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If you are just beginning to use Real-Time Workshop, please see the overviews, 
explanations and tutorials in either the online or printed version of the Getting 
Started Guide to orient yourself. The following material picks up from there, 
gradually introducing additional details about code generation, targeting, 
optimizations, and other useful topics:

Understanding Real-Time Workshop describes concepts and terminology of 
the Real-Time Workshop. It describes the rapid prototyping process that the 
open architecture of the Real-Time Workshop facilitates, and points to 
discussions of basic real-time development tasks elsewhere in this document.

Code Generation and the Build Process describes the automatic program 
building process in detail. It discusses all code generation options controlled by 
the Real-Time Workshop’s graphical user interface. Topics include data 
logging, inlining and tuning parameters, and template makefiles. The chapter 
also summarizes available target configurations.

Generated Code Formats compares and contrasts targets and their 
associated code formats. This include the real-time, real-time malloc, 
embedded C, and S-function code formats.

Building Subsystems describes how to control code generation for 
conditionally executed and atomic subsystems.

Working with Data Structures teaches you how to generate storage 
declarations to import and export parameters and block states, configure 
storage for signals and data objects, and utilize custom storage classes.

External Mode contains information about external mode, a simulation 
environment that supports on-the-fly parameter tuning, signal monitoring, 
and data logging.

Program Architecture discusses the architecture of programs generated by 
the Real-Time Workshop, and the run-time interface. 

Models with Multiple Sample Rates describes how to handle multirate 
systems.

Optimizing the Model for Code Generation discusses techniques for 
optimizing your generated programs.

The S-Function Target explains how to generate S-Function blocks from 
models and subsystems. This enables you to encapsulate models and 
subsystems and protect your designs by distributing only binaries. 



xv

Real-Time Workshop Rapid Simulation Target discusses the rapid 
simulation target (RSIM), which executes your model in nonreal-time on your 
host computer. Use this feature to generate fast, stand-alone simulations that 
allow batch parameter tuning and the loading of new simulation data (signals) 
from MATLAB MAT-files without needing to recompile your model.

Targeting Tornado for Real-Time Applications contains information that is 
specific to developing programs that target Tornado, and signal monitoring 
using StethoScope. 

Asynchronous Support describes the Interrupt Template library, which allow 
you to model synchronous/asynchronous event handling.

Targeting Real-Time Systems discusses advanced techniques for developing 
programs for custom targets, including device driver blocks, customizing 
system target files and template makefiles, combining multiple models into a 
single executable, and APIs for external mode communication, signal 
monitoring, and parameter tuning.

Appendix A is a glossary that contains definitions of terminology associated 
with the Real-Time Workshop and real-time software development.

Appendix B lists blocks whose use is restricted due to dependency on absolute 
time.

Appendix C details the DOS target (now obsolete) and provides useful 
guidance for working with device drivers.

Appendix D provides an overview that describes how using the Real-Time 
Workshop development environment can dramatically accelerate the design, 
refinement and deployment of real-time systems on a variety of target systems.
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1
Understanding Real-Time 
Workshop

We begin by summarizing what Real-Time Workshop can do and how you can use it to accelerate 
development of high-quality real-time software. This is followed by an overview of the software 
components that Real-Time Workshop calls upon to generate source code from a Simulink model, and 
shows how they work together in an extensible way. Information resources are provided to help you 
understand where to look to answer some commonly asked questions.

Product Overview (p. 1-2) Real-Time Workshop at a glance

The Rapid Prototyping Process (p. 1-5) Key advantages of rapid prototyping, along with 
descriptions of its application in two domains

Open Architecture of Real-Time 
Workshop (p. 1-11)

Modules and files involved in code generation that you 
can customize for your own targets and applications

Where to Find Help (p. 1-14) Pointers to both basic descriptions and advanced 
information on specific topics
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Product Overview
Real-Time Workshop® generates optimized, portable, and customizable ANSI 
C code from Simulink models to create stand-alone implementations of models 
that operate in real-time and non-real-time in a variety of target environments. 
Generated code can run on PC hardware, DSPs, microcontrollers on bare-board 
environments, and with commercial or proprietary real-time operating 
systems (RTOS). Real-Time Workshop lets you speed up simulations, build in 
intellectual property protection, and operate across a wide variety of real-time 
rapid prototyping targets. Figure 1-1 illustrates the role of Real-Time 
Workshop (shaded elements) in the software design process.

.

Figure 1-1:  Software Design and Deployment Using MATLAB and Simulink
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Some Real-Time Workshop Capabilities
With Real-Time Workshop, you can quickly generate code for discrete-time, 
continuous-time (fixed-step), and hybrid systems, as well as for finite state 
machines modeled in Stateflow® using the optional Stateflow Coder. The 
optional Real-Time Workshop Embedded Coder works with Real-Time 
Workshop to generate efficient, embeddable source code. 

Using integrated makefile-based targeting support, Real-Time Workshop 
builds programs that can help speed up your simulations, provide intellectual 
property protection, and run on a wide variety of real-time rapid prototyping or 
production targets. Simulink's external mode run-time monitor works 
seamlessly with real-time targets, providing an elegant signal monitoring and 
parameter tuning interface. Real-Time Workshop supports continuous-time, 
discrete-time and hybrid systems, including conditionally executed and atomic 
systems. Real-Time Workshop accelerates your development cycle, producing 
higher quality results in less time.

Real-Time Workshop is a key link in the set of system design tools provided by 
The MathWorks, providing a real-time development environment — a direct 
path from system design to hardware implementation. You can streamline 
application development and reduce costs with Real-Time Workshop by testing 
design iterations with real-time hardware. Real-Time Workshop supports the 
execution of dynamic system models on hardware by automatically converting 
models to code and providing model-based debugging support. It is well suited 
for accelerating simulations, rapid prototyping, turnkey solutions, and 
production embedded real-time applications.

Software Design with Real-Time Workshop
A typical product cycle using the MathWorks toolset starts with modeling in 
Simulink, followed by an analysis of the simulations in MATLAB. During the 
simulation process, you use the rapid simulation features of Real-Time 
Workshop to speed up your simulations. 

After you are satisfied with the simulation results, you use Real-Time 
Workshop in conjunction with a rapid prototyping target, such as xPC Target. 
The rapid prototyping target is connected to your physical system. You test and 
observe your system, using your Simulink model as the interface to your 
physical target. Once your simulation is functioning properly, you use 
Real-Time Workshop to transform your model to C code. An extensible make 
process and download procedure creates an executable for your model and 
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places it on the target system. Finally, using external mode, you can monitor 
and tune parameters in real-time as your model executes on the target 
environment. 

There are two broad classes of targets: rapid prototyping targets and the 
embedded target. Code generated for the rapid prototyping targets supports 
increased monitoring and tuning capabilities. Code generated for embedded 
targets is highly optimized and suitable for deployment in production systems, 
and can include application-specific entry points to monitor signals and tune 
parameters.

To support embedded targets, The MathWorks distributes Real-Time 
Workshop Embedded Coder as a separate product. Embedded Coder is an 
extension of Real-Time Workshop designed to generate C code for embedded 
discrete-time systems, where efficiency, configurability, readability, and 
traceability of the generated code are extremely important. Real-Time 
Workshop Embedded Coder enhances Real-Time Workshop code generation 
technology to generate embeddable ANSI C code that compares favorably with 
hand-optimized code in terms of performance, ROM code size, RAM 
requirements, and readability. The Real-Time Workshop Embedded Coder 
documentation contains information about optimization specifically for 
embedded code.

For a more complete general overview of the key features, capabilities, and 
benefits of Real-Time Workshop, please see Appendix D,  “The Real-Time 
Workshop Development Process.”
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The Rapid Prototyping Process
Real Time Workshop supports rapid prototyping, an application development 
process that allows you to

• Conceptualize solutions graphically in a block diagram modeling 
environment 

• Evaluate system performance early on — before laying out hardware, coding 
production software, or committing to a fixed design 

• Refine your design by rapid iteration between algorithm design and 
prototyping

• Tune parameters while your real-time model runs, using Simulink in 
external mode as a graphical front end

Key Aspects of Rapid Prototyping
The figure below contrasts the rapid prototyping development process with the 
traditional development process.

Figure 1-2:  Traditional vs. Rapid Prototyping Development Processes
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The traditional approach to real-time design and implementation typically 
involves multiple teams of engineers, including an algorithm design team, 
software design team, hardware design team, and an implementation team. 
When the algorithm design team has completed its specifications, the software 
design team implements the algorithm in a simulation environment and then 
specifies the hardware requirements. The hardware design team then creates 
the production hardware. Finally, the implementation team integrates the 
hardware into the larger overall system.

This traditional development process takes so much time because algorithm 
designers often do not have access to the hardware that is actually deployed. 
The rapid prototyping process combines the algorithm, software, and hardware 
design phases, eliminating potential bottlenecks by allowing engineers to see 
results and rapidly iterate solutions before building expensive hardware.

Automating Programming
Automatic program building allows you to make design changes directly to the 
block diagram, puttting algorithm development (including coding, compiling, 
linking, and downloading to target hardware) under control of a single process: 

• Design a Model in Simulink

You begin the rapid prototyping process with the development of a model in 
Simulink. In control engineering, you model plant dynamics and other 
dynamic components that constitute a controller and/or an observer.

• Simulate your Model in Simulink

You use MATLAB, Simulink, and toolboxes to aid in the development of 
algorithms and analysis of the results. If the results are not satisfactory, you 
can iterate the modeling and analysis process until results are acceptable.

• Generate Source Code with Real-Time Workshop 

Once simluation results are acceptable, you generate downloadable C code 
that implements the appropriate portions of the model. You can use 
Simulink in external mode to tune parameters and further refine your 
model, quickly iterating through solutions.

• Implement a Production Prototype

At this stage, the rapid prototyping process is complete. You can begin the 
final implementation for production with confidence that the underlying 
algorithms work properly in your real-time production system.
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The next diagram illustrates the flow of this process.

Figure 1-3:  The Rapid Prototyping Development Process
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Highly productive development cycles are possible due to the integration of 
Real-Time Workshop, MATLAB, and Simulink. Each component adds value to 
your application design process:

• MATLAB: Provides design, analysis, and data visualization tools.

• Simulink: Provides system modeling, simulation, and validation.

• Real-Time Workshop: Generates C code from Simulink model; provides 
framework for running generated code in real-time, tuning parameters, and 
viewing real-time data.

Rapid Prototyping for Digital Signal Processing
The first step in the rapid prototyping process for digital signal processing is to 
consider the kind and quality of the data to be worked on, and to relate it to the 
system requirements. Typically this includes examining the signal-to-noise 
ratio, distortion, and other characteristics of the incoming signal, and relating 
them to algorithm and design choices.

System Simulation and Algorithm Design
In the rapid prototyping process, the block diagram plays two roles in 
algorithm development. The block diagram helps to identify processing 
bottlenecks, and to optimize the algorithm or system architecture. The block 
diagram also functions as a high-level system description. That is, the diagram 
provides a hierarchical framework for evaluating the behavior and accuracy of 
alternative algorithms under a range of operating conditions. 

Analyzing Results, Tuning Parameters, and Monitoring Signals
After creating an algorithm (or a set of candidate algorithms), the next stage is 
to consider architectural and implementation issues. These include complexity, 
speed, and accuracy. In a conventional development environment, this would 
mean running the algorithm and recoding it in C or in a hardware design and 
simulation package. 

Simulink external mode allows you to change parameters interactively, while 
your signal processing algorithms execute in real time on the target hardware. 
After building the executable and downloading it to your hardware, you tune 
(modify) block parameters in Simulink. Simulink automatically downloads the 
new values to the hardware. You can monitor the effects of your parameter 
changes by simply connecting Scope blocks to signals that you want to observe.
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Rapid Prototyping for Control Systems
Rapid prototyping for control systems is similar to digital signal processing, 
with one major difference. In control systems design, you must model your 
plant prior to developing algorithms in order to simulate closed-loop 
performance. Once your plant model is sufficiently accurate, the rapid 
prototyping process for control system design continues in much the same 
manner as digital signal processing design.

Rapid prototyping begins with developing block diagram plant models of 
sufficient fidelity for preliminary system design and simulation. Once 
simulations indicate acceptable system performance levels, the controller block 
diagram is separated from the plant model and I/O device driver blocks are 
attached to it. Automatic code generation immediately converts the entire 
system to real-time executable code, which can be automatically loaded onto 
target hardware.

Modeling Systems in Simulink
The first step in the design process is development of a plant model. The 
Simulink collection of linear and nonlinear components helps you to build 
models involving plant, sensor, and actuator dynamics. Because Simulink is 
customizable, you can further simplify modeling by creating custom blocks and 
block libraries from continuous- and discrete-time components. 

Using the System Identification Toolbox, you can analyze test data to develop 
an empirical plant model; or you can use the Symbolic Math Toolbox to 
translate the equations of the plant dynamics into state-variable form.

Analyzing Simulation Results
You can use MATLAB and Simulink to analyze the results produced from a 
model developed in the first step of the rapid prototyping process. At this stage, 
you can design and add a controller to your plant.

Deriving and Analyzing Algorithms
From the block diagrams developed during the modeling stage, you can extract 
state-space models through linearization techniques. These matrices can be 
used in control system design. You can use the following toolboxes to facilitate 
control system design, and work with the matrices that you derived:

• Control System Toolbox
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• LMI Control Toolbox

• Model Predictive Control Toolbox

• Robust Control Toolbox

• System Identification Toolbox

• SimMechanics

Once you have your controller designed, you can create a closed-loop system by 
connecting it to the Simulink plant model. Closed-loop simulations allow you 
to determine how well the initial design meets performance requirements.

Once you have a satisfactory model, it is a simple matter to generate C code 
directly from the Simulink block diagram, compile it for the target processor, 
and link it with supplied or user-written application modules.

Analyzing Results, Tuning Parameters, and Monitoring Signals
You can load output data from your program into MATLAB for analysis, or 
display the data with third party monitoring tools. You can easily make design 
changes to the Simulink model and then regenerate the C code.
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Open Architecture of Real-Time Workshop
Real-Time Workshop is an open system designed for use with a wide variety of 
operating environments and hardware types. Figure 1-4 shows how you can 
extend key elements of Real-Time Workshop.

You can configure the Real-Time Workshop program generation process to 
your own needs by modifying the following components:

• Simulink and the model file (model.mdl)

Simulink provides a very high-level language (VHLL) development 
environment. The language elements are blocks and subsystems that 
visually embody your algorithms. You can think of Real-Time Workshop as 
a compiler that processes a VHLL source program (model.mdl), and emits 
code suitable for a traditional high-level language (HLL) compiler.

S-functions written in C let you extend the Simulink VHLL by adding new 
general purpose blocks, or incorporating legacy code into a block.

• The intermediate model description (model.rtw)

The initial stage of the code generation process is to analyze the source 
model. The resultant description file contains a hierarchical structure of 
records describing systems and blocks and their connections.

The S-function API includes a special function, mdlRTW, that lets you 
customize the code generation process by inserting parameter data from 
your own blocks into the model.rtw file.

• The Target Language Compiler (TLC) program

The Target Language Compiler interprets a program that reads the 
intermediate model description and generates code that implements the 
model as a program.

You can customize the elements of the TLC program in two ways. First, you 
can implement your own system target file, which controls overall code 
generation parameters. Second, you can implement block target files, which 
control how code is generated from individual blocks such as your own 
S-function blocks.
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Figure 1-4:  Real-Time Workshop Architecture
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• Source code generated from the model; for descriptions of these files, see 
“Summary of Files Created by the Build Procedure” in the Real-Time 
Workshop Getting Started Guide.

There are several ways to customize generated code, or interface it to custom 
code:

- Exported entry points let you interface your hand-written code to the 
generated code. This makes it possible to develop your own timing and 
execution engine, or to combine code generated from several models into a 
single executable.

- You can automatically make signals, parameters, and other data 
structures within generated code visible to your own code, facilitating 
parameter tuning and signal monitoring.

- Prepare or modify Target Language Compiler script files to customize the 
transformation of Simulink blocks into source code. See the Target 
Language Compiler Reference Guide for further details.

• Run-time interface support files

The run-time interface consists of code interfacing to the generated model 
code. You can create a custom set of run-time interface files, including:

- A harness (main) program

- Code to implement a custom external mode communication protocol

- Code that interfaces to parameters and signals defined in the generated 
code

- Timer and other interrupt service routines

- Hardware I/O drivers

• The template makefile and model.mk

A makefile, model.mk, controls the compilation and linking of generated 
code. Real-Time Workshop generates model.mk from a template makefile 
during the code generation and build process. You can create a custom 
template makefile to control compiler options and other variables of the make 
process.

All of these components contribute to the process of transforming a Simulink 
model into an executable program. The topics in the next section point you to 
documentation describing each of them.
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Where to Find Help
Documentation for Real-Time Workshop and related products from The 
MathWorks covers many topics—some in considerable depth—and includes 
many examples of use. Some of the major topics covered are summarized below, 
enabling you to locate directly what you need to proceed.

If you are a less experienced user, you will benefit from reading the Getting 
Started guide, which introduces the product and describes its capabilities, 
applications, benefits, and general usage. Inside that guide are tutorials that 
provide immediate hands-on experience to get you familiar with the look, feel, 
and capabilities of Real-Time Workshop. That guide also discusses

• The role of Real-Time Workshop in your development cycle

• Basic real-time system concepts and terms

• General and platform-specific installation instructions

• Related product descriptions

• Simulink demos that illustrate code generation

How Do I...
If you need specific details about how to use Real-Time Workshop, scan the 
topics and descriptions below to locate documentation relevant to your 
development tasks and interests. You can also search the index to find 
information not included in this list.

Operate the Real-Time Workshop User Interface
You control most aspects of code generation through the Real-Time Workshop 
tab of the Simulation Parameters dialog, and the dialogs descending from it. 
See “The Real-Time Workshop User Interface” on page 2-2 for full descriptions 
of the options at your disposal.

Select Targets and Customize Compilation
Setting up targets for code generation is simple with the Target File Browser, 
described in “Selecting a Target Configuration” on page 2-40. Look there also 
for information on configuring compilers (“Choosing and Configuring Your 
Compiler” on page 2-51) and modifying makefiles (“Template Makefiles and 
Make Options” on page 2–54). For details on working with specific targets, see 
“The S-Function Target” on page 10-1, “Real-Time Workshop Rapid Simulation 
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Target” on page 11-1, “Targeting Tornado for Real-Time Applications” on 
page 12-1, Appendix C,  “Targeting DOS for Real-Time Applications,” and the 
Real-Time Workshop Embedded Coder documentation.

Generate Single- and Multitasking Code
Real-Time Workshop fully supports singletasking and multitasking code 
generation. See See “Program Architecture” on page 7-1 and See “Models with 
Multiple Sample Rates” on page 8-1 for a complete description.

Customize Generated Code
Real-Time Workshop supports customization of the generated code. 

The principle approach to customizing generated code is to modify Target 
Language Compiler (TLC) files. The Target Language Compiler is an 
interpreted language that translates Simulink models into C code. Using the 
Target Language Compiler, you can direct the code generation process.

There are two TLC files, hookslib.tlc and cachelib.tlc, that contain 
functions you can use to customize Real-Time Workshop generated code. See 
the Target Language Compiler documentation for details on these TLC files. 
See also the source code, located in matlabroot/rtw/c/tlc/lib/cachelib.tlc 
and matlabroot/rtw/c/tlc/mw/hookslib.tlc.

Optimize Generated Code
The default code generation settings are generic for flexible rapid prototyping 
systems. The penalty for this flexibility is code that is less than optimal. There 
are several optimization techniques that you can use to minimize the source 
code size and memory usage once you have a model that meets your 
requirements. 

See “Code Generation and the Build Process” on page 2–1 and “Optimizing the 
Model for Code Generation” on page 9-1 for details on code optimization 
techniques available for all target configurations.

The Real-Time Workshop Embedded Coder documentation contains 
information about optimization specifically for embedded code.

Make Subsystem Code Reuseable
If your models contain multiple references to the same atomic subsystem, you 
can ask Real-Time Workshop to generate a single reentrant function to 
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represent the subsystem, rather than inlining it or generating multiple 
functions that all do the same thing. “Building Subsystems” on page 4-1 tells 
how to do this, and describes model characteristics that can limit or prevent 
subsystem reuse.

Validate Generated Code
Using Real-Time Workshop data logging features, you can create an executable 
that runs on your workstation and creates a data file. You can then compare 
the results of your program with the results of running an equivalent Simulink 
simulation.

For more information on how to validate Real-Time Workshop generated code, 
see “Workspace I/O Options and Data Logging” on page 2-22. See also “Tutorial 
2: Data Logging” on page 3-15 and “Tutorial 3: Code Validation” on page 3-19 
of the Real-Time Workshop Getting Started Guide.

Incorporate Generated Code into Larger Systems
If your Real-Time Workshop generated code is intended to function within an 
existing code base (for example, if you want to use the generated code as a 
plug-in function), you should use Real-Time Workshop Embedded Coder. The 
Real-Time Workshop Embedded Coder documentation describes the entry 
points and header files you will need to interface your code to Real-Time 
Workshop Embedded Coder generated code.

Incorporate Existing Code into Generated Code
To interface your hand-written code with Real-Time Workshop generated code, 
you can use an S-function wrapper. See the Simulink Writing S-Functions 
documentation and the Target Language Compiler documentation for more 
information.

Create and Communicate with Device Drivers
S-functions provide a flexible method for communicating with device drivers. 
See “Targeting Real-Time Systems” on page 14–1 for a description of how to 
build device drivers. Also, for a complete discussion of S-functions, see the 
Simulink Writing S-Functions documentation.

Trace Code back to Blocks
Real-Time Workshop includes special tags throughout the generated code that 
make it easy to trace generated code back to your Simulink model. See “Tracing 
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Generated Code Back to Your Simulink Model” on page 2-33 of the Getting 
Started Guide for more information about this feature.

Automate Builds
Using Real-Time Workshop, you can generate code with the push of a button. 
The automatic build procedure, initiated by a single mouse click, generates 
code, a makefile, and optionally compiles (or cross-compiles) and downloads a 
program. See “Automatic Program Building” on page 2-2 of the Getting Started 
guide for an overview, and “Code Generation and the Build Process” on 
page 2-1 for complete details.

Tune Parameters During Execution
Parameter tuning enables you to change block parameters while a generated 
program runs, thus avoiding recompiling the generated code. Real-Time 
Workshop supports parameter tuning in four different environments:

• External mode: You can tune parameters from Simulink while running the 
generated code on a target processor. See “External Mode” on page 6–1 for 
information on this mode.

• External C application program interface (API): You can write your own C 
API interface for parameter tuning using support files provided by The 
MathWorks. See “Targeting Real-Time Systems” on page 14-1 for more 
information.

• Rapid simulation: You can use the Rapid Simulation Target (rsim) in batch 
mode to provide fast simulations for performing parametric studies. 
Although this is not an on-the-fly application of parameter tuning, it is 
nevertheless a useful way to evaluate a model. This mode is also useful for 
Monte Carlo simulation. See “Real-Time Workshop Rapid Simulation 
Target” on page 11-1 for further information.

• Simulink: Prior to generating real-time code, you can tune parameters 
on-the-fly in your Simulink model.

See also “Interface with Signals and Parameters” on page 1-18.

Monitor Signals and Log Data
There are several ways to monitor signals and data in Real-Time Workshop:
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• External mode: You can monitor and log signals from an externally 
executing program via Scope blocks and several other types of external mode 
compatible blocks. See “External Signal & Triggering Dialog Box” on 
page 6-11 for a discussion of this method.

• External C application program interface (API): You can write your own C 
API for signal monitoring using support files provided by The MathWorks. 
See “Targeting Real-Time Systems” on page 14-1 for more information.

• MAT-file logging: You can use a MAT-file to log data from the generated 
executable. See “Workspace I/O Options and Data Logging” on page 2-22 for 
more information.

• Simulink: You can use any of the Simulink data logging capabilities.

Interface with Signals and Parameters 
You can interface signals and parameters in your model to hand-written code 
by specifying the storage declarations of signals and parameters. For more 
information, see

• “Parameters: Storage, Interfacing, and Tuning” on page 5-2

• “Signals: Storage, Optimization, and Interfacing” on page 5-17 

• “Interfacing Signals to External Code” on page 5-25

Learn from Sample Implementations
Real-Time Workshop provides sample implementations that illustrate the 
development of real-time programs under DOS and Tornado, as well as generic 
real-time programs under Windows and UNIX.

These sample implementations are located in the following directories:

• matlabroot/rtw/c/grt: Generic real-time examples

• matlabroot/rtw/c/dos: DOS examples

• matlabroot/rtw/c/tornado: Tornado examples



 

2
Code Generation and the 
Build Process

This chapter continues the discussion of code generation and the build process, previously introduced 
in Chapter 1, “Understanding Real-Time Workshop.” First we present the details of the Real-Time 
Workshop user interface. The sections that follow concern the code generation phase of the build 
process.

The Real-Time Workshop User 
Interface (p. 2-2)

The features that you control via the Real-Time 
Workshop tab of the Simulation Parameters dialog

Simulation Parameters and Code 
Generation (p. 2-21)

Describes how options on the Simulink Solver, 
Workspace I/O, Diagnostics, and Advanced panes interact 
with code generation, and how to trace code back to the 
blocks that generated it

Selecting a Target Configuration 
(p. 2-40)

Describes how to use the System Target File Browser, 
with summaries of target configurations that you can 
access through the browser

Making an Executable (p. 2-47) How to control generation of executables during the build 
process

Choosing and Configuring Your 
Compiler (p. 2-51)

Aspects of installing a compiler and choosing appropriate 
template makefiles

Template Makefiles and Make Options 
(p. 2-54)

Summarizes available template makefiles and make 
command options

Configuring the Generated Code via 
TLC (p. 2-59)

Using the Target Language Compiler to generate source 
code in specific ways or to possess specific characteristics
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The Real-Time Workshop User Interface
Many parameters and options affect the way that Real-Time Workshop 
generates code from your model and builds an executable. To set these 
parameters and options, you interact with the panes of the Simulation 
Parameters dialog box. 

The Simulink Solver, Workspace I/O, Diagnostics, and Advanced panes affect 
both the behavior of the model in simulation, and the code generated from the 
model. “Simulation Parameters and Code Generation” on page 2-21 discusses 
how Simulink settings affect the code generation process. 

The Real-Time Workshop pane lets you set parameters that directly affect code 
generation and optimization. You also initiate and control the build process 
from the Real-Time Workshop pane.

Using the Real-Time Workshop Pane
There are two ways to open the Real-Time Workshop pane:

• From the Simulation menu, choose Simulation Parameters. When the 
Simulation Parameters dialog box opens, click on the Real-Time 
Workshop tab.

• Alternatively, select Options from the Real-Time Workshop submenu of 
the Tools menu in the Simulink window.

The Real-Time Workshop pane is divided into two sections. The upper section 
contains the Category menu and the Build button.

Category Menu
The Category menu lets you select and work with various groups of options 
and controls. The currently-selected group of options is displayed in the lower 
section of the pane. Figure 2-1 shows the Category menu in the Real-Time 
Workshop pane.
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Figure 2-1:  Category Menu and Build Button in Real-Time Workshop Pane

The categories of options available from the Category menu are:

• Target configuration: High-level options related to control of the code 
generation and build process and selection of control files.

• TLC debugging: Target Language Compiler debugging and execution 
profiling options. 

• General code generation options: Code generation settings that are 
common to all target configurations.

• General code appearance options: Code and identifier formatting settings 
that are common to all target configurations.

• Target-specific code generation options: One or more groups of options 
that are specific to the selected target configuration.

Build Button
Click on the Build button to initiate the code generation and build process.

The following methods of initiating a build are exactly equivalent to clicking 
the Build button:

• Select Build Model from the Real-Time Workshop submenu of the Tools 
menu in the Simulink window (or use the key sequence Ctrl+B).

Category menu selects groups of code 
generation options and controls.

Build button initiates code generation and 
build process.



2 Code Generation and the Build Process

2-4

• Invoke the rtwbuild command from the MATLAB command line. The syntax 
of the rtwbuild command is
rtwbuild modelname

or
rtwbuild('modelname')

where modelname is the name of the source model. If the source model is not 
loaded into Simulink, rtwbuild loads the model.

Note  When Generate code only is selected on the Target Configuration 
portion of the Real-Time Workshop pane, the Build button’s name changes to 
Generate code.

Getting Context-sensitive Help with ToolTips
The Real-Time Workshop pane supports “ToolTip” online help. Place your 
cursor over any edit field name or check box to display a message box that 
briefly explains the option.

The following sections summarize each category of options or parameters 
controlled by the Real-Time Workshop pane, with references to subsequent 
sections that give details on each option or parameter.
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Target Configuration Options
Figure 2-2 shows the Target configuration options of the Real-Time 
Workshop pane.

Figure 2-2:  The Real-Time Workshop Pane: Target Configuration Options

Browse Button
The Browse button opens the System Target File Browser (See Figure 2-8 on 
page 2-41). The browser lets you select a preset target configuration consisting 
of a system target file, template makefile, and make command.

“Selecting a Target Configuration” on page 2-40 details the use of the browser 
and includes a complete list of available target configurations.

System Target File Field
The System target file field has these functions:

Name of your model

Browse button opens System Target File 
Browser for selection of a target 
configuration.

System target file name is 
displayed or entered here.
Specify TLC options after 
filename.

Make command name is
displayed or entered here.
Specify make options after 
make command name.

Target configuration category shows 
current configuration of system target file, 
template makefile, and make command for 
your desired target.
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• If you have selected a target configuration using the System Target File 
Browser, this field displays the name of the chosen system target file 
(target.tlc).

• If you are using a target configuration that does not appear in the System 
Target File Browser, you must enter the name of the desired system target 
file in this field.

• After the system target filename, you can enter code generation options and 
variables for the Target Language Compiler. See “Target Language 
Compiler Variables and Options” on page 2-59 for details.

Template Makefile Field
The Template makefile field has these functions:

• If you have selected a target configuration using the System Target File 
Browser, this field displays the name of an M-file that selects an appropriate 
template makefile for your development environment. For example, in 
Figure 2-2, the Template makefile field displays grt_default_tmf, 
indicating that the build process will invoke grt_default_tmf.m.

“Template Makefiles and Make Options” on page 2-54 gives a detailed 
description of the logic by which Real-Time Workshop selects a template 
makefile.

• Alternatively, you can explicitly enter the name of a specific template 
makefile (including the extension) in this field. You must do this if you are 
using a target configuration that does not appear in the System Target File 
Browser. This is necessary if you have written your own template makefile 
for a custom target environment.

If you specify your own template makefile, be careful to include the filename 
extension. If a filename extension is not included in the Template makefile 
field, Real-Time Workshop attempts to find and execute a file with the 
extension .m (i.e., an M-file).

Make Command Field 
A high-level M-file command, invoked when a build is initiated, controls the 
Real-Time Workshop build process. Each target has an associated make 
command. The Make command field displays this command.
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Almost all targets use the default command, make_rtw. “Targets Available from 
the System Target File Browser” on page 2-42 lists the make command 
associated with each target. 

Third-party targets may supply another make command. See the vendor’s 
documentation.

In addition to the name of the make command, you can supply arguments in the 
Make command field. These arguments include compiler-specific options, 
include paths, and other parameters. When the build process invokes the make 
utility, these arguments are passed along in the make command line.

“Template Makefiles and Make Options” on page 2-54 lists the Make 
command arguments you can use with each supported compiler.

Generate Code Only Option
When this option is selected, the build process generates code but does not 
invoke the make command. The code is not compiled and an executable is not 
built. 

When this option is selected, the caption of the Build button changes to 
Generate code.

Stateflow Options Button
If the model contains any Stateflow blocks, this button will launch the 
Stateflow Options dialog box. Refer to the Stateflow documentation for 
information.

General Code Generation Options
The general code generation options are common to all target configurations. 
These options are organized into two groups, selected from the Category 
menu, as shown in Figure 2-3 and Figure 2-4.
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Figure 2-3:  General Code Generation Options

Figure 2-4:  General Code Generation Options (cont.)

Show Eliminated Statements Option
If this option is selected, statements that were eliminated as the result of 
optimizations (such as parameter inlining) appear as comments in the 
generated code. The default is not to include eliminated statements.
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Loop Rolling Threshold Field
The loop rolling threshold determines when a wide signal or parameter should 
be wrapped into a for-loop and when it should be generated as a separate 
statement for each element of the signal. The default threshold value is 5.

For example, consider the model below:

The gain parameter of the Gain block is the vector myGainVec.

Assume that the loop rolling threshold value is set to the default, 5.

If myGainVec is declared as

myGainVec = [1:10];

an array of 10 elements, rtP.Gain_Gain[] is declared within the Parameters 
data structure, rtP. The size of the gain array exceeds the loop rolling 
threshold. Therefore the code generated for the Gain block iterates over the 
array in a for loop, as shown in the following code fragment:

/* Gain: '<Root>/Gain'
   *
   * Regarding '<Root>/Gain':
   *   Gain value: myGainVec
   */
  {
    int_T i1;
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    real_T *y0 = &rtB.Gain[0];
    const real_T *p_Gain_Gain = &rtP.Gain_Gain[0];

    for (i1=0; i1 < 10; i1++) {
      y0[i1] = rtb_foo * p_Gain_Gain[i1];
    }
  }

If myGainVec is declared as

myGainVec = [1:3];

an array of three elements, rtP.Gain_Gain[] is declared within the 
Parameters data structure, rtP. The size of the gain array is below the loop 
rolling threshold. The generated code consists of inline references to each 
element of the array, as in the code fragment below.

rtB.Gain[0] = rtb_foo * (rtP.Gain_Gain[0]);
rtB.Gain[1] = rtb_foo * (rtP.Gain_Gain[1]);
rtB.Gain[2] = rtb_foo * (rtP.Gain_Gain[2]);

See the Target Language Compiler Reference Guide for more information on 
loop rolling.

Verbose Builds Option
If this option is selected, the MATLAB command window displays progress 
information during code generation; compiler output is also made visible.

Generate HTML Report Option
If this option is selected, Real-Time Workshop produces a code generation 
report in HTML format and automatically opens it for viewing in the MATLAB 
Help browser. The contents of the report vary from one target to another, but 
all reports contain the following code generation details:

• The Summary section lists version and date information, TLC options used 
in code generation, and Simulink model settings.

• The Generated Source Files section contains a table of source code files 
generated from your model. You can view the source code in the MATLAB 
Help browser. Hyperlinks within the displayed source code let you view the 
blocks or subsystems from which the code was generated. Click on the 
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hyperlinks to view the relevant blocks or subsystems in a Simulink model 
window.

The Real-Time Workshop Embedded Coder code generation report produces 
additional information, such as suggestions for code generation options, to help 
you optimize what is output. For further information see the Real-Time 
Workshop Embedded Coder documentation.

Inline Invariant Signals Option
An invariant signal is a block output signal that does not change during 
Simulink simulation. For example, the signal S3 in this block diagram is an 
invariant signal.

Note  The Inline invariant signals option is unavailable unless the Inline 
parameters option (on the Advanced pane) is selected. 

Given the model above, if both Inline parameters and Inline invariant 
signals are selected, Real-Time Workshop inlines the invariant signal S3 in the 
generated code.

Note that an invariant signal is not the same as an invariant constant. (See the 
Using Simulink manual for information on invariant constants.) In the above 
example, the two constants (1 and 2) and the gain value of 3 are invariant 
constants. To inline these invariant constants, select Inline parameters.
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Local Block Outputs Option
When this option is selected, block signals will be declared locally in functions 
instead of being declared globally (when possible).

Note  This check box is disabled when the Signal storage reuse item on the 
Advanced pane is turned off.

For further information on the use of the Local block outputs option, see 
“Signals: Storage, Optimization, and Interfacing” on page 5-17. Also go 
through “Tutorial 4: A First Look at Generated Code” on page 3-23 of the 
Getting Started guide if you have not done so already.

Force Generation of Parameter Comments Option
The Force generation of parameter comments option controls the generation 
of comments in the model parameter structure declaration in model_prm.h. 
Parameter comments indicate parameter variable names and the names of 
source blocks.

When this option is off (the default), parameter comments are generated if less 
than 1000 parameters are declared. This reduces the size of the generated file 
for models with a large number of parameters.

When this option is on, parameter comments are generated regardless of the 
number of parameters.

General Code Generation Options (cont.)

Buffer Reuse Option
When the Buffer reuse option is on (the default) Real-Time Workshop reuses 
signal memory whenever possible. When Buffer reuse is off, signals are 
stored in unique locations.

Note that the Buffer reuse option is enabled only when the Signal storage 
reuse option on the Advanced pane of the Simulation Parameters dialog box 
is selected.
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See “Signals: Storage, Optimization, and Interfacing” on page 5-17 for further 
information (including generated code example) on Buffer reuse and other 
signal storage options.

Expression Folding Options
Expression folding is a code optimization technique that can dramatically 
improve the efficiency of generated code by minimizing the computation of 
intermediate results and the use of temporary buffers or variables.

Expression folding is enabled by default. We strongly recommended that you 
use this option. See “Expression Folding” on page 9-3 for full details on this 
feature and related options that you can control from the General code 
generation options (cont.) pane.

General Code Appearance Options
The General code appearance options control formatting of source code and 
construction of identifiers. This interface is shown below.

Maximium Identifier Length Option 
The Maximium identifier length field allows you to limit the number of 
characters in function, typedef, and variable names. The default is 31 
characters, but Real-Time Workshop imposes no upper limit.You may choose 
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to increase this length for models with deep hierarchical structure, as well as 
when exercising some of the mnemonic identifier options described below.

Include Data Type Acronym in Identifier Option
Selecting Include data type acronym in identifier enables you to prepend 
acronyms such as i32 (for long integers) to signal and work vector identifiers 
to make code more readable. The default is not to include datatype acronyms 
in identifiers. For example, with this option selected, Real-Time Workshop 
identifies a scalar double signal from a discrete pulse generator as follows:

{
  /* local block i/o variables */
  real_T rtb_r64_A_Pulse;
.
.
.
rtY.Out1 = (rtP.A_Gain_Gain * rtb_r64_A_Pulse);

}

Include System Hierarchy Number in Identifiers Option
When this option is selected, Real-Time Workshop inserts identification tags in 
the generated code (in addition to tags included in comments). The tags are 
designed to help you identify the nesting level, within your source model, of the 
block that generated a given line of code.

When this option is ON, the tag format is either

• The string root_ for root-level blocks; or 

• The string sN_ where N is a unique system number assigned by Simulink, for 
blocks at the subsystem level.

By default, Include system hierarchy number in identifiers is OFF, in order 
to generate more compact code.

As an example, consider hier.mdl, the model in this picture. 
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The subsystem within hier.mdl is shown in the picture below.

With Include system hierarchy number in identifiers on, the following code 
is generated for the Out1 block of hier.mdl. The code includes the tag s1_ in 
the symbols generated for the subsystem, and the tag root_ in the symbol 
generated for the root-level Out1 block.

/* Outport: <Root>/Out1 incorporates:
   *   Gain: <S1>/A_Gain
   *
   * Regarding <S1>/A_Gain:
   *   Gain value: hier_P.s1_A_Gain_Gain
   */
  hier_Y.root_Out1 = (hier_P.s1_A_Gain_Gain * rtb_s1_A_Pulse);

This code, generated with Include system hierarchy number in identifiers 
off, does not contain a subsystem tag in the generated symbols.

/* Outport: <Root>/Out1 incorporates:
   *   Gain: <S1>/A_Gain
   *
   * Regarding <S1>/A_Gain:
   *   Gain value: hier_P.A_Gain_Gain
   */
  hier_Y.Out1 = (hier_P.A_Gain_Gain * rtb_A_Pulse);

See “Tracing Generated Code Back to Your Simulink Model” on page 2-33 for 
further information on using system and block identification tags.

Prefix Model Name to Global Identifiers Option
When this option is selected, subsystem function names are prefixed with the 
name of the model (model_) for all code formats. In addition, when appropriate 
to the code format, the model name is also prefixed to the names of functions 
and data structures at the model level. This is useful when you need to compile 
and link code from two or more models into a single executable, as it avoids 
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potential name clashes. Prefix model name to global identifiers is ON by 
default.

Generate Scalar Inlined Parameters as Option
When the Inline Parameters Option is selected and signals are scalars having 
constant sample time, this pull-down menu enables you to control how 
parameters are expressed in the code. There are two choices for this option:

• Literals — parameters are expressed as numeric constants

• Macros — parameters are expressed as variables (via #define macros)

The default is Literals. This provides backward compatibility to prior 
versions of Real-Time Workshop, which lacked this option. It also may help in 
debugging TLC code, as it makes the values of parameters easy to search for. 
The Macros option, on the other hand, may make code more readable.

Generate Comments Option
By default, Generate comments is ON. If this option is OFF, generation of 
comments in the code is completely suppressed. The Show eliminated 
statements and Force generation of parameter comments options in the 
General code generation category enable the inclusion of those specific types 
of comments.

Target-specific Code Generation Options
Different target configurations support different code generation options that 
are not supported by all available targets. For example, the grt, grt_malloc, ert, 
rapid simulation, Tornado, xPC, TI DSP, and Real-Time Windows targets 
support external mode, but other targets do not.

This section summarizes the options specific to the generic real-time (GRT) 
target. For information on options specific to other targets, see the 
documentation relevant to those targets. “Available Targets” on page 2-41 lists 
targets and related chapters and manuals.
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Figure 2-5:  GRT Code Generation Options

MAT-File Variable Name Modifier Menu
This menu selects a string to be added to the variable names used when logging 
data to MAT-files. You can select a prefix (rt_), suffix (_rt), or choose to have 
no modifier. Real-Time Workshop prepends or appends the string chosen to the 
variable names for system outputs, states, and simulation time specified in the 
Workspace I/O pane.

See “Workspace I/O Options and Data Logging” on page 2-22 for information 
on MAT-file data logging.

External Mode Option
Selecting this option turns on generation of code to support external mode 
communication between host and target systems. This option is available for 
most targets. For information see “External Mode” on page 6-1.

Ignore Custom Storage Classes Option

Note  This option is enabled only if your installation is licensed to use the 
Real-Time Workshop Embedded Coder. If you do not have a license for 
Embedded Coder, this option will be disabled (grayed out).
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When this option is on, data objects with custom storage classes are treated as 
if their storage class attribute is set to Auto.

This option is useful if you have defined data objects with custom storage 
classes in your model (for use with the Real-Time Workshop Embedded Coder), 
but also want to generate code from your model using other targets (such as 
GRT or grt_malloc). In such a case, you can turn Ignore Custom Storage 
Classes on to generate code that does not include custom storage definitions, 
without reconfiguring the storage definitions of the model.

For the GRT and grt_malloc targets, this option is on by default. For the 
Real-Time Workshop Embedded Coder, this option is off by default.

You can also enter the option directly into the System target file field in the 
Target configuration category of the Real-Time Workshop pane. The 
following example turns the option on

-aIgnoreCustomStorageClasses=1

See “Using Custom Storage Classes” in the Real-Time Workshop Embedded 
Coder documentation for further information.

TLC Debugging Options

The TLC Debugging options are of interest to those who are writing TLC code 
when customizing targets, integrating legacy code, or developing new blocks. 
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These options are summarized here; refer to the Target Language Compiler 
documentation for details. The TLC Debugging options are

• Retain .rtw file

Normally, the build process deletes the model.rtw file from the build 
directory at the end of the build. When Retain .rtw file is selected, 
model.rtw is not deleted. This option is useful if you are modifying the target 
files, in which case you will need to look at the model.rtw file.

• Profile TLC

When this option is selected, the TLC profiler analyzes the performance of 
TLC code executed during code generation, and generates a report. The 
report is in HTML format and can be read by your Web browser.

• Start TLC debugger when generating code

This option starts the TLC debugger during code generation.

You can also invoke the TLC debugger by entering the -dc argument into the 
System Target File field on the Real-Time Workshop pane.

To invoke the debugger and run a debugger script, enter -df filename into 
the System Target File field on the Real-Time Workshop pane.

• Start TLC coverage when generating code

When this option is selected, the Target Language Compiler generates a 
report containing statistics indicating how many times each line of TLC code 
is hit during code generation.

This option is equivalent to entering the -dg argument into the System 
Target File field on the Real-Time Workshop pane.

• Enable TLC Assertions

When this box is selected, Real-Time Workshop will halt building if any 
user-supplied TLC file contain an %assert directive that evaluates to FALSE. 
The box is not selected by default, meaning that TLC assertion code will be 
ignored. You may also use these MATLAB commands to control TLC 
assertion handling:

set_param(model, 'TLCAssertion', 'on|off') to set this flag on or off. 
Default is Off. 

get_param(model, 'TLCAssertion') to see the current setting.
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Real-Time Workshop Submenu
The Tools menu of the Simulink window contains a Real-Time Workshop 
submenu. The submenu items are:

• Options: Open the Real-Time Workshop pane of the Simulation 
Parameters dialog.

• Build Model: Initiate code generation and build process; equivalent to 
clicking the Build button in the Real-Time Workshop pane.

• Build Subsystem: Generate code and build an executable from a subsystem; 
enabled only when a subsystem is selected. See “Generating Code and 
Executables from Subsystems” on page 4-15.

• Generate S-Function: Generate code and build an S-function from a 
subsystem; enabled only when a subsystem is selected. See “Automated 
S-Function Generation” on page 10-11.
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Simulation Parameters and Code Generation
This section discusses how the simulation parameters of your model interact 
with Real-Time Workshop code generation. Only simulation parameters that 
affect code generation are mentioned here. For a full description of simulation 
parameters, see the Simulink documentation. 

This discussion is organized around the following panes of the Simulation 
Parameters dialog box:

• Solver pane

• Workspace I/O pane

• Diagnostics pane

• Advanced pane

To view these panes, choose Simulation parameters from the Simulation 
menu. When the dialog box opens, click the appropriate tab.

Solver Options

Solver Type. If you are using an S-function or Rapid Simulation (RSIM) target, 
you can specify either a fixed-step or a variable-step solver. All other targets 
require a fixed-step solver.

Mode. Real-Time Workshop supports both single- and multitasking modes. See 
“Models with Multiple Sample Rates” on page 8-1 for full details.

Start and Stop Times. The stop time must be greater than or equal to the start 
time. If the stop time is zero, or if the total simulation time (Stop - Start) is 
less than zero, the generated program runs for one step. If the stop time is set 
to inf, the generated program runs indefinitely.

Note that when using the GRT or Tornado targets, you can override the stop 
time when running a generated program from the DOS or UNIX command line. 
To override the stop time that was set during code generation, use the -tf 
switch.

model -tf n

The program will run for n seconds. If n = inf, the program will run 
indefinitely. See “Part 3: Running the External Mode Target Program” on 
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page 3-40 of the Real-Time Workshop Getting Started Guide for an example of 
the use of this option.

Note  Certain blocks have a dependency on absolute time. If you are 
designing a program that is intended to run indefinitely (Stop time = inf), you 
must not use these blocks. See Appendix B,  “Blocks That Depend on Absolute 
Time” for documentation on which blocks behave this way.

Workspace I/O Options and Data Logging
This section discusses several different methods by which a Real-Time 
Workshop generated program can save data to a MAT-file for later analysis. 
These methods include

• Using the Workspace I/O pane to define and log workspace return variables

• Logging data from Scope and To Workspace blocks

• Logging data using To File blocks

“Tutorial 2: Data Logging” on page 3-15 of the Real-Time Workshop Getting 
Started Guide is an exercise designed to give you hands-on experience with 
data logging features of Real-Time Workshop.

Note  Data logging is available only for targets that have access to a file 
system.

Logging States, Time, and Outputs via the Workspace I/O Pane
The Workspace I/O pane enables a generated program to save system states, 
outputs, and simulation time at each model execution time step. The data is 
written to a MAT-file, named (by default) model.mat.

Before using this data logging feature, you should learn how to configure a 
Simulink model to return output to the MATLAB workspace. This is discussed 
in the Simulink documentation.

