly. For example,
suppose that virtual signal s1 represents a nonvirtual
signal s2 and a virtual signal s3 and virtual signal s3
represents nonvirtual signals s4 and s5. If this option is
selected, s1’s label is s1<s2,s4,85>.

Description
Enter a description of the signal in this field.

Document link

Enter a MATLAB expression in the field that displays documentation for the
signal. To display the documentation, click “Document Link.” For example,
entering the expression

web(['file:///' which('foo_signal.html')])

in the field causes MATLAB’s default Web browser to display
foo_signal.html when you click the field’s label.

Displayable (Test Point)

Select this option to indicate that the signal can be displayed during
simulation.

6-12

Signal Basics

Note The next two controls set properties used by the Real-Time Workshop
to generate code from the model. You can ignore them if you are not going to
generate code from the model.

RTW storage class

Select the storage class of this signal from the list. See the Real-Time Workshop
User’s Guide for an explanation of the listed options.

Note Select Storage class from the Simulink Format menu to display the
storage class of the signal on the block diagram.

RTW storage type qualifier

Select the storage type of this signal from the list. See the Real-Time Workshop
User’s Guide for more information.

6-13

6 Working with Signals

6-14

Working with Complex Signals

By default, the values of Simulink signals are real numbers. However, models
can create and manipulate signals that have complex numbers as values.

You can introduce a complex-valued signal into a model in the following ways:
® Load complex-valued signal data from the MATLAB workspace into the
model via a root-level inport.

¢ Create a Constant block in your model and set its value to a complex number.

¢ Create real signals corresponding to the real and imaginary parts of a
complex signal, then combine the parts into a complex signal, using the
Real-Imag to Complex conversion block.

You can manipulate complex signals via blocks that accept them. If you are not
sure whether a block accepts complex signals, see the documentation for the
block in the “Simulink blocks” section of the Simulink online documentation.

Checking Signal Connections

Checking Signal Connections

Many Simulink blocks have limitations on the types of signals they can accept.
Before simulating a model, Simulink checks all blocks to ensure that they can
accommodate the types of signals output by the ports to which they are
connected. If any incompatibilities exist, Simulink reports an error and
terminates the simulation. To detect such errors before running a simulation,
choose Update Diagram from the Simulink Edit menu. Simulink reports any
invalid connections found in the process of updating the diagram.

6-15

6 Working with Signals

Displaying Signals

A model window’s Format menu and its model context (right-click) menu offer
the following options for displaying signal attributes.

Wide nonscalar lines

Draws lines that carry vector or matrix signals wider than lines that carry
scalar signals.

[123] |j—inl

4 |——=ignak?

Signal dimensions

Display the dimensions of nonscalar signals next to the line that carries the
signal.

6-16

Displaying Signals

The format of the display depends on whether the line represents a single
signal or a bus. If the line represents a single vector signal, Simulink displays
the width of the signal. If the line represents a single matrix signal, Simulink
displays its dimensions as [NyxN,] where N; is the size of the ith dimension of
the signal. If the line represents a bus carrying signals of the same data type,
Simulink displays N{M} where N is the number of signals carried by the bus and
M is the total number of signal elements carried by the bus. If the bus carries
signals of different data types, Simulink displays only the total number of
signal elements {M}.

Port data types
Displays the data type of a signal next to the output port that emits the signal.

singke

inlig Mz

cz2

The notation (c) following the data type of a signal indicates that the signal is
complex.

Signal Names
You can assign names to signals by

¢ Editing the signal’s label
¢ Editing the Name field of the signal’s property dialog (see “Signal Properties
Dialog Box” on page 6-11)
® Setting the name parameter of the port or line that represents the signal,
e.g.,
p = get_param(gcb, 'PortHandles')
1 = get_param(p.Inport, 'Line')
set_param(l, 'Name', 's9')

6-17

6 Working with Signals

Signal Labels

A signal’s label displays the signal’s name. A virtual signal’s label optionally
displays the signals it represents in angle brackets. You can edit a signal’s
label, thereby changing the signal’s name.

To create a signal label (and thereby name the signal), double-click the line
that represents the signal. The text cursor appears. Enter the name and click
anywhere outside the label to exit label editing mode.

Note When you create a signal label, take care to double-click the line. If you
click in an unoccupied area close to the line, you will create a model
annotation instead.

Labels can appear above or below horizontal lines or line segments, and left or
right of vertical lines or line segments. Labels can appear at either end, at the
center, or in any combination of these locations.

To move a signal label, drag the label to a new location on the line. When you
release the mouse button, the label fixes its position near the line.

To copy a signal label, hold down the Ctrl key while dragging the label to
another location on the line. When you release the mouse button, the label
appears in both the original and the new locations.

To edit an existing signal label, select it:

¢ To replace the label, click the label, double-click or drag the cursor to select
the entire label, then enter the new label.

¢ To insert characters, click between two characters to position the insertion
point, then insert text.

¢ To replace characters, drag the mouse to select a range of text to replace,
then enter the new text.

To delete all occurrences of a signal label, delete all the characters in the label.
When you click outside the label, the labels are deleted. To delete a single
occurrence of the label, hold down the Shift key while you select the label, then
press the Delete or Backspace key.

To change the font of a signal label, select the signal, choose Font from the
Format menu, then select a font from the Set Font dialog box.

6-18

Displaying Signals

Displaying Signals Represented by Virtual Signals

To display the signal(s) represented by a virtual signal, click the signal’s label
and enter an angle bracket (<) after the signal’s name. (If the signal has no
name, simply enter the angle bracket.) Click anywhere outside the signal’s
label. Simulink exits label editing mode and displays the signals represented
by the virtual signal in brackets in the label.

You can also display the signals represented by a virtual signal by selecting the
Show Propagated Signals option on the signal’s property dialog (see “Signal
Properties Dialog Box” on page 6-11).

6-19

6 Working with Signals

6-20

Working with Signal Groups

The Signal Builder block allows you to create interchangeable groups of signal
sources and quickly switch the groups into and out of a model. Signal groups
can greatly facilitate testing a model, especially when used in conjunction with
Simulink assertion blocks and the optional Model Coverage Tool.

Creating a Signal Group Set

To create an interchangeable set of signal groups:

1 Drag an instance of the Signal Builder block from the Simulink Sources
library and drop it into your model.

File Edit WYiew Simulation Format Tools Help”

JELEERE R T IR

E Signal 1 ke~

Signal Builder

0 1 2 3 4 6 7 8 9 10

5
Time fsec)

Default Waveform

Fl1o0% [[lodets

By default the block represents a single signal group containing a single
signal source that outputs a square wave pulse.

2 Use the block’s signal editor (see “The Signal Builder Dialog Box” on
page 6-21) to create additional signal groups, add signals to the signal
groups, modify existing signals and signal groups, and select the signal
group that the block outputs.

3 Connect the output of the block to your diagram.

The block displays an output port for each signal that the block can output.

You can create as many Signal Builder blocks as you like in a model, each
representing a distinct set of interchangeable groups of signal sources. See

Working with Signal Groups

“Simulating with Signal Groups” on page 6-30 for information on using signal
groups in a model.

The Signal Builder Dialog Box

The Signal Builder block’s dialog box allows you to define the waveforms of the
signals output by the block. You can specify any waveform that is piecewise
linear.

To open the dialog box, double-click the block’s icon. The Signal Builder dialog
box appears.

) Signal Builder {untitled /Signal Builder) i N = 4]
File Edit Group - Signal Axes Help
|eE| s me|2 |~ ra|HwEaxr o, s
Group 1
Signal 1:
0.8
0.6
<—+—— Group Panes
0.4 :
0.2
i i i i i i i i i i
0 1 2 3 1 5 3 7 8 9 10
Time (sec)
Left Pomnt Bight Pont
Hame: [Signal 1 T | T | S|gnu| LiSf
Index: |1 e Y: K
Click to sAa\a:t signal \ ‘s\g\an END]
Help Area Signal Name ~ Waveform Selection Status Area
and Index Coordinates

The Signal Builder dialog box allows you to create and modify signal groups
represented by a Signal Builder block. The Signal Builder dialog box includes
the following controls.

6-21

6 Working with Signals

Group Panes

Displays the set of interchangeable signal source groups represented by the
block. The pane for each group displays an editable representation of the
waveform of each signal that the group contains. The name of the group
appears on the pane’s tab. Only one pane is visible at a time. To display a group
that is invisible, select the tab that contains its name. The block outputs the
group of signals whose pane is currently visible.

Signal Axes

The signals appear on separate axes that share a common time range (see
“Signal Builder Time Range” on page 6-29). This allows you to easily compare
the relative timing of changes in each signal. The Signal Builder automatically
scales the range of each axis to accommodate the signal that it displays. Use
the Signal Builder’s Axes menu to change the time (T) and amplitude (Y)
ranges of the selected axis.

Signal List

Displays the names and visibility (see “Editing Signals” on page 6-23) of the
signals that belong to the currently selected signal group. Clicking an entry in
the list selects the signal. Double-clicking a signal’s entry in the list hides or
displays the signal’s waveform on the group pane.

Selection Status Area

Displays the name of the currently selected signal and the index of the
currently selected waveform segment or point.

Waveform Coordinates

Displays the coordinates of the currently selected waveform segment or point.
You can change the coordinates by editing the displayed values (see “Editing
Waveforms” on page 6-25).

Name

Name of the currently selected signal. You can change the name of a signal by
editing this field (see “Renaming a Signal” on page 6-24).

6-22

Working with Signal Groups

Index

Index of the currently selected signal. The index indicates the output port at
which the signal appears. An index of 1 indicates the topmost output port, 2
indicates the second port from the top, and so on. You can change the index of
a signal by editing this field (see “Changing a Signal’s Index” on page 6-25).

Help Area

Displays context-sensitive tips on using Signal Builder dialog box features.

Editing Signal Groups
The Signal Builder dialog box allows you to create, rename, move, and delete
signal groups from the set of groups represented by a Signal Builder block.

Creating and Deleting Signal Groups

To create a signal group, you must copy an existing signal group and then
modify it to suit your needs. To copy an existing signal group, select its tab and
then select Copy from the Signal Builder’s Group menu. To delete a group,
select its tab and then select Delete from the Group menu.

Renaming Signal Groups

To rename a signal group, select the group’s tab and then select Rename from
the Signal Builder’s Group menu. A dialog box appears. Edit the existing name
in the dialog box or enter a new name. Click OK.

Moving Signal Groups

To reposition a group in the stack of group panes, select the pane and then
select Move right from the Signal Builder’s Group menu to move the group
lower in the stack or Move left to move the pane higher in the stack.

Editing Signals
The Signal Builder dialog box allows you to create, cut and paste, hide, and
delete signals from signal groups.

Creating Signals

To create a signal in the currently selected signal group, select New from the
Signal Builder’s Signal menu. A menu of waveforms appears. The menu

6-23

6 Working with Signals

includes a set of standard waveforms (Constant, Step, etc.) and a Custom
waveform option. Select one of the waveforms. If you select a standard
waveform, the Signal Builder adds a signal having that waveform to the
currently selected group. If you select Custom, a custom waveform dialog box
appears.

<) Import MATLAB Data x|

 Walues: |

' Walues: |

()3 Cancel

The dialog box allows you to specify a custom piecewise linear waveform to be
added to the groups defined by the Signal Builder block. Enter the custom
waveform’s time coordinates in the T Values field and the corresponding signal
amplitudes in the Y Values field. The entries in either field can be any
MATLAB expression that evaluates to a vector. The resulting vectors must be
of equal length. Select OK. The Signal Builder adds a signal having the
specified waveform to the currently selected group.

Cutting and Pasting Signals
To cut or copy a signal from one group and paste it into another group:

1 Select the signal you want to cut or copy.

2 Select Cut or Copy from the Signal Builder’s Edit menu or the
corresponding button from the toolbar.

3 Select the group into which you want to paste the signal.

4 Select Paste from the Signal Builder’s Edit menu or the corresponding
button on the toolbar.

Renaming a Signal

To rename a signal, select the signal and choose Rename from the Signal
Builder’s Signal menu. A dialog box appears with an edit field that displays the
signal’s current name. Edit or replace the current name with a new name. Click
OK. Or edit the signal’s name in the Name field in the lower left corner of the
Signal Builder dialog box.

6-24

Working with Signal Groups

Changing a Signal’s Index

To change a signal’s index, select the signal and choose Change Index from the
Signal Builder’s Signal menu. A dialog box appears with an edit field

containing the signal’s existing index. Edit the field and select OK. Or select an
index from the Index list in the lower left corner of the Signal Builder window.

Hiding Signals

By default, the Signal Builder dialog box displays the waveforms of a group’s
signals in the group’s tabbed pane. To hide a waveform, select the waveform
and then select Hide from the Signal Builder’s Signal menu. To redisplay a
hidden waveform, select the signal’s Group pane, then select Show from the
Signal Builder’s Signal menu to display a menu of hidden signals. Select the
signal from the menu. Alternatively, you can hide and redisplay a hidden
waveform by double-clicking its name in the Signal Builder’s signal list (see
“Signal List” on page 6-22).

Editing Waveforms

The Signal Builder dialog box allows you to change the shape, color, and line
style and thickness of the signal waveforms output by a signal group.

Reshaping a Waveform

The Signal Builder dialog box allows you to change the shape of a waveform
by selecting and dragging its line segments and points or by editing the
coordinates of segments or points.

Selecting a Waveform. To select a waveform, left-click the mouse on any point on
the waveform.

Time (sec)

6-25

6 Working with Signals

The Signal Builder displays the waveform’s points to indicate that the
waveform is selected.

1 t---Signal 1
0.8
0.6
0.4
0.2

To deselect a waveform, left-click any point on the waveform graph that is not
on the waveform itself or press the Esc key.

Selecting points. To select a point of a waveform, first select the waveform. Then
position the mouse cursor over the point. The cursor changes shape to indicate
that it is over a point.

1 t---Signal 1
0.8
0.6
0.4
0.2

0 2 4 6 8 10

Left-click the point with the mouse. The Signal Builder draws a circle around
the point to indicate that it is selected.

1 t---Signal 1
0.8
0.6
0.4
0.2

0 2 4 6 8 10
Time (sec)

To deselect the point, press the Esc key.

6-26

Working with Signal Groups

Selecting Segments. To select a line segment, first select the waveform that
contains it. Then left-click the segment. The Signal Builder thickens the
segment to indicate that it is selected.

1---Signal 1
0.8 :
0.6
0.4
0.2

0 > 1 ; s 10
Time (sec)
To deselect the segment, press the Esec key.
Dragging Segments. To drag a line segment to a new location, position the mouse

cursor over the line segment. The mouse cursor changes shape to show the
direction in which you can drag the segment.

04

0.2

Press the left mouse button and drag the segment in the direction indicated to
the desired location.

Dragging points. To drag a point along the signal amplitude (vertical) axis, move
the mouse cursor over the point. The cursor changes shape to a circle to
indicate that you can drag the point. Drag the point parallel to the x-axis to the
desired location. To drag the point along the time (horizontal) axis, press the
Shift key while dragging the point.

Snap Grid. Each waveform axis contains an invisible snap grid that facilitates
precise positioning of waveform points. The origin of the snap grid coincides

6-27

6 Working with Signals

with the origin of the waveform axis. When you drop a point or segment that
you have been dragging, the Signal Builder moves the point or the segment’s
points to the nearest point or points on the grid, respectively. The Signal
Builder’s Axes menu allows you to specify the grid’s horizontal (time) axis and
vertical (amplitude) axis spacing independently. The finer the spacing, the
more freedom you have in placing points but the harder it is to position points
precisely. By default, the grid spacing is 0, which means that you can place
points anywhere on the grid; i.e., the grid is effectively off. Use the Axes menu
to select the spacing that you prefer.

Inserting and Deleting points. To insert a point, first select the waveform. Then
hold down the Shift key and left-click the waveform at the point where you
want to insert the point. To delete a point, select the point and press the Del
key.

Editing Point Coordinates. To change the coordinates of a point, first select the
point. The Signal Builder displays the current coordinates of the point in the
Left Point edit fields at the bottom of the Signal Builder dialog box. To change
the amplitude of the selected point, edit or replace the value in the y field with
the new value and press Enter. The Signal Builder moves the point to its new
location. Similarly edit the value in the t field to change the time of the selected
point.

Editing Segment Coordinates. To change the coordinates of a segment, first select
the segment. The Signal Builder displays the current coordinates of the
endpoints of the segment in the Left Point and Right Point edit fields at the
bottom of the Signal Builder dialog box. To change a coordinate, edit the value
in its corresponding edit field and press Enter.

Changing the Color of a Waveform

To change the color of a signal waveform, select the waveform and then select
Color from the Signal Builder’s Signal menu. The Signal Builder displays the
MATLAB color chooser. Choose a new color for the waveform. Click OK.

Changing a Waveform's Line Style and Thickness

The Signal Builder can display a waveform as a solid, dashed, or dotted line. It
uses a solid line by default. To change the line style of a waveform, select the
waveform, then select Line style from the Signal Builder’s Signal menu. A
menu of line styles pops up. Select a line style from the menu.

6-28

Working with Signal Groups

To change the line thickness of a waveform, select the waveform, then select
Line width from the Signal menu. A dialog box appears with the line’s current
thickness. Edit the thickness value and click OK.

Signal Builder Time Range

The Signal Builder’s time range determines the span of time over which its
output is explicitly defined. By default, the time range runs from 0 to 10
seconds. You can change both the beginning and ending times of a block’s time
range (see “Changing a Signal Builder’s Time Range” on page 6-29).

If the simulation starts before the start time of a block’s time range, the block
extrapolates its initial output from its first two defined outputs. If the
simulation runs beyond the block’s time range, the block by default outputs its
final defined values for the remainder of the simulation. The Signal Builder’s
Simulation Options dialog box allows you to specify other final output options
(see “Signal values after final time” on page 6-31 for more information).

Changing a Signal Builder’s Time Range
To change the time range, select Change time range from the Signal Builder’s
Axes menu. A dialog box appears.

) Set the total time rang |

Min time: | il

I aw Time: | 10

()3 Cancel

Edit the Min. time and Max. time fields as necessary to reflect the beginning
and ending times of the new time range, respectively. Click OK.

6-29

6 Working with Signals

6-30

Exporting Signal Group Data

To export the data that define a Signal Builder block’s signal groups to the
MATLAB workspace, select Export to workspace from the block’s File menu.
A dialog box appears.

=} Export to workspace |

‘W ariable name: | channels

()3 Cancel

The Signal Builder exports the data by default to a workspace variable named
channels. To export to a differently named variable, enter the variable’s name
in the Variable name field. Click OK. The Signal Builder exports the data to
the workspace as the value of the specified variable. The exported data is an
array of structures.

Simulating with Signal Groups

You can use standard simulation commands to run models containing Signal
Builder blocks or you can use the Signal Builder’s Run all command (see
“Running All Signal Groups” on page 6-30).

Activating a Signal Group

During a simulation, a Signal Builder block always outputs the active signal
group. The active signal group is the group selected in the Signal Builder
dialog box for that block, if the dialog box is open, otherwise the group that was
selected when the dialog box was last closed. To activate a group, open the
group’s Signal Builder dialog box and select the group.

Running Different Signal Groups in Succession

The Signal Builder’s toolbar includes the standard Simulink buttons for
running a simulation. This facilitates running several different signal groups
in succession. For example, you can open the dialog box, select a group, run a
simulation, select another group, run a simulation, etc., all from the Signal
Builder’s dialog box.

Running All Signal Groups

To run all the signal groups defined by a Signal Builder block, open the block’s
dialog box and select the Run all ,# button from the Signal Builder’s toolbar.

Working with Signal Groups

The Run all command runs a series of simulations, one for each signal group
defined by the block. If you have installed the optional Model Coverage Tool on
your system, the Run all command configures the tool to collect and save
coverage data for each simulation in the MATLAB workspace and display a
report of the combined coverage results at the end of the last simulation. This
allows you to quickly determine how well a set of signal groups tests your
model.

Note To stop a series of simulations started by the Run all command, enter
Control-c at the MATLAB command line.

Simulation Options Dialog Box

The Simulation Options dialog box allows you to specify simulation options
pertaining to the Signal Builder. To display the dialog box, select Simulation
Options from the Signal Builder’s File menu. The dialog box appears.

-} Simulation Options ' |
Signal values after final time: IHold final value j
Sample time: I 0

()3 Cancel

The dialog box allows you to specify the following options.

Signal values after final time

The setting of this control determines the output of the Signal Builder block if
a simulation runs longer than the period defined by the block. The options are
® Hold final value

Selecting this option causes the Signal Builder block to output the last
defined value of each signal in the currently active group for the remainder
of the simulation.

6-31

6 Working with Signals

®* Extrapolate
Selecting this option causes the Signal Builder block to output values
extrapolated from the last defined value of each signal in the currently active
group for the remainder of the simulation.

® Set to zero
Selecting this option causes the Signal Builder block to output zero for the
remainder of the simulation.

6-32

Working with Signal Groups

Sample time

Determines whether the Signal Builder block outputs a continuous (the
default) or a discrete signal. If you want the block to output a continuous signal,
enter 0 in this field. For example, the following display shows the output of a
Signal Builder block set to output a continuous Gaussian waveform over a
period of 10 seconds.

If you want the block to output a a discrete signal, enter the sample time of the
signal in this field. The following example shows the output of a Signal Builder
block set to emit a discrete Gaussian waveform having a 0.5 second sample
time.

6-33

6 Working with Signals

6-34

Working with Data

The following sections explain how to specify the data types of signals and parameters and how to
create data objects.
Working with Data Types (p. 7-2) How to specify the data types of signals and parameters.

Working with Data Objects (p. 7-9) How to create data objects and use them as signal and
parameter values.

The Simulink Data Explorer (p. 7-27) How to use the Simulink Data Explorer to inspect the
data objects used by a model.

Associating User Data with Blocks How to associate your data with a block.
(p. 7-29)

7 Working with Data

7-2

Working with Data Types

The term data type refers to the way in which a computer represents numbers
in memory. A data type determines the amount of storage allocated to a
number, the method used to encode the number’s value as a pattern of binary
digits, and the operations available for manipulating the type. Most computers
provide a choice of data types for representing numbers, each with specific
advantages in the areas of precision, dynamic range, performance, and memory
usage. To enable you to take advantage of data typing to optimize the
performance of MATLAB programs, MATLAB allows you to specify the data
types of MATLAB variables. Simulink builds on this capability by allowing you
to specify the data types of Simulink signals and block parameters.

The ability to specify the data types of a model’s signals and block parameters
is particularly useful in real-time control applications. For example, it allows a
Simulink model to specify the optimal data types to use to represent signals
and block parameters in code generated from a model by automatic
code-generation tools, such as the Real-Time Workshop available from The
MathWorks. By choosing the most appropriate data types for your model’s
signals and parameters, you can dramatically increase performance and
decrease the size of the code generated from the model.

Simulink performs extensive checking before and during a simulation to
ensure that your model is typesafe, that is, that code generated from the model
will not overflow or underflow and thus produce incorrect results. Simulink
models that use Simulink’s default data type (double) are inherently typesafe.
Thus, if you never plan to generate code from your model or use a nondefault
data type in your models, you can skip the remainder of this section.

On the other hand, if you plan to generate code from your models and use
nondefault data types, read the remainder of this section carefully, especially
the section on data type rules (see “Data Typing Rules” on page 7-5). In that
way, you can avoid introducing data type errors that prevent your model from
running to completion or simulating at all.

Data Types Supported by Simulink

Simulink supports all built-in MATLAB data types except int64 and uint64.
The term built-in data type refers to data types defined by MATLAB itself as
opposed to data types defined by MATLAB users. Unless otherwise specified,

Working with Data Types

the term data type in the Simulink documentation refers to built-in data types.

The following table lists the built-in MATLAB data types supported by

Simulink.
Name Description
double Double-precision floating point
single Single-precision floating point
int8 Signed 8-bit integer
uints Unsigned 8-bit integer
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer

Besides the built-in types, Simulink defines a boolean (1 or 0) type, instances
of which are represented internally by uint8 values. Simulink also supports
fixed-point data types.

Fixed-Point Data

Simulink allows you to create models that use fixed-point numbers to represent
signals and parameter values. The use of fixed-point data in a model can
significantly reduce the size and increase the speed of code generated from the
model. See the documentation for the Fixed-Point Blockset for more
information on creating and running fixed-point models.

Block Support for Data and Numeric Signal Types

All Simulink blocks accept signals of type double by default. Some blocks
prefer boolean input and others support multiple data types on their inputs.
See “Simulink Blocks” in the online Simulink documentation for information
on the data types supported by specific blocks for parameter and input and

7-3

7 Working with Data

output values. If the documentation for a block does not specify a data type, the
block inputs or outputs only data of type double.

Specifying Block Parameter Data Types

When entering block parameters whose data type is user-specifiable, use the
syntax

type(value)

to specify the parameter, where type is the name of the data type and value is
the parameter value. The following examples illustrate this syntax.

single(1.0) Specifies a single-precision value of 1.0
int8(2) Specifies an eight-bit integer of value 2
int32(3+2i) Specifies a complex value whose real and

imaginary parts are 32-bit integers

Creating Signals of a Specific Data Type

You can introduce a signal of a specific data type into a model in any of the
following ways:

¢ Load signal data of the desired type from the MATLAB workspace into your
model via a root-level inport or a From Workspace block.

¢ Create a Constant block in your model and set its parameter to the desired
type.

¢ Use a Data Type Conversion block to convert a signal to the desired data
type.

Displaying Port Data Types

To display the data types of ports in your model, select Port Data Types from
Simulink’s Format menu. Simulink does not update the port data type display
when you change the data type of a diagram element. To refresh the display,
type Ctrl+D.

7-4

Working with Data Types

Data Type Propagation

Whenever you start a simulation, enable display of port data types, or refresh
the port data type display, Simulink performs a processing step called data
type propagation. This step involves determining the types of signals whose
type is not otherwise specified and checking the types of signals and input ports
to ensure that they do not conflict. If type conflicts arise, Simulink displays an
error dialog that specifies the signal and port whose data types conflict.
Simulink also highlights the signal path that creates the type conflict.

Note You can insert typecasting (data type conversion) blocks in your model
to resolve type conflicts. See “T'ypecasting Signals” on page 7-6 for more
information.

Data Typing Rules

Observing the following rules can help you to create models that are typesafe
and therefore execute without error:

¢ Signal data types generally do not affect parameter data types, and vice
versa.

A significant exception to this rule is the Constant block, whose output data
type is determined by the data type of its parameter.

¢ If the output of a block is a function of an input and a parameter, and the
input and parameter differ in type, Simulink converts the parameter to the
input type before computing the output.

See “T'ypecasting Parameters” on page 7-6 for more information.
¢ In general, a block outputs the data type that appears at its inputs.

Significant exceptions include Constant blocks and Data Type Conversion
blocks, whose output data types are determined by block parameters.

¢ Virtual blocks accept signals of any type on their inputs.

Examples of virtual blocks include Mux and Demux blocks and
unconditionally executed subsystems.

¢ The elements of a signal array connected to a port of a nonvirtual block must
be of the same data type.

7-5

7 Working with Data

7-6

¢ The signals connected to the input data ports of a nonvirtual block cannot
differ in type.

¢ Control ports (for example, Enable and Trigger ports) accept any data type.
® Solver blocks accept only double signals.

¢ Connecting a non-double signal to a block disables zero-crossing detection
for that block.

Enabling Strict Boolean Type Checking

By default, Simulink detects but does not signal an error when it detects that
double signals are connected to blocks that prefer boolean input. This ensures
compatibility with models created by earlier versions of Simulink that support
only double data type. You can enable strict Boolean type checking by clearing
the Boolean logic signals option on the Advanced panel of the Simulation
Parameters dialog box (see “The Advanced Pane” on page 10-29).

Typecasting Signals

Simulink displays an error whenever it detects that a signal is connected to a
block that does not accept the signal’s data type. If you want to create such a
connection, you must explicitly typecast (convert) the signal to a type that the
block does accept. You can use Simulink’s Data Type Conversion block to
perform such conversions.

Typecasting Parameters

In general, during simulation, Simulink silently converts parameter data types
to signal data types (if they differ) when computing block outputs that are a
function of an input signal and a parameter. The following exceptions occur to
this rule:

¢ Ifthe signal data type cannot represent the parameter value, Simulink halts
the simulation and signals an error.

Consider, for example, the following model.

Working with Data Types

uinggp1y I > uints 255

Gonstant Gain Display

Gain: "Gain"
Gain=int32(255)
S aturateOnlntegerD verflow=on

This model uses a Gain block to amplify a constant input signal. Computing
the output of the Gain block requires computing the product of the input
signal and the gain. Such a computation requires that the two values be of
the same data type. However, in this case, the data type of the signal, uint8
(unsigned 8-bit word), differs from the data type of the gain parameter,
int32 (signed 32-bit integer). Thus computing the output of the Gain block
entails a type conversion.

When making such conversions, Simulink always casts the parameter type
to the signal type. Thus, in this case, Simulink must convert the Gain block’s
gain value to the data type of the input signal. Simulink can make this
conversion only if the input signal’s data type (uint8) can represent the gain.
In this case, Simulink can make the conversion because the gain is 255,
which is within the range of the uint8 data type (0 to 255). Thus, this model
simulates without error. However, if the gain were slightly larger (for
example, 256), Simulink would signal an out-of-range error if you attempted
to simulate the model.

If the signal data type can represent the parameter value but only at reduced
precision, Simulink optionally issues a warning message and continues the
simulation (see “Configuration options” on page 10-25).

Consider, for example, the following model.

ey |20 b s —

Gonstant Gain Display

In this example, the signal type accommodates only integer values, while the
gain value has a fractional component. Simulating this model causes
Simulink to truncate the gain to the nearest integral value (2) and issue a
loss-of-precision warning. On the other hand, if the gain were 2.0, Simulink
would simulate the model without complaint because in this case the
conversion entails no loss of precision.

7-7

7 Working with Data

Note Conversion of an int32 parameter to a float or double can entail a
loss of precision. The loss can be severe if the magnitude of the parameter
value is large. If an int32 parameter conversion does entail a loss of precision,

Simulink issues a warning message.

7-8

Working with Data Obijects

Working with Data Obijects

Simulink data objects allow you to specify information about the data used in
a Simulink model (i.e., signals and parameters) and to store the information
with the data itself in the model. Simulink uses properties of data objects to
determine the tunability of parameters and the visibility of signals and to
generate code. You can use data objects to specify information important to
correct simulation of the model, such as minimum and maximum values for
parameters. Further, you can store data objects with the model. Simulink thus
allows you to create self-contained models.

Note Simulink stores references to data objects rather than the objects
themselves in the model file. The referenced objects must exist in the model
workspace before the model is loaded. You can use a model preload callback
function to load the objects referenced by the model before the model itself is
loaded (see “Creating Persistent Parameter and Signal Objects” on page 7-14
for more information).

Data Object Classes

A data object is an instance of another object called a data object class. A data
object class defines the properties of the data objects that are its instances and
methods for creating and manipulating the instances. Simulink comes with
two built-in data classes, Simulink.Parameter and Simulink.Signal, that
define parameter and signal data objects, respectively.

Data Object Properties

A property of a data object specifies an attribute of the data item that the object
describes, such as the value or storage type of the data item. Every property
has a name and a value. The value can be an array or a structure, depending
on the property.

Data Object Packages

Simulink organizes classes into groups of classes called packages. Simulink
comes with a single package named Simulink. The Simulink classes,
Simulink.Parameter and Simulink.Signal, belong to the Simulink package.

7-9

7 Working with Data

You can create additional packages and define classes that belong to those
classes.

Qualified Names

When referring to a class on the MATLAB command line or in an M-file
program, you must specify both the name of the class and the name of the
class’s package, using the following dot notation:

PackageName.ClassName

The PackageName.ClassName notation is called the qualified name of the class.
For example, the qualified name of the Simulink parameter class is
Simulink.Parameter.

Two packages can have identically named but distinct classes. For example,
packages A and B can both have a class named C. You can refer to these classes
unambiguously on the MATLAB command line or in an M-file program, using
the qualified class name for each. Packages enable you to avoid naming
conflicts when creating classes. For example, you can create your own
Parameter and Signal classes without fear of conflicting with the similarly
named Simulink classes.

Note Class and package names are case sensitive. You cannot, for example,
use A.B and a.b interchangeably to refer to the same class.

Creating Data Objects

You can use either the Simulink Data Explorer or MATLAB commands to
create Simulink data objects. See “The Simulink Data Explorer” on page 7-27
for information on using the Data Explorer to create data objects.

Use the following syntax to create a data object at the MATLAB command line
or in a program:

h = package.class(argl, arg2, ...argn);

where h is a MATLAB variable, package is the name of the package to which
the class belongs, class is the name of the class, and arg1, arg2, ... argn,
are optional arguments passed to the object constructor. (Constructors for the

7-10

Working with Data Obijects

Simulink.Parameter and Simulink.Signal classes do not take arguments.)
For example, to create an instance of the Simulink.Parameter class, enter

hGain = Simulink.Parameter;

at the MATLAB command line.

This command creates an instance of Simulink.Parameter and stores its
handle in hGain.

Accessing Data Object Properties

You can use either the Simulink Data Explorer (see “The Simulink Data
Explorer” on page 7-27) or MATLAB commands to get and set a data object’s
properties. See “The Simulink Data Explorer” on page 7-27 for information on
how to use the Data Explorer to display and set object properties.

To access a data object’s properties at the MATLAB command line or in an
M-file program, use the following notation:

hObject.property

where hObject is the handle to the object and property is the name of the
property. For example, the following code

hGain = Simulink.Parameter;
hGain.Value = 5;

creates a Simulink block parameter object and sets the value of its Value
property to 5. You can use dot notation recursively to access the fields of
structure properties. For example, gain.RTWInfo.StorageClass returns the
StorageClass property of the gain parameter.

Invoking Data Object Methods
Use the syntax

hObject.method

or

method(hObject)

to invoke a data object method, where hObject is the object’s handle. Simulink
defines the following methods for data objects.

7-11

7 Working with Data

® get
Returns the properties of the object as a MATLAB structure

® copy
Creates a copy of the object and returns a handle to the copy.

Saving and Loading Data Objects

You can use the MATLAB save command to save data objects in a MAT-file and
the MATLAB load command to restore them to the MATLAB workspace in the
same or a later session. Definitions of the classes of saved objects must exist on
the MATLAB path for them to be restored. If the class of a saved object acquires
new properties after the object is saved, Simulink adds the new properties to
the restored version of the object. If the class loses properties after the object is
saved, Simulink restores only the properties that remain.

Using Data Objects in Simulink Models

You can use data objects in Simulink models as parameters and signals. Using
data objects as parameters and signals allows you to specify simulation and
code generation options on an object-by-object basis.

Using Data Objects as Parameters

You can use an instance of Simulink.Parameter class or a descendant class as
a block parameter. To use a parameter object as a block parameter:

1 Create the parameter object at the MATLAB command line or in the
Simulink Data Explorer.

2 Set the value of the object’s Value property to the value you want to specify
for the block parameter.

3 Set the parameter object’s storage class and type properties to select
tunability (see “The Simulink Data Explorer” on page 7-27) and/or code
generation options (see the Real-Time Workshop documentation for more
information).

4 Specify the parameter object as the block parameter in the block’s
parameter dialog box or in a set_param command.

7-12

Working with Data Obijects

See “Creating Persistent Parameter and Signal Objects” on page 7-14 for
information on how to create parameter objects that persist across a session.

Using Parameter Objects to Specify Parameter Tunability

If you want the parameter to be tunable even when the Inline parameters
simulation option is set (see “Model parameter configuration” on page 10-29),
set the parameter object’s RTWInfo.StorageClass property to any value but
'Auto’ (the default).

gain.RTWInfo.StorageClass = 'SimulinkGlobal’;

If you set the RTWInfo.StorageClass property to any value other than Auto,
you should not include the parameter in the model’s tunable parameters table
(see “Model Parameter Configuration Dialog Box” on page 10-33).

Note Simulink halts the simulation and displays an error message if it
detects a conflict between the properties of a parameter as specified by a
parameter object and the properties of the parameter as specified in the
Model Parameter Configuration dialog box.

Using Data Objects as Signals

You can use an instance of Simulink.Signal class or a descendent class to
specify signal properties. To use a data object as a signal object to specify signal
properties,

1 Create the signal data object in the model workspace.

2 Set the storage class and type properties of the signal object to specify the
visibility of the signal (see “Using Signal Objects to Specify Test Points” on
page 7-14) and code generation options (see the Real-Time Workshop
documentation for information on using signal properties to specify code
generation options).

3 Change the label of any signal that you want to have the same properties as
the signal data object to have the same name as the signal.

See “Creating Persistent Parameter and Signal Objects” on page 7-14 for
information on creating signal objects that persist across Simulink sessions.

7-13

7 Working with Data

Using Signal Objects to Specify Test Points

If you want a signal to be a test point (i.e., always available for display on a
floating scope during simulation), set the RTWInfo.StorageClass property of
the corresponding signal object to any value but auto.

Note Simulink halts the simulation and displays an error message if it
detects a conflict between the properties of a signal as specified by a signal
object and the properties of the parameter as specified in the Signal
Properties dialog box (see “Signal Properties Dialog Box” on page 6-11).

Creating Persistent Parameter and Signal Objects

To create parameter and signal objects that persist across Simulink sessions,
first write a script that creates the objects or create the objects with the
Simulink Data Explorer (see “The Simulink Data Explorer” on page 7-27) or
at the command line and save them in a MAT-file (see “Saving and Loading
Data Objects” on page 7-12). Then use either the script or a load command as
the PreLoadFcn callback routine for the model that uses the objects. For
example, suppose you save the data objects in a file named data_objects.mat
and the model to which they apply is open and active. Then, entering the
following command

set_param(gcs, 'PreLoadFcn', 'load data_objects');

at the MATLAB command line sets 1load data_objects as the model’s preload
function. This in turn causes the data objects to be loaded into the model
workspace whenever you open the model.

Creating Data Object Classes

The Simulink Data Class Designer allows you to define your own data object
classes. To define a class with the Data Class Designer, you enter the package,
name, parent class, properties, and other characteristics of the class in a dialog
box. The Data Class Designer then generates P-code that defines the class.
You can also use the Data Class Designer to change the definitions of classes
that it created, for example, to add or remove properties.

7-14

Working with Data Obijects

Note You can use the Data Class Designer to create custom storage classes.
See the RTW documentation for information on custom storage classes.

7-15

7 Working with Data

Creating a Data Obiject Class
To create a class with the Data Class Designer:

1 Select Data class designer from the Simulink Tools menu.

The Data Class Designer’s dialog box appears.

<} Simulink Data Class Designer =] E3

rUser-defined package

Fackage name:

|MyData LI e | Copy | Renamel Remoave |
Farent directory (location of @directory):
Id:l\-’\fokk

Classes | Enumerated Propery Types | Custom Storage Classes |

Class name:
--- Mone selected - LI [ey | Sy | Eename | Bermoye |
Derived from: | Mone selected --- LI | Mone selected --- LI

Froperies of this class {inherited properies disabled):

Froperty Mame | Froperty Type | Factary Value {optional) | [ey

H

[Ers/r

Hds

Bermoye

Class initialization {optional): Insert comments o assistin witing class intalization

I(I |>

| |

== Canfirm changesl Reload packagesl

Help | Close |

7-16

Working with Data Obijects

2 Select the name of the package in which you want to create the class from
the Package name list.

Do not create a class in any of Simulink’s built-in packages, i.e., packages in
matlabroot/toolbox/simulink. See “Creating a Class Package” on
page 7-25 for information on creating your own class packages.

3 Click the New button on the Classes pane of the Data Class Designer
dialog box.

4 Enter the name of the new class in the Class name field on the Classes
pane.

Note The name of the new class must be unique in the package to which the
new class belongs. Class names are case sensitive. For example, Simulink
considers Signal and signal to be names of different classes.

5 Press Enter or click the OK button on the Classes pane to create the
specified class in memory.

6 Select a parent class for the new class (see “Specifying a Parent for a Class”
on page 7-19).

7 Define the properties of the new class (see “Defining Class Properties” on
page 7-20).

8 If necessary, create initialization code for the new class (see “Creating
Initialization Code” on page 7-24).

7-17

7 Working with Data

7-18

9 Click Confirm changes.

Simulink displays the Confirm changes pane.

<} Simulink Data Class Designer =] E3

~Packages to write {only includes modified packages)

Package name Parent directory Write all |

MyOhjects dOrk " |

Add parent directory to MATLAB path: [ves - permanently LI

~Packages to remave

Package name Parent directony | | Remove all I

Remaove selected |

== Back |

Help | Close |

10 Click Write all or select the package containing the new class definition and
click Write selected to save the new class definition.

You can also use the Classes pane to perform the following operations.

Copy a class. To copy a class, select the class in the Classes pane and click
Copy. Simulink creates a copy of the class under a slightly different name. Edit
the name, if desired, click Confirm changes, and click Write all or, after
selecting the appropriate package, Write selected to save the new class.

Rename a class. To rename a class, select the class in the Classes pane and click
Rename. The Class name field becomes editable. Edit the field to reflect the
new name. Save the package containing the renamed class, using the Confirm
changes pane.

Remove a class from a package. To remove a class definition from the currently
selected package, select the class in the Classes pane and click Remove.

Working with Data Obijects

Simulink removes the class from the in-memory definition of the class. Save
the package that formerly contained the class.

Specifying a Parent for a Class
To specify a parent for a class:

1 Select the name of the class from the Class name field on the Classes pane.

2 Select the package name of the parent class from the lefthand Derived from

list box.

Class name:

|Signa| LI

R |

Copy

| Rename | Remaove |

Derived from: | Mone selected ---

|z| | Mone selected ---

Properties th!"' Mone selected -—-
Property N ASAP2 v vew

tory Walue {optional)

|

SimulinkDemos
MyQbjects

p

Diovwen

d3

Remaove

3 Select the parent class from the righthand Derived from list.

Class name:
signal LI e | Copy | Rename | Remoave |
Derived from: |Simu|ink LI |- Mone selected - |z|

Froperies of this class {inherited properies disabled):

Froperty Name | Froperty Type | Fact

- Mone selected ---
Farameter

CustomParameter
CustomSignal
CustomRTwinfo
CustomStorageClassAttributes

Remaove |

7-19

7 Working with Data

Simulink displays properties of the selected class derived from the parent
class in the Properties of this class field.

Class name:
signal LI e | Copy | Rename | Remoave |
Detived from: |Simulink =/ .|signal d|
Froperies of this class {inherited properies disabled):

Froperty Name Froperty Type Factary Yalue {optional) [ey |
RTWinfo hiandle = T

Diovwen

Remaove

d3

Simulink grays the inherited properties to indicate that they cannot be
redefined by the child class.

4 Save the package containing the class.

Defining Class Properties
To add a property to a class,

1 Select the name of the class from the Class name field on the Classes pane.

2 Select the New button next to the Properties of this class field on the
Classes pane.

Simulink creates a property with a default name and value and displays the
property in the Properties of this class field.

Froperies of this class {inherited properies disabled):

Froperty Name Froperty Type Factary Yalue {optional) [ey
RTWlnfo fandle 3

-
=]
Diovwen |

Remaove |

7-20

Working with Data Obijects

3 Enter a name for the new property in the Property Name column.

Note The property name must be unique to the class. Unlike class names,
property names are not case sensitive. For example, Simulink treats Value
and value as referring to the same property.

4 Select the data type of the property from the Property Type list.

The list includes built-in property types and any enumerated property types
that you have defined (see “Defining Enumerated Property Types” on
page 7-22).

5 Ifyou want the property to have a default value, enter the default value in
the Factory Value column.

The default value is the value the property has when an instance of the
associated class is created. The initialization code for the class can override
this value (see “Creating Initialization Code” on page 7-24 for more
information).

The following rules apply to entering factory values for properties:

= Do not use quotation marks when entering the value of a string property.
Simulink treats the value that you enter as a literal string.

= The value of a MATLAB array property can be any expression that
evaluates to an array, cell array, structure, or object. Enter the expression
exactly as you would enter the value on the command line, for example,
[0 1; 1 0].Simulink evaluates the expression that you enter to check its
validity. Simulink displays a warning message if evaluating the
expression results in an error. Regardless of whether an evaluation error
occurs, Simulink stores the expression as the factory value of the property.
This is because an expression that is invalid at define time might be valid
at run-time.

= You can enter any expression that evaluates to a numeric value as the
value of a double or int32 property. Simulink evaluates the expression
and stores the result as the property’s factory value.

6 Save the package containing the class with new or changed properties.

7-21

7 Working with Data

Defining Enumerated Property Types

An enumerated property type is a property type whose value must be one of a
specified set of values, for example, red, blue, or green. An enumerated
property type is valid only in the package that defines it.

To create an enumerated property type:

1 Select the Enumerated Property Types pane of the Data Class Designer.

Classes Enurmerated Property Types | Custom Storage Classes |

Froperty type name:

|—--N0nese|ected--- LI [ey | Sy Eename | Bermoye I

Enumerated strings {one per line):
= ARl |

el

| |

NOTE:
- Enter one enumerated string per line.
- Do not enclose strings inside single gquotes.

2 Click the New button next to the Property type name field.

Simulink creates an enumerated type with a default name.

Froperty type name:

MNewPropertyTypel Ok | Cancel | REenarme | Bermoye |

3 Change the default name in the Property type name field to the desired
name for the property.

The currently selected package defines an enumerated property type and
the type can be referenced only in the package that defines it. However, the
name of the enumerated property type must be globally unique. There
cannot be any other built-in or user-defined enumerated property with the
same name. If you enter the name of an existing built-in or user-defined

7-22

Working with Data Obijects

enumerated property for the new property, Simulink displays an error
message.

4 C(Click the OK button.

Simulink creates the new property in memory and enables the Enumerated
strings field on the Enumerated Property Types pane.

5 Enter the permissible values for the new property type Enumerated strings
field, one per line.

For example, the following Enumerated strings field shows the permissible
values for an enumerated property type named Color.

Froperty type name:

|Co|0r LI [ey | Copy | Renamel Removel
Enumerated strings {one per line):

red - Apply |
hilue

green

| (o]

6 Click Apply to save the changes in memory.

7 Click Confirm changes. Then click Write all to save this change.

You can also use the Enumerated Property Type pane to copy, rename, and
remove enumerated property types.

¢ Click the Copy button to copy the currently selected property type. Simulink
creates a new property that has a new name, but has the same value set as
the original property.

¢ Click the Rename button to rename the currently selected property type.

The Property name field becomes editable. Edit the field to reflect the new
name.

¢ Click the Remove button to remove the currently selected property.

7-23

7 Working with Data

Don'’t forget to save the package containing the modified enumerated property
type.

Creating Initialization Code

You can specify code to be executed when Simulink creates an instance of a
data object class. To specify initialization code for a class, select the class from
the Class name field of the Data Class Designer and enter the initialization
code in the Class initialization field.

The Data Class Designer inserts the code that you enter in the Class
initialization field in the class instantiation function of the corresponding
class. Simulink invokes this function when it creates an instance of this class.
The class instantiation function has the form

function h = ClassName(varargin)

where h is the handle to the object that is created and varargin is a cell array
that contains the function's input arguments.

By entering the appropriate code in the Data Class Designer, you can cause
the instantiation function to perform such initialization operations as

¢ Error checking

¢ Loading information from data files

¢ Override factory values

¢ Initialize properties to user-specified values

For example, suppose you want to let a user initialize the ParamName property
of instances of a class named MyPackage.Parameter. The user does this by
passing the initial value of the ParamName property to the class constructor.

Kp = MyPackage.Parameter('Kp');

The following code in the instantiation function would perform the required
initialization.
switch nargin
case 0
% No input arguments - no action
case 1
% One input argument
h.ParamName = varargin{i};

7-24

Working with Data Obijects

otherwise
warning('Invalid number of input arguments');

end
Creating a Class Package
To create a new package to contain your classes:
1 Click the New button next to the Package name field of the Data Class
Designer.

Fackage name:
Remaove

LI e Copy Rename

|Simu|inkDemos

Farent directory (location of @directory):

Ic:ImatIab‘ttoolbox’tsimulinMSimdemos

Simulink displays a default package name in the Package name field.

Fackage name:

Ok | Cancel | Renamel Bermoye |

2 Edit the Package name field to contain the package name that you want.

Fackage name:

|MyD ata|

LI QK | Cancel | Renamel REROE |

3 Click OK to create the new package in memory.

4 Inthe package Parent directory field, enter the path of the directory where
you want Simulink to create the new package.

Fackage name:

LI e | Copy | Renamel Remaove

|MyData
Farent directory (location of @directory):

Id:‘t\-’\fork

Simulink creates the specified directory, if it does not already exist, when
you save the package to your file system in the succeeding steps.

7-25

7 Working with Data

5 Click the Confirm changes button on the Data Class Designer.

Simulink displays the Packages to write panel.

Fackages towrite {(only includes modified packages)

Package name Parent directory Write all |

MyData diOrk \irite selected |

Add parent directory to MATLAB path: |Yes - permanently LI

6 To enable use of this package in the current and future sessions, ensure that
the Add parent directory to MATLAB path box is selected (the default).

This adds the path of the new package’s parent directory to the MATLAB
path.

7 Click Write all or select the new package and click Write selected to save
the new package.

You can also use the Data Class Designer to copy, rename, and remove
packages.

Copying a package. To copy a package, select the package and click the Copy

button next to the Package name field. Simulink creates a copy of the package
under a slightly different name. Edit the new name, if desired, and click OK to
create the package in memory. Then save the package to make it permanent.

Renaming a package. To rename a package, select the package and click the
Rename button next to the Package name field. The field becomes editable.
Edit the field to reflect the new name. Save the renamed package.

Removing a package. To remove a package, select the package and click the
Remove button next to the Package name field to remove the package from
memory. Click the Confirm changes button to display the Packages to
remove panel. Select the package and click Remove selected to remove the
package from your file system or click Remove all to remove all packages that
you have removed from memory from your file system as well.

7-26

The Simulink Data Explorer

The Simulink Data Explorer

The Simulink Data Explorer allows you to display and set the values of
variables and data objects in the MATLAB workspace. To open the Data
Explorer, choose Data explorer from the Simulink Tools menu or enter
slexplr at the MATLAB prompt. The Data Explorer dialog box appears.

<) Simulink Data Explorer

— Ohjects

Name Class

Simulink.Parameter
BEk double

Filter option: |valid MATLAB variables

|

—Properies

- [0 %]

i@ Simulink.Parameter

RTwnfo
Walue

1

Simulink. RT¥nfo
El[hﬂ double array]

Help | Close |

The Data Explorer contains two panes. The left pane lists variables defined in
the MATLAB workspace. Use the Filter option control to specify the types of
variables to be displayed (for example, all variables or Simulink data objects
only). The right pane displays the value of the variable selected in the left pane.
To create, rename, or delete an object, click the right mouse button in the left
pane. To display the fields of a property structure, click the + button next to the

property’s name.

To change a value, click the value. If the value is a string, edit the string. If the
property must be set to one of a predefined set of values, the Data Explorer
displays a drop-down list displaying valid values. Select the value you want. If

7-27

7 Working with Data

the value is an array, the Data Explorer displays an array editor that allows
you to set the dimensions of the array and the values of each element.

Enter Expression: | Size: |2 by |2
1 2
1 3 4
2| 7 49
0K Cancel

7-28

Associating User Data with Blocks

Associating User Data with Blocks

You can use Simulink’s set_param command to associate your own data with a
block. For example, the following command associates the value of the variable
mydata with the currently selected block.

set_param(gcb, 'UserData', mydata)

The value of mydata can be any MATLAB data type, including arrays,
structures, objects, and Simulink data objects. Use get_param to retrieve the
user data associated with a block.

get_param(gcb, 'UserData')

The following command causes Simulink to save the user data associated with
a block in the model file of the model containing the block.

set_param(gcb, 'UserDataPersistent', 'on');

7-29

7 Working with Data

7-30

Modeling with Simulink

The following sections provides tips and guidelines for creating Simulink models.

Modeling Equations (p. 8-2) How to use Simulink blocks to model mathematical
equations.

Avoiding Invalid Loops (p. 8-6) How to avoid creating invalid loops in your model.

Tips for Building Models (p. 8-8) Tips on creating efficient, accurate models of a dynamic

system.

8 Modeling with Simulink

Modeling Equations

One of the most confusing issues for new Simulink users is how to model
equations. Here are some examples that might improve your understanding of
how to model equations.

Converting Celsius to Fahrenheit
To model the equation that converts Celsius temperature to Fahrenheit

TF = 9/5(Tc) + 32
First, consider the blocks needed to build the model:
¢ A Ramp block to input the temperature signal, from the Sources library
¢ A Constant block to define a constant of 32, also from the Sources library
¢ A Gain block to multiply the input signal by 9/5, from the Math library

® A Sum block to add the two quantities, also from the Math library
® A Scope block to display the output, from the Sinks library

Next, gather the blocks into your model window.

)D} + I:l

Famp

3ain

Sum Scope

Constant

Assign parameter values to the Gain and Constant blocks by opening
(double-clicking) each block and entering the appropriate value. Then, click the
Close button to apply the value and close the dialog box.

Now, connect the blocks.

L——sps——fr]
Ramp Gain *
Sum Scope

Constant

¥

Modeling Equations

The Ramp block inputs Celsius temperature. Open that block and change the
Initial output parameter to 0. The Gain block multiplies that temperature by
the constant 9/5. The Sum block adds the value 32 to the result and outputs the
Fahrenheit temperature.

Open the Scope block to view the output. Now, choose Start from the
Simulation menu to run the simulation. The simulation runs for 10 seconds.

Modeling a Simple Continuous System
To model the differential equation

x'(t) = —2x(t) + u(t)

where u(t) is a square wave with an amplitude of 1 and a frequency of 1
rad/sec. The Integrator block integrates its input x” to produce x. Other blocks
needed in this model include a Gain block and a Sum block. To generate a
square wave, use a Signal Generator block and select the Square Wave form
but change the default units to radians/sec. Again, view the output using a
Scope block. Gather the blocks and define the gain.

In this model, to reverse the direction of the Gain block, select the block, then
use the Flip Block command from the Format menu. To create the branch line
from the output of the Integrator block to the Gain block, hold down the Ctrl
key while drawing the line. For more information, see “Drawing a Branch Line”
on page 4-12. Now you can connect all the blocks.

oooo u T
aa L o 1 ¥
ol » 1]
. Ll
Signal s
Ganerator Sum Integrator Scope

Gain

An important concept in this model is the loop that includes the Sum block, the
Integrator block, and the Gain block. In this equation, x is the output of the
Integrator block. It is also the input to the blocks that compute x’, on which it
is based. This relationship is implemented using a loop.

8-3

8 Modeling with Simulink

8-4

The Scope displays x at each time step. For a simulation lasting 10 seconds, the
output looks like this:

<) Scope =] B3
l@mopp ABB B L &

The equation you modeled in this example can also be expressed as a transfer
function. The model uses the Transfer Fen block, which accepts © as input and
outputs x. So, the block implements x/u. If you substitute sx for x” in the above
equation, you get

sx = -2x+u
Solving for x gives

x =u/(s+2)

or,

x/u =1/(s+2)

The Transfer Fen block uses parameters to specify the numerator and
denominator coefficients. In this case, the numerator is 1 and the denominator
is s+2. Specify both terms as vectors of coefficients of successively decreasing
powers of s. In this case the numerator is [1] (or just 1) and the denominator
is [1 2]. The model now becomes quite simple.

Modeling Equations

ooono
(g}

1

Signal
Generator

¥

=2

Transfer Fen

¥

Scope

The results of this simulation are identical to those of the previous model.

8-5

8 Modeling with Simulink

Avoiding Invalid Loops

8-6

Simulink allows you to connect the output of a block directly or indirectly (i.e.,
via other blocks) to its input, thereby, creating a loop. Loops can be very useful.
For example, you can use loops to solve differential equations diagramatically
(see “Modeling a Simple Continuous System” on page 8-3) or model feedback
control systems. However, it is also possible to create loops that cannot be
simulated. Common types of invalid loops include:

® Loops that create invalid function-call connections or an attempt to modify
the input/output arguments of a function call

¢ Self-triggering subsystems and loops containing non-latched triggered
subsystems

¢ Loops containing action subsystems

The Subsystem Examples block library in the Ports & Subsystems library
contains models that illustrates examples of valid and invalid loops involving
triggered and function-call subsystems. Examples of invalid loops include the
following models:

® simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerr1

® simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerr2

® simulink/Ports&Subsystems/sl_subsys_semantics/Function-call
systems/sl_subsys_fcncallerr3

You might find it useful to study these examples to avoid creating invalid loops
in your own models.

Avoiding Invalid Loops

Detecting Invalid Loops

To detect whether your model contains invalid loops, select Update diagram
from the model’s Edit menu. If the model contains invalid loops, Simulink
highlights the loops

H
[+ H+

Dizcrete Pulse
Generator k.

r ¥

nifout nifout
trigsz1 A trigssZ
é}:
B

and displays an error message in the Simulink Diagnostic Viewer.

8-7

8 Modeling with Simulink

Tips for Building Models

8-8

Here are some model-building hints you might find useful:

* Memory issues
In general, the more memory, the better Simulink performs.
¢ Using hierarchy

More complex models often benefit from adding the hierarchy of subsystems
to the model. Grouping blocks simplifies the top level of the model and can
make it easier to read and understand the model. For more information, see
“Creating Subsystems” on page 4-19. The Model Browser provides useful
information about complex models (see “The Model Browser” on page 9-8).

¢ Cleaning up models

Well organized and documented models are easier to read and understand.
Signal labels and model annotations can help describe what is happening in
a model. For more information, see “Signal Names” on page 6-17 and
“Annotating Diagrams” on page 4-16.

¢ Modeling strategies

If several of your models tend to use the same blocks, you might find it easier
to save these blocks in a model. Then, when you build new models, just open
this model and copy the commonly used blocks from it. You can create a block
library by placing a collection of blocks into a system and saving the system.
You can then access the system by typing its name in the MATLAB command
window.

Generally, when building a model, design it first on paper, then build it using
the computer. Then, when you start putting the blocks together into a model,
add the blocks to the model window before adding the lines that connect
them. This way, you can reduce how often you need to open block libraries.

Browsing and Searching
Models

The following sections describe tools that enable you to quickly navigate to any point in a model and
find objects in a model.

Finding Objects (p. 9-2) How to locate blocks, states, and other objects in a model,
using search criteria that you specify.

The Model Browser (p. 9-8) How to navigate quickly to any point in a model’s block
hierarchy.

9 Browsing and Searching Models

Finding Objects

To locate blocks, signals, states, or other objects in a model, select Find from
the Edit menu. The Find dialog box appears.

) Find : vdp =] B3

—Filteroptions —_Search criteria
: Find |
Look for |Se|ec| Basic | Advanced |
B simulink objects & Find what Help |
W stateflow objects @ | =] F— |
b

I= | Bearch biock dialoy parameters:

™ Match case IContains wiord vI

—Startin system

™ Lookinside masked systems

™ Lookinside linked systems |vdp LI

Use the Filter options (see “Filter Options” on page 9-3) and Search criteria
(see “Search Criteria” on page 9-4) panels to specify the characteristics of the
object you want to find. Next, if you have more than one system or subsystem
open, select the system or subsystem where you want the search to begin from
the Start in system list. Finally, select the Find button. Simulink searches the
selected system for objects that meet the criteria you have specified.

9-2

Finding Obijects

Any objects that satisfy the criteria appear in the results panel at the bottom
of the dialog box.

) Find : vdp =] B3
—Filteroptions —_Search criteria
: Find |
Look for |Se|ec| Basic | Advanced |
B simulink ohjects Find what: Help |
W Stateflow objects @ — |
i [

™ Search block dialog parameters

I~
™ Match case ICDntains wiotd LI

—Startin system

™ Lookinside masked systems

™ Lookinside linked systems |vdp LI
Type | MName | FParent | Source | Destination
0 Black My wdp
0 Black P wdp

Found 2 object(=)

You can display an object by double-clicking its entry in the search results list.
Simulink opens the system or subsystem that contains the object (if necessary)
and highlights and selects the object. To sort the results list, click any of the
buttons at the top of each column. For example, to sort the results by object
type, click the Type button. Clicking a button once sorts the list in ascending
order, clicking it twice sorts it in descending order. To display an object’s
parameters or properties, select the object in the list. Then press the right
mouse button and select Parameter or Properties from the resulting context
menu.

Filter Options

The Filter options panel allows you to specify the kinds of objects to look for
and where to search for them.

9-3

9 Browsing and Searching Models

94

—Filter options
Look for | Select

B Simulink objects 2
|- & Annotations I~
|— & Blocks I~
L& Signals I~

B Stateflow objects < |l Obiecl ype list
|- & States I~
|— & Transitions I~
|- & Junctions I~
|— & Events I~
- & Data I~
L& Targets I~

d | »

™ Lookinside masked systems

™ Lookinside linked systems

Object type list
The object type list lists the types of objects that Simulink can find. By clearing
a type, you can exclude it from the Finder’s search.

Look inside masked subsystem

Selecting this option causes Simulink to look for objects inside masked
subsystems.

Look inside linked systems

Selecting this option causes Simulink to look for objects inside subsystems
linked to libraries.

Search Criteria

The Search criteria panel allows you to specify the criteria that objects must
meet to satisfy your search request.

Basic

The Basic panel allows you to search for an object whose name and, optionally,
dialog parameters match a specified text string. Enter the search text in the

panel’s Find what field. To display previous search text, select the drop-down
list button next to the Find what field. To reenter text, click it in the drop-down

Finding Obijects

list. Select Search block dialog parameters if you want dialog parameters to
be included in the search.

Advanced

The Advanced panel allows you to specify a set of as many as seven properties
that an object must have to satisfy your search request.

Basic Advanced |

Select Froperty Value
{nane)
{nane)
{nane)
{nane)
{nane)
{nane)
{nane)

e e o

LHENENENENENE

To specify a property, enter its name in one of the cells in the Property column
of the Advanced pane or select the property from the cell’s property list. To
display the list, select the down arrow button next to the cell. Next enter the
value of the property in the Value column next to the property name. When you
enter a property name, the Finder checks the check box next to the property
name in the Select column. This indicates that the property is to be included
in the search. If you want to exclude the property, clear the check box.

Match case

Select this option if you want Simulink to consider case when matching search
text against the value of an object property.

Other match options

Next to the Match case option is a list that specifies other match options that
you can select:

® Match whole word

Specifies a match if the property value and the search text are identical
except possibly for case.

9-5

9 Browsing and Searching Models

® Contains word
Specifies a match if a property value includes the search text.
® Regular expression

Specifies that the search text should be treated as a regular expression when
matched against property values. The following characters have special
meanings when they appear in a regular expression.

Character Meaning

~

Matches start of string.
$ Matches end of string.
Matches any character.

\ Escape character. Causes the next character to have its
ordinary meaning. For example, the regular expression \ ..
matches .a and .2 and any other two-character string that
begins with a period.

Matches zero or more instances of the preceding character.
For example, ba* matches b, ba, baa, etc.

+ Matches one or more instances of the preceding character.
For example, ba+ matches ba, baa, etc.

[1] Indicates a set of characters that can match the current
character. A hyphen can be used to indicate a range of
characters. For example, [a-zA-Z0-9_]+ matches foo_bar1
but not foo$bar. A * indicates a match when the current
character is not one of the following characters. For
example, ["0-9] matches any character that is not a digit.

\w Matches a word character (same as [a-z_A-Z0-9]).

\W Matches a nonword character (same as [“a-z_A-Z0-9]).
\d Matches a digit (same as [0-9]).

\D Matches a nondigit (same as [*0-9]).

\s Matches white space (same as [\t\r\n\f]).

9-6

Finding Obijects

Character Meaning
\S Matches nonwhite space (same as [~ \t\r\n\f]).
\<WORD\> Matches WORD where WORD is any string of word characters

surrounded by white space.

9-7

9 Browsing and Searching Models

9-8

The Model Browser

The Model Browser enables you to

¢ Navigate a model hierarchically

¢ Open systems in a model

e Determine the blocks contained in a model

The browser operates differently on Microsoft Windows and UNIX platforms.

Using the Model Browser on Windows

To display the Model Browser, select Model Browser from the Simulink View

menu.

E!engine

File Edit ¥iew Simulation Format Tools Help

IS[=] E3

D|@H§I%E|DQ|H|> 5 [Nomal 4|

odel Browser

(= El engine

aRRS

choose Start from

idegrees)

: y Compreszion ﬂ:;(::fz:{f::;r
y Dirag Torque
2 Thiottle & Marifold
. 2] Vehicle Dynamics
y walve timing
E | Thiattle Ang.
thiottle Mass Airflow Rate

Engine Speed, M
Thottle & Manifok

Engine Timing Model in Si1,
A Demonstration of Triggered .

k J
t
mass (kijf———=

mmass (k+1)

trigger

Compession

Fieady

[0z I

i
Z

The model window splits into two panes. The left pane displays the browser, a

tree-structured view of the block diagram displayed in the right pane.

The Model Browser

Note The Browser initially visible preference causes Simulink to open
models by default in the Model Browser. To set this preference, select
Preferences from the Simulink File menu.

The top entry in the tree view corresponds to your model. A button next to the
model name allows you to expand or contract the tree view. The expanded view
shows the model’s subsystems. A button next to a subsystem indicates that the
subsystem itself contains subsystems. You can use the button to list the
subsystem’s children. To view the block diagram of the model or any subsystem
displayed in the tree view, select the subsystem. You can use either the mouse
or the keyboard to navigate quickly to any subsystem in the tree view.

Navigating with the Mouse

Click any subsystem visible in the tree view to select it. Click the + button next
to any subsystem to list the subsystems that it contains. Click the button again
to contract the entry.

Navigating with the Keyboard

Use the up/down arrows to move the current selection up or down the tree view.
Use the left/right arrow or +/- keys on your numeric keypad to expand an entry
that contains subsystems.

Showing Library Links

The Model Browser can include or omit library links from the tree view of a
model. Use the Simulink Preferences dialog box to specify whether to display
library links by default. To toggle display of library links, select Show library

links from the Model browser options submenu of the Simulink View menu.

Showing Masked Subsystems

The Model Browser can include or omit masked subsystems from the tree view.
If the tree view includes masked subsystems, selecting a masked subsystem in
the tree view displays its block diagram in the diagram view. Use the Simulink
Preferences dialog box to specify whether to display masked subsystems by
default. To toggle display of masked subsystems, select Look under masks
from the Model browser options submenu of the Simulink View menu.

9-9

9 Browsing and Searching Models

9-10

Using the Model Browser on UNIX

To open the Model Browser, select Show Browser from the File menu. The
Model Browser window appears, displaying information about the current
model. This figure shows the Model Browser window displaying the contents of
the clutch system.

E] “clutch" Browser A= &3

File Options

Break Apart Detection B
Break-Apart Flag
Clutch Pedal
Engine Torgue
Friction Model

Locked <J
Locked Flag

Lockup Detection

Break Apart Detect

Friction Model

Locked

+ Lockup Detection
Lockup FSHM
Fequi=ite Frictiorn

Tnlocked

Current system an
subsystems it contains

Blocks in the
selected system

_,|_v| BlockType: SubSystem

™ Look Under [f]azk Dialog Open System
™ Expand [L]ibrary Links ek nte System
Help | Frint... Cloze

Contents of the Browser Window
The Model Browser window consists of

® The systems list. The list on the left contains the current system and the
subsystems it contains, with the current system selected.

® The blocks list. The list on the right contains the names of blocks in the
selected system. Initially, this window displays blocks in the top-level
system.

¢ The File menu, which contains the Print, Close Model, and Close Browser
menu items.

¢ The Options menu, which contains the menu items Open System, Look
Into System, Display Alphabetical/Hierarchical List, Expand All, Look
Under Mask Dialog, and Expand Library Links.

¢ The Options check boxes and buttons Look Under [M]ask Dialog and
Expand [Llibrary Links check boxes, and Open System and Look Into
System buttons. By default, Simulink does not display the contents of

The Model Browser

masked blocks and blocks that are library links. These check boxes enable
you to override the default.

¢ The block type of the selected block.
¢ Dialog box buttons Help, Print, and Close.

Interpreting List Contents

Simulink identifies masked blocks, reference blocks, blocks with defined
OpenFcn parameters, and systems that contain subsystems using these
symbols before a block or system name:

¢ A plus sign (+) before a system name in the systems list indicates that the
system is expandable, which means that it has systems beneath it.
Double-click the system name to expand the list and display its contents in
the blocks list. When a system is expanded, a minus sign (-) appears before
its name.

¢ [M] indicates that the block is masked, having either a mask dialog box or a
mask workspace. For more information about masking, see Chapter 12,
“Creating Masked Subsystems.”

¢ [L] indicates that the block is a reference block. For more information, see
“Connecting Blocks” on page 4-9.

¢ [O] indicates that an open function (OpenFcn) callback is defined for the
block. For more information about block callbacks, see “Using Callback
Routines” on page 4-70.

¢ [S] indicates that the system is a Stateflow block.

Opening a System
You can open any block or system whose name appears in the blocks list. To
open a system:

1 In the systems list, select by single-clicking the name of the parent system
that contains the system you want to open. The parent system’s contents
appear in the blocks list.

2 Depending on whether the system is masked, linked to a library block, or
has an open function callback, you open it as follows:

= If the system has no symbol to its left, double-click its name or select its
name and click the Open System button.

9-11

9 Browsing and Searching Models

9-12

= Ifthe system has an [M] or [O] before its name, select the system name and
click the Look Into System button.

Looking into a Masked System or a Linked Block

By default, the Model Browser considers masked systems (identified by [M])
and linked blocks (identified by [L]) as blocks and not subsystems. If you click
Open System while a masked system or linked block is selected, the Model
Browser displays the system or block’s dialog box (Open System works the
same way as double-clicking the block in a block diagram). Similarly, if the
block’s OpenFcn callback parameter is defined, clicking Open System while
that block is selected executes the callback function.

You can direct the Model Browser to look beyond the dialog box or callback
function by selecting the block in the blocks list, then clicking Look Into
System. The Model Browser displays the underlying system or block.

Displaying List Contents Alphabetically

By default, the systems list indicates the hierarchy of the model. Systems that
contain systems are preceded with a plus sign (+). When those systems are
expanded, the Model Browser displays a minus sign (-) before their names. To
display systems alphabetically, select the Display Alphabetical List menu
item on the Options menu.

Running a Simulation

The following sections explain how to run a Simulink simulation.

Simulation Basics (p. 10-2) How to start, suspend, stop, interact with, and diagnose
errors in a simulation.

The Simulation Parameters Dialog Box How to use this dialog box to specify the start and stop

(p. 10-7) time, solver, and other simulation options.

Diagnosing Simulation Errors How to use the Simulation Diagnostic Viewer to diagnose
(p. 10-36) simulation errors.

Improving Simulation Performance Tips on improving simulation performance and accuracy.
and Accuracy (p. 10-40)

Running a Simulation How to run a simulation from a program or the MATLAB

Programmatically (p. 10-42) command line.

1 0 Running a Simulation

Simulation Basics

Running a Simulink model is generally a two-step process. First, you specify
various simulation parameters, such as the solver used to solve the model, the
start and stop time for the simulation, the maximum step size, and so on (see
“Specifying Simulation Parameters” on page 10-3). You then start the
simulation. Simulink runs the simulation from the specified start time to the
specified stop time (see “Starting a Simulation” on page 10-4). While the
simulation is running, you can interact with the simulation in various ways,
stop or pause the simulation (see “Pausing or Stopping a Simulation” on

page 10-5), and launch simulations of other models. If an error occurs during a
simulation, Simulink halts the simulation and pops up a diagnostic viewer that
helps you to determine the cause of the error.

Note The following sections explain how to run a simulation interactively.
See “Running a Simulation Programmatically” on page 10-42 for information
on running a simulation from a program or the MATLAB command line.

10-2

Simulation Basics

Specifying Simulation Parameters
To use the Simulation Parameters dialog box:

1 Open or select the model whose simulation parameters you want to set.
2 Select Simulation parameters from the model window’s Simulation menu.
The Simulation Parameters dialog box appears.

<) Simulation Parameters: vdp = B3

Salver

‘Workspace /0 | Diagnosticsl Advancedl
Simulation time

Start time: I 0.0 Stop time: I 20

Solver options
Type: IVariabIe-step j I oded5 [Dormand-Prince] j

Mai step size: I auto Relative tolerance: I 1e-3
Min step size: I auto Absolute tolerance: I 1e-B
Initial step size: I auta

Output options

Fiefine output j Fiefine factor: I 1

QK | Eancell Help | Aol |

The dialog box displays the current simulation settings for the model (see
“The Simulation Parameters Dialog Box” on page 10-7 for a detailed
description of the settings).

3 Change the settings as necessary to suit your needs.

You can specify parameters as valid MATLAB expressions, consisting of
constants, workspace variable names, MATLAB functions, and
mathematical operators.

4 Click Apply to confirm the changes or OK to confirm the changes and
dismiss the dialog box.

5 Ifdesired, save the model to save the changes to the model’s simulation
parameters.

10-3

1 O Running a Simulation

10-4

Controlling Execution of a Simulation

The Simulink graphical interface includes menu commands and toolbar
buttons that enable you to start, stop, and pause a simulation.

Starting a Simulation

To start execution of a model, select Start from the model editor’s Simulation
menu or click the Start button on the model’s toolbar.

=10l x|

File Edit View | Simulation Format Tools Help

a|@néwg®|@@|>‘- [Nomal

Simulation parameters... Chr+E)
Jation

v Mormal
Accelerator

External C

=1
Out2
1-utu -
L) I S
Fen
Outt
hu

x2

. Start button

Mz

P
L

The van der Pol Equation - .
? Couble-click
(Double-click an the " for mare info) or:'ler:fc;:

Simulink Help

Scope

To start and stop the simulation, use the
selection in the "Simulation" pull-down menu

Start the simulation [1o02 [[|odets v

You can also use the keyboard shortcut, Ctrl+T, to start the simulation.

Note A common mistake that new Simulink users make is to start a
simulation while the Simulink block library is the active window. Make sure
your model window is the active window before starting a simulation.

Simulink starts executing the model at the start time specified on the
Simulation Parameters dialog box. Execution continues until the simulation
reaches the final time step specified on the Simulation Parameters dialog box,
an error occurs, or you pause or terminate the simulation (see “The Simulation
Parameters Dialog Box” on page 10-7).

Simulation Basics

While the simulation is running, a progress bar at the bottom of the model
window shows how far the simulation has progressed. A Stop command
replaces the Start command on the Simulation menu. A Pause command
appears on the menu and replaces the Start button on the model toolbar.