For each workspace return variable that you define and enable, Real-Time 
Workshop defines a MAT-file variable. For example, if your model saves 
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simulation time to the workspace variable tout, your generated program will 
log the same data to a variable named (by default) rt_tout.

Real-Time Workshop logs the following data:

• All root Outport blocks

The default MAT-file variable name for system outputs is rt_yout.

The sort order of the rt_yout array is based on the port number of the 
Outport block, starting with 1. 

• All continuous and discrete states in the model

The default MAT-file variable name for system states is rt_xout.

• Simulation time

The default MAT-file variable name for simulation time is rt_tout.

Real-Time Workshop data logging follows the Workspace I/O Save options: 
(Limit data points, Decimation, and Format).

Overriding the Default MAT-File Name. The MAT-file name defaults to model.mat. 
To specify a different filename:

1 Choose Simulation parameters from the Simulation menu. The dialog box 
opens. Click the Real-Time Workshop tab.

2 Append the following option to the existing text in the Make command field.

OPTS="-DSAVEFILE=filename"

Overriding Default MAT-File Variable Names. By default, Real-Time Workshop 
prepends the string rt_ to the variable names for system outputs, states, and 
simulation time to form MAT-file variable names. To change this prefix:

1 Choose Simulation parameters from the Simulation menu. The dialog box 
opens. Click the Real-Time Workshop tab. 

2 Select the target-specific code generation options item from the Category 
menu.

3 Select a prefix(rt_) or suffix (_rt) from the MAT-file variable name 
modifier field, or choose none for no prefix. 
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Logging Data with Scope and To Workspace Blocks
Real-Time Workshop also logs data from these sources:

• All Scope blocks that have the save data to workspace option enabled 

You must specify the variable name and data format in each Scope block’s 
dialog box.

• All To Workspace blocks in the model

You must specify the variable name and data format in each To Workspace 
block’s dialog box. 

The variables are written to model.mat, along with any variables logged from 
the Workspace I/O pane.

Logging Data with To File Blocks. You can also log data to a To File block. The 
generated program creates a separate MAT-file (distinct from model.mat) for 
each To File block in the model. The file contains the block’s time and input 
variable(s). You must specify the filename, variable name(s), decimation, and 
sample time in the To File block’s dialog box.

Note that the To File block cannot be used in DOS real-time targets because of 
limitations of the DOS target.

Data Logging Differences in Single- and Multitasking Models
When logging data in singletasking and multitasking systems, you will notice 
differences in the logging of

• Noncontinuous root Outport blocks

• Discrete states

In multitasking mode, the logging of states and outputs is done after the first 
task execution (and not at the end of the first time step). In singletasking mode, 
Real-Time Workshop logs states and outputs after the first time step.

See “Data Logging In Singletasking and Multitasking Model Execution” on 
page 7–13 for more details on the differences between single- and multitasking 
data logging.
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Note  The rapid simulation target (rsim) provides enhanced logging options. 
See “Real-Time Workshop Rapid Simulation Target” on page 11-1 for more 
information.

Diagnostics Pane Options

The Diagnostics pane specifies what action should be taken when various 
model conditions such as unconnected ports are encountered. You can specify 
whether to ignore a given condition, issue a warning, or raise an error. If an 
error condition is encountered during a build, the build is terminated. The 
Diagnostics pane is fully described in the Simulink documentation.
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Advanced Options Pane

The Advanced pane includes several options that affect the performance of 
generated code. The Advanced pane has two sections. Options in the Model 
parameter configuration section let you specify how block parameters are 
represented in generated code, and how they are interfaced to externally 
written code. Options in the Optimizations section help you to optimize both 
memory usage and code size and efficiency.

Note that the Zero crossing detection option affects only simulations with 
variable-step solvers. Therefore, this option is only applicable to code 
generation when using the rapid simulation (rsim) target, which is the only 
target that allows variable-step solvers. See the Simulink documentation for 
further information on the Zero crossing detection option.

Inline Parameters Option
Selecting this option has two effects:

1 Real-Time Workshop uses the numerical values of model parameters, 
instead of their symbolic names, in generated code.

If the value of a parameter is a workspace variable, or an expression 
including one or more workspace variables, the variable or expression is 
evaluated at code generation time. The hard-coded result value appears in 
the generated code. An inlined parameter, since it has in effect been 
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transformed into a constant, is no longer tunable. That is, it is not visible to 
externally written code, and its value cannot be changed at run-time.

2 The Configure button becomes enabled. Clicking the Configure button 
opens the Model Parameter Configuration dialog box. 

The Model Parameter Configuration dialog box lets you remove individual 
parameters from inlining and declare them to be tunable variables (or global 
constants). When you declare a parameter tunable, Real-Time Workshop 
generates a storage declaration that allows the parameter to be interfaced 
to externally written code. This enables your hand-written code to change 
the value of the parameter at run-time.

The Model Parameter Configuration dialog box lets you improve overall 
efficiency by inlining most parameters, while at the same time retaining the 
flexibility of run-time tuning for selected parameters.

See “Parameters: Storage, Interfacing, and Tuning” on page 5-2 for further 
information on interfacing parameters to externally written code.

The Inline parameters option also instructs Simulink to propagate constant 
sample times. Simulink computes the output signals of blocks that have 
constant sample times once during model startup. This improves performance, 
since such blocks do not compute their outputs at every time step of the model.

Selecting Inline parameters also interacts with other code generation 
parameters as follows:

• When Inline parameters is selected, the Inline invariant signals code 
generation option becomes available. See “Inline Invariant Signals Option” 
on page 2-11.

• The Parameter pooling option is used only when Inline parameters is 
selected. See “Parameter Pooling Option” on page 2-29.

Block Reduction Option
When this option is selected, Simulink collapses certain groups of blocks into a 
single, more efficient block, or removes them entirely. This results in faster 
model execution during simulation and in generated code. The appearance of 
the source model does not change. 

By default, the Block reduction option is on.
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The types of block reduction optimizations currently supported are

Accumulator Folding. Simulink recognizes certain constructs as accumulators, 
and reduces them to a single block. For a detailed example, see “Accumulators” 
on page 9-36.

Removal of Redundant Type Conversions. Unnecessary type conversion blocks are 
removed. For example, an int type conversion block whose input and output 
are of type int is redundant and will be removed.

Dead Code Elimination. Any blocks or signals in an unused code path are 
eliminated from the generated code the Block reduction option is on. There 
are three conditions that all need to be met for a block to be considered part of 
an unused code path:

1 The block is in a signal path that ends with a Terminator block or a disabled 
Assertion block.

2 The block is not in any other signal path.

3 The block does not reference any tunable or global parameters or signal 
storage.

Consider the model in the following block diagram.

Code is always generated for the signal path between In1 and Out1, because 
this path does not meet condition 1 above. If Inline parameters is off, code is 
also generated for the signal path between the In2 and Terminator blocks, 
because condition 3 is not satisfied (Gain2 is tunable).

If Inline parameters is on, however, the terminated signal path meets all 
three conditions, and is eliminated. The resultant MdlOutputs function is 
shown in the following code excerpt.
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void MdlOutputs(int_T tid)
{

  /* Outport: '/Out1' incorporates:
   *   Gain: '/Gain1'
   *   Inport: '/In1'
   *
   * Regarding '/Gain1':
   *   Gain value: 2.0
   */
  rtY.Out1 = (2.0 * rtU.In1);
}

Boolean Logic Signals Option
By default, Simulink does not signal an error when it detects that double 
signals are connected to blocks that prefer Boolean input. This ensures 
compatibility with models created by earlier versions of Simulink that support 
only double data types. You can enable strict Boolean type checking by 
selecting the Boolean logic signals option.

Selecting this option is recommended. Generated code will require less 
memory, because a Boolean signal typically requires one byte of storage while 
a double signal requires eight bytes of storage.

Parameter Pooling Option
Parameter pooling occurs when multiple block parameters refer to storage 
locations that are separately defined but structurally identical. The 
optimization is similar to that of a C compiler that encounters declarations 
such as:

int a[] = {1,2,3}; 
int b[] = {1,2,3}; 

In such a case, an optimizing compiler would collapse a and b into a single text 
location containing the values 1, 2, 3 and initialize a and b from the same 
code.
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To understand the effect of parameter pooling in Real-Time Workshop, 
consider the following scenario. 

Assume that the MATLAB workspace variables a and b are defined as follows:

a = [1:1000]; b = [1:1000];

Suppose that a and b are used as vectors of input and output values in two 
Look-Up Table blocks in a model. Figure 2-6 shows the model. 

Figure 2-6:  Model with Pooled Storage for Look-Up Table Blocks

The figure below shows the use of a and b as a parameters of the Look-Up 
Table1 and Look-Up Table2 blocks.

Figure 2-7:  Pooled Storage in Look-Up Table Blocks

If Parameter pooling is on, pooled storage is used for the input/output data of 
the Look-Up Table blocks. The following code fragment shows the definition of 
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the global parameter structure of the model (rtP). The input data references 
to a and b are pooled in the field rtP.p2. Likewise, while the output data 
references (expressions including a and b) are pooled in the field rtP.p3.

typedef struct Parameters_tag {
real_T p2[1000]; /* Variable: p2

* External Mode Tunable: no
* Referenced by blocks:
* <Root>/Look-Up Table1
* <Root>/Look-Up Table2
*/

real_T p3[1000]; /* Expression: tanh(a)
* External Mode Tunable: no
* Referenced by blocks:
* <Root>/Look-Up Table1
* <Root>/Look-Up Table2
*/

} Parameters;

If Parameter pooling is off, separate arrays are declared for the input/output 
data of the Look-Up Table blocks. Twice the amount of storage is used:

typedef struct Parameters_tag {
real_T root_Look_Up_Table1_XData[1000]; 
real_T root_Look_Up_Table1_YData[1000];
real_T root_Look_Up_Table2_XData[1000];
real_T root_Look_Up_Table2_YData[1000];

} Parameters;

The Parameter pooling option has the following advantages:

• Reduces ROM size

• Reduces RAM size for all compilers (rtP is a global vector)

• Speeds up code generation by reducing the size of model.rtw

• Can speed up execution 

Note that the generated parameter names consist of the letter p followed by a 
number generated by Real-Time Workshop. Comments indicate what 
parameters are pooled.
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Note  The Parameter pooling option affects code generation only when 
Inline parameters is on. 

Signal Storage Reuse Option
This option instructs Real-Time Workshop to reuse signal memory. This 
reduces the memory requirements of your real-time program. We recommend 
selecting this option. Disabling Signal storage reuse makes all block outputs 
global and unique, which in many cases significantly increases RAM and ROM 
usage.

For further details on the Signal storage reuse option, see “Signals: Storage, 
Optimization, and Interfacing” on page 5-17.

Note  Selecting Signal storage reuse also enables the Local block outputs 
option and the Buffer reuse option in the General code generation options 
category of the Real-Time Workshop pane. See “Local Block Outputs Option” 
on page 2-12 and “Buffer Reuse Option” on page 2-12.

Control over Assertion Block Behavior
The Advanced pane of the Simulation Parameters dialog shown above also 
provides you with a contol to specify whether model verification blocks such as 
Assert, Check Static Gap, and related range check blocks will be enabled, not 
enabled, or default to their local settings. This Model Verification block 
control popup menu has the same effect on code generated by Real-Time 
Workshop as it does on simulation behavior.

For Assertion blocks that are not disabled, the generated code for a model will 
include one of the following statements

utAssert(input_signal);
utAssert(input_signal != 0.0);
utAssert(input_signal != 0);

at appropriate locations, depending on the block’s input signal type (Boolean, 
real, or integer, respectively).
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By default utAssert is a noop in generated code. For assertions to abort 
execution you must enable them by including a parameter in the make_rtw 
command. Specify the Make command field on the Target configuration 
category pane as follows:

make_rtw OPTS=’-DDOASSERTS’

If you want triggered assertions to not abort execution and instead to print out 
the assertion statement, use the following make_rtw variant:

make_rtw OPTS=’-DDOASSERTS -DPRINT_ASSERTS’

utAssert is defined as

#define utAssert(exp)  assert(exp)

You can provide your own definition of utAssert in a hand-coded header file if 
you wish to customize assertion behavior in generated code. See 
<matlabroot>/rtw/c/libsrc/rtlibsrc.h for implementation details.

Finally, when running a model in accelerator mode, Simulink will call back to 
itself to execute assertion blocks instead of using generated code.  Thus 
user-defined callback will still be called when assertions fail.

Tracing Generated Code Back to Your 
Simulink Model
Real-Time Workshop writes system/block identification tags in the generated 
code. The tags are designed to help you identify the block, in your source model, 
that generated a given line of code. Tags are located in comment lines above 
each line of generated code, and are provided with hyperlinks in HTML codee 
generation reports that you can optionally generate.

The tag format is <system>/block_name, where:

• system is either:

- the string 'root', or

- a unique system number assigned by Simulink 

• block_name is the name of the block.

The following code fragment illustrates a tag comment adjacent to a line of code 
generated by a Gain block at the root level of the source model.
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/* Gain Block: <Root>/Gain */
rtb_temp3 *= (rtP.root_Gain_Gain);

The following code fragment illustrates a tag comment adjacent to a line of code 
generated by a Gain block within a subsystem one level below the root level of 
the source model:

/* Gain Block: <S1>/Gain */
rtB.temp0 *= (rtP.s1_Gain_Gain);

In addition to the tags, Real-Time Workshop documents the tags for each 
model in comments in the generated header file model.h. The following 
illustrates such a comment, generated from a source model, foo, which has a 
subsystem Outer with a nested subsystem Inner:

/* Here is the system hierarchy for this model.
 *
 * <Root> : foo
 * <S1>   : foo/Outer
 * <S2>   : foo/Outer/Inner
 */

There are two ways to trace code back to subsystems, blocks and parameters in 
your model:

• Through HTML code generation reports via the Help Browser, and

• By typing the appropriate hilite_system commands to MATLAB.

The HTML report for your model.c file displays hyperlinks in “Regarding,” 
“Ouport,” and other comment lines such as are shown above. Clicking on such 
links in comments will cause the associated block or subsystem to be 
highlighted in the model diagram. For further information, see “HTML Code 
Generation Reports” on page 3-31 of the Real-Time Workshop Getting Started 
Guide.

Using HTML reports is generally the fastest way to trace code back to the 
model, but when you know what you are looking for you may achieve the same 
result by at the command line. To manually trace a tag back to the generating 
block using the hilite_system command:

1 Open the source model. 

2 Close any other model windows that are open. 
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3 Use the MATLAB hilite_system command to view the desired system and 
block.

As an example, consider the model foo mentioned above. If foo is open,

hilite_system('<S1>') 

opens the subsystem Outer and 

hilite_system('<S2>/Gain1') 

opens the subsystem Outer and selects and highlights the Gain block Gain1 
within that subsystem.

Other Interactions Between Simulink 
and Real-Time Workshop
The Simulink engine propagates data from one block to the next along signal 
lines. The data propagated are

• Data type

• Line widths

• Sample times

The first stage of code generation is compilation of the block diagram. This 
compile stage is analogous to that of a C program. The C compiler carries out 
type checking and preprocessing. Similarly, Simulink verifies that 
input/output data types of block ports are consistent, line widths between 
blocks are of the correct thickness, and the sample times of connecting blocks 
are consistent.
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The Simulink engine typically derives signal attributes from a source block. 
For example, the Inport block’s parameters dialog box specifies the signal 
attributes for the block.

In this example, the Inport block has a port width of 3, a sample time of .01 
seconds, the data type is double, and the signal is complex. 

This figure shows the propagation of the signal attributes associated with the 
Inport block through a simple block diagram.

In this example, the Gain and Outport blocks inherit the attributes specified 
for the Inport block.

Sample Time Propagation
Inherited sample times in source blocks (e.g., a root inport) can sometimes lead 
to unexpected and unintended sample time assignments. Since a block may 
specify an inherited sample time, information available at the outset is often 
insufficient to compile a block diagram completely. In such cases, the Simulink 
engine propagates the known or assigned sample times to those blocks that 
have inherited sample times but which have not yet been assigned a sample 
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time. Thus, Simulink continues to fill in the blanks (the unknown sample 
times) until sample times have been assigned to as many blocks as possible. 
Blocks that still do not have a sample time are assigned a default sample time 
according to the following rules:

1 If the current system has at least one rate in it, the block is assigned the 
fastest rate.

2 If no rate exists and the model is configured for a variable-step solver, the 
block is assigned a continuous sample time (but fixed in minor time steps). 
Note that Real-Time Workshop (with the exception of the S-function target) 
does not currently support variable-step solvers.

3 If no rate exists and the model is configured for a fixed-step solver, the block 
is assigned a discrete sample time of (Tf - Ti)/50, where Ti is the simulation 
start time and Tf is the simulation stop time. If Tf is infinity, the default 
sample time is set to 0.2.

To ensure a completely deterministic model (one where no sample times are set 
using the above rules), you should explicitly specify the sample time of all your 
source blocks. Source blocks include root inport blocks and any blocks without 
input ports. You do not have to set subsystem input port sample times. You 
may want to do so, however, when creating modular systems. 

An unconnected input implicitly sources ground. For ground blocks and ground 
connections, the default sample time is derived from destination blocks or the 
default rule. 

All blocks have an inherited sample time (Ts = -1). They will all be assigned a 
sample time of (Tf - Ti)/50.

Block Execution Order
Once Simulink compiles the block diagram, it creates a model.rtw file 
(analogous to an object file generated from a C file). The model.rtw file 
contains all the connection information of the model, as well as the necessary 
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signal attributes. Thus, the timing engine in Real-Time Workshop can 
determine when blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in 
hand-written code) in a model. For example, the disconnected_trigger model 
below will have its trigger port source to ground, which may lead to all blocks 
inheriting a constant sample time. Calling the trigger function, f(), directly 
from user code will not work correctly and should never be done. Instead, you 
should use a function-call generator to properly specify the rate at which f() 
should be executed, as shown in the connected_trigger model below.

Instead of the function-call generator, you could use any other block that can 
drive the trigger port. Then, you should call the model’s main entry point to 
execute the trigger function. 

For multirate models, a common use of Real-Time Workshop is to build 
individual models separately and then hand-code the I/O between the models. 
This approach places the burden of data consistency between models on the 
developer of the models. Another approach is to let Simulink and Real-Time 
Workshop ensure data consistency between rates and generate multirate code 
for use in a multitasking environment. The Real-Time Workshop interrupt 
template and VxWorks support libraries provide blocks that support both 
synchronous and asynchronous I/O via a double-buffering scheme. For a 
description of the Real-Time Workshop libraries, see “Asynchronous Support” 
on page 13-1 For more information on multirate code generation, see “Models 
with Multiple Sample Rates” on page 8-1

Algebraic Loops Unsupported
Real-Time Workshop does not support models containing algebraic loops. An 
algebraic loop exists whenever the output of a block having direct feedthrough 
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(such as Gain, Sum, Product, and Transfer fcn) is fed back as an input to the 
same block. Simulink is often able to solve models that contain algebraic loops, 
such as the diagram shown below. 

The code generator does not produce code that solves algebraic loops. This 
restriction includes models that use Algebraic Constraint blocks in feedback 
paths.
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Selecting a Target Configuration
The process of generating target-specific code is controlled by three things:

• A system target file

• A template makefile

• A make command

The System Target File Browser lets you specify such a configuration in a 
single step, choosing from a wide variety of ready-to-run configurations.

The System Target File Browser
To select a target configuration using the System Target File Browser:

1 Click the Real-Time Workshop tab of the Simulation Parameters dialog 
box. The Real-Time Workshop pane appears.

2 Select Target configuration from the Category menu.

3 Click the Browse button next to the System target file field. This opens the 
System Target File Browser. The browser displays a list of all currently 
available target configurations. When you select a target configuration, 
Real-Time Workshop automatically chooses the appropriate system target 
file, template makefile, and make command.

Figure 2-8 shows the System Target File Browser with the generic real-time 
target selected.

4 Double-click on the desired entry in the list of available configurations. 
Alternatively, you can select the desired entry in the list and click OK.
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Figure 2-8:  The System Target File Browser

5 When you choose a target configuration, Real-Time Workshop automatically 
chooses the appropriate system target file, template makefile, and make 
command for the selected target, and displays them in the Real-Time 
Workshop pane.

Available Targets
Table 2-1 lists all the supported system target files and their associated code 
formats, and template makefiles. The table also gives references to relevant 
manuals or chapters in this book. All of these targets are built using the 
make_rtw make command.
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Table 2-1:  Targets Available from the System Target File Browser

Target/Code Format System Target File Template Makefile Relevant 
Chapters 

Real-Time Workshop 
Embedded Coder (PC 
or UNIX)

ert.tlc ert_default_tmf Real-Time 
Workshop 
Embedded Coder 
documentation

Real-Time Workshop 
Embedded Coder for 
Watcom

ert.tlc ert_watc.tmf Real-Time 
Workshop 
Embedded Coder 
documentation

Real-Time Workshop 
Embedded Coder for 
Visual C/C++

ert.tlc ert_vc.tmf Real-Time 
Workshop 
Embedded Coder 
documentation

Real-Time Workshop 
Embedded Coder for 
Visual C/C++ Project 
Makefile

ert.tlc ert_msvc.tmf Real-Time 
Workshop 
Embedded Coder 
documentation

Real-Time Workshop 
Embedded Coder for 
Borland

ert.tlc ert_bc.tmf Real-Time 
Workshop 
Embedded Coder 
documentation

Real-Time Workshop 
Embedded Coder for 
LCC

ert.tlc ert_lcc.tmf Real-Time 
Workshop 
Embedded Coder 
documentation

Real-Time Workshop 
Embedded Coder for 
UNIX 

ert.tlc ert_unix.tmf Real-Time 
Workshop 
Embedded Coder 
documentation



Selecting a Target Configuration

2-43

Real-Time Workshop 
Embedded Coder for 
Tornado (VxWorks)

ert.tlc ert_tornado.tmf Real-Time 
Workshop 
Embedded Coder 
documentation

Generic Real-Time 
for PC/UNIX

grt.tlc grt_default_tmf 3

Generic Real-Time 
for Watcom 

grt.tlc grt_watc.tmf 3

Generic Real-Time 
for Visual C/C++

grt.tlc grt_vc.tmf 3

Generic Real-Time 
for Visual C/C++ 
Project 
Makefile 

grt.tlc grt_msvc.tmf 3

Generic Real-Time 
for Borland

grt.tlc grt_bc.tmf 3

Generic Real-Time 
for LCC

grt.tlc grt_lcc.tmf 3

Generic Real-Time 
for UNIX

grt.tlc grt_unix.tmf 3

Generic Real-Time 
(dynamic) for 
PC/UNIX

grt_malloc.tlc grt_malloc_default_tmf 3

Generic Real-Time 
(dynamic) for Watcom

grt_malloc.tlc grt_malloc_watc.tmf 3

Generic Real-Time 
(dynamic) for Visual 
C/C++

grt_malloc.tlc grt_malloc_vc.tmf 3

Table 2-1:  Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant 
Chapters 
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Generic Real-Time 
(dynamic) for Visual 
C/C++ Project 
Makefile

grt_malloc.tlc grt_malloc_msvc.tmf 3

Generic Real-Time 
(dynamic) for Borland

grt_malloc.tlc grt_malloc_bc.tmf 3

Generic Real-Time 
(dynamic) for LCC

grt_malloc.tlc grt_malloc_lcc.tmf 3

Generic Real-Time 
(dynamic) for UNIX

grt_malloc.tlc grt_malloc_unix.tmf 3

Rapid Simulation 
Target (default for PC 
or UNIX)

rsim.tlc rsim_default_tmf 11

Rapid Simulation 
Target for Watcom

rsim.tlc rsim_watc.tmf 11

Rapid Simulation 
Target for Visual 
C/C++

rsim.tlc rsim_vc.tmf 11

Rapid Simulation 
Target for Borland

rsim.tlc rsim_bc.tmf 11

Rapid Simulation 
Target for LCC

rsim.tlc rsim_lcc.tmf 11

Rapid Simulation 
Target for UNIX

rsim.tlc rsim_unix.tmf 11

S-Function Target for 
PC or UNIX

rtwsfcn.tlc rtwsfcn_default_tmf 10

Table 2-1:  Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant 
Chapters 
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S-Function Target for 
Watcom

rtwsfcn.tlc rtwsfcn_watc.tmf 10

S-Function Target for 
Visual C/C++

rtwsfcn.tlc rtwsfcn_vc.tmf 10

S-Function Target for 
Borland

rtwsfcn.tlc rtwsfcn_bc.tmf 10

S-Function Target for 
LCC

rtwsfcn.tlc rtwsfcn_lcc.tmf
rtwsfcn_unix.tmf

10

Tornado (VxWorks) 
Real-Time Target

tornado.tlc tornado.tmf 12

Windows Real-Time 
Target for Watcom

rtwin.tlc win_watc.tmf Real-Time 
Windows Target 
documentation

Windows Real-Time 
Target for Visual 
C/C++

rtwin.tlc win_vc.tmf Real-Time 
Windows Target 
documentation

Embedded Target for 
TIC6000 DSP

ti_c6000.tlc ti_c6000.tmf Developer's Kit 
for Texas 
Instruments DSP 
documentation

xPC Target for 
Watcom C/C++ or 
Visual C/C++

xpctarget.tlc xpc_default_tmf
xpc_vc.tmf
xpc_watc.tmf

xPC Target 
documentation

DOS (4GW) drt.tlc drt_watc.tmf 11 and 3

LE/O (Lynx 
embedded OSEK) 
Real-Time Target

osek_leo.tlc osek_leo.tmf Readme file in 
matlabroot/rtw/
c/osek_leo

Table 2-1:  Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant 
Chapters 
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Note  The LE/O, DOS, and ECRobot targets are included as examples only.

ASAM-ASAP2 Data 
Definition Target

asap2.tlc asap2_generic.tmf Real-Time 
Workshop 
Embedded Coder 
documentation

ECRobot Target 
(ECRobot demo)

ECRobot.tlc ECRobot.tmf See demo in 
matlabroot/tool
box/rtw/targets
/ECRobot

Embedded Target for 
Motorola MPC555 
Developers Kit

mpc555exp.tlc

mpc555pil.tlc

mpc555rt.tlc

mpc555exp.tmf
mpc555exp_diab.tmf
mpc555pil.tmf
mpc555pil_diab.tmf
mpc555rt.tmf

Embedded Target 
for Motorola 
MPC555 
documentation

Table 2-1:  Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant 
Chapters 
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Making an Executable
Real-Time Workshop generates code into a set of source files that vary little 
among different targets. Not all possible files will be generated for every model. 
Some files are only created when the model includes subsystems or particular 
types of data.

The file packaging of the Real-Time Workshop Embedded Coder differs slightly 
(but significantly) from the file packaging described below. See the “Data 
Structures and Code Modules” section in the Real-Time Workshop Embedded 
Coder documentation for further information.

Generated Source Files
The following table summarizes the structure of source code generated by the 
Real-Time Workshop. All code modules described are written to the build 
directory within your current working directory. Figure 2-9 on page 2-49 
summarizes the dependencies among these files.

Table 2-2:  Real-Time Workshop File Packaging 

File Description

model.c Contains entry points for all code implementing the model algorithm 
(MdlStart, MdlOutputs, MdlUpdate, MdlInitializeSizes, 
MdlInitializeSampleTimes). Also contains model registration code.

model_private.h Contains local defines and local data that are required by the model and 
subsystems. This file is included by the genberated source files in the 
model. You do not need to include model_private.h when interfacing 
hand-written code to a model.

model.h Defines model data structures and a public interface to the model entry 
points and data structures. Also provides an interface to the real-time 
model data structure (model_rtM) via accessor macros. model.h is 
included by subsystem .c files in the model.

If you are interfacing your hand-written code to generated code for one 
or more models, you should include model.h for each model to which you 
want to interface.



2 Code Generation and the Build Process

2-48

If you have interfaced hand-written code to code generated by previous releases 
of the Real-Time Workshop, you may need to remove dependencies on header 
files that are no longer generated. Use #include model.h directives, and 
remove #include directives referencing any of the following:

• model_common.h (replaced by model_types.h and model_private.h)

• model_export.h (replaced by model.h)
• model_prm.h (replaced by model_data.c)
• model_reg.h (subsumed by model_.c)

Real-Time Workshop generated source file dependencies are depicted in 
Figure 2-9 on page 2-49. Arrows emitting from a file indicate the files it 

model_data.c
(conditional)

model_data.c is conditionally generated. It contains the declarations for 
the parameters data structure and the constant block I/O data structure. 
If these data structures are not used in the model, model_data.c is not 
generated. Note that these structures are declared extern in model.h.

model_types.h Provides forward declarations for the real-time model data structure and 
the parameters data structure. These may be needed by function 
declarations of reusable functions. model_types.h is included by all the 
generated header files in the model.

rtmodel.h Contains #include directives required by static main program modules 
such as grt_main.c and grt_malloc_main.c. Since these modules are 
not created at code generation time, they include rt_model.h to access 
model-specific data structures and entry points. If you create your own 
main program module, take care to include rtmodel.h.

model_pt.c
(optional)

Provides data structures that enable a running program to access model 
parameters without use of external mode. To learn how to generate and 
use the model_pt.c file, see “C API for Parameter Tuning” on 
page 14-77. 

model_bio.c
(optional)

Provides data structures that enable your code to access block outputs. 
To learn how to generate and use the model_bio.c file, see “Signal 
Monitoring via Block Outputs” on page 14-70.

Table 2-2:  Real-Time Workshop File Packaging  (Continued)

File Description
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includes. As the illustration notes, other dependencies exist, for example on 
Simulink header files files tmw_types.h, simstruc_types.h, and optionally 
on rtlibsrc.h, plus C library files. The diagram only maps inclusion relations 
between files that are generated in the build directory.

The diagram shows that parent system header files (model.h) include all child 
subsystem header files (subsystem.h). In more layered models, subsystems 
similarly include their children’s header files, on down the model hierarchy. As 
a consequence, subsystems are able to recursively “see” into all their 
descendents’ subsystems, as well as to see into the root system (because every 
subsystem.c includes model.h and model_private.h).

Figure 2-9:  Real-Time Workshop Generated File Dependencies

Compilation and Linking
After completing code generation, the build process determines whether or not 
to continue and compile and link an executable program. This decision is 
governed by the following parameters:

model.c model_data.c

model.h

model_private.h

subsystem.h

model_types.h

subsystem.c

rtmodel.h

for grt and
file used only

grt_malloc targets

rtmodel.h is a 
dummy include

NOTE Files model.h, model_private.h and subsystem.h also depend on Simulink
header files tmw_types.h, simstruct_types.h, and conditionally on rtlibsrc.h
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• Generate code only option

When this option is selected, the build process always omits the make phase.

• Makefile-only target

The Visual C/C++ Project Makefile versions of the grt, grt_malloc, and 
Real-Time Workshop Embedded Coder target configurations generate a 
Visual C/C++ project makefile (model.mak). To build an executable, you must 
open model.mak in the Visual C/C++ IDE and compile and link the model 
code.

• HOST template makefile variable

The template makefile variable HOST identifies the type of system upon 
which your executable is intended to run. The HOST variable can take on one 
of three possible values: PC, UNIX, or ANY.

By default, HOST is set to UNIX in template makefiles designed for use with 
UNIX (such as grt_unix.tmf), and to PC in the template makefiles designed 
for use with development systems for the PC (such as grt_vc.tmf).

If Simulink is running on the same type of system as that specified by the 
HOST variable, then the executable is built. Otherwise:

- If HOST = ANY, an executable is still built. This option is useful when you 
want to cross-compile a program for a system other than the one Simulink 
is running on.

- Otherwise, processing stops after generating the model code and the 
makefile; the following message is displayed on the MATLAB command 
line.

### Make will not be invoked - template makefile is for a different 
host
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Choosing and Configuring Your Compiler
The Real-Time Workshop build process depends upon the correct installation 
of one or more supported compilers. Note that compiler, in this context, refers 
to a development environment containing a linker and make utility, in addition 
to a high-level language compiler.

The build process also requires the selection of a template makefile. The 
template makefile determines which compiler will be run, during the make 
phase of the build, to compile the generated code.

This section discusses how to install a compiler and choose an appropriate 
template makefile, on both Windows and UNIX systems.

Choosing and Configuring Your Compiler on Windows
On Windows, you must install one or more supported compilers, In addition, 
you must define an environment variable associated with each compiler.Make 
sure that your compiler is installed as described in “Third-Party Compiler 
Installation on Windows” on page 1-11.

You can select a template makefile that is specific to your compiler. For 
example, grt_bc.tmf designates the Borland C/C++ compiler, and grt_vc.tmf 
designates the Visual C/C++ compiler.

Alternatively, you can choose a default template makefile that will select the 
default compiler for your system. The default compiler is the compiler 
MATLAB uses to build MEX-files. You can set up the default compiler by using 
the MATLAB mex command as shown below.

mex –setup

See the “External Interfaces/API” in the MATLAB online documentation for 
information on the mex command.

Default template makefiles are named target_default_tmf. For example, the 
default template makefile for the generic real-time (GRT) target is 
grt_default_tmf.

The build process uses the following logic to locate a compiler for the generated 
code:

1 If a specific compiler is named in the template makefile, the build process 
uses that compiler.
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2 If the template makefile designates a default compiler (as in 
grt_default_tmf), the build process uses the same compiler as those used 
for building C MEX-files.

3 If no default compiler is established, the build process examines 
environment variables which define the path to installed compilers, and 
selects the first compiler located. The variables are searched in the following 
order:

- MSDevDir or DEVSTUDIO (defining the path to the Microsoft Visual C/C++)

- WATCOM (defining the path to the Watcom C/C++ compiler)

- BORLAND (defining the path to the Borland C/C++ compiler)

4 If none of the above environment variables is defined, the build process 
selects the lcc compiler, which is shipped and installed with MATLAB.

Compile/Build Options for Visual C/C++. Real-Time Workshop offers two sets of 
template makefiles designed for use with Visual C/C++. 

To compile under Visual C/C++ and build an executable within the Real-Time 
Workshop build process, use one of the target_vc.tmf template makefiles:

• ert_vc.tmf
• grt_malloc_vc.tmf
• grt_vc.tmf
• rsim_vc.tmf

Alternatively, you can choose to create a project makefile (model.mak) suitable 
for use with the Visual C/C++ IDE. In this case, you must compile and link your 
code within the Visual C/C++ environment. To create a Visual C/C++ project 
makefile, choose one of the Visual C/C++ Project Makefile versions of the grt, 
ert, or grt_malloc target configurations. These configurations use the 
target_msvc.tmf template makefiles:

• ert_msvc.tmf
• grt_malloc_msvc.tmf
• grt_msvc.tmf

Choosing and Configuring Your Compiler On UNIX
On UNIX, the Real-Time Workshop build process uses the default compiler. cc 
is the default on all platforms except SunOS, where gcc is the default. 
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You should choose the UNIX-specific template makefile that is appropriate to 
your target. For example, grt_unix.tmf is the correct template makefile to 
build a generic real-time program under UNIX.

Available Compiler/Makefile/Target Configurations
To determine which template makefiles are appropriate for your compiler and 
target, see Table 2-1, Targets Available from the System Target File Browser, 
on page 2-42.
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Template Makefiles and Make Options
Real-Time Workshop includes a set of built-in template makefiles that are 
designed to build programs for specific targets.

There are two types of template makefiles: 

• Compiler-specific template makefiles are designed for use with a particular 
compiler or development system. 

By convention, compiler-specific template makefiles are named according to 
the target and compiler (or development system). For example, grt_vc.tmf 
is the template makefile for building a generic real-time program under 
Visual C/C++; ert_lcc.tmf is the template makefile for building a 
Real-Time Workshop Embedded Coder program under the LCC compiler.

• Default template makefiles make your model designs more portable, by 
choosing the correct compiler-specific makefile and compiler for your 
installation. “Choosing and Configuring Your Compiler” on page 2-51 
describes the operation of default template makefiles in detail.

Default template makefiles are named target_default_tmf. For example, 
grt_default_tmf is the default template makefile for building a generic 
real-time program; ert_default_tmf is the default template makefile 
building a Real-Time Workshop Embedded Coder program.

You can supply options to makefiles via arguments to the Make command 
field of the Target configuration category of the Real-Time Workshop tab of 
the Simulation Parameters dialog. Append the arguments after make_rtw (or 
make_xpc or other make command), as in the following example.

make_rtw OPTS="-DMYDEFINE=1"

The syntax for make command options differs slightly for different compilers.

Compiler-Specific Template Makefiles
This section documents the available compiler-specific template makefiles and 
common options you can use with each. 

Template Makefiles for UNIX

• ert_unix.tmf
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• grt_malloc_unix.tmf
• grt_unix.tmf
• rsim_unix.tmf
• rtwsfcn_unix.tmf

The template makefiles for UNIX platforms are designed to be used with GNU 
Make. These makefile are set up to conform to the guidelines specified in the 
IEEE Std 1003.2-1992 (POSIX) standard. 

You can supply options via arguments to the make command.

• OPTS — User-specific options, for example,
make_rtw OPTS="-DMYDEFINE=1"

•  OPT_OPTS — Optimization options. The default optimization option is -O. To 
turn off optimization and add debugging symbols, specify the -g compiler 
switch in the make command, for example,

make_rtw OPT_OPTS="-g"

For additional options, see the comments at the head of each template 
makefile.

Template Makefiles for Visual C/C++
Real-Time Workshop offers two sets of template makefiles designed for use 
with Visual C/C++. 

To build an executable within Real-Time Workshop build process, use one of 
the target_vc.tmf template makefiles:

• ert_vc.tmf
• grt_malloc_vc.tmf
• grt_vc.tmf
• rsim_vc.tmf
• rtwsfcn_vc.tmf

You can supply options via arguments to the make command.

• OPTS — User-specific options, for example,
make_rtw OPTS="-DMYDEFINE=1"
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• OPT_OPTS — Optimization options. The default optimization option is -Ot. To 
turn off optimization and add debugging symbols, specify the -Zd compiler 
switch in the make command.
make_rtw OPT_OPTS="-Zd"

For additional options, see the comments at the head of each template 
makefile.

To create a Visual C/C++ project makefile (model.mak) without building an 
executable, use one of the target_msvc.tmf template makefiles:

• ert_msvc.tmf
• grt_malloc_msvc.tmf
• grt_msvc.tmf

These template makefiles are designed to be used with nmake, which is bundled 
with Visual C/C++. 

You can supply the following options via arguments to the nmake command:

• OPTS — User-specific options, for example,
make_rtw OPTS="/D MYDEFINE=1"

For additional options, see the comments at the head of each template 
makefile.

Template Makefiles for Watcom C/C++

Note  As of this printing, the Watcom C compiler is no longer available from 
the manufacturer. Real-Time Workshop continues to ship with 
Watcom-related template makefiles at this time. However, this policy may be 
subject to change in the future.

• drt_watc.tmf
• ert_watc.tmf
• grt_malloc_watc.tmf
• grt_watc.tmf
• rsim_watc.tmf
• rtwsfcn_watc.tmf
• win_watc.tmf
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Real-Time Workshop provides template makefiles to create an executable for 
Windows using Watcom C/C++. These template makefiles are designed to be 
used with wmake, which is bundled with Watcom C/C++.

You can supply options via arguments to the make command. Note that the 
location of the quotes is different from the other compilers and make utilities 
discussed in this chapter:

• OPTS — User specific options, for example,
make_rtw "OPTS=-DMYDEFINE=1"

• OPT_OPTS — Optimization options. The default optimization option is -oxat. 
To turn off optimization and add debugging symbols, specify the -d2 
compiler switch in the make command, for example,
make_rtw "OPT_OPTS=-d2"

For additional options, see the comments at the head of each template 
makefile.

Template Makefiles for Borland C/C++

• ert_bc.tmf
• grt_bc.tmf
• grt_malloc_bc.tmf
• rsim_bc.tmf
• rtwsfcn_bc.tmf

Real-Time Workshop provides template makefiles to create an executable for 
Windows using Borland C/C++.

You can supply these options via arguments to the make command:

• OPTS — User-specific options, for example,
make_rtw OPTS="-DMYDEFINE=1"

• OPT_OPTS — Optimization options. Default is none. To turn off optimization 
and add debugging symbols, specify the -v compiler switch in the make 
command.
make_rtw OPT_OPTS="-v"

For additional options, see the comments at the head of each template 
makefile.
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Template Makefiles for LCC

• ert_lcc.tmf
• grt_lcc.tmf
• grt_malloc_lcc.tmf
• rsim_lcc.tmf
• rtwsfcn_lcc.tmf

Real-Time Workshop provides template makefiles to create an executable for 
Windows using LCC compiler Version 2.4 and GNU Make (gmake).

You can supply options via arguments to the make command:

• OPTS — User-specific options, for example,
make_rtw OPTS="-DMYDEFINE=1"

• OPT_OPTS — Optimization options. Default is none. To enable debugging, 
specify -g4 in the make command:
make_rtw OPT_OPTS="-g4"

For additional options, see the comments at the head of each template 
makefile.

Template Makefile Structure
The detailed structure of template makefiles is documented in “Template 
Makefiles” on page 14-28. This information is provided for those who want to 
customize template makefiles.
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Configuring the Generated Code via TLC
This section covers features of the Real-Time Workshop Target Language 
Compiler that help you to fine-tune your generated code. To learn more about 
TLC, please see the Target Language Compiler Reference Guide.

Target Language Compiler Variables and Options
The Target Language Compiler supports extended code generation variables 
and options in addition to those included in the code generation options 
categories of the Real-Time Workshop pane.

There are two ways to set TLC variables and options:

• Assigning TLC variables in the system target file

• Entering TLC options or variables into the System Target File field on the 
Real-Time Workshop tab of the Simulation Parameters dialog.

Assigning Target Language Compiler Variables
The %assign statement lets you assign a value to a TLC variable, as in

%assign MaxStackSize = 4096

This is also known as creating a parameter name/parameter value pair.

The %assign statement is described in the Target Language Compiler 
Reference Guide. It is recommended that you write your %assign statements 
in the Configure RTW code generation settings section of the system target 
file.
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The following table lists the code generation variables you can set with the 
%assign statement.

Table 2-3:  Target Language Compiler Optional Variables 

Variable Description

MaxStackSize=N When Local block outputs is enabled, 
the total allocation size of local variables 
that are declared by all functions in the 
entire model may not exceed 
MaxStackSize (in bytes). N can be any 
positive integer. The default value for 
MaxStackSize is rtInf, i.e. unlimited 
stack size.

MaxStackVariableSize=N When Local block outputs is enabled, this 
limits the size of any local variable declared 
in a function to N bytes, where N>0. A 
variable whose size exceeds 
MaxStackVariableSize will be allocated in 
global, rather than local, memory

WarnNonSaturatedBlocks= 
value 

Flag to control display of overflow warnings 
for blocks that have saturation capability, 
but have it turned off (unchecked) in their 
dialog. These are the options:

• 0 — no warning is displayed

• 1 — displays one warning for the model 
during code generation

• 2 — displays one warning that contains a 
list of all offending blocks
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Setting Target Language Compiler Options
You can enter TLC options directly into the System target file field in the 
Target configuration category of the Real-Time Workshop tab of the 
Simulation Parameters dialog, by appending the options and arguments to 
the system target filename. This is equivalent to invoking the Target Language 
Compiler with options on the MATLAB command line.

The common options are shown in the table below.

BlockIOSignals=value Supports monitoring signals in a running 
model. See “Signal Monitoring via Block 
Outputs” on page 14-70. Setting the 
variable causes the model_bio.c file to be 
generated. These are the options:

• 0 — deactivates this feature

• 1 — creates model_bio.c

ParameterTuning=value Setting the variable to 1 causes a 
parameter tuning file (model_pt.c) to be 
generated. model_pt.c contains data 
structures that enable a running program 
to access model parameters independent of 
external mode. See “C API for Parameter 
Tuning” on page 14-77.

Table 2-4:  Target Language Compiler Options

Option Description

−Ipath Adds path to the list of paths in which to search 
for target files (.tlc files).

−m[N|a] Maximum number of errors to report when an 
error is encountered (default is 5). For example, 
−m3 specifies that at most three errors will be 
reported. To report all errors, specify −ma.

Table 2-3:  Target Language Compiler Optional Variables  (Continued)

Variable Description
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−d[g|n|o] Specifies debug mode (generate, normal, or 
off). Default is off. When −dg is specified, 
a .log file is create for each of your TLC files. 
When debug mode is enabled (i.e., generate or 
normal), the Target Language Compiler displays 
the number of times each line in a target file is 
encountered.

−aVariable=val Equivalent to the TLC statement

%assign Variable = val 

Note: It is recommended that you use %assign 
statements in the TLC files, rather than the -a 
option.

Table 2-4:  Target Language Compiler Options

Option Description



 

3

Generated Code Formats

This chapter summarizes distinguishing characteristics of code formats that Real-Time Workshop 
generates:

Introduction (p. 3-2) Explains the concept of code formats and relationship to 
targets.

Choosing a Code Format for Your 
Application (p. 3-3)

Discusses the applicability and limitations of code 
formats and targets with regard to types of applications

Real-Time Code Format (p. 3-6) Describes code generation for building nonembedded 
applications

Real-Time malloc Code Format (p. 3-8) Describes code generation for building nonembedded 
applications with dynamic allocation

S-Function Code Format (p. 3-10) Describes code generation for building S-function targets

Embedded C Code Format (p. 3-11) Describes code generation for building embedded 
applications
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Introduction
Real-Time Workshop provides four different code formats. Each code format 
specifies a framework for code generation suited for specific applications.

The four code formats and corresponding application areas are:

• Real-time: Rapid prototyping

• Real-time malloc: Rapid prototyping

• S-function: Creating proprietary S-function .dll or MEX-file objects, code 
reuse, and speeding up your simulation

• Embedded C: Deeply embedded systems

This chapter discusses the relationship of code formats to the available target 
configurations, and factors you should consider when choosing a code format 
and target. This chapter also summarizes the real-time, real-time malloc, 
S-function, and embedded C code formats.
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Choosing a Code Format for Your Application
Your choice of code format is the most important code generation option. The 
code format specifies the overall framework of the generated code and 
determines its style.

When you choose a target, you implicitly choose a code format. Typically, the 
system target file will specify the code format by assigning the TLC variable 
CodeFormat. The following example is from ert.tlc.

%assign CodeFormat = "Embedded-C"

If the system target file does not assign CodeFormat, the default is RealTime (as 
in grt.tlc).

If you are developing a custom target, you must consider which code format is 
best for your application and assign CodeFormat accordingly.

Choose the real-time or real-time malloc code format for rapid prototyping. If 
your application does not have significant restrictions in code size, memory 
usage, or stack usage, you may want to continue using the generic real-time 
(GRT) target throughout development. The real-time format is the most 
comprehensive code format and supports almost all the built-in blocks. It is 
also capable of executing in “hard real time” (however, if the hard execution 
time constraints are not satisfied, a catastrophic system failure occurs). For 
further information on satisfying time constraints in both singletasking and 
multitasking environments, see “Models with Multiple Sample Rates” on 
page 8-1.

If your application demands that you limit source code size, memory usage, or 
maintain a simple call structure, then you should choose the Real-Time 
Workshop Embedded Coder target, which uses the embedded C format.

Finally, you should choose the S-function format if you are not concerned about 
RAM and ROM usage and want to:

• Use a model as a component, for scalability

• Create a proprietary S-function .dll or MEX-file object

• Interface the generated code using the S-function C API

• Speed up your simulation
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Table 3-1 summarizes the various options available for each Real-Time 
Workshop code format/target, noting exceptions below. 

Table 3-1:  Features Supported by Real-Time Workshop Targets and Code Formats 

Feature GRT Real-
time 
malloc

RTW 
Embe
dded 
Coder

DOS Torn-
ado

S-
Func

RSIM RT
Win

xPC TI
DSP

MPC 
555

Static mem. 
allocation

X X X X X X X X X

Dynamic 
mem. 
allocation

X X X X

Continuous 
time

X X X X X X X X

C MEX 
S-functions
(noninlined)

X X X X X X X X

Any 
S-function 
(inlined) 

X X X X X X X X X X X

Minimize 
RAM / ROM 
usage

X X

Supports 
external 
mode

X X X X X X X

Intended for 
rapid 
prototyping

X X X X X X X

Production 
code

X X X X3
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1The default GRT, GRT malloc, and ERT rt_main files emulate execution of hard real time, and 
when explicitly connected to a real-time clock execute in hard real-time.