3 =10l
File Edit Wiew Simultgn Format Tools Help
DS e P LE S 0 e foma
_ Stop Chrl+T
Simulation parameters... Chr+E)
Jation
v Marmal
Accelerator N Siop button
Excternal
x1 —>®
e] e
1-utu -
*2 «1 P t
14 14 n
D el e O\ Pause butto
Outt
hu
x2
Mz
-
Scope
The van der Pol Equation .
(Double-click an the " for mare info) Dor:'l:rl:-le:d(Progress bur
L~
Simulink Help
To start and stop the simulation, use the
selection in the "Simulation" pull-down menu
[100% N & TT=14030.691 [odeds 4

Your computer beeps to signal the completion of the simulation.

Pausing or Stopping a Simulation

Select the Pause command or button to pause the simulation. Simulink
completes execution of the current time step and suspends execution of the
simulation. When you select Pause, the menu item and button change to
Continue. (The button has the same appearance as the Start button). You can
resume a suspended simulation at the next time step by choosing Continue.

To terminate execution of the model, select the Stop command or button. The
keyboard shortcut for stopping a simulation is Ctrl+T, the same as for starting
a simulation. Simulink completes execution of the current time step before
terminating the model. Subsequently selecting the Start command or button
restarts the simulation at the first time step specified on the Simulation
Parameters dialog box.

10-5

1 0 Running a Simulation

10-6

If the model includes any blocks that write output to a file or to the workspace,
or if you select output options on the Simulation Parameters dialog box,
Simulink writes the data when the simulation is terminated or suspended.

Interacting with a Running Simulation

You can perform certain operations interactively while a simulation is running.

You can

® Modify many simulation parameters, including the stop time, the solver, and
the maximum step size

¢ Change the solver

¢ Click a line to see the signal carried on that line on a floating (unconnected)
Scope or Display block

® Modify the parameters of a block, as long as you do not cause a change in

= Number of states, inputs, or outputs

= Sample time

= Number of zero crossings

= Vector length of any block parameters

= Length of the internal block work vectors
You cannot make changes to the structure of the model, such as adding or
deleting lines or blocks, during a simulation. If you need to make these kinds

of changes, you need to stop the simulation, make the change, then start the
simulation again to see the results of the change.

The Simulation Parameters Dialog Box

The Simulation Parameters Dialog Box

This section discusses the simulation parameters, which you specify either on
the Simulation Parameters dialog box or using sim and simset commands.
Parameters are described as they appear on the dialog box panes.

The Solver Pane

The Solver pane appears when you first choose Parameters from the
Simulation menu or when you select the Solver tab.

The Solver pane allows you to

® Set the simulation start and stop times
¢ Choose the solver and specify its parameters
¢ Select output options

<) Simulation Parameters: vdp = B3

Solver Workspacel.-"Dl Diagnosticsl Advancedl

Simulation time

Start time: I 0.0 Stop time: I 20

Solver options

Type: IVariabIe-step j I oded5 [Dormand-Prince] j

Mai step size: I auto Relative tolerance: I 1e-3
Min step size: I auto Absolute tolerance: I 1e-B
Initial step size: I auta

Output options

Fiefine output j Fiefine factor: I 1

QK | Eancell Help | Aol |

Simulation Time

You can change the start time and stop time for the simulation by entering new
values in the Start time and Stop time fields. The default start time is 0.0
seconds and the default stop time is 10.0 seconds.

Simulation time and actual clock time are not the same. For example, running
a simulation for 10 seconds usually does not take 10 seconds. The amount of

10-7

1 0 Running a Simulation

10-8

time it takes to run a simulation depends on many factors, including the
model’s complexity, the solver’s step sizes, and the computer’s speed.

Solvers

Simulation of a Simulink model entails computing its inputs, outputs, and
states at intervals from the simulation start time to the simulation end time.
Simulink uses a solver to perform this task. No one method for solving a model
is suitable for all models. Simulink therefore provides an assortment of solvers,
each geared to solving a specific type of model. The Solver pane allows you to
select the solver most suitable for your model (see “Improving Simulation
Performance and Accuracy” on page 10-40 for information on choosing a
solver). Your choices include

¢ Fixed-step continuous solvers

® Variable-step continuous solvers
¢ Fixed-step discrete solver

¢ Variable-step discrete solver

Fixed-step continuous solvers. These solvers compute a model’s continuous states
at equally spaced time steps from the simulation start time to the simulation
stop time. The solvers use numerical integration to compute the continuous
states of a system from the state derivatives specified by the model. Each solver
uses a different integration method, allowing you to choose the method most
suitable for your model. To specify a fixed-step continuous solver for your
model, select fixed-step from the solver type list on the Solver pane. Then
choose one of the following options from the adjacent integration method list.

® ode5, the Dormand-Prince formula

® ode4, RK4, the fourth-order Runge-Kutta formula

¢ ode3, the Bogacki-Shampine formula

¢ ode2, Heun’s method, also known as the improved Euler formula
¢ ode1, Euler’s method

Fixed-step discrete solver. Simulink provides a fixed-step solver that performs no
integration. It is suitable for use in solving models that have no continuous
states, including stateless models or models having only discrete states. To
specify this solver, select fixed-step from the solver type list on the Solver
pane. Then choose discrete from the adjacent integration method list.

The Simulation Parameters Dialog Box

Variable-step continuous solvers. These solvers decrease the simulation step size to
increase accuracy when a system’s continuous states are changing rapidly and
increase the step size to save simulation time when a system’s states are
changing slowly. To specify a variable-step continuous solver for your model,
select variable-step from the solver type list on the Solver pane. Then choose
one of the following options from the adjacent integration method list.

® ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver; that is, in computing y (t,), it
needs only the solution at the immediately preceding time point, y (t,_1). In
general, ode45 is the best solver to apply as a first try for most problems. For
this reason, ode45 is the default solver used by Simulink for models with
continuous states.

® ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and
Shampine. It can be more efficient than ode45 at crude tolerances and in the
presence of mild stiffness. ode23 is a one-step solver.

® ode1131is a variable-order Adams-Bashforth-Moulton PECE solver. It can be
more efficient than ode45 at stringent tolerances. ode113 is a multistep
solver; that is, it normally needs the solutions at several preceding time
points to compute the current solution.

® ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). These are related to but are more efficient than the
backward differentiation formulas, BDFs (also known as Gear’s method).
Like ode113, ode15s is a multistep method solver. If you suspect that a
problem is stiff, or if ode45 failed or was very inefficient, try ode15s.

® ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it can be more efficient than ode15s at crude tolerances. It
can solve some kinds of stiff problems for which ode15s is not effective.

® ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and you
need a solution without numerical damping.

® ode23tbis an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver
can be more efficient than ode15s at crude tolerances.

10-9

1 0 Running a Simulation

10-10

Note For a stiff problem, solutions can change on a time scale that is very
short compared to the interval of integration, but the solution of interest
changes on a much longer time scale. Methods not designed for stiff problems
are ineffective on intervals where the solution changes slowly because they
use time steps small enough to resolve the fastest possible change. Jacobian
matrices are generated numerically for ode15s and ode23s. For more
information, see Shampine, L. F., Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, 1994.

Variable-Step Discrete Solver. Simulink provides a variable-step discrete solver
that does no integration but does do zero-crossing detection (see “Zero-Crossing
Detection” on page 2-15). Use this solver for models that have no continuous
states and that have continuous signals requiring zero-crossing detection
and/or have discrete blocks that operate at different sample times. Simulink
uses this solver by default if you did not specify the fixed-step discrete solver
and your model has no continuous states.

Simulink’s fixed-step discrete solver advances the simulation by fixed-size time
steps. As a result, it can take a step even when nothing is happening in the
model. By contrast, Simulink’s variable-step solver does not have to take a time
step when nothing is happening in the model. Instead, it can adjust the step
size to advance the simulation to the next point where something significant
happens. Depending on the model, this can greatly reduce the number of steps
and hence the time required to simulate a model.

The follow multirate model illustrates how the variable-step solver can shorten
simulation time.

1
Fd— : |-
Zz
: Out
Sine Wawe Unit Delay
Ts=045
1
L) EEVED
r4
) Outd
Sine Wave Unit Delay
Te=075

This model generates outputs at two different rates, every 0.5 second and every
0.75 second. To capture both outputs, the fixed-step solver must take a time
step every 0.25 second (the fundamental sample time for the model).

The Simulation Parameters Dialog Box

[0.0 0.25 0.5 0.75 1.0 1.25 ...]

By contrast, the variable-step solver need take a step only when the model
actually generates an output.

[0.0 0.5 0.75 1.0 1.5 2.0 2.25 ...]

This significantly reduces the number of time steps required to simulate the
model.

Solver Options

The default solver parameters provide accurate and efficient results for most
problems. In some cases, however, tuning the parameters can improve
performance. (For more information about tuning these parameters, see
“Improving Simulation Performance and Accuracy” on page 10-40.) You can
tune the selected solver by changing parameter values on the Solver pane.

Step Sizes

For variable-step solvers, you can set the maximum and suggested initial step
size parameters. By default, these parameters are automatically determined,
indicated by the value auto.

For fixed-step solvers, you can set the fixed step size. The default is also auto.

Maximum step size. The Max step size parameter controls the largest time step
the solver can take. The default is determined from the start and stop times.

h — tstop B tstart

max 50

Generally, the default maximum step size is sufficient. If you are concerned
about the solver’s missing significant behavior, change the parameter to
prevent the solver from taking too large a step. If the time span of the
simulation is very long, the default step size might be too large for the solver to
find the solution. Also, if your model contains periodic or nearly periodic
behavior and you know the period, set the maximum step size to some fraction
(such as 1/4) of that period.

In general, for more output points, change the refine factor, not the maximum
step size. For more information, see “Refine output” on page 10-14.

10-11

1 0 Running a Simulation

10-12

Initial step size. By default, the solvers select an initial step size by examining
the derivatives of the states at the start time. If the first step size is too large,
the solver might step over important behavior. The initial step size parameter
is a suggested first step size. The solver tries this step size but reduces it if error
criteria are not satisfied.

Minimum step size. Specifies the smallest time step the solver can take. If the
solver needs to take a smaller step to meet error tolerances, it issues a warning
indicating the current effective relative tolerance. This parameter can be either
a real number greater than zero or a two-element vector where the first
element is the minimum step size and the second element is the maximum
number of minimum step size warnings to be issued before issuing an error.
Setting the second element to zero results in an error the first time the solver
must take a step smaller than the specified minimum. This is equivalent to
changing the minimum step size violation diagnostic to error on the
Diagnostics panel. Setting the second element to -1 results in an unlimited
number of warnings. This is also the default if the input is a scalar. The default
values for this parameter are a minimum step size on the order of machine
precision and an unlimited number of warnings.

Error Tolerances

The solvers use standard local error control techniques to monitor the error at
each time step. During each time step, the solvers compute the state values at
the end of the step and also determine the local error, the estimated error of
these state values. They then compare the local error to the acceptable error,
which is a function of the relative tolerance (rtol) and absolute tolerance (atol).
If the error is greater than the acceptable error for any state, the solver reduces
the step size and tries again:

® Relative tolerance measures the error relative to the size of each state. The
relative tolerance represents a percentage of the state’s value. The default,
le-3, means that the computed state is accurate to within 0.1%.

® Absolute tolerance is a threshold error value. This tolerance represents the
acceptable error as the value of the measured state approaches zero.

The error for the ith state, e;, is required to satisfy

e; <max(rtol x |xi ,atol))

The Simulation Parameters Dialog Box

The following figure shows a plot of a state and the regions in which the
acceptable error is determined by the relative tolerance and the absolute
tolerance.

rtol* | x|

SN\ - Region in which rtol determines acceptable error

Region in which atol determines acceptable error

atol,, / /
7Y

Time

State

If you specify auto (the default), Simulink sets the absolute tolerance for each
state initially to 1le-6. As the simulation progresses, Simulink resets the
absolute tolerance for each state to the maximum value that the state has
assumed thus far times the relative tolerance for that state. Thus, if a state
goes from 0 to 1 and reltol is le-3, then by the end of the simulation the
abstol is set to 1e-3 also. If a state goes from 0 to 1000, then the abstol is set
to 1.

If the computed setting is not suitable, you can determine an appropriate
setting yourself. You might have to run a simulation more than once to
determine an appropriate value for the absolute tolerance.

The Integrator, Transfer Fen, State-Space, and Zero-Pole blocks allow you to
specify absolute tolerance values for solving the model states that they
compute or that determine their output. The absolute tolerance values that you
specify for these blocks override the global settings in the Simulation
Parameters dialog box. You might want to override the global setting in this
way, if the global setting does not provide sufficient error control for all of your
model’s states, for example, because they vary widely in magnitude.

The Maximum Order for ode15s

The ode15s solver is based on NDF formulas of orders one through five.
Although the higher order formulas are more accurate, they are less stable. If
your model is stiff and requires more stability, reduce the maximum order to 2
(the highest order for which the NDF formula is A-stable). When you choose the
ode15s solver, the dialog box displays this parameter.

10-13

1 0 Running a Simulation

10-14

As an alternative, you can try using the ode23s solver, which is a fixed-step,
lower order (and A-stable) solver.

Multitasking Options

If you select a fixed-step solver, the Solver pane of the Simulation
Parameters dialog box displays a Mode options list. The list allows you to
select one of the following simulation modes.

MultiTasking. This mode issues an error if it detects an illegal sample rate
transition between blocks, that is, a direct connection between blocks operating
at different sample rates. In real-time multitasking systems, illegal sample
rate transitions between tasks can result in a task’s output not being available
when needed by another task. By checking for such transitions, multitasking
mode helps you to create valid models of real-world multitasking systems,
where sections of your model represent concurrent tasks.

Use the Rate Transition block to eliminate illegal rate transitions from your
model. For more information, see “Models with Multiple Sample Rates” in the
online documentation for the Real-Time Workshop for more information.

SingleTasking. This mode does not check for sample rate transitions among
blocks. This mode is useful when you are modeling a single-tasking system. In
such systems, task synchronization is not an issue.

Auto. This option causes Simulink to use single-tasking mode if all blocks
operate at the same rate and multitasking mode if the model contains blocks
operating at different rates.

Output Options

The Output options area of the dialog box enables you to control how much
output the simulation generates. You can choose from three options:

¢ Refine output

¢ Produce additional output

¢ Produce specified output only

Refine output. The Refine output choice provides additional output points when
the simulation output is too coarse. This parameter provides an integer
number of output points between time steps; for example, a refine factor of 2

The Simulation Parameters Dialog Box

provides output midway between the time steps, as well as at the steps. The
default refine factor is 1.

To get smoother output, it is much faster to change the refine factor instead of
reducing the step size. When the refine factor is changed, the solvers generate
additional points by evaluating a continuous extension formula at those points.
Changing the refine factor does not change the steps used by the solver.

The refine factor applies to variable-step solvers and is most useful when you
are using ode45. The ode45 solver is capable of taking large steps; when
graphing simulation output, you might find that output from this solver is not
sufficiently smooth. If this is the case, run the simulation again with a larger
refine factor. A value of 4 should provide much smoother results.

Note This option does not help the solver to locate zero crossings (see
“Zero-Crossing Detection” on page 2-15).

Produce additional output. The Produce additional output choice enables you to
specify directly those additional times at which the solver generates output.
When you select this option, Simulink displays an Output Times field on the
Solver pane. Enter a MATLAB expression in this field that evaluates to an
additional time or a vector of additional times. The additional output is
produced using a continuous extension formula at the additional times. Unlike
the refine factor, this option changes the simulation step size so that time steps
coincide with the times that you have specified for additional output.

Produce specified output only. The Produce specified output only choice provides
simulation output only at the specified output times. This option changes the
simulation step size so that time steps coincide with the times that you have
specified for producing output. This choice is useful when you are comparing
different simulations to ensure that the simulations produce output at the
same times.

10-15

1 0 Running a Simulation

10-16

Comparing Output options. A sample simulation generates output at these times.

0, 2.5, 5, 8.5, 10

Choosing Refine output and specifying a refine factor of 2 generates output at
these times.

0, 1.25, 2.5, 3.75, 5, 6.75, 8.5, 9.25, 10

Choosing the Produce additional output option and specifying [0:10]
generates output at these times

o, 1, 2, 3, 4,5, 6, 7, 8, 9, 10

and perhaps at additional times, depending on the step size chosen by the
variable-step solver.

Choosing the Produce Specified Output Only option and specifying [0:10]
generates output at these times.

o, 1, 2, 38, 4, 5, 6, 7, 8, 9, 10

In general, you should specify output points as integers times a fundamental
step size. For example,

[1:100]*0.01

is more accurate than

[1:0.01:100]

The Simulation Parameters Dialog Box

The Workspace 1/0 Pane

You can direct simulation output to workspace variables and get input and
initial states from the workspace. On the Simulation Parameters dialog box,
select the Workspace I/0O tab. This pane appears.

<) Simulation Parameters: vdp = B3
Solverl Workspacel.-"Dl Diagnosticsl Advancedl
Load from workspace Save to workspace
™ Input: l[]— I Time: ltUUt—
I Initial state: l[]— I~ States: IRUUt—
I Output: lyout—
I Final state: W
Save options
I™ Limit data points to last: I 1000
Decimation: I 1
Farmat: IAnay j
QK | Cancel | Help | Aol |

Loading Input from the Base Workspace

Simulink can apply input from a model’s base workspace to the model’s
top-level inports during a simulation run. To specify this option, select the
Input box in the Load from workspace area of the Workspace I/O pane.
Then, enter an external input specification (see below) in the adjacent edit box
and select Apply.

The external (i.e., from workspace) input can take any of the following forms.

Array. To use this format, select Input in the Load from workspace pane and
select the Array option from the Format list on the Workspace I/O pane.
Selecting this option causes Simulink to evaluate the expression next to the
Input check box and use the result as the input to the model.

The expression must evaluate to a real (noncomplex) matrix of data type

double. The first column of the matrix must be a vector of times in ascending
order. The remaining columns specify input values. In particular, each column
represents the input for a different Inport block signal (in sequential order) and
each row is the input value for the corresponding time point. Simulink linearly

10-17

1 0 Running a Simulation

10-18

interpolates or extrapolates input values as necessary if the Interpolate data
option is selected for the corresponding Inport.

The total number of columns of the input matrix must equal n + 1, where n is
the total number of signals entering the model’s inports.

The default input expression for a model is [t,u] and the default input format
is Array. So if you define t and u in the base workspace, you need only select
the Input option to input data from the model’s base workspace. For example,
suppose that a model has two inports, one of which accepts two signals and the
other of which accepts one signal. Also, suppose that the base workspace
defines u and t as follows.

t = (0:0.1:1)";
u = [sin(t), cos(t), 4*cos(t)];

Note The array input format allows you to load only real (noncomplex) scalar
or vector data of type double. Use the structure format to input complex data,
matrix (2-D) data, and/or data types other than double.

Structure with time. Simulink can read data from the workspace in the form of a
structure whose name is specified in the Input text field. The input structure
must have two top-level fields: time and signals. The time field contains a
column vector of the simulation times. The signals field contains an array of
substructures, each of which corresponds to a model input port.

Each signals substructure must contain two fields named values and
dimensions, respectively. The values field must contain an array of inputs for
the corresponding input port where each input corresponds to a time point
specified by the time field. The dimensions field specifies the dimensions of the
input. If each input is a scalar or vector (1-D array) value, the dimensions field
must be a scalar value that specifies the length of the vector (1 for a scalar). If
each input is a matrix (2-D array), the dimensions field must be a two-element
vector whose first element specifies the number of rows in the matrix and
whose second element specifies the number of columns.

If the inputs for a port are scalar or vector values, the values field must be an
M-by-N array where M is the number of time points specified by the time field
and N is the length of each vector value. For example, the following code creates

The Simulation Parameters Dialog Box

an input structure for loading 11 time samples of a two-element signal vector
of type int8 into a model with a single input port.

a.time = (0:0.1:1)";

cl = int8([0:1:10]");

c2 int8([0:10:100]");
a.signals(1).values = [c1 c2];
a.signals(1).dimensions = 2;

To load this data into the model’s inport, you would select the Input option on
the Workspace I/O pane and enter a in the input expression field.

If the inputs for a port are matrices (2-D arrays), the values field must be an
M-by-N-by-T array where M and N are the dimensions of each matrix input and
T is the number of time points. For example, suppose that you want to input 51
time samples of a 4-by-5 matrix signal into one of your model’s input ports.
Then, the corresponding dimensions field of the workspace structure must
equal [4 5] and the values array must have the dimensions 4-by-5-by-51.

As another example, consider the following model, which has two inputs.

(1
-
seope
In2

Suppose that you want to input a sine wave into the first port and a cosine wave
into the second port. To do this, define a vector, a, as follows, in the base
workspace.

a.time = (0:0.1:1)"';
a.signals(1).values = sin(a.time);
a.signals(1).dimensions = 1;
a.signals(2).values = cos(a.time);
a.signals(2).dimensions = 1;

Select the Input box for this model, enter a in the adjacent text field, and select
StructureWithTime as the I/O format.

10-19

1 0 Running a Simulation

10-20

Note Simulink can read back simulation data saved to the workspace in the
Structure with time output format. See “Structure with time” on page 10-22
for more information.

Structure. The Structure format is the same as the Structure with time format
except that the time field is empty. For example, in the preceding example, you
could set the time field as follows:

a.time = []

In this case, Simulink reads the input for the first time step from the first
element of an inport’s value array, the value for the second time step from the
second element of the value array, etc.

Note Simulink can read back simulation data saved to the workspace in the
Structure output format. See “Structure” on page 10-23 for more information.

Per-Port Structures. This format consists of a separate structure-with-time or
structure-without-time for each port. Each port’s input data structure has only
one signals field. To specify this option, enter the names of the structures in
the Input text field as a comma-separated list, in1, in2, ..., inN, where in1
is the data for your model’s first port, in2 for the second inport, and so on.

Time Expression. The time expression can be any MATLAB expression that
evaluates to a row vector equal in length to the number of signals entering the
model’s inports. For example, suppose that a model has one vector inport that
accepts two signals. Furthermore, suppose that timefcn is a user-defined
function that returns a row vector two elements long. The following are valid
input time expressions for such a model.

"[3*sin(t), cos(2*t)]"’
"4*timefcn(w*t)+7"

Simulink evaluates the expression at each step of the simulation, applying the
resulting values to the model’s inports. Note that Simulink defines the variable
t when it runs the simulation. Also, you can omit the time variable in

The Simulation Parameters Dialog Box

expressions for functions of one variable. For example, Simulink interprets the
expression sin as sin(t).

Saving Output to the Workspace

You can specify return variables by selecting the Time, States, and/or Output
check boxes in the Save to workspace area of this dialog box pane. Specifying
return variables causes Simulink to write values for the time, state, and output
trajectories (as many as are selected) into the workspace.

To assign values to different variables, specify those variable names in the
fields to the right of the check boxes. To write output to more than one variable,
specify the variable names in a comma-separated list. Simulink saves the
simulation times in the vector specified in the Save to Workspace area.

Note Simulink saves the output to the workspace at the base sample rate of
the model. Use a To Workspace block if you want to save output at a different
sample rate.

The Save options area enables you to specify the format and restrict the
amount of output saved.

Format options for model states and outputs are listed below.

Array. If you select this option, Simulink saves a model’s states and outputs in
a state and output array, respectively.

The state matrix has the name specified in the Save to Workspace area (for
example, xout). Each row of the state matrix corresponds to a time sample of
the model’s states. Each column corresponds to an element of a state. For
example, suppose that your model has two continuous states, each of which is
a two-element vector. Then the first two elements of each row of the state
matrix contains a time sample of the first state vector. The last two elements
of each row contain a time sample of the second state vector.

The model output matrix has the name specified in the Save to Workspace
area (for example, yout). Each column corresponds to a model outport, each
row to the outputs at a specific time.

10-21

1 0 Running a Simulation

10-22

Note You can use array format to save your model’s outputs and states only if
the outputs are either all scalars or all vectors (or all matrices for states), are
either all real or all complex, and are all of the same data type. Use the
Structure or StructureWithTime output formats (see the following) if your
model’s outputs and states do not meet these conditions.

Structure with time. If you select this format, Simulink saves the model’s states
and outputs in structures having the names specified in the Save to
Workspace area (for example, xout and yout).

The structure used to save outputs has two top-level fields: time and signals.
The time field contains a vector of the simulation times. The signals field
contains an array of substructures, each of which corresponds to a model
outport. Each substructure has four fields: values, dimensions, label, and
blockName. The values field contains the outputs for the corresponding
outport. If the outputs are scalars or vectors, the values field is a matrix each
of whose rows represents an output at the time specified by the corresponding
element of the time vector. If the outputs are matrix (2-D) values, the values
field is a 3-D array of dimensions M-by-N-by-T where M-by-N is the dimensions
of the output signal and T is the number of output samples. If T = 1, MATLAB
drops the last dimension. Therefore, the values field is an M-by-N matrix. The
dimensions field specifies the dimensions of the output signal. The label field
specifies the label of the signal connected to the outport or the type of state
(continuous or discrete). The blockName field specifies the name of the
corresponding outport or block with states.

The structure used to save states has a similar organization. The states
structure has two top-level fields: time and signals. The time field contains a
vector of the simulation times. The signals field contains an array of
substructures, each of which corresponds to one of the model’s states. Each
signals structure has four fields: values, dimension, label, and blockName.
The values field contains time samples of a state of the block specified by the
blockName field. The label field for built-in blocks indicates the type of state:
either CSTATE (continuous state) or DSTATE (discrete state). For S-Function
blocks, the label contains whatever name is assigned to the state by the
S-Function block.

The Simulation Parameters Dialog Box

The time samples of a state are stored in the values field as a matrix of values.
Each row corresponds to a time sample. Each element of a row corresponds to
an element of the state. If the state is a matrix, the matrix is stored in the
values array in column-major order. For example, suppose that the model
includes a 2-by-2 matrix state and that Simulink logs 51 samples of the state
during a simulation run. The values field for this state would contain a 51-by-4
matrix where each row corresponds to a time sample of the state and where the
first two elements of each row correspond to the first column of the sample and
the last two elements correspond to the second column of the sample.

Structure. This format is the same as the preceding except that Simulink does
not store simulation times in the time field of the saved structure.

Per-Port Structures. This format consists of a separate structure-with-time or
structure-without-time for each output port. Each output data structure has
only one signals field. To specify this option, enter the names of the structures
in the Output text field as a comma-separated list, out1, out2, ..., outN,
where out1 is the data for your model’s first port, out2 for the second inport,
and so on.

Saving data to the workspace can slow down the simulation and consume
memory. To avoid this, you can limit the number of samples saved to the most
recent samples or you can skip samples by applying a decimation factor. To set
a limit on the number of data samples saved, select the check box labeled Limit
data points to last and specify the number of samples to save. To apply a
decimation factor, enter a value in the field to the right of the Decimation
label. For example, a value of 2 saves every other point generated.

Loading and Saving States

Initial conditions, which are applied to the system at the start of the
simulation, are generally set in the blocks. You can override initial conditions
set in the blocks by specifying them in the States area of this pane.

You can also save the final states for the current simulation run and apply
them to a subsequent simulation run. This feature can be useful when you
want to save a steady-state solution and restart the simulation at that known
state. The states are saved in the format that you select in the Save options
area of the Workspace I/0 pane.

10-23

1 0 Running a Simulation

10-24

To save the final states (the values of the states at the termination of the
simulation), select the Final State check box and enter a variable in the
adjacent edit field.

To load states, select the Initial State check box and specify the name of a
variable that contains the initial state values. This variable can be a matrix or
a structure of the same form as is used to save final states. This allows
Simulink to set the initial states for the current session to the final states saved
in a previous session, using the Structure or Structure with time format.

If the check box is not selected or the state array is empty ([]), Simulink uses
the initial conditions defined in the blocks.

The Diagnostics Pane

You can indicate the desired action for many types of events or conditions that
can be encountered during a simulation by selecting the Diagnostics tab on the
Simulation Parameters dialog box. This dialog box appears.

-} Simulation Parameters: vdp] o] 5

Advanced | Fieal-Time ‘Workshop |

Salver | ‘wiorkspace /0 | Diagnostics

Simulation options
Consistency checking: Inone 'l Boundz checking: Inone 'l
Configuration options: Aation
----%olver Performance-------------- j £ Mone
Algebraic loop Warning
Elock priority wiolation Warning = Waming
Min step size wiolation Warning Eror

Sample Tim
-1 sample time in source Warning
Discrete used as continuous Warning
MultiTask rate transition Error
SinmleTask rate transitinm Wone i
< i ol

()3 | Eancell Help | Apply |

The dialog box includes the following options.

Consistency Checking

Consistency checking is a debugging tool that validates certain assumptions
made by Simulink’s ODE solvers. Its main use is to make sure that S-functions
adhere to the same rules as Simulink built-in blocks. Because consistency
checking results in a significant decrease in performance (up to 40%), it should

The Simulation Parameters Dialog Box

generally be set to off. Use consistency checking to validate your S-functions
and to help you determine the cause of unexpected simulation results.

To perform efficient integration, Simulink saves (caches) certain values from
one time step for use in the next time step. For example, the derivatives at the
end of a time step can generally be reused at the start of the next time step. The
solvers take advantage of this to avoid redundant derivative calculations.

Another purpose of consistency checking is to ensure that blocks produce
constant output when called with a given value of ¢ (time). This is important
for the stiff solvers (ode23s and ode15s) because, while calculating the
Jacobian, the block’s output functions can be called many times at the same
value of ¢.

When consistency checking is enabled, Simulink recomputes the appropriate
values and compares them to the cached values. If the values are not the same,
a consistency error occurs. Simulink compares computed values for these
quantities:

¢ Qutputs

® Zero crossings
® Derivatives

® States

Bounds Checking

This option causes Simulink to check whether a block writes outside the
memory allocated to it during simulation. Typically this can happen only if
your model includes a user-written S-function that has a bug. If enabled, this
check is performed for every block in the model every time the block is
executed. As a result, enabling this option slows down model execution
considerably. Thus, to avoid slowing down model execution needlessly, you
should enable the option only if you suspect that your model contains a
user-written S-function that has a bug. See Writing S-Functions for more
information on using this option.

Configuration options

This control lists abnormal types of events that can occur during execution of
the model. For each event type, you can choose whether you want no message,

10-25

1 0 Running a Simulation

10-26

a warning message, or an error message. A warning message does not
terminate a simulation, but an error message does.

Event

Description

-1 sample time in
source

Algebraic loop

Block Priority
Violation

Check for
singular matrix

Data overflow

Discrete used as
continuous

int32 to float
conversion

A source block (e.g., a Sine Wave block) specifies a
sample time of -1.

Simulink detected an algebraic loop while
simulating the model. See “Algebraic Loops” on
page 2-19 for more information. If you set this
option to Error, Simulink displays an error
message and highlights the portion of the block
diagram that comprises the loop (see “Highlighting
Algebraic Loops” on page 2-23).

Simulink detected a block priority specification
error while simulating the model.

The Product block detected a singular matrix while
inverting one of its inputs in matrix multiplication
mode.

The value of a signal or parameter is too large to be
represented by the signal or parameter’s data type.
See “Working with Data Types” on page 7-2 for
more information.

The Unit Delay block, which is a discrete block,
inherits a continuous sample time from the block
connected to its input.

A 32-bit integer value was converted to a
floating-point value. Such a conversion can result
in a loss of precision. See “Working with Data
Types” on page 7-2 for more information.

The Simulation Parameters Dialog Box

Event

Description (Continued)

Invalid FcnCall
Connection

Min step size
violation

Multitask rate
transition

Parameter
downcast

Parameter
overflow

Parameter
precision loss

S-function
upgrades needed

Simulink has detected an incorrect use of a
Function-Call subsystem in your model (see the
“Function-call systems” examples in the Simulink
“Subsystem Semantics” library for examples of
invalid uses of Function-Call subsystems..
Disabling this error message can lead to invalid
simulation results.

The next simulation step is smaller than the
minimum step size specified for the model. This can
occur if the specified error tolerance for the model
requires a step size smaller than the specified
minimum step size. See “Step Sizes” on page 10-11
and “Error Tolerances” on page 10-12 for more
information.

An invalid rate transition occurred between two
blocks operating in multitasking mode (see
“Multitasking Options” on page 10-14).

Computation of the output of the block required
converting the parameter’s specified type to a type
having a smaller range of values (e.g., from uint32
to uint8). This diagnostic applies only to named
tunable parameters.

The data type of the parameter could not
accommodate the parameter’s value.

Computation of the output of the block required
converting the specified data type of the parameter
to a less precise data type (e.g., from double to
uints).

A block was encountered that has not been
upgraded to use features of the current release.

10-27

1 0 Running a Simulation

10-28

Event

Description (Continued)

Signal label
mismatch

SingleTask rate
transition

Unconnected block
input

Unconnected block
output

Unconnected line

Underspecified
data types

Unneeded type
conversions

Vector/Matrix
conversion

The simulation encountered virtual signals that
have a common source signal but different labels
(see “Virtual Signals” on page 6-3).

A rate transition occurred between two blocks
operating in single-tasking mode (see
“Multitasking Options” on page 10-14).

Model contains a block with an unconnected input.

Model contains a block with an unconnected
output.

Model contains an unconnected line.

Simulink could not infer the data type of a signal
during data type propagation.

A Data Type Conversion block is used where no
type conversion is necessary.

A vector-to-matrix or matrix-to-vector conversion
occurred at a block input (see “Vector or Matrix
Input Conversion Rules” on page 6-9).

The Simulation Parameters Dialog Box

The Advanced Pane

The Advanced pane allows you to set various options that affect simulation
performance.

-} Simulation Parameters: vdp 3] 5
Solverl Workspacel.-"Dl Diagnosticsl Advanced HeaI-TimeW’orkshopl
Model parameter configuration
[Inline parameters Eonfigure...l
Optimizations: .
Action
Elock reduction 0ff - © on
Boolean logic sigmals 0ff
Conditional input branch On) Off
Parametetr tinnline fn LI
Model Yerification block contral: IUse local settings 'l
Froduction hardware characteristics: IMicroprocessor j
BitsPerChar 5 ﬂ Value:
RitaPerTnt i ¥ I
QK | Eancell Help | Apply |

Model parameter configuration

Inline parameters. By default you can modify (“tune”) many block parameters
during simulation (see “Tunable Parameters” on page 2-5). Selecting this
option makes all parameters nontunable by default. Making parameters
nontunable allows Simulink to move blocks whose outputs depend only on
block parameter values outside the simulation loop, thereby speeding up
simulation of the model and execution of code generated from the model. When
this option is selected, Simulink disables the parameter controls of the block
dialog boxes for the blocks in your model to prevent you from accidentally
modifying the block parameters.

Simulink allows you to override the Inline parameters option for parameters
whose values are defined by variables in the MATLAB workspace. To specify
that such a parameter remain tunable, specify the parameter as global in the
Model Parameter Configuration dialog box (see “Model Parameter
Configuration Dialog Box” on page 10-33). To display the dialog, select the
adjacent Configure button. To tune a global parameter, change the value of
the corresponding workspace variable and choose Update Diagram (Ctrl+D)
from the Simulink Edit menu.

10-29

1 0 Running a Simulation

10-30

Note You cannot tune inlined parameters in code generated from a model.
However, when simulating a model, you can tune an inlined parameter if its
value derives from a workspace variable. For example, suppose that a model
has a Gain block whose Gain parameter is inlined and equals a, where a is a
variable defined in the model’s workspace. When simulating the model,
Simulink disables the Gain parameter field, thereby preventing you from
using the block’s dialog box to change the gain. However, you can still tune the
gain by changing the value of a at the MATLAB command line and updating
the diagram.

Optimizations

Block reduction. Replaces a group of blocks with a synthesized block, thereby
speeding up execution of the model.

Boolean logic signals. Causes blocks that accept Boolean signals to require
Boolean signals. If this option is off, blocks that accept inputs of type boolean
also accept inputs of type double. For example, consider the following model.

A
i
AND:
2 ™
Lagizal Dizp by
1 Crpemtor
E

This model connects signals of type double to a Logical Operator block, which
accepts inputs of type boolean. If the Boolean logic signals option is on, this
model generates an error when executed. If the Boolean logic signals option
is off, this model runs without error.

The Simulation Parameters Dialog Box

Note This option allows the current version of Simulink to run models that
were created by earlier versions of Simulink that supported only signals of
type double.

Conditional input branch. This optimization applies to models containing Switch
and Multiport Switch blocks. When enabled, this optimization executes only
the blocks required to compute the control input and the data input selected by
the control input at each time step for each Switch or Multiport Switch block
in the model. Similarly, code generated from the model by RTW executes only
the code needed to compute the control input and the selected data input. This
optimization speeds simulation and execution of code generated from the
model.

At the beginning of the simulation or code generation, Simulink examines each
signal path feeding a switch block data input to determine the portion of the
path that can be optimized. The optimizable portion of the path is that part of
the signal path that stretches from the corresponding data input back to the
first block that is a nonvirtual subsystem, has continuous or discrete states, or
detects zero crossings.

Simulink encloses the optimizable portion of the signal path in an invisible
atomic subsystem. During simulation, if a switch data input is not selected,
Simulink executes only the nonoptimizable portion of the signal path feeding
the input. If the data input is selected, Simulink executes both the
nonoptimizable and the optimizable portion of the input signal path.

Parameter pooling. This option is used for code generation (see the Real-Time
Workshop documentation for more information). Leave this option on if you are
not doing code generation.

Signal storage reuse. Causes Simulink to reuse memory buffers allocated to store
block input and output signals. If this option is off, Simulink allocates a
separate memory buffer for each block’s outputs. This can substantially
increase the amount of memory required to simulate large models, so you
should select this option only when you need to debug a model. In particular,
you should disable signal storage reuse if you need to

¢ Debug a C-MEX S-function

10-31

1 0 Running a Simulation

10-32

¢ Use a floating Scope or Display block to inspect signals in a model that you
are debugging

Simulink opens an error dialog if Signal storage reuse is enabled and you
attempt to use a floating Scope or Display block to display a signal whose buffer
has been reused.

Zero-crossing detection. Enables zero-crossing detection during variable-step
simulation of the model. For most models, this speeds up simulation by
enabling the solver to take larger time steps. If a model has extreme dynamic
changes, disabling this option can speed up the simulation but can also
decrease the accuracy of simulation results. See “Zero-Crossing Detection” on
page 2-15 for more information.

You can override this optimization on a block-by-block basis for the following
types of blocks.

Abs Integrator Step
Backlash MinMax Switch
Dead Zone Relay Switch Case
Enable Relational Operator Trigger

Hit Crossing Saturation

If Sign

To override zero-crossing detection for an instance of one of these blocks, open
the block’s parameter dialog box and uncheck the Enable zero crossing
detection option. You can enable or disable zero-crossing selectively for these
blocks only if zero-crossing detection is enabled globally, i.e., Zero-crossing
optimization is selected on the Advanced pane of the Simulation
Parameters dialog box.

The Simulation Parameters Dialog Box

Model Verification block control
This parameter allows you to enable or disable model verification blocks in the
current model either globally or locally. Select one of the following options:

® Use local settings

Enables or disables blocks based on the value of the Enable Assertion
parameter of each block. If a block’s Enable Assertion parameter is on, the
block is enabled; otherwise, the block is disabled.

® Enable all
Enables all model verification blocks in the model regardless of the settings
of their Enable Assertion parameters.

® Disable all

Disables all model verification blocks in the model regardless of the settings
of their Enable Assertion parameters.

Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box allows you to override the
Inline parameters option (see “Model parameter configuration” on
page 10-29) for selected parameters.

) Model Parameter Configuration: vdp H[=] E3
—Description
Define the global (funable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parameters during execution, and
2. the generated code by enabling access to parametears by other modules.
—Source list —Glohal {tunahle) parameters
MATLAR workspace =l | name | Starage class Starage type gualifier
Mame
1|halance
2l gain
Refresh list Addtotable == N | REROE |
0]4 | Cancel Help | Apphy |

The dialog box has the following controls.

Source list. Displays a list of workspace variables. The options are

10-33

1 0 Running a Simulation

10-34

® MATLAB workspace

List all variables in the MATLAB workspace that have numeric values.
® Referenced workspace variables

List only those variables referenced by the model.

Refresh list. Updates the source list. Click this button if you have added a
variable to the workspace since the last time the list was displayed.

Add to table. Adds the variables selected in the source list to the adjacent table
of tunable parameters.

New. Defines a new parameter and adds it to the list of tunable parameters.
Use this button to create tunable parameters that are not yet defined in the
MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB
workspace. You must create the variable yourself.

Storage Class. Used for code generation. See the Real-Time Workshop
documentation for more information.

Storage type qualifier. Used for code generation. See the Real-Time Workshop
documentation for more information.

Production Hardware Characteristics

This setting is intended for use in modeling, simulating, and generating code
for digital systems. It allows you to specify the sizes of the data types supported
by the system being modeled. Simulink uses this information to automate the
choice of data types for signals output by some blocks, e.g., the Product and
Gain blocks.

Select one of the following settings from the list:

® microprocessor
Specifies that this model represents a microprocessor-based digital system
whose integer word lengths correspond to the C data types listed in the
control below the Production hardware characteristics list.

The Simulation Parameters Dialog Box

Froduction hardware characteristics: | Microproceszor j

Mumber of bhits for C 'char' g B
Mmher nf hitas far O 'shart! 1A ~

The entry for each C data type specifies the length in bits of the
corresponding microprocessor word. You can change the length by selecting
the data type and entering a new length in the adjacent Value field.

® unconstrained integer sizes
Specifies that the hardware implementation of the modeled system imposes
no size constraints on the choice of integer data types used to perform
computations. This might be the case, for example, if the production
hardware is intended to be a custom integrated circuit.

10-35

1 0 Running a Simulation

Diagnosing Simulation Errors

10-36

If errors occur during a simulation, Simulink halts the simulation, opens the
subsystems that caused the error (if necessary), and displays the errors in the
Simulation Diagnostics Viewer. The following section explains how to use the
viewer to determine the cause of the errors.

Simulation Diagnostic Viewer

The viewer comprises an Error Summary pane and an Error Message pane.

=10l x|

Wieww Fort Size

Message Source Reported by Summary

[] Actuataorkd~... (S Errar evaluating parameter 'Denominatar’ in block 1 4/Actu
@ Blockerrar Gain3 Sgulink Errar evaluating parameter 'Gain'in block 1 4fAircraft Dynan
@ Blockerror Alpha-sens... Simulhek Errar evaluating parameter ‘Denominatar’ in block 1 4/Cont
@ Blockerrar Ggustmao... Simulink rror evaluating parameter Wumeratar' in block 1 4/Dryden
@ Blockerrar Ggustmao... Simulink Errdrayaluating parameter ‘Denominatar’ in block 1 4/Dryd
@ Blockerror Gain Simulink Errar evalsting parameter 'Gain'in block 1 4/Gain' Undefir
@ Blockerrar Gainl Simulink Errar evaluating pagameter 'Gain' in block f14/Gain1" Undef ¥
»

4

© 1 4/Actuatar Model

Errar evaluating parameter 'Denominatar’ in block 1 4i4ctuator Madel’ Undefined furttiqn or variable Ta'

~ (Click to display
error source.

Qpen | Help | Close |

Error Summary Pane

The upper pane lists the errors that caused Simulink to terminate the
simulation. The pane displays the following information for each error.

Message. Message type (for example, block error, warning, log)

Reported by. Component that reported the error (for example, Simulink,
Stateflow, Real-Time Workshop, etc.)

Source. Name of the model element (for example, a block) that caused the error

Summary. Error message, abbreviated to fit in the column

Diagnosing Simulation

Errors

You can remove any of these columns of information to make more room for the
others. To remove a column, select the viewer’s View menu and uncheck the
corresponding item.

Error Message Pane

The lower pane initially contains the contents of the first error message listed
in the top pane. You can display the contents of other messages by clicking
their entries in the upper pane.

In addition to displaying the Diagnostic Viewer, Simulink also opens (if
necessary) the subsystem that contains the first error source and highlights
the source.

luntitled * E 10l =|

File Edit WYiew Simulation Format Tools Help

DIeEH&E|BER| o pELE &

- ints . ’ e .1 double .
t(10 1
int3(10) E b double E

Constant Zain Integratar Scope

Fl1o0% [[|odets v

You can display the sources of other errors by clicking anywhere in the error
message in the upper pane, by clicking the name of the error source in the error
message (highlighted in blue), or by selecting the Open button on the viewer.

Changing Font Size

To change the size of the font used to display errors, select Font Size from the
viewer’s menu bar. A menu of font sizes appears. Select the desired font size
from the menu.

Creating Custom Simulation Error Messages

The Simulink Diagnostic Viewer displays the output of any instance of the
MATLAB error function executed during a simulation, including instances
invoked by block or model callbacks or S-functions that you create or that are
executed by the MATLAB Function block. Thus, you can use the MATLAB
error function in callbacks and S-functions or in the MATLAB Function block
to create simulation error messages specific to your application.

10-37

1 O Running a Simulation

10-38

For example, in the following model,

WATLAR [E—
Function

Constant check_signal Dizplay

the MATLAB Fecn block invokes the following function

function y=check_signal(x)
if x<0
error('Signal is negative.');
else
Y=X;
end

Executing this model displays an error message in the Simulation Diagnostic
Viewer:

i simulation Diagnostics: test_error i 10l =|
Wieww Fort Size

Message Source Reported by Summary
[WEiock error [check_sign...|Simulink Errar in MATLAB Function hlock te...
4 |

0 test_erraricheck_signal

Errarin MATLAB Function hlock test erraricheck signal while evaluating
expression: Error using === check_signal

Signal iz negative

Qpen | Help | Close |

Including Hyperlinks in Error Messages

You can include hyperlinks to blocks, text files, and directories.

To include a hyperlink to a block, path, or directory, include the item’s path in
the error message enclosed in quotation marks, e.g.,

® error ('Error evaluating parameter in block "mymodel/Mu"')

displays a text hyperlink to the block Mu in the current model in the error
message. Clicking the hyperlink displays the block in the model window.

Diagnosing Simulation Errors

® error ('Error reading data from"c:/work/test.data"')
displays a text hyperlink to the file test.data in the error message. Clicking
the link displays the file in your preferred MATLAB editor.

® error ('Could not find data in directory "c:/work"')

displays a text hyperlink to the c:/work directory. Clicking the link opens a
system command window (shell) and sets its working directory to c: /work.

Note The text hyperlink is enabled only if the corresponding block exists in
the current model or if the corresponding file or directory exists on the user’s
system.

10-39

1 0 Running a Simulation

Improving Simulation Performance and Accuracy

Simulation performance and accuracy can be affected by many things,
including the model design and choice of simulation parameters.

The solvers handle most model simulations accurately and efficiently with
their default parameter values. However, some models yield better results if
you adjust solver and simulation parameters. Also, if you know information
about your model’s behavior, your simulation results can be improved if you
provide this information to the solver.

Speeding Up the Simulation

Slow simulation speed can have many causes. Here are a few:

¢ Your model includes a MATLAB Fcn block. When a model includes a
MATLAB Fen block, the MATLAB interpreter is called at each time step,
drastically slowing down the simulation. Use the built-in Fcn block or Math
Function block whenever possible.

® Your model includes an M-file S-function. M-file S-functions also cause the
MATLAB interpreter to be called at each time step. Consider either
converting the S-function to a subsystem or to a C-MEX file S-function.

® Your model includes a Memory block. Using a Memory block causes the
variable-order solvers (ode15s and ode113) to be reset back to order 1 at each
time step.

¢ The maximum step size is too small. If you changed the maximum step size,
try running the simulation again with the default value (auto).

® Did you ask for too much accuracy? The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if the
absolute tolerance parameter is too small, the simulation can take too many
steps around the near-zero state values. See the discussion of error in “Error
Tolerances” on page 10-12.

¢ The time scale might be too long. Reduce the time interval.

¢ The problem might be stiff but you are using a nonstiff solver. Try using
ode15s.

® The model uses sample times that are not multiples of each other. Mixing
sample times that are not multiples of each other causes the solver to take
small enough steps to ensure sample time hits for all sample times.

10-40

Improving Simulation Performance and Accuracy

® The model contains an algebraic loop. The solutions to algebraic loops are
iteratively computed at every time step. Therefore, they severely degrade
performance. For more information, see “Algebraic Loops” on page 2-19.

® Your model feeds a Random Number block into an Integrator block. For
continuous systems, use the Band-Limited White Noise block in the Sources
library.

Improving Simulation Accuracy

To check your simulation accuracy, run the simulation over a reasonable time
span. Then, either reduce the relative tolerance to le-4 (the default is 1e-3) or
reduce the absolute tolerance and run it again. Compare the results of both
simulations. If the results are not significantly different, you can feel confident
that the solution has converged.

If the simulation misses significant behavior at its start, reduce the initial step
size to ensure that the simulation does not step over the significant behavior.

If the simulation results become unstable over time,

® Your system might be unstable.

¢ If you are using ode15s, you might need to restrict the maximum order to 2
(the maximum order for which the solver is A-stable) or try using the ode23s
solver.

If the simulation results do not appear to be accurate,

¢ For a model that has states whose values approach zero, if the absolute
tolerance parameter is too large, the simulation takes too few steps around
areas of near-zero state values. Reduce this parameter value or adjust it for
individual states in the Integrator dialog box.

¢ If reducing the absolute tolerances does not sufficiently improve the

accuracy, reduce the size of the relative tolerance parameter to reduce the
acceptable error and force smaller step sizes and more steps.

10-41

1 0 Running a Simulation

Running a Simulation Programmatically

Entering simulation commands in the MATLAB Command Window or from an
M-file enables you to run unattended simulations. You can perform Monte
Carlo analysis by changing the parameters randomly and executing
simulations in a loop. You can run a simulation from the command line using
the sim command or the set _param command. Both are described below.

Using the sim Command
The full syntax of the command that runs the simulation is

[t,x,y] = sim(model, timespan, options, ut);

Only the model parameter is required. Parameters not supplied on the
command are taken from the Simulation Parameters dialog box settings.

For detailed syntax for the sim command, see the documentation for the sim
command. The options parameter is a structure that supplies additional
simulation parameters, including the solver name and error tolerances. You
define parameters in the options structure using the simset command (see
simset). The simulation parameters are discussed in “The Simulation
Parameters Dialog Box” on page 10-7.

Using the set_param Command

You can use the set_param command to start, stop, pause, or continue a
simulation, or update a block diagram. The format of the set_param command
for this use is

set_param('sys', 'SimulationCommand', 'cmd')

where 'sys' is the name of the system and 'cmd' is 'start', 'stop', 'pause’,
‘continue', or 'update’.

Similarly, you can use the get_param command to check the status of a
simulation. The format of the get_param command for this use is

get_param('sys', 'SimulationStatus')
Simulink returns 'stopped’', 'initializing', 'running’', 'paused’,

‘updating', 'terminating’', and 'external' (used with Real-Time
Workshop).

10-42

Analyzing Simulation
Results

The following sections explain how to use Simulink tools for analyzing the results of simulations.

Viewing Output Trajectories (p. 11-2) Explains how to display your output directories.

Linearizing Models (p. 11-4) Describes functions that extract a linear state-space
model from a Simulink model.

Finding Steady-State Points (p. 11-7) How to use Simulink’s trim command to determine
steady-state points of a system represented by a Simulink
model.

11 Analyzing Simulation Results

11-2

Viewing Output Trajectories

Output trajectories from Simulink can be plotted using one of three methods:

¢ Feed a signal into either a Scope or an XY Graph block.
® Write output to return variables and use MATLAB plotting commands.

¢ Write output to the workspace using To Workspace blocks and plot the
results using MATLAB plotting commands.

Using the Scope Block

You can use display output trajectories on a Scope block during a simulation.
This simple model shows an example of the use of the Scope block.

[= &
=1

Step Transfer Fen Scope

The display on the Scope shows the output trajectory. The Scope block enables
you to zoom in on an area of interest or save the data to the workspace.

The XY Graph block enables you to plot one signal against another.

Using Return Variables

By returning time and output histories, you can use MATLAB plotting
commands to display and annotate the output trajectories.

J_=S:—1—>@

Out

Step Transfer Fan

The block labeled Out is an Outport block from the Signals & Systems library.
The output trajectory, yout, is returned by the integration solver. For more
information, see “The Workspace I/O Pane” on page 10-17.

You can also run this simulation from the Simulation menu by specifying
variables for the time, output, and states on the Workspace I/O page of the
Simulation Parameters dialog box. You can then plot these results using

plot(tout,yout)

Viewing Output Trajectories

Using the To Workspace Block

The To Workspace block can be used to return output trajectories to the
MATLAB workspace. The model below illustrates this use.

1
- — > ¥
=+

Step Transfer Fen Toifakspace

® o

Elosk To Mhatkepace]

The variables y and t appear in the workspace when the simulation is
complete. You store the time vector by feeding a Clock block into a To
Workspace block. You can also acquire the time vector by entering a variable
name for the time on the Workspace I/0O pane of the Simulation Parameters
dialog box, for menu-driven simulations, or by returning it using the sim
command (see “The Workspace I/O Pane” on page 10-17 for more information).

The To Workspace block can accept an array input, with each input element’s
trajectory stored in the resulting workspace variable.

11-3

11 Analyzing Simulation Results

Linearizing Models

Simulink provides the 1inmod and dlinmod functions to extract linear models
in the form of the state-space matrices A, B, C, and D. State-space matrices
describe the linear input-output relationship as

x = Ax+Bu
y = Cx+Du

where x, u, and y are state, input, and output vectors, respectively. For
example, the following model is called 1mod.

w2}

[1 F—+ 1
| .
In — T s2ezard
Sum Flant v
1
o+

Feedback

To extract the linear model of this Simulink system, enter this command.

[A,B,C,D] = linmod('lmod"')

A =

-2 -1 -1

1 0

0 1 -1
B =

]

0

0
C =

0 1

0 0 -1
D =

0

1

Inputs and outputs must be defined using Inport and Outport blocks from the
Signals & Systems library. Source and sink blocks do not act as inputs and

114

Linearizing Models

outputs. Inport blocks can be used in conjunction with source blocks, using a
Sum block. Once the data is in the state-space form or converted to an LTI
object, you can apply functions in the Control System Toolbox for further
analysis:

¢ Conversion to an LTI object
sys = ss(A,B,C,D);

® Bode phase and magnitude frequency plot
bode(A,B,C,D) or bode(sys)

¢ Linearized time response
step(A,B,C,D) or step(sys)
impulse(A,B,C,D) or impulse(sys)
1sim(A,B,C,D,u,t) or lsim(sys,u,t)

You can use other functions in the Control System Toolbox and Robust Control
Toolbox for linear control system design.

When the model is nonlinear, an operating point can be chosen at which to
extract the linearized model. The nonlinear model is also sensitive to the
perturbation sizes at which the model is extracted. These must be selected to
balance the tradeoff between truncation and roundoff error. Extra arguments
to 1inmod specify the operating point and perturbation points.

[A,B,C,D] = linmod('sys', x, u, pert, xpert, upert)

For discrete systems or mixed continuous and discrete systems, use the
function d1inmod for linearization. This has the same calling syntax as 1inmod
except that the second right-hand argument must contain a sample time at
which to perform the linearization.

Using 1inmod to linearize a model that contains Derivative or Transport Delay
blocks can be troublesome. Before linearizing, replace these blocks with
specially designed blocks that avoid the problems. These blocks are in the
Simulink Extras library in the Linearization sublibrary. You access the Extras
library by opening the Blocksets & Toolboxes icon:

® For the Derivative block, use the Switched derivative for linearization.

¢ For the Transport Delay block, use the Switched transport delay for
linearization. (Using this block requires that you have the Control System
Toolbox.)

11-5

11 Analyzing Simulation Results

11-6

When using a Derivative block, you can also try to incorporate the derivative
term in other blocks. For example, if you have a Derivative block in series with
a Transfer Fen block, it is better implemented (although this is not always
possible) with a single Transfer Fen block of the form

S

s+a

In this example, the blocks on the left of this figure can be replaced by the block
on the right.

— o durdt

:
|
l
|
!

Finding Steady-State Points

Finding Steady-State Points

The Simulink trim function uses a Simulink model to determine steady-state
points of a dynamic system that satisfy input, output, and state conditions that
you specify. Consider, for example, this model, called 1mod.

e

1 -+ 1
|
In - -
Sum Flant wn
1
s+

Feedback

You can use the trim function to find the values of the input and the states that
set both outputs to 1. First, make initial guesses for the state variables (x) and
input values (u), then set the desired value for the output (y).

[0; 0; O];
:O;
= 15 115

Use index variables to indicate which variables are fixed and which can vary.

< © X

ix = [1; % Don't fix any of the states
iu = [1; % Don't fix the input
iy = [1;2]; % Fix both output 1 and output 2

Invoking trim returns the solution. Your results might differ because of
roundoff error.

[x,u,y,dx] = trim('lmod',x,u,y,ix,iu,1iy)

X =
0.0000
1.0000
1.0000

u =
2

y =
1.0000

11-7

11 Analyzing Simulation Results

1.0000
dx =

1.0e 015 «
-0.2220
-0.0227
0.3331

Note that there might be no solution to equilibrium point problems. If that is
the case, trim returns a solution that minimizes the maximum deviation from
the desired result after first trying to set the derivatives to zero. For a
description of the trim syntax, see trim in the Simulink online help.

11-8

Creating Masked
Subsystems

This section explains how to create custom user interfaces (masks) for Simulink subsystems.

About Masks (p. 12-2) An overview of masked subsystems that introduces you to
key concepts.

Masked Subsystem Example (p. 12-5) Introduces you to masking by taking you step by step
through the creation of a simple masked subsystem.

Masking a Subsystem (p. 12-10) General procedure for masking subsystems.

The Mask Editor (p. 12-12) Detailed description of the Mask Editor.

Linking Mask Parameters to Block How to link a mask’s parameters to the parameters of
Parameters (p. 12-27) blocks behind the mask.

Creating Dynamic Dialogs for Masked How to create a mask that changes its appearance based
Blocks (p. 12-28) on the options that a user selects.

12 Creating Masked Subsystems

12-2

About Masks

A mask is a custom user interface for a subsystem that hides the subsystem’s
contents, making it apper to the user as an atomic block with its own icon and
parameter dialog box. The Simulink Mask Editor enables you to create a mask
for any subsystem. Masking a subsystem allows you to

¢ Replace the parameter dialogs of a subsystem and its contents with a single
parameter dialog with its own block description, parameter prompts, and
help text

¢ Replace a subsystem’s standard icon with a custom icon that depicts its
purpose

¢ Prevent unintended modification of subsystems by hiding their contents
behind a mask

¢ Create a custom block by encapsulating a block diagram that defines the
block’s behavior in a masked subsystem and then placing the masked
subsystem in a library

Mask Features
Masks can include any of the following features.

Mask Icon

The mask icon replaces a subsystem’s standard icon, i.e., it appears in a block
diagram in place of the standard icon for a subsystem block. Simulink uses
MATLAB code that you supply to draw the custom icon. You can use any
MATLAB drawing command in the icon code. This gives you great flexibility in
designing an icon for a masked subsystem.

Mask Parameters

Simulink allows you to define a set of user-settable parameters for a masked
subsystem. Simulink stores the value of a parameter in the mask workspace
(see “Mask Workspace” on page 12-3) as the value of a variable whose name
you specify. These associated variables allow you to link mask parameters to
specific parameters of blocks inside a masked subsystem (internal parameters)
such that setting a mask parameter sets the associated block parameter (see
“Linking Mask Parameters to Block Parameters” on page 12-27).

About Masks

Mask Parameter Dialog Box

The mask parameter dialog box contains controls that enable a user to set the
values of the masks parameters and hence the values of any internal
parameters linked to the mask parameters.

The mask parameter dialog box replaces the subsystem’s standard parameter
dialog box, i.e., clicking on the masked subsystem’s icon causes the mask dialog
box to appear instead of the standard parameter dialog box for a Subsystem
block. You can customize every feature of the mask dialog box, including which
parameters appear on the dialog box, the order in which they appear,
parameter prompts, the controls used to edit the parameters, and the
parameter callbacks (code used to process parameter values entered by the
user).

Mask Initialization Code

The initialization code is MATLAB code that you specify and that Simulink
runs to initialize the masked subsystem at the start of a simulation run. You
can use the initialization code to set the initial values of the masked
subsystem’s mask parameters.

Mask Workspace

Simulink associates a MATLAB workspace with each masked subsystem that
you create. Simulink stores the current values of the subsystem’s parameters
in the workspace as well as any variables created by the block’s initialization
code and parameter callbacks. You can use model and mask workspace
variables to initialize a masked subsystem and to set the values of blocks inside
the masked subsystem, subject to the following rules.

® A block parameter expression can refer only to variables defined in the
subsystem or nested subsystems that contain the block or in the model’s
workspace.

e A valid reference to a variable defined on more than one level in the model
hierarchy resolves to the most local definition.

For example, suppose that model M contains masked subsystem A, which
contains masked subsystem B. Further suppose that B refers to a variable x
that exists in both A’s and M’s workspaces. In this case, the reference
resolves to the value in A’s workspace.

12-3

12 Creating Masked Subsystems

¢ A masked subsystem’s initialization code can refer only to variables in its
local workspace.

Creating Masks

See “Masking a Subsystem” on page 12-10 for an overview of the process of
creating a masked subsystem. See “Masked Subsystem Example” on page 12-5
for an example of the process.

12-4

Masked Subsystem Example

Masked Subsystem Example

This simple subsystem models the equation for a line,y = mx + b.

E!masking_example ;Iglﬂ

File Edit WYiew Simulation Format Tools Help

DEHS BEf

Fl100% odeds

Ordinarily, when you double-click a Subsystem block, the Subsystem block
opens, displaying its blocks in a separate window. The mx + b subsystem
contains a Gain block, named Slope, whose Gain parameter is specified as m,
and a Constant block, named Intercept, whose Constant value parameter is
specified as b. These parameters represent the slope and intercept of a line.

This example creates a custom dialog box and icon for the subsystem. One
dialog box contains prompts for both the slope and the intercept. After you
create the mask, double-click the Subsystem block to open the mask dialog box.
The mask dialog box and icon look like this:

Mask dialog box

— Sampletd askedBlock [mask]
Models the equation for a line, y = mx + b.

The glope and intercept are mask block parameters.

Slope:
3
|| : Block icon
ntercept:
E]
QK I Cancel | Help | Apply | B

A user enters values for Slope and Intercept in the mask dialog box. Simulink
makes these values available to all the blocks in the underlying subsystem.
Masking this subsystem creates a self-contained functional unit with its own
application-specific parameters, Slope and Intercept. The mask maps these
mask parameters to the generic parameters of the underlying blocks. The

12-5

12 Creating Masked Subsystems

complexity of the subsystem is encapsulated by a new interface that has the
look and feel of a built-in Simulink block.

To create a mask for this subsystem, you need to

¢ Specify the prompts for the mask dialog box parameters. In this example, the
mask dialog box has prompts for the slope and intercept.

¢ Specify the variable name used to store the value of each parameter.

¢ Enter the documentation of the block, consisting of the block description and
the block help text.

¢ Specify the drawing command that creates the block icon.

¢ Specify the commands that provide the variables needed by the drawing
command (there are none in this example).

Creating Mask Dialog Box Prompts

To create the mask for this subsystem, select the Subsystem block and choose
Mask Subsystem from the Edit menu.

This example primarily uses the Mask Editor’s Parameters pane to create the
masked subsystem’s dialog box.

<} Mask editor :Subsystem -3 %]

lcan Farameters

Initialization l Documentation l

Dialog parameters

= Prompt | Variable | Tupe |Eva|uate|Tunab|e|
Slape: m |edit ﬂ - v
Intercept b |edit ﬂ v v

SUSIN =

Options for selected parameter
Popups {one perling): In dialog: & v

Callback: j

Unmask Ok | Cancel Help | Apply |

12-6

Masked Subsystem Example

The Mask Editor enables you to specify these attributes of a mask parameter:

® Prompt, the text label that describes the parameter

¢ Control type, the style of user interface control that determines how
parameter values are entered or selected

¢ Variable, the name of the variable that stores the parameter value

Generally, it is convenient to refer to masked parameters by their prompts. In
this example, the parameter associated with slope is referred to as the Slope
parameter, and the parameter associated with intercept is referred to as the
Intercept parameter.

The slope and intercept are defined as edit controls. This means that the user
types values into edit fields in the mask dialog box. These values are stored in
variables in the mask workspace. Masked blocks can access variables only in
the mask workspace. In this example, the value entered for the slope is
assigned to the variable m. The Slope block in the masked subsystem gets the
value for the slope parameter from the mask workspace. This figure shows how
the slope parameter definitions in the Mask Editor map to the actual mask
dialog box parameters.

Dialog parameters Block Farameters: mx + b
— SampleM askedBlock k]
Frompt | ariable | Type | AR _DC [ma.s !
. Models the equation for a line, y = mx + b.
Slope: m |e':“t ﬂ The glope and intercept are mask block parameters.
Intercept b |edit ﬂ)

\ Slope:
IE
Intercept:
E]

QK I Cancel | Help | Apply |

After you create the mask parameters for slope and intercept, click the OK
button. Then double-click the Subsystem block to open the newly constructed
dialog box. Enter 3 for the Slope and 2 for the Intercept parameter.

12-7

12 Creating Masked Subsystems

Creating the Block Description and Help Text

The mask type, block description, and help text are defined on the
Documentation pane. For this sample masked block, the pane looks like this:

<} Mask editor :Subsystem -3 %]

lcon l Parameters l Initialization Documentation l

Mask type
|SampIeMaskedEllock

-
v

L — Sampletd askedBlock [mask]
Mask description M . .
- - 1y odels the equatian far a line, ¥ = mx + b.

Models the equation far a line, y=mx+h.] The glope and intercept are mazk block parameters.
[The slope and intercept aare mask block parameters. —P.

Slope:

IE

= Intercept:

Mask help

Enter the slope () and intercept (b in the mﬂﬁ—-l———"ﬂe'p |

: S
block dialog parameter fields.

L

The block generates v for a given inputx

Unmask| Ok | Cancel | Help | Apply |

Creating the Block Icon

So far, we have created a customized dialog box for the mx + b subsystem.
However, the Subsystem block still displays the generic Simulink subsystem
icon. An appropriate icon for this masked block is a plot that indicates the slope
of the line. For a slope of 3, that icon looks like this:

il

12-8

Masked Subsystem Example

The block icon is defined on the Icon pane. For this block, the Icon pane looks
like this.

<} Mask editor :Subsystem ;Iglﬂ

lcon

Farameters l Initialization Documentation l

leon aptions Drawing commands .
Frame blot([0 17,10 nl+(n<0]) < Drawing commands

Wigible -
Transparency

Opague -

Icon properties

A

Rotation
Fixed -
Units

Mormalized = :

Examples of drawing commands

Command |pm:t,_label (label specific ports) ﬂ

Syntax port_label{'output’, 1, S

Unmask| Ok | Cancel | Help | Apply |

The drawing command plots a line from (0,0) to (1,m). If the slope is negative,
Simulink shifts the line up by 1 to keep it within the visible drawing area of the
block.

The drawing commands have access to all the variables in the mask workspace.
As you enter different values of slope, the icon updates the slope of the plotted
line.

Select Normalized as the Drawing coordinates parameter, located at the
bottom of the list of icon properties, to specify that the icon be drawn in a frame
whose bottom left corner is (0,0) and whose top right corner is (1,1). See “The
Icon Pane” on page 12-14 for more information.

12-9

12 Creating Masked Subsystems

Masking a Subsystem
To mask a subsystem,
1 Select the subsystem.

2 Select Edit mask from the Edit menu of the model window or from the
block’s context menu. (Right-click the subsystem block to display its context
menu.)

The Mask Editor appears.

<} Mask editor :Subsystem M=l E3

lcon Farameters | Initialization | Documentation |

rlcon options rDrawing commands

Frame 1=

IVisibIe VI

Transparency

IOpaque VI

Rotation
IFixed VI
Units

Ll

IAutoscaIe VI

rExamples of drawing commands

Caommand Ipm:t,_label [label specific ports) LI

Syntax port_labelf'output’, 1, %%

Unmaskl QK | Cancel | Help | Apply |

See “The Mask Editor” on page 12-12 for a detailed description of the Mask
Editor.

3 Use the Mask Editor’s tabbed panes to perform any of the following tasks.

= Create a custom icon for the masked subsytem (see “The Icon Pane” on
page 12-14)

= Create parameters that allow a user to set subsystem options (see “The
Mask Editor” on page 12-12)

12-10

Masking a Subsystem

= Initialize the masked subsystem’s parameters

= Create online user documentation for the subsystem

4 Click Apply to apply the mask to the subsystem or OK to apply the mask
and dismiss the Mask Editor.

12-11

12 Creating Masked Subsystems

The Mask Editor

The Mask Editor allows you to create or edit a subsystem’s mask. To open the
Mask Editor, select the subsystem’s block icon and then select Edit Mask from
the Edit menu of the model window containing the subsystem’s block. The
Mask Editor appears.

<} Mask editor :Subsystem M=l E3

lcon Farameters | Initialization | Documentation |

rlcon options rDrawing commands

Frame

IVisibIe VI

Transparency

IOpaque VI

|

Rotation
IFixed VI
Units

Ll

IAutoscaIe VI

rExamples of drawing commands

Caommand Ipm:t,_label [label specific ports) LI

Syntax port_labelf'output’, 1, %%

Unmaskl QK | Cancel | Help | Apply |

The Mask Editor contains a set of tabbed panes, each of which enables you to
define a feature of the mask:

¢ The Icon pane enables you to define the block icon (see “The Icon Pane” on
page 12-14).

¢ The Parameters pane enables you to define and describe mask dialog box
parameter prompts and name the variables associated with the parameters
(see “The Parameters Pane” on page 12-17).

¢ The Initialization pane enables you to specify initialization commands (see
“The Initialization Pane” on page 12-23).

¢ The Documentation pane enables you to define the mask type and specify
the block description and the block help (see “The Documentation Pane” on
page 12-25).

12-12

The Mask Editor

Five buttons appear along the bottom of the Mask Editor:

¢ The Unmask button deactivates the mask and closes the Mask Editor. The
mask information is retained so that the mask can be reactivated. To
reactivate the mask, select the block and choose Create Mask. The Mask
Editor opens, displaying the previous settings. The inactive mask
information is discarded when the model is closed and cannot be recovered.

¢ The OK button applies the mask settings on all panes and closes the Mask
Editor.

¢ The Cancel button closes the Mask Editor without applying any changes
made since you last clicked the Apply button.

¢ The Help button displays the contents of this chapter.

® The Apply button creates or changes the mask using the information that
appears on all masking panes. The Mask Editor remains open.

To see the system under the mask without unmasking it, select the Subsystem
block, then choose Look Under Mask from the Edit menu. This command
opens the subsystem. The block’s mask is not affected.

12-13

12 Creating Masked Subsystems

12-14

The Icon Pane

The Mask Editor’s Icon pane enables you to create icons that can contain

descriptive text, state equations, images, and graphics.

<} Mask editor :Subsystem M=l E3

lcon

Farameters | Initialization | Documentation |

rlcon options rDrawing commands
Frame -

IVisibIe VI

Transparency

IOpaque VI

Rotation

A

Comma

Units

IAutoscaIe VI j

rExamples of drawing commands

nds that draw the block icon

m Parameters that control the icon
- appearance

<
Caommand Ipm:t,_label [label specific ports) LI

Syntax port_labelf'output’, 1, %%

Examples of drawing
commands you can use
to draw the block icon

Unmask | QK | Cancel | Help | Apply

The Icon pane contains the following controls.

Drawing commands

This field allows you to enter commands that draw the block’s icon. Simulink
provides a set of commands that can display text, one or more plots, or show a

transfer function (see “Mask Icon Drawing Commands”)

in the online Simulink

reference). You must use these commands to draw your icon. Simulink executes
the drawing commands in the order in which they appear in this field. Drawing
commands have access to all variables in the mask workspace.

This example demonstrates how to create an improved icon for the mx + b
sample masked subsystem discussed earlier in this chapter.

pos = get_param(gcb, 'Position');
width = pos(3) pos(1); height
x = [0, width];

if (m >= 0), y = [0, (m*width)]; end

pos(4) pos(2);

The Mask Editor

if (m < 0), vy = [height, (height + (m*width))]; end

These initialization commands define the data that enables the drawing
command to produce an accurate icon regardless of the shape of the block. The
drawing command that generates this icon is plot(x,y).

Examples of drawing commands

This panel illustrates the usage of the various icon drawing commands
supported by Simulink. To determine the syntax of a command, select the
command from the Command list. Simulink displays an example of the
selected command at the bottom of the panel and the icon produced by the
command to the right of the list.

Icon options
These controls allow you to specify the following attributes of the block icon.

Frame. The icon frame is the rectangle that encloses the block. You can choose
to show or hide the frame by setting the Frame parameter to Visible or
Invisible. The default is to make the icon frame visible. For example, this
figure shows visible and invisible icon frames for an AND gate block.

= =D

Visible Invisible

Transparency. The icon can be set to Opaque or Transparent, either hiding or
showing what is underneath the icon. Opaque, the default, covers information
Simulink draws, such as port labels. This figure shows opaque and transparent
icons for an AND gate block. Notice the text on the transparent icon.

—™ ™
N AND | —
—™ ™

Opaque Transparent

Rotation. When the block is rotated or flipped, you can choose whether to rotate
or flip the icon or to have it remain fixed in its original orientation. The default
is not to rotate the icon. The icon rotation is consistent with block port rotation.
This figure shows the results of choosing Fixed and Rotates icon rotation when
the AND gate block is rotated.

12-15

12 Creating Masked Subsystems

Ty vy

6

Fixed Rotates

Units. This option controls the coordinate system used by the drawing
commands. It applies only to plot and text drawing commands. You can select
from among these choices: Autoscale, Normalized, and Pixel.

max(X), max(Y) 1,1 block width, block height
min(X), min(Y) 0,0 0,0
Autoscale Normalized Pixel

® Autoscale scales the icon to fit the block frame. When the block is resized,
the icon is also resized. For example, this figure shows the icon drawn using
these vectors:

X=[023409]; Y=1[4635 8];

I

The lower left corner of the block frame is (0,3) and the upper right corner is
(9,8). The range of the x-axis is 9 (from 0 to 9), while the range of the y-axis
is 5 (from 3 to 8).

® Normalized draws the icon within a block frame whose bottom left corner is
(0,0) and whose top right corner is (1,1). Only X and Y values between 0 and
1 appear. When the block is resized, the icon is also resized. For example, this
figure shows the icon drawn using these vectors:

X=1.0.2 .3 .4 .9];Y=1].4 .6 .3 .5 .8];

A

The Mask Editor

¢ Pixel draws the icon with X and Y values expressed in pixels. The icon is not
automatically resized when the block is resized. To force the icon to resize
with the block, define the drawing commands in terms of the block size.

The Parameters Pane

The Parameters pane allows you to create and modify masked subsystem
parameters (mask parameters, for short) that determine the behavior of the

masked subsystem.