2Except MPC555 (processor-in-the-loop) and MPC555 (algorithm export) targets

3Exccept MPC555 (algorithm export) targets

Batch 
parameter 
tuning and 
Monte Carlo 
methods

X

Executes in 
hard real 
time

X 1 X 1 X 1 X X X X X X2

Non 
real-time 
executable 
included

X X X X X

Multiple 
instances of a 
model (no 
Stateflow 
blocks in 
model)

X X X

Supports 
variable-step 
solvers

X X

Table 3-1:  Features Supported by Real-Time Workshop Targets and Code Formats  (Continued)

Feature GRT Real-
time 
malloc

RTW 
Embe
dded 
Coder

DOS Torn-
ado

S-
Func

RSIM RT
Win

xPC TI
DSP

MPC 
555
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Real-Time Code Format
The real-time code format (corresponding to the generic real-time target) is 
useful for rapid prototyping applications. If you want to generate real-time 
code while iterating model parameters rapidly, you should begin the design 
process with the generic real-time target. The real-time code format supports:

• Continuous time

• Continuous states

• C MEX S-functions (inlined and noninlined)

For more information on inlining S-functions, see the Target Language 
Compiler Reference Guide.

The real-time code format declares memory statically, that is, at compile time.

Unsupported Blocks
The real-time format does not support the following built-in blocks:

• Functions & Tables

- MATLAB Fcn (note that Simulink Fcn blocks are supported)

- S-Function — M-file S-functions, Fortran S-functions, or C MEX 
S-functions that call into MATLAB (Simulink Fcn calls are supported).

System Target Files
• drt.tlc — DOS real-time target

• grt.tlc — Generic real-time target

• osek_leo.tlc — Lynx-Embedded OSEK target (example only)

• rsim.tlc — Rapid simulation target

• tornado.tlc — Tornado (VxWorks) real-time target

Template Makefiles
• drt.tmf
• grt

- grt_bc.tmf — Borland C
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- grt_vc.tmf — Visual C

- grt_watc.tmf — Watcom C

- grt_lcc.tmf — LCC compiler

- grt_unix.tmf — UNIX host
• osek_leo.tmf
• rsim

- rsim_bc.tmf — Borland C

- rsim_vc.tmf — Visual C

- rsim_watc.tmf — Watcom C

- rsim_lcc.tmf — LCC compiler

- rsim_unix.tmf — UNIX host

• tornado.tmf

• win_watc.tmf
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Real-Time malloc Code Format
The real-time malloc code format (corresponding to the generic real-time 
malloc target) is very similar to the real-time code format. The differences are:

• Real-time malloc declares memory dynamically.

Note that for blocks provided by the MathWorks, malloc calls are limited to 
the model initialization code. Generated code is designed to be free from 
memory leaks, provided that the model termination function is called.

• Real-time malloc allows you to multiply instance the same model with each 
instance maintaining its own unique data. 

• Real-time malloc allows you to combine multiple models together in one 
executable. For example, to integrate two models into one larger executable, 
real-time malloc maintains a unique instance of each of the two models. If 
you do not use the real-time malloc format, the Real-Time Workshop will not 
necessarily create uniquely named data structures for each model, 
potentially resulting in name clashes.

grt_malloc_main.c, the main routine for the generic real-time malloc 
(grt_malloc) target, supports one model by default. See “Combining 
Multiple Models” on page 14–103 for information on modifying 
grt_malloc_main to support multiple models. grt_malloc_main.c is located 
in the directory matlabroot/rtw/c/grt_malloc.

Unsupported Blocks
The real-time malloc format does not support the following built-in blocks, as 
shown:

• Functions & Tables

- MATLAB Fcn (note that Simulink Fcn blocks are supported)

- S-Function — M-file S-functions, Fortran S-functions, or C MEX 
S-functions that call into MATLAB (Simulink Fcn calls are supported).

System Target Files
• grt_malloc.tlc

• tornado.tlc — Tornado (VxWorks) real-time target
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Template Makefiles
• grt_malloc

- grt_malloc_bc.tmf — Borland C

- grt_malloc_vc.tmf — Visual C

- grt_malloc_watc.tmf — Watcom C

- grt_malloc_lcc.tmf — LCC compiler

- grt_malloc_unix.tmf — UNIX host
• tornado.tmf
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S-Function Code Format
The S-function code format (corresponding to the S-Function Target) generates 
code that conforms to the Simulink C MEX S-function API. Using the 
S-Function Target, you can build an S-function component and use it as an 
S-Function block in another model. 

The S-function code format is also used by the Simulink Accelerator to create 
the Accelerator MEX-file.

In general you should not use the S-function code format in a system target file. 
However, you may need to do special handling in your inlined TLC files to 
account for this format. You can check the TLC variable CodeFormat to see if 
the current target is a MEX-file. If CodeFormat = "S-Function” and the TLC 
variable Accelerator is set to 1, the target is a Simulink Accelerator MEX-file.

See Chapter 10, “The S-Function Target” for further information.
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Embedded C Code Format
The embedded C code format corresponds to the Real-Time Workshop 
Embedded Coder target. This code format includes a number of memory-saving 
and performance optimizations. See the Real-Time Workshop Embedded Coder 
documentation for full details.
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4
Building Subsystems

This chapter describes how to generate code for atomic and conditionally executed subsystems. Topics 
covered in detail include the following:

Nonvirtual Subsystem Code 
Generation (p. 4-2)

Discusses ways to generate separate code modules from 
nonvirtual subsystems

Generating Code and Executables from 
Subsystems (p. 4-15)

Describes how to generate and build a stand-alone 
executable from a subsystem
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Nonvirtual Subsystem Code Generation
Real-Time Workshop allows you to control how code is generated for any 
nonvirtual subsystem. The categories of nonvirtual subsystems are:

• Conditionally executed subsystems: execution depends upon a control signal 
or control block. These include triggered subsystems, enabled subsystems, 
action and iterator subsystems, subsystems that are both triggered and 
enabled, and function call subsystems. See Using Simulink for information 
on conditionally executed subsystems.

• Atomic subsystems: Any virtual subsystem can be declared atomic (and 
therefore nonvirtual) via the Treat as atomic unit option in the Block 
Parameters dialog.

See Using Simulink, and run the sl_subsys_semantics demo for further 
information on nonvirtual subsystems and atomic subsystems.

You can control the code generated from nonvirtual subsystems as follows:

• You can instruct Real-Time Workshop to generate separate functions, within 
separate code files, for selected nonvirtual systems. You can control both the 
names of the functions and of the code files generated from nonvirtual 
subsystems.

• You can cause multiple instances of a subsystem to generate reusable code, 
that is, as a single re-entrant function, instead of replicating the code for 
each instance of a subsystem or each time it is called.

• You can generate inlined code from selected nonvirtual subsystems within 
your model. When you inline a nonvirtual subsystem, a separate function 
call is not generated for the subsystem.

Nonvirtual Subsystem Code Generation Options
For any nonvirtual subsystem, you can choose the following code generation 
options from the RTW system code pop-up menu in the subsystem Block 
parameters dialog:

• Auto: This is the default option, and provides the greatest flexibility in most 
situations. See “Auto Option” below.

• Inline: This option explicitly directs Real-Time Workshop to inline the 
subsystem unconditionally.
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• Function: This option explicitly directs Real-Time Workshop to generate a 
separate function with no arguments, and (optionally) place the subsystem 
in a separate file. You can name the generated function and file. As functions 
created with this option rely on global data, they are not re-entrant.

• Reusable function: Generates a function with arguments, that allows the 
subsystem’s code to be shared by other instances of it in the model. To enable 
sharing, Real-Time Workshop must be able to determine (via checksums) 
that subsystems are identical. The generated function will have arguments 
for block inputs and outputs, continuous states, parameters, etc.

The sections below further discuss the Auto, Inline, Function, and Reusable 
function options. 

Auto Option
The Auto option is the default, and is generally appropriate. Auto causes 
Real-Time Workshop to inline the subsystem when there is only one instance 
of it in the model. When multiple instances of a subsystem exist, the Auto 
option will result in a single copy of the function whenever possible (as a 
reusable function). Otherwise, the result will be as though you selected Inline 
(except for function call subsystems with multiple callers, which will be 
handled as if you specified Function). Choose Inline to always inline 
subsystem code, or Function when you specifically want to generate a separate 
function without arguments for each instance, optionally in a separate file.

Note  When you want multiple instances of a subsystem to be represented as 
one reusable function, you may designate each one of them as Auto or as 
Reusable function. It is best to use one or the other, as using both will create 
two reusable functions, one for each designation. The outcomes of these 
choices will differ only when reuse is not possible.

To use the Auto option:

1 Select the subsystem block. Then select Subsystem parameters from the 
Simulink Edit menu. The Block Parameters dialog opens, as shown in 
Figure 4-1.

Alternatively, you can open the Block Parameters dialog by:
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- Shift-double-clicking on the Subsystem block

- Right-clicking on the Subsystem block and selecting Block parameters 
from the pop-up menu.

2 If the subsystem is virtual, select Treat as atomic unit as shown in 
Figure 4-1. This makes the subsystem nonvirtual, and the RTW system 
code option becomes enabled.

If the system is already nonvirtual, the RTW system code option is already 
enabled.

3 Select Auto from the RTW system code pop-up menu as shown in 
Figure 4-1.

4 Click Apply and close the dialog.

Figure 4-1:  Auto Code Generation Option for a Nonvirtual Subsystem

Auto Optimization for Special Cases. Rather than reverting to Inline, the Auto 
option will optimize code in special situations in which identical subsystems 
contain other identical subsystems, by both reusing and inlining generated 
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code. Suppose a model, such as schematized in Figure 4-2, contains identical 
subsystems A1 and A2. A1 contains subsystem B1, and A2 contains subsystem 
B2, which are themselves identical. In such cases, the Auto option will cause 
one function will be generated which will be called for both A1 and A2, and this 
function will contain one piece of inlined code to execute B1 and B2, insuring 
that the resulting code will run as efficiently as possible.

Figure 4-2:  Reuse of Identical Nested Subsystems with the Auto Option

Inline Option
As noted above, you can choose to inline subsystem code when the subsystem 
is nonvirtual (virtual subsystems are always inlined).

Exceptions to Inlining. Note that there are certain cases in which Real-Time 
Workshop will not inline a nonvirtual subsystem, even though the Inline 
option is selected. These cases are:

• If the subsystem is a function-call subsystem that is called by a noninlined 
S-function, the Inline option is ignored. Noninlined S-functions make such 
calls via function pointers; therefore the function-call subsystem must 
generate a function with all arguments present.

• In a feedback loop involving function-call subsystems, Real-Time Workshop 
will force one of the subsystems to be generated as a function instead of 

B1

A1

B2

A2

Special Case Optimization:

option inlines code for B within code for function A
When B1=B2 and A1=A2, selecting the Auto
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inlining it. Real-Time Workshop selects the subsystem to be generated as a 
function based on the order in which the subsystems are sorted internally.

• If a subsystem is called from an S-function block that sets the option 
SS_OPTION_FORCE_NONINLINED_FCNCALL to TRUE, it will not be inlined. This 
may be the case when user-defined Asynchronous Interrupt blocks or Task 
Synchronization blocks are required. Such blocks must be generated as 
functions. The VxWorks Asynchronous Interrupt and Task Synchronization 
blocks, shipped with Real-Time Workshop, use the 
SS_OPTION_FORCE_NONINLINED_FCNCALL option.

To generate inlined subsystem code:

1 Select the subsystem block. Then select Subsystem parameters from the 
Simulink Edit menu. The Block Parameters dialog opens, as shown in 
Figure 4-3.

Alternatively, you can open the Block Parameters dialog by:

- Shift-double-clicking on the Subsystem block

- Right-clicking on the Subsystem block and selecting Block parameters 
from the pop-up menu.

2 If the subsystem is virtual, select Treat as atomic unit as shown in 
Figure 4-3. This makes the subsystem atomic, and the RTW system code 
pop-up menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is already 
enabled.

3 Select Inline from the RTW system code menu as shown in Figure 4-3.

4 Click Apply and close the dialog.
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Figure 4-3:  Inlined Code Generation for a Nonvirtual Subsystem

When you generate code from your model, Real-Time Workshop writes inline 
code within model.c (or in its parent system’s source file) to perform subsystem 
computations. You can identify this code by system/block identification tags, 
such as the following.

/* Atomic SubSystem Block: <Root>/AtomicSubsys1 */

See“Tracing Generated Code Back to Your Simulink Model” in Chapter 2 for 
further information on system/block identification tags.

Function Option
Choosing the function option (or Reusable function) lets you direct 
Real-Time Workshop to generate a separate function and (optionally) a 
separate file for the subsystem. When you select the Function option, two 
additional options are enabled:

• The RTW function name options menu lets you control the naming of the 
generated function.
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• The RTW file name options menu lets you control the naming of the 
generated file (if a separate file is generated).

Figure 4-4 shows the Block Parameters dialog with the Function option 
selected.

RTW Function Name Options Menu. This menu offers the following choices, but note 
that the resulting identifiers are also affected by which General code 
appearance options are in effect for the model:

• Auto: By default, Real-Time Workshop assigns a unique function name using 
the default naming convention: model_subsystem(), where subsystem is the 
name of the subsystem (or that of an identical one when code is being 
reused). When the Include system hierarchy number in identifiers option 
of the General code appearance options is selected, a sequential identifier 
(s0, s1,...sn) assigned by Simulink and prefixed to the model name, e.g. 
sn_model_subsystem(). When the Prefix model name to global identifiers 
option of the General code appearance options is not selected, the above 
generic function identifier will take the form of sn_subsystem().

• Use subsystem name: Real-Time Workshop uses the subsystem name as the 
function name. The General code appearance options Prefix model name 
to global identifiers option setting also affects the resulting identifiers.

Note  When a subsystem is a library block, the Use subsystem name option 
will cause its function identifier (and filename, see below) to be that of the 
library block, regardless of the name(s) used for that subsystem in the model.

• User specified: When this option is selected, the RTW function name text 
entry field is enabled. Enter any legal function name. Note that the function 
name must be unique, and the General code appearance options settings 
are ignored for the function.

RTW File Name Options Menu. This menu offers the following choices:

• Use subsystem name: Real-Time Workshop generates a separate file, using 
the subsystem (or library block) name as the filename.
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• Use function name: Real-Time Workshop generates a separate file, using 
the function name (as specified by the RTW function name options) as the 
filename.

• User specified: When this option is selected, the RTW file name (no 
extension) text entry field is enabled. Real-Time Workshop generates a 
separate file, using the name you enter as the filename. Enter any filename 
desired, but do not include the .c (or any other) extension. This filename 
need not be unique.

Note  While a subsytem source filename need not be unique, you must avoid 
giving nonunique names that result in cyclic dependencies (e.g, sys_a.h 
includes sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

• Auto: Real-Time Workshop does not generate a separate file for the 
subsystem. Code generated from the subsystem is generated within the code 
module generated from the subsystem’s parent system. If the subsystem’s 
parent is the model itself, code generated from the subsystem is generated 
within model.c.

To generate both a separate subsystem function and a separate file:

1 Select the subsystem block. Then select Subsystem parameters from the 
Simulink Edit menu, to open the Block Parameters dialog.

Alternatively, you can open the Block Parameters dialog by:

- Shift-double-clicking on the Subsystem block

- Right-clicking on the Subsystem block and selecting Block parameters 
from the pop-up menu.

2 If the subsystem is virtual, select Treat as atomic unit as shown in 
Figure 4-4. This makes the subsystem atomic, and the RTW system code 
menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is already 
enabled.

3 Select Function from the RTW system code menu as shown in Figure 4-4.
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4 Set the function name, using the RTW function name options described in 
“RTW Function Name Options Menu” on page 4-8.

5 Set the filename, using any RTW file name option other than Auto (options 
are described in “RTW File Name Options Menu” on page 4-8).

Figure 4-4 shows the use of the UserSpecified filename option.

6 Click Apply and close the dialog.

Figure 4-4:  Subsystem Function Code Generation
with Separate User-Defined File Name

Reusable Function Option
The difference between functions and reusable functions is that the latter have 
data passed to them as arguments (enabling them to be re-entrant), while the 
former communicate via global data. Choosing the Reusable function option 
directs Real-Time Workshop to generate a single function (optionally in a 
separate file) for the subsystem, and to call that code for each identical 
subsystem in the model, if possible.
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Note  The Reusable function option will yield code that gets called from 
multiple sites (hence reused) only when the Auto option would also do so. The 
difference between these options’ behavior is that when reuse is not possible, 
selecting Auto yields inlined code (or if circumstances prohibit inlining, create 
a function without arguements), while choosing Reusable function yields a 
separate function (with arguments) that is called from only one site.

Subsystems that are superfically identical still may not generate reusable code. 
Specifically, Real-Time Workshop is not able to reuse subsystems having any 
of the following characteristics:

• Input signals with differing sample times

• Input signals with differing dimensions

• Input signals with differing datatype or complexity

• Subsystem masks designating different run-time parameters

• Subsystems containing identical blocks with different names

• Subsystems containing identical blocks with different parameter settings

Some of these situations can arise even when subsystems are copied and pasted 
within or between models or are manually constructed to be identical. If 
Real-Time workshop determines that code for a subsystem cannot be reused, it 
will output the subsystem as a function with arguments when Reusable 
function is selected, but the function will not be reused. If you prefer that 
subsystem code be inlined in such circumstances rather than deployed as 
functions, you should choose Auto for the RTW system code option.

The presence of certain blocks in a subsystem can also prevent its code from 
being reused. These are:

• Scope blocks (with data logging enabled)

• S-function blocks that fail to meet certain criteria

• To File blocks

• To Workspace blocks

Regarding S-function blocks, there are several requirements that need to be 
met in order for subsystems containing them to be reused. See “Creating 
Code-Reuse-Compatible S-Functions” in the Simulink documentation.
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When you select the Reusable function option, two additional options are 
enabled. See the explanation of “Function Option” on page 4-7 for descriptions 
of these options and fields. If you enter names in these fields, you must specify 
exactly the same function name and filename for each instance of identical 
subsystems for Real-Time Workshop to be able to reuse the subsytem code.

Figure 4-5:  Subsystem Reusable Function Code Generation Option

To request that Real-Time Workshop generate reusable subsystem code:

1 Select the subsystem block. Then select Subsystem parameters from the 
Simulink Edit menu. The Block Parameters dialog opens, as shown in 
Figure 4-3.

Alternatively, you can open the Block Parameters dialog by:

- Shift-double-clicking on the Subsystem block

- Right-clicking on the Subsystem block and selecting Block parameters 
from the pop-up menu.
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2 If the subsystem is virtual, select Treat as atomic unit as shown in 
Figure 4-5. This makes the subsystem atomic, and the RTW system code 
pop-up menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is already 
enabled.

3 Select Resusable function from the RTW system code menu as shown in 
Figure 4-5.

4 If you wish to give the function a specific name, set the function name, using 
the RTW function name options described in “RTW Function Name Options 
Menu” on page 4-8.

If you do not choose the RTW function name Auto option, and want code to 
be reused, you must assign exactly the same function name to all other 
subsystem blocks that you want to share this code.

5 If you wish to direct the generated code to a specific file, set the filename 
using any RTW file name option other than Auto (options are described in 
“RTW File Name Options Menu” on page 4-8).

In order for code to be reused, you must follow this step for all other 
subsystem blocks that you want to share this code, using the same filename.

6 Click Apply and close the dialog.

Modularity of Subsystem Code
Note that code generated from nonvirtual subsystems, when written to 
separate files, is not completely independent of the generating model. For 
example, subsystem code may reference global data structures of the model. 
Each subsystem code file contains appropriate include directives and 
comments explaining the dependencies. Real-Time Workshop checks for cyclic 
file dependencies and warns about them at build time. For descriptions of how 
generated code is packaged, see “Generated Source Files” on page 2-47.

Code Reuse Diagnostics
HTML code generation reports (see “Generate HTML Report Option” on page 2-10) 
contain a Subsystems link in their Contents section to a table that summarizes 
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how nonvirtual subsystems were converted to generated code. The Subsystems 
section contains diagnostic information that helps to explain why the contents 
of some subsystems were not generated as reusable code. In addition to 
diagnosing exceptions, the HTML report’s Subsystems section also maps each 
noninlined subsystem in the model to functions or reused functions in the 
generated code.
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Generating Code and Executables from Subsystems
Real-Time Workshop can generate code and build an executable from any 
subsystem within a model. The code generation and build process uses the code 
generation and build parameters of the root model.

To generate code and build an executable from a subsystem:

1 Set up the desired code generation and build parameters in the Simulation 
Parameters dialog, just as you would for code generation from a model. 

2 Select the desired subsystem block.

3 Right-click on the subsystem block and select Build Subsystem from the 
Real-Time Workshop submenu of the subsystem block’s context menu.

Alternatively, you can select Build Subsystem from the Real-Time 
Workshop submenu of the Tools menu. This menu item is enabled when a 
subsystem is selected in the current model.

Note  If the model is operating in external mode when you select Build 
Subsystem, Real-Time Workshop automatically turns off external mode for 
the duration of the build, then restores external mode upon its completion.

4 The Build Subsystem window opens. This window displays a list of the 
subsystem parameters. The upper pane displays the name, class, and 
storage class of each variable (or data object) that is referenced as a block 
parameter in the subsystem.When you select a parameter in the upper pane, 
the lower pane shows all the blocks that reference the parameter, and the 
parent system of each such block.

The StorageClass column contains a popup menu for each row. The menu 
lets you set the storage class of any parameter, or inline the parameter. To 
inline a parameter, select the Inline option from the menu. To declare a 
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parameter to be tunable, set the storage class to any value other than 
Inline.)

In the illustration above, the parameter K2 is inlined, while the other 
parameters are tunable and have various storage classes.

See “Parameters: Storage, Interfacing, and Tuning” on page 5-2 and 
“Simulink Data Objects and Code Generation” on page 5-32 for further 
information on tunable and inlined parameters and storage classes.

5 After selecting tunable parameters, click the Proceed button. This initiates 
the code generation and build process.

6 The build process displays status messages in the MATLAB command 
window. When the build completes, the generated executable is in your 
working directory. The name of the generated executable is subsystem.exe 
(PC) or subsystem (UNIX), where subsystem is the name of the source 
subsystem block. 

The generated code is in a build subdirectory, named 
subsystem_target_rtw, where subsystem is the name of the source 
subsystem block and target is the name of the target configuration.
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Note  You can generate subsystem code using any target configuration 
available in the System Target File Browser. However, if the S-function target 
is selected, Build Subsystem behaves identically to Generate S-function. 
(See “Automated S-Function Generation” on page 10-11.)
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5
Working with Data 
Structures

This chapter continues the discussion of code generation and the build process, introduced in Chapter 
1, “Understanding Real-Time Workshop.” Topics covered in detail include the following :

Parameters: Storage, Interfacing, and 
Tuning (p. 5-2)

How to generate storage declarations for communicating 
model parameters to and from user-written code

Signals: Storage, Optimization, and 
Interfacing (p. 5-17)

How signal storage optimizations work, and how to 
generate storage declarations for communicating model 
signals to and from user-written code

Simulink Data Objects and Code 
Generation (p. 5-32)

How to represent and store signals and parameters in 
Simulink data objects, and how code is generated from 
these objects

Block States: Storing and Interfacing 
(p. 5-49)

How to generate storage declarations for communicating 
discrete block states to and from user-written code

Storage Classes for Data Store Memory 
Blocks (p. 5-57)

How to control data structures which define and initialize 
named shared memory regions, used by the Data Store 
Read and Data Store Write blocks
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Parameters: Storage, Interfacing, and Tuning
Simulink external mode (see Chapter 6, “External Mode”) offers a quick and 
easy way to monitor signals and modify parameter values while generated 
model code executes. However, external mode may not be appropriate for your 
application in some cases. The S-function and DOS targets do not support 
external mode, for example. For other targets, you may want your existing code 
to access parameters and signals of a model directly, rather than using the 
external mode communications mechanism.

This section discusses how Real-Time Workshop generates parameter storage 
declarations, and how you can generate the storage declarations you need to 
interface block parameters to your code. For guidance on implementing a 
parameter tuning interface using a C-API, see “C API for Parameter Tuning” 
on page 14-77.

Storage of Nontunable Parameters
By default, block parameters are not tunable in the generated code. In the 
default case, Real-Time Workshop has control of parameter storage 
declarations and the symbolic naming of parameters in the generated code.

Nontunable parameters are stored as fields within rtP, a model-specific global 
parameter data structure. Real-Time Workshop initializes each field of rtP to 
the value of the corresponding block parameter at code generation time. 

When the Inline parameters option is on, block parameters are evaluated at 
code generation time, and their values appear as constants in the generated 
code. (A vector parameter, however, may be represented as an array of 
constants within rtP.) Use the Generate scalar inline parameters as 
pull-down menu on the General code appearance category pane to choose 
whether to represent such parameters as literals (numeric constants) or as 
macros (#define constants) in the generated code.

As an example of nontunable parameter storage, consider this model.
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The workspace variable Kp sets the gain of the Gain1 block.

Assume that Kp is nontunable, and has a value of 5.0. Table 5-1 shows the 
variable declarations and the code generated for Kp in the noninlined and 
inlined cases. 

Notice that the generated code does not preserve the symbolic name Kp. The 
noninlined code represents the gain of the Gain1 block as rtP.Gain1_Gain.
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Tunable Parameter Storage
A tunable parameter is a block parameter whose value can be changed at 
run-time. A tunable parameter is inherently noninlined. A tunable expression 
is an expression that contains one or more tunable parameters.

When you declare a parameter tunable, you control whether or not the 
parameter is stored within rtP. You also control the symbolic name of the 
parameter in the generated code.

When you declare a parameter tunable, you specify:

Table 5-1:  Nontunable Parameter Storage Declarations and Code

Inline 
Parameters

Generated Variable Declaration and Code

Off typedef struct Parameters_tag {
real_T Sine_Wave_Amp;
real_T Sine_Wave_Bias;
real_T Sine_Wave_Freq;
real_T Sine_Wave_Phase;
real_T Gain1_Gain;

} Parameters;
.
.
Parameters rtP = {
1.0 , /*Sine_Wave_Amp :'<Root>/Sine Wave' */
0.0 , /*Sine_Wave_Bias:'<Root>/Sine Wave' */
1.0 , /*Sine_Wave_Freq:'<Root>/Sine Wave' */
0.0 , /*Sine_Wave_Phase:'<Root>/Sine Wave'*/
5.0 /*Gain1_Gain : '<Root>/Gain1' */
};
.
.
rtY.Out1 = (rtP.Gain1_Gain * rtb_u);

On rtY.Out1 = (5.0 * rtb_u);
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• The storage class of the parameter.

In Real-Time Workshop, the storage class property of a parameter specifies 
how Real-Time Workshop declares the parameter in generated code.

Note that the term “storage class,” as used in Real-Time Workshop, is not 
synonymous with the term storage class specifier, as used in the C language.

• A storage type qualifier, such as const or volatile. This is simply an string 
that is included in the variable declaration, without error checking.

• (Implicitly) the symbolic name of the variable or field in which the parameter 
is stored. Real-Time Workshop derives variable and field names from the 
names of tunable parameters.

Real-Time Workshop generates a variable or struct storage declaration for 
each tunable parameter. Your choice of storage class controls whether the 
parameter is declared as a member of rtP or as a separate global variable.

You can use the generated storage declaration to make the variable visible to 
your code. You can also make variables declared in your code visible to the 
generated code. You are responsible for properly linking your code to generated 
code modules.

You can use tunable parameters or expressions in your root model and in 
masked or unmasked subsystems, subject to certain restrictions (See “Tunable 
Expressions” on page 5-12.)

To declare tunable parameters, you must first enable the Inline parameters 
option. You then use the Model Parameter Configuration dialog to remove 
individual parameters from inlining and declare them to be tunable. This 
allows you to improve overall efficiency by inlining most parameters, while at 
the same time retaining the flexibility of run-time tuning for selected 
parameters.

The mechanics of declaring tunable parameters is discussed in “Using the 
Model Parameter Configuration Dialog” on page 5-8.

Storage Classes of Tunable Parameters
Real-Time Workshop defines four storage classes for tunable parameters. You 
must declare a tunable parameter to have one of the following storage classes:

• SimulinkGlobal(Auto): SimulinkGlobal(Auto) is the default storage class. 
Real-Time Workshop stores the parameter as a member of rtP. Each 



5 Working with Data Structures

5-6

member of rtP is initialized to the value of the corresponding workspace 
variable at code generation time.

• ExportedGlobal: The generated code instantiates and initializes the 
parameter and model_private.h exports it as a global variable. An exported 
global variable is independent of the rtP data structure. Each exported 
global variable is initialized to the value of the corresponding workspace 
variable at code generation time.

• ImportedExtern: model_private.h declares the parameter as an extern 
variable. Your code must supply the proper variable definition and 
initializer, if any.

• ImportedExternPointer: model_private.h declares the variable as an 
extern pointer. Your code must supply the proper pointer variable definition 
and initializer, if any.

The generated code for model.h includes model_private.h in order to make 
the extern declarations available to subsystem files.

As an example of how the storage class declaration affects the code generated 
for a parameter, consider the model shown below.

The workspace variable Kp sets the gain of the Gain1 block. Assume that the 
value of Kp is 5.0. Table 5-2 shows the variable declarations and the code 
generated for the gain block when Kp is declared as a tunable parameter. An 
example is shown for each storage class.
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Note  Real-Time Workshop uses column-major ordering for two-dimensional 
signal and parameter data. When interfacing your hand-written code 
interfaces to such signals or parameters via ExportedGlobal, 
ImportedExtern, or ImportedExternPointer declarations, make sure that 
your code observes this ordering convention.

Note that the symbolic name Kp is preserved in the variable and field names in 
the generated code.

Table 5-2:  Tunable Parameter Storage Declarations and Code

Storage Class Generated Variable Declaration and Code

SimulinkGlobal(Auto) typedef struct Parameters_tag {
real_T Kp;

} Parameters;
.
.
Parameters rtP = {

5.0 
};
.
.
rtY.Out1 = (rtP.Kp * rtb_u);

ExportedGlobal extern real_T Kp;
.
.
real_T Kp = 5.0;
.
.
rtY.Out1 = (Kp * rtb_u);
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Using the Model Parameter Configuration Dialog
The Model Parameter Configuration dialog is available only when the Inline 
parameters option on the Advanced page is selected. Selecting this option 
activates the Configure button.

ImportedExtern extern real_T Kp;
.
.
rtY.Out1 = (Kp * rtb_u);

ImportedExternPointer extern real_T *Kp; 
.
.
rtY.Out1 = ((*Kp) * rtb_u);

Table 5-2:  Tunable Parameter Storage Declarations and Code

Storage Class Generated Variable Declaration and Code
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Clicking on the Configure button opens the Model Parameter Configuration 
dialog.

Figure 5-1:  The Model Parameter Configuration Dialog

The Model Parameter Configuration dialog lets you select workspace 
variables and declare them to be tunable parameters in the current model. The 
dialog is divided into two panels:

• The Global (tunable) parameters panel displays and maintains a list of 
tunable parameters associated with the model.

• The Source list panel displays a list of workspace variables and lets you add 
them to the tunable parameters list.

To declare tunable parameters, you select one or more variables from the 
source list, add them to the Global (tunable) parameters list, and set their 
storage class and other attributes.
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Source List Panel. The Source list panel displays a menu and a scrolling table of 
numerical workspace variables.

The menu lets you choose the source of the variables to be displayed in the list. 
Currently there is only one choice: MATLAB workspace. The source list 
displays names of the variables defined in the MATLAB base workspace.

Selecting one or more variables from the source list enables the Add to table 
button. Clicking Add to table adds selected variables to the tunable 
parameters list in the Global (tunable) parameters panel. This action is all 
that is necessary to declare tunable parameters.

In the source list, the names of variables that have been added to the tunable 
parameters list are displayed in italics (See Figure 5-1).

The Refresh list button updates the table of variables to reflect the current 
state of the workspace. If you define or remove variables in the workspace 
while the Model Parameter Configuration dialog is open, click the Refresh 
list button when you return to the dialog. The new variables are added to the 
source list.

Global (Tunable) Parameters Panel. The Global (tunable) parameters panel 
displays a scrolling table of variables that have been declared tunable in the 
current model, and lets you specify their attributes. The Global (tunable) 
parameters panel also lets you remove entries from the list, or create new 
tunable parameters.

You select individual variables and change their attributes directly in the 
table. The attributes are:

• Storage class of the parameter in the generated code. Select one of
- SimulinkGlobal(Auto)
- ExportedGlobal
- ImportedExtern
- ImportedExternPointer

See “Storage Classes of Tunable Parameters” on page 5-5 for definitions.

• Storage type qualifier of the variable in the generated code. For variables 
with any storage class except SimulinkGlobal(Auto), you can add a qualifier 
(such as const or volatile) to the generated storage declaration. To do so, 
you can select a predefined qualifier from the list, or add additional qualifiers 
to the list. Note that the code generator does not check the storage type 
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qualifier for validity. The code generator includes the qualifier string in the 
generated code without syntax checking.

• Name of the parameter. This field is used only when creating a new tunable 
variable.

The Remove button deletes selected variables from the Global (tunable) 
parameters list.

The New button lets you create new tunable variables in the Global (tunable) 
parameters list. At a later time, you can add references to these variables in 
the model. 

If the name you enter matches the name of an existing workspace variable in 
the Source list, that variable is declared tunable, and is displayed in italics in 
the Source list.

To define a new tunable variable, click the New button. This creates an empty 
entry in the table. Then, enter the name and attributes of the variable and click 
Apply.

Note  If you edit the name of an existing variable in the list, you actually 
create a new tunable variable with the new name. The previous variable is 
removed from the list and loses its tunability (that is, it is inlined).

Declaring Tunable Variables
To declare an existing variable tunable:

1 Open the Model Parameter Configuration dialog.

2 In the Source list panel, click on the desired variable in the list to select it. 

3 Click the Add to table button. The variable then appears in the table of 
tunable variables in the Global (tunable) parameters panel.

4 Click on the variable in the Global (tunable) parameters panel.

5 Select the desired storage class from the Storage class menu.

6 Optionally, select (or enter) a storage type qualifier.
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7 Click Apply, or click OK to apply changes and close the dialog.

Tunable Expressions
Real-Time Workshop supports the use of tunable variables in expressions. An 
expression that contains one or more tunable parameters is called a tunable 
expression. 

Currently, there are certain limitations on the use of tunable variables in 
expressions. When an expression described below as not supported is 
encountered during code generation, a warning is issued and a nontunable 
expression is generated in the code. The limitations on tunable expressions are:

•  Complex expressions are not supported, except where the expression is 
simply the name of a complex variable. 

•  The use of certain operators or functions in expressions containing tunable 
operands is restricted. Restrictions are applied to four categories of operators 
or functions, classified in Table 5-3.

The rules applying to each category are as follows:

• Category 1 is unrestricted. These operators can be used in tunable 
expressions with any combination of scalar or vector operands.

• Category 2 operators can be used in tunable expressions where at least one 
operand is a scalar. That is, scalar/scalar and scalar/matrix operand 
combinations are supported, but not matrix/matrix.

Table 5-3:  Tunability Classification of Operators and Functions 

Category Operators or Functions

1 + - .* ./ < > <= >= == ~= & |

2 * /

3 abs, acos, asin, atan, atan2, boolean, ceil, cos, 
cosh, exp, floor, int8, int16, int32, log, log10, 
rem, sign, sin, sinh, sqrt, tan, tanh, uint8, 
uint16, uint32

4  : .^ ^ [] {} . \ .\ ' .' ; ,
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• Category 3 lists all functions that support tunable arguments. Tunable 
arguments passed to these functions retain their tunability. Tunable 
arguments passed to any other functions lose their tunability.

• Category 4 operators are not supported. 

Note  The “dot” (structure membership) operator is not supported. This 
means that expressions that include a structure member are not tunable.

Tunable Expressions in Masked Subsystems
Tunable expressions are allowed in masked subsystems. You can use tunable 
parameter names or tunable expressions in a masked subsystem dialog. When 
referenced in lower-level subsystems, such parameters remain tunable.

As an example, consider the masked subsystem depicted below. The masked 
dialog variable k sets the gain parameter of theGain.

Suppose that the base workspace variable b is declared tunable with 
SimulinkGlobal(Auto) storage class. Figure 5-2 shows the tunable expression 
b*3 in the subsystem’s mask dialog.

Figure 5-2:  Tunable Expression in Subsystem Mask Dialog
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Real-Time Workshop produces the following output computation for theGain. 
The variable b is represented as a member of the global parameters structure, 
rtP. (Note that for clarity in showing the individual Gain block computation, 
Expression folding was turned off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (rtP.b * 3.0);

Limitations of Tunable Expressions in Masked Subsystems. Expressions that include 
variables that were declared or modified in mask initialization code are not 
tunable.

As an example, consider the subsystem above, modified as follows:

• The mask initialization code is
t = 3 * k;

• The parameter k of the myGain block is 4 + t.

• Workspace variable b = 2. The expression b * 3 is plugged into the mask 
dialog as in Figure 5-2.

Since the mask initialization code can only run once, k is evaluated at code 
generation time as

4 + (3 * (2 * 3) )

Real-Time Workshop inlines the result. Therefore, despite the fact that b was 
declared tunable, the code generator produces the following output 
computation for theGain. (Note that for clarity in showing the individual Gain 
block computation, Expression folding was turned off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (22.0);

Tunability of Linear Block Parameters
The following blocks have a Realization parameter that affects the tunability 
of their parameters:

• Transfer Fcn

• State-Space

• Discrete Transfer Fcn
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• Discrete State-Space

• Discrete Filter

The Realization parameter must be set via the MATLAB set_param 
command, as in the following example.

set_param(gcb,'Realization','auto') 

The following values are defined for the Realization parameter:

• general: The block's parameters are preserved in the generated code, 
permitting parameters to be tuned.

• sparse: The block's parameters are represented in the code by transformed 
values that increase the computational efficiency. Because of the 
transformation, the block’s parameters are no longer tunable.

• auto: This setting is the default. A general realization is used if one or more 
of the block's parameters are tunable. Otherwise sparse, is used.

Note  To tune the parameter values of a block of one of the above types 
without restriction during an external mode simulation, you must use set 
Realization to general.
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Parameter Configuration Quick Reference Diagram
Figure 5-3 diagrams the code generation and storage class options that control 
the representation of parameters in generated code.

Figure 5-3:  Parameter Configuration Quick Reference Diagram
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[SimulinkGlobal(Auto)]
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y = u* (rtP.<???>);
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}

3
2 Otherwise, include in a
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y = u* (rtP.Kp);4

y = u* (Kp);6

y = u* (Kp);5

y = u* (*Kp);7
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Inline
Parameters

KEY:
[option] :  default for code generation option
<???> : RTW generated symbol for parameter  storage field
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Signals: Storage, Optimization, and Interfacing
Real-Time Workshop offers a number of options that let you control how 
signals in your model are stored and represented in the generated code. This 
section discusses how you can use these options to:

• Control whether signal storage is declared in global memory space, or locally 
in functions (i.e., in stack variables).

• Control the allocation of stack space when using local storage.

• Ensure that particular signals are stored in unique memory locations by 
declaring them as test points.

• Reduce memory usage by instructing Real-Time Workshop to store signals 
in reusable buffers.

• Control whether or not signals declared in generated code are interfaceable 
(visible) to externally written code. You can also specify that signals are to 
be stored in locations declared by externally written code.

• Preserve the symbolic names of signals in generated code by using signal 
labels.

The discussion in the following sections refers to code generated from 
Signals_examp, the model shown in the figure below.

Figure 5-4:  Signals_examp Model

Signal Storage Concepts
This section discusses structures and concepts you must understand in order 
to choose the best signal storage options for your application:

• The global block I/O data structure rtB

• The concept of signal storage classes as used in Real-Time Workshop
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rtB: the Global Block I/O Structure
By default, Real-Time Workshop attempts to optimize memory usage by 
sharing signal memory and using local variables.

However, there are a number of circumstances in which it is desirable or 
necessary to place signals in global memory. For example:

• You may want a signal to be stored in a structure that is visible to externally 
written code.

• The number and/or size of signals in your model may exceed the stack space 
available for local variables.

In such cases, it is possible to override the default behavior and store selected 
(or all) signals in a model-specific global block I/O data structure. The global 
block I/O structure is called rtB. 

The following code fragment illustrates how rtB is defined and declared in code 
generated (with signal storage optimizations off) from the Signals_examp 
model shown in Figure 5-4.

typedef struct BlockIO_tag {
real_T SinSig;                        /* <Root>/Sine Wave */
real_T Gain1Sig;                      /* <Root>/Gain1 */

} BlockIO;
.
.
.
/* Block I/O Structure */
BlockIO rtB;

Field names for signals stored in rtB are generated according to the rules 
described in “Symbolic Naming Conventions for Signals in Generated Code” on 
page 5-27.

Storage Classes for Signals
In Real-Time Workshop, the storage class property of a signal specifies how 
Real-Time Workshop declares and stores the signal. In some cases this 
specification is qualified by further options.

Note that in the context of Real-Time Workshop, the term “storage class” is not 
synonymous with the term storage class specifier, as used in the C language.
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Default Storage Class. Auto is the default storage class. Auto is the appropriate 
storage class for signals that you do not need to interface to external code. 
Signals with Auto storage class may be stored in local and/or shared variables, 
or in a global data structure. The form of storage depends on the Signal 
storage reuse, Buffer reuse, and Local block outputs options, and on 
available stack space. See “Signals with Auto Storage Class” on page 5-20 for a 
full description of code generation options for signals with Auto storage class.

Explicitly Assigned Storage Classes. Signals with storage classes other than Auto 
are stored either as members of rtB, or in unstructured global variables, 
independent of rtB. These storage classes are appropriate for signals that you 
want to monitor and/or interface to external code.

The Signal storage reuse and Local block outputs optimizations do not apply 
to signals with storage classes other than Auto.

Use the Signal Properties dialog to assign these storage classes to signals:

• SimulinkGlobal(Test Point): Test points are stored as fields of the rtB 
structure that are not shared or reused by any other signal. See “Declaring 
Test Points” on page 5-24 for further information.

• ExportedGlobal: The signal is stored in a global variable, independent of the 
rtB data structure. model_private.h exports the variable. Signals with 
ExportedGlobal storage class must have unique signal names. See 
“Interfacing Signals to External Code” on page 5-25 for further information. 

• ImportedExtern: model_private.h declares the signal as an extern 
variable. Your code must supply the proper variable definition. Signals with 
ImportedExtern storage class must have unique signal names. See 
“Interfacing Signals to External Code” on page 5-25 for further information.

• ImportedExternPointer: model_private.h declares the signal as an extern 
pointer. Your code must supply a proper pointer variable definition. Signals 
with ImportedExtern storage class must have unique signal names. See 
“Interfacing Signals to External Code” on page 5-25 for further information.
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Signals with Auto Storage Class
This section discusses options that are available for signals with Auto storage 
class. These options let you control signal memory reuse and choose local or 
global (rtB) storage for signals.

The Signal storage reuse and Buffer reuse options control signal memory 
reuse. The Signal storage reuse option is on the Advanced page of the 
Simulation Parameters dialog box.

When Signal storage reuse is on, the Buffer reuse option becomes enabled. 
The Buffer reuse option is located on the General Code Generation Options 
(cont.) category of the Real-Time Workshop pane. When the Buffer reuse 
option is selected, signal storage is reused whenever possible.
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The Local block outputs option determines whether signals are stored as 
members of rtB, or as local variables in functions. This option is in the General 
code generation options category of the Real-Time Workshop pane.

By default, both Signal storage reuse and Local block outputs are on.

Note that these options interact. When the Signal storage reuse option is on:

• The Buffer reuse option is enabled. By default, Buffer reuse is on and 
signal memory is reused whenever possible.
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• The Local block outputs option is enabled. This lets you choose whether 
reusable signal variables are declared as local variables in functions, or as 
members of rtB.

The following code examples illustrate the effects of the Signal storage reuse, 
Buffer reuse, and Local block outputs options. The examples were generated 
from the Signals_examp model (see Figure 5-4).

The first example illustrates maximal signal storage optimization, with Signal 
storage reuse, Buffer reuse, and Local block outputs on (the default). The 
output signals from the Sine Wave and Gain blocks reuse rtb_SinSig, a 
variable local to the MdlOutputs function.

/* local block i/o variables */
real_T rtb_SinSig;

/* Sin Block: <Root>/Sine Wave */

rtb_SinSig = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_Signals_examp) + ...
rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

/* Expression for <Root>/Out1 incorporates: */
/*   Gain Block: <Root>/Gain1 */

/* Outport Block: <Root>/Out1 */
rtY.Out1 = (rtP.Gain1_Gain * rtb_SinSig);

If you are constrained by limited stack space, you can turn Local block 
outputs off and still benefit from memory reuse. The following example was 
generated with Local block outputs off and Signal storage reuse and Buffer 
reuse on. The output signals from the Sine Wave and Gain blocks reuse 
rtB.temp0, a member of rtB.

rtB.temp0 = rtP.Sine_Wave_Amp * sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

/* Gain Block: <Root>/Gain1 */
rtB.temp0 *= rtP.Gain1_Gain;
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When the Signal storage reuse option is off, Buffer reuse and Local block 
outputs are disabled. This makes all block outputs global and unique, as in the 
following code fragment.

/* Sin Block: <Root>/Sine Wave */

rtB.SinSig = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

/* Gain Block: <Root>/Gain1 */
rtB.Gain1Sig = rtB.SinSig * rtP.Gain1_Gain;

In large models, disabling Signal storage reuse can significantly increase 
RAM and ROM usage. Therefore, this approach is not recommended.

Table 5-4 summarizes the possible combinations of the Signal storage reuse/ 
Buffer reuse and Local block outputs options.

Controlling Stack Space Allocation
When the Local block outputs option is on, the use of stack space is 
constrained by the following TLC variables:

• MaxStackSize: the total allocation size of local variables that are declared by 
all functions in the entire model may not exceed MaxStackSize (in bytes). 
MaxStackSize can be any positive integer. If the total size of local variables 
exceeds this maximum, the Target Language Compiler will allocate the 
remaining variables in global, rather than local, memory.

The default value for MaxStackSize is rtInf, i.e. unlimited stack size.

Table 5-4:  Global, Local, and Reusable Signal Storage Options

Signal storage reuse and 
Buffer reuse ON

Signal storage reuse OFF
(Buffer reuse disabled)

Local Block
Outputs ON

Reuse signals in local 
memory (fully optimized)

N/A

Local Block
Outputs OFF

Reuse signals in rtB 
structure

Individual signal storage in 
rtB structure
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• MaxStackVariableSize: limits the size of any local variable declared in a 
function to N bytes, where N>0. A variable whose size exceeds 
MaxStackVariableSize will be allocated in global, rather than local, 
memory.

You can change the values of these variables in your system target file if 
necessary. See“Target Language Compiler Variables and Options” on 
page 2-59 for further information.

Declaring Test Points
A test point is a signal that is stored in a unique location that is not shared or 
reused by any other signal. Test-pointing is the process of declaring a signal to 
be a test point.

Test points are stored as members of the rtB structure, even when the Signal 
storage reuse and Local block outputs option are selected. Test-pointing lets 
you override these options for individual signals. Therefore, you can test-point 
selected signals, without losing the benefits of optimized storage for the other 
signals in your model.



Signals: Storage, Optimization, and Interfacing

5-25

To declare a test point, use the Simulink Signal Properties dialog box as 
follows:

1 In your Simulink block diagram, select the line that carries the signal. Then 
select Signal properties from the Edit menu of your model. This opens the 
Signal properties dialog box.