<} Mask editor :Subsystem -3 %]

Initialization l Documentation l

lcan Farameters

Dialog parameters
Prompt | Yariahle | Type |Eva|uate|TunabIe|

SUSIN =

Options for selected parameter
Popups {one perling): In dialog: & v

Callback: j

Unmask Ok | Cancel | Help | Apply |

The Parameters pane contains the following elements:

¢ The Dialog parameters panel allows you to select and change the major
properties of the mask’s parameters (see “Dialog Parameters Panel” on
page 12-18).

¢ The Options for selected parameter panel allows you to set additional
options for the parameter selected in the Dialog parameters panel.

¢ The buttons on the left side of the Parameters pane allow you to add, delete,
and change the order of appearance of parameters on the mask’s parameter
dialog box (see “Dialog Parameters Panel” on page 12-18).

12-17

12 Creating Masked Subsystems

12-18

Dialog Parameters Panel

Lists the mask’s parameters in tabular form. Each row displays the major
attributes of one of the mask’s parameters.

Prompt. Text that identifies the parameter on a masked subsystem’s dialog box.

Dialog parameters Block Parameters: mx + b
— SampleM askedBlock k]
Frarmpt Yariable | Type | ClEAIERER R [ma.s !
. Models the equation for a line, y = mx + b.
Slope: m |ed|t ﬂ The glope and intercept are mask block parameters.
Intercept b |‘3'3”t ﬂ P. f
|; Slope:
IE
Intercept:
I

QK I Cancel | Help | Apply |

Variable. Name of the variable that stores the parameter’s value in the mask’s
workspace (see “Mask Workspace” on page 12-3). You can use this variable as
the value of parameters of blocks inside the masked subsystem, thereby
allowing the user to set the parameters via the mask dialog box.

Note Simulink does not distinguish between uppercase and lowercase letters
in mask variable names. For example, Simulink treats gain, GAIN, and Gain as
the same name.

Type. Type of control used to edit the value of this parameter. The control
appears on the mask’s parameter dialog box following the parameter prompt.
The button that follows the type name in the Parameters pane pops up a list
of the controls supported by Simulink (see “Control Types” on page 12-20). To
change the current control type, select another type from the list.

Evaluate. If checked, this option causes Simulink to evaluates the expression
entered by the user before it is assigned to the variable. Otherwise Simulink
treats the expression itself as a string value and assigns it to the variable. For
example, if the user enters the expression gain in an edit field and the
Evaluate option is checked, Simulink evaluates gain and assigns the result to
the variable. Otherwise, Simulink assigns the string 'gain' to the variable.

The Mask Editor

See “Check Box Control” on page 12-21 and “Pop-Up Control” on page 12-22 for
information on how this option affects evaluation of the parameters.

If you need both the string entered and the evaluated value, uncheck the
Evaluate option. Then use the MATLAB eval command in the initialization
commands. For example, if LitVal is the string 'gain', then to obtain the
evaluated value, use the command

value = eval(LitVal)

Tunable. Selecting this option allows a user to change the value of the mask
parameter while a simulation is running.

Options for Selected Parameter Panel

This panel allows you to set additional options for the parameter selected in the
Dialog parameters table.

Show parameter. The selected parameter appears on the masked block’s
parameter dialog box only if this option is checked (the default).

Enable parameter. Unchecking this option greys the selected parameter’s prompt
and disables its edit control. This means that the user cannot set the value of
the parameter.

Popups. This field is enabled only if the edit control for the selected parameter
is a pop-up. Enter the values of the pop-up control in this field, each on a
separate line.

Callback. Enter MATLAB code that you want Simulink to execute when a user
edits the selected parameter. The callback can create and reference variables
only in the block’s base workspace. If the callback needs the value of a mask
parameter, it can use get_param to obtain the value, e.g.,

if str2num(get_param(gcb, 'g'))<0
error('Gain is negative.')
end

Parameter Buttons

The following sections explain the purpose of the buttons that appear on the
Parameters pane in the order of their appearance from the top of the pane.

12-19

12 Creating Masked Subsystems

12-20

Add Button. Adds a parameter to the mask’s parameter list. The newly created
parameter appears in the adjacent Dialog parameters table.

<} Mask editor :Subsystem i =10l x|

lcan Farameters

Initialization | Documentation |

Dialog parameters

Add
\ :<-| Prampt Variahle Type |EvaluateTunable

e edit ~ = "

New parameter

Delete Button. Deletes the parameter currently selected in the Dialog
parameters table.

Up Button. Moves the currently selected parameter up one row in the Dialog
parameters table. Dialog parameters appear in the mask’s parameter dialog
box (see “Mask Parameter Dialog Box” on page 12-3) in the same order in which
they appear in the Dialog parameters table. This button (and the next) thus
allows you to determine the order in which parameters appear on the dialog
box.

Down Button. Moves the currently selected parameter down one row in the
Dialog parameters table and hence down one position on the mask’s
parameter dialog box.

Control Types

Simulink enables you to choose how parameter values are entered or selected.
You can create three styles of controls: edit fields, check boxes, and pop-up
controls. For example, this figure shows the parameter area of a mask dialog
box that uses all three styles of controls (with the pop-up control open).

=
F

Frequency: Edli (OHII'OI

I~ Show label ¢ Check box control

Y

Calar: | red

Pop-up control

The Mask Editor

Edit Control

An edit field enables the user to enter a parameter value by typing it into a
field. This figure shows how the prompt for the sample edit control was defined.

Dialog parameters

Frompt Wariable

The value of the variable associated with the parameter is determined by the
Evaluate option.

Evaluate Value
On The result of evaluating the expression entered in the field
Off The actual string entered in the field

Check Box Control

A check box enables the user to choose between two alternatives by selecting or
deselecting a check box. This figure shows how the sample check box control is
defined.

Dialog parameters

IFEITTIE Variable Type Evaluate| Tunable
Saturate zat checkbox Ll v =

The value of the variable associated with the parameter depends on whether
the Evaluate option is selected.

Control State Evaluated Value Literal Value
Checked 1 ‘on'
Unchecked 0 "off!

12-21

12 Creating Masked Subsystems

Pop-Up Control

A pop-up enables the user to choose a parameter value from a list of possible
values. Specify the values in the Popups field on the Parameters pane (see
“Popups” on page 12-19). The following example shows a pop-up parameter.

rDialog parameters

Frompt Wariable Type Evaluate| Tunable

~Options for selected parameter
Fopups {one perlingd; Indialon: B Show pararmeter W Enable éarametel

red - j

hlue
Green

The value of the variable associated with the parameter (Color) depends on the
item selected from the pop-up list and whether the Evaluate option is checked

Callback:

(on).
Evaluate Value
On Index of the value selected from the list, starting with 1.
For example, if the third item is selected, the parameter
value is 3.
Off String that is the value selected. If the third item is

selected, the parameter value is 'green"'.

Changing Default Values for Mask Parameters in a Library

To change default parameter values in a masked library block, follow these
steps:

1 Unlock the library.

2 Open the block to access its dialog box, fill in the desired default values, and
close the dialog box.

3 Save the library.

12-22

The Mask Editor

When the block is copied into a model and opened, the default values appear on
the block’s dialog box.

For more information, see “Working with Block Libraries” on page 5-25.

The Initialization Pane

The Initialization pane allows you to enter MATLAB commands that initialize
the masked subsystem.

<} Mask editor :mx+b =10l x|

lcon | Parameters Initialization | Documentation

rDialog variables — - Initialization commands

|

m
h

-

| Al librany hlack to modify its contents

Unmaskl QK | Cancel | Help | Apply |

Simulink executes the initialization commands when it

® Loads the model

e Starts the simulation or updates the block diagram

® Rotates the masked block

¢ Redraws the block’s icon (if the mask’s icon creation code depends on

variables defined in the initialization code)

The Initialization pane includes the following controls.

Dialog variables

The Dialog variables list displays the names of the variables associated with
the subsystem’s mask parameters, i.e., the parameters defined in the
Parameters pane. You can copy the name of a parameter from this list and

12-23

12 Creating Masked Subsystems

12-24

paste it into the adjacent Initialization commands field, using Simulink’s
keyboard copy and paste commands. You can also use the list to change the
names of mask parameter variables. To change a name, double-click the name
in the list. An edit field containing the existing name appears. Edit existing
name and press Enter or click outside the edit field to confirm your changes.

Initialization commands

Enter the initialization commands in this field. You can enter any valid
MATLAB expression, consisting of MATLAB functions, operators, and
variables defined in the mask workspace. Initialization commands cannot
access base workspace variables. Terminate initialization commands with a
semicolon to avoid echoing results to the command window.

Allow library block to modify its contents

This check box is enabled only if the masked subsystem resides in a library.
Checking this block allows the block’s initialization code to modify the contents
of the masked subsystem, i.e., it lets the code add or delete blocks and set the
parameters of those blocks. Otherwise, Simulink generates an error when a
masked library block tries to modify its contents in any way. To set this option
at the MATLAB prompt, select the self-modifying block and enter the following
command.

set_param(gcb, 'MaskSelfModifiable', 'on');

Then save the block.

Debugging Initialization Commands
You can debug initialization commands in these ways:

¢ Specify an initialization command without a terminating semicolon to echo
its results to the command window.

¢ Place a keyboard command in the initialization commands to stop execution
and give control to the keyboard. For more information, see the help text for
the keyboard command.

¢ Enter either of these commands in the MATLAB Command Window:

dbstop if error

The Mask

Editor

dbstop if warning

If an error occurs in the initialization commands, execution stops and you
can examine the mask workspace. For more information, see the help text for
the dbstop command.

The Documentation Pane

The Documentation pane enables you to define or modify the type,
description, and help text for a masked block. This figure shows how fields on
the Documentation pane correspond to the mx + b sample mask block’s dialog
box.

<} Mask editor :Subsystem ;Iglﬂ

lcon l Parameters Initialization Documentation

Mask type B Faram <+ b
|SampIeMaskedEllock -~ Samplet askedBlock [mask)

Models the equation for a line, y = mx + b.
LW The slope and intercept are mask block parameters.

Mask description

Models the equation far a line, y=mx+h. 4/ 1= rF
[The slope and intercept aare mask block parameters.

Intercept:

E]

QK I EanceLJ_t Help |

Mask help

Enter the slope {m) and intercept {h) in the 4,_,,,/:
block dialog parameter fields.

The block generates v for a given inputx

Unmask | Ok | Cancel Help | Apply |

Mask Type Field

The mask type is a block classification used only for purposes of
documentation. It appears in the block’s dialog box and on all Mask Editor
panes for the block. You can choose any name you want for the mask type.
When Simulink creates the block’s dialog box, it adds “(mask)” after the mask
type to differentiate masked blocks from built-in blocks.

12-25

12 Creating Masked Subsystems

Mask Description Field

The block description is informative text that appears in the block’s dialog box
in the frame under the mask type. If you are designing a system for others to
use, this is a good place to describe the block’s purpose or function.

Simulink automatically wraps long lines of text. You can force line breaks by
using the Enter or Return key.

Block Help Field

You can provide help text that is displayed when the Help button is clicked on
the masked block’s dialog box. If you create models for others to use, this is a
good place to explain how the block works and how to enter its parameters.

You can include user-written documentation for a masked block’s help. You can
specify any of the following for the masked block help text:

¢ URL specification (a string starting with http:, www, file:, ftp:, or
mailto:)

¢ web command (launches a browser)
¢ eval command (evaluates a MATLAB string)
¢ Static text displayed in the Web browser

Simulink examines the first line of the masked block help text. If it detects a
URL specification, web command, or eval command, it accesses the block help
as directed; otherwise, the full contents of the masked block help text are
displayed in the browser.

These examples illustrate several acceptable commands:

web([docroot '/My Blockset Doc/' get_param(gcb, '‘MaskType')...
".html'])

eval('!Word My_Spec.doc')
http://www.mathworks.com
file:///c:/mydir/helpdoc.html
www . mathworks.com

Simulink automatically wraps long lines of text.

Linking Mask Parameters to Block Parameters

Linking Mask Parameters to Block Parameters

The variables associated with mask parameters allow you to link mask
parameters with block parameters. This in turn allows a user to use the mask
to set the values of parameters of blocks inside the masked subsystem.

To link the parameters, open the block’s parameter dialog box and enter an
expression in the block parameter’s value field that uses the mask parameter.
The mx + b masked subsystem, described earlier in this chapter, uses this
approach to link the Slope and Intercept mask parameters to corresponding
parameters of a Gain and Constant block, respectively, that reside in the
subsystem.

Block Parameters: mx + b M as k
— Sampletd askedBlock [mask]

Work -
Models the equation for a line, y = mx + b. or Space (Scalar or vector gain. y = k.*u
The glope and intercept are mask block parameters.

P Gain:
Slope: =

e T P

Intercept: QK I Cancel Help !
E]

0K | saeel | He | ey

=
F

Block Parameters: Intercept

Constant
’70 utput & constant,

=
F

Constant value:
<«

QK I Cancel | Help | !

You can use a masked block’s initialization code to link mask parameters
indirectly to block parameters. In this approach, the initialization code creates
variables in the mask workspace whose values are functions of the mask
parameters and that appear in expressions that set the values of parameters
of blocks concealed by the mask.

12-27

12 Creating Masked Subsystems

Creating Dynamic Dialogs for Masked Blocks

12-28

Simulink allows you to create dialogs for masked blocks whose appearance
changes in response to user input. Features of masked dialog boxes that can
change in this way include

¢ Visibility of parameter controls

Changing a parameter can cause the control for another parameter to appear
or disappear. The dialog expands or shrinks when a control appears or
disappears, respectively.

¢ Enabled state of parameter controls

Changing a parameter can cause the control for another parameter to be
enabled or disabled for input. Simulink grays a disabled control to indicate
visually that it is disabled.

¢ Parameter values

Changing a parameter can cause related parameters to be set to appropriate
values.

Creating a dynamic masked dialog entails using the mask editor in
combination with the Simulink set_param command. Specifically, you first use
the mask editor to define all the dialog’s parameters, both static and dynamic.
Next you use the Simulink set_param command at the MATLAB command line
to specify callback functions that define the dialog’s response to user input.
Finally you save the model or library containing the masked subsystem to
complete the creation of the dynamic masked dialog.

Setting Masked Block Dialog Parameters

Simulink defines a set of masked block parameters that define the current
state of the masked block’s dialog. You can use the mask editor to inspect and
set many of these parameters. The Simulink get _param and set_param
commands also let you inspect and set mask dialog parameters. The
advantage? The set_param command allows you to set parameters and hence
change a dialog’s appearance while the dialog is open. This in turn allows you
to create dynamic masked dialogs.

For example, you can use the set_param command at the MATLAB command
line to specify callback functions to be invoked when a user changes the values
of user-defined parameters. The callback functions in turn can use set_param

Creating Dynamic Dialogs for Masked Blocks

commands to change the values of the masked dialog’s predefined parameters
and hence its state, for example, to hide, show, enable, or disable a user-defined
parameter control.

Predefined Masked Dialog Parameters
Simulink associates the following predefined parameters with masked dialogs.

MaskCallbacks

The value of this parameter is a cell array of strings that specify callback
expressions for the dialog’s user-defined parameter controls. The first cell
defines the callback for the first parameter’s control, the second for the second
parameter control, etc. The callbacks can be any valid MATLAB expressions,
including expressions that invoke M-file commands. This means that you can
implement complex callbacks as M-files.

The easiest way to set callbacks for a mask dialog is to first select the
corresponding masked dialog in a model or library window and then to issue a
set_param command at the MATLAB command line. For example, the
following code

set_param(gcb, ‘MaskCallbacks',{'parmi_callback', "'',...
‘parm3_callback'});

defines callbacks for the first and third parameters of the masked dialog for the
currently selected block. To save the callback settings, save the model or
library containing the masked block.

MaskDescription

The value of this parameter is a string specifying the description of this block.
You can change a masked block’s description dynamically by setting this
parameter.

MaskEnables

The value of this parameter is a cell array of strings that define the enabled
state of the user-defined parameter controls for this dialog. The first cell
defines the enabled state of the control for the first parameter, the second for
the second parameter, etc. A value of 'on' indicates that the corresponding
control is enabled for user input; a value of 'off' indicates that the control is
disabled.

12-29

12 Creating Masked Subsystems

12-30

You can enable or disable user input dynamically by setting this parameter in
a callback. For example, the following command in a callback

set_param(gcb, 'MaskEnables',{'on','on','off'});

would disable the third control of the currently open masked block’s dialog.
Simulink colors disabled controls gray to indicate visually that they are
disabled.

MaskPrompts

The value of this parameter is a cell array of strings that specify prompts for
user-defined parameters. The first cell defines the prompt for the first
parameter, the second for the second parameter, etc.

MaskType

The value of this parameter is the mask type of the block associated with this
dialog.

MaskValues

The value of this parameter is a cell array of strings that specify the values of
user-defined parameters for this dialog. The first cell defines the value for the
first parameter, the second for the second parameter, etc.

MaskVisibilities

The value of this parameter is a cell array of strings that specify the visibility
of the user-defined parameter controls for this dialog. The first cell defines the
visibility of the control for the first parameter, the second for the second
parameter, etc. A value of 'on' indicates that the corresponding control is
visible; a value of 'off' indicates that the control is hidden.

You can hide or show user-defined parameter controls dynamically by setting
this parameter in the callback for a control. For example, the following
command in a callback

set_param(gcb, 'MaskvVisibilities',{'on','off','on'});
would hide the control for the currently selected block’s second user-defined

mask parameter. Simulink expands or shrinks a dialog to show or hide a
control, respectively.

Simulink Debugger

The following sections tell you how to use the Simulink debugger to pinpoint bugs in a model.

Introduction (p. 13-2) Overview of the debugger.
Starting the Debugger (p. 13-3) How to start the debugger.
Starting the Simulation (p. 13-4) How to start a simulation from the debugger.

Using the Debugger’s Command-Line How to debug from the MATLAB command line.
Interface (p. 13-6)

Getting Online Help (p. 13-7) How to get help on debugger commands.

Running a Simulation (p. 13-8) How to start, step, and stop a simulation in debug mode.
Setting Breakpoints (p. 13-12) How to set breakpoints at blocks and time steps.
Displaying Information About the How to display information about the current simulation.
Simulation (p. 13-17)

Displaying Information About the How to display information about the model being

Model (p. 13-21) debugged.

Debugger Command Summary Summary of debugger commands.

(p. 13-25)

1 3 Simulink Debugger

13-2

Introduction

The Simulink debugger is a tool for locating and diagnosing bugs in a Simulink
model. It enables you to pinpoint problems by running simulations step by step
and displaying intermediate block states and input and outputs. The Simulink
debugger has both a graphical and a command-line user interface. The
graphical interface allows you to access the debugger’s most commonly used
features. The command-line interface gives you access to all the debugger’s
capabilities. Wherever you can use either interface to perform a task, the
documentation shows you first how to use the graphical interface and then the
command-line interface to perform the task.

Starting the Debugger

Starting the Debugger

To start the debugger, open the model you want to debug and select Debugger
from the Simulink Tools menu. The debugger window appears.

<) Simulink debugger - vdp [_[o] =]
MDB>I|-D;:E|@|? Close |
PR G | Execution Order | Status |

Blocks of:] =

[= Welceme to the Sinulink debugger.

-

[5 Click on Start/Continue button to debug the model.

[+ It stops at the £irst block to be executed in the model.

[= The command line debugger is also active in the

[* Conmend Window. It iz recommended that debugging actions
(= be issusd in the graphical debugger or the command line

Remove selected point, I+ debugger, but not both to aweid synchronization problems.

3

~Breakon conditions—— |+ Use the Fl key or the Help button for additional help.

™ Zero crossings

™ Step size limited by state
™ Minartime steps

™ Nah ¥alues i~

Break attime | (G

You can also start the debugger from the MATLAB command line, using the
sldebug command or the debug option of the sim command to start a model
under debugger control. For example, either the command

sim('vdp',[0,10],simset('debug','on"))
or the command

sldebug 'vdp'

loads the Simulink demo model vdp into memory, starts the simulation, and
stops the simulation at the first block in the model’s execution list.

Note When running the debugger in graphical user interface (GUI) mode,
you must explicitly start the simulation. See “Starting the Simulation” on
page 13-4 for more information.

13-3

1 3 Simulink Debugger

Starting the Simulation

To start the simulation, select the Start/Continue button in the debugger’s
toolbar.

<} Simulink debugger : vdp J[=] E3

MDSNA}E&E‘@‘? Close |

~BreakiDisplay points

EBlocks <o

Outputs | Execution Order | Status |

Telcome to Simulink debugger.

Click on Start/Continus Puegon to debuy the model.

It stops at the first block Lo~be gxecuted in the model.
The command line debugger iz alss actisg in the

Commend Vindow. It is recommended that deb g actions
be issued in the graphical debugmer or the commamt-line
debugger, but not both to avoid synchronization probleld

Remove selected paint

~Break on conditions Use the Fl key or the Help button for additional help.

—_— ™~ Start/Continue button
™ Zero crossinas i

™ Step size limited by state
™ Minar time steps

I Nal values |—

Break attime : 1 ICI

i
i
i
i
i
%
i
i
i
i

The simulation starts and stops at the first block to be executed. The debugger

opens the model window’s browser pane and highlights the block at which
model execution has stopped.

|
ﬁvdp [o] x]
File Edit “iew Simulation Format Tools Help
- : = =
INEE—R = B AR Rl Tl (SIS] -
Madsl Browser = .
el x| van der Pol Equation First block to be
= wE L
o / executed.
Out1
Muse
Soope
The wan der Fol Equation
(Double-click on the " for mare info) D“:::'f:"""
Simulink Help
To statt and stop the simulation, use the "Start/Stop"
selection in the *Simulation pull-down meny
Running [100% [T=000 [aded5 7

The debugger displays the simulation start time and a debug command prompt
in the MATLAB command window when the debugger is running in

13-4

Starting the Simulation

command-line mode or in the debugger’s output pane when the debugger is
running in GUI mode.

<) Simulink debugger - vdp [_[o] =]
Mggbl|ﬂgﬂg|iui|? Close |
AR R Outputs | Execution Order | Status |
[Siaets | Breing: Teaporarity sisebiing ‘Sigmal svorege rewee: o aliov B
[Tw = 0 1 **$tart™ of system 'vdp' output
(sldebug B0:0 'wdp/xl'):
Remove selected point
~Break on conditions
™ Zero crossings
™ Step size limited by state
™ Minartime steps
™ Nah ¥alues =
Break attime 1 | »

The command prompt displays the block index (see “Block Indexes” on
page 13-6) and the name of the first block to be executed.

Note When you start the debugger in GUI mode, the debugger’s
command-line interface is also active in the MATLAB Command Window.
However, you should avoid using the command-line interface, to prevent
synchronization errors between the graphical and command-line interfaces.

At this point, you can set breakpoints, run the simulation step by step, continue
the simulation to the next breakpoint or end, examine data, or perform other
debugging tasks. The following sections explain how to use the debugger’s
graphical controls to perform these debugging tasks.

13-5

1 3 Simulink Debugger

Using the Debugger’s Command-Line Interface

In command line mode, you control the debugger by entering commands at the
debugger command line in the MATLAB command window. The debugger
accepts abbreviations for debugger commands. See “Debugger Command
Summary” on page 13-25 for a list of command abbreviations and repeatable
commands. You can repeat some commands by entering an empty command
(i.e., by pressing the Return key) at the MATLAB command line.

Block Indexes

Many Simulink debugger commands and messages use block indexes to refer
to blocks. A block index has the form s:b where s is an integer identifying a
system in the model being debugged and b is an integer identifying a block
within that system. For example, the block index 0: 1 refers to block 1 in the
model’s 0 system. The slist command shows the block index for each block in
the model being debugged.

Accessing the MATLAB Workspace

You can enter any MATLAB expression at the sldebug prompt. For example,
suppose you are at a breakpoint and you are logging time and output of your
model as tout and yout. Then the following command

(sldebug ...) plot(tout, yout)

creates a plot. Suppose you would like to access a variable whose name is the
same as the complete or incomplete name of an sldebug command, for
example, s, which is a partial completion for the step command. Typing an s
at the sldebug prompt steps the model. However,

(sldebug...) eval('s"')

displays the value of the variable s.

13-6

Cetting Online Help

Getting Online Help

You can get online help on using the debugger by clicking the Help button on
the debugger’s toolbar or by pressing the F1 key when the text cursor is in a

debugger panel or text field. Clicking the Help button displays help for the
debugger in the MATLAB Help browser.

<) Simulink debugger : vdp

I'M]D‘_':bl|i};]§|’ﬂi|? A

[_[O]x]

Close |

EBlocks EE

Remove selected point

~Break on conditions

™ Zero crossings

™ Step size limited by state
™ Minartime steps

™ Nah ¥alues

_BreakiDisplay points

Outputsworder | Status |

[+ Welcome to the Simulink debid
o

|« Click on Starc/Contimue button to debw
[+ It stops st the first block to be executed D
[« The command line debugger is also active in the
|+ Command Window. It is recommended that debugging actio
[« be issued in the graphical debugger or the command line

=
|+ Use the F1 key or the Help button for additional help.

[+ debugger, but not both to aveid synchronization problems.

[T Help button

Break attime

[

Pressing the F1 key displays help for the debugger panel or text field that
currently has the keyboard input focus. In command-line mode, you can get a
brief description of the debugger commands by typing help at the debug

prompt.

13-7

1 3 Simulink Debugger

Running a Simulation

The Simulink debugger lets you run a simulation from the point at which it is
currently suspended to the following points:

¢ End of the simulation

® Next breakpoint (see “Setting Breakpoints” on page 13-12)
® Next block

¢ Next time step

You select the amount to advance by selecting the appropriate button on the
debugger toolbar in GUI mode

Next Block Next Time Step

MO o P W | <0 0 | 2| 2
A A

Start/Continue ~ Stop

or by entering the appropriate debugger command in command-line mode.

Command Advances a Simulation

step One block

next One time step

continue To next breakpoint

run To end of simulation, ignoring breakpoints

Continuing a Simulation

In GUI mode, the debugger colors the Stop button red when it has suspended
the simulation for any reason. To continue the simulation, click the

Start/Continue button. In command-line mode, enter continue to continue the
simulation. The debugger continues the simulation to the next breakpoint (see

13-8

Running a Simulation

“Setting Breakpoints” on page 13-12) or to the end of the simulation, whichever
comes first.

Running a Simulation Nonstop

The run command lets you run a simulation from the current point in the
simulation to the end, skipping any intervening breakpoints. At the end of the
simulation, the debugger returns you to the MATLAB command line. To
continue debugging a model, you must restart the debugger.

Note The GUI mode does not provide a graphical version of the run
command. To run the simulation to the end, you must first clear all
breakpoints and then click the Continue button.

Advancing to the Next Block

To advance a simulation one block, click ™! on the debugger toolbar or, if the
debugger is running in command-line mode, enter step at the debugger
prompt. The debugger executes the current block, stops, and highlights the
next block in the model’s block execution order (see “Displaying a Model’s Block
Execution Order” on page 13-21). For example, the following figure shows the
vdp block diagram after execution of the model’s first block.

Elvdp H[=] B3
Eile Edit Yiew Simulation Format Tools Help
DER& 2’| el = [hm =

Model Brawser S
R]

] Mo Info

wvan der Pol Equation

The van der Pal Equation = -
(Bouble-olick on the “# for more infa) D°::'I:'°D‘:°*

Simulink Help

To start and stop the simulation, use the "StariStop"
selection in the "Simulation” pull-down menu

Tt) % z o Z
A il T-000 dedS

Ifthe next block to be executed occurs in a subsystem block, the debugger opens
the subsystem’s block diagram and highlights the next block.

13-9

1 3 Simulink Debugger

13-10

After executing a block, the debugger prints the block’s inputs (U) and outputs
(Y) and redisplays the debug command prompt in the debugger output panel (in
GUI mode) or in the MATLAB command window (in command-line mode).

The debugger prompt shows the next block to be evaluated.
(sldebug @0:0 'vdp/Integratori'): step

ut = [0]
CSTATE = [2]
Y1 = [2]

(sldebug @0:1 'vdp/Outl'):

Crossing a Time Step Boundary

After executing the last block in the model’s block execution list, the debugger
advances the simulation to the next time step and halts the simulation. To
signal that you have crossed a time step boundary, the debugger prints the
current time in the debugger output panel in GUI mode or in the MATLAB
command window in command-line mode. For example, stepping through the
last block of the first time step of the vdp model results in the following output
in the debugger output panel or the MATLAB command window.

(sldebug @0:8 'vdp/Sum'): step

Ut = [2]
U2 = [0]
Y1 = [-2]

[Tm=0.0001004754572603832] **Start** of system 'vdp' outputs

Stepping by Minor Time Steps

You can step by blocks within minor time steps as well as within major steps.
To step by blocks within minor time steps, select the Minor time steps option
on the debugger’s Break on conditions panel or enter minor at the debugger
command prompt.

Running a Simulation

Advancing to the Next Time Step

To advance to the next time step, click 0% or enter the next command at the
debugger command line. The debugger executes the remaining blocks in the
current time step and advances the simulation to the beginning of the next
time step. For example, entering next after starting the vdp model in debug
mode causes the following message to appear in the MATLAB command
window.

[Tm=0.0001004754572603832] **Start** of system 'vdp' outputs

13-11

1 3 Simulink Debugger

Setting Breakpoints

13-12

The Simulink debugger allows you to define stopping points in a simulation
called breakpoints. You can then run a simulation from breakpoint to
breakpoint, using the debugger’s continue command. The debugger lets you
define two types of breakpoints: unconditional and conditional. An
unconditional breakpoint occurs whenever a simulation reaches a block or time
step that you specified previously. A conditional breakpoint occurs when a
condition that you specified in advance arises in the simulation.

Breakpoints come in handy when you know that a problem occurs at a certain
point in your program or when a certain condition occurs. By defining an
appropriate breakpoint and running the simulation via the continue
command, you can skip immediately to the point in the simulation where the
problem occurs.

You set a breakpoint by clicking the breakpoint button on the debugger toolbar

Breakpoint

|

O > W | o0k | | 2

or by selecting the appropriate breakpoint conditions (GUI mode)

—Break on conditions
[~ Zeracrossings
[~ Step size limited by state
™ Minartime steps
T NaNvwalues

Break attime :I

or by entering the appropriate breakpoint command (command-line mode).

Command Causes Simulation to Stop
break <gcb | s:b> At the beginning of a block
bafter <gcb | s:b> At the end of a block

Sefting Breakpoints

Command Causes Simulation to Stop
tbreak [t] At a simulation time step
nanbreak At the occurrence of an underflow or overflow

(NaN) or infinite (Inf) value

xbreak When the simulation reaches the state that
determines the simulation step size

zcbreak When a zero crossing occurs between
simulation time steps

Setting Breakpoints at Blocks

The debugger lets you specify a breakpoint at the beginning of the execution of
a block or at the end of the execution of a block (command-line mode only).

Specifying a Breakpoint at the Start of a Block’s Execution

Setting a breakpoint at the beginning of a block causes the debugger to stop the
simulation when it reaches the block on each time step. You can specify the
block on which to set the breakpoint graphically or via a block index in
command-line mode. To set a breakpoint graphically at the beginning of a
block’s execution, select the block in the model window and click <1 on the
debugger’s toolbar or enter

break gcb

at the debugger command line. To specify the block via its block index
(command-line mode only), enter

break s:b

where s:b is the block’s index (see “Block Indexes” on page 13-6).

13-13

1 3 Simulink Debugger

13-14

Note You cannot set a breakpoint on a virtual block. A virtual block is a block
whose function is purely graphical: it indicates a grouping or relationship
among a model’s computational blocks. The debugger warns you if you
attempt to set a breakpoint on a virtual block. You can obtain a listing of a
model’s nonvirtual blocks, using the slist command (see “Displaying a
Model’s Nonvirtual Blocks” on page 13-22).

In GUI mode, the debugger’s Break/Display points panel displays the blocks
where breakpoints exist.

_BreakiDisplay points

Elocks I‘D—i_ﬁ

Remaove selected pointl

Setting a Breakpoint at the End of a Block’s Execution

In command-line mode, the debugger allows you to set a breakpoint at the end
of a block’s execution, using the bafter command. As with break, you can
specify the block graphically or via its block index.

Clearing Breakpoints from Blocks

To clear a breakpoint temporarily, clear the first check box next to the
breakpoint in the Break/Display points panel (GUI mode only). To clear a
breakpoint permanently in GUI mode, select the breakpoint in the
Break/Display points panel and click the Remove selected point button. In
command-line mode use the clear command to clear breakpoints. You can
specify the block by entering its block index or by selecting the block in the
model diagram and entering gcb as the argument of the clear command.

Setting Breakpoints at Time Steps

To set a breakpoint at a time step, enter a time in the debugger’s Break at time
field (GUI mode) or enter the time using the tbreak command. This causes the

Sefting Breakpoints

debugger to stop the simulation at the beginning of the first time step that
follows the specified time. For example, starting vdp in debug mode and
entering the commands

tbreak 9
continue

causes the debugger to halt the simulation at the beginning of time step 9.0785
as indicated by the output of the continue command.

[Tm=9.07847133212036] **Start** of system 'vdp' outputs

Breaking on Nonfinite Values

Selecting the debugger’s NalN values option or entering the nanbreak
command causes the simulation to stop when a computed value is infinite or
outside the range of values that can be represented by the machine running the
simulation. This option is useful for pinpointing computational errors in a
Simulink model.

Breaking on Step-Size Limiting Steps

Selecting the Step size limited by state option or entering the xbreak
command causes the debugger to stop the simulation when the model uses a
variable-step solver and the solver encounters a state that limits the size of the
steps that it can take. This command is useful in debugging models that appear
to require an excessive number of simulation time steps to solve.

Breaking at Zero Crossings

Selecting the Zero crossings option or entering the zchreak command causes
the simulation to halt when Simulink detects a nonsampled zero crossing in a
model that includes blocks where zero crossings can arise. After halting,
Simulink displays the location in the model, the time, and the type (rising or
falling) of the zero crossing. For example, setting a zero-crossing break at the
start of execution of the zeroxing demo model,

sldebug zeroxing

[Tm=0] **Start** of system 'zeroxing' outputs
(sldebug @0:0 'zeroxing/Sine Wave'): zcbreak

Break at zero crossing events is enabled.

13-15

1 3 Simulink Debugger

13-16

and continuing the simulation
(sldebug @0:0 'zeroxing/Sine Wave'): continue
results in a rising zero-crossing break at
[Tm=0.34350110879329] Breaking at block 0:2

[Tm=0.34350110879329] Rising zero crossing on 3rd zcsignal
in block 0:2 'zeroxing/Saturation'

If a model does not include blocks capable of producing nonsampled zero
crossings, the command prints a message advising you of this fact.

Displaying Information About the Simulation

Displaying Information About the Simulation
The Simulink debugger provides a set of commands that allow you to display

block states, block inputs and outputs, and other information while running a
model.

Displaying Block 1/0
The debugger allows you to display block I/O by selecting the appropriate
buttons on the debugger toolbar

Watch Block 1/0 Display Block /0

N/

O > W | o0k | | 2

or by entering the appropriate debugger command.

Command Displays a Block’s 1/O

probe Immediately
disp At every breakpoint
trace Whenever the block executes

13-17

1 3 Simulink Debugger

Displaying 1/0O of Selected Block

To display the I/O of a block, select the block and click 4+ in GUI mode or enter
the probe command in command-line mode.

Command Description

probe Enter or exit probe mode. In probe mode, the debugger
displays the current inputs and outputs of any block that
you select in the model’s block diagram. Typing any
command causes the debugger to exit probe mode.

probe gcb Display I/O of selected block.

probe s:b Print the I/O of the block specified by system number s and
block number b.

The debugger prints the current inputs, outputs, and states of the selected
block in the debugger output pane (GUI mode) or the MATLAB command
window.

The probe command comes in handy when you need to examine the I/O of a
block whose I/O is not otherwise displayed. For example, suppose you are using
the step command to run a model block by block. Each time you step the model,
the debugger displays the inputs and outputs of the current block. The probe
command lets you examine the I/O of other blocks as well. Similarly, suppose
you are using the next command to step through a model by time steps. The
next command does not display block I/O. However, if you need to examine a
block’s I/0O after entering a next command, you can do so using the probe
command.

Displaying Block /O Automatically at Breakpoints

The disp command causes the debugger to display a specified block’s inputs
and outputs whenever it halts the simulation. You can specify a block either by
entering its block index or by selecting it in the block diagram and entering gcb
as the disp command argument. You can remove any block from the debugger’s
list of display points, using the undisp command. For example, to remove
block 0:0, either select the block in the model diagram and enter undisp gcb
or simply enter undisp 0:0.

13-18

Displaying Information About the Simulation

Note Automatic display of block I/O at breakpoints is not available in the
debugger’s GUI mode.

The disp command is useful when you need to monitor the I/O of a specific
block or set of blocks as you step through a simulation. Using the disp
command, you can specify the blocks you want to monitor and the debugger will
then redisplay the I/O of those blocks on every step. Note that the debugger
always displays the I/O of the current block when you step through a model
block by block, using the step command. So, you do not need to use the disp
command if you are interested in watching only the I/O of the current block.

Watching Block 1/0

To watch a block, select the block and click == in the debugger toolbar or enter
the trace command. In GUI mode, if a breakpoint exists on the block, you can
set a watch on it as well by selecting the watch check box for the block in the
Break/Display points pane. In command-line mode, you can also specify the
block by specifying its block index in the trace command. You can remove a
block from the debugger’s list of trace points, using the untrace command.

The debugger displays a watched block’s I/O whenever the block executes.
Watching a block allows you obtain a complete record of the block’s I/O without
having to stop the simulation.

Displaying Algebraic Loop Information

The atrace command causes the debugger to display information about a
model’s algebraic loops (see “Algebraic Loops” on page 2-19) each time they are
solved. The command takes a single argument that specifies the amount of
information to display.

Command Displays for Each Algebraic Loop

atrace 0 No information

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated solution error

atrace 2 Same as level 1

13-19

1 3 Simulink Debugger

13-20

Command Displays for Each Algebraic Loop

atrace 3 Level 2 plus the Jacobian matrix used to solve the loop

atrace 4 Level 3 plus intermediate solutions of the loop variable

Displaying System States

The states debug command lists the current values of the system’s states in
the MATLAB command window. For example, the following sequence of
commands shows the states of the Simulink bouncing ball demo (bounce) after
its first and second time steps.

sldebug bounce

[Tm=0] **Start** of system 'bounce' outputs
(sldebug @0:0 'bounce/Position'): states

Continuous state vector (value,index,name):

10 0 (0:0 'bounce/Position')
15 1 (0:5 'bounce/Velocity')
(sldebug @0:0 'bounce/Position'): next
[Tm=0.01] **Start** of system 'bounce' outputs

(sldebug @0:0 'bounce/Position'): states

Continuous state vector (value,index,name):
10.1495095 0 (0:0 'bounce/Position')
14.9019 1 (0:5 'bounce/Velocity')

Displaying Integration Information

The ishow command toggles display of integration information. When enabled,
this option causes the debugger to display a message each time the simulation
takes a time step or encounters a state that limits the size of a time step. In the
first case, the debugger displays the size of the time step, for example,

[Tm=9.996264188473381] Step of 0.01 was taken by integrator

In the second case, the debugger displays the state that currently determines
the size of time steps, for example,

[Ts=9.676264188473388] Integration limited by 1st state of
block 0:0 'bounce/Position'

Displaying Information About the Model

Displaying Information About the Model

In addition to providing information about a simulation, the debugger can
provide you with information about the model that underlies the simulation.

Displaying a Model’s Block Execution Order

Simulink determines the order in which to execute blocks at the beginning of a
simulation run, during model initialization. During simulation, Simulink
maintains a list of blocks sorted by execution order. This list is called the sorted
list. In GUI mode, the debugger displays the sorted list in its Execution Order
panel. In command-line mode, the slist command displays the model’s block
execution order in the MATLAB command window. The list includes the block
index for each command.

---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]

0:0 ‘vdp/Integratori' (Integrator)
‘vdp/Out1' (Outport)
‘vdp/Integrator2' (Integrator)
'vdp/Out2' (Outport)

‘vdp/Fcn' (Fcn)
'vdp/Product' (Product)
‘vdp/Mu' (Gain)
‘vdp/Scope' (Scope)
‘vdp/Sum' (Sum)

O OO O0OO0OO0OOoOOo
0N O WOWN =

Identifying Blocks in Algebraic Loops

If a block belongs to an algebraic list, the s1ist command displays an algebraic
loop identifier in the entry for the block in the sorted list. The identifier has the
form

algId=s#n

where s is the index of the subsystem containing the algebraic loop and n is the
index of the algebraic loop in the subsystem. For example, the following entry
for an Integrator block indicates that it participates in the first algebraic loop
at the root level of the model.

0:1 'test/ss/I1' (Integrator, tid=0) [algId=0#1, discontinuity]

13-21

1 3 Simulink Debugger

13-22

You can use the debugger’s ashow command to highlight the blocks and lines
that make up an algebraric loop. See “Displaying Algebraic Loops” on
page 13-24 for more information.

Displaying a Block

To determine the block in a model’s diagram that corresponds to a particular
index, enter bshow s:b at the command prompt, where s:b is the block index.
The bshow command opens the system containing the block (if necessary) and
selects the block in the system’s window.

Displaying a Model’s Nonvirtual Systems

The systems command displays a list of the nonvirtual systems in the model
being debugged. For example, the Simulink clutch demo (clutch) contains the
following systems:

sldebug clutch

[Tm=0] **Start** of system 'clutch' outputs
(sldebug @0:0 'clutch/Clutch Pedal'): systems
0 ‘clutch’

1 ‘clutch/Locked’
2 ‘clutch/Unlocked’

Note The systems command does not list subsystems that are purely
graphical in nature, that is, subsystems that the model diagram represents as
Subsystem blocks but that Simulink solves as part of a parent system. In
Simulink models, the root system and triggered or enabled subsystems are
true systems. All other subsystems are virtual (that is, graphical) and hence
do not appear in the listing produced by the systems command.

Displaying a Model’s Nonvirtual Blocks

The slist command displays a list of the nonvirtual blocks in a model. The
listing groups the blocks by system. For example, the following sequence of
commands produces a list of the nonvirtual blocks in the Van der Pol (vdp)
demo model.

sldebug vdp
[Tm=0] **Start** of system 'vdp' outputs

Displaying Information About the Model

(sldebug @0:0 'vdp/Integratori'): slist
---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks,
directFeed=0]

0:0 'vdp/Integratori' (Integrator)
1 ‘vdp/Outi' (Outport)
2 'vdp/Integrator2' (Integrator)
3 'vdp/Out2' (Outport)
4 ‘vdp/Fcn' (Fcn)
:5 ‘vdp/Product' (Product)
6 ‘vdp/Mu' (Gain)
7 ‘vdp/Scope' (Scope)
8 ‘vdp/Sum' (Sum)

O OO O0OO0OO0OOoOOo

Note The slist command does not list blocks that are purely graphical in
nature, that is, blocks that indicate relationships or groupings among
computational blocks.

Displaying Blocks with Potential Zero Crossings

The zclist command displays a list of blocks in which nonsampled zero
crossings can occur during a simulation. For example, zclist displays the
following list for the clutch sample model:

(sldebug @0:0 'clutch/Clutch Pedal'): zclist

2:3 ‘clutch/Unlocked/Sign' (Signum)

0:4 ‘clutch/Lockup Detection/Velocities Match' (HitCross)

0:10 ‘clutch/Lockup Detection/Required Friction
for Lockup/Abs' (Abs)

0:11 ‘clutch/Lockup Detection/Required Friction for
Lockup/ Relational Operator' (RelationalOperator)

0:18 ‘clutch/Break Apart Detection/Abs' (Abs)

0:20 ‘clutch/Break Apart Detection/Relational Operator'
(RelationalOperator)

0:24 ‘clutch/Unlocked' (SubSystem)

0:27 ‘clutch/Locked' (SubSystem)

13-23

1 3 Simulink Debugger

13-24

Displaying Algebraic Loops

The ashow command highlights a specified algebraic loop or the algebraic loop
that contains a specified block. To highlight a specified algebraic loop, enter
ashow s#n, where s is the index of the system (see “Identifying Blocks in
Algebraic Loops” on page 13-21) that contains the loop and n is the index of the
loop in the system. To display the loop that contains the currently selected
block, enter ashow gcb. To show a loop that contains a specified block, enter
ashow s:b, where s:b is the block’s index. To clear algebraic-loop highlighting
from the model diagram, enter ashow clear.

Displaying Debugger Status

In GUI mode, the debugger displays the settings of various debug options, such
as conditional breakpoints, in its Status panel. In command-line mode, the
status command displays debugger settings. For example, the following
sequence of commands displays the initial debug settings for the vdp model.

sim('vdp',[0,10],simset('debug','on"))
[Tm=0] **Start** of system 'vdp' outputs
(sldebug @0:0 'vdp/Integratori'): status
Current simulation time: 0 (MajorTimeStep)
Last command: ""
Stop in minor times steps is disabled.
Break at zero crossing events is disabled.
Break when step size is limiting by a state is disabled.
Break on non-finite (NaN,Inf) values is disabled.
Display of integration information is disabled.
Algebraic loop tracing level is at O.

Debugger Command Summary

Debugger Command Summary

The following table lists the debugger commands. The table’s Repeat column
specifies whether pressing the Return key at the command line repeats the
command. See “Simulink Debugger Commands” for a detailed description of
each command.

Short

Command Form Repeat Description

ashow as No Show an algebraic loop.

atrace at No Set algebraic loop trace level.

bafter ba No Insert a breakpoint after execution of a
block.

break b No Insert a breakpoint before execution of a
block.

bshow bs No Show a specified block.

clear cl No Clear a breakpoint from a block.

continue c Yes Continue the simulation.

disp d Yes Display a block’s I/O when the
simulation stops.

help ?2orh No Display help for debugger commands.

ishow i No Enable or disable display of integration
information.

minor m No Enable or disable minor step mode.

nanbreak na No Set or clear break on nonfinite value.

next n Yes Go to start of the next time step.

probe p No Display a block’s I/0.

quit q No Abort simulation.

13-25

1 3 Simulink Debugger

Short

Command Form Repeat Description

run r No Run the simulation to completion.

slist sli No List a model’s nonvirtual blocks.

states state No Display current state values.

status stat No Display debugging options in effect.

step s Yes Step to next block.

stop sto No Stop the simulation.

systems sys No List a model’s nonvirtual systems.

tbreak tb No Set or clear a time breakpoint.

trace tr Yes Display a block’s I/O each time it
executes.

undisp und Yes Remove a block from the debugger’s list
of display points.

untrace unt Yes Remove a block from the debugger’s list
of trace points.

xbreak X No Break when the debugger encounters a
step-size-limiting state.

zcbreak zch No Break at nonsampled zero-crossing
events.

zclist zcl No List blocks containing nonsampled zero

crossings.

13-26

Performance Tools

The follow sections describe the tools that make up the Simulink Performance Tools option.

About the Simulink Performance Tools Overview of the Performance Tools.
Option (p. 14-2)

The Simulink Accelerator (p. 14-3) How to use the Simulink Accelerator to speed up a
simulation.
Graphical Merge Tool (p. 14-13) How to use the Graphical Merge tool to compare and

merge different versions of the same model.

Profiler (p. 14-21) How to use the Simulink Profiler to tune the performance
of your model

Model Coverage Tool (p. 14-27) How to use the Model Coverage tool to determine the
effectiveness of your model tests.

1 4 Performance Tools

About the Simulink Performance Tools Option

The Simulink Performance Tools product includes the following tools:
¢ Simulink Accelerator

¢ Graphical Merge Tool

¢ Profiler

® Model Coverage Tool

Note You must have the Performance Tools option installed on your system
to use these tools.

14-2

The Simulink Accelerator

The Simulink Accelerator

The Simulink Accelerator speeds up the execution of Simulink models. The
Accelerator uses portions of the Real-Time Workshop, a MathWorks product
that automatically generates C code from Simulink models, and your C
compiler to create an executable. Note that although the Simulink Accelerator
takes advantage of Real-Time Workshop technology, the Real-Time Workshop
is not required to run it. Also, if you do not have a C compiler installed on your
Windows PC, you can use the 1cc compiler provided by The MathWorks.

Note You must have the Simulink Performance Tools option installed on
your system to use the accelerator.

Accelerator Limitations

The accelerator does not support models with algebraic loops. If the accelerator
detects an algebraic loop in your model, it halts the simulation and displays an
error message.

How the Accelerator Works

The Simulink Accelerator works by creating and compiling C code that takes
the place of the interpretive code that Simulink uses when in Normal mode
(that is, when Simulink is not in Accelerator mode). The Accelerator generates
the C code from your Simulink model, and MATLAB’s mex function invokes
your compiler and dynamically links the generated code to Simulink.

The Simulink Accelerator removes much of the computational overhead
required by Simulink models when in Normal mode. It works by replacing
blocks that are designed to handle any possible configuration in Simulink with
compiled versions customized to your particular model’s configuration.
Through this method, the Accelerator is able to achieve substantial
improvements in performance for larger Simulink models. The performance
gains are tied to the size and complexity of your model. In general, as size and
complexity grow, so do gains in performance. Typically, you can expect a
2X-t0-6X gain in performance for models that use built-in Simulink blocks.

14-3

1 4 Performance Tools

14-4

Note Blocks such as the Quantizer block might exhibit slight differences in
output on some systems because of slight differences in the numerical
precision of the interpreted and compiled versions of the model.

Runnning the Simulink Accelerator

To activate the Simulink Accelerator, select Accelerator from the Simulation
menu for your model. This picture shows the procedure using the F14 flight
control model.

Eifa i [=] B3
File Edit Yiew BEGUEWIW Format Tools Help
O | =S | . Start Cir+T P.ocelerator 'l
StEp
e Simulation parameters... Chl+E
w
Pilat Mormal Pilat g force (g)
q
0 Laccsleson || pucteore
u itz cahI‘:uT:toizn Soope
Stick IO Ny
1
alpha (rad) Bewator Command (deg)H Bevator Deflection d (deg) Mz Pilot (g)
Ta o+

Alternatively, you can select Accelerator from the menu located on the
right-hand side of the toolbar.

To begin the simulation, select Start from the Simulation menu. When you
start the simulation, the Accelerator generates the C code and compiles it. The
Accelerator then does the following:

¢ Places the generated code in a subdirectory called modelname_accel_rtw (in
this case, f14_accel_rtw)
¢ Places a compiled MEX-file in the current working directory

¢ Runs the compiled model

Note If your code does not compile, the most likely reason is that you have
not set up the mex command correctly. Run mex -setup at the MATLAB
prompt and select your C compiler from the list shown during the setup.

The Simulink Accelerator

The Accelerator uses Real-Time Workshop technology to generate the code
used to accelerate the model. However, the generated code is suitable only for
acceleration of the model. If you want to generate code for other purposes, you
must use the Real-Time Workshop.

Handling Changes in Model Structure

After you use the Simulink Accelerator to simulate a model, the MEX-file
containing the compiled version of the model remains available for use in later
simulations. Even if you exit MATLAB, you can reuse the MEX-file in later
MATLAB or Simulink sessions.

If you alter the structure of your Simulink model, for example, by adding or
deleting blocks, the Accelerator automatically regenerates the C code and
updates (overwrites) the existing MEX-file.

Examples of model structure changes that require the Accelerator to rebuild

include

¢ Changing the method of integration

¢ Adding or deleting blocks or connections between blocks

® Changing the number of inputs or outputs of blocks, even if the connectivity
is vectorized

¢ Changing the number of states in the model

¢ Changing function in the Trigonometric Function block

¢ Changing the signs used in a Sum block

¢ Adding a Target Language Compiler™ (TLC) file to inline an S-function

The Simulink Accelerator displays a warning when you attempt any
impermissible model changes during simulation. The warning does not stop
the current simulation. To make the model alterations, stop the simulation,
make the changes, and restart.

Some changes are permitted in the middle of simulation. Simple changes like
adjusting the value of a Gain block do not cause a warning. When in doubt, try
to make the change. If you do not see a warning, the Accelerator accepted the
change.

Note that the Accelerator does not display warnings that blocks generate
during simulation. Examples include divide-by-zero and integer overflow. This
is a different set of warnings from those discussed previously.

14-5

1 4 Performance Tools

14-6

Increasing Performance of Accelerator Mode

In general, the Simulink Accelerator creates code optimized for speed with
most blocks available in Simulink. There are situations, however, where you
can further improve performance by adjusting your simulation or being aware
of Accelerator behavior. These include

¢ Simulation Parameters dialog box — The options in the Diagnostics and
Advanced panes can affect Accelerator performance. To increase the
performance:

= Disable Consistency checking and Bounds checking on the Diagnostics
pane.

= Set Signal storage reuse on in the Advanced pane.

e Stateflow — The Accelerator is fully compatible with Stateflow, but it does
not improve the performance of the Stateflow portions of models. Disable
Stateflow debugging and animation to increase performance of models that
include Stateflow blocks.

¢ User-written S-functions — The Accelerator cannot improve simulation
speed for S-functions unless you inline them using the Target Language
Compiler. Inlining refers to the process of creating TLC files that direct
Real-Time Workshop to create C code for the S-function. This eliminates
unnecessary calls to the Simulink application program interface (API).

For information on how to inline S-functions, consult the Target Language

Compiler Reference Guide, which is available on the MathWorks Web site,

www . mathworks.com. It is also available on the documentation CD provided
with MATLAB.

e S-functions supplied by Simulink and blocksets — Although the Simulink
Accelerator is compatible with all the blocks provided with Simulink and
blocksets, it does not improve the simulation speed for M-file or C-MEX
S-Function blocks that do not have an associated inlining TLC file.

¢ Logging large amounts of data — If you use Workspace I/0, To Workspace,
To File, or Scope blocks, large amounts of data will slow the Accelerator
down. Try using decimation or limiting outputs to the last IV data points.

¢ Large models — In both Accelerator and Normal mode, Simulink can take
significant time to initialize large models. Accelerator speed up can be
minimal if run times (from start to finish of a single simulation) are small.

The Simulink Accelerator

Blocks That Do Not Show Speed Improvements

The Simulink Accelerator speeds up execution only of blocks from the
Simulink, Fixed Point, and DSP blocksets. Further, the Accelerator does not
improve the performance of some blocks in the Simulink and DSP blocksets.
The following sections list these blocks.

Simulink Blocks

¢ Display

¢ From File

¢ From Workspace

¢ Inport (root level only

e MATLAB Fen

¢ Outport (root level only)
® Scope

¢ To File

® To Workspace

¢ Transport Delay

® Variable Transport Delay
® XY Graph

DSP Blockset Blocks

¢ Biquadratic Filter

¢ Convolution

¢ Direct-Form II Transpose Filter
¢ Dyadic Analysis Filter Bank

® Dyadic Synthesis Filter Bank

® FIR Decimation

¢ FIR Interpolation

¢ FIR Rate Conversion

® From Wave Device

® From Wave File

14-7

1 4 Performance Tools

14-8

¢ Integer Delay

® Variable Integer Delay

¢ Matrix Multiply

¢ Matrix To Workspace

¢ Triggered Signal To Workspace

¢ Triggered Signal From Workspace
¢ Time-Varying Direct-Form II Transpose Filter
¢ To Wave File

® To Wave Device

® Wavelet Analysis

* Wavelet Synthesis

¢ Zero Pad

User-Written S-Function Blocks

In addition, the Accelerator does not speed up user-written S-Function blocks
unless you inline them using the Target Language Compiler and set
SS_OPTION_ USE_TLC_WITH_ACCELERATOR in the S-function itself. See
“Controlling S-Function Execution” on page 14-11 for more information.

Using the Simulink Accelerator with the Simulink
Debugger

If you have large and complex models that you need to debug, the Simulink
Accelerator can shorten the length of your debugging sessions. For example, if
you need to set a time break that is very large, you can use the Accelerator to
reach the breakpoint more quickly.

To run the Simulink debugger while in Accelerator mode:

1 Select Accelerator from the Simulation menu, then enter

sldebug modelname
at the MATLAB prompt.

2 At the debugger prompt, set a time break:

tbreak 10000
continue

The Simulink Accelerator

3 Once you reach the breakpoint, use the debugger command emode (execution
mode) to toggle between Accelerator and Normal mode.

Note that you must switch to Normal mode to step the simulation by blocks.
You must also switch to Normal mode to use the following debug commands:
® trace

® break

® zcbreak

® nanbreak

® minor

For more information on the Simulink debugger, see Chapter 13, “Simulink
Debugger.”

Interacting with the Simulink Accelerator
Programmatically

Using three commands, set_param, sim, and accelbuild, you can control the
execution of your model from the MATLAB prompt or from M-files. This section
describes the syntax for these commands and the options available.

Controlling the Simulation Mode
You can control the simulation mode from the MATLAB prompt using

set_param(gcs, 'simulationmode’, '‘mode')

or

set_param(modelname,'simulationmode’, 'mode")

You can use gcs (“get current system”) to set parameters for the currently
active model (i.e., the active model window) and modelname if you want to
specify the model name explicitly. The simulation mode can be either normal
or accelerator.

Simulating an Accelerated Model
You can also simulate an accelerated model using

sim(gcs); % Blocks the MATLAB prompt until simulation complete

14-9

1 4 Performance Tools

14-10

or

set_param(gcs, 'simulationcommand', 'start'); % Returns to the
% MATLAB prompt
% immediately

Again, you can substitute the modelname for gcs if you prefer to specify the
model explicitly.

Building Simulink Accelerator MEX-Files Independent of Simulation

You can build the Simulink Accelerator MEX-file without actually simulating
the model by using the accelbuild command, for example,

accelbuild f14

Creating the Accelerator MEX-files in batch mode using accelbuild allows you
to build the C code and executables prior to running your simulations. When
you use the Accelerator interactively at a later time, it does not need to
generate or compile MEX-files at the start of the accelerated simulations.

You can use the accelbuild command to specify build options such as turning
on debugging symbols in the generated MEX-file.

accelbuild f14 OPT_OPTS=-g

Comparing Performance

If you want to compare the performance of the Simulink Accelerator to
Simulink in Normal mode, use tic, toc, and the sim command. To run the F14
example, use this code (make sure you’re in Normal mode).

tic,[t,x,y]=sim('f14"',1000);toc
elapsed_time =

14.1080

In Accelerator mode, this is the result.

elapsed_time =

6.5880

The Simulink Accelerator

These results were achieved on a Windows PC with a 233 MHz Pentium
processor.

Note that for models with very short run times, the Normal mode simulation
might be faster, because the Accelerator checks at the beginning of any run to
see whether it must regenerate the MEX-file. This adds a small overhead to the
run-time.

Customizing the Simulink Accelerator Build Process

Typically no customization is necessary for the Simulink Accelerator build
process. However, because the Accelerator uses the same underlying
mechanisms as the Real-Time Workshop to generate code and build the
MEX-file, you can use three parameters to control the build process.

AccelMakeCommand
AccelSystemTargetFile
AccelTemplateMakeFile

The three options allow you to specify custom Make command, System target,
and Template makefiles. Each of these parameters governs a portion of the
code generation process. Using these options requires an understanding of how
the Real-Time Workshop generates code. For a description of the Make
command, the System target file, and Template makefile, see the Real-Time
Workshop User’s Guide, which is available on the MathWorks Web site,

www . mathworks.com, and on the documentation CD provided with MATLAB.

The syntax for setting these parameters is
set_param(gcs, 'parameter', 'string')
or

set_param(modelname, 'parameter', 'string')

where gcs (“get current system”) is the currently active model and
'parameter' is one of the three parameters listed above. Replace 'string'
with your string that defines a custom value for that parameter.

Controlling S-Function Execution

Inlining S-functions using the Target Language Compiler increases
performance when used with the Simulink Accelerator. By default, however,

14-11

1 4 Performance Tools

14-12

the Accelerator ignores an inlining TLC file for an S-function, even though the
file exists.

One example of why this default was chosen is a device driver S-Function block
for an I/0 board. The S-function TLC file is typically written to access specific
hardware registers of the I/O board. Because the Accelerator is not running on
a target system, but rather is a simulation on the host system, it must avoid
using the inlined TLC file for the S-function.

Another example is when the TLC file and MEX-file versions of an S-function
are not compatible in their use of work vectors, parameters, and/or
initialization.

If your inlined S-function is not complicated by these issues, you can direct the
Accelerator to use the TLC file instead of the S-function MEX-file by specifying
SS_OPTION USE_TLC_WITH_ACCELERATOR in the mdlInitializeSizes function
of the S-function. When set, the Accelerator uses the inlining TLC file and full
performance increases are realized. For example:

static void mdlInitializeSizes(SimStruct *S)

{

/* Code deleted */

ssSetOptions(S, SS_OPTION_USE_TLC_WITH_ACCELERATOR) ;
}

Graphical Merge Tool

Graphical Merge Tool

The Graphical Merge Tool helps you to find and merge differences between

versions of Simulink models, including models that contain Stateflow® charts.
The Graphical Merge Tool simplifies collaborative development of models. For
example, you and a colleague can each work on separate copies of a model and,
when you are done, use the Graphical Merge Tool to combine the two versions.

Note You must have the Simulink Performance Tools option installed on
your system to use the graphical merge tool.

Comparing Models

You can use the tool to compare and merge

* Two models saved on your system
® An in-memory version of a model with the version stored on disk

® Versions of a model stored in a source control system or an in-memory
version with a version stored in the source control system

Comparing Two Saved Models
To compare two saved models:

1 Open or select one of the two models to be compared.
2 Select Model differences from the Simulink Tools menu.

3 Select Merge/Compare Two Models.

14-13

1 4 Performance Tools

The Graphical Merge Tool window (see “The Graphical Merge Tool Window”
on page 14-16) appears along with a Select Second Model dialog box.

Select Second Model (2]]
Loskin: |3 win32 =l =E
|1 mbuildopts atlas_Plll.exp common_conte
) mexopts atlaz_PIILIib common_conte
9 atlaz_Athlon.dil blas.spec comp_ja.dl
atlaz_Athlon.exp clbs110.dIl comp_ja.map
atlaz_Athlon, lib cmex. bat compiler. csf
9 atlaz_PIILdIl commor_contest. csf compiler.dil
KN i

Files of type: [l Fies (*) 4| Cancel |

Use the Select model to compare to dialog box to select the other model to be
compared. Simulink opens the second model, if it is not already open, and
arranges the Graphical Merge Tool window and the two models, as shown in
the following example.

[i

| S| Wit smers| [GTQG ez

Simulink also enlarges or shrinks the model block diagrams so that they fit
entirely in their respective model windows.

14-14

Graphical Merge Tool

Comparing a Model to lts Last Saved Version

If you have made changes to a model and have not yet saved the changes, you
can compare the changed model to the last version of the model that you saved.
To do this, select Model differences from the Simulink Tools menu. Then
select Compare to Last Saved Model. Simulink creates a copy of the saved
model in your system’s temporary directory. It then opens the copy and
arranges it side by side with the modified model and the tool window.

Comparing Source-Controlled Models

You can use the Graphical Merge Tool to compare versions of a model that you
have stored in a source control system, such as RCS. To compare two versions
that both reside in the version control system, select Compare versions... from
the tool’s File menu.

Note This item appears only if you have selected Source Control in the
MATLAB Preferences dialog box.

The Compare Versions dialog box appears.

¢ Compare versions x|

Simulink model:' LIE'

ersion 1: |(Compare to version in memaony

Yersion 2: |

Compare | Cancel |

Enter the name of the Simulink model for which you want to compare versions
in the Simulink model field. Enter the version numbers of the two models in
the two remaining fields and click Compare. Simulink opens the two versions
of the model and arranges them side by side with the tool window for
comparison.

You can also compare an in-memory version of a model with a version stored in
the source control system. To do this, enter (Compare to version in memory)
in the Version 1 field of the dialog box.

14-15

1 4 Performance Tools

14-16

The Graphical Merge Tool Window

The Graphical Merge Tool window contains a menu, a toolbar, and panes that
display the differences between the two models being compared. The menu
provides commands for navigating and merging differences between the two
models and for selecting various display options. The toolbar contains buttons
that allow you to select many of the navigation, merge, and display options
with a single mouse click. To display a tooltip specifying the function of a
button, move the mouse cursor over the button and leave it there briefly.

Differences Panes

The tool window contains three panes that display differences between the two
models. The top left pane displays the contents (blocks, states, transitions, etc.)
of the first model in an expandable tree graph. Simulink color codes the items
in the tree to highlight differences between the first and second model (see
“How Simulink Highlights Model Differences” on page 14-17).

The top right pane displays a similarly color-coded tree highlighting
differences between the second and the first model. Clicking an item (block,
state, transition) in either pane highlights the corresponding block icons in the
model views.

The items in the two content panes are aligned so as to accentuate differences
between the two models. An item that appears in both models appears at the
same relative position in the content pane for each model. If an item appears
in only one of the two models, the corresponding position in the other model’s
content pane is empty. This visual alignment of the content panels makes it
easy to spot differences between the two models.

The bottom pane displays differences between parameters of the selected block
if the block exists in both models. If you are not interested in parameter
differences and need more space for viewing graphical differences, you can
eliminate this pane by clearing Show parameter differences on the Graphical
Merge Tool’s View menu.

You can adjust the relative sizes of the panes by dragging the dividers between
them.

Graphical Merge Tool

Model History List

At the top of each content pane is a drop-down list of the four models that have
most recently appeared in the pane. To compare any model on the list to the
model in the other pane, select the model and press Return.

How Simulink Highlights Model Differences

The Graphical Merge Tool uses the following color code to highlight differences
between two models.

Color Indicates

Red Items that appear in both models but with different
parameter values or content (in the case of subsystems).

Black Container items (for example, subsystems or super states)
that contain items that differ but otherwise are the same in
both models.

Blue Items that appear in one model but not in the other.

Gray Items that appear in both models and have identical

content and parameters in both models.

Model Differences Flagged by the Graphical Merge Tool

The Graphical Merge Tool flags the following types of differences between
models:

¢ Jtem name differences

The Graphical Merge Tool considers items that differ only in name to be
different. For example, suppose that a subsystem appears at the same place
in model A and in model B and that both subsystems have identical content
but different names. The tool flags each subsystem as unique.

® Block parameter differences
Two otherwise identical blocks are considered different if any of their saved
parameters are different. For example, suppose that a Gain block appears at
the same place with the same name in models A and B, but that gain in the
first instance is 1, and in the second instance is 2. The tool flags the two
instances as different.

14-17

1 4 Performance Tools

14-18

¢ Block connection differences

A connection between a block output and a block input is considered unique
to one model if the same connection does not occur in the other model. (The
Graphical Merge Tool does not compare unconnected lines.)

Differences Display Options

The Graphical Merge Tool’s Options menu allows you to control the level of
detail displayed by the differences panes. For example, you can show all items
in the models being compared or only items that have nongraphical differences.
The display options include

¢ Show all items

Show all blocks in the model. If the model contains Stateflow charts, this
option displays all the states, transitions, subcharts, and graphical functions
contained by the charts.

¢ Show items with differences only

Display only items that differ between the two models.
® Show all differences

Display all blocks that differ in any way between the models.
¢ Show only nongraphical differences

Display only blocks that differ nongraphically between the two models. For
example, this option does not display blocks that differ only in position, size,
orientation, or color.

Navigating Model Differences

As it compares two models, the Graphical Merge Tool constructs a list of the
differences between the models. To display the first (or next) difference on the
list, select Next Difference from the View menu or enter Ctrl+N. Simulink
selects the item in the Graphical Merge Tool window and in the
corresponding model window (or windows if the item appears in both models
being compared). Select Previous Difference from the View menu or enter
Ctrl+P to retrace your steps. If the next or previous difference is in a
subsystem, Simulink expands the tree in the differencing tool window and
opens the subsystem in the model windows to display the item.

The difference navigation commands allow you to inspect all the differences in
a model without having to open every subsystem. They thus speed comparison

Graphical Merge Tool

of complex multilevel models where differences can lie buried deep within the
model. The navigation commands also speed merging of the models (see next

section) by allowing you to systematically visit all the differences between two
models being merged.

Merging Model Differences

The Graphical Merge Tool’s Merge menu allows you to combine models by
merging their differences.

Note The tool does not merge differences between Stateflow charts in your
models.

To merge differences between an item that exists in both models or to add an
item that exists only in one model to the other model, first select the item in the
tool window. Next, select Copy left object into right from the Merge menu (or
enter A) to update the model corresponding to the right pane of the tool
window. Or you can select Copy right object into left (or enter B) to update
the model corresponding to the left pane.

To delete an item that appears in only one of the two models being compared,
first select the item in the Graphical Merge Tool window. Then select Delete
from the Merge menu (or press Delete). Simulink deletes the item from the
corresponding model and draws a line through the tree entry that represents
it in the tool window.

14-19

1 4 Performance Tools

Generating a Model Differences Report

Select HTML Report from the View menu to display an HTML report
summarizing the differences between the two models.

imulink/Stateflow Model Differences Report - Microsoft Internet Explorer provided by The Mathy... Bi[=] B3

Fi Edit View Go Favorites Help

T S | Q A 4
Back Foriizrd Siop Refiesh Home | Seach Favores Histoy Channels | Fulscreen Mal Fonts Piir
Address [[s] CATEMPup202659 =

Links #]EmacsJDE @&]FAQPage @]HelpPage #7JDE MailAchive @]PasswordChange @ ReaFlaper @]Reserve @]The Mat v

Simulink/Stateflow Model Differences Report

Eeport date: 11-Sep-2000

Model 1: vdp
Model 2: vdp1

Mumber of objects contaming differences: 3

Objects Containing Differences

Obect iprodel 1 Madel 2
Type

Bloclk

]:)m(g:ramm vdol

Block [wdp/Tulu wdp 1/u
Bleck |nfa vdp1/Display

Differences between vdp and vdpl

Parameter vdp wdpl

INETC] wdp vdpl —l

Created Fri Avug 18 16:03:19 2000 Non May 22 10:30:32 2000

Creator mani paull

LasthdodifiedBy mani paull

LasthdodifiedDate |Fri Aug 18 16:05:49 2000 Non Sep 11 15:20:50 2000

ModelVersionF ormat|1.% 1%

Lines 2 2

|

& \ = T —

The report starts by listing all the blocks that differ between the two models.
This summary is followed by difference reports for each block that has different
instances in the two models.

14-20

Profiler

Profiler

The Simulink simulation profiler collects performance data while simulating
your model and generates a report, called a simulation profile, based on the
data. The simulation profile generated by the profiler shows you how much
time Simulink spends executing each function required to simulate your
model. The profile enables you to determine the parts of your model that
require the most time to simulate and hence where to focus your model
optimization efforts.

Note You must have the Simulink Performance Tools option installed on
your system to use the profiler.

How the Profiler Works

The following pseudocode summarizes the execution model on which the
profiler is based.

Sim()
ModelInitialize().
ModelExecute()
for t = tStart to tEnd
Output()
Update()
Integrate()
Compute states from derivs by repeatedly calling:
MinorQutput ()
MinorDeriv ()
Locate any zero crossings by repeatedly calling:
MinorQutput ()
MinorZeroCrossings()
EndIntegrate
Set time t = tNew.
EndModelExecute
ModelTerminate
EndSim

14-21

1 4 Performance Tools

According to this conceptual model, Simulink executes a Simulink model by
invoking the following functions zero, one, or more times, depending on the
function and the model.

Function Purpose Level

sim Simulate the model. This top-level System
function invokes the other functions
required to simulate the model. The
time spent in this function is the
total time required to simulate the

model.
ModelInitialize Set up the model for simulation. System
ModelExecute Execute the model by invoking the System

output, update, integrate, etc.,
functions for each block at each
time step from the start to the end
of simulation.

Output Compute the outputs of a block at Block
the current time step.

Update Update a block’s state at the Block
current time step.

Integrate Compute a block’s continuous states Block
by integrating the state derivatives
at the current time step.

MinorOutput Compute a block’s output at a Block
minor time step.

MinorDeriv Compute a block’s state derivatives Block
at a minor time step.

MinorZeroCrossings Compute a block’s zero-crossing Block
values at a minor time step.

14-22

Profiler

Function Purpose Level

ModelTerminate Free memory and perform any System
other end-of-simulation cleanup.

Nonvirtual Subsystem Compute the output of a nonvirtual = Block
subsystem (see “Atomic Versus
Virtual Subsystems” on page 2-13)
at the current time step by invoking
the output, update, integrate, etc.,
functions for each block that it
contains. The time spent in this
function is the time required to
execute the nonvirtual subsystem.

The profiler measures the time required to execute each invocation of these
functions and generates a report at the end of the model that describes how
much time was spent in each function.

Enabling the Profiler

To profile a model, open the model and select Profiler from the Simulink Tools
menu. Then start the simulation. When the simulation finishes, Simulink
generates and displays the simulation profile for the model in the MATLAB
help browser.

14-23

1 4 Performance Tools

The Simulation Profile
Simulink stores the simulation profile in the MATLAB working directory.

i) Help M=l E3
Eile Edit “iew Go Web Window Help

= | o ' | & |Findmpage- Go
ISlmu\mkPmﬂlerRepun j Add to Favorites

Summary | Function Details | Simulink Profiler Help | Clear Hilited Blocks

Simulink Profile Report: Summary

Report generated 11-5ep-2000 16:57:39

Total recorded time: 018s
MNumber of Block Methods: 13
MNumber of Internal Methods ol
Mumber of Nonvirtual Subsystem Methods: 4
Clock precision 0.010s

Function List

Name Time Calls Timefeall |Salf time Location (must use MATLAB Help browser to view)
sim 0.190 100.0% | 1 0.190000 0.000 | 0.0% vdp
ModelExecute 0.170 | 89.5% | 1 0.170000 0.070 36.8% vdip
Inteqrate 0.080 | 424% | 83 0001270 0010 5.3% vdp

wdp (MinorOutput) 0.050 | 26.3% | 408 0.000123 0.010 §3% wdp

MinorOutputs 0.050 | 263% | 408 0.000123 0.000 0.0% wdp

MinorDeriv 0.020 | 10.5% | 409 0.000043 0.010 53% wvdp

Outl {Dutput) 0.020 | 10.5% | 472 0.000042 0020 10.5% wdp/0utl =
Ready

The report has two sections: a summary and a detailed report.

Summary Section
The summary file displays the following performance totals.

Item Description

Total Recorded Time Total time required to simulate the model

Number of Block Methods Total number of invocations of block-level
functions (e.g., Output())

14-24

Profiler

Item Description

Number of Internal Total number of invocations of system-level
Methods functions (e.g., ModelExecute)

Number of Nonvirtual Total number of invocations of nonvirtual
Subsystem Methods subsystem functions

Clock Precision Precision of the profiler’s time

measurement

The summary section then shows summary profiles for each function invoked
to simulate the model. For each function listed, the summary profile specifies
the following information.

Item Description

Name Name of function. This item is a hyperlink. Clicking it
displays a detailed profile of this function.