Alternatively, you can right-click the line that carries the signal, and select 
Signal properties from the pop-up menu.

2 Check the SimulinkGlobal (Test Point) option. 

3 Click Apply.

For an example of storage declarations and code generated for a test point, see 
Table 5-5, Signal Properties Options and Generated Code, on page 5-29.

Interfacing Signals to External Code
The Simulink Signal Properties dialog lets you interface selected signals to 
externally written code. In this way, your hand-written code has access to such 
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signals for monitoring or other purposes. To interface a signal to external code, 
use the Signal Properties dialog box to assign one of the following storage 
classes to the signal:

• ExportedGlobal
• ImportedExtern
• ImportedExternPointer

Set the storage class as follows:

1 In your Simulink block diagram, select the line that carries the signal.Then 
select Signal Properties from the Edit menu of your model. This opens the 
Signal Properties dialog box.

Alternatively, you can right-click the line that carries the signal, and select 
Signal properties from the pull-down menu.

2 Deselect the SimulinkGlobal (Test Point) option if necessary. This enables 
the RTW storage class field. 

3 Select the desired storage class (ExportedGlobal, ImportedExtern, or 
ImportedExternPointer) from the RTW storage class menu.
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4 Optional: For storage classes other than Auto and SimulinkGlobal, you can 
enter a storage type qualifier such as const or volatile in the RTW storage 
type qualifier field. Note that Real-Time Workshop does not check this 
string for errors; whatever you enter is included in the variable declaration.

5 Click Apply. 

Note  You can also interface test points and other signals that are stored as 
members of rtB to your code. To do this, your code must know the address of 
the rtB structure where the data is stored, and other information. This 
information is not automatically exported. Real-Time Workshop provides C 
and Target Language Compiler APIs that give your code access to rtB and 
other data structures. See “Interfacing Parameters and Signals” on page 14-70 
for further information.

Limitation on Stateflow Outputs. Note that a nonscalar output signal exiting a 
Stateflow chart can not be assigned storage class ImportedExternPointer.

Symbolic Naming Conventions for Signals
in Generated Code
When signals have a storage class other than Auto, Real-Time Workshop 
preserves symbolic information about the signals or their originating blocks in 
the generated code. 

For labelled signals, field names in rtB derive from the signal names. In the 
following example, the field names rtB.SinSig and rtB.Gain1Sig derive from 
the corresponding labeled signals in the Signals_examp model (shown in 
Figure 5-4).

typedef struct BlockIO_tag {
real_T SinSig;                        /* <Root>/Sine Wave */
real_T Gain1Sig;                      /* <Root>/Gain1 */

} BlockIO;

For unlabeled signals, rtB field names derive from the name of the source block 
or subsystem. The naming format is

rtB.system#_BlockName_outport#
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where system# is a unique system number assigned by Simulink, BlockName is 
the name of the source block, and outport# is a port number. The port number 
(outport#) is used only when the source block or subsystem has multiple 
output ports.

When a signal has Auto storage class, Real-Time Workshop controls generation 
of variable or field names without regard to signal labels.
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Summary of Signal Storage Class Options
Table 5-5 shows, for each signal storage class option, the variable declaration 
and the code generated for Sine Wave output (SinSig) of the model shown in 
Figure 5-4.

Table 5-5:  Signal Properties Options and Generated Code 

Storage Class Declaration Code

Auto

(with storage 
optimizations 
on)

real_T rtb_SinSig; rtb_SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Test point typedef struct 
BlockIO_tag {
real_T SinSig; 
real_T Gain1Sig;

} BlockIO;
.
.
BlockIO rtB;

rtB.SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Exported 
Global

extern real_T SinSig;
(declared in 
model_private.h

rtB.SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Imported 
Extern

extern real_T SinSig;
(declared in 
model_private.h)

rtB.SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Imported 
Extern 
Pointer

extern real_T *SinSig;
(declared in 
model_private.h)

*SinSig) = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;
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C API for Parameter Tuning and Signal Monitoring
Real-Time Workshop includes support for development of a C application 
program interface (API) for tuning parameters and monitoring signals 
independent of external mode. See “Interfacing Parameters and Signals” on 
page 14-70 for information.

Target Language Compiler API for Parameter
Tuning and Signal Monitoring
Real-Time Workshop includes support for development of a Target Language 
Compiler API for tuning parameters and monitoring signals independent of 
external mode. See “Target Language Compiler API for Signals and 
Parameters” on page 14-92 for information. 

Parameter Tuning via MATLAB Commands
The Model Parameter Configuration dialog is the recommended way to see 
or set the attributes of tunable parameters. However, you can also use 
MATLAB get_param and set_param commands.

The following commands return the tunable parameters and/or their 
attributes:

• get_param(gcs, 'TunableVars')
• get_param(gcs, 'TunableVarsStorageClass')
• get_param(gcs, 'TunableVarsTypeQualifier')

The following commands declare tunable parameters or set their attributes:

• set_param(gcs, 'TunableVars', str)

The argument str (string) is a comma-separated list of variable names.
• set_param(gcs, 'TunableVarsStorageClass', str)

The argument str (string) is a comma-separated list of storage class 
settings.

The valid storage class settings are:
- Auto
- ExportedGlobal
- ImportedExtern
- ImportedExternPointer
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• set_param(gcs, 'TunableVarsTypeQualifier', str)

The argument str (string) is a comma-separated list of storage type 
qualifiers.

The following example declares the variable k1 to be tunable, with storage class 
ExportedGlobal and type qualifier const.

set_param(gcs, 'TunableVars', 'k1')
set_param(gcs, 'ExportedGlobal')
set_param(gcs, 'TunableVarsTypeQualifier','const')
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Simulink Data Objects and Code Generation
Before using Simulink data objects with Real-Time Workshop, please read the 
following:

• The discussion of Simulink data objects in Using Simulink 

• “Parameters: Storage, Interfacing, and Tuning” on page 5-2

• “Signals: Storage, Optimization, and Interfacing” on page 5-17

Overview
Within the class hierarchy of Simulink data objects, Simulink provides two 
classes that are designed as base classes for signal and parameter storage. 
These are:

• Simulink.Parameter: Objects that are instances of the Simulink.Parameter 
class or any class derived from Simulink.Parameter are called parameter 
objects.

• Simulink.Signal: Objects that are instances of the Simulink.Signal class 
or any class derived from Simulink.Signal are called signal objects.

The RTWInfo properties of parameter and signal objects are used by Real-Time 
Workshop during code generation. These properties let you assign storage 
classes to the objects, thereby controlling how the generated code stores and 
represents signals and parameters.

Real-Time Workshop also writes information about the properties of 
parameter and signal objects to the model.rtw file. This information, formatted 
as Object records, is accessible to Target Language Compiler programs. For 
general information on Object records, see “Object information in the 
model.rtw file” in the Target Language Compiler Reference Guide.

The general procedure for using Simulink data objects in code generation is as 
follows:

1 Define a subclass of one of the built-in Simulink.Data classes.

- For parameters, define a subclass of Simulink.Parameter.

- For signals, define a subclass of Simulink.Signal.
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2 Instantiate parameter or signal objects from your subclass and set their 
properties appropriately, using the Simulink Data Explorer.

3 Use the objects as parameters or signals within your model.

4 Generate code and build your target executable.

The following sections describe the relationship between Simulink data objects 
and code generation in Real-Time Workshop.
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Parameter Objects
This section discusses how to use parameter objects in code generation.

Configuring Parameter Objects for Code Generation
In configuring parameter objects for code generation, you use the following 
code generation and parameter object properties:

• The Inline parameters option (see “Parameters: Storage, Interfacing, and 
Tuning” on page 5-2).

• Parameter object properties:

- Value. This property is the numeric value of the object, used as an initial 
(or inlined) parameter value in generated code.

- RTWInfo.StorageClass. This property controls the generated storage 
declaration and code for the parameter object.

Other parameter object properties (such as user-defined properties of classes 
derived from Simulink.Parameter) do not affect code generation.

Note  If Inline parameters is off (the default), the RTWInfo.StorageClass 
parameter object property is ignored in code generation.

Effect of Storage Classes on Code Generation for Parameter Objects
Real-Time Workshop generates code and storage declarations based on the 
RTWInfo.StorageClass property of the parameter object. The logic is as 
follows:

• If the storage class is 'Auto' (the default), the parameter object is inlined (if 
possible), using the Value property.

• For storage classes other than 'Auto', the parameter object is handled as a 
tunable parameter.

- A global storage declaration is generated. You can use the generated 
storage declaration to make the variable visible to your hand-written code. 
You can also make variables declared in your hand-written code visible to 
the generated code.
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- The symbolic name of the parameter object is preserved in the generated 
code. 

See Table 5-6 for examples of code generated for each possible setting of 
RTWInfo.StorageClass.

Example of Parameter Object Code Generation
In this section, we use the Gain block computations of the model shown in the 
figure below as an example of how Real-Time Workshop generates code for a 
parameter object. 

Figure 5-5:  Model Using Parameter Object Kp As Block Parameter

In this model, Kp sets the gain of the Gain1 block.

To configure a parameter object such as Kp for code generation:

1 Define a subclass of Simulink.Parameter. In this example, the parameter 
object is an instance of the example class SimulinkDemos.Parameter, which 
is provided with Simulink. For the definition of SimulinkDemos.Parameter, 
see the directory 
matlabroot/toolbox/simulink/simdemos/@SimulinkDemos.
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2 Instantiate a parameter object from your subclass. The following example 
instantiates Kp as a parameter object of class SimulinkDemos.Parameter.

Kp = SimulinkDemos.Parameter;

Make sure that the name of the parameter object matches the desired block 
parameter in your model. This ensures that Simulink can associate the 
parameter name with the correct object. For example, in the model of 
Figure 5-5, the Gain block parameter Kp resolves to the parameter object Kp.

3 Set the object properties.You can do this via the Simulink Data Explorer. 
Alternatively, you can assign properties via MATLAB commands, as follows:

- Set the Value property, for example:
Kp.Value = 5.0;

- Set the RTWInfo.StorageClass property, for example:
Kp.RTWInfo.StorageClass = 'ExportedGlobal';

Table 5-6 shows the variable declarations for Kp and the code generated for the 
Gain block in the model shown in Figure 5-5, with Inline parameters on. (Due 
to expression folding optimizations, the gain computation is included in the 
output computation.) An example is shown for each possible setting of 
RTWInfo.StorageClass.
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Table 5-6:  Code Generation from Parameter Objects (Inline Parameters ON)

StorageClass Property Generated Variable Declaration 
and Code

Auto rtY.Out1 = (5.0 * rtb_u)

Simulink Global typedef struct Parameters_tag {
  real_T Kp;
.
.
Parameters rtP = {
  5.0 
};
.
.
rtY.Out1 = (rtP.Kp * rtb_u);

Exported Global extern real_T Kp;
.
.
real_T Kp = 5.0;
.
.
rtY.Out1 = (Kp * rtb_u);

Imported Extern  extern real_T Kp;
.
.
rtY.Out1 = (Kp * rtb_u);

Imported Extern Pointer extern real_T *Kp;
.
.
rtY.Out1 = ((*Kp) * rtb_u);
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Parameter Object Configuration Quick 
Reference Diagram
The following figure diagrams the code generation and storage class options 
that control the representation of parameter objects in generated code.

Figure 5-6:  Parameter Object Configuration Quick Reference Diagram

Kp
  u y

    Kp = Simulink.Parameter; Kp.Value = 5.0;

REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

Inline
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ImportedExternPointer
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Include parameter fields in a
global structure (names may be
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1
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REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

const *p_<???> = &rtP.<???>[0];
for (i=0; i<N; i++){
  y[i] = u * (p_<???>[i]);
}

3
2 Otherwise, include in a

constant global structure

y = u* (rtP.Kp);4

y = u* (Kp);6

y = u* (Kp);5

y = u* (*Kp);7

Include in a
global structure

Unstructured
storage
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(must be unique)

[OFF]

[Auto]
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KEY:
[option] :  default for code generation option
<???> : RTW generated symbol for parameter  storage field
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Signal Objects
This section discusses how to use signal objects in code generation.

Configuring Signal Objects for Code Generation
In configuring signal objects for code generation, you use the following code 
generation options and signal object properties:

• The Signal storage reuse code generation option (see “Signals: Storage, 
Optimization, and Interfacing” on page 5-17).

• The Local block outputs code generation option (see “Signals: Storage, 
Optimization, and Interfacing” on page 5-17). 

• Signal object properties:

- RTWInfo.StorageClass. The storage classes defined for signal objects, and 
their effect on code generation, are the same for model signals and signal 
objects (see “Storage Classes for Signals” on page 5–18).

Other signal object properties (such as user-defined properties of classes 
derived from Simulink.Signal) do not affect code generation.

Effect of Storage Classes on Code Generation for Signal Objects
The way in which Real-Time Workshop uses storage classes to determine how 
signals are stored is the same with and without signal objects. However, if a 
signal’s label resolves to a signal object, the object’s RTWInfo.StorageClass 
property is used in place of the port configuration of the signal.

The default storage class is Auto. If the storage type is Auto, Real-Time 
Workshop follows the Signal storage reuse, Buffer reuse, and Local block 
outputs code generation options to determine whether signal objects are stored 
in reusable and/or local variables. Make sure that these options are set 
correctly for your application.

To generate a a test point or externally interfaceable signal storage 
declaration, use an explicit RTWInfo.StorageClass assignment. For example, 
setting the storage class to SimulinkGlobal, as in the following command, is 
equivalent to declaring a signal as a test point.

SinSig.RTWInfo.StorageClass = 'SimulinkGlobal';
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Example of Signal Object Code Generation
The discussion and code examples in this section refers to the model shown in 
Figure 5-7.

Figure 5-7:  Example Model With Signal Object

To configure a signal object, you must first create it and associate it with a 
labelled signal in your model. To do this:

1 Define a subclass of Simulink.Signal. In this example, the signal object is 
an instance of the example class SimulinkDemos.Signal, which is provided 
with Simulink. For the definition of SimulinkDemos.Signal, see the 
directory 
matlabroot/toolbox/simulink/simdemos/@SimulinkDemos.

2 Instantiate a signal object from your subclass. The following example 
instantiates SinSig, a signal object of class SimulinkDemos.Signal.

SinSig = SimulinkDemos.Signal;

Make sure that the name of the signal object matches the label of the desired 
signal in your model. This ensures that Simulink can resolve the signal label 
to the correct object. For example, in the model shown in Figure 5-7, the 
signal label SinSig would resolve to the signal object SinSig.

3 Set the object properties as required. You can do this via the Simulink Data 
Explorer. Alternatively, you can assign properties via MATLAB commands. 
For example, assign the signal object’s storage class by setting the 
RTWInfo.StorageClass property as follows.

SinSig.RTWInfo.StorageClass = 'ExportedGlobal';

Table 5-7 shows, for each setting of RTWInfo.StorageClass, the variable 
declaration and the code generated for Sine Wave output (SinSig) of the model 
shown in Figure 5-7.
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Table 5-7:  Signal Properties Options and Generated Code 

Storage Class Declaration Code

Auto

(with storage 
optimizations 
on)

real_T rtb_SinSig; rtb_SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Simulink 
Global

typedef struct 
BlockIO_tag {
real_T SinSig; 
real_T Gain1Sig;

} BlockIO;
.
.
BlockIO rtB;

rtb_SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Exported 
Global

extern real_T SinSig; rtb_SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Imported 
Extern

extern real_T SinSig; rtb_SinSig = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;

Imported 
Extern 
Pointer

extern real_T *SinSig; (*SinSig) = rtP.Sine_Wave_Amp * 
sin(rtP.Sine_Wave_Freq * 
rtmGetT(rtM_Signals_examp) + 
rtP.Sine_Wave_Phase) + 
rtP.Sine_Wave_Bias;
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Signal Object Configuration Quick
Reference Diagram
Figure 5-8 diagrams the code generation and storage class options that control 
the representation of signal objects in generated code.

Figure 5-8:  Signal Object Configuration Quick Reference Diagram
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Resolving Conflicts in Configuration of Parameter
and Signal Objects 
This section describes how to avoid and resolve certain conflicts that can arise 
when using parameter and signal objects.

Parameters
Figure 5-9 and Figure 5-10 illustrate a case where both a tunable parameter Kp 
(declared in the Model Parameter Configuration dialog box) and an 
identically named parameter object Kp (defined in the Simulink Data 
Explorer) exist. If Kp is used as a block parameter, there is a potential for 
ambiguity when Simulink attempts to resolve the symbol Kp.

Figure 5-9:  Parameter Kp Defined with SimulinkGlobal Storage Class
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Figure 5-10:  Parameter Object Kp Defined with Auto Storage Class

An obvious solution would be to assign different names to the parameter and 
the parameter object.

If this is not desirable, however, you should make sure that the storage class 
properties of identically named parameters and parameter objects are 
compatible in accordance with Figure 5-11, Compatible Parameter/Parameter 
Object Storage Class Configurations. If they are not, an error message will be 
displayed when the model is run, and/or when code generation is initiated.
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In Figure 5-9 and Figure 5-10, the parameter Kp has SimulinkGlobal(auto) 
storage class and the parameter object Kp has Auto storage class. Accordingly, 
the symbol Kp would resolve to the parameter object Kp.

Figure 5-11:  Compatible Parameter/Parameter Object Storage Class 
Configurations

Signals and Block States
Figure 5-12 and Figure 5-13 illustrate a case where both a signal Sig (defined 
in the Signal Properties dialog box) and a signal object Sig (defined in the 
Simulink Data Explorer) exist. There is a potential for ambiguity when 
Simulink attempts to resolve the symbol Sig.
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Figure 5-12:  Signal Sig Defined as SimulinkGlobal (Test Point)

Figure 5-13:  Signal Object Sig Defined with Auto Storage Class

An obvious solution would be to assign different names to the signal and the 
signal object. If this is not desirable, however, you should make sure that the 
storage class properties of identically named signals and signal objects are 
compatible in accordance with Figure 5-14, Compatible Signal/Signal Object 



Simulink Data Objects and Code Generation

5-47

Configurations. If they are not, an error message will be displayed when model 
is run, and/or when code generation is initiated.

In Figure 5-12 and Figure 5-13, the signal and signal objects Sig both have 
SimulinkGlobal storage class. Therefore no conflict would arise, and Sig would 
resolve to the signal object Sig.

Note  The rules for compatibility between block states/signal objects are 
identical to those given for signals/signal objects.

Figure 5-14:  Compatible Signal/Signal Object Configurations

Customizing Code for Parameter and Signal Objects
You can further influence the treatment of parameter and signal objects in 
generated code by using TLC to access fields in object records in model.rtw 
files. For details on doing this, please see “Object information in the model.rtw 
file” in the Target Language Compiler Reference Guide.

Using Objects to Export ASAP2 Files 
The ASAM-ASAP2 Data Definition Target provides special signal and 
parameter subclasses that support exporting of signal and parameter object 
information to ASAP2 data files. For information about the ASAP2 target and 
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its associated classes and TLC files, see “Generating ASAP2 Files” in the 
Real-Time Workshop Embedded Coder User’s Guide.
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Block States: Storing and Interfacing
For certain block types, Real-Time Workshop lets you control how block states 
in your model are stored and represented in the generated code. Using the 
State Properties dialog, you can:

• Control whether or not states declared in generated code are interfaceable 
(visible) to externally written code. You can also specify that states are to be 
stored in locations declared by externally written code.

• Assign symbolic names to block states in generated code.

Storage of Block States
The discussion of block state storage in this section applies to the following 
block types:

• Discrete Filter

• Discrete State-Space

• Discrete-Time Integrator

• Discrete Transfer Function

• Discrete Zero-Pole

• Memory 

• Unit Delay

These block types require persistent memory to store values representing the 
state of the block between consecutive time intervals. By default, such values 
are stored in a data type work vector. This vector is usually referred to as the 
DWork vector. It is represented in generated code as rtDWork, a global data 
structure. For further information on the DWork vector, see the Target 
Language Compiler Reference Guide.

If you want to interface a block state to your hand-written code, you can specify 
that the state is to be stored in a location other than the DWork vector. You do 
this by assigning a storage class to the block state.

You can also define a symbolic name, to be used in code generation, for a block 
state.
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Block State Storage Classes
The storage class property of a block state specifies how Real-Time Workshop 
declares and stores the state in a variable. Storage class options for block states 
are similar to those for signals. The available storage classes are:

• Auto
• ExportedGlobal
• ImportedExtern
• ImportedExternPointer

Default Storage Class
Auto is the default storage class. Auto is the appropriate storage class for states 
that you do not need to interface to external code. States with Auto storage 
class are stored as members of the Dwork vector. 

You can assign a symbolic name to states with Auto storage class. If you do not 
supply a name, Real-Time Workshop generates one, as described in “Symbolic 
Names for Block States” on page 5-52.

Explicitly Assigned Storage Classes
Block states with storage classes other than Auto are stored in unstructured 
global variables, independent of the Dwork vector. These storage classes are 
appropriate for states that you want to interface to external code. The following 
storage classes are available for states:

• ExportedGlobal: The state is stored in a global variable. model_private.h 
exports the variable. States with ExportedGlobal storage class must have 
unique names. 

• ImportedExtern: model_private.h declares the state as an extern variable. 
Your code must supply the proper variable definition. States with 
ImportedExtern storage class must have unique names.

• ImportedExternPointer: model_private.h declares the state as an extern 
pointer. Your code must supply the proper pointer variable definition. States 
with ImportedExternPointer storage class must have unique names.

Table 5-8, State Properties Options and Generated Code, gives examples of 
variable declarations and the code generated for block states with each type of 
storage class.
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You can assign a symbolic name to states with any of the above storage classes. 
If you do not supply a name, Real-Time Workshop generates one, as described 
in “Symbolic Names for Block States” on page 5-52.

The next section describes how to use the State Properties dialog box to assign 
storage classes to block states.

Using the State Properties Dialog Box to Interface
States to External Code
The State Properties dialog box lets you interface a block’s state to external 
code by assigning a storage class other than Auto (i.e., ExportedGlobal, 
ImportedExtern, or ImportedExternPointer) to the state.

Set the storage class as follows:

1 In your Simulink block diagram, select the desired block. Then select State 
properties from the Edit menu of your model. This opens the State 
Properties dialog box.

Alternatively, you can right-click the block, and select State properties 
from the pull-down menu.

This picture shows the default settings of the State Properties dialog box.

2 Select the desired storage class (ExportedGlobal, ImportedExtern, or 
ImportedExternPointer) from the RTW storage class menu.

3 Optional: For storage classes other than Auto, you can enter a storage type 
qualifier such as const or volatile in the RTW storage type qualifier 
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field. Note that Real-Time Workshop does not check this string for errors; 
whatever you enter is included in the variable declaration.

4 Click Apply and close the dialog box. 

Symbolic Names for Block States
To determine the variable or field name generated for a block’s state, you can 
either:

• Use a default name generated by Real-Time Workshop.

or

• Define a symbolic name via the State Name field of the State Properties 
dialog box.

Default Block State Naming Convention
If you do not define a symbolic name for a block state, Real-Time Workshop 
uses the following default naming convention:

BlockType#_DSTATE

where

• BlockType is the name of the block type (e.g., Discrete_Filter).

• # is a unique ID number (#) assigned by Real-Time Workshop if multiple 
instances of the same block type appear in the model. The ID number is 
appended to BlockType.

• _DSTATE is a string that is always appended to the block type and ID number.

For example, consider the model shown in Figure 5-15.
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Figure 5-15:  Model with Two Discrete Filter Block States

We will examine code generated for the states of the two Discrete Filter blocks. 
Assume that:

• Neither block’s state has a user-defined name.

• The upper Discrete Filter block has Auto storage class (and is therefore 
stored in the DWork vector).

• The lower Discrete Filter block has ExportedGlobal storage class.

The initialization code for the states of the two Discrete Filter blocks would be 
as shown in the following code fragment.

/* DiscreteFilter Block: <Root>/Discrete Filter */
rtDWork.Discrete_Filter_DSTATE = 0.0;

/* DiscreteFilter Block: <Root>/Discrete Filter1 */
Discrete_Filter1_DSTATE = 0.0;

User-Defined Block State Names
Using the State Properties dialog box, you can define your own symbolic name 
for a block state. To do this:

1 Select the desired block. Then select State properties from the Edit menu 
of your model. This opens the State Properties dialog box.

Alternatively, you can right-click on the block, and select State properties 
from the pull-down menu.

2 Enter the symbolic name into the State name field of the State Properties 
dialog box. In this picture, the state name Top_filter is entered.
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3 Click Apply and close the dialog box.

The following state initialization code was generated from the example model 
shown in Figure 5-7, under the following conditions:

• The upper Discrete Filter block has the state name Top_filter, and Auto 
storage class (and is therefore stored in the DWork vector.)

• The lower Discrete Filter block has the state name Lower_filter, and 
ExportedGlobal storage class.

/* DiscreteFilter Block: <Root>/Discrete Filter */
  rtDWork.Top_filter = 0.0;

  /* DiscreteFilter Block: <Root>/Discrete Filter1 */
  Lower_filter = 0.0;

Block States and Simulink Signal Objects
If you are not familiar with Simulink data objects and signal objects, you 
should read “Simulink Data Objects and Code Generation” on page 5–32 before 
reading this section.

You can associate a block state with a signal object, and control code generation 
for the block state through the signal object. To do this:

1 Instantiate the desired signal object, and set its RTWInfo.StorageClass 
property as you require.
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2 Open the State Properties dialog box for the block whose state you want to 
associate with the signal object. Enter the name of the signal object into the 
State name field.

3 Make sure that the storage class and type qualifier settings of the block’s 
State Properties dialog box are compatible with those of the signal object. 
See “Resolving Conflicts in Configuration of Parameter and Signal Objects” 
on page 5-43.

4 Click Apply and close the dialog box.

Note  When associating a block state with a signal object, the mapping 
between the block state and the signal object must be one-to-one. If two or 
more identically named entities, such as a block state and a signal, map to the 
same signal object, the name conflict will be flagged as an error at code 
generation time.
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Summary of State Storage Class Options
Table 5-8 shows, for each state storage class option, the variable declaration 
and MdlInitialize code generated for a Discrete Filter block state. The block 
state has the user-defined state name filt_state.

Table 5-8:  State Properties Options and Generated Code 

Storage 
Class

Declaration Code

Auto typedef struct D_Work_tag {
  real_T filt_state;
  struct {
    int_T ClockTicksCounter;
  } DiscPulse_IWORK;
} D_Work;
(declared in model.h)
.
.
/* Data Type Work (DWork) 
Structure */
D_Work rtDWork;
(declared in model.c)

rtDWork.filt_state = 0.0;

Exported 
Global

extern real_T filt_state;
(declared in model_private.h)

filt_state = 0.0;

Imported 
Extern

extern real_T filt_state;
(declared in model_private.h)

filt_state = 0.0;

Imported 
Extern 
Pointer

extern real_T *filt_state;
(declared in model_private.h)

*(filt_state) = 0.0;
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Storage Classes for Data Store Memory Blocks
You can control how Data Store Memory blocks in your model are stored and 
represented in the generated code by assigning storage classes and type 
qualifiers. You do this in almost exactly the same way you assign storage 
classes and type qualifiers for block states. 

Data Store Memory blocks, like block states, have Auto storage class by 
default, and their memory is stored within the DWork vector. The symbolic 
name of the storage location is based on the block name.

Note that you can generate code from multiple Data Store Memory blocks that 
have the same name, subject to the following restriction: at most one of the 
identically-named blocks can have a storage class other than Auto. An error 
will be reported if this condition is not met. For blocks with Auto storage class, 
Real-Time Workshop generates a unique symbolic name for each block (if 
necessary) to avoid name clashes. For blocks with non- Auto storage classes, 
Real-Time Workshop simply uses the block name to generate the symbol.

To control the storage declaration for a Data Store Memory block, use the RTW 
storage class and RTW storage type qualifier fields of the Data Store 
Memory block parameters dialog.

In the following block diagram, a Data Store Write block writes to memory 
declared by the Data Store Memory block myData. 

Data Store Memory blocks are nonvirtual, as code is generated for their 
initialization, and declarations in model header files. The Data Store Memory 
block parameter dialog is shown next. Note that it documents which blocks 
write to and read from it.
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Table 5-9 shows code generated for the Data Store Memory block in this model. 
The table gives the variable declarations and MdlOutputs code generated for 
the myData block.



Storage Classes for Data Store Memory Blocks

5-59

Data Store Memory and Simulink Signal Objects
If you are not familiar with Simulink data objects and signal objects, you 
should read “Simulink Data Objects and Code Generation” on page 5–32 before 
reading this section.

You can associate a Data Store Memory block with a signal object, and control 
code generation for the block through the signal object. To do this:

1 Instantiate the desired signal object, and set its RTWInfo.StorageClass 
property as you require.

Table 5-9:  Storage Class Options for Data Store Memory Blocks and Generated Code 

Storage 
Class

Declaration Code

Auto typedef struct D_Work_tag {
real_T myData;

} D_Work;
(declared in model.h)
.
.
/* Data Type Work (DWork) 
Structure */
D_Work rtDWork;
(declared in model.c)

rtDWork.myData = rtb_Sine_Wave;

Exported 
Global

extern real_T myData;
(declared in model_private.h)

myData = rtb_Sine_Wave;

Imported 
Extern

extern real_T myData;
(declared in model_private.h)

myData = rtb_Sine_Wave;

Imported 
Extern 
Pointer

extern real_T *myData;
(declared in model_private.h)

*(myData) = rtb_Sine_Wave;
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2 Open the block parameters dialog box for the Data Store Memory block 
whose state you want to associate with the signal object. Enter the name of 
the signal object into the Data store name field.

3 Make sure that the storage class and type qualifier settings of the block 
parameters dialog box are compatible with those of the signal object. See 
“Resolving Conflicts in Configuration of Parameter and Signal Objects” on 
page 5-43.

4 Click Apply and close the dialog box.

Note  When associating a Data Store Memory block with a signal object, the 
mapping between the Data store name and the signal object name must be 
one-to-one. If two or more identically named entities map to the same signal 
object, the name conflict will be flagged as an error at code generation time.
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External Mode

In external mode, Real-Time Workshop establishes a communications link between a model running 
in Simulink and code executing on a target system. Further details on external mode are provided 
elsewhere in this documentation: Chapter 14, “Creating an External Mode Communication Channel” 
contains advanced information for those who want to implement their own external mode 
communications layer. You may want to read it to gain increased insight into the architecture and 
code structure of external mode communications. In addition, Chapter 12, “Targeting Tornado for 
Real-Time Applications” discusses the use of external mode in the VxWorks Tornado environment. 
The following discussion of external mode covers these major topics:

Introduction (p. 6-2) Summary of external mode features and architecture

Using the External Mode User 
Interface (p. 6-3)

Describes all elements of the external mode user interface

External Mode Compatible Blocks and 
Subsystems (p. 6-19)

Types of blocks that receive and view signals in external 
mode

External Mode Communications 
Overview (p. 6-23)

Summary of the communications process between 
Simulink and the target program

The TCP/IP Implementation (p. 6-26) Features, bundled targets, and techniques for using 
external mode protocol via TCP/IP

Limitations of External Mode (p. 6-33) External mode restrictions imposed by the structure of a 
model
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Introduction
External mode allows two separate systems — a host and a target — to 
communicate. The host is the computer where MATLAB and Simulink are 
executing. The target is the computer where the executable created by 
Real-Time Workshop runs.

The host (Simulink) transmits messages requesting the target to accept 
parameter changes or to upload signal data. The target responds by executing 
the request. External mode communication is based on a client/server 
architecture, in which Simulink is the client and the target is the server.

External mode lets you:

• Modify, or tune, block parameters in real time. In external mode, whenever 
you change parameters in the block diagram, Simulink automatically 
downloads them to the executing target program. This lets you tune your 
program’s parameters without recompiling. In external mode, the Simulink 
model becomes a graphical front end to the target program.

• View and log block outputs in many types of blocks and subsystems. You can 
monitor and/or store signal data from the executing target program, without 
writing special interface code. You can define the conditions under which 
data is uploaded from target to host. For example, data uploading could be 
triggered by a selected signal crossing zero in a positive direction. 
Alternatively, you can manually trigger data uploading.

External mode works by establishing a communication channel between 
Simulink and code generated by Real-Time Workshop. This channel is 
implemented by a low-level transport layer that handles physical transmission 
of messages. Both Simulink and the generated model code are independent of 
this layer. The transport layer and the code directly interfacing to the transport 
layer are isolated in separate modules that format, transmit, and receive 
messages and data packets.

This design makes it possible for different targets to use different transport 
layers. For example, the GRT, GRT malloc, ERT, and Tornado targets support 
host/target communication via TCP/IP, whereas the xPC Target supports both 
RS232 (serial) and TCP/IP communication. The Real-Time Windows Target 
implements external mode communication via shared memory.
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Using the External Mode User Interface
This section discusses the elements of the Simulink and Real-Time Workshop 
user interface that control the operation of external mode. These elements 
include:

• External mode related menu items in Simulation and Tools menus and in 
the Simulink toolbar.

• External Mode Control Panel

• Target Interface Dialog Box

• External Signal & Triggering Dialog Box

• Data Archiving Dialog Box

External Mode Related Menu and Toolbar Items
To communicate with a target program, the model must be operating in 
external mode. The Simulation menu and the toolbar provide two ways to 
enable external mode:

• Select External from the Simulation menu.

• Select External from the simulation mode menu in the toolbar. The 
simulation mode menu is shown in this picture.

Once external mode is enabled, you can use the Simulation menu or the 
toolbar to connect to and control the target program.

Simulation mode menu
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Note  You can enable external mode, and simultaneously connect to the 
target system, by using the External Mode Control Panel. See “External 
Mode Control Panel” on page 6-8.

Simulation Menu
When Simulink is in external mode, the upper section of the Simulation menu 
contains external mode options. Initially, Simulink is disconnected from the 
target program, and the menu displays the options shown in this picture.

Figure 6-1:  Simulation Menu External Mode Options
(Host Disconnected from Target)

The Connect to target option establishes communication with the target 
program. When a connection is established, the target program may be 
executing model code, or it may be awaiting a command from the host to start 
executing model code.

If the target program is executing model code, the Simulation menu contents 
change, as shown in this picture.

Figure 6-2:  Simulation Menu External Mode Options
(Target Executing Model Code)
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The Disconnect from target option disconnects Simulink from the target 
program, which continues to run. The Stop real-time code option terminates 
execution of the target program and disconnects Simulink from the target 
system.

If the target program is in a wait state, the Start real-time code option is 
enabled, as shown in this picture. The Start real-time code option instructs 
the target program to begin executing the model code.

Figure 6-3:  Simulation Menu External Mode Options
(Target Awaiting Start Command)

Toolbar Controls
The Simulink toolbar controls, shown in Figure 6-4, let you control the same 
external mode functions as the Simulation menu. Simulink displays external 
mode icons to the left of the Simulation mode menu. Initially, the toolbar 
displays a Connect to target icon and a disabled Start real-time code button 
(shown in Figure 6-4). Click on the Connect to target icon to connect Simulink 
to the target program.
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Figure 6-4:  External Mode Toolbar Controls (Host Disconnected from Target)

When a connection is established, the target program may be executing model 
code, or it may be awaiting a command from the host to start executing model 
code.

If the target program is executing model code, the toolbar displays a Stop 
real-time code button and a Disconnect from target icon (shown in 
Figure 6-5). Click on the Stop real-time code button to command the target 
program to stop executing model code and disconnect Simulink from the target 
system. Click on the Disconnect from target icon to disconnect Simulink from 
the target program while leaving the target program running.

Simulation mode menu

Connect to target icon

Start real-time code button 
(disabled)



Using the External Mode User Interface

6-7

Figure 6-5:  External Mode Toolbar Controls (Target Executing Model Code)

If the target program is in a wait state, the toolbar displays a Start real-time 
code button and a Disconnect from target icon (shown in Figure 6-6). Click 
on the Start real-time code button to instruct the target program to start 
executing model code. Click on the Disconnect from target icon to disconnect 
Simulink from the target program.

Disconnect from target icon

Stop real-time code button
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Figure 6-6:  External Mode Toolbar Controls (Target in Wait State)

External Mode Control Panel
The External Mode Control Panel provides centralized control of all external 
mode features, including:

• Host/target connection, disconnection, and target program start/stop 
functions, and enabling of external mode

• Arming and disarming the data upload trigger

• External mode communications configuration

• Timing of parameter downloads

• Selection of signals from the target program to be viewed and monitored on 
the host

• Configuration of data archiving features

Disconnect from target icon

Start real-time code button
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Select External mode control panel from the Simulink Tools menu to open 
the External Mode Control Panel.

The following sections describe the features supported by the External Mode 
Control Panel.

Connection and Start/Stop Controls
The External Mode Control Panel performs the same connect/disconnect and 
start/stop functions found in the Simulation menu and the Simulink toolbar 
(see “External Mode Related Menu and Toolbar Items” on page 6-3.)

The Connect/Disconnect button connects to or disconnects from the target 
program. The button text changes in accordance with the state of the 
connection.

Note that if external mode is not enabled at the time the Connect button is 
clicked, the External Mode Control Panel enables external mode 
automatically.

The Start/Stop real-time code button commands the target to start or 
terminate model code execution. The button is disabled until a connection to 
the target is established. The button text changes in accordance with the state 
of the target program.

These buttons control the connection between 
host and manual arming of the data uploading 
trigger.

This check box and button control the timing of
parameter downloads.

These buttons open dialog boxes that configure
external mode target interface, signal 
properties, and data archiving. 
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Target Interface Dialog Box
Pressing the Target Interface button activates the External Target 
Interface dialog box.

The External Target Interface dialog box lets you specify the name of a 
MEX-file that implements host/target communications. This is known as the 
external interface MEX-file. The fields of the External Target Interface dialog 
box are:

• MEX-file for external interface: Name of the external interface MEX-file. 
The default is ext_comm, the TCP/IP-based external interface file provided 
for use with the GRT, GRT malloc, ERT, and Tornado targets

Custom or third-party targets may use a different external interface 
MEX-file.

• MEX-file arguments: Arguments for the external interface MEX-file. For 
example, ext_comm allows three optional arguments: the network name of 
your target, the verbosity level, and a TCP/IP server port number. 

See “The External Interface MEX-File” on page 6-28 for details on ext_comm 
and its arguments.

Specify name of external interface MEX-file here. 
Default is ext_comm.

Enter optional arguments to the external interface MEX-file here.
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External Signal & Triggering Dialog Box
Clicking the Signal & triggering button activates the External Signal & 
Triggering dialog box.

Figure 6-7:  Default Settings of the External Signal & Triggering Dialog Box

The External Signal & Triggering dialog box displays a list of all blocks and 
subsystems in your model that support external mode signal uploading. See 
“External Mode Compatible Blocks and Subsystems” on page 6-19 for 
information on which types of blocks are external mode compatible.

The External Signal & Triggering dialog box lets you select which signals are 
collected from the target system and viewed in external mode. It also lets you 
select a signal that triggers uploading of data when certain signal conditions 
are met, and define the triggering conditions.
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Default Operation
Figure 6-7 shows the default settings of the External Signal and Triggering 
dialog box. The default operation of the External Signal and Triggering 
dialog box is designed to simplify monitoring the target program. If you use the 
default settings, you do not need to preconfigure signals and triggers. Simply 
start the target program and connect the Simulink model to it. All external 
mode compatible blocks will be selected and the trigger will be armed. Signal 
uploading will begin immediately upon connection to the target program.

The default configuration is:

• Arm when connect to target: on

• Trigger Mode: normal

• Trigger Source: manual

• Select all: on

Signal Selection
All external mode compatible blocks in your model appear in the Signal 
selection list of the External Signal & Triggering dialog box. You use this list 
to select signals to be viewed. An X appears to the left of each selected block’s 
name. 

The Select all check box selects all signals. By default, Select all is on.

If Select all is off, you can select or deselect individual signals using the on and 
off radio buttons. To select a signal, click on the desired list entry and click the 
on radio button. To deselect a signal, click on the desired list entry and click 
the off radio button. Alternatively, you can double-click a signal in the list to 
toggle between selection and deselection.

The Clear all button deselects all signals.

Trigger Options
The Trigger panel located at the bottom left of the External Signal & 
Triggering dialog box contains options that control when and how signal data 
is collected (uploaded) from the target system. These options are:
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• Source: manual or signal. Selecting manual directs external mode to start 
logging data when the Arm trigger button on the External Mode Control 
Panel is clicked. 

Selecting signal tells external mode to start logging data when a selected 
trigger signal satisfies trigger conditions specified in the Trigger signal 
panel. When the trigger conditions are satisfied (that is, the signal crosses 
the trigger level in the specified direction) a trigger event occurs. If the 
trigger is armed, external mode monitors for the occurrence of a trigger 
event. When a trigger event occurs, data logging begins.

• Arm when connect to target: If this option is selected, external mode arms 
the trigger automatically when Simulink has connected to the target. If the 
trigger source is manual, uploading begins immediately. If the trigger mode 
is signal, monitoring of the trigger signal begins immediately, and 
uploading begins upon the occurrence of a trigger event.

If Arm when connect to target is not selected, you must manually arm the 
trigger by clicking the Arm trigger button in the External Mode Control 
Panel.

• Duration: The number of base rate steps for which external mode logs data 
after a trigger event. For example, if the fastest rate in the model is 1 second 
and a signal sampled at 1 Hz is being logged for a duration of 10 seconds, 
then external mode will collect 10 samples. If a signal sampled at 2 Hz is 
logged, only 5 samples will be collected.

• Mode: normal or one-shot. In normal mode, external mode automatically 
rearms the trigger after each trigger event. In one-shot mode, external mode 
collects only one buffer of data each time you arm the trigger. See “Data 
Archiving Dialog Box” on page 6-15 for further details on the effect of the 
Mode setting.

• Delay: The delay represents the amount of time that elapses between a 
trigger occurrence and the start of data collection. The delay is expressed in 
base rate steps, and can be positive or negative. A negative delay corresponds 
to pretriggering. When the delay is negative, data from the time preceding 
the trigger is collected and uploaded.

Trigger Signal Selection
You can designate one signal as a trigger signal. To select a trigger signal, 
select signal from the Trigger Source menu. This activates the Trigger 
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signal panel (see Figure 6-8). Then, click on the desired entry in the Signal 
selection list, and click the Trigger signal button.

When a signal is selected as a trigger, a T appears to the left of the block’s name 
in the Signal selection list. In Figure 6-8, the Pilot G force Scope signal is 
the trigger. Pilot G force Scope is also selected for viewing, as indicated by 
the X to the left of the block name.

Figure 6-8:  Signals & Triggering Window with Trigger Selected

After selecting the trigger signal, you can define the trigger conditions in the 
Trigger signal panel, and set the Port and Element fields located on the right 
side of the Trigger panel. 

The Trigger Signal panel
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Setting Trigger Conditions

Note  The Trigger signal panel and the Port and Element fields of the 
External Signal & Trigger dialog box are enabled only when Trigger source 
is set to signal.

By default, any element of the first input port of the specified trigger block can 
cause the trigger to fire (i.e., Port 1, any element). You can modify this behavior 
by adjusting the Port and Element fields located on the right side of the 
Trigger panel. The Port field accepts a number or the keyword last. The 
Element field accepts a number or the keywords any and last.

The Trigger Signal panel defines the conditions under which a trigger event 
will occur. These are:

• Level: Specifies a threshold value. The trigger signal must cross this value 
in a designated direction to fire the trigger. By default, the level is 0.

• Direction: rising, falling, or either. This specifies the direction in which 
the signal must be travelling when it crosses the threshold value. The default 
is rising.

• Hold-off: Applies only to normal mode. Expressed in base rate steps, 
Hold-off is the time between the termination of one trigger event and the 
rearming of the trigger.

Data Archiving Dialog Box
Pressing the Data Archiving button of the External Mode Control Panel 
opens the External Data Archiving dialog box.
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This panel supports the following features:

Directory Notes. Use this option to add annotations that pertain to a collection of 
related data files in a directory. 

Pressing the Edit directory note button opens the MATLAB editor. Place 
comments that you want saved to a file in the specified directory in this 
window. By default, the comments are saved to the directory last written to by 
data archiving.

File Notes. Pressing Edit file note opens a file finder window that is, by default, 
set to the last file to which you have written. Selecting any MAT-file opens an 
edit window. Add or edit comments in this window that you want saved with 
your individual MAT-file.

Data Archiving. Clicking the Enable Archiving check box activates the 
automated data archiving features of external mode. To understand how the 
archiving features work, it is necessary to consider the handling of data when 
archiving is not enabled. There are two cases, one-shot and normal mode.

In one-shot mode, after a trigger event occurs, each selected block writes its 
data to the workspace just as it would at the end of a simulation. If another 
one-shot is triggered, the existing workspace data will be overwritten.

In normal mode, external mode automatically rearms the trigger after each 
trigger event. Consequently, you can think of normal mode as a series of 
one-shots. Each one-shot in this series, except for the last, is referred to as an 
intermediate result. Since the trigger can fire at any time, writing intermediate 
results to the workspace generally results in unpredictable overwriting of the 
workspace variables. For this reason, the default behavior is to write only the 
results from the final one-shot to the workspace. The intermediate results are 
discarded. If you know that sufficient time exists between triggers for 
inspection of the intermediate results, then you can override the default 
behavior by checking the Write intermediate results to workspace check box. 
Note that this option does not protect the workspace data from being 
overwritten by subsequent triggers.

The options in the External Data Archiving dialog box support automatic 
writing of logging results, including intermediate results, to disk. Data 
archiving provides the following settings:



Using the External Mode User Interface

6-17

• Directory: Specifies the directory in which data is saved. External mode 
appends a suffix if you select Increment directory when trigger armed.

• File: Specifies the filename in which data is saved. External mode appends 
a suffix if you select Increment file after one-shot.

• Increment directory when trigger armed: External mode uses a different 
directory for writing log files each time that you press the Arm trigger 
button. The directories are named incrementally; for example: dirname1, 
dirname2, and so on.

• Increment file after one-shot: New data buffers are saved in incremental 
files: filename1, filename2, etc. Note that this happens automatically in 
normal mode. 

• Append file suffix to variable names: Whenever external mode increments 
filenames, each file contains variables with identical names. Choosing 
Append file suffix to variable name results in each file containing unique 
variable names. For example, external mode will save a variable named 
xdata in incremental files (file_1, file_2, etc.) as xdata_1, xdata_2, and so 
on. This is useful if you want to load the MAT-files into the workspace and 
compare variables in MATLAB. Without the unique names, each instance of 
xdata would overwrite the previous one in the MATLAB workspace.

This picture shows the External Data Archiving dialog box with archiving 
enabled.

Unless you select Enable archiving, entries for the Directory and File fields 
are not accepted.
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Parameter Download Options
The batch download check box on the External Mode Control Panel enables 
or disables batch parameter changes.

By default, batch download is not enabled. When batch download is not 
enabled, changes made directly to block parameters are sent immediately to 
the target. Changes to MATLAB workspace variables are sent when an 
Update diagram is performed.

When batch download is enabled, the Download button is enabled. Changes 
made to block parameters are stored locally until you click the Download 
button. When you click the Download button, the changes are sent in a single 
transmission.

When parameter changes have been made and are awaiting batch download, 
the External Mode Control Panel displays the message Parameter changes 
pending... to the right of the download button. (See Figure 6-9.) This message 
disappears after Simulink receives notification from the target that the new 
parameters have been installed into the parameter vector of the target system.

Figure 6-9 shows the External Mode Control Panel with the batch download 
option activated.

Figure 6-9:  External Mode Control Panel in Batch Download Mode

Parameter changes pending... message 
appears if unsent parameter value changes 
are awaiting download.
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External Mode Compatible Blocks and Subsystems

Compatible Blocks
In external mode, you can use the following types of blocks to receive and view 
signals uploaded from the target program:

• Scope blocks

• Blocks in the Dials & Gauges Blockset

• Display blocks

• To Workspace blocks

• User-written S-Function blocks

An external mode method has been added to the S-function API. This method 
allows user-written blocks to support external mode. See 
matlabroot/simulink/simstruc.h.