Time Total time spent executing all invocations of this function
as an absolute value and as a percentage of the total
simulation time

Calls Number of times this function was invoked

Time/Call Average time required for each invocation of this function,
including the time spent in functions invoked by this
function

Self Time Average time required to execute this function, excluding
time spent in functions called by this function

Location Specifies the block or model executed for which this

function is invoked. This item is a hyperlink. Clicking it
highlights the corresponding icon in the model diagram.
Note that the link works only if you are viewing the profile
in the MATLAB help browser.

14-25

1 4 Performance Tools

14-26

Detailed Profile Section

This section contains detailed profiles for each function invoked to simulate the
model. Each detailed profile contains all the information shown in the
summary profile for the function. In addition, the detailed profile displays the
function (parent function) that invoked the profiled function and the functions
(child functions) invoked by the profiled function. Clicking the name of the
parent or a child function takes you to the detailed profile for that function.

Model Coverage Tool

Model Coverage Tool

The Model Coverage Tool determines the extent to which a model test case
exercises simulation pathways through a model. The percentage of pathways
that a test case exercises is called its model coverage. Model coverage is a
measure of how thoroughly a test tests a model. The Model Coverage Tool
therefore helps you to validate your model tests.

Note You must have the Simulink Performance Tools option installed on
your system to use the Model Coverage Tool.

How the Model Coverage Tool Works

The Model Coverage Tool works by analyzing the execution of blocks that
directly or indirectly determine simulation pathways through your model. If a
model includes Stateflow charts, the tool also analyzes the states and
transitions of those charts. During a simulation run, the tool records the
behavior of the covered blocks, states, and transitions. At the end of the
simulation, the tool reports the extent to which the run exercised potential
simulation pathways through each covered block.

Coverage Analysis

The tool performs any or all of the following types of coverage analysis,
depending on which coverage options you select:

¢ Cyclomatic complexity

Cyclomatic complexity is a measure of the structural complexity of a model.
It approximates the McCabe complexity measure for code generated from the
model. In general, the McCabe complexity measure is slightly higher because
of error checks that the model coverage analysis does not consider.

14-27

1 4 Performance Tools

14-28

The Model Coverage Tool uses the following formula to compute the
cyclomatic complexity of an object (block, chart, state, etc.):

N
c = Z(on—l)
1

where N is the number of decision points that the object represents and o, is
the number of outcomes for the nth decision point. The tool adds 1 to the
complexity number computed by this formula for atomic subsystems and
Stateflow charts.

Decision coverage

Examines items that represent decision points in a model, such as the Switch
blocks and Stateflow states. For each item, decision coverage determines the
percentage of the total number of simulation paths through the item that the
simulation actually traversed.

Condition coverage

Examines blocks that output the logical combination of their inputs, e.g., the
Logic block, and Stateflow transitions. A test case achieves full coverage if it
causes each input to each instance of a logic block in the model and each
condition on a transition to be true at least once during the simulation and
false at least once during the simulation. Condition coverage analysis reports
for each block in the model whether the test case fully covered the block.

Modified condition/decision coverage (MC/DC)

Examines blocks that output the logical combination of their inputs (e.g., the
Logic block) and Stateflow transitions to determine the extent to which the
test case tests the independence of logical block inputs and transition
conditions. A test case achieves full coverage for a block if, for every input,
there is a pair of simulation times when changing that input alone causes a
change in the block’s output. A test case achieves full coverage for a
transition if, for each condition on the transition, there is at least one time
when a change in the condition triggers the transition.

Lookup table (LUT) coverage

Examines blocks, such as the 1D Look-Up block, that output the result of
looking up one or more inputs in a table of inputs and outputs, interpolating
between or extrapolating from table entries as necessary. Lookup table
coverage records the frequency that table lookups use each interpolation

Model Coverage Tool

interval. A test case achieves full coverage if it executes each interpolation
and extrapolation interval at least once. For each LUT block in the model,
the coverage report displays a colored map of the lookup table indicating
where each interpolation was performed.

Covered Blocks

The following table lists the types of Simulink blocks analyzed by the tool and
the kind of coverage analysis performed for each block.

Block

Decision

Condition MC/DC LUT

1D Look-Up
2D Look-Up
Abs

Combin. Logic

Discrete-Time
Integrator (when
saturation limits
are enabled)

Fen (Boolean
operators only)

For

If

Logic

MinMax
Multiport Switch

Rate Limiter

Relay

(relative to
slew rates)

14-29

1 4 Performance Tools

14-30

Block Decision Condition McC/DC LUT
Saturation J

Subsystem . . .

Switch o

SwitchCase .

While .

The tool also provides decision coverage for Stateflow states and events, state
temporal logic decisions, and decision, condition, and MCDC coverage for
Stateflow transitions.

Using the Model Coverage Tool
To develop effective tests with the Model Coverage Tool:

Develop one or more test cases for your model (see “Creating and Running
Test Cases” on page 14-31).

Run the test cases to verify that the model behavior is correct.
Analyze the coverage reports produced by Simulink.

Using the information in the coverage reports, modify the test cases to
increase their coverage or add new test cases that cover areas not covered by
the current set of test cases.

Repeat the preceding steps until you are satisfied with the coverage of your
test set.

Note Simulink comes with an online demonstration of the use of the Model
Coverage Tool to validate model tests. To run the demo, enter simcovdemo at
the MATLAB command prompt.

Model Coverage Tool

Creating and Running Test Cases

The Test Coverage Tool provides two MATLAB commands, cvtest and cvsim,
for creating and running test cases. The cvtest command creates test cases to
be run by the cvsim command (see cvsim on page 14-45 and cvtest on

page 14-46).

You can also run the coverage tool interactively. To do so, select Coverage
Settings from the Simulink Tools menu. Simulink displays the Coverage
Settings dialog box (see “Coverage Settings Dialog Box” on page 14-38). Select
Enable Coverage Reporting and select OK to dismiss the dialog. Then select

Start from the Simulation menu or the Start button on the Simulink toolbar.

By default, Simulink saves coverage data for the current run in the workspace
object covdata and cumulative coverage data in covCumulativeData. This data
is appears in an HTML report at the end of simulation.You can select other
options for generating, saving, and reporting coverage data. See the “Coverage
Settings Dialog Box” on page 14-38 for more information.

Note You cannot run simulations with both model coverage reporting and
acceleration options enabled. Simulink disables model coverage reporting if
the accelerator is enabled. The block reduction optimization and the
conditional branch input optimization are disabled when you perform
coverage analysis as they interfere with coverage recording.

14-31

1 4 Performance Tools

The Coverage Report
The coverage report generated by the Model Coverage Tool contains the
following sections.

Coverage Summary
The coverage summary section has two subsections: Tests and Summary.

Coverage Report for fuelsys

Tests
Test 1

Started Execution: 05-Apr-2001 15:51:41
Ended Execution: 05-Apr-2001 15:82:08

Summary
Model Hierarchy: Test 1
01 c1 MCOC TEL
| | |

1. fuelsys 9% 4% 13% 1%
2. ...E%0 sensar S0 % MA MA MA
3. ... MAP sensar S0 % MA MA MA
4. ... engine speed S0 % MA MA MA
5....?ng|ne gas B0] A A A
dynamics
B....... Mixing & S0] A A A
Combustion
T Throttle & o] A A A
Manifold

14-32

Model Coverage Tool

® The “Tests” section lists the simulation start and stop time of each test case
and any setup commands that preceded the simulation. The heading for each
test case includes the test case label, e.g., “Test throttle,” specified using the

cvtest command.

¢ The “Summary” section summarizes the results for each subsystem. Clicking

the name of the subsystem takes you to a detailed report for that subsystem.

Details

The “Details” section reports the model coverage results in detail.

Details:

1. Model "fuelsys"

Child Systems: EGO sensor, MAP sensor, engine speed, engine gas dynatics, fuel rate controller, speed sensor, throttle

command, throttle sensor

Metric Coverage (this ohject)
Cryrclomatic Complexity 1

Decision (D1) Ha

Condition (C1) Ha

MCDC (C1) Ha

Loogk-up Table HA

2. Subsystem "EG O sensor™

Parent: [fuelsys

Metric Coverage (this ohject)
Cyclomatic Complexity 0

Decision (D1) Ha

Switchblock " Switch"

Coverage (inc. descendenis)

86

38% (33/140) decision outcomes

34% (11/32) condition outeomes

13% (216) conditions reversed the outcome
194 (15/1508) interpolation intervals

Coverage (inc. descendenis)
1
50% (1/2) decision outcomes

Parent: fuelsys/FEGO sensor
Uncovered Links: »
Metric Coverage
Cryelomatic Complexty 1
Decision (D1) 0% (1/2) decision outcomes
Decisions analyzed:
logical trigger input 0%

false Coutput is from Srd inpat poit)

true (output is from 1st ingut port)

017940
17940717940

14-33

1 4 Performance Tools

14-34

The “Details” section starts with a summary of results for the model as a whole
followed by a list of subsystems and charts that the model contains.
Subsections on each subsystem and chart follow. Clicking the name of a
subsystem or chart in the model summary takes you to a detailed report on that
subsystem or chart. The section for each subsystem starts with a summary of
the test coverage results for the subsystem and a list of the subsystems that it
contains. The overview is followed by block reports, one for each block that
contains a decision point in the subsystem.

Each section of the detailed report summarizes the results for the metrics used
to test the object (model, subsystem, chart, block) to which the section applies.
The sections for models and subsystems give results for the model and
subsystem considered as a covered object and for the contents of the model or
subsystem.

Each section may include coverage results for more than one simulation run.
The report reports the results for each simulation run in a separate column. A
numeric prefix in the column heading indicates the run that produced the data.

Detail Tables and Charts

Each section can includes tables or charts that give detailed results for the
metrics used to test the object. The following sections describe these tables and
charts.

Decisions analyzed. This table applies to the decision metric. It lists possible
outcomes for a decision and the number of times that an outcome occurred in
each test simulation.

Decisions analyzed:
logical trigger input 0%
false (output is from 3rd input port) 0717940
trae (output is from 1st input port) 17940717940

The report highlights outcomes that did not occur in red. Clicking the block
name causes Simulink to display the block diagram containing the block.
Simulink also highlights the block to help you find it in the diagram.

Conditions analyzed. This table lists the number of occurrences of true and false
conditions on each input port of a block.

Model Coverage Tool

Conditi

Description: #1T | #1F
input port 1 481 17060
input port 2 1] 17541

MC/DC anadlysis. This table lists the MC/DC input condition cases represented
by the corresponding block and the extent to which the reported test cases
cover the condition cases.

MC/DC analysi hinations in parenth did not occur)
Decision/Condition: #1 True Out #1 False Out

expression for output
input port 1 FF TF
input port 2 FF (FT)

Each row of the table represents a condition case for a particular input to the
block. A condition case for input n of a block is a combination of input values
such that changing the value of input n alone is sufficient to change the value
of the block’s output. Input n is called the deciding input of the condition case.

The table uses a condition case expression to represent a condition case. A
condition case expression is a character string where

® The position of a character in the string corresponds to the input port
number.

¢ The character at the position represents the value of the input (T means
true, F means false).

¢ Bold formatting of a character indicates that it corresponds to the value of
the deciding input.

For example, FTF represents a condition case for a three-input block where the
second input is the deciding input.

The table’s Decision/Condition column specifies the deciding input for an
input condition case. The #1 True Out column specifies the deciding input
value that causes the block to output true value for a condition case. The #1
True Out entry uses a condition case expression, e.g., FF, to express the values
of all the inputs to the block, with the value of the deciding variable indicated
by bold formatting.

14-35

1 4 Performance Tools

14-36

Parentheses around the expression indicate that the specified combination of
inputs did not occur during the first (or only) test case included in this report.
In other words, the test case did not cover the corresponding condition case.
The #1 False Out column specifies the deciding input value that causes the
block to output a false value and whether the value actually occurred during
the first (or only) test case included in the report. The report adds additional
#n True Out and #n False out columns for additional test cases, where n is the
number of the test case.

If you selected Treat Simulink Logic blocks as short-circuited in the
Coverage Settings dialog box (see “Coverage Settings Dialog Box” on

page 14-38), MC/DC coverage analysis does not check whether short-circuited
inputs actually occur. The MC/DC details table uses an x in a condition
expression (e.g., TFxxx) to indicate short-circuited inputs that were not
analyzed by the tool.

Lookup Table Details. This section displays an interactive chart that summarizes
the extent to which the test cases covered the corresponding lookup table. You
can click elements of the chart to view details of the coverage. Here is how to
interpret and interact with the chart.

If the corresponding block is a 1-D LUT block, the chart displays a 1-D array of
cells. If the corresponding block is a 2-D LUT block, this section displays a 2-D
array of cells.

Lookup Tahle Details

]
1-1000
| | M| 1001 - 2000
2001 - 3000
| 3001- 4000
W -2000

Model Coverage Tool

In either case, each cell represents index entries, also known as breakpoints, in
the lookup table. A cell’s border represents a set of adjacent table entries:

¢ The left border represents the nth index (or row index in the case of a 2-D
table).

® The right border represents the n+1th index (or row index).
¢ The top border represents the nth column index.

® The bottom border represents the n+1th column index.

A bold border segment indicates that at least one block input equal to the
corresponding index occurred during the simulation. Click the border to
display the exact number of hits for the corresponding index value.

<) Break Point #9 [()]

Yalue: » =300

Execution counts: 10001

A cell’s interior represents a table interpolation interval where the LUT block
interpolates output values for inputs that occur in the interval. A shaded
interior indicates that at least one input (or pair of inputs in the case of a 2-D
block) occurred at the breakpoints or inside the interpolation interval of the
cell. The intensity of the shading is proportional to the number of occurrences.
The scale next to the chart shows the relationship between the shading
intensity and the number of table interval/breakpoint hits.

<) Interpolation Interval {3.9) [()]
Region: Interpolation
Row: 250 <= <300
Column: 0.4<=% <045
Execution counts: 882

The outermost cells of the chart represent the table’s extrapolation region. An
extrapolation cell is visible only if inputs occurred in the corresponding
extrapolation region. However, you can interact with any of the extrapolation
cells, including invisible cells. Clicking an extrapolation cell displays the
number of occurrences of inputs in the corresponding extrapolation region.

14-37

1 4 Performance Tools

14-38

Navigation Arrows. The section for each block contains a backward and a
forward arrow. Clicking the forward arrow takes you to the next section in the
report that lists an uncovered outcome. Clicking the back arrow takes you back
to the previous uncovered outcome in the report.

Chart Report

The detailed report for each Stateflow chart has a similar format, with decision
tables for each state and transition in the chart. Note that information about
Stateflow coverage is included in the Stateflow documentation.

Coverage Settings Dialog Box

The Coverage Settings dialog box allows you to select model coverage
reporting options. The dialog box includes the following panes.

Coverage Pane

<} Coverage Settings - vdp ;Iglll

The Simulink model coverage toal recards the execution of contral
flow constructs within Simulink blocks and Stateflow diagrams.

Coverage | Results | Reprt | options |

v Enable Coverage Reponind

r Coverage Instrumentation Path (i for whole model)
i

Browse |

r Coverage metrics

¥ Decision Coverage [T Condition Coverage
[MCDC Coverage [T Look-up Table Coverage
QK | Cancel | Help | Apply |

Enable Coverage Reporting. Causes Simulink to gather and report model coverage
data during simulation.

Coverage Instrumentation Path. Path of the subsystem for which Simulink gathers
and reports coverage data. By default, Simulink generates coverage data for
the entire model.

Model Coverage Tool

To restrict coverage reporting to a particular subsystem, select Browse.
Simulink displays a System Selector dialog.

<) System Selector =] E3

E—Ii; fuelsys

—MEGD SEnsor

—MHAP SEnsor

2+ engine speed

[]—y engine gas dynamics
[]—y fuel rate controller
2 speed sensor

—y throttle command
—y throttle sensor

Ok | Cancel |

Select the subsystem for which you want coverage reporting to be enabled.
Click OK to dismiss the dialog.

Coverage Metrics. Select the types of test case coverage analysis that you want

the tool to perform. See “Coverage Analysis” on page 14-27 for more
information.

14-39

1 4 Performance Tools

14-40

Results Pane

<} Coverage Settings - vdp ;Iglll

The Simulink model coverage toal recards the execution of contral
flow constructs within Simulink blocks and Stateflow diagrams.

Coverage Results | Repart | Optians |

¥ Save curnulative results in warkspace variable

cvdata ohject name: IcovCumuIativeData

¥ Save last run in warkspace variable

cvdata ohject name: Icovdata

[T Increrment variable name with each sirmulation fvarl, var,)

Ok | Cancel | Help | Apply |

Save cumulative results in workspace variable. If checked, this option causes the
Model Coverage tool to accumulate and save the cumulative coverage results
of successive simulations in the workspace variable specified in the evdata
object name field below.

Save last run in workspace variable. If checked, this option causes the Model
Coverage tool to save the results of the last simulation run in the workspace
variable specified in the cvdata object name field below.

Increment variable name with each simulation. If selected, this option causes
Simulink to increment the name of the coverage data object variable used to
save the last run with each simulation. This prevents the current simulation
run from overwriting the results of the previous run.

Model Coverage Tool

Report Pane

<} Coverage Settings - vdp ;Iglll

The Simulink model coverage toal recards the execution of contral
flow constructs within Simulink blocks and Stateflow diagrams.

Coverage | Results Report |Opti0ns |

¥ Generate HTHML report Settings |

 Cumulative runs
& Lastrun
Additional data to include in report {evdata abjects):

Ok | Cancel | Help | Apply |

Generate HTML report. Causes Simulink to create an HTML report containing the
coverage data. Simulink displays the report in the MATLAB Help browser at
the end of the simulation. Click the Setting button to select various reporting
options (see “HTML Settings” on page 14-43).

Cumulative Runs. Accumulate and display coverage results from successive
simulations in the report. The report is organized so that you can easily
compare the additional coverage from the most recent run with the coverage
from all prior runs in the session.

Cumulative coverage results can persist between MATLAB sessions by using
cvsave to save results at the end of the session and cvload to load results at
the beginning of the session. Note that the cvload parameter RESTORETOTAL
must be 1 in order to restore cumulative results.

Calculating cumulative coverage results is also possible at the command line
via the + operator. The following script demonstrates this usage:

covdatal = cvsim(testi);
covdata2 = cvsim(test2);
cvhtml('cumulative_report', covdata + covdata2);

Last Run. Display only the results of the previous simulation run in the report.

14-41

1 4 Performance Tools

14-42

Additional data to include in report. Names of coverage data from previous runs to
include in the current report along with the current coverage data. Each entry
causes a new set of columns to appear in the report.

Options Pane

<} Coverage Settings - vdp ;Iglll

The Simulink model coverage toal recards the execution of contral
flow constructs within Simulink blocks and Stateflow diagrams.

Coverage | Results | Report Options
[T Treat Sirmulink Logic blocks as short-circuited

¥ ‘warn when unsupported blocks exist in model

™ Disable coverage for blocks used in assedion checks

Ok | Cancel | Help | Apply |

Treat Simulink Logic blocks as short-circuited. Applies only to Condition and MC/DC
coverage. If enabled, coverage analysis treats Simulink logic blocks as though
they short-circuit their input. In other words, Simulink treats such a block as
ifthe block ignores remaining inputs if the previous inputs alone determine the
block’s output. For example, if the first input to an And block is false, MC/DC
coverage analysis ignores the values of the other inputs in determining MC/DC
coverage for a test case. You should select this option if you plan to generate
code from a model and want the MC/DC coverage analysis to approximate the
degree of coverage that your test cases would achieve for the generated code
(most high-level languages short-circuit logic expressions). Note that a test
case that does not achieve full MC/DC coverage for a non-short-circuited logic
expressions might, in fact, achieve full coverage for short-circuited expressions.

Warn when unsupported blocks exist in a model. Select this option if you want the
tool to warn you at the end of the simulation if the model contains blocks that
require coverage analysis but are not currently covered by the tool.

Disable coverage for blocks used in assertion checks. Disable coverage of blocks from
Simulink’s Model Verification library (see “Model Verification”).

Model Coverage Tool

HTML Settings

The HTML Settings dialog box allows you to choose various model coverage
report options. To display the dialog box, click Settings on the Coverage
Settings dialog box. The HTML Settings dialog box appears.

+) HTML Settings =10l x|

¥ Include each testin the rmodel summary

¥ Produce bar graphs in the madel summary

[T Use two color bar graphs {red hlue)

r Display hit'count ratio in the model summary

[~ Donot report fully covered moadel objects

¥ Include cyclomatic camplexity numbers in summary
¥ Include cyclomatic camplexity numbers in hlock details

Ok Cancel |

Include each test in the model summary. When this option is selected, the model
hierarchy table at the top of the HTML report includes columns listing the
coverage metrics for each test. When this option is not selected, the model
summary reports only the total coverage.

Produce bar graphs in the model summary. Causes the model summary to include
bar graphs for each coverage result. The bar graphs provide a visual
representation of the coverage.

Use two color bar graphs (red,blue). Causes the report to use red and blue bar
graphs instead of black and white. The color graphs might not print well in
black and white.

Display hit/count ratio in the model summary. Reports coverage numbers as both a
percentage and a ratio, e.g., 67% (8/12).

Do not report fully covered model objects. Causes the coverage report to include
only model objects that the simulation does not cover fully. This option is useful
when you are developing tests, because it reduces the size of the generated
reports.

Include cyclomatic complexity numbers in summary. Include the cyclomatic

complexity (see “Coverage Analysis” on page 14-27) of the model and its
toplevel subsystems and charts in the report summary. A bold cyclomatic

14-43

1 4 Performance Tools

14-44

complexity number indicates that the analysis considered the subsystem itself
to be an object when computing its complexity. This occurs for atomic and
conditionally executed subsystems as well as Stateflow blocks.

Include cyclomatic complexity numbers in block details. Include the cyclomatic
complexity metric in the block details section of the report.

Model Coverage Commands

cvhiml
Produce an HTML report of cvdata objects.

cvhtml(file,data)
Create an HTML report of the coverage results in the cvdata object data. The
report is written to file.

cvhtml(file,datal,data2,...)
Create a combined report of several data objects. The results from each object

are displayed in a separate column. Each data object must correspond to the
same root subsystem, or the function produces errors.

cvhtml(file,data,data2,...,detail)

Specify the detail level of the report with the value of detail, an integer
between 0 and 3. Greater numbers indicate greater detail. The default value is
2.

cvload
Load coverage tests and results from file.

[TESTS, DATA] = CVLOAD(FILENAME)

Load the tests and data stored in the text file FILENAME . CVT. The tests that are
successfully loaded are returned in TESTS, a cell array of cvtest objects. DATA
is a cell array of cvdata objects that were successfully loaded. DATA has the
same size as TESTS but can contain empty elements if a particular test has no
results.

[TESTS, DATA] = CVLOAD(FILENAME, RESTORETOTAL)

Model Coverage Tool

If RESTORETOTAL is 1, the cumulative results from prior runs are restored. If
RESTORETOTAL is unspecified or zero, the model's cumulative results are
cleared.

Special considerations:

¢ If a model with the same name exists in the coverage database, only the
compatible results are loaded from file and they reference the existing model
to prevent duplication.

¢ If the Simulink models referenced from the file are open but do not exist in
the coverage database, the coverage tool resolves the links to the existing
models.

® When loading several files that reference the same model, only the results
that are consistent with the earlier files are loaded.

cvsave
Save coverage tests and results to file.

cvsave(filename,model)
Save all the tests and results related to model in the text file filename.cvt.
cvsave(filename, test1, test2, ...)

Save the specified tests in the text file filename.cvt. Information about the
referenced models is also saved.

cvsave(filename, datai, data2, ...)

Save the specified data objects, the tests that created them, and the referenced
models’ structure in the text file filename.cvt.

cvsim
Run a test case.

Note You do not have to enable model coverage reporting (see “Creating and
Running Test Cases” on page 14-31) to use this command.

This command can take the following forms.

14-45

1 4 Performance Tools

14-46

data = cvsim(test)

Execute the cvtest object test by starting a simulation run for the
corresponding model. The results are returned in a cvdata object.

[data,t,x,y] = cvsim(test)

Returns the simulation time vector, t, state values, x, and output values, y.

[data,t,x,y] = cvsim(test, timespan, options)

Override the default simulation values. For more information, see the
documentation for the sim command.

[datal, data2, ...] = cvsim(test1, test2, ...)

Execute a set of tests and return the results in cvdata objects.

[datal,t,x,y] = cvsim(root, label, setupcmd)

Create and execute a cvtest object.

cviest

Creates a test specification as required by cvsim. This command has the
following syntax:

class_id = cvtest(root)

Create a test specification for the Simulink model containing root. root can
be the name of the Simulink model or the handle to a Simulink model. root
can also be a name or handle to a subsystem within the model, in which case
only this subsystem and its descendants are instrumented for analysis.

class_id = cvtest(root, label)
Creates a test with the given label. The label is used for reporting results.
class_id = cvtest(root, label, setupcmd)

Creates a test with a setup command that is executed in the base MATLAB
workspace just prior to running the instrumented simulation. The setup
command is useful for loading data just prior to a test.

Model Coverage Tool

The cvtest object returned has the following structure:

Field Description

id, modelcov(read-only) Internal data-dictionary IDs

rootPath Name of the system or subsystem
instrumented for analysis

label String used when reporting results

setupCmd Command executed in the base workspace
just prior to simulation.

settings
decision Set to 1 if decision coverage desired
condition Set to 1 if condition coverage desired
mcdc Set to 1 if MC/DC coverage desired
tableExec Set to 1 if look-up table coverage desired

Coverage Script Example

The following example demonstrates some of the common model coverage
commands:

testObj1 = cvtest('ratelim_harness/Adjustable Rate
Limiter');

testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');"';
testObj1.settings.mcdc = 1;

testObj2 = cvtest('ratelim_harness/Adjustable Rate
Limiter');

testObj2.1label = 'Rising gain that temporarily exceeds

slew limit';
testObj2.setupCmd
testObj2.settings.mcdc

‘load(''rising_gain.mat'');"';
1;

[dataObj1,T,X,Y] cvsim(testObj1,[0 2]);
[dataObj2,T,X,Y] = cvsim(testObj2,[0 2]);

14-47

1 4 Performance Tools

14-48

cvhtml('ratelim_report',dataObj1,dataObj2);
cumulative = dataObji+dataObj2;
cvsave('ratelim_testdata',cumulative);

In this example we create two cvtest objects and then simulate according to
these specifications. Each cvtest object uses the setupCmd property to load a
data file prior to simulation. Decision coverage is enabled by default, and we
have chosen to enable MC/DC coverage as well. After simulation we use
cvhtml to display the coverage results for our two tests and the cumulative
coverage. Lastly, we compute cumulative coverage with the + operator and
save the results. For more detailed examples of how to use the model coverage
commands see simcovdemo.m and simcovdemo2.m in the coverage root folder.

A
Abs block

zero crossings 2-18
absolute tolerance
definition 10-12
simulation accuracy 10-41
accelbuild command
building Simulink Accelerator MEX-file 14-10
AccelMakeCommand parameter
specifying custom Make command for Simulink
Accelerator 14-11
AccelSystemTargetFile parameter
specifying custom System target file for
Simulink Accelerator 14-11
AccelTemplateMakeFile parameter
specifying custom Template makefiles for
Simulink Accelerator 14-11
Action Port block
in subsystem 4-38
Adams-Bashforth-Moulton PECE solver 10-9
algebraic loops
direct feedthrough blocks
displaying 2-23
highlighting 13-24
identifying blocks in 13-21
simulation speed 10-41
aligning blocks 5-5
annotations
changing font 4-16
creating 4-16
definition 4-16
deleting 4-16
editing 4-16
moving 4-16
using symbols and Greek letters in 4-17
using TeX formatting commands in 4-17
using to document models 8-8

Apply button on Mask Editor 12-13
Assignment block

and For Iterator block 4-42
Assignment mask parameter 12-18
attributes format string 4-15
AttributesFormatString block parameter 5-11
Autoscale icon drawing coordinates 12-16

B
Backlash block

zero crossings 2-18
backpropagating sample time 2-31
Backspace key

deleting annotations 4-16

deleting blocks 5-6

deleting labels 6-18
Band-Limited White Noise block

simulation speed 10-41
block callback parameters 4-72
Block data tips 5-2
block descriptions

creating 12-8
block diagrams

printing 3-12
block icons

displaying execution order on 5-17
block indexes

debugger 13-6
block libraries

adding to Library Browser 5-34

creating 5-26

definition 5-25

modifying 5-26

new_system command 5-26

searching 5-34

I1

Index

block names
changing location 5-14
copied blocks 5-4
editing 5-14
flipping location 5-15
generated for copied blocks 5-5
hiding and showing 5-15
location 5-13
rules 5-13
block parameters
about 5-7
displaying beneath a block icon 5-16
modifying during simulation 10-6
scalar expansion 6-9
setting 5-7
block priorities
assigning 5-16
Block Properties dialog box 5-8
block type of masked block 12-25
blocks
aligning 5-5
assigning priorities 5-16
associating user data with 7-29
callback routines 4-70
changing font names 5-14
changing icons font 5-14
changing location of names 5-14
checking connections 2-9
connecting automatically 4-9
connecting manually 4-11
copying from Library Browser 5-34
copying into models 5-4
copying to other applications 5-5
deleting 5-6
disconnecting 4-15

drop shadows 5-13

duplicating 5-6

grouping to create subsystem 4-20
hiding block names 5-15

input ports with direct feedthrough 2-19

library 5-25

moving between windows 5-5

moving in a model 5-5

names

editing 5-14

orientation 5-12

reference 5-25

resizing 5-12

reversing signal flow through 8-3

showing block names 5-15

signal flow through 5-12

under mask 12-13

updating 2-9
blocks

See also block names 5-13
Bogacki-Shampine formula 10-8, 10-9
boolean type checking 10-29
bounding box

grouping blocks for subsystem 4-20

selecting objects 4-3
branch lines 4-12
Break Library Link menu item 5-29
breaking links to library block 5-28
breakpoints

clearing from blocks 13-14

setting 13-12

setting at beginning of a block 13-13

setting at end of block 13-14

setting at timesteps 13-14

setting on nonfinite values 13-15

setting on step-size-limiting steps 13-15

setting on zero crossings 13-15

Index

Browser 9-8

building models
exercise 1-7
tips 8-8

C

callback routines 4-70
callback routines, referencing mask parameters in
4-72
callback tracing 4-70
Cancel button on Mask Editor 12-13
changing
signal labels font 6-18
Clear menu item 5-6
Clock block
example 11-3
Close Browser menu item 9-10
Close Model menu item 9-10
CloseFcn block callback parameter 4-72
CloseFcn model callback parameter 4-71
color codes
for model differences 14-17
colors for sample times 2-31
comparing models 14-13
composite signals 6-4
conditionally executed subsystems 4-25
configurable subsystem 4-54
connecting blocks 4-11
connecting lines to input ports 1-12
ConnectionCallback
port callback parameters 4-75
consistency checking 10-24
constant sample time 2-32
continuous sample time 2-26
control flow blocks
and Stateflow 4-45

control flow diagrams
and Stateflow 4-37
compared to Stateflow 4-44
do-while 4-41
for 4-42
if-else 4-37
resetting of states 4-44
sample times 4-44
switch 4-39
while 4-40
control flow subsystem 4-25
control input 4-25
control signal 4-25, 6-4
Control System Toolbox
linearization 11-5
copy
definition 5-25
Copy menu item 5-4
CopyFcn block callback parameter 4-72
copying
blocks 5-4
signal labels 6-18
Coverage Settings dialog box
Model Coverage Tool 14-38
Create Mask menu item 12-13
Created model parameter 4-84
Creator model parameter 4-84
Cut menu item 5-5
cvhtml command
Model Coverage Tool 14-44
cvload command
Model Coverage Tool 14-44
cvreport command
Model Coverage Tool 14-45
cvsave command
Model Coverage Tool 14-45

I3

Index

I4

cvsim command

Model Coverage Tool 14-45
cvtest command

Model Coverage Tool 14-46

D
dash-dot lines 6-4

Data Class Designer 7-14
data objects 2-7
classes 7-9
creating 7-10
properties
accessing 7-11
data types
displaying 7-4
propagation 7-5
Simulink 2-7
specifying 7-4
dbstop if error command 12-24
dbstop if warning command 12-24
Dead Zone block
zero crossings 2-18
debugger
running incrementally 13-8
setting breakpoints 13-12
setting breakpoints at time steps 13-14

setting breakpoints at zero crossings 13-15
setting breakpoints on nonfinite values 13-15
setting breakpoints on step-size-limiting steps

13-15
skipping breakpoints 13-9
starting 13-6
stepping by blocks 13-9
stepping by time steps 13-11
debugging initialization commands 12-22

decimation factor

saving simulation output 10-23
default

solvers 10-8
Delete key

deleting blocks 5-6

deleting signal labels 6-18
DeleteFcn block callback parameter 4-72
demos

simcovdemo 14-30
Derivative block

linearization 11-5
Description model parameter 4-85
description of masked blocks 12-26
diagnosing simulation errors 10-36
Diagnostics pane

Simulation Parameters dialog box 10-24
diagonal line segments 4-13
diagonal lines 4-12
dialog boxes

creating for masked blocks 12-28
difference navigation commands 14-18
differences panes

Graphical Merge Tool window 14-16
direct feedthrough blocks 2-19
direct-feedthrough ports 2-11
disabled subsystem

output 4-26
disabling zero-crossing detection 2-18
disconnecting blocks 4-15
discrete blocks

in enabled subsystem 4-28

in triggered systems 4-33
discrete sample time 2-26
discrete solver 10-8

zero-crossing detection 10-10

Index

Discrete-Time Integrator block

sample time colors 2-31
discrete-time systems 2-25
discretization methods 4-51
discretizing a Simulink model 4-49
Display Alphabetical List menu item 9-10
Display Hierarchical List menu item 9-10
dlinmod function

extracting linear models 11-4
Documentation pane of Mask Editor 12-12
Dormand-Prince

formula 10-8

pair 10-9
do-while control flow diagram 4-41
drawing coordinates

Autoscale 12-16

normalized 12-16

Pixel 12-17
drop shadows 5-13
duplicating blocks 5-6

E
editing look-up tables 5-18

either trigger event 4-30

Enable block
creating enabled subsystems 4-26
outputting enable signal 4-28
states when enabling 4-27

enabled subsystems 4-25
setting states 4-27

ending Simulink session 3-22

equations
modeling 8-2

error tolerance 10-12
simulation accuracy 10-41
simulation speed 10-40

Euler’s method 10-8
eval command
masked block help 12-26
examples
Clock block 11-3
continuous system 8-3
converting Celsius to Fahrenheit 8-2
equilibrium point determination 11-7
linearization 11-4
masking 12-5
multirate discrete model 2-28
Outport block 11-2
return variables 11-2
Scope block 11-2
To Workspace block 11-3
Transfer Function block 8-4
execution order
displaying 5-17
Exit MATLAB menu item 3-22
Expand All menu item 9-10
Expand Library Links menu item 9-10

F
falling trigger event 4-30

Fen block

simulation speed 10-40
files

writing to 10-5
Final State check box 10-24
final states

saving 10-23
fixed in minor time step 2-27
fixed-point data 7-3
fixed-step solvers

definition 2-13

list 10-8

I-5

Index

I-6

Flip Block menu item 5-12
Flip Name menu item 5-15
floating Display block 10-6
floating Scope block 10-6
font
annotations 4-16
block icons 5-14
block names 5-14
signal labels 6-18
Font menu item
changing block name font 5-14
changing the font of a signal label 6-18
for control flow diagram 4-42
For Iterator block
and Assignment block 4-42
in subsystem 4-42
output iteration number 4-42
specifying number of iterations 4-42
fundamental sample time 10-10

G
Gain block

algebraic loops 2-19
get_param command

checking simulation status 10-42
Go To Library Link menu item 5-29
Graphical Merge Tool

contents of window 14-16

purpose 14-13
Greek letters

using in annotations 4-17
grouping blocks 4-19

H
handles on selected object 4-3

held output of enabled subsystem 4-27
held states of enabled subsystem 4-27
Help button on Mask Editor 12-13
help text for masked blocks 12-8
Heun’s method 10-8
Hide Name menu item

hiding block names 5-15

hiding port labels 4-23
Hide Port Labels menu item 4-23
hiding block names 5-15
hierarchy of model

advantage of subsystems 8-8

replacing virtual subsystems 2-9
Hit Crossing block

notification of zero crossings 2-16

Zero crossings

and Disable zero crossing detection option
2-18

HTML Settings dialog box

Model Coverage Tool 14-43
hybrid systems

integrating 2-33

|
Icon pane of Mask Editor 12-12
icons

creating for masked blocks 12-14
If block

connecting outputs 4-38

data input ports 4-38

data output ports 4-38

Index

if-else control flow diagram 4-37
and Stateflow 4-45
improved Euler formula 10-8
inherited sample time 2-27
InitFcn block callback parameter 4-73
InitFcn model callback parameter 4-71
initial conditions
specifying 10-23
Initial State check box 10-24
initial states
loading 10-24
initial step size
how determined 10-12
simulation accuracy 10-41
initialization commands 12-23
debugging 12-22
Initialization pane of Mask Editor 12-12
inlining S-functions using the TLC
and Simulink Accelerator performance 14-11
Inport block
in subsystem 4-20
linearization 11-4
supplying input to model 10-17
inputs
loading from base workspace 10-17
mixing vector and scalar 6-9
scalar expansion 6-9
Integrator block
algebraic loops 2-19
example 8-3
sample time colors 2-32
simulation speed 10-41
zero crossings 2-18
invalid loops, avoiding 8-6
invalid loops, detecting 8-7
invariant constants 2-32