• XY Graph blocks

In addition to these types of blocks, you can designate certain subsystems as 
Signal Viewing Subsystems and use them to receive and view signals uploaded 
from the target program. See “Signal Viewing Subsystems” on page 6-19 for 
further information.

External mode compatible blocks and subsystems are selected, and the trigger 
is armed, via the External Signal and Triggering dialog box. For example, 
Figure 6-7 shows two Scope blocks, a Display block, and a Signal Viewing 
Subsystem (theSink). All of these are selected and the trigger is set to be armed 
when connected to the target program.

Signal Viewing Subsystems
A Signal Viewing Subsystem is an atomic subsystem that encapsulates 
processing and viewing of signals received from the target system. A Signal 
Viewing Subsystem runs only on the host, generating no code in the target 
system. Signal Viewing Subsystems run in all simulation modes — normal, 
accelerated, and external.

Signal Viewing Subsystems are useful in situations where you want to process 
or condition signals before viewing or logging them, but you do not want to 
perform these tasks on the target system. By using a Signal Viewing 
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Subsystem, you can generate smaller and more efficient code on the target 
system.

Like other external mode compatible blocks, Signal Viewing Subsystems are 
displayed in the External Signal and Triggering dialog box.

To declare a subsystem to be a Signal Viewing Subsystem:

1 Select the Treat as atomic unit option in the Block Parameters dialog box.

See “Nonvirtual Subsystem Code Generation” on page 4-2 for further 
information on atomic subsystems.

2 Use the following set_param command to turn the SimViewingDevice 
property on.

set_param('blockname', 'SimViewingDevice','on')

where 'blockname' is the name of the subsystem. 

3 Make sure the subsystem meets the following requirements:

- It must be a pure sink block. That is, it must contain no Outport blocks or 
Data Store blocks. It may contain Goto blocks only if the corresponding 
from blocks are contained within the subsystem boundaries.

- It must have no continuous states.

The model shown below, sink_examp, contains an atomic subsystem, theSink.

The subsystem theSink, shown below, applies a gain and an offset to its input 
signal, and displays it on a Scope block.
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If theSink is declared as a Signal Viewing Subsystem, the generated target 
program includes only the code for the Sine Wave block. If theSink is selected 
and armed in the External Signal and Triggering dialog box (as shown in 
Figure 6-10), the target program uploads the sine wave signal to theSink 
during simulation.You can then modify the parameters of the blocks within 
theSink and observe their effect upon the uploaded signal.

Figure 6-10:  Signal Viewing Subsystem Selected in External
Signals & Triggering Dialog Box
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Note that if theSink were not declared as a Signal Viewing Subsystem, its 
Gain, Constant, and Sum blocks would run as subsystem code on the target 
system. The Sine Wave signal would be uploaded to Simulink after being 
processed by these blocks, and viewed on sink_examp/theSink/Scope2. 
Processing demands on the target system would be increased by the additional 
signal processing, and by the downloading of block parameter changes from the 
host.
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External Mode Communications Overview
This section describes how Simulink and the target program communicate, and 
how and when they transmit parameter updates and signal data to each other.

Depending on the setting of the Inline parameters option when the target 
program is generated, there are differences in the way parameter updates are 
handled. “The Download Mechanism” on page 6-23 describes the operation of 
external mode communications with Inline parameters off. “Inlined and 
Tunable Parameters” on page 6-24 describes the operation of external mode 
with Inline parameters on.

The Download Mechanism
In external mode, Simulink does not simulate the system represented by the 
block diagram. By default, when external mode is enabled, Simulink 
downloads current values of all parameters to the target system. After the 
initial download, Simulink remains in a waiting mode until you change 
parameters in the block diagram or until Simulink receives data from the 
target.

When you change a parameter in the block diagram, Simulink calls the 
external interface MEX-file, passing new parameter values (along with other 
information) as arguments.

The external interface MEX-file contains code that implements one side of the 
interprocess communication (IPC) channel. This channel connects the 
Simulink process (where the MEX-file executes) to the process that is executing 
the external program. The MEX-file transfers the new parameter values via 
this channel to the external program.

The other side of the communication channel is implemented within the 
external program. This side writes the new parameter values into target’s 
parameter structure (rtP).

The Simulink side initiates the parameter download operation by sending a 
message containing parameter information to the external program. In the 
terminology of client/server computing, the Simulink side is the client and the 
external program is the server. The two processes can be remote, or they can 
be local. Where the client and server are remote, a protocol such as TCP/IP is 
used to transfer data. Where the client and server are local, shared memory can 
be used to transfer data.
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The following diagram illustrates this relationship

Simulink calls the external interface MEX-file whenever you change 
parameters in the block diagram. The MEX-file then downloads the 
parameters to the external program via the communication channel.

.

Figure 6-11:  External Mode Architecture

Inlined and Tunable Parameters
By default, all parameters (except those listed in “Limitations of External 
Mode” on page 6-33) in an external mode program are tunable; that is, you can 
change them via the download mechanism described in this section.

If you select the Inline parameters option (on the Advanced page of the 
Simulation Parameters dialog box), Real-Time Workshop embeds the 
numerical values of model parameters (constants), instead of symbolic 
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parameter names, in the generated code. Inlining parameters generates 
smaller and more efficient code. However, inlined parameters, since they are 
effectively transformed into constants, are not tunable.

Real-Time Workshop lets you improve overall efficiency by inlining most 
parameters, while at the same time retaining the flexibility of run-time tuning 
for selected parameters that are important to your application. When you 
inline parameters, you can use the Model Parameter Configuration dialog to 
remove individual parameters from inlining and declare them to be tunable. In 
addition, the Model Parameter Configuration dialog offers you options for 
controlling how parameters are represented in the generated code.

For further information on tunable parameters please see “Parameters: 
Storage, Interfacing, and Tuning” on page 5-2.

Automatic Parameter Uploading on Host/Target Connection
Each time Simulink connects to a target program that was generated with 
Inline parameters on, the target program uploads the current value of its 
tunable parameters (if any) to the host. These values are assigned to the 
corresponding MATLAB workspace variables. This procedure ensures that the 
host and target are synchronized with respect to parameter values.

All workspace variables required by the model must be defined to an initial 
value at the time of host/target connection. Otherwise the uploading cannot 
proceed and an error will result. Once the connection is made, these variables 
are updated to reflect the current parameter values on the target system.

Note that automatic parameter uploading takes place only if the target 
program was generated with Inline parameters on. “The Download 
Mechanism” on page 6-23 describes the operation of external mode 
communications with Inline parameters off.
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The TCP/IP Implementation
Real-Time Workshop provides code to implement both the client and server 
side based on TCP/IP. You can use the socket-based external mode 
implementation provided by Real-Time Workshop with the generated code, 
provided that your target system supports TCP/IP.

A low-level transport layer handles physical transmission of messages. Both 
Simulink and the model code are independent of this layer. Both the transport 
layer and code directly interfacing to the transport layer are isolated in 
separate modules that format, transmit, and receive messages and data 
packets. 

This design makes it possible for different targets to use different transport 
layers. For example, the GRT, GRT malloc, ERT, and Tornado targets support 
host/target communication via TCP/IP, whereas the xPC target supports both 
RS232 (serial) and TCP/IP communication.

Using the TCP/IP Implementation
This section discusses how to use the TCP/IP-based client/server 
implementation of external mode with real-time programs on a UNIX or PC 
system. Chapter 12, “Targeting Tornado for Real-Time Applications” 
illustrates the use of external mode in the Tornado environment.

In order to use Simulink external mode, you must:

• Specify the name of the external interface MEX-file in the External Target 
Interface dialog box. By default, this is ext_comm.

• Configure the template makefile so that it links the proper source files for 
the TCP/IP server code and defines the necessary compiler flags when 
building the generated code.

• Build the external program.

• Run the external program.

• Set Simulink to external mode and connect to the target.
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This figure shows the structure of the TCP/IP-based implementation.

Figure 6-12:  TCP/IP-Based Client/Server Implementation for External Mode

The following sections discuss the details of how to use the external mode of 
Simulink.
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The External Interface MEX-File
You must specify the name of the external interface MEX-file in the External 
Target Interface dialog box.

The default external interface MEX-file is ext_comm. ext_comm implements 
TCP/IP-based communications. ext_comm has three optional arguments, 
discussed in the next section.

MEX-File Optional Arguments
In the External Target Interface dialog box, you can specify optional 
comma-delimited arguments that are passed to the MEX-file. These are:

• Target network name: the network name of the computer running the 
external program. By default, this is the computer on which Simulink is 
running. The name can be:

- a string delimited by single quotes, such as 'myPuter'

- an IP address delimited by single quotes, such as '148.27.151.12'

• Verbosity level: controls the level of detail of the information displayed 
during the data transfer. The value is either 0 or 1 and has the following 
meaning:

0 — no information

1 — detailed information

• TCP/IP server port number: The default value is 17725. You can change the 
port number to a value between 256 and 65535 to avoid a port conflict if 
necessary. 

Enter the name of the external interface MEX-file in 
the box (you do not need to enter the .mex 
extension). This file must be in the current 
directory or in a directory that is on your MATLAB 
path.
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You must specify these options in order. For example, if you want to specify the 
verbosity level (the second argument), then you must also specify the target 
host name (the first argument).

Note that you can specify command line options to the external program. See 
“Running the External Program” on page 6-29 for more information.

External Mode Compatible Targets
The ERT, GRT, GRT malloc, and Tornado targets support external mode. To 
enable external mode code generation, check External mode in the 
target-specific code generation options section of the Real-Time Workshop 
pane. The following illustration shows the GRT code generation options with 
external mode enabled.

Running the External Program
The external program must be running before you can use Simulink in external 
mode. To run the external program, you type a command of the form

model -opt1 ... -optN

where model is the name of the external program and -opt1 ... -optN are 
options. (See “Command Line Options for the External Program” on page 6–
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31). In the examples in this section, we assume the name of the external 
program to be ext_example.

Running the External Program Under Windows
In the Windows environment, you can run the external programs in either of 
the following ways:

• Open a Command Prompt window. At the command prompt, type the name 
of the target executable, followed by any options, as in the following example.
ext_example -tf inf -w

• Alternatively, you can launch the target executable from the MATLAB 
command prompt. In this case the command must be preceded by an 
exclamation point (!) and followed by an ampersand (&) , as in the following 
example.

!ext_example -tf inf -w &

Note that the ampersand (&) causes the operating system to spawn another 
process to run the target executable.

Running the External Program Under UNIX
In the UNIX environment, you can run the external programs in either of the 
following ways:

• Open an an Xterm window. At the command prompt, type the name of the 
target executable, followed by any options, as in the following example.
ext_example -tf inf -w

• Alternatively, you can launch the target executable from the MATLAB 
command prompt. In the UNIX environment, if you start the external 
program from MATLAB, you must run it in the background so that you can 
still access Simulink. The command must be preceded by an exclamation 
point (!) and followed by an ampersand (&) , as in the following example.
!ext_example -tf inf -w &

runs the executable from MATLAB by spawning another process to run it.
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Command Line Options for the External Program
External mode target executables generated by Real-Time Workshop support 
the following command line options:

• -tf n option

The -tf option overrides the stop time set for the model in Simulink. The 
argument n specifies the number of seconds the program will run. The value 
inf directs the model to run indefinitely. In this case, the model code will run 
until the target program receives a stop message from Simulink.

The following example sets the stop time to 10 seconds.
ext_example -tf 10

Note  You may use the -tf option with GRT, GRT malloc, ERT, and Tornado 
targets. If you are implementing a custom target and want to support the -tf 
option, you must implement the option yourself. See “Creating an External 
Mode Communication Channel” on page 14–94 for further information.

• -w option

The -w option instructs the target program to enter a wait state until it 
receives a message from the host. At this point, the target is running, but not 
executing the model code. The start message is sent when you select Start 
real-time code from the Simulation menu or click the Start real-time code 
button in the External Mode Control Panel.

Use the -w option if you want to view data from time step 0 of the target 
program execution, or if you want to modify parameters before the target 
program begins execution of model code.

• -port n option

the -port option specifies the TCP/IP port number, n, for the target program. 
The port number of the target program must match that of the host. The 
default port number is 17725. The port number must be a value between 256 
and 65535.
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Note  The -w and -port options are supported by the TCP/IP transport layer 
modules shipped with Real-Time Workshop. By default, these modules are 
linked into external mode target executables. If you are implementing a 
custom external mode transport layer and want to support these options, you 
must implement them in your code. See “Creating an External Mode 
Communication Channel” on page 14–94 for further information. See 
matlabroot/rtw/c/src/ext_transport.c for example code.

Error Conditions
If the Simulink block diagram does not match the external program, Simulink 
displays an error box informing you that the checksums do not match (i.e., the 
model has changed since you generated code). This means you must rebuild the 
program from the new block diagram (or reload the correct one) in order to use 
external mode.

If the external program is not running, Simulink displays an error informing 
you that it cannot connect to the external program.

Implementing an External Mode Protocol Layer
If you want to implement your own transport layer for external mode 
communication, you must modify certain code modules provided by Real-Time 
Workshop, and rebuild ext_comm, the external interface MEX-file. This 
advanced topic is described in detail in “Creating an External Mode 
Communication Channel” on page 14–94.
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Limitations of External Mode
In general, you cannot change a parameter if doing so results in a change in the 
structure of the model. For example, you cannot change:

• The number of states, inputs, or outputs of any block

• The sample time or the number of sample times

• The integration algorithm for continuous systems

• The name of the model or of any block

• The parameters to the Fcn block

If you cause any of these changes to the block diagram, then you must rebuild 
the program with newly generated code. 

However, parameters in transfer function and state space representation 
blocks can be changed in specific ways:

• The parameters (numerator and denominator polynomials) for the Transfer 
Fcn (continuous and discrete) and Discrete Filter blocks can be changed (as 
long as the number of states does not change). 

• Zero entries in the State Space and Zero Pole (both continuous and discrete) 
blocks in the user-specified or computed parameters (i.e., the A, B, C, and D 
matrices obtained by a zero-pole to state-space transformation) cannot be 
changed once external simulation is started. 

• In the State Space blocks, if you specify the matrices in the controllable 
canonical realization, then all changes to the A, B, C, D matrices that 
preserve this realization and the dimensions of the matrices are allowed.
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Program Architecture

Code is generated by Real-Time Workshop in two styles, depending whether a target is embedded or 
not. In addition, the structure of code is affected by whether a multitasking environment is available 
for execution, and on what system and applications modules must be incorporated. The following 
sections describe these architectural distinctions:

For a detailed discussion of the structure of embedded real-time code, see the Real-Time Workshop 
Embedded Coder documentation.

Introduction (p. 7-2) Code styles and targets appropriate for development of 
rapid prototyping and embedded systems

Model Execution (p. 7-4) How code generated from models executes, including 
singletasking and multitasking execution, timing, data 
structures, entry points, and differences between rapid 
prototyping and embedded code

Rapid Prototyping Program 
Framework (p. 7-23)

Overal architecture and individual components of 
programs generated by rapid prototyping targets

Embedded Program Framework 
(p. 7-34)

Overview of the architecture of programs generated by 
the Real-Time Workshop Embedded Coder.
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Introduction
Real-Time Workshop generates two styles of code. One code style is suitable for 
rapid prototyping (and simulation via code generation). The other style is 
suitable for embedded applications. This chapter discusses the program 
architecture, that is, the structure of code generated by Real-Time Workshop, 
associated with these two styles of code. The table below classifies the targets 
shipped with Real-Time Workshop. For related details about code style and 
target characteristics, see “Choosing a Code Format for Your Application” on 
page 3-3.

Table 7-1:  Code Styles Listed By Target 

Target Code Style (using C unless noted)

Real-Time Workshop 
Embedded Coder target

Embedded — useful as a starting point 
when using the generated C code in an 
embedded application.

Generic real-time (GRT) 
target

Rapid prototyping — nonreal-time 
simulation on your workstation. Useful 
as a starting point for creating a rapid 
prototyping real-time target that does not 
use real-time operating system tasking 
primitives. Also useful for validating the 
generated code on your workstation.

Real-time malloc target Rapid prototyping — very similar to the 
generic real-time (GRT) target except 
that this target allocates all model 
working memory dynamically rather 
than statically declaring it in advance.

Rapid simulation target Rapid prototyping — nonreal-time 
simulation of your model on your 
workstation. Useful as a high-speed or 
batch simulation tool.

S-function target Rapid prototyping — creates a C-MEX 
S-function for simulation of your model 
within another Simulink model.
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Third-party vendors supply additional targets for Real-Time Workshop. 
Generally, these can be classified as rapid prototyping targets. For more 
information about third-party products, see the MATLAB Connections Web 
page: http://www.mathworks.com/products/connections.

This chapter is divided into three sections. The first section discusses model 
execution; the second section discusses the rapid prototyping style of code; and 
the third section discusses the embedded style of code.

Tornado (VxWorks) real-time 
target

Rapid prototyping — runs model in real 
time using the VxWorks real-time 
operating system tasking primitives. Also 
useful as a starting point for targeting a 
real-time operating system.

Real-Time Windows target Rapid prototyping — runs model in 
real-time at interrupt level while your PC 
is running Microsoft Windows in the 
background.

xPC target Rapid prototyping — runs model in real 
time on target PC running xPC kernel.

DOS real-time target Rapid prototyping — runs model in real 
time at interrupt level under DOS.

Table 7-1:  Code Styles Listed By Target  (Continued)

Target Code Style (using C unless noted)
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Model Execution
Before looking at the two styles of generated code, you need to have a high-level 
understanding of how the generated model code is executed. Real-Time 
Workshop generates algorithmic code as defined by your model. You may 
include your own code into your model via S-functions. S-functions can range 
from high-level signal manipulation algorithms to low-level device drivers.

Real-Time Workshop also provides a run-time interface that executes the 
generated model code. The run-time interface and model code are compiled 
together to create the model executable. The diagram below shows a high-level 
object-oriented view of the executable.

Figure 7-1:  The Object-Oriented View of a Real-Time Program

In general, the conceptual design of the model execution driver does not change 
between the rapid prototyping and embedded style of generated code. The 
following sections describe model execution for singletasking and multitasking 
environments both for simulation (nonreal-time) and for real-time. For most 
models, the multitasking environment will provide the most efficient model 
execution (i.e., fastest sample rate). 

The following concepts are useful in describing how models execute:

• Initialization — Initializing the run-time interface code and the model 
code.

• ModelOutputs — Calling all blocks in your model that have a time hit at the 
current point in time and having them produce their output. ModelOutputs 
can be done in major or minor time steps. In major time steps, the output is 

Model code
and S-functions

Run-Time Interface

Execution driver for model code,
operating system interface routines,
I/O dependent routines,
solver and data logging routines.
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a given simulation time step. In minor time steps, the run-time interface 
integrates the derivatives to update the continuous states.

• ModelUpdate — Calling all blocks in your model that have a sample hit at the 
current point in time and having them update their discrete states or similar 
type objects.

• ModelDerivatives — Calling all blocks in your model that have continuous 
states and having them update their derivatives. ModelDerivatives is only 
called in minor time steps.

The pseudocode below shows the execution of a model for a singletasking 
simulation (nonreal-time).

main()
{

Initialization
While (time < final time)
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate: -- Integration in minor time step for 

-- models with continuous states.
ModelDerivatives
Do 0 or more:
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.

EndIntegrate
EndWhile
Shutdown

}

The initialization phase begins first. This consists of initializing model states 
and setting up the execution engine. The model then executes, one step at a 
time. First ModelOutputs executes at time t, then the workspace I/O data is 
logged, and then ModelUpdate updates the discrete states. Next, if your model 
has any continuous states, ModelDerivatives integrates the continuous states’ 
derivatives to generate the states for time , where h is the step 

size. Time then moves forward to  and the process repeats. 

tnew t h+=

tnew
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During the ModelOutputs and ModelUpdate phases of model execution, only 
blocks that have hit the current point in time execute. They determine if they 
have hit by using a macro (ssIsSampleHit, or ssIsSpecialSampleHit) that 
checks for a sample hit.

The pseudocode below shows the execution of a model for a multitasking 
simulation (nonreal-time).

main()
{
Initialization
While (time < final time)
ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states, and root 

-- outports.
ModelUpdate(tid=1) -- Major time step.
Integrate -- Integration in minor time step for 

-- models with continuous states.
ModelDerivatives
Do 0 or more:

ModelOutputs(tid=0)
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.

EndIntegrate
For i=1:NumTids
ModelOutputs(tid=i) -- Major time step.
ModelUpdate(tid=i) -- Major time step.

EndFor
EndWhile
Shutdown
}

The multitasking operation is more complex when compared with the 
singletasking execution because the output and update functions are 
subdivided by the task identifier (tid) that is passed into these functions. This 
allows for multiple invocations of these functions with different task identifiers 
using overlapped interrupts, or for multiple tasks when using a real-time 
operating system. In simulation, multiple tasks are emulated by executing the 
code in the order that would occur if there were no preemption in a real-time 
system.
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Note that the multitasking execution assumes that all tasks are multiples of 
the base rate. Simulink enforces this when you have created a fixed-step 
multitasking model.

The multitasking execution loop is very similar to that of singletasking, except 
for the use of the task identifier (tid) argument to ModelOutputs and 
ModelUpdate. The ssIsSampleHit or ssIsSpecialSampleHit macros use the 
tid to determine when blocks have a hit. For example, ModelOutputs (tid=5) 
will execute only the blocks that have a sample time corresponding to task 
identifier 5.

The pseudocode below shows the execution of a model in a real-time 
singletasking system where the model is run at interrupt level.

rtOneStep()
{

Check for interrupt overflow
Enable "rtOneStep" interrupt
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for models 

-- with continuous states.
ModelDerivatives
Do 0 or more 
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.

EndIntegrate
}

main()
{

Initialization (including installation of rtOneStep as an 
interrupt service routine, ISR, for a real-time clock).
While(time < final time)
Background task.

EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
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Shutdown
}

Real-time singletasking execution is very similar to the nonreal-time single 
tasking execution, except that the execution of the model code is done at 
interrupt level.

At the interval specified by the program’s base sample rate, the interrupt 
service routine (ISR) preempts the background task to execute the model code. 
The base sample rate is the fastest rate in the model. If the model has 
continuous blocks, then the integration step size determines the base sample 
rate.

For example, if the model code is a controller operating at 100 Hz, then every 
0.01 seconds the background task is interrupted. During this interrupt, the 
controller reads its inputs from the analog-to-digital converter (ADC), 
calculates its outputs, writes these outputs to the digital-to-analog converter 
(DAC), and updates its states. Program control then returns to the background 
task. All of these steps must occur before the next interrupt.

The following pseudocode shows how a model executes in a real-time 
multitasking system (where the model is run at interrupt level).

rtOneStep()
{
Check for interrupt overflow
Enable "rtOneStep" interrupt
ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate(tid=0) -- Major time step.
Integrate -- Integration in minor time step for 

-- models with continuous states.
ModelDerivatives
Do 0 or more:

ModelOutputs(tid=0)
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives and update continuous states.

EndIntegrate
For i=1:NumTasks
If (hit in task i)
ModelOutputs(tid=i)
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ModelUpdate(tid=i)
EndIf

EndFor
}

main()
{

Initialization (including installation of rtOneStep as an 
interrupt service routine, ISR, for a real-time clock).

While(time < final time)
Background task.

EndWhile
Mask interrupts (Disable rtOneStep from executing.) 
Complete any background tasks.
Shutdown

}

Running models at interrupt level in real-time multitasking environment is 
very similar to the previous singletasking environment, except that overlapped 
interrupts are employed for concurrent execution of the tasks.

The execution of a model in a singletasking or multitasking environment when 
using real-time operating system tasking primitives is very similar to the 
interrupt-level examples discussed above. The pseudocode below is for a 
singletasking model using real-time tasking primitives.

tSingleRate()
{

MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root 

--outports
ModelUpdate -- Major time step
Integrate -- Integration in minor time step 

-- for models with continuous 
-- states.

ModelDeriviatives
Do 0 or more:
ModelOutputs
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ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.

EndIntegrate
EndMainLoop

}

main()
{
Initialization
Start/spawn task "tSingleRate".
Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

}

In this singletasking environment, the model is executed using real-time 
operating system tasking primitives. In this environment, we create a single 
task (tSingleRate) to run the model code. This task is invoked when a clock 
tick occurs. The clock tick gives a clockSem (clock semaphore) to the model task 
(tSingleRate). The model task will wait for the semaphore before executing. 
The clock ticks are configured to occur at the fundamental step size (base rate) 
for your model.

The pseudocode below is for a multitasking model using real-time tasking 
primitives.

tSubRate(subTaskSem,i)
{
Loop:
Wait on semaphore subTaskSem.
ModelOutputs(tid=i)
ModelUpdate(tid=i)

EndLoop
}

tBaseRate()
{
MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem
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For i=1:NumTasks
If (hit in task i)
If task i is currently executing, then error out due to 
overflow.

Do a "semGive" on subTaskSem for task i.
EndIf

EndFor
ModelOutputs(tid=0) -- major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate(tid=0) -- major time step.
Loop: -- Integration in minor time step for 

-- models with continuous states.
ModelDeriviatives
Do 0 or more:
ModelOutputs(tid=0)
ModelDerivatives

EndDo (number of iterations depends upon the solver).
Integrate derivatives to update continuous states.

EndLoop
EndMainLoop

}

main()
{

Initialization
Start/spawn task "tSubRate".
Start/spawn task "tBaseRate".

Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

}

In this multitasking environment, the model is executed using real-time 
operating system tasking primitives. In this environment, it is necessary to 
create several model tasks (tBaseRate and several tSubRate tasks) to run the 
model code. The base rate task (tBaseRate) has a higher priority than the 
subrate tasks. The subrate task for tid=1 has a higher priority than the 
subrate task for tid=2, and so on. The base rate task is invoked when a clock 
tick occurs. The clock tick gives a clockSem to tBaseRate. The first thing 
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tBaseRate does is give semaphores to the subtasks that have a hit at the 
current point in time. Since the base rate task has a higher priority, it 
continues to execute. Next it executes the fastest task (tid=0) consisting of 
blocks in your model that have the fastest sample time. After this execution, it 
resumes waiting for the clock semaphore. The clock ticks are configured to 
occur at executing at the fundamental step size for your model.

Program Timing
Real-time programs require careful timing of the task invocations (either via 
an interrupt or a real-time operating system tasking primitive) to ensure that 
the model code executes to completion before another task invocation occurs. 
This includes time to read and write data to and from external hardware. 

The following diagram illustrates interrupt timing.

Figure 7-2:  Task Timing

The sample interval must be long enough to allow model code execution 
between task invocations.

time
Time to execute

Time available to process background tasksthe model code

Sample interval is appropriate for this model code execution.

time
Time to execute the model code

Sample interval is too short for this model code execution.
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In the figure above, the time between two adjacent vertical arrows is the 
sample interval. The empty boxes in the upper diagram show an example of a 
program that can complete one step within the interval and still allow time for 
the background task. The gray box in the lower diagram indicates what 
happens if the sample interval is too short. Another task invocation occurs 
before the task is complete. Such timing results in an execution error.

Note also that, if Real-Time program is designed to run forever (i.e., the final 
time is 0 or infinite so the while loop never exits), then the shutdown code never 
executes.

Program Execution
As the previous section indicates, a real-time program may not require 100% of 
the CPU’s time. This provides an opportunity to run background tasks during 
the free time.

Background tasks include operations like writing data to a buffer or file, 
allowing access to program data by third-party data monitoring tools, or using 
Simulink external mode to update program parameters.

It is important, however, that the program be able to preempt the background 
task at the appropriate time to ensure real-time execution of the model code. 

The way the program manages tasks depends on capabilities of the 
environment in which it operates.

External Mode Communication
External mode allows communication between the Simulink block diagram 
and the stand-alone program that is built from the generated code. In this 
mode, the real-time program functions as an interprocess communication 
server, responding to requests from Simulink. 

Data Logging In Singletasking
and Multitasking Model Execution
The Real-Time Workshop data-logging features, described in “Workspace I/O 
Options and Data Logging” on page 2-22, enable you to save system states, 
outputs, and time to a MAT-file at the completion of the model execution. The 
LogTXY function, which performs data logging, operates differently in 
singletasking and multitasking environments.
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If you examine how LogTXY is called in the singletasking and multitasking 
environments, you will notice that for singletasking LogTXY is called after 
ModelOutputs. During this ModelOutputs call, all blocks that have a hit at time 
t are executed, whereas in multitasking, LogTXY is called after 
ModelOutputs(tid=0) that executes only the blocks that have a hit at time t 
and that have a task identifier of 0. This results in differences in the logged 
values between singletasking and multitasking logging. Specifically, consider 
a model with two sample times, the faster sample time having a period of 1.0 
second and the slower sample time having a period of 10.0 seconds. At time t = 
k*10, k=0,1,2... both the fast (tid=0) and slow (tid=1) blocks have a hit. When 
executing in multitasking mode, when LogTXY is called, the slow blocks will 
have a hit, but the previous value will be logged, whereas in singletasking the 
current value will be logged. 

Another difference occurs when logging data in an enabled subsystem. 
Consider an enabled subsystem that has a slow signal driving the enable port 
and fast blocks within the enabled subsystem. In this case, the evaluation of 
the enable signal occurs in a slow task and the fast blocks will see a delay of 
one sample period, thus the logged values will show these differences.

To summarize differences in logged data between singletasking and 
multitasking, differences will be seen when:

• Any root outport block has a sample time that is slower than the fastest 
sample time

• Any block with states has a sample time that is slower than the fastest 
sample time

• Any block in an enabled subsystem where the signal driving the enable port 
is slower than the rate of the blocks in the enabled subsystem

For the first two cases, even though the logged values are different between 
singletasking and multitasking, the model results are not different. The only 
real difference is where (at what point in time) the logging is done. The third 
(enabled subsystem) case results in a delay that can be seen in a real-time 
environment.

Rapid Prototyping and Embedded
Model Execution Differences
The rapid prototyping program framework provides a common application 
programming interface (API) that does not change between model definitions. 
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The Real-Time Workshop Embedded Coder provides a different framework 
that we will refer to as the embedded program framework. The embedded 
program framework provides a optimized API that is tailored to your model. It 
is intended that when you use the embedded style of generated code, you are 
modeling how you would like your code to execute in your embedded system. 
Therefore, the definitions defined in your model should be specific to your 
embedded targets. Items such as the model name, parameter, and signal 
storage class are included as part of the API for the embedded style of code.

One major difference between the rapid prototyping and embedded style of 
generated code is that the latter contains fewer entry-point functions. The 
embedded style of code can be configured to have only one run-time function 
model_step. You can define a single run-time function because the embedded 
target:

• Can only be used with models that do not have continuous sample time (and 
therefore no continuous states)

• Requires that all S-functions must be inlined with the Target Language 
Compiler, which means that they do not access the SimStruct data structure

Thus, when looking at the model execution pseudocode presented earlier in this 
chapter, you can eliminate the Loop...EndLoop statements, and group the 
ModelOutputs, LogTXY, and ModelUpdate into a single statement, model_step.

For a detailed discussion of how generated embedded code executes, see the 
Real-Time Workshop Embedded Coder documentation.

Rapid Prototyping Model Functions
The rapid prototyping code defines the following functions that interface with 
the run-time interface:

• Model() — The model registration function. This function for initializes the 
work areas (e.g., allocating and setting pointers to various data structures) 
needed by the model. The model registration function calls the 
MdlInitializeSizes and MdlInitializeSampleTimes functions. These two 
functions are very similar to the S-function mdlInitializeSizes and 
mdlInitializeSampleTimes methods.

• MdlStart(void) — After the model registration functions, 
MdlInitializeSizes and MdlInitializeSampleTimes execute, the run-time 
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interface starts execution by calling MdlStart. This routine is called once at 
startup.

The function MdlStart has four basic sections:

- Code to initialize the states for each block in the root model that has states. 
A subroutine call is made to the “initialize states” routine of conditionally 
executed subsystems.

- Code generated by the one-time initialization (start) function for each 
block in the model.

- Code to enable the blocks in the root model that have enable methods, and 
the blocks inside triggered or function-call subsystems residing in the root 
model. Simulink blocks can have enable and disable methods. An enable 
method is called just before a block starts executing, and the disable 
method is called just after the block stops executing.

- Code for each block in the model that has a constant sample time.

• MdlOutputs(int_T tid) — MdlOutputs updates the output of blocks at 
appropriate times. The tid (task identifier) parameter identifies the task 
that in turn maps when to execute blocks based upon their sample time. This 
routine is invoked by the run-time interface during major and minor time 
steps. The major time steps are when the run-time interface is taking an 
actual time step (i.e., it is time to execute a specific task). If your model 
contains continuous states, the minor time steps will be taken. The minor 
time steps are when the solver is generating integration stages, which are 
points between major outputs. These integration stages are used to compute 
the derivatives used in advancing the continuous states.

• MdlUpdate(int_T tid) — MdlUpdate updates the discrete states and work 
vector state information (i.e., states that are neither continuous nor discrete) 
saved in work vectors. The tid (task identifier) parameter identifies the task 
that in turn indicates which sample times are active allowing you to 
conditionally update states of only active blocks. This routine is invoked by 
the run-time interface after the major MdlOutputs has been executed.

• MdlDerivatives(void) — MdlDerivatives returns the block derivatives. 
This routine is called in minor steps by the solver during its integration 
stages. All blocks that have continuous states have an identical number of 
derivatives. These blocks are required to compute the derivatives so that the 
solvers can integrate the states.
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• MdlTerminate(void) — MdlTerminate contains any block shutdown code. 
MdlTerminate is called by the run-time interface, as part of the termination 
of the real-time program.

The contents of the above functions are directly related to the blocks in your 
model. A Simulink block can be generalized to the following set of equations.

Output, y, is a function of continuous state, xc, discrete state, xd, and input, u. 
Each block writes its specific equation in the appropriate section of MdlOutput.

The discrete states, xd, are a function of the current state and input. Each block 
that has a discrete state updates its state in MdlUpdate.

The derivatives, x, are a function of the current input. Each block that has 
continuous states provides its derivatives to the solver (e.g., ode5) in 
MdlDerivatives. The derivatives are used by the solver to integrate the 
continuous state to produce the next value.

The output, y, is generally written to the block I/O structure. Root-level 
Outport blocks write to the external outputs structure. The continuous and 
discrete states are stored in the states structure. The input, u, can originate 
from another block’s output, which is located in the block I/O structure, an 
external input (located in the external inputs structure), or a state. These 
structures are defined in the model.h file that Real-Time Workshop generates.

y f0 t x, c xd u, ,( )=

xd 1+ fu t x, d u,( )=

x· fd t xc u, ,( )=
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Figure 7-3 shows the general content of the rapid prototyping style of C code.

Figure 7-3:  Content of model.c for the Rapid Prototyping Code Style

/*
* Version, Model options, TLC options,
* and code generation information are placed here.
*/
<includes>
void MdlStart(void)
{
/*
* State initialization code.
* Model start-up code - one time initialization code.
* Execute any block enable methods.
* Initialize output of any blocks with constant sample times.
*/

}

void MdlOutputs(int_T tid)
{
/* Compute: y = f0(t,xc,xd,u) for each block as needed. */

}

void MdlUpdate(int_T tid)
{
/* Compute: xd+1 = fu(t,xd,u) for each block as needed. */

}

void MdlDerivatives(void)
{
/* Compute: dxc = fd(t,xc,u) for each block as needed. */

}

void MdlTerminate(void)
{
/* Perform shutdown code for any blocks that 

have a termination action */
}
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Figure 7-4 shows a flow chart describing the execution of the rapid prototyping 
generated code.

Figure 7-4:  Rapid Prototyping Execution Flow Chart

Each block places code into specific Mdl routines according to the algorithm 
that it is implementing. Blocks have input, output, parameters, and states, as 
well as other general items. For example, in general, block inputs and outputs 
are written to a block I/O structure (rtB). Block inputs can also come from the 
external input structure (rtU) or the state structure when connected to a state 
port of an integrator (rtX), or ground (rtGround) if unconnected or grounded. 
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Block outputs can also go to the external output structure (rtY). The following 
figure shows the general mapping between these items.

Figure 7-5:  Data View of the Generated Code

Structure definitions:

• Block I/O Structure (rtB) — This structure consists of all block output 
signals. The number of block output signals is the sum of the widths of the 
data output ports of all nonvirtual blocks in your model. If you activate block 
I/O optimizations, Simulink and Real-Time Workshop reduce the size of the 
rtB structure by: 

- Reusing the entries in the rtB structure 

- Making other entries local variables 

See “Signals: Storage, Optimization, and Interfacing” on page 5-17 for 
further information on these optimizations.

Structure field names are determined by either the block’s output signal 
name (when present) or by the block name and port number when the output 
signal is left unlabeled.

• Block States Structures — The continuous states structure (rtX) contains 
the continuous state information for any blocks in your model that have 
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continuous states. Discrete states are stored in a data structure called the 
DWork vector (rtDWork).

• Block Parameters Structure (rtP) — The parameters structure contains all 
block parameters that can be changed during execution (e.g., the parameter 
of a Gain block).

• External Inputs Structure (rtU) —The external inputs structure consists of 
all root-level Inport block signals. Field names are determined by either the 
block’s output signal name, when present, or by the Inport block’s name 
when the output signal is left unlabeled.

• External Outputs Structure (rtY) —The external outputs structure consists 
of all root-level Outport blocks. Field names are determined by the root-level 
Outport block names in your model.

• Real Work, Integer Work, and Pointer Work Structures (rtRWork, rtIWork, 
rtPWork) — Blocks may have a need for real, integer, or pointer work areas. 
For example, the Memory block uses a real work element for each signal. 
These areas are used to save internal states or similar information.

Embedded Model Functions
The Real-Time Workshop Embedded Coder Coder target generates the 
following functions:

• model_intialize — Performs all model initialization and should be called 
once before you start executing your model.

• If the Single output/update function code generation option is selected, 
then you will see:

- model_step(int_T tid) — Contains the output and update code for all 
blocks in your model.

Otherwise you will see:

- model_output(int_T tid) — Contains the output code for all blocks in 
your model.

- model_update(int_T tid) — This contains the update code for all blocks 
in your model.

• If the Terminate function required code generation option is selected, then 
you will see:
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- model_terminate — This contains all model shutdown code and should be 
called as part of system shutdown.

See the Real-Time Workshop Embedded Coder documentation for complete 
descriptions of these functions in the context of the Real-Time Workshop 
Embedded Coder.
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Rapid Prototyping Program Framework
The code modules generated from a a Simulink model — model.c, model.h, and 
other files — implement the model’s system equations, contain block 
parameters, and perform initialization.

The Real-Time Workshop program framework provides the additional source 
code necessary to build the model code into a complete, stand-alone program. 
The program framework consists of application modules (files containing 
source code to implement required functions) designed for a number of 
different programming environments. 

The automatic program builder ensures the program is created with the proper 
modules once you have configured your template makefile. The application 
modules and the code generated for a Simulink model are implemented using 
a common API. This API defines a data structure (called a real-time model, 
sometimes abbreviated as rtM) that encapsulates all data for your model.

This API is similar to that of S-functions, with one major exception: the API 
assumes that there is only one instance of the model, whereas S-functions can 
have multiple instances. The function prototypes also differ from S-functions.
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Rapid Prototyping Program Architecture
The structure of a real-time program consists of three components. Each 
component has a dependency on a different part of the environment in which 
the program executes. The following diagram illustrates this structure.

Figure 7-6:  The Rapid Prototyping Program Architecture
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The Real-Time Workshop architecture consists of three parts. The first two 
components, system dependent and independent, together form the run-time 
interface.

This architecture readily adapts to a wide variety of environments by isolating 
the dependencies of each program component. The following sections discuss 
each component in more detail and include descriptions of the application 
modules that implement the functions carried out by the system dependent, 
system independent, and application components.

Rapid Prototyping System-Dependent Components
These components contain the program’s main function, which controls 
program timing, creates tasks, installs interrupt handlers, enables data 
logging, and performs error checking.

The way in which application modules implement these operations depends on 
the type of computer. This means that, for example, the components used for a 
DOS-based program perform the same operations, but differ in method of 
implementation from components designed to run under Tornado on a VME 
target.

The main Function
The main function in a C program is the point where execution begins. In 
Real-Time Workshop application programs, the main function must perform 
certain operations. These operations can be grouped into three categories: 
initialization, model execution, and program termination.

Initialization

• Initialize special numeric parameters: rtInf, rtMinusInf, and rtNaN. These 
are variables that the model code can use.

• Call the model registration function to get a pointer to the real-time model. 
The model registration function has the same name as your model. It is 
responsible for initializing real-time model fields and any S-functions in your 
model.

• Initialize the model size information in the real-time model. This is done by 
calling MdlInitializeSizes.

• Initialize a vector of sample times and offsets (for systems with multiple 
sample rates). This is done by calling MdlInitializeSampleTimes.
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• Get the model ready for execution by calling MdlStart, which initializes 
states and similar items. 

• Set up the timer to control execution of the model.

• Define background tasks and enable data logging, if selected.

Model Execution

• Execute a background task, for example, communicate with the host during 
external mode simulation or introduce a wait state until the next sample 
interval.

• Execute model (initiated by interrupt).

• Log data to buffer (if data logging is used).

• Return from interrupt. 

Program Termination
• Call a function to terminate the program if it is designed to run for a finite 

time — destroy the real-time model data structure, deallocate memory, and 
write data to a file.

Rapid Prototyping Application Modules 
for System Dependent Components
The application modules contained in the system dependent components 
generally include a main module such as rt_main.c containing the main entry 
point for C. There may also be additional application modules for such things 
as I/O support and timer handling.

Rapid Prototyping System-Independent 
Components
These components are collectively called system independent because all 
environments use the same application modules to implement these 
operations. This section steps through the model code (and if the model has 
continuous states, calls one of the numerical integration routines). This section 
also includes the code that defines, creates, and destroys the real-time model 
data structure (rtM). The model code and all S-functions included in the 
program define their own SimStruct.
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The model code execution driver calls the functions in the model code to 
compute the model outputs, update the discrete states, integrate the 
continuous states (if applicable), and update time. These functions then write 
their calculated data to the real-time model.

Model Execution
At each sample interval, the main program passes control to the model 
execution function, which executes one step though the model. This step reads 
inputs from the external hardware, calculates the model outputs, writes 
outputs to the external hardware, and then updates the states. 

The following diagram illustrates these steps.

Figure 7-7:  Executing the Model
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Note that this scheme writes the system outputs to the hardware before the 
states are updated. Separating the state update from the output calculation 
minimizes the time between the input and output operations. 

Integration of Continuous States 
The real-time program calculates the next values for the continuous states 
based on the derivative vector, dx/dt, for the current values of the inputs and 
the state vector.

These derivatives are then used to calculate the next value of the states using 
a state-update equation. This is the state-update equation for the first order 
Euler method (ode1)

where h is the step size of the simulation, x represents the state vector, and 
dx/dt is the vector of derivatives. Other algorithms may make several calls to 
the output and derivative routines to produce more accurate estimates.

Note, however, that real-time programs use a fixed-step size since it is 
necessary to guarantee the completion of all tasks within a given amount of 
time. This means that, while you should use higher order integration methods 
for models with widely varying dynamics, the higher order methods require 
additional computation time. In turn, the additional computation time may 
force you to use a larger step size, which can diminish the accuracy increase 
initially sought from the higher order integration method.

Generally, the stiffer the equations, (i.e., the more dynamics in the system with 
widely varying time constants), the higher the order of the method that you 
must use. 

In practice, the simulation of very stiff equations is impractical for real-time 
purposes except at very low sample rates. You should test fixed-step size 
integration in Simulink to check stability and accuracy before implementing 
the model for use in real-time programs. 

For linear systems, it is more practical to convert the model that you are 
simulating to a discrete time version, for instance, using the c2d function in the 
Control System Toolbox.

x x dx
dt
-------h+=
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Application Modules for System-Independent Components
The system independent components include these modules:

• ode1.c, ode2.c, ode3.c, ode4.c, ode5.c — These modules implement the 
integration algorithms supported for real-time applications. See the 
Simulink documentation for more information about these fixed-step 
solvers. 

• rt_sim.c — Performs the activities necessary for one time step of the model. 
It calls the model function to calculate system outputs and then updates the 
discrete and continuous states. 

• simstruc_types.h — Contains definitions of various events, including 
subsystem enable/disable and zero crossings. It also defines data logging 
variables.

The system independent components also include code that defines, creates, 
and destroys the real-time model data structure. All S-functions included in 
the program define their own SimStruct. 

The SimStruct data structure encapsulates all the data relating to 
anS-function, including block parameters and outputs. See Writing 
S-Functions for more information about the SimStruct.

Rapid Prototyping Application Components
The application components contain the generated code for the Simulink 
model, including the code for any S-functions in the model. This code is referred 
to as the model code because these functions implement the Simulink model. 

However, the generated code contains more than just functions to execute the 
model (as described in the previous section). There are also functions to 
perform initialization, facilitate data access, and complete tasks before 
program termination. To perform these operations, the generated code must 
define functions that:

• Create the real-time model.

• Initialize model size information in the real-time model.

• Initialize a vector of sample times and sample time offsets and store this 
vector in the real-time model.

• Store the values of the block initial conditions and program parameters in 
the real-time model.
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• Compute the block and system outputs.

• Update the discrete state vector.

• Compute derivatives for continuous models.

• Perform an orderly termination at the end of the program (when the current 
time equals the final time, if a final time is specified).

• Collect block and scope data for data logging (either with Real-Time 
Workshop or third-party tools).

The Real-Time Model Data Structure
The real-time model data structure encapsulates model data and associated 
information necessary to fully describe the model. Its contents include:

• Model parameters, inputs, and outputs

• Storage areas, such as dWork

• Timing information

• Solver identification

• Data logging information

• Simstructs for all child S-functions

• External mode information

The real-time model data structure is used for all targets. In previous releases, 
the ERT target used the rtObject data structure, and other targets used the 
simstruct data structure for encapsulating model data. Now all targets are 
treated the same, except for the fact that the real-time model data structure is 
pruned for ERT targets to save space in executables. Even when not pruned, 
the real-time model data structure is more space-efficient than the root 
simstruct used by earlier releases for non-ERT targets, as it only contains 
fields for child (S-function) simstructs that are actually used in a model.

Rapid Prototyping Model Code Functions
The functions defined by the model code are called at various stages of program 
execution (i.e., initialization, model execution, or program termination).
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The following diagram illustrates the functions defined in the generated code 
and shows what part of the program executes each function.

Figure 7-8:  Execution of the Model Code

The Model Registration Function
The model registration function has the same name as the Simulink model 
from which it is generated. It is called directly by the main program during 
initialization. Its purpose is to initialize and return a pointer to the real-time 
model data structure.

Models Containing S-Functions 
A noninlined S-function is any C MEX S-function that is not implemented 
using a customized TLC file. If you create a C MEX S-function as part of a 
Simulink model, it is by default noninlined unless you write your own TLC file 

Main Program Termination

Model registration function — model

Update discrete state vector — MdlUpdate

Initialize sample times and offsets — MdlInitializeSampleTimes

Compute block and system outputs — MdlOutputs

Orderly termination at end of the program — MdlTerminate

Compute derivatives for continuous models — MdlDerivatives

Initialize sizes in the rtM — MdlInitializeSizes

Model Execution

Main Program Initialization
Model Code

Start model (initialize conditions, etc.) — MdlStart
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that inlines it within the body of the model.c code. Real-Time Workshop 
automatically incorporates your non-inlined C code S-functions into the 
program if they adhere to the S-function API described in the Simulink 
documentation.

This format defines functions and a SimStruct that are local to the S-function. 
This allows you to have multiple instances of the S-function in the model. The 
model’s real-time model data structure contains a pointer to each S-function’s 
SimStruct.

Code Generation and S-Functions
If a model contains S-functions, the source code for the S-function must be on 
the search path the make utility uses to find other source files. The directories 
that are searched are specified in the template makefile that is used to build 
the program.