J

Jacobian matrices 10-10

K
keyboard actions summary 3-19
keyboard command 12-24

L
labeling signals 6-17
labeling subsystem ports 4-23
LastModificationDate model parameter 4-85
libinfo command 5-32
libraries
See block libraries
library blocks
breaking links to 5-28
definition 5-25
finding 5-29
getting information about 5-30
Library Browser 5-32
adding libraries to 5-34
copying blocks from 5-34
library links
creating 5-26
definition 5-25
disabling 5-27
displaying 5-30
modifying 5-27
propagating changes to 5-28
showing in Model Browser 9-9
status of 5-30
unresolved 5-27
line segments 4-12
diagonal 4-13
moving 4-13

I-7

Index

line vertices
moving 4-14
linear models
extracting
example 11-4
linearization 11-4
lines
branch 4-12
carrying the same signal 1-12
connecting blocks 4-9
connecting to input ports 1-12
diagonal 4-12
moving 5-6
signals carried on 10-6
links
breaking 5-28
to library block 5-26
LinkStatus block parameter 5-30
linmod function
example 11-4
LoadFcn block callback parameter 4-73
loading from base workspace 10-17
loading initial states 10-24
location of block names 5-13
Look Into System menu item 9-10
Look Under Mask Dialog menu item 9-10
Look Under Mask menu item 12-13
Look-Up Table Editor 5-18
look-up tables, editing 5-18
loops, algebraic
See algebraic loops
loops, avoiding invalid 8-6
loops, detecting invalid 8-7

M
Mask Editor 12-12

mask help text 12-8
Mask Subsystem menu item 12-12
mask type
defining 12-8
mask workspace 12-24
masked blocks
block descriptions 12-8
dialog boxes
creating dynamic 12-28
setting parameters for 12-28
documentation 12-25
help text 12-8
icons
creating 12-8
Icon pane 12-14
initialization commands 12-23
looking under 12-13
parameters
assigning values to 12-18
default values 12-22
mapping 12-5
predefined 12-29
prompts for 12-18
referencing in callbacks 4-72
showing in Model Browser 9-9
type 12-25
unmasking 12-13
masked subsystems
showing in Model Browser 9-9
Math Function block
algebraic loops 2-19
mathematical symbols
using in annotations 4-17

Index

MATLAB
terminating 3-22
MATLAB Fen block
simulation speed 10-40
Max step size parameter 10-11
maximum order of ode15s solver
and stability 10-13
maximum step size 10-11
md1l files 3-9
Memory block
simulation speed 10-40
memory issues 8-8
menus 3-5
Merge menu
Graphical Merge Tool 14-19
merging model differences 14-19
M-file S-functions
simulation speed 10-40
MinMax block
zero crossings 2-18
mixed continuous and discrete systems 2-33
Model Browser 9-8
showing library links in 9-9
showing masked subsystems in 9-9
model callback parameters 4-70
Model Coverage Tool 14-27
block report key 14-35
commands 14-44
lookup table report key 14-36
report 14-32
simcovdemo 14-30

model differences 14-20
color codes 14-17
displaying 14-13
generating a report of 14-20
highlighting 14-17
merging 14-19
navigating 14-18
model discretization
configurable subystems 4-54
discretizing a model 4-49
overview 4-48
specifying the discretization method 4-51
starting the model discretizer 4-50
model file name, maximum size of 3-9
model files
md1l file 3-9
model navigation commands 4-22
model parameters for version control 4-84
model verification blocks
disabling 10-33
ModelCloseFcn block callback parameter 4-73
modeling equations 8-2
modeling strategies 8-8
models
building 1-7
callback routines 4-70
comparing 14-13
comparing source-controlled 14-15
comparing to last saved version 14-15
comparing two saved 14-13
creating 4-2
creating change histories for 4-82

I-9

Index

I-10

models (continued)

differences flagged by Graphical Merge Tool

14-17

editing 3-4

generating a report of differences 14-20

merging 14-19

navigating 4-22

organizing and documenting 8-8

printing 3-12

properties of 4-78

running test cases 14-31

saving 3-9

selecting entire 4-4

tips for building 8-8

version control properties of 4-84
ModelVersion model parameter 4-85
ModelVersionFormat model parameter 4-85
ModifiedBy model parameter 4-84
ModifiedByFormat model parameter 4-84
ModifiedComment model parameter 4-85
ModifiedDate model parameter 4-84
ModifiedDateFormat model parameter 4-85
ModifiedHistory> model parameter 4-85
Monte Carlo analysis 10-42
mouse actions summary 3-19
MoveFcn block callback parameter 4-73
multirate systems

example 2-28
Mux block

changing number of input ports 1-11

N

NameChangeFcn block callback parameter 4-73

names
blocks 5-13
copied blocks 5-4
navigating model differences 14-18
New Library menu item 5-25
New menu item 4-2
normalized icon drawing coordinates 12-16
numerical differentiation formula 10-9
numerical integration 2-10

o)
objects
selecting more than one 4-3
selecting one 4-3
ode1 solver 10-8
ode113 solver
advantages 10-9
hybrid systems 2-33
Memory block
and simulation speed 10-40
ode15s solver
advantages 10-9
and stiff problems 10-40
hybrid systems 2-33
maximum order 10-13
Memory block
and simulation speed 10-40
unstable simulation results 10-41

Index

ode2 solver 10-8
ode23 solver 10-9
hybrid systems 2-33
ode23s solver
advantages 10-9
maximum order 10-14
simulation accuracy 10-41
ode3 solver 10-8
ode4 solver 10-8
ode45 solver 10-9
hybrid systems 2-33
ode5 solver 10-8
Open menu item 3-4
Open System menu item 9-10
OpenFcn block callback parameter
identifying blocks that contain 9-11
Open System menu item 9-12
purpose 4-73
opening
Subsystem block 4-21
Options menu
Graphical Merge Tool 14-18
orientation of blocks 5-12
Outport block
example 11-2
in subsystem 4-20
linearization 11-4
output
additional 10-15
between trigger events 4-32
disabled subsystem 4-26
enable signal 4-28
options 10-14
saving to workspace 10-21
smoother 10-14
specifying for simulation 10-15

trajectories
viewing 11-2
trigger signal 4-32
writing to file
when written 10-5
writing to workspace 10-21
when written 10-5
output ports
Enable block 4-28
Trigger block 4-32

P
PaperOrientation model parameter 3-14
PaperPosition model parameter 3-15
PaperPositionMode model parameter 3-15
PaperType model parameter 3-14
parameters

block 5-7

setting values of 5-7

Simulink data type for 2-7

specifying simulation 1-13

tunable

definition 2-5
Inline parameters option 10-29

Parameters menu item

selecting solver 10-7
Parameters pane of Mask Editor 12-12
ParentCloseFcn block callback parameter 4-73
Paste menu item 5-4
performance

comparing Simulink Accelerator to Simulink

14-10

Pixel icon drawing coordinates 12-17
ports

block orientation 5-12

labeling in subsystem 4-23

I-11

Index

I-12

PostLoadFcn model callback parameter 4-71
PostSaveFcn block callback parameter 4-73
PostSaveFcn model callback parameter 4-71
PostScript files

printing to 3-14
preferences 1-16
Preferences dialog box 1-16
PreLoadFcn model callback parameter 4-71
PreSaveFcn block callback parameter 4-73
PreSaveFcn model callback parameter 4-71
Print (Browser) menu item 9-10
print command 3-12
Print menu item 3-12
printing to PostScript file 3-14
Priority block parameter 5-16
produce additional output option 10-15
produce specified output only option 10-15
Product block

algebraic loops 2-19

production hardware characteristics, specifying

10-34
propagation of signal labels 6-10
purely discrete systems 2-28

Q
Quit MATLAB menu item 3-22

R
Random Number block

simulation speed 10-41
Real-Time Workshop

and Simulink Accelerator 14-3
Redo menu item 3-6

reference blocks

definition 5-25
refine factor

smoothing output 10-14
Relational Operator block

zero crossings 2-19
relative tolerance

definition 10-12

simulation accuracy 10-41
Relay block

zero crossings 2-18
reset

output of enabled subsystem 4-27

states of enabled subsystem 4-27
resizing blocks 5-12
return variables

example 11-2
reversing direction of signal flow 8-3
rising trigger event 4-30
Rosenbrock formula 10-9
Rotate Block menu item 5-12
Runge-Kutta (2,3) pair 10-9
Runge-Kutta (4,5) formula 10-9
Runge-Kutta fourth-order formula 10-8
running a simulation 1-13

S

sample model 1-7
sample time
backpropagating 2-31
changing during simulation 2-27
colors 2-31
constant 2-32
continuous 2-26

Index

sample time (continued)
discrete 2-26
fixed in minor time step 2-27
fundamental 10-10
inherited 2-27
simulation speed 10-40
Sample Time Colors menu item 2-32
updating coloring 4-8
sampled data systems 2-25
Saturation block
zero crossings 2-19
how used 2-16
Save As menu item 3-9
Save menu item 3-9
Save options area 10-21
save_system command
breaking links 5-29
scalar expansion 6-9
Scope block
example of simple continuous system 8-4
example of simple model 11-2
Select All menu item 4-4
Set Font dialog box 5-14
set_param command
breaking link 5-29
controlling model execution 14-9
running a simulation 10-4, 10-42
setting simulation mode 14-9
setting breakpoints 13-12
Shampine, L. F. 10-10
Show Browser menu item 9-10
Show Name menu item 5-15
show output port
Enable block 4-28
Trigger block 4-32

Show Propagated Signals menu item 6-12
showing block names 5-15
Sign block
zero crossings 2-19
Signal 6-29
Signal Builder
snap grid 6-27
Signal Builder dialog box 6-21
Signal Builder time range
about 6-29
changing 6-29
signal buses 6-6
signal flow through blocks 5-12
signal groups 6-20
activating 6-30
creating a custom waveform in 6-24
creating a set of 6-20
creating and deleting 6-23
creating signals in 6-23
cutting and pasting 6-24
discrete 6-33
editing 6-21
exporting to workspace 6-30
final values 6-31
hiding waveforms 6-23
moving 6-23
renaming 6-23
renaming signals in 6-30
running all 6-30
simulating with 6-30
specifying final values for 6-31
specifying sample time of 6-33
time range of 6-29

I-13

Index

signal labels
changing font 6-18
copying 6-18
creating 6-18
deleting 6-18
editing 6-18
moving 6-18
propagation 6-10
using to document models 8-8
signal propagation 6-3
signal properties
setting 6-10
Signal Properties dialog box 6-11
signals
composite 6-4
labeling 6-17
labels 6-18
names 6-17
propagation 6-10
reversing direction of flow 8-3
setting properties 6-11
showing propagated 6-12
Simulink data type for 2-7
storage class of 6-13
virtual 6-3
sim command

simulation

accuracy 10-41
checking status of 10-42
command line 10-42
displaying information about
algebraic loops 13-19
block execution order 13-21
block I/0 13-17
debug settings 13-24
integration 13-20
nonvirtual blocks 13-22
nonvirtual systems 13-22
system states 13-20
zero crossings 13-23
execution phase 2-10
initialization phase 2-9
parameters
specifying 10-36
running 1-13
running incrementally 13-8
running nonstop 13-9
speed 10-40
stepping by blocks 13-9
stepping by breakpoints 13-12
stepping by time steps 13-11
unstable results 10-41

comparing performance 14-10 Simulation Diagnostic Viewer 10-36
simulating an accelerated model 14-9 Simulation Diagnostics dialog box 10-36
syntax 10-42 simulation errors

simcovdemo diagnosing 10-36
Model Coverage Tool 14-30 Simulation Options dialog box 6-31

I-14

Index

Simulation Parameters dialog box

Diagnostics pane 10-24

increasing Simulink Accelerator performance

14-6

Solver pane 10-7

Workspace I/O pane 10-17
Simulation Parameters menu item 1-13
simulation profile 14-24
simulation time

compared to clock time 10-7

writing to workspace 10-21
Simulink

ending session 3-22

icon 3-2

menus 3-5

starting 3-2

terminating 3-22

windows and screen resolution 3-7
Simulink Accelerator

blocks whose performance is not improved by

14-7

description 14-3

how to run 14-4

using with Simulink debugger 14-8
Simulink block library

See block libraries
simulink command

starting Simulink 3-2
Simulink Data Explorer 7-27
Simulink data objects 2-7
Simulink data types 2-7

extending 2-7
Simulink Library Browser 3-2

Simulink Performance Tools option
and Simulink Accelerator 14-3
Graphical Merge Tool 14-13
Model Coverage Tool 14-27
Simulink profiler 14-21

Simulink preferences 1-16

Simulink profiler
purpose 14-21

Simulink status bar 3-7

Simulink.Parameter
Simulink-specific data type 2-7

Simulink.Signal
Simulink-specific data type 2-7

size of block
changing 5-12

sldebug command
starting the Simulink debugger 13-3

snap grid, Signal Builder’s 6-27

Solver pane
Simulation Parameters dialog box 10-7

solvers
changing during simulation 10-6
default 10-8
discrete 10-8

zero-crossing detection 10-10
fixed-step

definition 2-13

list 10-8
ode1 10-8
ode113

advantages 10-9

and simulation speed 10-40

I-15

Index

I-16

solvers (continued)
odel5s

advantages 10-9

and simulation speed 10-40
and stiff problems 10-40
maximum order 10-13
simulation accuracy 10-41

ode2 10-8
ode23 10-9
ode23s

advantages 10-9
maximum order 10-14
simulation accuracy 10-41

ode3 10-8

ode4 10-8

ode45 10-9

ode5 10-8
Source Control menu item 4-76
speed of simulation 10-40
stairs function 2-28
Start menu item 8-3

start

time 10-7

StartFcn block callback parameter 4-74
StartFcn model callback parameter 4-71
starting Simulink 3-2
starting the model discretizer 4-50
Stateflow
and if-else control flow diagrams 4-45
and Simulink Accelerator performance 14-6
and switch control flow diagrams 4-45
and While subsystems 4-45
compared to control flow diagrams 4-44

states
between trigger events 4-32
loading initial 10-24
saving final 10-23
when enabling 4-27
writing to workspace 10-21
State-Space block
algebraic loops 2-19
status
checking simulation 10-42
status bar 3-7
Step block
zero crossings 2-19
step size 10-11
simulation speed 10-40
stiff problems 10-10
stiff systems
simulation speed 10-40
stop time 10-7
StopFcn block callback parameter 4-74
StopFcn model callback parameter 4-71
storage class of signals
displaying 6-13
selecting 6-13
Subsystem block
adding to create subsystem 4-19
opening 4-21
zero crossings 2-19
Subsystem Examples block library 8-6
subsystem ports
labeling 4-23

Index

subsystems
controlling access to 4-23
creating 4-19
displaying parent of 4-22
labeling ports 4-23
model hierarchy 8-8
opening 4-22
triggered and enabled 4-33
underlying blocks 4-21
undoing creation of 4-21
Sum block
algebraic loops 2-19
summary of mouse and keyboard actions 3-19
Switch block
zero crossings 2-19
switch control flow diagram 4-39
and Stateflow 4-45
SwitchCase block
adding cases 4-39
connecting to Action subsystem 4-39
data input 4-39

T
terminating MATLAB 3-22

terminating Simulink 3-22
terminating Simulink session 3-22
TeX commands

using in annotations 4-17
tic command

comparing performance 14-10
time interval

simulation speed 10-40
time range

of a Signal Builder block 6-29

tips for building models 8-8
To Workspace block

example 11-3
toc command

comparing performance 14-10
Transfer Fen block

algebraic loops 2-19

example 8-4
Transport Delay block

linearization 11-5
Trigger block

creating triggered subsystem 4-31

outputting trigger signal 4-32

showing output port 4-32
triggered and enabled subsystems 4-33
triggered subsystems 4-30
triggers

control signal

outputting 4-32

either 4-30

events 4-30

falling 4-30

input 4-30

rising 4-30

type parameter 4-31
tunable parameters

definition 2-5

Inline parameters option 10-29
typographical conventions (table) xxii

V)

Undo menu item 3-6
UndoDeleteFcn block callback parameter 4-74
Unmask button on Mask Editor 12-13

I-17

Index

I-18

unstable simulation results 10-41
Update Diagram menu item
fixing bad link 5-27
out-of-date reference block 5-28
recoloring model 4-8
updating a diagram programatically 10-42
URL specification in block help 12-26
user
specifying current 4-76
user data 7-29
UserData 7-29
UserDataPersistent 7-29
user-written S-functions
increasing Simulink Accelerator performance
14-6

\'

vector length

checking 2-9
version control model parameters 4-84
vertices

moving 4-14
viewing output trajectories 11-2
virtual blocks 5-2
virtual signals 6-3

N\

web command
masked block help 12-26
while control flow diagram 4-40

While Iterator block
changing to do-while 4-41
condition input 4-41
in subsystem 4-41
initial condition input 4-41
iterator number output 4-41
While subsystem
and Stateflow 4-45
window reuse 4-22
workspace
loading from 10-17
mask 12-24
saving to 10-21
writing to
simulation terminated or suspended 10-5
Workspace I/O pane
Simulation Parameters dialog box 10-17

Z
zero crossings
disabled by non-double data types 7-6
Saturation block 2-16
zero-crossing detection
enabling globally 10-32
enabling selectively 10-32
zero-crossing slope method 4-26
Zero-Pole block
algebraic loops 2-19
zooming block diagrams 3-7

	About This Guide
	To the Reader
	What Is Simulink?
	Using This Manual

	Related Products
	Typographical Conventions

	Quick Start
	Running a Demo Model
	Description of the Demo
	Some Things to Try
	What This Demo Illustrates
	Other Useful Demos

	Building a Simple Model
	Setting Simulink Preferences
	Simulink Preferences
	Window reuse
	Model Browser
	Display
	Callback tracing
	Simulink Fonts
	Solver
	Workspace
	Diagnostics
	Advanced

	How Simulink Works
	What Is Simulink
	Modeling Dynamic Systems
	Block Diagrams
	Blocks
	States
	System Functions
	Block Parameters
	Tunable Parameters

	Continuous Versus Discrete Blocks
	Subsystems
	Custom Blocks
	Signals
	Data Types
	Solvers

	Simulating Dynamic Systems
	Model Initialization Phase
	Model Execution Phase
	Processing at Each Time Step
	Determining Block Update Order
	Direct-Feedthrough Ports
	Block Sorting Rules
	Block Priorities

	Atomic Versus Virtual Subsystems
	Solvers
	Fixed-Step Solvers Versus Variable-Step Solvers
	Continuous Versus Discrete Solvers
	Minor Time Steps

	Zero-Crossing Detection
	How Zero-Crossing Detection Works
	Implementation Details
	Caveat
	Blocks with Zero Crossings

	Algebraic Loops
	Nonalgebraic Direct-Feedthrough Loops
	Highlighting Algebraic Loops

	Modeling and Simulating Discrete Systems
	Specifying Sample Time
	Changing a Block’s Sample Time
	Compiled Sample Time

	Purely Discrete Systems
	Multirate Systems
	Determining Step Size for Discrete Systems
	Sample Time Propagation
	Invariant Constants
	Mixed Continuous and Discrete Systems

	Simulink Basics
	Starting Simulink
	Opening Models
	Entering Simulink Commands
	Using the Simulink Menu Bar to Enter Commands
	Using Context-Sensitive Menus to Enter Commands
	Using the Simulink Toolbar to Enter Commands
	Using the MATLAB Window to Enter Commands
	Undoing a Command

	Simulink Windows
	Status Bar
	Zooming Block Diagrams

	Saving a Model
	Saving a Model in Earlier Formats

	Printing a Block Diagram
	Print Dialog Box
	Print Command
	Specifying Paper Size and Orientation
	Positioning and Sizing a Diagram

	Generating a Model Report
	Model Report Options
	Directory
	Increment filename to prevent overwriting old files
	Current object
	Current and above
	Current and below
	Entire model
	Look under mask dialog
	Expand unique library links

	Summary of Mouse and Keyboard Actions
	Manipulating Blocks
	Manipulating Lines
	Manipulating Signal Labels
	Manipulating Annotations

	Ending a Simulink Session

	Creating a Model
	Creating a New Model
	Selecting Objects
	Selecting One Object
	Selecting More Than One Object
	Selecting Multiple Objects One at a Time
	Selecting Multiple Objects Using a Bounding Box
	Selecting the Entire Model

	Specifying Block Diagram Colors
	Choosing a Custom Color
	Defining a Custom Color
	Specifying Colors Programmatically
	Enabling Sample Time Colors

	Connecting Blocks
	Automatically Connecting Blocks
	Connecting Two Blocks
	Connecting Groups of Blocks

	Manually Connecting Blocks
	Drawing a Line Between Blocks
	Drawing a Branch Line
	Drawing a Line Segment
	Moving a Line Segment
	Moving a Line Vertex
	Inserting Blocks in a Line

	Disconnecting Blocks

	Annotating Diagrams
	Using TeX Formatting Commands in Annotations

	Creating Subsystems
	Creating a Subsystem by Adding the Subsystem Block
	Creating a Subsystem by Grouping Existing Blocks
	Undoing Subsystem Creation

	Model Navigation Commands
	Window Reuse
	Labeling Subsystem Ports
	Controlling Access to Subsystems

	Creating Conditionally Executed Subsystems
	Enabled Subsystems
	Creating an Enabled Subsystem
	Setting Output Values While the Subsystem Is Disabled
	Setting States When the Subsystem Becomes Reenabled
	Outputting the Enable Control Signal

	Blocks an Enabled Subsystem Can Contain

	Triggered Subsystems
	Creating a Triggered Subsystem
	Outputs and States Between Trigger Events
	Outputting the Trigger Control Signal

	Function-Call Subsystems
	Blocks That a Triggered Subsystem Can Contain

	Triggered and Enabled Subsystems
	Creating a Triggered and Enabled Subsystem
	A Sample Triggered and Enabled Subsystem
	Creating Alternately Executing Subsystems

	Control Flow Blocks
	Creating Conditional Control Flow Statements
	If-Else Control Flow Statements
	Switch Control Flow Statements

	Creating Iterator Control Flow Statements
	While Control Flow Statements
	For Control Flow Statements

	Comparing Stateflow and Control Flow Statements
	Sample Times
	Resetting of States When Reenabled

	Using Stateflow with the Control Flow Blocks
	Using Stateflow with If-Else or Switch Subsystems
	Using Stateflow with While Subsystems

	Model Discretizer
	Requirements
	Discretizing a Model from the Model Discretizer GUI
	Start the Model Discretizer
	Specify the Transform Method
	Specify the Sample Time
	Specify the Discretization Method
	Discrete blocks (Enter parameters in s-domain)
	Discrete blocks (Enter parameters in z-domain)
	Configurable subsystem (Enter parameters in s-domain)
	Configurable subsystem (Enter parameters in z-domain)

	Discretize the Blocks
	Select Blocks and Discretize
	Store the Discretization Settings and Apply Them to Selected Blocks in the Model

	Deleting a Discretization Candidate from a Configurable Subsystem
	Undoing a Discretization

	Viewing the Discretized Model
	Viewing Discretized Blocks
	Refreshing Model Discretizer View of the Model

	Discretizing Blocks from the Simulink Model
	Discretizing a Model from the MATLAB Command Window

	Using Callback Routines
	Tracing Callbacks
	Creating Model Callback Functions
	Model Callback Parameters

	Creating Block Callback Functions
	Block Callback Parameters

	Port Callback Parameters

	Managing Model Versions
	Specifying the Current User
	Model Properties Dialog Box
	Summary Pane
	Creator
	Created
	Model description

	Callbacks Pane
	History Pane
	Version Information Panel
	Model version
	Last saved by
	Last saved date
	Model version
	Last saved by
	Last saved on

	Model History Panel

	Creating a Model Change History
	Logging Changes
	Editing the Change History

	Version Control Properties

	Working with Blocks
	About Blocks
	Block Data Tips
	Virtual Blocks

	Editing Blocks
	Copying and Moving Blocks from One Window to Another
	Moving Blocks in a Model
	Copying Blocks in a Model
	Deleting Blocks

	Setting Block Parameters
	Setting Block-Specific Parameters
	Block Properties Dialog Box
	General Pane
	Description
	Priority
	Tag

	Block Annotation Pane
	Callbacks Pane
	Creating Block Annotations Programmatically

	State Properties Dialog Box

	Changing a Block’s Appearance
	Changing the Orientation of a Block
	Resizing a Block’s Icon
	Displaying Parameters Beneath a Block’s Icon
	Using Drop Shadows
	Manipulating Block Names
	Changing Block Names
	Changing the Location of a Block Name
	Changing Whether a Block Name Appears

	Specifying a Block’s Color

	Controlling and Displaying Block Execution Order
	Assigning Block Priorities
	Displaying Block Execution Order

	Look-Up Table Editor
	Browsing LUT Blocks
	Editing Table Values
	Displaying N-D Tables
	Plotting LUT Tables
	Editing Custom LUT Blocks
	Adding a Custom LUT Type
	Removing Custom LUT Types

	Working with Block Libraries
	Terminology
	Simulink Block Library
	Creating a Library
	Modifying a Library
	Creating a Library Link
	Disabling Library Links
	Modifying a Linked Subsystem
	Propagating Link Modifications
	Updating a Linked Block
	Breaking a Link to a Library Block
	Finding the Library Block for a Reference Block
	Library Link Status
	Displaying Library Links
	Getting Information About Library Blocks
	Browsing Block Libraries
	Navigating the Library Tree
	Searching Libraries
	Opening a Library
	Creating and Opening Models
	Copying Blocks
	Displaying Help on a Block
	Pinning the Library Browser

	Adding Libraries to the Library Browser

	Working with Signals
	Signal Basics
	About Signals
	Signal Dimensions
	Signal Data Types
	Complex Signals
	Virtual Signals

	Control Signals
	Signal Buses
	Signal Glossary
	Determining Output Signal Dimensions
	Determining the Output Dimensions of Source Blocks
	Determining the Output Dimensions of Nonsource Blocks

	Signal and Parameter Dimension Rules
	Input Signal Dimension Rule
	Block Parameter Dimension Rule
	Vector or Matrix Input Conversion Rules

	Scalar Expansion of Inputs and Parameters
	Scalar Expansion of Inputs
	Scalar Expansion of Parameters

	Setting Signal Properties
	Signal Properties Dialog Box
	Signal name
	Show propagated signals
	Description
	Document link
	Displayable (Test Point)
	RTW storage class
	RTW storage type qualifier

	Working with Complex Signals
	Checking Signal Connections
	Displaying Signals
	Wide nonscalar lines
	Signal dimensions
	Port data types
	Signal Names
	Signal Labels
	Displaying Signals Represented by Virtual Signals

	Working with Signal Groups
	Creating a Signal Group Set
	The Signal Builder Dialog Box
	Group Panes
	Signal Axes
	Signal List
	Selection Status Area
	Waveform Coordinates
	Name
	Index
	Help Area

	Editing Signal Groups
	Creating and Deleting Signal Groups
	Renaming Signal Groups
	Moving Signal Groups

	Editing Signals
	Creating Signals
	Cutting and Pasting Signals
	Renaming a Signal
	Changing a Signal’s Index
	Hiding Signals

	Editing Waveforms
	Reshaping a Waveform
	Selecting a Waveform
	Selecting points
	Selecting Segments
	Dragging Segments
	Dragging points
	Snap Grid
	Inserting and Deleting points
	Editing Point Coordinates
	Editing Segment Coordinates

	Changing the Color of a Waveform
	Changing a Waveform’s Line Style and Thickness

	Signal Builder Time Range
	Changing a Signal Builder’s Time Range

	Exporting Signal Group Data
	Simulating with Signal Groups
	Activating a Signal Group
	Running Different Signal Groups in Succession
	Running All Signal Groups

	Simulation Options Dialog Box
	Signal values after final time
	Sample time

	Working with Data
	Working with Data Types
	Data Types Supported by Simulink
	Fixed-Point Data
	Block Support for Data and Numeric Signal Types
	Specifying Block Parameter Data Types
	Creating Signals of a Specific Data Type
	Displaying Port Data Types
	Data Type Propagation
	Data Typing Rules
	Enabling Strict Boolean Type Checking
	Typecasting Signals
	Typecasting Parameters

	Working with Data Objects
	Data Object Classes
	Data Object Properties
	Data Object Packages
	Qualified Names

	Creating Data Objects
	Accessing Data Object Properties
	Invoking Data Object Methods
	Saving and Loading Data Objects
	Using Data Objects in Simulink Models
	Using Data Objects as Parameters
	Using Parameter Objects to Specify Parameter Tunability
	Using Data Objects as Signals
	Using Signal Objects to Specify Test Points
	Creating Persistent Parameter and Signal Objects

	Creating Data Object Classes
	Creating a Data Object Class
	Copy a class
	Rename a class
	Remove a class from a package

	Specifying a Parent for a Class
	Defining Class Properties
	Defining Enumerated Property Types
	Creating Initialization Code
	Creating a Class Package
	Copying a package
	Renaming a package
	Removing a package

	The Simulink Data Explorer
	Associating User Data with Blocks

	Modeling with Simulink
	Modeling Equations
	Converting Celsius to Fahrenheit
	Modeling a Simple Continuous System

	Avoiding Invalid Loops
	Detecting Invalid Loops

	Tips for Building Models

	Browsing and Searching Models
	Finding Objects
	Filter Options
	Object type list
	Look inside masked subsystem
	Look inside linked systems

	Search Criteria
	Basic
	Advanced
	Match case
	Other match options

	The Model Browser
	Using the Model Browser on Windows
	Navigating with the Mouse
	Navigating with the Keyboard
	Showing Library Links
	Showing Masked Subsystems

	Using the Model Browser on UNIX
	Contents of the Browser Window
	Interpreting List Contents
	Opening a System
	Looking into a Masked System or a Linked Block
	Displaying List Contents Alphabetically

	Running a Simulation
	Simulation Basics
	Specifying Simulation Parameters
	Controlling Execution of a Simulation
	Starting a Simulation
	Pausing or Stopping a Simulation

	Interacting with a Running Simulation

	The Simulation Parameters Dialog Box
	The Solver Pane
	Simulation Time
	Solvers
	Fixed-step continuous solvers
	Fixed-step discrete solver
	Variable-step continuous solvers
	Variable-Step Discrete Solver

	Solver Options
	Step Sizes
	Maximum step size
	Initial step size
	Minimum step size

	Error Tolerances
	The Maximum Order for ode15s
	Multitasking Options
	MultiTasking
	SingleTasking
	Auto

	Output Options
	Refine output
	Produce additional output
	Produce specified output only
	Comparing Output options

	The Workspace I/O Pane
	Loading Input from the Base Workspace
	Array
	Structure with time
	Structure
	Per-Port Structures
	Time Expression.

	Saving Output to the Workspace
	Array
	Structure with time
	Structure
	Per-Port Structures

	Loading and Saving States

	The Diagnostics Pane
	Consistency Checking
	Bounds Checking
	Configuration options

	The Advanced Pane
	Model parameter configuration
	Inline parameters

	Optimizations
	Block reduction
	Boolean logic signals
	Conditional input branch
	Parameter pooling.
	Signal storage reuse
	Zero-crossing detection

	Model Verification block control
	Model Parameter Configuration Dialog Box
	Source list.
	Refresh list
	Add to table
	New
	Storage Class
	Storage type qualifier

	Production Hardware Characteristics

	Diagnosing Simulation Errors
	Simulation Diagnostic Viewer
	Error Summary Pane
	Message
	Reported by
	Source
	Summary

	Error Message Pane
	Changing Font Size

	Creating Custom Simulation Error Messages
	Including Hyperlinks in Error Messages

	Improving Simulation Performance and Accuracy
	Speeding Up the Simulation
	Improving Simulation Accuracy

	Running a Simulation Programmatically
	Using the sim Command
	Using the set_param Command

	Analyzing Simulation Results
	Viewing Output Trajectories
	Using the Scope Block
	Using Return Variables
	Using the To Workspace Block

	Linearizing Models
	Finding Steady-State Points

	Creating Masked Subsystems
	About Masks
	Mask Features
	Mask Icon
	Mask Parameters
	Mask Parameter Dialog Box
	Mask Initialization Code
	Mask Workspace

	Creating Masks

	Masked Subsystem Example
	Creating Mask Dialog Box Prompts
	Creating the Block Description and Help Text
	Creating the Block Icon

	Masking a Subsystem
	The Mask Editor
	The Icon Pane
	Drawing commands
	Examples of drawing commands
	Icon options
	Frame
	Transparency
	Rotation
	Units

	The Parameters Pane
	Dialog Parameters Panel
	Prompt
	Variable
	Type
	Evaluate
	Tunable

	Options for Selected Parameter Panel
	Show parameter
	Enable parameter
	Popups
	Callback

	Parameter Buttons
	Add Button
	Delete Button
	Up Button
	Down Button

	Control Types
	Edit Control
	Check Box Control
	Pop-Up Control
	Changing Default Values for Mask Parameters in a Library

	The Initialization Pane
	Dialog variables
	Initialization commands
	Allow library block to modify its contents
	Debugging Initialization Commands

	The Documentation Pane
	Mask Type Field
	Mask Description Field
	Block Help Field

	Linking Mask Parameters to Block Parameters
	Creating Dynamic Dialogs for Masked Blocks
	Setting Masked Block Dialog Parameters
	Predefined Masked Dialog Parameters
	MaskCallbacks
	MaskDescription
	MaskEnables
	MaskPrompts
	MaskType
	MaskValues
	MaskVisibilities

	Simulink Debugger
	Introduction
	Starting the Debugger
	Starting the Simulation
	Using the Debugger’s Command-Line Interface
	Block Indexes
	Accessing the MATLAB Workspace

	Getting Online Help
	Running a Simulation
	Continuing a Simulation
	Running a Simulation Nonstop
	Advancing to the Next Block
	Crossing a Time Step Boundary
	Stepping by Minor Time Steps

	Advancing to the Next Time Step

	Setting Breakpoints
	Setting Breakpoints at Blocks
	Specifying a Breakpoint at the Start of a Block’s Execution
	Setting a Breakpoint at the End of a Block’s Execution
	Clearing Breakpoints from Blocks

	Setting Breakpoints at Time Steps
	Breaking on Nonfinite Values
	Breaking on Step-Size Limiting Steps
	Breaking at Zero Crossings

	Displaying Information About the Simulation
	Displaying Block I/O
	Displaying I/O of Selected Block
	Displaying Block I/O Automatically at Breakpoints
	Watching Block I/O

	Displaying Algebraic Loop Information
	Displaying System States
	Displaying Integration Information

	Displaying Information About the Model
	Displaying a Model’s Block Execution Order
	Identifying Blocks in Algebraic Loops

	Displaying a Block
	Displaying a Model’s Nonvirtual Systems
	Displaying a Model’s Nonvirtual Blocks
	Displaying Blocks with Potential Zero Crossings
	Displaying Algebraic Loops
	Displaying Debugger Status

	Debugger Command Summary

	Performance Tools
	About the Simulink Performance Tools Option
	The Simulink Accelerator
	Accelerator Limitations
	How the Accelerator Works
	Runnning the Simulink Accelerator
	Handling Changes in Model Structure
	Increasing Performance of Accelerator Mode
	Blocks That Do Not Show Speed Improvements
	Simulink Blocks
	DSP Blockset Blocks
	User-Written S-Function Blocks

	Using the Simulink Accelerator with the Simulink Debugger
	Interacting with the Simulink Accelerator Programmatically
	Controlling the Simulation Mode
	Simulating an Accelerated Model
	Building Simulink Accelerator MEX-Files Independent of Simulation

	Comparing Performance
	Customizing the Simulink Accelerator Build Process
	Controlling S-Function Execution

	Graphical Merge Tool
	Comparing Models
	Comparing Two Saved Models
	Comparing a Model to Its Last Saved Version
	Comparing Source-Controlled Models

	The Graphical Merge Tool Window
	Differences Panes
	Model History List
	How Simulink Highlights Model Differences
	Model Differences Flagged by the Graphical Merge Tool
	Differences Display Options

	Navigating Model Differences
	Merging Model Differences
	Generating a Model Differences Report

	Profiler
	How the Profiler Works
	Enabling the Profiler
	The Simulation Profile
	Summary Section
	Detailed Profile Section

	Model Coverage Tool
	How the Model Coverage Tool Works
	Coverage Analysis
	Covered Blocks

	Using the Model Coverage Tool
	Creating and Running Test Cases
	The Coverage Report
	Coverage Summary
	Details
	Detail Tables and Charts
	Decisions analyzed
	Conditions analyzed
	MC/DC analysis
	Lookup Table Details
	Navigation Arrows

	Chart Report

	Coverage Settings Dialog Box
	Coverage Pane
	Enable Coverage Reporting
	Coverage Instrumentation Path
	Coverage Metrics

	Results Pane
	Save cumulative results in workspace variable
	Save last run in workspace variable
	Increment variable name with each simulation

	Report Pane
	Generate HTML report
	Cumulative Runs
	Last Run
	Additional data to include in report

	Options Pane
	Treat Simulink Logic blocks as short-circuited
	Warn when unsupported blocks exist in a model
	Disable coverage for blocks used in assertion checks

	HTML Settings
	Include each test in the model summary.
	Produce bar graphs in the model summary
	Use two color bar graphs (red,blue)
	Display hit/count ratio in the model summary
	Do not report fully covered model objects
	Include cyclomatic complexity numbers in summary
	Include cyclomatic complexity numbers in block details

	Model Coverage Commands
	cvhtml
	cvload
	cvsave
	cvsim
	cvtest
	Coverage Script Example
	A���
	B���
	C���
	D���
	E���
	F���
	G���
	H���
	I���
	J���
	K���
	L���
	M���
	N���
	O���
	P���
	Q���
	R���
	S���
	T���
	U���
	V���
	W���
	Z���

	Index