S-functions are implemented in a way that is directly analogous to the model 
code. They contain their own public registration function (which is called by the 
top-level model code) that initializes static function pointers in its SimStruct. 
When the top-level model needs to execute the S-function, it does so via the 
function pointers in the S-function’s SimStruct. There can be more than one 
S-function with the same name in your model. This is accomplished by having 
function pointers to static functions.

Inlining S-Functions
You can incorporate C MEX S-functions, along with the generated code, into 
the program executable. You can also write a target file for your C MEX 
S-function to inline the S-function, thus improving performance by eliminating 
function calls to the S-function itself. For more information on inlining 
S-functions, see the Target Language Compiler Reference Guide.
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Application Modules for Application Components
When Real-Time Workshop generates code, it produces the following files:

•model.c — The C code generated from the Simulink block diagram. This code 
implements the block diagram’s system equations as well as performing 
initialization and updating outputs. 

• model_data.c — An optional file containing data for parameters and 
constant block i/o, which are also declared as extern in model.h. Only 
generated when rtP and rtC structures are populated.

• model.h — Header file containing the block diagram’s simulation 
parameters, I/O structures, work structures, and other declarations. It 
includes model_private.h.

• model_private.h — Header file containing declarations of exported signals 
and parameters.

These files are named for the Simulink model from which they are generated.

In addition, a dummy include file always named rtmodel.h is generated, which 
includes the above model-specific data structures and entry points. This 
enables the (static) target-specific main programs to reference files generated 
by Real-Time Workshop without needing to know the names of the models 
involved.

If you have created custom blocks using C MEX S-functions, you need the 
source code for these S-functions available during the build process.
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Embedded Program Framework
The Real-Time Workshop Embedded Coder provides a framework for 
embedded programs. Its architecture is outlined by the following figure.

Figure 7-9:  Embedded Program Architecture
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Note the similarity between this architecture and the rapid prototyping 
architecture in Figure 7-6. The main difference is the lack of the SimStruct 
data structure and the removal of the noninlined S-functions.

Using this figure, you can compare the embedded style of generated code, used 
in the Real-Time Workshop Embedded Coder, with the rapid prototyping style 
of generated code of the previous section. Most of the rapid prototyping 
explanations in the previous section hold for the Real-Time Workshop 
Embedded Coder target. The Real-Time Workshop Embedded Coder target 
simplifies the process of using the generated code in your custom-embedded 
applications by providing a model- specific API and eliminating the SimStruct. 
This target contains the same conceptual layering as the rapid prototyping 
target, but each layer has been simplified.

For a discussion of the structure of embedded real-time code, see the Real-Time 
Workshop Embedded Coder documentation.
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8
Models with Multiple 
Sample Rates

This section discusses how and why real-time execution of code generated from models having 
multiple sample rates differs from the simulation behavior of the models. Solutions to problems 
arising from multirate model execution are also described. The topics covered are:

Introduction (p. 8-2) Describes types of sample times and issues to consider 
regarding execution of multirate models

Singletasking vs. Multitasking 
Environments (p. 8-3)

Discusses how Real-Time Workshop handles execution of 
multirate systems, in both multitasking and 
pseudo-multitasking environments

Sample Rate Transitions (p. 8-12) Shows how to handle transitions between blocks with 
unequal sample rates using Rate Transition blocks

Singletasking and Multitasking 
Execution of a Model: an Example 
(p. 8-22)

Discusses how an example model executes in both 
singletasking and multitasking solver modes, with timing 
diagrams
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Introduction
A Simulink block can be classified, according to its sample time, as constant, 
continuous-time, discrete-time, inherited, or variable. Examples of each type 
include:

• Constant — Constant block, Width

• Continuous-time — Integrator, Derivative, Transfer Function

• Discrete-time — Unit Delay, Digital Filter

• Inherited — Gain, Sum, Lookup Table

• Variable — These are blocks that set their time of next hit based upon 
current information. These blocks work only with variable step solvers. 
Examples of variable sample time blocks include the Pulse Generator and 
some S-Function blocks.

Blocks in the inherited category assume the sample time of the blocks that are 
driving them. Continuous blocks have a nominal sample time of zero. Every 
Simulink block therefore has a sample time, whether it is explicit, as in the 
case of continuous or discrete blocks, or implicit, as in the case of inherited 
blocks. 

Simulink allows you to create models without any restrictions on connections 
between blocks with different sample times. It is therefore possible to have 
blocks with differing sample times in a model (a mixed-rate system). A possible 
advantage of employing multiple sample times is improved efficiency when 
executing in a multitasking real-time environment.

Simulink provides considerable flexibility in building these mixed-rate 
systems. However, the same flexibility also allows you to construct models for 
which the code generator cannot generate correct real-time code for execution 
in a multitasking environment. To make these models operate correctly in real 
time (i.e., to give the right answers), you must modify your model. In general, 
the modifications involve placing Rate Transition blocks between blocks that 
have unequal sample rates. The sections that follow discuss the issues you 
must address to use a mixed-rate model successfully in a multitasking 
environment.
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Singletasking vs. Multitasking Environments
There are two execution modes for a fixed-step Simulink model: singletasking 
and multitasking. You use the Mode pull-down menu on the Solver page of the 
Simulation Parameters dialog box to specify how to execute your model. Auto 
mode (the default) selects multitasking execution for a mixed-rate model, and 
otherwise selects singletasking execution. You can also select SingleTasking 
or MultiTasking execution explicitly.

Execution of models in a real-time system can be done with the aid of a 
real-time operating system, or it can be done on a bare-board target, where the 
model runs in the context of an interrupt service routine (ISR).

Note that the fact that a system (such as UNIX or Microsoft Windows) is 
multitasking does not guarantee that the program can execute in real time. 
This is because it is not guaranteed that the program can preempt other 
processes when required.

In DOS, where only one process can exist at any given time, an interrupt 
service routine (ISR) must perform the steps of saving the processor context, 
executing the model code, collecting data, and restoring the processor context.

Tornado, on the other hand, provides automatic context switching and task 
scheduling. This simplifies the operations performed by the ISR. In this case, 
the ISR simply enables the model execution task, which is normally blocked. 



8 Models with Multiple Sample Rates

8-4

Figure 8-1 illustrates this difference. 

Figure 8-1:  Real-Time Program Execution
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This chapter focuses on when and how the run-time interface executes your 
model. See “Program Execution” on page 7-13 for a description of what happens 
during model execution.

Executing Multitasking Models
In cases where the continuous part of a model executes at a rate that is 
different from the discrete part, or a model has blocks with different sample 
rates, the code assigns each block a task identifier (tid) to associate the block 
with the task that executes at the block’s sample rate. 

Certain restrictions apply to the sample rates that you can use:

• The sample rate of any block must be an integer multiple of the base (i.e., the 
fastest) sample period. The base sample period is determined by the Fixed 
step size specified on the Solver page of the Simulation parameters dialog 
box (if a model has continuous blocks) or by the fastest sample time specified 
in the model (if the model is purely discrete). Continuous blocks always 
execute via an integration algorithm that runs at the base sample rate.

• The continuous and discrete parts of the model can execute at different rates 
only if the discrete part is executed at the same or a slower rate than the 
continuous part (and is an integer multiple of the base sample rate).

Multitasking and Pseudomultitasking
In a multitasking environment, the blocks with the fastest sample rates are 
executed by the task with the highest priority, the next slowest blocks are 
executed by a task with the next lower priority, and so on. Time available in 
between the processing of high priority tasks is used for processing lower 
priority tasks. This results in efficient program execution. 

See “Multitasking System Execution” on page 8-7 for a graphical 
representation of task timing.

In multitasking environments (i.e., a real-time operating system), you can 
define separate tasks and assign them priorities. In a bare-board target (i.e., 
no real-time operating system present), you cannot create separate tasks. 
However, Real-Time Workshop application modules implement what is 
effectively a multitasking execution scheme using overlapped interrupts, 
accompanied by manual context switching. 
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This means an interrupt can occur while another interrupt is currently in 
progress. When this happens, the current interrupt is preempted, the 
floating-point unit (FPU) context is saved, and the higher priority interrupt 
executes its higher priority (i.e., faster sample rate) code. Once complete, 
control is returned to the preempted ISR.

The following diagrams illustrate how mixed-rate systems are handled by 
Real-Time Workshop in these two environments.
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Figure 8-2:  Multitasking System Execution
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Figure 8-3:  Pseudomultitasking Using Overlapped Interrupts

Building the Program for Multitasking Execution
To use multitasking execution, select Auto (the default) or MultiTasking as the 
mode on the Solver page of the Simulation Parameters dialog box. The Mode 
menu is only active if you have selected Fixed-step as the Solver options type. 
Auto solver mode will result in a multitasking environment if your model has 
two or more different sample times. In particular, a model with a continuous 
and a discrete sample time will run in singletasking mode if the fixed-step size 
is equal to the discrete sample time.

Singletasking
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In a singletasking environment, the base sample rate must define a time 
interval that is long enough to allow the execution of all blocks within that 
interval. 

The following diagram illustrates the inefficiency inherent in singletasking 
execution.

Figure 8-4:  Singletasking System Execution

Singletasking system execution requires a sample interval that is long enough 
to execute one step through the entire model.

Building the Program for Singletasking Execution
To use singletasking execution, select the singletasking mode on the Solver 
page of the Simulation Parameters dialog box. If the solver mode is Auto, 
singletasking is used in the following cases:

• If your model contains one sample time 

• If your model contains a continuous and a discrete sample time and the fixed 
step size is equal to the discrete sample time

Model Execution
To generate code that executes correctly in real time, you may need to modify 
sample rate transitions within the model before generating code. To 
understand this process, first consider how Simulink simulations differ from 
real-time programs.

Simulating Models with Simulink
Before Simulink simulates a model, it orders all of the blocks based upon their 
topological dependencies. This includes expanding subsystems into the 
individual blocks they contain and flattening the entire model into a single list. 
Once this step is complete, each block is executed in order.
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The key to this process is the proper ordering of blocks. Any block whose output 
is directly dependent on its input (i.e., any block with direct feedthrough) 
cannot execute until the block driving its input has executed. 

Some blocks set their outputs based on values acquired in a previous time step 
or from initial conditions specified as a block parameter. The output of such a 
block is determined by a value stored in memory, which can be updated 
independently of its input. During simulation, all necessary computations are 
performed prior to advancing the variable corresponding to time. In essence, 
this results in all computations occurring instantaneously (i.e., no 
computational delay).

Executing Models in Real Time
A real-time program differs from a Simulink simulation in that the program 
must execute the model code synchronously with real time. Every calculation 
results in some computational delay. This means the sample intervals cannot 
be shortened or lengthened (as they can be in Simulink), which leads to less 
efficient execution.

Figure 8-5:  Unused Time in Sample Interval

Sample interval t1 cannot be compressed to increase execution speed because 
by definition, sample times are clocked in real time.

Real-Time Workshop application programs are designed to circumvent this 
potential inefficiency by using a multitasking scheme. This technique defines 
tasks with different priorities to execute parts of the model code that have 
different sample rates.

See “Multitasking and Pseudomultitasking” on page 8–5 for a description of 
how this works. It is important to understand that section before proceeding 
here.
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Singletasking vs. Multitasking Operation
Singletasking programs require longer sample intervals, because all 
computations must be executed within each clock period. This can result in 
inefficient use of available CPU time, as shown in Figure 8-5. 

The use of multitasking can improve the efficiency of your program if the model 
is large and has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks 
execute at a slower rate, multitasking can actually degrade performance. In 
such a model, the overhead incurred in task switching can be greater than the 
time required to execute the slower blocks. In this case, it is more efficient to 
execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you may 
need to modify your Simulink model by adding Rate Transition blocks to 
generate correct results. The next section, “Sample Rate Transitions” on 
page 8-12, discusses issues related to rate transition blocks.
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Sample Rate Transitions
There are two possible sample rate transitions that can exist within a model:

• A faster block driving a slower block

• A slower block driving a faster block

In singletasking systems, there are no issues involving multiple sample rates. 
In multitasking and pseudomultitasking systems, however, differing sample 
rates can cause problems. To prevent possible errors in calculated data, you 
must control model execution at these transitions. In transitioning from faster 
to slower blocks, you must add Rate Transition blocks between the faster and 
slower blocks.

Figure 8-6:  Transitioning from Faster to Slower Blocks (T = sample period)
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In transitioning from slower to faster blocks, you must add Rate Transition 
blocks between the slower and faster blocks.

Figure 8-7:  Transitioning from Slower to Faster Blocks (T = Sample Period)

Data Transfer Problems
Rate Transition blocks are designed to deal with the following problems that 
occur in data transfer between blocks running at different rates:

• Data integrity: A problem of data integrity exists when the input to a block 
changes during the execution of that block. Data integrity problems can be 
caused by preemption.

Consider the following scenario: a faster block supplies the input to a slower 
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A data integrity problem now arises: when the slower block resumes 
execution, it continues its computations, now using the “new” input value V2. 

We will refer to such a data transfer as unprotected. Figure 8-8 illustrates an 
unprotected data transfer.

In a protected data transfer, the output V1 of the faster block would be held 
until the slower block finished executing.

• Deterministic vs. non-deterministic data transfer: In a deterministic data 
transfer, the timing of the data transfer is completely predictable, as 
determined by the sample rates of the blocks.

The timing of a non-deterministic data transfer depends on the availability 
of data, the sample rates of the blocks, and the time at which the receiving 
block begins to execute relative to the driving block.

You can use the Rate Transition block to ensure that data transfers in your 
application are both protected and deterministic. These characteristics are 
considered desirable in most applications. However, the Rate Transition block 
supports flexible options that allow you to compromise data integrity and 
determinism in favor of lower latency. The next section summarizes these 
options.

Rate Transition Block Options
Several parameters of the Rate Transition block are relevant to its use in code 
generation for real-time execution. These are discussed below. For full 
documentation of the Rate Transition block and its block parameters, see the 
“Simulink Blocks” section of Using Simulink.

The Rate Transition block handles both types of transitions (fast to slow, and 
slow to fast). When inserted between two blocks of differing sample rates, the 
Rate Transition block detects the two rates and automatically configures its 
input and output sample rates for the appropriate type of transition.

The most critical decision you must make in configuring a Rate Transition 
block is the choice of data transfer mechanism to be used between the two 
rates. Your choice will be dictated by considerations of safety, memory usage, 
and performance. The data transfer mechanism is controlled by two options:

• Ensure data integrity during data transfer: When this option is on, the 
integrity of data transferred between rates is guaranteed (the data transfer 
is protected). When this option is off, data integrity is not guaranteed (the 
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data transfer is unprotected). By default, Ensure data integrity during 
data transfer is on.

• Ensure deterministic data transfer (maximum delay): This option is 
enabled only for protected data transfer (when Ensure data integrity 
during data transfer is on). When this option is on, the Rate Transition 
block behaves like a Zero-Order Hold block (for fast to slow transitions) or a 
Unit Delay block (for slow to fast transitions). The Rate Transition block 
controls the timing of data transfer in a completely predictable way. When 
this option is off, the data transfer is non-deterministic. By default, Ensure 
deterministic data transfer (maximum delay) is on.

Thus the Rate Transition block offers three modes of operation with respect to 
data transfer. In order safety, from safest to least safe, these are:

• Protected/Deterministic (default): This is the safest mode. The drawback of 
this mode is that it introduces latency into the system:

- Fast to slow transition: maximum latency is 1 sample period of the slower 
task.

- Slow to fast transition: maximum latency is 2 sample periods of the slower 
task.

• Protected/Non-Deterministic: In this mode, data integrity is protected by 
double-buffering data transferred between rates. The blocks downstream 
from the Rate Transition block always use the latest available data from the 
block that drives the Rate Transition block. Maximum latency is less than or 
equal to 1 sample period of the faster task.

The drawbacks of this mode are its non-deterministic timing and its use of 
extra memory buffers. The advantage of this mode is its low latency.

• Unprotected/Non-Deterministic: This mode is the least safe, and is not 
recommended for mission-critical applications. The latency of this mode is 
the same as for Protected/Non-Deterministic mode, but memory 
requirements are reduced since there is no double-buffering.

Note  In unprotected mode (Ensure data integrity during data transfer 
option off), the Rate Transition block does nothing other than allow the rate 
transition to exist in the model.
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The next four sections describe cases in which Rate Transition blocks are 
necessary for sample rate transitions. The discussion and timing diagrams in 
these sections are based on the assumption that the Rate Transition block is 
used in its default (Protected/Deterministic) mode, with the Ensure data 
integrity during data transfer and Ensure deterministic data transfer 
(maximum delay) options on.

Faster to Slower Transitions in Simulink
In a model where a faster block drives a slower block having direct 
feedthrough, the outputs of the faster block are always computed first. In 
simulation intervals where the slower block does not execute, the simulation 
progresses more rapidly because there are fewer blocks to execute.

The following diagram illustrates this situation.

Simulink does not execute in real time, which means that it is not bound by 
real-time constraints. Simulink waits for, or moves ahead to, whatever tasks 
are necessary to complete simulation flow. The actual time interval between 
sample time steps can vary.

Faster to Slower Transitions in Real Time
In models where a faster block drives a slower block, you must compensate for 
the fact that execution of the slower block may span more than one execution 
period of the faster block. This means that the outputs of the faster block may 
change before the slower block has finished computing its outputs. The 
following diagram illustrates a situation where this problem arises. The 
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hashed area indicates times when tasks are preempted by higher priority 
before completion.

Figure 8-8:  Time Overlaps in Faster to Slower Transitions (T = Sample Time)
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The Rate Transition block executes at the sample rate of the slower block, but 
with the priority of the faster block.

This ensures that the Rate Transition block executes before the 1 second block 
(its priority is higher) and that its output value is held constant while the 2 
second block executes (it executes at the slower sample rate).

Slower to Faster Transitions in Simulink
In a model where a slower block drives a faster block, Simulink again computes 
the output of the driving block first. During sample intervals where only the 
faster block executes, the simulation progresses more rapidly.

The following diagram illustrates the execution sequence. 

As you can see from the preceding diagrams, Simulink can simulate models 
with multiple sample rates in an efficient manner. However, Simulink does not 
operate in real time. 
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Slower to Faster Transitions in Real Time
In models where a slower block drives a faster block, the generated code 
assigns the faster block a higher priority than the slower block. This means the 
faster block is executed before the slower block, which requires special care to 
avoid incorrect results.

Figure 8-9:  Time Overlaps in Slower to Faster Transitions

This timing diagram illustrates two problems:

• Execution of the slower block is split over more than one faster block 
interval. In this case the faster task executes a second time before the slower 
task has completed execution. This means the inputs to the slower task can 
change.

• The faster block executes before the slower block (which is backwards from 
the way Simulink operates). In this case, the 1 second block executes first; 
but the inputs to the faster task have not been computed. This can cause 
unpredictable results.
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To eliminate these problems, you must insert a Rate Transition block between 
the slower and faster blocks..

We assume that the Rate Transition block is used in its default 
(Protected/Deterministic) mode.

The picture below shows the timing sequence that results with the added Rate 
Transition block.

Three key points about this diagram:

• The Rate Transition block output runs in the 1 second task, but only at its 
rate (2 seconds). The output of the Rate Transition block feeds the 1 second 
task blocks.

• The Rate Transition update uses the output of the 2 second task in its update 
of its internal state.
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• The Rate Transition update uses the state of the Rate Transition in the 1 
second task.

The output portion of a Rate Transition block is executed at the sample rate of 
the slower block, but with the priority of the faster block. Since the Rate 
Transition block drives the faster block and has effectively the same priority, 
it is executed before the faster block. This solves the first problem.

The second problem is alleviated because the Rate Transition block executes at 
a slower rate and its output does not change during the computation of the 
faster block it is driving.

Note  This use of the Rate Transition block changes the model. The output of 
the slower block is now delayed by one time step compared to the output 
without a Rate Transition block.
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Singletasking and Multitasking 
Execution of a Model: an Example

In this section we will examine how a simple multirate model executes in both 
real time and simulation, using a fixed-step solver. We will consider the 
operation of both SingleTasking and MultiTasking solver modes. 

The example model is shown in Figure 8-10. We will refer to the six blocks of 
the model as A through F, as labelled in the block diagram.

Note that the execution order of the blocks (indicated in the upper right of each 
block) has been forced into the order shown by assigning higher priorities to 
blocks F, E, and D. The ordering shown is one possible valid execution ordering 
for this model. (See “Determining Block Update Order” in Using Simulink.)

The execution order is determined by data dependencies between blocks. In a 
real-time system, the execution order determines the order in which blocks 
execute, within a given time interval or task. In this discussion we will treat 
the model’s execution order as a given, since we are concerned with the 
allocation of block computations to tasks, and to the scheduling of task 
execution.

Figure 8-10:  Example Model with Multiple Rates and Transition Blocks
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Note  The discussion and timing diagrams in this section is based on the 
assumption that the Rate Transition blocks are used in the default 
(Protected/Deterministic) mode, with the Ensure data integrity during data 
transfer and Ensure deterministic data transfer (maximum delay) options 
on.

Singletasking Execution
In this section, we will consider the execution of the model when the solver 
mode is SingleTasking.

Note that in a singletasking system, if the Block reduction option is on, 
fast-to-slow Rate Transition blocks are optimized out of the model. We show 
the default case (Block reduction on); therefore block B does not appear in the 
timing diagrams in this section.

Table 8-1 shows, for each block in the model, the execution order, sample time, 
and whether the block has an output or update computation. Block A does not 
have discrete states, and accordingly does not have an update computation.
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Real-Time Singletasking Execution
Figure 8-11 shows the scheduling of computations when the generated code is 
deployed in a real-time system. The generated program is shown running in 
real time, under control of interrupts from a 10 Hz timer.

Figure 8-11:  Singletasking Execution of Model in a Real-Time System

Table 8-1:  Execution Order and Sample Times (Singletasking)

Blocks
(in Execution Order)

Sample Time 
(in seconds)

Output Update

F 0.1 Y Y

E 0.1 Y Y

D 1 Y Y

A 0.1 Y N

C 1 Y Y
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Time:

...
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At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks 
execute their output computations; this is followed by update computations for 
blocks that have states. Within a given time interval, output and update 
computations are sequenced in block execution order.

The fast blocks execute on every tick, at intervals of 0.1 sec. Output 
computations are followed by update computations.

Note that the system spends some portion of each time interval (labelled 
“wait”) idling. During the intervals when only the fast blocks execute, a larger 
portion of the interval is spent idling. This illustrates an inherent inefficiency 
of SingleTasking mode.

Simulated Singletasking Execution
Figure 8-12 shows the execution of the model in Simulink via the simulation 
loop. 

Figure 8-12:  Singletasking Execution of Model in Simulink

Since time is simulated, the placement of ticks represents the iterations of the 
simulation loop. Blocks execute in exactly the same order as in Figure 8-11, but 
without the constraint of a real-time clock. Therefore there is no idle time 
between simulated sample periods.
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Multitasking Execution
In this section, we will consider the execution of the model when the solver 
mode is MultiTasking. Block computations are executed under two tasks, 
prioritized by rate:

• The slower task, which gets lower priority, is scheduled to run every second. 
We will refer to this as the 1 second task.

• The faster task, which gets higher priority, is scheduled to run 10 times per 
second. We will refer to this as the 0.1 second task. The 0.1 second task can 
preempt the 1 second task.

Table 8-2 shows, for each block in the model, the execution order, the task 
under which the block runs, and whether the block has an output or update 
computation.Blocks A and B do not have discrete states, and accordingly do not 
have an update computation.

Table 8-2:  Task Allocation of Blocks in Multitasking Execution

Blocks
(in Execution Order)

Task Output Update

F 0.1 second task Y Y

E 0.1 second task Y Y

D Output promoted to run 
under 0.1 second task (see 
“Block Priority 
Promotions”)
Update runs under 1 
second task

Y Y

A 0.1 second task Y N

B Promoted to run under 0.1 
second task (see “Block 
Priority Promotions”)

Y N

C 1 second task Y Y
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Real-Time Multitasking Execution
Figure 8-13 shows the scheduling of computations in MultiTasking solver 
mode when the generated code is deployed in a real-time system.The generated 
program is shown running in real time, as two tasks under control of interrupts 
from a 10 Hz timer.

Figure 8-13:  Multitasking Execution of Model in a Real-Time System
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Block Priority Promotions. Notice following block “promotions”:

• The rate-transition block B has been promoted to run at higher task priority, 
under the 0.1 second task. However, B still executes only at 1-second 
intervals, (that is, at every 10th tick of the 1-second task). In other words, B 
runs at the higher priority but at the slower rate.

This promotion is required because C requires input from B. Running B at 
higher task priority ensures that the output computation of B is always 
completed before C needs it.

• The output computation for rate-transition block D has also been promoted 
to run at higher task priority, under the 0.1 second task. Like B, D’s output 
still executes only at 1-second intervals. 

• The update computation for block D runs under the lower-priority 1 second 
task, at the same priority as C. This is because the state of D is dependent 
upon the output of C.

On each tick, all the outputs and updates for the faster blocks must run before 
the lower-priority block (C) gets any run time. Only block C runs entirely in the 
1 second task. In Figure 8-13, C does not complete its output computation 
within the first 0.1 second tick, so it is preempted by the higher-priority task 
at time 0.1. C then resumes and completes, at which point the update function 
for D is executed. There is then some idle time before the next tick.

If the computations for block C were to take longer than 1 second, an interrupt 
overflow error condition would exist.

Notice that in multitasking mode, the program makes more efficient use of 
time than in singletasking mode, as it spends less time in an idle state.
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Simulated Multitasking Execution
Figure 8-14 shows the execution of the same model in Simulink, in 
MultiTasking solver mode. In this case, Simulink runs all blocks in one thread 
of execution, simulating multitasking. No preemption occurs.

Figure 8-14:  Multitasking Execution of Model in Simulink

Output:

Update:

C

0.0

D C

...

1.0

...

Time:

Output:

Update:

F E D A B

F E 

F E A

0.0 0.20.1

F E A

...

1.0

...

Time:

F E D A B

F E 

F E A

1.1

1 SECOND 
BLOCKS

0.1 SECOND
BLOCKS

F E

C

F E 

D C



8 Models with Multiple Sample Rates

8-30



 

9
Optimizing the Model for 
Code Generation

You can optimize memory usage and performance of code generated from your model by Real-Time 
Workshop a number of ways. Here we discuss optimization techniques that are common to all target 
configurations and code formats. For optimizations specific to a particular target configuration, see 
the chapter relevant to that target. Topics covered here include the following:

General Modeling Techniques (p. 9-2) Optimizations that you can use with any target 
configuration

Expression Folding (p. 9-3) A default optimization that significantly reduces the need 
to compute and store temporary results

Conditional Branch Execution (p. 9-25) A default optimization for executing inputs to switch 
blocks only as often as required

Block Diagram Performance Tuning 
(p. 9-26)

How to efficiently use look-up tables, accumulator 
constructs, and data types

Stateflow Optimizations (p. 9-43) Ways to optimize models containing Stateflow blocks

Simulation Parameters (p. 9-44) Options on the Simulation Parameters dialog box that 
affect code optimization

Compiler Options (p. 9-46) Hints for helping your compiler build more efficient 
executables
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General Modeling Techniques
The following are techniques that you can use with any code format:

• The slupdate command automatically converts older models to use current 
features. Run slupdate on old models.

• Directly inline C code S-functions into the generated code by writing a TLC 
file for the S-function. See the Target Language Compiler documentation for 
more information on inlining S-functions. Also see “Creating Device Drivers” 
on page 14-39 for information on inlining device driver S-functions.

• Use a Simulink data type other than double when possible. The available 
data types are Boolean, signed and unsigned 8-, 16-, and 32-bit integers, and 
32- and 64-bit floats. A double is a 64-bit float. See Using Simulink for more 
information on data types.

• Remove repeated values in lookup table data.

• Use the Merge block to merge the output of function-call subsystems. This 
block is particularly helpful when controlling the execution of function-call 
subsystems with Stateflow.

This diagram is an example of how to use the Merge block.
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Expression Folding
Expression folding is a code optimization technique that minimizes the 
computation of intermediate results at block outputs and the storage of such 
results in temporary buffers or variables. When expression folding is on, 
Real-Time Workshop collapses, or “folds,” block computations into single 
expressions, instead of generating separate code statements and storage 
declarations for each block in the model. 

Expression folding can dramatically improve the efficiency of generated code, 
frequently achieving results that compare favorably to hand-optimized code. In 
many cases, entire groups of model computations fold into a single highly 
optimized line of code.

By default, expression folding is on. The Real-Time Workshop code generation 
options are configured to use expression folding wherever possible. Most 
Simulink blocks support expression folding.

You can also take advantage of expression folding in your own inlined 
S-function blocks. See “Supporting Expression Folding in S-Functions” on 
page 9-10 for information on how to do this.

In the code generation examples that follow, note that signal storage 
optimizations (Signal storage reuse, Buffer reuse and Local block outputs) 
are turned on.

Expression Folding Example
As a simple example of how expression folding affects the code generated from 
a model, consider the model shown in Figure 9-1.

Figure 9-1:  Expression Folding Example Model
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With expression folding on, this model generates a single-line output 
computation, as shown in this MdlOutputs function. 

void MdlOutputs(int_T tid)
{
  /* tid is required for a uniform function interface. This system
   * is single rate, and in this case, tid is not accessed. */
  UNUSED_PARAMETER(tid);

  /* Outport: '<Root>/Out1' incorporates:
   *   Product: '<Root>/Product'
   *   Gain: '<Root>/k1'
   *   Inport: '<Root>/In1'
   *   Gain: '<Root>/k2'
   *   Inport: '<Root>/In2'
   *
   * Regarding '<Root>/k1':
   *   Gain value: rtP.k1_Gain
   *
   * Regarding '<Root>/k2':
   *   Gain value: rtP.k2_Gain
   */
  rtY.Out1 = ((rtP.k1_Gain * rtU.i1) * (rtP.k2_Gain * rtU.i2));
}

The generated comments indicate the block computations that were combined 
into a single expression. The comments also document the block parameters 
that appear in the expression.

With expression folding off, the same model computes temporary results for 
both Gain blocks and the Product block before the final output, as shown in this 
MdlOutputs function.

void MdlOutputs(int_T tid)
{
  /* local block i/o variables */
  real_T rtb_s2;
  real_T rtb_temp1;

  /* tid is required for a uniform function interface. This system
   * is single rate, and in this case, tid is not accessed. */
  UNUSED_PARAMETER(tid);
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  /* Gain Block: '<Root>/k1'
   *   Gain value: rtP.k1_Gain
   */

  rtb_temp1 = rtU.i1 * rtP.k1_Gain;

  /* Gain Block: '<Root>/k2'
   *   Gain value: rtP.k2_Gain
   */

  rtb_s2 = rtU.i2 * rtP.k2_Gain;

  /* Product Block: '<Root>/Product' */

  rtb_temp1 = rtb_temp1 * rtb_s2;

  /* Outport Block: '<Root>/Out1' */

  rtY.Out1 = rtb_temp1;
}

For a example of expression folding in the context of a more complex model, 
link to the exprfolding demo, or type the following command at the MATLAB 
prompt.

exprfolding

Using and Configuring Expression Folding
The options described in this section let you control the operation of expression 
folding.

Enabling Expression Folding
Expression folding operates only on expressions involving local variables. 
Expression folding is therefore available only when both the Signal storage 
reuse and Local block outputs code generation options are on.

For a new model, default code generation options are set to use expression 
folding. If you are configuring an existing model, you can ensure that 
expression folding is turned on as follows:
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1 Select the Signal storage reuse option on the Advanced page of the 
Simulation Parameters dialog box.

2 Select the Local block outputs option in the General code generation 
options category of the Real-Time Workshop pane of the Simulation 
Parameters dialog box.

3 Access the expression folding related options by selecting General code 
generation options (cont.) from the Category menu of the Real-Time 
Workshop pane.

The expression folding options are shown in Figure 9-2. By default, all 
expression folding related options are selected, as shown. These options are 
detailed in “Expression Folding Options” on page 9-6. 

4 If necessary, select the Expression folding option and click Apply.

Figure 9-2:  Expression Folding Options

Expression Folding Options
This section discusses the available code generation options related to 
expression folding.
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Expression Folding. This option turns the expression folding feature on or off. 
When Expression folding is selected, the Fold unrolled vectors and Enforce 
integer downcast options are available.

Alternatively, you can turn expression folding on or off from the MATLAB 
command line via the command

set_param(gcs, 'RTWExpressionDepthLimit', val)

If val = 1, expression folding is turned on. If val = 0, expression folding is 
turned off.

Fold Unrolled Vectors. We recommend that you leave this option on, as it will 
decrease the generated code (ROM) size.

Turning Fold unrolled vectors off will speed up code generation for vector 
signals whose widths are less than the Loop rolling threshold (See“Loop 
Rolling Threshold Field” on page 2-9). You may want to consider turning Fold 
unrolled vectors off if:

• You are concerned with code generation speed.

• You mostly work with scalar signals.

• You mostly work with signals above the loop rolling threshold.

To understand the effect of Fold unrolled vectors, consider the model shown 
in this diagram.

The input signals i1 and i2 are vectors of width 3. The input signal elements 
are represented in the generated code as members of the rtU structure 
(rtU.i1[n] and rtU.i2[n]).

Assuming the model’s loop rolling threshold is greater than 3, (the default 
threshold is 5) computations on i1 are not rolled into a for loop. If Fold 
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unrolled vectors is on, the gain computations for elements of i1 and i2 are 
folded into the Outport block computations, as shown in this MdlOutputs 
function.

void MdlOutputs(int_T tid)
/* tid is required for a uniform function interface. This system
   * is single rate, and in this case, tid is not accessed. */
  UNUSED_PARAMETER(tid);

{
/* Outport: <Root>/Out1 incorporates:
   *   Product: <Root>/Product
   *   Gain: <Root>/k1
   *   Inport: <Root>/In1
   *   Gain: <Root>/k2
   *   Inport: <Root>/In2
   *
   * Regarding <Root>/k1:
   *   Gain value: rtP.k1_Gain
   *
   * Regarding <Root>/k2:
   *   Gain value: rtP.k2_Gain
   */
  rtY.Out1[0] = ((rtP.k1_Gain * rtU.i1[0]) * (rtP.k2_Gain * rtU.i2[0]));
  rtY.Out1[1] = ((rtP.k1_Gain * rtU.i1[1]) * (rtP.k2_Gain * rtU.i2[1]));
  rtY.Out1[2] = ((rtP.k1_Gain * rtU.i1[2]) * (rtP.k2_Gain * rtU.i2[2]));
}

If Fold unrolled Vectors is off, computations for elements of i1 and i2 are 
implemented as separate code statements, with intermediate results stored in 
temporary variables, as shown in this MdlOutputs function.

void MdlOutputs(int_T tid)
{
  /* local block i/o variables */
  real_T rtb_s2[3];
  real_T rtb_temp1[3];

  /* tid is required for a uniform function interface. This system
   * is single rate, and in this case, tid is not accessed. */
  UNUSED_PARAMETER(tid);

  /* Gain: '<Root>/k1' incorporates:
   *   Inport: '<Root>/In1'
   *
   * Regarding '<Root>/k1':
   *   Gain value: rtP.k1_Gain
   */
  rtb_temp1[0] = rtU.i1[0] * rtP.k1_Gain;
  rtb_temp1[1] = rtU.i1[1] * rtP.k1_Gain;
  rtb_temp1[2] = rtU.i1[2] * rtP.k1_Gain;
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  /* Gain: '<Root>/k2' incorporates:
   *   Inport: '<Root>/In2'
   *
   * Regarding '<Root>/k2':
   *   Gain value: rtP.k2_Gain
   */
  rtb_s2[0] = rtU.i2[0] * rtP.k2_Gain;
  rtb_s2[1] = rtU.i2[1] * rtP.k2_Gain;
  rtb_s2[2] = rtU.i2[2] * rtP.k2_Gain;

  /* Product: '<Root>/Product' */
  rtb_temp1[0] = rtb_temp1[0] * rtb_s2[0];
  rtb_temp1[1] = rtb_temp1[1] * rtb_s2[1];
  rtb_temp1[2] = rtb_temp1[2] * rtb_s2[2];

  /* Outport: '<Root>/Out1' */
  rtY.Out1[0] = rtb_temp1[0];
  rtY.Out1[1] = rtb_temp1[1];
  rtY.Out1[2] = rtb_temp1[2];
}

Enforce Integer Downcast . This option refers to 8-bit operations on 16-bit 
microprocessors and 8 and 16-bit operations on 32-bit microprocessors. To 
ensure consistency between simulation and code generation, the results of 8 
and 16-bit integer expressions must be explicitly downcast.

Deselecting this option improves code efficiency. However, the primary effect 
of deselecting this option is that expressions involving 8 and 16-bit arithmetic 
are less likely to overflow in code than they are in simulation. We recommend 
that you turn on Enforce integer downcast for safety. Turn the option off only 
if you are concerned with generating the smallest possible code, and you know 
that 8 and 16-bit signals will not overflow.

As an example, consider this model.

The following code fragment shows the output computation (within the 
MdlOutputs function) when Enforce integer downcast is on. The Gain blocks 
are folded into a single expression. In addition to the typecasts generated by 
the Type Conversion blocks, each Gain block output is cast to int8_T.
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int8_T rtb_Data_Type_Conversion;
.
.
.
rtY.Out1 = (int16_T)(int8_T)(rtP.Gain2_Gain * (int8_T)(rtP.Gain1_Gain * 
(int8_T)(rtP.Gain_Gain * rtb_Data_Type_Conversion)));

If Enforce integer downcast is off, the code contains only the typecasts 
generated by the Type Conversion blocks, as shown in the following code 
fragment.

int8_T rtb_Data_Type_Conversion;
.
.
.
rtY.Out1 = (int16_T)(rtP.Gain2_Gain * (rtP.Gain1_Gain * (rtP.Gain_Gain * 
rtb_Data_Type_Conversion)));

Supporting Expression Folding in S-Functions
This section describes how you can take advantage of expression folding to 
increase the efficiency of code generated by your own inlined S-function blocks 
by calling macros provided in the S-Function API.

This section assumes that you are familiar with:

• Writing inlined S-functions (see “Writing S-Functions” in the Simulink 
documentation).

• The Target Language Compiler (see the Target Language Compiler 
documentation).

The S-Function API lets you specify whether a given S-Function block should 
nominally accept expressions at a given input port. A block should not always 
accept expressions. For example, if the address of the signal at the input is 
used, expressions should not be accepted at that input, because it is not 
possible to take the address of an expression.

The S-Function API also lets you specify whether an expression can represent 
the computations associated with a given output port. When you request an 
expression at a block’s input or output port, Simulink determines whether or 
not it can honor that request, given the block’s context. For example, Simulink 
may deny a block’s request to output an expression if the destination block does 
not accept expressions at its input; if the destination block has an update 
function; or if there are multiple output destinations. 
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The decision to honor or deny a request to output an expression can also depend 
on the category of output expression the block uses (see “Categories of Output 
Expressions” on page 9–11).

In the sections that follow, we explain:

• When and how you can request that a block accept expressions at an input 
port.

• When and how you can request that a block generate expressions at an 
outport.

• The conditions under which Simulink will honor or deny such requests.

To take advantage of expression folding in your S-functions, you need to 
understand when it is appropriate to request acceptance and generation of 
expressions for specific blocks. It is not necessary for you to understand the 
algorithm by which Simulink chooses to accept or deny these requests. 
However, if you want to trace between the model and the generated code, it will 
be helpful to understand some of the more common situations which lead to 
denial of a request.

Categories of Output Expressions
When you implement a C-MEX S-function, you can specify whether the code 
corresponding to a block’s output is to be generated as an expression. If the 
block generates an expression, you must specify that the expression is constant, 
trivial, or generic.

A constant output expression is a direct access to one of the block’s parameters. 
For example, the output of a Constant block is defined as a constant expression, 
because the output expression is simply a direct access to the block’s Value 
parameter.

A trivial output expression is an expression that may be repeated, without any 
performance penalty, when the output port has multiple output destinations. 
For example, the output of a Unit Delay block is defined as a trivial expression, 
because the output expression is simply a direct access to the block’s state. 
Since the output expression involves no computations, it may be repeated more 
than once without degrading the performance of the generated code. 

A generic output expression is an expression that should be assumed to have a 
performance penalty if repeated. As such, a generic output expression is not 
suitable for repeating when the output port has multiple output destinations. 
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For instance, the output of a Sum block is a generic rather than a trivial 
expression because, it is costly to recompute a Sum block output expression as 
an input to multiple blocks.

Examples of Trivial and Generic Output Expressions
Consider the block diagram of Figure 9-3. The Delay block has multiple 
destinations, yet its output is designated as a trivial output expression, so that 
it can be used more than once without degrading the efficiency of the code.

Figure 9-3:  Diagram With Delay Block Routed to Multiple Destinations

The following code excerpt shows code generated from the Unit Delay block in 
this block diagram. Note that the three root outputs are directly assigned from 
the state of the Unit Delay block, which is stored in a field of the global data 
structure rtDWork. Since the assignment is direct, involving no expressions, 
there is no performance penalty associated with using the trivial expression for 
multiple destinations.

void MdlOutputs(int_T tid)
{
   ...
  /* Outport: <Root>/Out1 incorporates:

   *   UnitDelay: <Root>/Unit Delay */
  rtY.Out1 = rtDWork.Unit_Delay_DSTATE;

  /* Outport: <Root>/Out2 incorporates:
   *   UnitDelay: <Root>/Unit Delay */
  rtY.Out2 = rtDWork.Unit_Delay_DSTATE;
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  /* Outport: <Root>/Out3 incorporates:
   *   UnitDelay: <Root>/Unit Delay */
  rtY.Out3 = rtDWork.Unit_Delay_DSTATE;

   ...
}

On the other hand, consider the Sum blocks in Figure 9-4.

Figure 9-4:  Diagram With Sum Block Routed to Multiple Destinations

The upper Sum block in Figure 9-4 generates the signal labelled non_triv. 
Computation of this output signal involves two multiplications and an 
addition. If the Sum block’s output were permitted to generate an expression 
even when the block had multiple destinations, the block’s operations would be 
duplicated in the generated code. In the case illustrated, the generated 
expressions would proliferate to four multiplications and two additions. This 
would degrade the efficiency of the program. Accordingly the output of the Sum 
block is not allowed to be an expression since it has multiple destinations

The code generated for the block diagram of Figure 9-4 illustrates how code is 
generated for Sum blocks with single and multiple destinations.

The Simulink engine does not permit the output of the upper Sum block to be 
an expression, since the signal non_triv is routed to two output destinations. 
Instead, the result of the multiplication and addition operations is stored in a 
temporary variable (rtb_non_triv) that is referenced twice in the statements 
that follow, as seen in the code excerpt below.

In contrast, the lower Sum block, which has only a single output destination 
(Out2), does generate an expression.
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void MdlOutputs(int_T tid)
{
  /* local block i/o variables */
  real_T rtb_non_triv;
  real_T rtb_Sine_Wave;

  /* Sum: <Root>/Sum incorporates:
   *   Gain: <Root>/Gain
   *   Inport: <Root>/u1
   *   Gain: <Root>/Gain1
   *   Inport: <Root>/u2
   *
   * Regarding <Root>/Gain:
   *   Gain value: rtP.Gain_Gain
   *
   * Regarding <Root>/Gain1:
   *   Gain value: rtP.Gain1_Gain
   */
  rtb_non_triv = (rtP.Gain_Gain * rtU.u1) + (rtP.Gain1_Gain * 
rtU.u2);

  /* Outport: <Root>/Out1 */
  rtY.Out1 = rtb_non_triv;

  /* Sin Block: <Root>/Sine Wave */

  rtb_Sine_Wave = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_model) + 
rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

  /* Outport: <Root>/Out2 incorporates:
   *   Sum: <Root>/Sum1
   */
  rtY.Out2 = (rtb_non_triv + rtb_Sine_Wave);
}

Specifying the Category of an Output Expression
The S-Function API provides macros that let you declare whether an output of 
a block should be an expression, and if so, to specify the category of the 
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expression. Table 9-1 specifies when to declare a block output to be a constant, 
trivial, or generic output expression.

You must declare outputs as expressions in the mdlSetWorkWidths function, 
using macros defined in the S-Function API. The macros have the following 
arguments:

• SimStruct *S: pointer to the block’s SimStruct.

• int idx: zero-based index of the output port.

• bool value: pass in TRUE if the port generates output expressions.

The following macros are available for setting an output to be a constant, 
trivial, or generic expression:

• void ssSetOutputPortConstantOutputExprInRTW(SimStruct *S, int idx, bool value)
• void ssSetOutputPortTrivialOutputExprInRTW(SimStruct *S, int idx, bool value)
• void ssSetOutputPortOutputExprInRTW(SimStruct *S, int idx, bool value)

The following macros are available for querying the status set by any prior calls 
to the macros above:

• bool ssGetOutputPortConstantOutputExprInRTW(SimStruct *S, int idx)
• bool ssGetOutputPortTrivialOutputExprInRTW(SimStruct *S, int idx)
• bool ssGetOutputPortOutputExprInRTW(SimStruct *S, int idx)

Table 9-1:  Types of Output Expressions

Category of 
Expression

When to Use

Constant Use only if block output is a direct memory access to a 
block parameter 

Trivial Use only if block output is an expression that may 
appear multiple times in the code without reducing 
efficiency (for example, a direct memory access to a 
field of the DWork vector, or a literal) 

Generic Use if output is an expression, but not constant or 
trivial
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Note that the set of generic expressions is a superset of the set of trivial 
expressions, and the set of trivial expressions is a superset of the set of constant 
expressions. 

Therefore, when you query an output that has been set to be a constant 
expression with ssGetOutputPortTrivialOutputExprInRTW, it will return 
True. A constant expression is considered a trivial expression, because it is a 
direct memory access that may be repeated without degrading the efficiency of 
the generated code.

Similarly, an output that has been configured to be a constant or trivial 
expression will return true when queried for its status as a generic expression. 

Acceptance or Denial of Requests for
Input Expressions
A block can request that its output be represented in code as an expression. 
Such a request may be denied if the destination block cannot accept 
expressions at its input port. Furthermore, conditions independent of the 
requesting block and its destination block(s) can prevent acceptance of 
expressions.

In this section, we will discuss block-specific conditions under which requests 
for input expressions are denied. For information on other conditions that 
prevent acceptance of expressions, see “Generic Conditions for Denial of 
Requests to Output Expressions” on page 9-19.

A block should not be configured to accept expressions at its input port under 
the following conditions:

• The block must take the address of its input data. It is not possible to take 
the address of most types of input expressions.

• The code generated for the block will reference the input more than once (e.g. 
the Abs or Max blocks). This would lead to duplication of a potentially 
complex expression and a subsequent degradation of code efficiency.

If a block refuses to accept expressions at an input port, then no block that is 
connected to that input port is permitted to output a generic or trivial 
expression.
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A request to output a constant expression is never denied, because there is no 
performance penalty for a constant expression, and it is always possible to take 
the parameter’s address.

Example: Acceptance and Denial of Expressions at Block Inputs
This example illustrates how various built-in blocks handle requests to accept 
different categories of expressions at their inputs.

The sample model of Figure 9-5 contains:

• Two Gain blocks. Gain blocks request their destination blocks to accept 
generic expressions.

• An Abs block. This block always denies expressions at its input port. The Abs 
block code uses the macro rt_ABS(u), which evaluates the input u twice. (see 
the TLC implementation of the Abs block in
matlabroot/rtw/c/tlc/blocks/absval.tlc.)

• A Trigonometric Function block. This block accepts expressions at its input 
port.

Figure 9-5:  Two Gain Blocks Requesting to Output an Expression

The Gain1 block’s request to output an expression is denied by the Abs block. 
The Gain2 block's request to output an expression is accepted by the 
Trigonometric Function block.

The generated code is shown in the code excerpt below. Note that the output of 
the Gain1 block is stored in the temporary variable rtb_Gain1, rather than 
generating an input expression to the Abs block.

void MdlOutputs(int_T tid)
{
/* local block i/o variables */
real_T rtb_Gain1;
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/* Gain: '<Root>/Gain1' incorporates:
 *   Inport: '<Root>/In1'
 *
 * Regarding '<Root>/Gain':
 *   Gain value: 2.0
 */
rtb_Gain1 = rtU.In1 * 2.0;

/* Outport: '<Root>/Out1' incorporates:
 *   Abs: '<Root>/Abs'
 */
rtY.Out1 = rt_ABS(rtb_Gain1);

/* Outport: '<Root>/Out2' incorporates:
 *   Trigonometry: '<Root>/Trigonometric Function'
 *   Gain: '<Root>/Gain2'
 *   Inport: '<Root>/In2'
 *
 * Regarding '<Root>/Gain2':
 *   Gain value: 2.0
 */
rtY.Out2 = sin((2.0 * rtU.In2));
}

Using the S-Function API to Specify Input Expression Acceptance
The S-Function API provides macros that let you:

• Specify whether a block input should accept non-constant expressions (i.e. 
trivial or generic expressions).

• Query whether a block input accepts non-constant expressions.

By default, block inputs do not accept non-constant expressions.

You should call the macros in your mdlSetWorkWidths function. The macros 
have the following arguments:

• SimStruct *S: pointer to the block’s SimStruct.

• int idx: zero-based index of the input port.

• bool value: pass in TRUE if the port accepts input expressions; otherwise 
pass in FALSE.
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The macro available for specifying whether or not a block input should accept 
a non-constant expression is as follows:

void ssSetInputPortAcceptExprInRTW(SimStruct *S, int portIdx, bool value)

The corresponding macro available for querying the status set by any prior 
calls to ssSetInputPortAcceptExprInRTW is as follows:

bool ssGetInputPortAcceptExprInRTW(SimStruct *S, int portIdx)

Generic Conditions for Denial of Requests to Output Expressions
Even after a specific block requests that it be allowed to generate an output 
expression, that request may be denied, for generic reasons. These reasons 
include, but are not limited to:

• The output expression is non-trivial, and the output has multiple 
destinations

• The output expression is non-constant, and the output is connected to at 
least one destination that does not accept expressions at its input port

• The output is a test point

• The output has been assigned an external storage class

• The output must be stored using global data (e.g. is an input to a merge 
block, or a block with states)

• The output signal is complex

You do not need to consider these generic factors when deciding whether or not 
to utilize expression folding for a particular block. However, these rules may be 
helpful when examining generated code, and analyzing cases where the 
expression folding optimization is suppressed.

Utilizing Expression Folding in Your TLC Block
Implementation
To take advantage of expression folding, an inlined S-Function must be 
modified in two ways:

• It must tell Simulink whether it generates or accepts expressions at its input 
ports, as described in “Using the S-Function API to Specify Input Expression 
Acceptance” on page 9-18.



9 Optimizing the Model for Code Generation

9-20

• It must tell Simulink whether it generates or accepts expressions at its 
output ports, as described in “Categories of Output Expressions” on 
page 9-11.

• The TLC implementation of the block must be modified.

In this section, we discuss required modifications to the TLC implementation.

Expression Folding Compliance
In the BlockInstanceSetup function of your S-function, you must ensure that 
your block registers that it is compliant with expression folding. If you fail to 
do this, any expression folding requested or allowed at the block’s outputs or 
inputs will be disabled, and temporary variables will be utilized. To register 
expression folding compliance, call the TLC library function

%LibBlockSetIsExpressionCompliant (block)

Note that you can conditionally disable expression folding at the inputs and 
outputs of a block by making the call to this function conditionally.

If you have overridden one of the TLC block implementations provided by 
Real-Time Workshop with your own implementation, you should not make the 
above call until you have updated your implementation, as described by the 
guidelines for expression folding in the following sections.

Outputting Expressions
The BlockOutputSignal function is used to generate code for a scalar output 
expression, or one element of a non-scalar output expression. If your block 
outputs an expression, you should add a BlockOutputSignal function. The 
prototype of the BlockOutputSignal is

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

The arguments to BlockOutputSignal are as follows:

• block: the record for the block for which an output expression is being 
generated.

• system: the record for the system containing the block.

• portIdx: zero-based index of the output port for which an expression is being 
generated.

• ucv: user control variable defining the output element for which code is being 
generated.
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• lcv: loop control variable defining the output element for which code is being 
generated

• idx: signal index defining the output element for which code is being 
generated

• retType: string defining the type of signal access desired:

"Signal" specifies the contents or address of the output signal.

"SignalAddr" specifies the address of the output signal.)

The BlockOutputSignal function returns an appropriate text string for the 
output signal or address. The string should enforce the precedence of the 
expression by utilizing opening and terminating parentheses, unless the 
expression consists of a function call. The address of an expression may only be 
returned for a constant expression; it is the address of the parameter whose 
memory is being accessed.   The code implementing the BlockOutputSignal 
function for the Constant block is shown below.

%% Function: BlockOutputSignal =================================================
%% Abstract:
%%      Return the appropriate reference to the parameter.  This function *may*
%%      be used by Simulink when optimizing the Block IO data structure.
%%
%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void
  %switch retType
    %case "Signal"
      %return LibBlockParameter(Value,ucv,lcv,idx)
    %case "SignalAddr"
      %return LibBlockParameterAddr(Value,ucv,lcv,idx)
    %default
      %assign errTxt = "Unsupported return type: %<retType>"
      %<LibBlockReportError(block,errTxt)>
  %endswitch
%endfunction

The code implementing the BlockOutputSignal function for the Relational 
Operator block is shown below.



9 Optimizing the Model for Code Generation

9-22

%% Function: BlockOutputSignal =================================================
%% Abstract:
%%      Return an output expression.  This function *may*
%%      be used by Simulink when optimizing the Block IO data structure.
%%
%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void
  %switch retType
    %case "Signal"
      %assign logicOperator = ParamSettings.Operator
      %if ISEQUAL(logicOperator, "~=")

%assign op = "!="
      %elseif ISEQUAL(logicOperator, "==")

%assign op = "=="
      %else

%assign op = logicOperator
      %endif
      %assign u0 = LibBlockInputSignal(0, ucv, lcv, idx)
      %assign u1 = LibBlockInputSignal(1, ucv, lcv, idx)
      %return "(%<u0> %<op> %<u1>)"
    %default
      %assign errTxt = "Unsupported return type: %<retType>"
      %<LibBlockReportError(block,errTxt)>
  %endswitch
%endfunction  

Expression Folding for Blocks with Multiple Outputs
When a block has a single output, the Outputs function in the block’s TLC file 
is called only if the output is not an expression. Otherwise, the 
BlockOutputSignal function is called.

If a block has multiple outputs, the Outputs function will be called if any output 
port is not an expression. The Outputs function should guard against 
generating code for output ports that are expressions. This is achieved by 
guarding sections of code corresponding to individual output ports with calls to 
LibBlockOutputSignalIsExpr().

For example, consider an S-Function with two inputs and two outputs, where:

• The first output, y0, is equal to two times the first input

• The second output, y1, is equal to four times the second input.
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The Outputs and BlockOutputSignal functions for the S-function are shown in 
the following code excerpt.

%% Function: BlockOutputSignal =================================================
%% Abstract:
%%      Return an output expression.  This function *may*
%%      be used by Simulink when optimizing the Block IO data structure.
%%
%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void
  %switch retType
    %assign u = LibBlockInputSignal(portIdx, ucv, lcv, idx)
    %case "Signal"
      %if portIdx == 0
        %return "(2 * %<u>)"
      %elseif portIdx == 1
        %return "(4 * %<u>)"
      %endif
    %default
      %assign errTxt = "Unsupported return type: %<retType>"
      %<LibBlockReportError(block,errTxt)>
  %endswitch
%endfunction  

%% Function: Outputs =================================================
%% Abstract:
%%      Compute output signals of block
%%
%function Outputs(block,system) Output
%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars 

%assign u0 = LibBlockInputSignal(0, ucv, lcv, idx)
%assign u1 = LibBlockInputSignal(1, ucv, lcv, idx)
%assign y0 = LibBlockOutputSignal(0, ucv, lcv, idx)
%assign y1 = LibBlockOutputSignal(1, ucv, lcv, idx)
if !LibBlockOutputSignalIsExpr(0)
%<y0> = 2 * %<u0>;

%endif
%if !LibBlockOutputSignalIsExpr(1)
%<y1> = 4 * %<u1>;

%endif
%endroll
%endfunction

Comments for Blocks That Are Expression Folding Compliant
In the past, all blocks preceded their outputs code with comments of the form 

/* %<Type> Block: %<Name> */

When a block is expression folding compliant, the initial line shown above is 
generated automatically. You should not include the comment as part of the 
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block’s TLC implementation. Additional information should be registered 
using the LibCacheBlockComment function.

The LibCacheBlockComment function takes a string as an input, defining the 
body of the comment, except for the opening header, the final newline of a 
single or multi-line comment, and the closing trailer.

The following TLC code illustrates registering a block comment. Note the use 
of the function LibBlockParameterForComment, which returns a string, 
suitable for a block comment, specifying the value of the block parameter.

%openfile commentBuf
  $c(*) Gain value: %<LibBlockParameterForComment(Gain)>
  %closefile commentBuf
  %<LibCacheBlockComment(block, commentBuf)>
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Conditional Branch Execution
Conditional input branch execution is a Simulation and code generation 
optimization technique that improves model execution when the model 
contains Switch and Multiport Switch blocks. By default, the Real-Time 
Workshop code generation options are configured to use the conditional input 
branch optimization.

When Conditional input branch optimization is on, instead of executing all 
blocks driving the Switch block input ports at each time step, only the blocks 
required to compute the control input and the data input selected by the control 
input are executed.

You can turn conditional input branch optimization on or off by selecting the 
Conditional input branch option on the Advanced pane of the Simulation 
Parameters dialog box.

For a example of conditional input branch optimization demo, use this link to 
the condinputexec demo, or type the following command at the MATLAB 
prompt.

condinputexec
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Block Diagram Performance Tuning
Certain block constructs in Simulink will run faster, or require less code or 
data memory, than other seemingly equivalent constructs. Knowing the 
trade-offs between similar blocks and block parameter options will enable you 
to create Simulink models that have intuitive diagrams, and to produce the 
tight code that you want from Real-Time Workshop. Many of the options and 
constructs discussed in this section will improve the simulation speed of the 
model itself, even without code generation.

Look-Up Tables and Polynomials
Simulink provides several blocks that allow approximation of functions. These 
include blocks that perform direct, interpolated and cubic spline lookup table 
operations, and a polynomial evaluation block.

There are currently six different blocks in Simulink that perform lookup table 
operations:

• Look-Up Table

• Look-Up Table (2-D)

• Look-Up Table (n-D)

• Direct Look-Up Table (n-D)

• PreLook-Up Index Search

• Interpolation (n-D) Using PreLook-Up Index Search

In addition, the Repeating Sequence block uses a lookup table operation, the 
output of which is a function of the real-time (or simulation-time) clock.

To get the most out of the following discussion, you should familiarize yourself 
with the features of these blocks, as documented in Using Simulink.

Each type of lookup table block has its own set of options and associated 
trade-offs. The examples in this section show how to use lookup tables 
effectively. The techniques demonstrated here will help you achieve maximal 
performance with minimal code and data sizes.

Multi-Channel Nonlinear Signal Conditioning
Figure 9-6 shows a Simulink model that reads input from two 8-channel, 
high-speed 8-bit analog/digital converters (ADCs). The ADCs are connected to 
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Type K thermocouples through a gain circuit with an amplification of 250. 
Since the popular Type K thermocouples are highly nonlinear, there is an 
international standard for converting their voltages to temperature. In the 
range of 0 to 500 degrees Celsius, this conversion is a tenth-order polynomial. 
One way to perform the conversion from ADC readings (0-255) into 
temperature (in degrees Celsius) is to evaluate this polynomial. In the best 
case, the polynomial evaluation requires 9 multiplications and 10 additions per 
channel.

A polynomial evaluation is not the fastest way to convert these 8-bit ADC 
readings into measured temperature. Instead, the model uses a Direct Look-Up 
(n-D) Table block (named TypeK_TC) to map 8-bit values to temperature 
values. This block performs one array reference per channel.

Figure 9-6:  Direct Look-Up Table (n-D) Block Conditions ADC Input

The block’s table parameter is populated with 256 values that correspond to 
the temperature at an ADC reading of 0, 1, 2, … up to 255. The table data, 
calculated in MATLAB, is stored in the workspace variable TypeK_0_500. The 
block’s Table data parameter field references this variable, as shown in 
Figure 9-7.
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Figure 9-7:  Parameters of Direct Look-Up Table (n-D) Block

The model uses a Mux block to collect all similar signals (e.g., Type K 
thermocouple readings) and feed them into a single Direct Look-Up Table 
block. This is more efficient than using one Direct Look-Up Table block per 
device. If multiple blocks share a common parameter (such as the table in this 
example), Real-Time Workshop creates only one copy of that parameter in the 
generated code.

This is the recommended approach for signal conditioning when the size of the 
table can fit within your memory constraints. In this example, the table stores 
256 double (8-byte) values, utilizing 2 KB of memory.

Note that the TypeK_TC block processes 16 channels of data sequentially.

Real-Time Workshop generates the following code for the TypeK_TC block 
shown in Figure 9-6.

/* (LookupNDDirect) Block: <Root>/TypeK_TC */
/* 1-dimensional Direct Look-Up Table returning 16 Scalars */
{
  int_T i1;
  const uint8_T *u0 = &rtb_s1_Data_Type_Conversion[0];
  real_T *y0 = &rtb_root_TypeK_TC[0];

  for (i1=0; i1 < 8; i1++) {



Block Diagram Performance Tuning

9-29

    y0[i1] = (rtP.root_TypeK_TC_table[(uint8_T)u0[i1]]);
  }
  u0 = &rtb_s2_Data_Type_Conversion[0];
  y0 = &rtb_root_TypeK_TC[8];

  for (i1=0; i1 < 8; i1++) {
    y0[i1] = (rtP.root_TypeK_TC_table[(uint8_T)u0[i1]]);
  }
}

Notice that the core of each loop is one line of code that directly retrieves a table 
element from the table and places it in the block output variable. There are two 
loops in the generated code because the two simulated ADCs are not merged 
into a contiguous memory array in the Mux block. Instead, to avoid a copy 
operation, the Direct Look-Up Table block performs the lookup on two sets of 
data using a single table array (rtP.root_TypeK_TC_table[]).

If the input accuracy for your application (not to be confused with the number 
of I/O bits) is 24 bits or less, you can use a single precision table for signal 
conditioning. Then, cast the lookup table output to double precision for use in 
the rest of the block diagram. This technique, shown in Figure 9-8, causes no 
loss of precision.

Figure 9-8:  Single Precision Lookup Table Output Is Cast to Double Precision

Note that a direct lookup table covering 24 bits of accuracy would require 64 
megabytes of memory, which is typically not practical. To create a single 
precision table, use the MATLAB single() cast function in your table 
calculations. Alternatively, you can perform the type cast directly in the Table 
data parameter, as shown in Figure 9-9.
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Figure 9-9:  Type Casting Table Data in a Direct Look-Up Block

When table size becomes impractical, you must use other nonlinear techniques, 
such as interpolation or polynomial techniques. The Look-Up Table (n-D) block 
supports linear interpolation and cubic spline interpolation.The Polynomial 
block supports evaluation of noncomplex polynomials.

Compute-Intensive Equations
The blocks described in this section are useful for simplifying fixed, complex 
relationships that are normally too time consuming to compute in real time.

The only practical way to implement some compute-intensive functions or 
arbitrary nonlinear relationships in real time is to use some form of lookup 
table. On processors that do not have floating-point instructions, even 
functions like sqrt() can become too expensive to evaluate in real time.

An approximation to the nonlinear relationship in a known range will work in 
most cases. For example, your application might require a square root 
calculation that your target processor’s instruction set does not support. The 
illustration below shows how you can use a Look-Up Table block to calculate 
an approximation of the square root function that covers a given range of the 
function. 
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The interpolated values are plotted on the block icon.

For more accuracy on widely spaced points, use a cubic spline interpolation in 
the Look-Up Table (n-D) block, as shown below.
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Techniques available in Simulink include n-dimensional support for direct 
lookup, linear interpolations in a table, cubic spline interpolations in a table, 
and 1-D real polynomial evaluation.

The Look-Up Table (n-D) block supports flat interval lookup, linear 
interpolation and cubic spline interpolation. Extrapolation for the Look-Up 
Table (n-D) block can either be disabled (clipping) or enabled for linear or 
spline extrapolations.

The icons for the Direct Look-Up Table (n-D) and Look-Up Table (n-D) blocks 
change depending on the type of interpolation selected and the number of 
dimensions in the table, as illustrated below.

Tables with Repeated Points
The Look-Up Table and Look-Up Table (2-D) blocks, shown below, support 
linear interpolation with linear extrapolation. In these blocks, the row and 
column parameters can have repeated points, allowing pure step behavior to be 
mixed in with the linear interpolations. Note that this capability is not 
supported by the Look-Up Table (n-D) block.
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Slowly vs. Rapidly Changing 
Look-Up Table Block Inputs
You can optimize lookup table operations using the Look-Up Table (n-D) block 
for efficiency if you know the input signal’s normal rate of change. Figure 9-10 
shows the parameters for the Look-Up Table (n-D) block.

Figure 9-10:  Parameter Dialog for the Look-Up Table (n-D) Block

If you do not know the input signal’s normal rate of change in advance, it would 
be better to choose the Binary Search option for the index search in the 
Look-Up Table (n-D) block and the PreLook-Up Index Search block.

Regardless of signal behavior, if the table’s breakpoints are evenly spaced, it is 
best to select the Evenly Spaced Points option from the Look-Up Table (n-D) 
block’s parameter dialog.
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If the breakpoints are not evenly spaced, first decide which of the following best 
describes the input signal behavior.

• Behavior 1: The signal stays in a given breakpoint interval from one time 
step to the next. When the signal moves to a new interval, it tends to move 
to an adjacent interval.

• Behavior 2: The signal has many discontinuities. It jumps around in the 
table from one time step to the next, often moving three or more intervals per 
time step.

Given behavior 1, the best optimization for a given lookup table is to use the 
Linear search option and Begin index searches using previous index 
results options, as shown below.

Given behavior 2, the Begin index searches using previous index results 
option does not necessarily improve performance. Choose the Binary Search 
option, as shown below.

The choice of an index search method can be more complicated for lookup table 
operations of two or more dimensions with linear interpolation. In this case, 
several signals are input to the table. Some inputs may have evenly spaced 
points, while others may exhibit behavior 1 or behavior 2.

Here it may be best to use PreLook-Up Index Search blocks with different 
search methods (evenly spaced, linear search or binary search) chosen 
according to the input signal characteristics. The outputs of these search blocks 
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are then connected to an Interpolation (n-D) Using PreLook-Up Index Search 
block, as shown in the block diagram below.

You can configure each PreLook-Up Index Search block independently to use 
the best search algorithm for the breakpoints and input time variation cases.

Multiple Tables with Common Inputs
The index search can be the most time consuming part of flat or linear 
interpolation calculations. In large block diagrams, lookup table blocks often 
have the same input values as other lookup table blocks. If this is the case in 
your block diagram, you can obtain a large savings in computation time by 
making the breakpoints common to all tables. This savings is obtained by using 
one set of PreLook-Up Index Search blocks to perform the searches once for all 
tables, so that only the interpolation remains to be calculated. Figure 9-11 is 
an example of a block diagram that can be optimized by this method.

Figure 9-11:  Before Optimization
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Assume that Table A’s breakpoints are the same as Table B’s first input 
breakpoints, and that Table C’s breakpoints are the same as Table B’s second 
input breakpoints. 

A 50% reduction in index search time is obtained by pulling these common 
breakpoints out into a pair of PreLook-Up Index Search blocks, and using 
Interpolation (n-D) Using PreLook-Up Index Search blocks to perform the 
interpolation. Figure 9-12 shows the optimized block diagram.

Figure 9-12:  After Optimization

In Figure 9-12, the Look-Up Table (n-D) blocks have been replaced with 
Interpolation (n-D) Using PreLook-Up blocks.The PreLook-Up Index Search 
blocks have been added to perform the index searches separately from the 
interpolations, in order to realize the savings in computation time.

In large controllers and simulations, it is not uncommon for hundreds of 
multidimensional tables to rely on a dozen or so breakpoint sets. Using the 
optimization technique shown in this example, you can greatly increase the 
efficiency of your application.

Accumulators
Simulink recognizes the block diagram shown in Figure 9-13 as an 
accumulator. An accumulator construct — comprising a Constant block, a Sum 
block, and feedback through a Unit Delay block — is recognized anywhere 
across a block diagram, or within subsystems at lower levels.
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Figure 9-13:  An Accumulator Algorithm

By using the Block reduction option, you can significantly optimize code 
generated from an accumulator. Turn this option on in the Advanced page of 
the Simulink Simulation parameters dialog, as shown in Figure 9-14.

Figure 9-14:  Block Reduction Option

With the Block reduction option on, Simulink creates a synthesized block, 
Sum_synth_accum. This synthesized block replaces the block diagram of 
Figure 9-13, resulting in a simple increment calculation.

void MdlOutputs(int_T tid)
{
/* UnadornAccum Block: <Root>/Sum_synth_accum */
  rtB.Sum_synth_accum++;
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  /* Outport Block: <Root>/Out1 */
  rtY.Out1 = rtB.Sum_synth_accum;
}

With Block reduction turned off, the generated code reflects the block 
diagram more literally, but less efficiently.

void MdlOutputs(int_T tid)
{
/* Expression for <Root>/Sum incorporates: */
  /*   Constant Block: <Root>/Constant */
  /*   UnitDelay Block: <Root>/Unit Delay */

  /* Sum Block: <Root>/Sum */
  rtB.Sum = 1.0 + rtDWork.Unit_Delay_DSTATE;

  /* Outport Block: <Root>/Out1 */
  rtY.Out1 = rtB.Sum;
}

Use of Data Types
In most processors, the use of integer data types can result in a significant 
reduction in data storage requirements, as well as a large increase in the speed 
of operation. You can achieve large performance gains on most processors by 
identifying those portions of your block diagram that are really integer 
calculations (such as accumulators), and implementing them with integer data 
types. 

Floating-point DSP targets are an obvious exception to this rule.

The accumulator from the previous example used 64-bit floating-point 
calculations by default. The block diagram in Figure 9-14 implements the 
accumulator with 16-bit integer operations.
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Figure 9-15:  Accumulator Implemented with 16-bit Integers

If the Saturate on integer overflow option of the Sum block is turned off, the 
code generated from the integer implementation looks the same as code 
generated from the floating-point block diagram. However, since 
Sum_synth_accum is performing integer arithmetic internally, the accumulator 
executes more efficiently.

Note that, by default, the Saturate on integer overflow option is on. This 
option generates extra error-checking code from the integer implementation, 
as in the following example.

void MdlOutputs(int_T tid)
{

  /* UnadornAccum Block: <Root>/Sum_synth_accum */
  {
    int16_T tmpVar = rtB.Sum_synth_accum;
    rtB.Sum_synth_accum = tmpVar + (1);
    if ((tmpVar >= 0) && ((1) >= 0) && (rtB.Sum_synth_accum < 0)) {
      rtB.Sum_synth_accum = MAX_int16_T;
    } else if ((tmpVar < 0) && ((1) < 0) && (rtB.Sum_synth_accum >= 0)) {
      rtB.Sum_synth_accum = MIN_int16_T;
    }
  }

  /* Outport Block: <Root>/Out1 */
  rtY.Out1 = rtB.Sum_synth_accum;
}

The floating-point implementation would not have generated the saturation 
error checks, which apply only to integers. When using integer data types, 
consider whether or not you need to generate saturation checking code.

Figure 9-16 shows an efficient way to add reset capability to the accumulator. 
When resetSig is greater than or equal to the threshold of the Switch block, 
the Switch block passes the reset value (0) back into the accumulator.
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Figure 9-16:  Integer Accumulator with Reset via External Input

The size of the resultant code is minimal. The code uses no floating-point 
operations.

void MdlOutputs(int_T tid)
{
  /* local block i/o variables */
  int16_T rtb_temp3;

/* UnitDelay Block: <Root>/accumState */
  rtb_temp3 = rtDWork.accumState_DSTATE;

  /* Expression for <Root>/Sum incorporates: */
  /*   Constant Block: <Root>/Increment */

  /* Sum Block: <Root>/Sum */
  {
    int16_T tmpVar1 = 0;
    int16_T tmpVar2;
    /* port 0 */
    tmpVar1 = (1);
    /* port 1 */
    tmpVar2 = tmpVar1 + rtb_temp3;
    if ((tmpVar1 >= 0) && (rtb_temp3 >= 0) && (tmpVar2 < 0)) {
      tmpVar2 = MAX_int16_T;
    } else if ((tmpVar1 < 0) && (rtb_temp3 < 0) && (tmpVar2 >= 0)) {
      tmpVar2 = MIN_int16_T;
    }

    rtb_temp3 = tmpVar2;
  }

  /* Outport Block: <Root>/accumVal */
  rtY.accumVal = rtb_temp3;
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  /* Expression for <Root>/Switch incorporates: */
  /*   Inport Block: <Root>/resetSig */
  /*   Constant Block: <Root>/ResetValue */

  /* Switch Block: <Root>/Switch */
  if (rtU.resetSig) {
    rtB.Switch = (0);
  } else {
    rtB.Switch = rtb_temp3;
  }
}

In this example, it would be easy to use an input to the system as the reset 
value, rather than a constant.

Generating Pure Integer Code
The Real-Time Workshop Embedded Coder target provides the Integer code 
only option to ensure that generated code contains no floating-point data or 
operations. When this option is selected, an error is raised if any noninteger 
data or expressions are encountered during compilation of the model. The error 
message reports the offending blocks and parameters.

If pure integer code generation is important to your design, you should consider 
using the Real-Time Workshop Embedded Coder target (or a target of your 
own, based on the Real-Time Workshop Embedded Coder target).

To generate pure integer code, select ERT code generation options (1) from 
the Category menu in the Real-Time Workshop pane. Then select the Integer 
code only option, as shown below.
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The Real-Time Workshop Embedded Coder target offers many other 
optimizations. See the Real-Time Workshop Embedded Coder documentation 
for further information.

Data Type Optimizations with Fixed-Point Blockset
and Stateflow
The Fixed-Point Blockset (a separate product) is designed to deliver the highest 
levels of performance for noninteger algorithms on processors lacking 
floating-point hardware. The Fixed-Point Blockset’s code generation in 
Real-Time Workshop implements calculations using a processor’s integer 
operations. The code generation strategy maps the integer value set to a range 
of expected real world values to achieve the high efficiency.

Finite-state machine or flowchart constructs can often represent decision logic 
(or mode logic) efficiently. Stateflow (a separate product) provides these 
capabilities. Stateflow, which is fully integrated into Simulink, supports 
integer data-typed code generation.
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Stateflow Optimizations
If your model contains Stateflow blocks, select the Use Strong Data Typing 
with Simulink I/O check box (on the Chart Properties dialog box) on a 
chart-by-chart basis. 

See the Stateflow User’s Guide for more information about the Chart 
Properties dialog box.



9 Optimizing the Model for Code Generation

9-44

Simulation Parameters
Options on each page of the Simulation Parameters dialog box affect the 
generated code.

Advanced Page

• Turn on the Signal storage reuse option. The directs Real-Time Workshop 
to store signals in reusable memory locations. It also enables the Local block 
outputs option (see “General Code Generation Options” on page 9-45).

Disabling Signal storage reuse makes all block outputs global and unique, 
which in many cases significantly increases RAM and ROM usage.

• Enable strict Boolean type checking by selecting the Boolean logic signals 
option.

Selecting this check box is recommended. Generated code will require less 
memory, because a Boolean signal typically requires one byte of storage 
while a double signal requires eight bytes of storage.

• Select the Inline parameters check box. Inlining parameters reduces global 
RAM usage, since parameters are not declared in the global parameters 
structure. Note that you can override the inlining of individual parameters 
by using the Model Parameter Configuration dialog box.
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• Consider using the Parameter pooling option if you have multiple block 
parameters referring to workspace locations that are separately defined but 
structurally identical. See “Parameter Pooling Option” on page 2-29 for 
further information.

General Code Generation Options
To access these options, select General code generation options or General 
code generation options (cont.) from the Category menu on the Real-Time 
Workshop pane.

• Set an appropriate Loop rolling threshold. The loop rolling threshold 
determines when a wide signal should be wrapped into a for loop and when 
it should be generated as a separate statement for each element of the signal 
See “Loop Rolling Threshold Field” on page 2-9 for details on loop rolling.

• Select the Inline invariant signals option. Real-Time Workshop will not 
generate code for blocks with a constant (invariant) sample time.

• Select the Local block outputs option. Block signals will be declared locally 
in functions instead of being declared globally (when possible). You must 
turn on the Signal storage reuse option in the Advanced page to enable the 
Local block outputs check box.

• Select the Expression folding option, discussed in “Expression Folding” on 
page 9-3.

• Select the Buffer reuse option. This option can reduce stack size. See “Buffer 
Reuse Option” on page 2-12.
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Compiler Options
• If you do not require double precision for your application, define real_T as 
float in your template make file, or you can simply specify -DREAL_T=float 
after make_rtw in the Make command field.

• Turn on the optimizations for the compiler (e.g., -O2 for gcc, -Ot for Microsoft 
Visual C).
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The S-Function Target

S-functions are an important class of target for which Real-Time Workshop can generate code. The 
ability to encapsulate a subsystem into an S-function allows you to increase its execution efficiency 
and shield its internal logic from inspection and modification. Here we describe the properties of 
S-function targets and demonstrate how to generate them. For further details on the structure of 
S-functions, see Writing S-Functions in the Simulink documentation.

Introduction (p. 10-2) Overview of the S-function target and its applications

Creating an S-Function Block from a 
Subsystem (p. 10-3)

How to extract a subsystem from a model and use it to 
generate a reusable S-function component; a step-by-step 
demonstration 

Tunable Parameters in Generated 
S-Functions (p. 10-9)

How to declare tunable parameters in generated 
S-functions and how they differ from those in other 
targets

Automated S-Function Generation 
(p. 10-11)

Step-by-step instructions for automatically generating an 
S-function from a subsystem

Restrictions (p. 10-15) Limitations constraining the use of the S-function target

Unsupported Blocks (p. 10-17) Blocks not supported by the S-function target

System Target File and Template 
Makefiles (p. 10-18)

Control files used by the S-function target
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Introduction
Using the S-function target, you can build an S-function component and use it 
as an S-Function block in another model. The S-function code format used by 
the S-function target generates code that conforms to the Simulink C MEX 
S-function application programming interface (API). Applications of this 
format include:

• Conversion of a model to a component. You can generate an S-Function block 
for a model, m1. Then, you can place the generated S-Function block in 
another model, m2. Regenerating code for m2 does not require regenerating 
code for m1.

• Conversion of a subsystem to a component. By extracting a subsystem to a 
separate model, and generating an S-Function block from that model, you 
can create a reusable component from the subsystem. See “Creating an 
S-Function Block from a Subsystem” on page 10-3 for an example of this 
procedure.

• Speeding up simulation. In many cases, an S-function generated from a 
model performs more efficiently than the original model.

• Code reuse. You can incorporate multiple instances of one model inside 
another without replicating the code for each instance. Each instance will 
continue to maintain its own unique data.

The S-function target generates noninlined S-functions. You can generate an 
executable from a model that contains generated S-functions by using the 
generic real-time or real-time malloc targets. You cannot use the Real-Time 
Workshop Embedded Coder target for this purpose, since it requires inlined 
S-functions.

You can place a generated S-Function block into another model from which you 
can generate another S-function format. This allows any level of nested 
S-functions.

Intellectual Property Protection
In addition to the technical applications of the S-function target listed above, 
you can use the S-function target to protect your designs and algorithms. By 
generating an S-function from a proprietary model or algorithm, you can share 
the model’s functionality without providing the source code. You need only 
provide the binary .dll or MEX-file object to users.
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Creating an S-Function Block from a Subsystem
This section demonstrates how to extract a subsystem from a model and 
generate a reusable S-function component from it.

Figure 10-1 illustrates SourceModel, a simple model that inputs signals to a 
subsystem. Figure 10-2 illustrates the subsystem, SourceSubsys. The signals, 
which have different widths and sample times, are: 

• A Step block with sample time 1

• A Sine Wave block with sample time 0.5

• A Constant block whose value is the vector [-2 3]

Figure 10-1:  SourceModel

Figure 10-2:  SourceSubsys
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Our objective is to extract SourceSubsys from the model and build an 
S-Function block from it, using the S-function target. We want the S-Function 
block to perform identically to the subsystem from which it was generated. 

Note that in this model, SourceSubsys inherits sample times and signal widths 
from its input signals. However, S-function blocks created from a model using 
the S-function target will have all signal attributes (such as signal widths or 
sample times) hardwired. (The sole exception to this rule concerns samples 
times, as described in “Sample Time Propagation in Generated S-Functions” on 
page 10-8.)

In this example, we want the S-Function block to retain the properties of 
SourceSubsys as it exists in SourceModel. Therefore, before building the 
subsystem as a separate S-function component, the inport sample times and 
widths must be set explicitly. In addition, the solver parameters of the 
S-function component must be the same as those of the original model. This 
ensures that the generated S-function component will operate identically to the 
original subsystem (see “Choice of Solver Type” on page 10-8 for an exception 
to this rule).

To build SourceSubsys as an S-function component:

1 Create a new model and copy/paste SourceSubsys into the empty window.

2 Set the signal widths and sample times of inports inside SourceSubsys such 
that they match those of the signals in the original model. Inport 1, Filter, 
has a width of 1 and a sample time of 1. Inport 2, Xferfcn, has a width of 1 
and a sample time of 0.5. Inport 3, offsets, has a width of 2 and a sample 
time of 0.5.

3 The generated S-Function block should have three inports and one outport. 
Connect inports and an outport to SourceSubsys, as shown below.
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Note that the correct signal widths and sample times propagate to these 
ports. 

4 Set the solver type, mode, and other solver parameters such that they are 
identical to those of the source model. 

5 Save the new model. 

6 Open the Simulation Parameters dialog and click the Real-Time 
Workshop tab. On the Real-Time-Workshop pane, select Target 
configuration from the Category menu. 

7 Click the Browse button to open the System Target Browser. Select the 
S-function target in the System Target Browser, and click OK. The 
Real-Time-Workshop pane parameters should appear as below.
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8 Select RTW S-function code generation options from the Category menu. 
Make sure that Create New Model is selected.

When this option is selected, the build process creates a new model after it 
builds the S-function component. The new model contains an S-Function 
block, linked to the S-function component. 

9 Click Apply if necessary.

10 Click Build.

11 Real-Time Workshop builds the S-function component in the working 
directory. After the build, a new model window displays.
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12 You can now copy the Real-Time Workshop S-Function block from the new 
model and use it in other models or in a library. Figure 10-3 shows the 
S-Function block plugged in to the original model. Given identical input 
signals, the S-Function block will perform identically to the original 
subsystem.

Figure 10-3:  Generated S-Function Plugged into SourceModel

Note that the speed at which the S-Function block executes is typically faster 
than the original model. This difference in speed is more pronounced for larger 
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and more complicated models. By using generated S-functions, you can 
increase the efficiency of your modeling process.

Sample Time Propagation in Generated S-Functions
Note that sample time propagation for the S-function code format is slightly 
different from the other code formats. A generated S-Function block will 
inherit its sample time from the model in which it is placed if (and only if) no 
blocks in the original model specify their sample times.

Choice of Solver Type
If the model containing the subsystem from which you generate an S-function 
uses a variable step solver, the generated S-function will contain zero crossing 
functions. Therefore, the generated S-function will work properly in models 
with either variable step or fixed step solvers. 

On the other hand, if the model containing the subsystem from which you 
generate an S-function uses a fixed step solver, the generated S-function 
contains no zero crossing functions. In this case, you can use the generated 
S-function only within models that use fixed-step solvers.
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Tunable Parameters in Generated S-Functions
You can utilize tunable parameters in generated S-functions in two ways:

• Use the Generate S-function feature (see “Automated S-Function 
Generation” on page 10-11).

or

• Use the Model Parameter Configuration dialog (see “Parameters: Storage, 
Interfacing, and Tuning” on page 5-2) to declare desired block parameters 
tunable.

Block parameters that are declared tunable with the auto storage class in 
the source model become tunable parameters of the generated S-function. 

Note that these parameters do not become part of a generated rtP parameter 
data structure, as they would in code generated from other targets. Instead, 
the generated code accesses these parameters via MEX API calls such as 
mxGetPr or mxGetData. Your code should access these parameters in the 
same way.

For further information on MEX API calls, see Writing S-Functions and 
“External Interfaces/API” in the MATLAB online documentation.

S-Function blocks created via the S-function target are automatically masked. 
The mask displays each tunable parameter in an edit field. By default, the edit 
field displays the parameter by variable name, as in the following example.

You can choose to display the value of the parameter rather than its variable 
name. To do this, select Use Value for Tunable Parameters in the Options 
section.
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When this option is chosen, the value of the variable (at code generation time) 
is displayed in the edit field, as in the following example.
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Automated S-Function Generation
The Generate S-function feature automates the process of generating an 
S-function from a subsystem. In addition, the Generate S-function feature 
presents a display of parameters used within the subsystem, and lets you 
declare selected parameters tunable.

As an example, consider SourceSubsys, the subsystem illustrated in 
Figure 10-2. Our objective is to automatically extract SourceSubsys from the 
model and build an S-Function block from it, as in the previous example. In 
addition, we want to set the gain factor of the Gain block within SourceSubsys 
to the workspace variable K (as illustrated below) and declare K as a tunable 
parameter.

To auto-generate an S-function from SourceSubsys with tunable parameter K:

1 Click on the subsystem to select it.

2 Select Generate S-function from the Real-Time Workshop submenu of the 
Tools menu. This menu item is enabled when a subsystem is selected in the 
current model.

Alternatively, you can choose Generate S-function from the Real-Time 
Workshop submenu of the subsystem block's context menu.

3 The Generate S-function window is diplayed (see Figure 10-4). This 
window shows all variables (or data objects) that are referenced as block 
parameters in the subsystem, and lets you declare them as tunable.

The upper pane of the window displays three columns:
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- Variable name: name of the parameter.

- Class: If the parameter is a workspace variable, its data type is shown. I 
the parameter is a data object, its and class is shown

- Tunable: Lets you select tunable parameters. To declare a parameter 
tunable, select the check box. In Figure 10-4, the parameter K is declared 
tunable.

When you select a parameter in the upper pane, the lower pane shows all 
the blocks that reference the parameter, and the parent system of each such 
block.

Figure 10-4:  The Generate S-Function Window

4 If you have licensed and installed the Real-Time Workshop Embedded 
Coder, the Use Embedded Coder check box is available, as in Figure 10-4. 
Otherwise, it is grayed out. When Use Embedded Coder is selected, the 
build process generates a wrapper S-Function via the Real-Time Workshop 
Embedded Coder. See the Real-Time Workshop Embedded Coder 
documentation for further information.
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5 After selecting tunable parameters, click the Build button. This initiates 
code generation and compilation of the S-function, using the S-function 
target. The Create New Model option is automatically enabled.

6 The build process displays status messages in the MATLAB command 
window. When the build completes, the tunable parameters window closes, 
and a new untitled model window opens.

7 The model window contains an S-Function block, subsys_blk, where subsys 
is the name of the subsystem from which the block was generated.

The generated S-function component, subsys, is stored in the working 
directory. The generated source code for the S-function is written to a build 
directory, subsys_sfcn_rtw. Additionally a stub file, subsys_sf.c, is 
written to the working directory. This file simply contains an include 
directive that you can use to interface other C code to the generated code.

Note that if the Use Embedded Coder option was selected, the build 
directory is named subsys_ert_rtw.

8 Note that the untitled generated model does not persist, unless you save it 
via the File menu.
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9 Note that the generated S-Function block has inports and outports whose 
widths and sample times correspond to those of the original model.

The following code fragment, from the mdlOutputs routine of the generated 
S-function code (in SourceSubsys_sf.c), illustrates how the tunable variable K 
is referenced via calls to the MEX API.

static void mdlOutputs(SimStruct *S, int_T tid)
...
/* Expression for <Root>/Out1 incorporates: */
    /*   Gain Block: <S1>/Gain */
    /*   Sum Block: <S1>/Sum */
    /*   Inport Block: <Root>/offsets */

    /* Outport Block: <Root>/Out1 */
    ((real_T *)ssGetOutputPortSignal(S,0))[0] = ((*(real_T *)(mxGetData(K(S)))) * 
(rtb_Product + *(((real_T**)ssGetInputPortSignalPtrs(S, 2))[0])));
    ((real_T *)ssGetOutputPortSignal(S,0))[1] = ((*(real_T *)(mxGetData(K(S)))) * 
(rtb_Product + *(((real_T**)ssGetInputPortSignalPtrs(S, 2))[1])));

Note  In automatic S-function generation, the Use Value for Tunable 
Parameters option is always set to its default value (off).
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Restrictions

Limitations on Use of Goto and From Blocks
When using the S-function target, Real-Time Workshop restricts I/O to 
correspond to the root model's Inport and Outport blocks (or the Inport and 
Outport blocks of the Subsystem block from which the S-function target was 
generated). No code is generated for Goto or From blocks.

To work around this restriction, you should create your model and subsystem 
with the required Inport and Outport blocks, instead of using Goto and From 
blocks to pass data between the root model and subsystem. In the model that 
incorporates the generated S-function, you would then add needed Goto and 
From blocks.

As an example of this restriction, consider the model shown in Figure 10-5 and 
its subsystem, Subsystem1, shown in Figure 10-6. The Goto block in 
Subsystem1, which has global visibility, passes its input to the From block in 
the root model.

Figure 10-5:  Root Model With From Block

Figure 10-6:  Subsystem1 With Goto Block

If SubSystem1 is built as an S-Function using the S-Function target, and 
plugged into the original model (as shown in Figure 10-7), a warning is issued 
when the model is run, because the generated S-function does not implement 
the Goto block. 
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Figure 10-7:  Generated S-Function Replaces Subsystem1

A workaround is shown in Figure 10-8. A conventional Outport is used in 
Subsystem1.When the generated S-function is plugged into the root model, its 
output is connected to the To Workspace block.

Figure 10-8:  Use of Outport in Generated S-Function

Other Restrictions
• Hand-written S-functions without corresponding TLC files must contain 

exception-free code. For more information on exception-free code, refer to 
“Exception-Free Code” in Writing S-Functions.

• If you modify the source model that generated an S-Function block, 
Real-Time Workshop does not automatically rebuild models containing the 
generated S-Function block.
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Unsupported Blocks
The S-function format does not support the following built-in blocks:

• MATLAB Fcn Block

• S-Function blocks containing any of the following:

- M-file S-functions

- Fortran S-functions

- C MEX S-functions that call into MATLAB

• Scope block 

• To Workspace block
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System Target File and Template Makefiles
The following system target file and template makefiles are provided for use 
with the S-function target.

System Target File
• rtwsfcn.tlc

Template Makefiles
• rtwsfcn_bc.tmf — Borland C

• rtwsfcn_lcc.tmf — LCC compiler

• rtwsfc_unix.tmf — UNIX host

• rtwsfcn_vc.tmf — Visual C

• rtwsfcn_watc.tmf — Watcom C
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Real-Time Workshop 
Rapid Simulation Target

The rapid simulation (rsim) target provides a fast and flexible platform on your own host computer 
for testing code generated for models, tuning parameters, and varying inputs to compile statistics 
describing the behavior of your model across a range of initial conditions. In this chapter we discuss 
the following topics:

Introduction (p. 11-2) Overview of the Rapid Simulation (rsim) target, its 
applications, and dependencies on Simulink

Building for the Rapid Simulation 
Target (p. 11-5)

Generating and building an rsim executable
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Introduction
The Real-Time Workshop rapid simulation target (rsim) consists of a set of 
target files for nonreal-time execution on your host computer. You can use rsim 
to generate fast, stand-alone simulations that allow batch parameter tuning 
and loading of new simulation data (signals) from a standard MATLAB 
MAT-file without needing to recompile your model.

The C code generated from Real-Time Workshop is highly optimized to provide 
fast execution of Simulink models of hybrid, dynamic systems. This includes 
models using variable step solvers and zero crossing detection.

The speed of the generated code makes the rsim target ideal for batch or Monte 
Carlo simulation. The generated executable (model.exe) created using the 
rsim target has the necessary run-time interface to read and write data to 
standard MATLAB MAT-files. Using this interface model.exe can reads new 
signals and parameters from input MAT-files at the start of the simulation and 
write the simulation results to output MAT-files.

Having built an rsim executable with Real-Time Workshop and an appropriate 
C compiler for your host computer, you can perform any combination of the 
following by using command line options. Without recompiling, the rapid 
simulation target allows you to:

• Specify a new file(s) that provides input signals for From File blocks

• Specify a new file that provides input signals with any Simulink data type 
(double, float, int32, uint32, int16, uint16, int8, uint8, and complex data 
types) by using the From Workspace block

• Replace the entire block diagram parameter vector and run a simulation

• Specify a new stop time for ending the stand-alone simulation

• Specify a new name of the MAT-file used to save model output data

• Specify name(s) of the MAT-files used to save data connected to To File 
blocks

You can run these options:

• Directly from your operating system command line (for example, DOS box or 
UNIX shell) or 

• By using the bang (!) command with a command string at the MATLAB 
prompt
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Therefore, you can easily write simple scripts that will run a set of simulations 
in sequence while using new data sets. These scripts can be written to provide 
unique filenames for both input parameters and input signals, as well as 
output filenames for the entire model or for To File blocks.

The rsim target can be configured to either access all solvers available with 
Simulink (which is the default configuration) or use only the fixed step solvers 
packaged with Real-Time Workshop.

In the default configuration, the standalone executable (model.exe) created by 
the rsim target links with the Simulink solver module (a shared library) if the 
model uses a variable-step solver. When model.exe uses the Simulink solver 
module, running model.exe will check out a Simulink license (see details 
below). In such cases, model.exe requires read access to installed location of 
MATLAB and Simulink in order to locate the license.dat file and the shared 
libraries.

Licensing Protocols for Simulink Solvers in 
Executables
The Rapid Simulation target supports variable step solvers by linking the 
generated code with the Simulink solver module (a shared library). When this 
rsim executable is run, it accesses proprietary Simulink variable step solver 
technology. In order to do so, the executable needs to check out a Simulink 
license for the duration of its execution.

Rapid Simulation executables that do not use Simulink solver module (for 
example, rsim executable built for a fixed-step model using the Real-Time 
Workshop fixed-step solvers) do not require any license when they run.

Note  The default setting of auto for the Solver selection option in the rsim 
code generation options page configures rsim to use the Simulink solver 
module only when needed (i.e., when the model uses a variable step solver).

The rsim executable will look in the default locations for the license file

• Unix: matlabroot/etc/license.dat

• PC: matlabroot/bin/win32/license.dat,
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where matlabroot is the one use when building the rsim executable. If the rsim 
executable is unable to locate the license file (this may happen, for example,

if you run this executable on another machine, where matlabroot is no longer 
valid), it will print the following error message and exit:

Error checking out SIMULINK license.

Cannot find license file
The license files (or server network addresses) attempted are
listed below.  Use LM_LICENSE_FILE to use a different license 
file, or contact your software provider for a license file.
Feature:       SIMULINK
Filename:      /apps/matlab/etc/license.dat
License path:  /abbs/matlab/etc/license.dat
FLEXlm error:  -1,359.  System Error: 2 "No such file or directory"
For further information, refer to the FLEXlm End User Manual,
available at "www.globetrotter.com".
Error: Unable to checkout Simulink license
Error terminating RSIM Engine: License check failed

Note  You can point the rsim executable to a different license file by setting 
the environment variable LM_LICENSE_FILE. The location pointed to by that 
variable will override the default location compiled into the rsim executable.

If the rsim executable is unable to check out a Simulink license (this would 
happen, for example, if all Simulink licenses are currently checked out), or has 
other errors when checking out a Simulink license it will display a detailed 
error message (similar to the one above) returned by the FLEXlm API and exit.
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Building for the Rapid Simulation Target
To generate and build an rsim executable, press the Browse button on the 
Real-Time Workshop pane of the Simulation Parameters dialog box, and 
select the rapid simulation target from the System Target File Browser. This 
picture shows the dialog box settings for the rapid simulation target.

Figure 11-1:  Specifying Target and Make Files for rsim

After specifying system target and make files as noted above, select any desired 
Workspace I/O settings, and press Build. Real-Time Workshop will 
automatically generate C code and build the executable for your host machine 
using your host machine C compiler. See “Choosing and Configuring Your 
Compiler” on page 2-51 and “Template Makefiles and Make Options” on 
page 2-54 for additional information on compilers that are compatible with 
Simulink and Real-Time Workshop. The picture below shows rsim-specific code 
generation options that allow you to avoid using the Simulink solver module 

Press the Browse button and select the rapid 
simulation target from the System Target File 
Browser. This automatically selects the correct 
settings for the system target file, the template 
makefile, and the make command.
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(i.e., use only the fixed step solvers packaged with Real-Time Workshop) and 
enable the rsim executable to communicate with Simulink via external mode.

Note  Rapid Simulation executables created without using the Simulink 
solver module can be transferred and run on computers that do not have 
MATLAB installed. When running an rsim executable on such a machine, it is 
necessary to have the following dlls in your working directory: libmx.dll, 
libut.dll, and libmat.dll. These dlls are required for the rsim executable to 
write and read data from a .mat file. This deployment option is not available 
for rsim executables that rely upon the Simulink solver module.

Running a Rapid Simulation
The rapid simulation target lets you run a simulation similar to the generic 
real-time (GRT) target provided by Real-Time Workshop. This simulation does 
not use timer interrupts, and therefore is a nonreal-time simulation 
environment. The difference between GRT and rsim simulations is that 

• rsim supports variable step solvers, and 

• rsim allows you to change parameter values or input signals at the start of a 
simulation without the need to generate code or recompile. 

Choose whether to generate code for a fixed-step 
or a variable-step solverwith this popup menu. 
The auto option invokes the Simulimk solver 
module only when the model requires it.

Select this checkbox to create an rsim executable 
that communicates with Simulink via external mode
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The GRT target, on the other hand, is a starting point for targeting a new 
processor.

A single build of your model can be used to study effects from varying 
parameters or input signals. Command line arguments provide the necessary 
mechanism to specify new data for your simulation. This table lists all 
available command line options.

Note  On Solaris platforms, to run the rsim executable created for a model 
that uses variable step solvers in a seperate shell, the LD_LIBRARY_PATH 
environment variable is needed to indicate the path to the MATLAB 
installation directory, as follows:
% setenv LD_LIBRARY_PATH /apps/matlab/bin/sol2:$LD_LIBRARY_PATH

Table 11-1:  rsim Command Line Options

Command Line Option Description

model -f old.mat=new.mat Read From File block input signal data from 
a replacement MAT-file.

model -o newlogfile.mat Write MAT-file logging data to a file named 
newlogfile.mat.

model -p filename.mat Read a new (replacement) parameter vector 
from a file named filename.mat.

model -tf <stoptime> Run the simulation until the time value 
<stoptime> is reached.

model -t old.mat=new.mat The original model specified saving signals 
to the output file old.mat. For this run use 
the file new.mat for saving signal data.

model -v Run in verbose mode.

model -h Display a help message listing options.
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Obtaining the Parameter Structure from Your Model
To obtain a parameter structure for the current model settings you may use the 
rsimgetrtp function, with the following syntax:

rtP = rsimgetrtp(‘model’, options)

The rtP structure is designed to be used with the Rapid Simulation target. 
Getting it via rsimgetrtp forces an update diagram action. In addition to the 
current model tunable block parameter settings, the rtP structure contains a 
structural checksum. This checksum is used to ensure that the model structure 
hasn’t changed since the rsim executable was generated.

Options to rsimgetrtp are passed as parameter-value pairs. Currently there is 
one option, AddTunableParamInfo, which has two states, on and off:

rtP = rsimgetrtp(‘model’,‘AddTunableParamInfo’,’on’)
rtP = rsimgetrtp(‘model’,‘AddTunableParamInfo’,’on’)

The AddTunableParamInfo option causes Real-Time Workshop to generate 
code that extract tunable parameter information from your model and places it 
in the return argument (rtP). This information gives you a mapping between 
the parameter structure and the tunable parameters.

To use the AddTunableParamInfo option, you must have selected the Inline 
Parameters checkbox in the Advanced pane of the Simulation Parameters 
dialog box. Exercising this option also creates, then deletes a model.rtw file in 
your current working directory.

Tunable Fixed-Point parameters are reported according to their stored value. 
For example, an sfix(16) parameter value of 1.4 with a scaling of 2^-8 will 
have a value of 358 as an int16.

Example 1. Create an rsim executable and pass a different parameter structure:

1 Set the Real-Time Workshop target configuration to Rapid Simulation 
Target using the Target File Browser

2 Create an rsim executable for the model by clicking the Build button or by 
typing rtwbuild('model').

3 Modify parameters in your model and save the rtP structure:

rtP = rsimgetrtp('model')
save myrtp.mat rtP 
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4 Run the generate executable with the new parameter set:

!model -p myrtp.mat

5 Load the results in to Matlab

load model.mat

Example 2. Create an rtP with the tunable parameter mapping information:

1 Create rtP with the tunable parameter information:

rtP = rsimgetrtp('model','AddTunableParamInfo','on')

2 The rtP structure contains:

modelChecksum: 1x4 vector that encodes the structure of the model
parameters: A structure of the tunable parameters in the model

3 The parameters structure contains the following member fields:

dataTypeName: The data type name, e.g., 'double'
dataTypeId: Internal data type identifier for use by Real-Time Workshop
complex: 0 if real, 1 if complex

Specifying a New Signal Data File for a From File Block
To understand how to specify new signal data for a From File block, create a 
working directory and connect to that directory. Open the model rsimtfdemo 
by typing

rsimtfdemo

at the MATLAB prompt. Type

w = 100;
zeta = 0.5;

to set parameters. rsimtfdemo requires a data file, rsim_tfdata.mat. Make a 
local copy of matlabroot/toolbox/rtw/rtwdemos/rsim_tfdata.mat in your 
working directory.

Be sure to specify rsim.tlc as the system target file and rsim_default_tmf as 
the template makefile. Then press the Build button on the Real-Time 
Workshop pane to create the rsim executable.
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!rsimtfdemo
load rsimtfdemo
plot(rt_yout)

The resulting plot shows simulation results using the default input data.

Replacing Input Signal Data. New data for a From File block can be placed in a 
standard MATLAB MAT-file. As in Simulink, the From File block data must 
be stored in a matrix with the first row containing the time vector while 
subsequent rows contain u vectors as input signals. After generating and 
compiling your code, you can type the model name rsimtfdemo at a DOS 
prompt to run the simulation. In this case, the file rsim_tfdata.mat provides 
the input data for your simulation.

For the next simulation, create a new data file called newfrom.mat and use this 
to replace the original file (rsim_tfdat.mat) and run an rsim simulation with 
this new data. This is done by typing

t=[0:.001:1];
u=sin(100*t.*t);
tu=[t;u];
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save newfrom.mat tu;
!rsimtfdemo -f rsim_tfdata.mat=newfrom.mat

at the MATLAB prompt. Now you can load the data and plot the new results 
by typing

load rsimtfdemo
plot(rt_yout)

This picture shows the resulting plot.

As a result the new data file is read and the simulation progresses to the stop 
time specified in the Solver page of the Simulation Parameters dialog box. 
It is possible to have multiple instances of From File blocks in your Simulink 
model.

Since rsim does not place signal data into generated code, it reduces code size 
and compile time for systems with large numbers of data points that originate 
in From File blocks. The From File block requires the time vector and signals 
to be data of type double. If you need to import signal data of a data type other 
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than double, use a From Workspace block with the data specified as a 
structure.

The workspace data must be in the format

variable.time
variable.signals.values

If you have more than one signal, the format must be 

variable.time
variable.signals(1).values
variable.signals(2).values

Specifying a New Output Filename for the Simulation
If you have specified Save to Workspace options (that is, checked Time, 
States, Outputs, or Final States check boxes on the Workspace I/O page of the 
Simulation Parameters dialog box), the default is to save simulation logging 
results to the file model.mat. You can now specify a replacement filename for 
subsequent simulations. In the case of the model rsimtfdemo, by typing

!rsimtfdemo

at the MATLAB prompt, a simulation runs and data is normally saved to 
rsimtfdemo.mat.

!rsimtfdemo
created rsimtfdemo.mat

You can specify a new output filename for data logging by typing

!rsimtfdemo -o sim1.mat

In this case, the set of parameters provided at the time of code generation, 
including any From File block data, is run. You can combine a variety of rsim 
flags to provide new data, parameters, and output files to your simulation. 
Note that the MAT-file containing data for the From File blocks is required. 
This differs from the grt operation, which inserts MAT-file data directly into 
the generated C code that is then compiled and linked as an executable. In 
contrast, rsim allows you to provide new or replacement data sets for each 
successive simulation. A MAT-file containing From File or From Workspace 
data must be present, if any From File or From Workspace blocks exist in your 
model.
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Changing Block Parameters for an rsim Simulation
Once you have altered one or more parameter in the Simulink block diagram, 
you can extract the parameter vector, rtP, for the entire model. The rtP vector, 
along with a model checksum, can then be saved to a MATLAB MAT-file. This 
MAT-file can be read in directly by the stand-alone rsim executable, allowing 
you to replace the entire parameter vector quickly, for running studies of 
variations of parameter values where you are adjusting model parameters or 
coefficients or importing new data for use as input signals. 

The model checksum provides a safety check to ensure that any parameter 
changes are only applied to rsim models that have the same model structure. 
If any block is deleted, or a new block added, then when generating a new rtP 
vector, the new checksum will no longer match the original checksum. The rsim 
executable will detect this incompatibility in parameter vectors and exit to 
avoid returning incorrect simulation results. In this case, where model 
structure has changed, you must regenerate the code for the model. 

The rsim target allows you to alter any model parameter, including parameters 
that include side-effects functions. An example of a side-effects function is a 
simple Gain block that includes the following parameter entry in a dialog box.

gain value:   2 * a

In general, Real-Time Workshop evaluates side-effects functions prior to 
generating code. The generated code for this example retains only one memory 
location entry, and the dependence on parameter a is no longer visible in the 
generated code. The rsim target overcomes the problem of handling side-effects 
functions by replacing the entire parameter structure, rtP. You must create 
this new structure by using rsimgetrtp.m. and then save it in a MAT-file. For 
the rsimtfdemo example, type 

zeta = .2;
myrtp = rsimgetrtp('modelname');
save myparamfile myrtp;

at the MATLAB prompt.

In turn, rsim can read the MAT-file and replace the entire rtP structure 
whenever you need to change one or more parameters — without recompiling 
the entire model.

For example, assume that you have changed one or more parameters in your 
model, generated the new rtP vector, and saved rtP to a new MAT-file called 
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myparamfile.mat. In order to run the same rsimtfdemo model and use these 
new parameter values, execute the model by typing

!rsimtfdemo -p myparamfile.mat
load rsimtfdemo 
plot(rt_yout)

Note that the p is lower-case and represents “Parameter file.”

Specifying a New Stop Time for an rsim Simulation
If a new stop time is not provided, the simulation will run until reaching the 
value specified in the Solver page at the time of code generation. You can 
specify a new stop time value as follows.

!rsimtfdemo -tf 6.0

In this case, the simulation will run until it reaches 6.0 seconds. At this point 
it will stop and log the data according to the MAT-file data logging rules as 
described above.

If your model includes From File blocks that also include a time vector in the 
first row of the time and signal matrix, the end of the simulation is still 
regulated by the original setting in the Solver page of the Simulation 
Parameters dialog box or from the -s option as described above. However, if 
the simulation time exceeds the end points of the time and signal matrix (that 
is, if the final time is greater than the final time value of the data matrix), then 
the signal data will be extrapolated out to the final time value as specified 
above.

Specifying New Output Filenames for To File Blocks
In much the same way as you can specify a new system output filename, you 
can also provide new output filenames for data saved from one or more To File 
blocks. This is done by specifying the original filename at the time of code 
generation with a new name as follows.

!mymodel -t original.mat=replacement.mat

In this case, assume that the original model wrote data to the output file called 
original.mat. Specifying a new filename forces rsim to write to the file 
replacement.mat. This technique allows you to avoid over-writing an existing 
simulation run.
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Simulation Performance
It is not possible to predict accurately the simulation speedup of an rsim 
simulation compared to a standard Simulink simulation. Performance will 
vary. Larger simulations have achieved speed improvements of up to 10 times 
faster than standard Simulink simulations. Some models may not show any 
noticeable improvement in simulation speed. The only way to determine 
speedup is to time your standard Simulink simulation and then compare its 
speed with the associated rsim simulation.

Batch and Monte Carlo Simulations
The rsim target is intended to be used for batch simulations in which 
parameters and/or input signals are varied for each new simulation. New 
output filenames allow you run new simulations without over-writing prior 
simulation results. A simple example of such a set of batch simulations can be 
run by creating a .bat file for use under Microsoft Windows. 

This simple file for Windows is created with any text editor and executed by 
typing the filename, for example, mybatch, where the name of the text file is 
mybatch.bat.

rsimtfdemo -f rsimtfdemo.mat=run1.mat -o results1.mat -s 10.0
rsimtfdemo -f rsimtfdemo.mat=run2.mat -o results2.mat -s 10.0
rsimtfdemo -f rsimtfdemo.mat=run3.mat -o results3.mat -s 10.0
rsimtfdemo -f rsimtfdemo.mat=run4.mat -o results4.mat -s 10.0

In this case, batch simulations are run using the four sets of input data in files 
run1.mat, run2.mat, and so on. The rsim executable saves the data to the 
corresponding files specified after the -o option. 

The variable names containing simulation results in each of these files are 
identical. Therefore, loading consecutive sets of data without renaming the 
data once it is in the MATLAB workspace will result in over-writing the prior 
workspace variable with new data. If you want to avoid over-writing, you can 
copy the result to a new MATLAB variable prior to loading the next set of data.

You can also write M-file scripts to create new signals, and new parameter 
structures, as well as to save data and perform batch runs using the bang 
command (!).

For additional insight into the rapid simulation target, explore rsimdemo1 and 
rsimdemo2, located in matlabroot/toolbox/rtw/rtwdemos/rsimdemos. These 
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examples demonstrate how rsim can be called repeatedly within an M-file for 
Monte Carlo simulations.

Limitations 
The rapid simulation target is subject to the following limitations:

• The rsim target does not support algebraic loops

• The rsim target does not support MATLAB function blocks.

• The rsim target does not support non-inlined M-file, FORTRAN and Ada 
S-functions.

• In certain cases, changing block parameters may result in structural 
changes to your model that change the model checksum. An example of such 
a change would be changing the number of delays in a DSP simulation. In 
such cases, you must regenerate the code for the model.

• Variable-step solver support for rsim is not available on HP700, on IBM_RS 
platforms, or on PCWIN platforms using the following compiler versions:

- Watcom C/C++ compiler version 10.6

- Borland C/C++ compiler version 5.3.
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Targeting Tornado for 
Real-Time Applications

Tornado, a target supported by Real-Time Workshop, describes an integrated set of tools for creating 
real-time applications to run under theVxWorks operating system, which has many Unix-like 
features and runs on a variety of host systems and target processors. This chapter contains the 
following topics:

The Tornado Environment (p. 12-2) Overview of the Tornado (VxWorks) Real-Time Target 
and the VxWorks Support library

Run-Time Architecture Overview 
(p. 12-5)

Singletasking and multitasking architecture and 
host/target communications

Implementation Overview (p. 12-11) Design, implementation, and execution of a VxWorks- 
based real-time program using Real-Time Workshop
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The Tornado Environment
This chapter describes how to create real-time programs for execution under 
VxWorks, which is part of the Tornado environment.

The VxWorks real-time operating system is available from Wind River 
Systems, Inc. It provides many UNIX-like features and comes bundled with a 
complete set of development tools.

Note   Tornado is an integrated environment consisting of VxWorks (a 
high-performance real-time operating system), application building tools 
(compiler, linker, make, and archiver utilities), and interactive development 
tools (editor, debugger, configuration tool, command shell, and browser).

This chapter discusses the run-time architecture of VxWorks-based real-time 
programs generated by Real-Time Workshop and provides specific information 
on program implementation. Topics covered include:

• Configuring device driver blocks and makefile templates

• Building the program

• Downloading the object file to the VxWorks target

• Executing the program on the VxWorks target

• Using the StethoScope data acquisition and graphical monitoring tool, which 
is available as an option with VxWorks. It allows you to access the output of 
any block in the model (in the real-time program) and display the data on the 
host.

• Using Simulink external mode to change model parameters and download 
them to the executing program on the VxWorks target. Note that you cannot 
use both external mode and StethoScope at the same time.

Confirming Your Tornado Setup Is Operational
Before beginning, you must install and configure Tornado on your host and 
target hardware, as discussed in the Tornado documentation. You should then 
run one of the VxWorks demonstration programs to ensure you can boot your 
VxWorks target and download object files to it. See the Tornado User’s Guide 
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for additional information about installation and operation of VxWorks and 
Tornado products.

VxWorks Library
Selecting VxWorks Support under the Real-Time Workshop library in the 
Simulink Library Browser opens the VxWorks Support library.

The blocks discussed in this chapter are located in the Asynchronous Support 
library, a sublibrary of the VxWorks Support library:

• Interrupt Control

• Rate Transition
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• Read Side

• Task Synchronization

• Write Side

A second sublibrary, the I/O Devices library, contains support for these drivers:

• Matrix MS-AD12

• Matrix MS-DA12

• VME Microsystems VMIVME-3115-110

• Xycom XVME-500/590

• Xycom XVME-505/595

Each of these blocks has online help available through the Help button on the 
block’s dialog box. Refer to the Tornado User’s Guide for detailed information 
on these blocks.
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Run-Time Architecture Overview
In a typical VxWorks-based real-time system, the hardware consists of a UNIX 
or PC host running Simulink and Real-Time Workshop, connected to a 
VxWorks target CPU via Ethernet. In addition, the target chassis may contain 
I/O boards with A/D and D/A converters to communicate with external 
hardware. The following diagram shows the arrangement.

Figure 12-1:  Typical Hardware Setup for a VxWorks Application

The real-time code is compiled on the UNIX or PC host using the cross compiler 
supplied with the VxWorks package. The object file (model.lo) output from the 
Real-Time Workshop program builder is downloaded, using WindSh (the 
command shell) in Tornado, to the VxWorks target CPU via an Ethernet 
connection.

The real-time program executes on the VxWorks target and interfaces with 
external hardware via the I/O devices installed on the target. 

Parameter Tuning and Monitoring
You can change program parameters from the host and monitor data with 
Scope blocks while the program executes using Simulink external mode. You 
can also monitor program outputs using the StethoScope data analysis tool.

Using Simulink external mode or StethoScope allows you to change model 
parameters in your program, and to analyze the results of these changes, in 
real time. 

VxWorks Target
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Boards
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External Mode
Simulink external mode provides a mechanism to download new parameter 
values to the executing program and to monitor signals in your model. In this 
mode, the external link MEX-file sends a vector of new parameter values to the 
real-time program via the network connection. These new parameter values 
are sent to the program whenever you make a parameter change without 
requiring a new code generation or build iteration. 

You can use the BlockIOSignals code generation option to monitor signals in 
VxWorks. See “Interfacing Parameters and Signals” on page 14-70 for further 
information and example code.

The real-time program (executing on the VxWorks target) runs a low priority 
task that communicates with the external link MEX-file and accepts the new 
parameters as they are passed into the program.

Communication between Simulink and the real-time program is accomplished 
using the sockets network API. This implementation requires an Ethernet 
network that supports TCP/IP. See Chapter 6, “External Mode” for more 
information on external mode.

Changes to the block diagram structure (for example, adding or removing 
blocks) require generation of model and execution of the build process.

Configuring VxWorks to Use Sockets
If you want to use Simulink external mode with your VxWorks program, you 
must configure your VxWorks kernel to support sockets by including the 
INCLUDE_NET_INIT, INCLUDE_NET_SHOW, and INCLUDE_NETWORK options in your 
VxWorks image. For more information on configuring your kernel, see the 
VxWorks Programmer’s Guide.

Before using external mode, you must ensure that VxWorks can properly 
respond to your host over the network. You can test this by using the host 
command

ping <target_name>
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Note   You may need to enter a routing table entry into VxWorks if your host 
is not on the same local network (subnet) as the VxWorks system. See 
routeAdd in the VxWorks Reference Guide for more information.

Configuring Simulink to Use Sockets
Simulink external mode uses a MEX-file to communicate with the VxWorks 
system. The MEX-file is 

matlabroot/toolbox/rtw/rtw/ext_comm.*

where * is a host-dependent MEX-file extension. See Chapter 6, “External 
Mode” for more information.

To use external mode with VxWorks, specify ext_comm as the MEX-file for 
external interface in the External Target Interface dialog box (accessed 
from the External Mode Control Panel). In the MEX-file arguments field 
you must specify the name of the VxWorks target system and, optionally, the 
verbosity and TCP port number. Verbosity can be 0 (the default) or 1 if extra 
information is desired. The TCP port number ranges from 256 to 65535 (the 
default is 17725). If there is a conflict with other software using TCP port 
17725, you can change the port that you use by editing the third argument of 
the MEX-file for external interface on the External Target Interface dialog 
box. The format for the MEX-file arguments field is

'target_network_name' [verbosity] [TCP port number]

For example, this picture shows the External Target Interface dialog box 
configured for a target system called halebopp with default verbosity and the 
port assigned to 18000.
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StethoScope
With StethoScope, you can access the output of any block in the model (in the 
real-time program) and display this data on a host. Signals are installed in 
StethoScope by the real-time program using the BlockIOSignals data 
structure (See “Interfacing Parameters and Signals” on page 14-70 for 
information on BlockIOSignals), or interactively from the WindSh while the 
real-time program is running. To use StethoScope interactively, see the 
StethoScope User’s Manual.

To use StethoScope you must specify certain options with the build command. 
See “Code Generation Options” on page 12-16 for information on these options. 

Run-Time Structure
The real-time program executes on the VxWorks target while Simulink and 
StethoScope execute on the same or different host workstations. Simulink and 
StethoScope require tasks on the VxWorks target to handle communication.

This diagram illustrates the structure of a VxWorks application using 
Simulink external mode and StethoScope.

Figure 12-2:  The Run-Time Structure
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The program creates VxWorks tasks to run on the real-time system: one 
communicates with Simulink, the others execute the model. StethoScope 
creates its own tasks to collect data. 

Host Processes
There are two processes running on the host side that communicate with the 
real-time program:

• Simulink running in external mode. Whenever you change a parameter in 
the block diagram, Simulink calls the external link MEX-file to download 
any new parameter values to the VxWorks target.

• The StethoScope user interface module. This program communicates with 
the StethoScope real-time module running on the VxWorks target to retrieve 
model data and plot time histories. 

VxWorks Tasks
You can run the real-time program in either singletasking or multitasking 
mode. The code for both modes is located in

matlabroot/rtw/c/tornado/rt_main.c

Real-Time Workshop compiles and links rt_main.c with the model code during 
the build process.

Singletasking. By default, the model is run as one task, tSingleRate. This may 
actually provide the best performance (highest base sample rate) depending on 
the model. 

The tSingleRate task runs at the base rate of the model and executes all 
necessary code for the slower sample rates. Execution of the tSingleRate task 
is normally blocked by a call to the VxWorks semTake routine. When a clock 
interrupt occurs, the interrupt service routine calls the semGive routine, which 
causes the semTake call to return. Once enabled, the tSingleRate task 
executes the model code for one time step. The loop then waits at the top by 
again calling semTake. For more information about the semTake and semGive 
routines, refer to the VxWorks Reference Manual. By default, it runs at a 
relatively high priority (30), which allows it to execute without interruption 
from background system activity.
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Multitasking. Optionally, the model can run as multiple tasks, one for each 
sample rate in the model:

• tBaseRate — This task executes the components of the model code run at the 
base (highest) sample rate. By default, it runs at a relatively high priority 
(30), which allows it to execute without interruption from background 
system activity. 

• tRaten — The program also spawns a separate task for each additional 
sample rate in the system. These additional tasks are named tRate1, 
tRate2, …, tRaten, where n is slowest sample rate in the system. The 
priority of each additional task is one lower than its predecessor (tRate1 has 
a lower priority than tBaseRate).

Supporting Tasks. If you select external mode and/or StethoScope during the 
build process, these tasks will also be created:

• tExtern — This task implements the server side of a socket stream 
connection that accepts data transferred from Simulink to the real-time 
program. In this implementation, tExtern waits for a message to arrive from 
Simulink. When a message arrives, tExtern retrieves it and modifies the 
specified parameters accordingly.

tExtern runs at a lower priority than tRaten, the lowest priority model task. 
The source code for tExtern is located in matlabroot/rtw/c/src/ext_svr.c.

• tScopeDaemon and tScopeLink — StethoScope provides its own VxWorks 
tasks to enable real-time data collection and display. In singletasking mode, 
tSingleRate collects signals; in multitasking mode, tBaseRate collects them. 
Both perform the collection on every base time step. The StethoScope tasks 
then send the data to the host for display when there is idle time, that is, 
when the model is waiting for the next time step to occur. rt_main.c starts 
these tasks if they are not already running.
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Implementation Overview
To implement and run a VxWorks-based real-time program using Real-Time 
Workshop, you must:

• Design a Simulink model for your particular application.

• Add the appropriate device driver blocks to the Simulink model, if desired.

• Configure the tornado.tmf template makefile for your particular setup.

• Establish a connection between the host running Simulink and the VxWorks 
target via Ethernet.

• Use the automatic program builder to generate the code and the custom 
makefile, invoke the make command to compile and link the generated code, 
and load and activate the tasks required.

The figure below shows the Real-Time Workshop Tornado run-time interface 
modules and the generated code for the f14 example model.
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Figure 12-3:  Source Modules Used to Build the VxWorks Real-Time Program

This diagram illustrates the code modules used to build a VxWorks real-time 
program. Dashed boxes indicate optional modules.

Generated Code
f14.c

f14.h

rt_main.c
Main Program

rt_sim.c

Integration
Module

Model

Executable File
ode5.c

f14.lo

Execution

Makefile

Template
Makefile

f14.mk

f14_private.h

tornado.tmf

ext_svr.c
External mode

ext_svr.h
ext_msg.h

Simulink 
Data Structure
simstruc_types.h

f14_types.h

f14_data.c

rtmodel.h

ext_share.h



Implementation Overview

12-13

Adding Device Driver Blocks
The real-time program communicates with the I/O devices installed in the 
VxWorks target chassis via a set of device drivers. These device drivers contain 
the necessary code that runs on the target processor for interfacing to specific 
I/O devices.

To make device drivers easy to use, they are implemented as Simulink 
S-functions using C code MEX-files. This means you can connect them to your 
model like any other block and the code generator automatically includes a call 
to the block’s C code in the generated code.

You can also inline S-functions via the Target Language Compiler. Inlining 
allows you to restrict function calls to only those that are necessary for the 
S-function. This can greatly increase the efficiency of the S-function. For more 
information about inlining S-functions, see Writing S-Functions and the Target 
Language Compiler Reference Guide.

You can have multiple instances of device driver blocks in your model. See 
Targeting Real-Time Systems for more information about creating device 
drivers.

Configuring the Template Makefile
To configure the VxWorks template, tornado.tmf, you must specify 
information about the environment in which you are using VxWorks. This 
section lists the lines in the file that you must edit.

VxWorks Configuration
To provide information used by VxWorks, you must specify the type of target 
and the specific CPU on the target. The target type is then used to locate the 
correct cross compiler and linker for your system.

The CPU type is used to define the CPU macro which is in turn used by many of 
the VxWorks header files. Refer to the VxWorks Programmer’s Guide for 
information on the appropriate values to use.

This information is in the section labeled 

#-------------- VxWorks Configuration --------------

Edit the following lines to reflect your setup.

VX_TARGET_TYPE = 68k
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CPU_TYPE = MC68040

Downloading Configuration
In order to perform automatic downloading during the build process, the target 
name and host name that the Tornado target server will run on must be 
specified. Modify these macros to reflect your setup.

#-------------- Macros for Downloading to Target--------------
TARGET = targetname
TGTSVR_HOST = hostname

Tool Locations
In order to locate the Tornado tools used in the build process, the following 
three macros must either be defined in the environment or specified in the 
template makefile. Modify these macros to reflect your setup.

#-------------- Tool Locations --------------
WIND_BASE = c:/Tornado
WIND_REGISTRY = $(COMPUTERNAME)
WIND_HOST_TYPE = x86–win32

Building the Program
Once you have created the Simulink block diagram, added the device drivers, 
and configured the makefile template, you are ready to set the build options 
and initiate the build process.

Specifying the Real-Time Build Options
Set the real-time build options using the Solver and Real-Time Workshop 
pages of the Simulation Parameters dialog box. To access this dialog box, 
select Simulation Parameters from the Simulink Simulation menu.

In the Solver pane, for models with continuous blocks, set the Type to 
Fixed-step, the Step Size to the desired integration step size, and select the 
integration algorithm. For models that are purely discrete, set the integration 
algorithm to discrete.

Next, use the System Target File Browser to select the correct Real-Time 
Workshop pane settings for Tornado. To access the browser, open the 
Real-Time Workshop pane of the Simulation Parameters dialog box and 



Implementation Overview

12-15

select Target configuration from the Category menu. Then click the Browse 
button. The System Target Browser opens.

Select Tornado (VxWorks) Real-Time Target and click OK. This sets the 
Target configuration options correctly:

• System target file — tornado.tlc
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• Template makefile — tornado.tmf template, which you must configure 
according to the instructions in “Configuring the Template Makefile” on 
page 12-13. (You can rename this file; simply change the dialog box 
accordingly.)

• Make command — make_rtw

You can optionally inline parameters for the blocks in the C code, which can 
improve performance. Inlining parameters is allowed when using external 
mode. 

Code Generation Options. To specify code generation options specific to Tornado, 
open the Real-Time Workshop pane and select Tornado code generation 
options from the Category menu.

Real-Time Workshop provides flags that set the appropriate macros in the 
template makefile, causing any necessary additional steps to be performed 
during the build process.

The flags and switches are as follows:

• MAT-file logging: Select this option to enable data logging during program 
execution. The program will create a file named model.mat at the end of 
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program execution; this file will contain the variables that you specified in 
the Workspace I/O pane of the Simulation Parameters dialog box.

Real-Time Workshop adds a prefix or suffix to the names of the Workspace 
I/O pane variables that you select for logging. The MAT-file variable name 
modifier menu lets you select the prefix or suffix.

By default, the MAT-file is created in the root directory of the current default 
device in VxWorks. This is typically the host file system that VxWorks was 
booted from. Other remote file systems can be used as a destination for the 
MAT-file using rsh or ftp network devices or NFS. See the VxWorks 
Programmer’s Guide for more information. If a device or filename other than 
the default is desired, add "-DSAVEFILE=filename" to the OPTS flag to the 
make command. For example,
make_rtw OPTS="-DSAVEFILE=filename"

• External mode: Select this option to enable the use of external mode in the 
generated executable. You can optionally enable a verbose mode of external 
mode by appending -DVERBOSE to the OPTS flag in the make command. For 
example,
make_rtw OPTS="-DVERBOSE"

causes parameter download information to be printed to the console of the 
VxWorks system.

If you enable External mode, you cannot enable the StethoScope option.

• Code format: Selects RealTime or RealTimeMalloc code generation format.

• StethoScope: Select this option to enable the use of StethoScope with the 
generated executable. When starting rt_main, there are two command line 
arguments that control the block names used by StethoScope; you can use 
them when starting the program on VxWorks. See the section, “Running the 
Program” on page 12-19 for more information on these arguments.

If you enable StethoScope, you cannot enable the External mode option.

• Download to VxWorks target: Enables automatic downloading of the 
generated program.

Additional options are available on the Real-Time Workshop pane. See “Using 
the Real-Time Workshop Pane” on page 2-2 for information.
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Initiating the Build
To build the program, click on the Build button in the Real-Time Workshop 
pane of the Simulation parameters dialog. The resulting object file is named 
with the .lo extension (which stands for loadable object). This file has been 
compiled for the target processor using the cross compiler specified in the 
makefile. If automatic downloading (Download to VxWorks target) is enabled 
in the Tornado code generation options, the target server is started and the 
object file is downloaded and started on the target. If StethoScope was checked 
on the Tornado code generation options, you can now start StethoScope on 
the host. The StethoScope object files, libxdr.so, libutilstssip.so, and 
libscope.so, will be loaded on the VxWorks target by the automatic download. 
See the StethoScope User’s Manual for more information.

Downloading and Running the Executable 
Interactively
If automatic downloading is disabled, you must use the Tornado tools to 
complete the process. This involves three steps:

1 Establishing a communication link to transfer files between the host and the 
VxWorks target

2 Transferring the object file from the host to the VxWorks target 

3 Running the program

Connecting to the VxWorks Target
After completing the build process, you are ready to connect the host 
workstation to the VxWorks target. The first step is starting the target server 
that is used for communication between the Tornado tools on the host and the 
target agent on the target. This is done either from the DOS command line or 
from within the Tornado development environment. From the DOS command 
line use

tgtsvr target_network_name

Downloading the Real-Time Program
To download the real-time program, use the VxWorks ld routine from within 
WindSh. WindSh (wind shell) can also be run from the command line or from 
within the Tornado development environment. (For example, if you want to 
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download the file vx_equal.lo, which is in the /home/my_working_dir 
directory, use the following commands at the WindSh prompt.

cd "/home/my_working_dir"
ld <vx_equal.lo

You will also need to load the StethoScope libraries if the StethoScope option 
was selected during the build. The Tornado User’s Guide describes the ld 
library routine.

Running the Program
The real-time program defines a function, rt_main(), that spawns the tasks to 
execute the model code and communicate with Simulink (if you selected 
external mode during the build procedure.) It also initializes StethoScope if you 
selected this option during the build procedure.

The rt_main function is defined in the rt_main.c application module. This 
module is located in the matlabroot/rtw/c/tornado directory.

The rt_main function takes six arguments, and is defined by the following 
ANSI C function prototype.

RT_MODEL * (*model_name)(void),
char_T *optStr,
char_T *scopeInstallString,
int_T scopeFullNames,
int_T priority,
int_T port

Table 12-1 lists the arguments to this function.
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Table 12-1:  Arguments to the rt_main RT_MODEL 

Argument Description

model_name A pointer to the entry point function in the generated code. This 
function has the same name as the Simulink model. It registers the 
local functions that implement the model code by adding function 
pointers to the model’s rtM. See Chapter 7, “Program Architecture” for 
more information.

optStr The options string used to specify a stop time (-tf) and whether to wait 
(-w) in external mode for a message from Simulink before starting the 
simulation. An example options string is

"-tf 20 -w"

The -tf option overrides the stop time that was set during code 
generation. If the value of the -tf option is inf, the program runs 
indefinitely.

scopeInstallString A character string that determines which signals are installed to 
StethoScope. Possible values are:

• NULL — Install no signals. This is the default value.

• "*" — Install all signals.

• "[A-Z]*" — Install signals from blocks whose names start with an 
uppercase letter.

Specifying any other string installs signals from blocks whose names 
start with that string.

scopeFullNames This argument determines whether StethoScope uses full hierarchical 
block names for the signals it accesses or just the individual block 
name. Possible values are:

• 1 Use full block names.

• 0 Use individual block names. This is the default value.

It is important to use full block names if your program has multiple 
instances of a model or S-function.
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Passing optStr Via the Template Makefile. You can also pass the -w and -tf options 
(see optStr in Table 12-1) to rt_main by using the PROGRAM_OPTS macro in 
tornado.tmf. PROGRAM_OPTS passes a string of the form

-opt1 val1 -opt2 val2

In the following examples, the PROGRAM_OPTS directive sets an infinite stop 
time and instructs the program to wait for a message from Simulink before 
starting the simulation. Note that the argument string must be delimited by 
single quotes nested within double quotes: 

PROGRAM_OPTS = "'-tf inf -w'"

Including the extra single quotes ensures that the argument string will be 
passed to the target program correctly, under both Windows and UNIX.

Calling rt_main. To begin program execution, call rt_main from WindSh. For 
example, 

sp(rt_main, vx_equal, "-tf 20 -w", "∗ ", 0, 30, 17725)

• Begins execution of the vx_equal model

• Specifies a stop time of 20 seconds

• Provides access to all signals (block outputs) in the model by StethoScope

• Uses only individual block names for signal access (instead of the 
hierarchical name)

• Uses the default priority (30) for the tBaseRate task

• Uses TCP port 17725, the default

priority The priority of the program’s highest priority task (tBaseRate). Not 
specifying any value (or specifying a value of zero) assigns tBaseRate 
to the default priority, 30.

port The port number that the external mode sockets connection should 
use. The valid range is 256 to 65535. When nothing is specified, the 
port number defaults to 17725.

Table 12-1:  Arguments to the rt_main RT_MODEL  (Continued)

Argument Description
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13
Asynchronous Support

The Interrupt Templates are blocks that you can use as templates for building your own 
asynchronous interrupts. This chapter include the following topics:

Introduction (p. 13-2) Accessing asynchronous templates from Real-Time 
Workshop libraries

Interrupt Handling (p. 13-5) Blocks that let you model synchronous/asynchronous 
event handling, including interrupt service routines

Creating a Customized Asynchronous 
Library (p. 13-21)

Guidelines for creating your own asynchronous blocks, 
using templates provided
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Introduction
The Interrupt Templates library is part of the Real-Time Workshop library, 
which you access via the Simulink Library Browser, as shown in Figure 13-1. 
Do this by typing the MATLAB command

simulink

then by clicking the plus sign to the left of the Real-Time Workshop entry, and 
clicking on Interrupt Templates.
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Figure 13-1:  Interrupt Templates in Simulink Library Browser

Note that, depending on which MathWorks products you have installed, your 
browser may show a different collection of libraries.
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Other sublibraries in the Real-Time Workshop library are:

• DOS Device Drivers: Blocks for use with DOS. See Appendix C,  “Targeting 
DOS for Real-Time Applications” for information.

• S-Function Target: The S-Function Target sublibrary contains only one 
block type, the RTW S-Function block. This block is intended for use with 
generated S-functions. See Chapter 10, “The S-Function Target” for more 
information.

• VxWorks Support: A collection of blocks that support VxWorks (Tornado). 
See Chapter 12, “Targeting Tornado for Real-Time Applications” for 
information on VxWorks.
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Interrupt Handling
The blocks in the Interrupt Templates library allow you to model 
synchronous/asynchronous event handling, including interrupt service 
routines (ISRs). These blocks include:

• Asynchronous Rate Transition (reader)

• Asynchronous Buffer block (write)

• Interrupt Control block 

• Unprotected Asynchronous Rate Transition block

• Task Synchronization block

Using these blocks, you can create models that handle asynchronous events, 
such as hardware generated interrupts and asynchronous read and write 
operations. The following sections discuss each of these blocks in the context of 
VxWorks Tornado operating system.

Interrupt Control Block
Interrupt service routines (ISR) are realized by connecting the outputs of the 
VxWorks Interrupt Control block to the control input of a function-call 
subsystem, the input of a VxWorks Task Synchronization block, or the input to 
a Stateflow chart configured for a function-call input event. 

The Interrupt Control block installs the downstream (destination) function-call 
subsystem as an ISR and enables the specified interrupt level. The current 
implementation of the VxWorks Interrupt Control block supports VME 
interrupts 1-7 and uses the VxWorks system calls sysIntEnable, 
sysIntDisable, intConnect, intLock and intUnlock. Ensure that your target 
architecture (BSP) for VxWorks supports these functions.

When a function-call subsystem is connected to an Interrupt Control block 
output, the generated code for that subsystem becomes the ISR. For large 
subsystems, this can have a large impact on interrupt response time for 
interrupts of equal and lower priority in the system. As a general rule, it is best 
to keep ISRs as short as possible. To do this, you should only connect 
function-call subsystems that contain few blocks.

A better solution for large systems is to use the Task Synchronization block to 
synchronize the execution of the function-call subsystem to an event. The Task 
Synchronization block is placed between the Interrupt Control block and the 
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function-call subsystem (or Stateflow chart). The Interrupt Control block then 
installs the Task Synchronization block as the ISR, which releases a 
synchronization semaphore (performs a semGive) to the function-call 
subsystem and then returns. See the VxWorks Task Synchronization block for 
more information. 

Using the Interrupt Control Block
The Interrupt Control block has two modes that help support rapid 
prototyping:

• RTW mode. In RTW mode, the Interrupt Control block configures the 
downstream system as an ISR and enables interrupts during model startup. 
You can select this mode using the Interrupt Control block dialog box when 
generating code.

• Simulation mode. In Simulation mode, simulated Interrupt Request (IRQ) 
signals are routed through the Interrupt Control block’s trigger port. Upon 
receiving a simulated interrupt, the block calls the associated system. 

You should select this mode when simulating, in Simulink, the effects of an 
interrupt signal. Note that there can only be one VxWorks Interrupt Control 
block in a model and all desired interrupts should be configured by it.

In both RTW and Simulation mode, in the event that two IRQ signals occur 
simultaneously, the Interrupt Control block executes the downstream systems 
according to their priority interrupt level.

The Interrupt Control block provides these two modes to make the 
development and implementation of real-time systems that include ISRs easier 
and quicker. You can develop two models, one that includes a plant and a 
controller for simulation, and one that only includes the controller for code 
generation. 

Using the Library feature of Simulink, you can implement changes to both 
models simultaneously. Figure 13-2 illustrates how changes made to the plant 
or controller, both of which are in a library, propagate to the models.
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Figure 13-2:  Using the Interrupt Control Block with Simulink Library Feature
in Rapid Prototyping Process 

Real-Time Workshop models normally run from a periodic interrupt. All blocks 
in a model run at their desired rate by executing them in multiples of the timer 
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Control block. Typically, the interrupt source is a VME I/O board, which 
generates interrupts for specific events (e.g., end of A/D conversion). The VME 
interrupt level and vector are set up in registers or by using jumpers on the 
board. You can use the mdlStart routine of a user-written device driver 
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Interrupt Control Block Parameters
The picture below shows the VxWorks Interrupt Control block dialog box.

Parameters associated with the Interrupt Control block are:

• Mode: In Simulation mode, the ISRs are executed nonpreemptively. If they 
occur simultaneously, signals are executed in the order specified by their 
number (1 being the highest priority). Interrupt mapping during simulation 
is left to right, top to bottom. That is, the first control input signal maps to 
the topmost ISR. The last control input signal maps to the bottom most ISR. 

In RTW mode, Real-Time Workshop uses vxinterrupt.tlc to realize 
asynchronous interrupts in the generated code. The ISR is passed one 
argument, the root SimStruct, and the Simulink definition of the 
function-call subsystem is remapped to conform with the information in the 
SimStruct. 

• VME Interrupt Number(s): Specify the VME interrupt numbers for the 
interrupts to be installed. The valid range is 1-7; for example: [4 2 5]). 

• VME Interrupt Vector Offset Number(s): Real-Time Workshop uses this 
number in the call to intConnect(INUM_TO_IVEC(#),...). You should 
specify a unique vector offset number for each interrupt number. 

• Preemption Flag(s): By default, higher priority interrupts can preempt lower 
priority interrupts in VxWorks. If desired, you can lock out interrupts during 
the execution of a ISR by setting the preemption flag to 0. This causes 
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intLock() and intUnlock() calls to be inserted at the beginning and end of 
the ISR respectively. This should be used carefully since it increases the 
system’s interrupt response time for all interrupts at the 
intLockLevelSet() level and below. 

• IRQ Direction: In simulation mode, a scalar IRQ direction is applied to all 
control inputs, and is specified as 1 (rising), -1 (falling), or 0 (either). 
Configuring inputs separately in simulation is done prior to the control 
input. For example, a Gain block set to -1 prior to a specific IRQ input will 
change the behavior of one control input relative to another. In RTW mode 
the IRQ direction parameter is ignored. 

Interrupt Control Block Example - Simulation Mode
This example shows how the Interrupt Control block works in simulation 
mode.

Simulated Interrupt Signals



13 Asynchronous Support

13-10

The Interrupt Control block works as a “handler” that routes signals and sets 
priority. If two interrupts occur simultaneously, the rule for handling which 
signal is sent to which port is left to right and top to bottom. This means that 
IRQ2 receives the signal from Plant 1 and IRQ1 receives the signal from Plant 
2 simultaneously. IRQ1 still has priority over IRQ2 in this situation. 

Note that the Interrupt Control block executes during simulation by processing 
incoming signals and executing downstream functions. Also, interrupt 
preemption cannot be simulated.

Interrupt Control Block Example - RTW Mode
This example shows the Interrupt Control block in RTW mode.

In this example, the simulated plant signals that were included in the previous 
example have been removed. In RTW mode, the Interrupt Control block 
receives interrupts directly from the hardware.

During the Target Language Compiler phase of code generation, the Interrupt 
Control block installs the code in the Stateflow chart and the Subsystem block 
as interrupt service routines. Configuring a function-call subsystem as an ISR 
requires two function calls, int_connect and int_enable. For example, the 
function f(u) in the Function block requires that the Interrupt Control block 
inserts a call to int_connect and sysIntEnable in the mdlStart function, as 
shown below.

(Note that Plant is removed.)

Offset

192

Interrupt Vector Table

&f()

Stand-alone functions are 
installed as ISR’s.
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/* model start function */
MdlStart()
{

. . .
int_connect(f,192,1);
. . .
sysIntEnable(1);
. . .

}

Locking and Unlocking ISRs. It is possible to lock ISRs so that they are not 
preempted by a higher priority interrupt. Configuring the interrupt as 
nonpreemptive has this effect. The following code fragment shows where 
Real-Time Workshop places the int_lock and int_unlock functions to 
configure the interrupt as nonpreemptive.

Finally, the model’s terminate function disables the interrupt:

/* model terminate function */
MdlTerminate() 
{

...
int_disable(1);
...

}

Real-Time Workshop code

f() 

{
lock = int_lock();
. . .
. . .
. . .
int_unlock(lock);

}
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Task Synchronization Block
The VxWorks Task Synchronization block is a function-call subsystem that 
spawns, as an independent VxWorks task, the function-call subsystem 
connected to its output. Typically it would be placed between the VxWorks 
Interrupt Control block and a function-call subsystem block or a Stateflow 
chart. Another example would be to place the Task Synchronization block at 
the output of a Stateflow diagram that has an Event, “Output to Simulink,” 
configured as a function-call.

The VxWorks Task Synchronization block performs the following functions: 

• The downstream function-call subsystem is spawned as an independent task 
using the VxWorks system call taskSpawn(). The task is deleted using 
taskDelete() during model termination.

• A semaphore is created to synchronize the downstream system to the 
execution of the Task Synchronization block. 

• Code is added to this spawned function-call subsystem to wrap it in an 
infinite while loop. 

• Code is added to the top of the infinite while loop of the spawned task to wait 
on the semaphore, using semTake(). When semTake() is first called, NO_WAIT 
is specified. This allows the task to determine if a second semGive() has 
occurred prior to the completion of the function-call subsystem. This would 
indicate the interrupt rate is too fast or the task priority is too low. 

• Synchronization code, i.e., semgive(), is generated for the Task 
Synchronization block (a masked function-call subsystem). This allows the 
output function-call subsystem to run. As an example, if you connect the 
Task Synchronization block to the output of a VxWorks Interrupt Control 
block, only a semGive() would occur inside an ISR. 
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Task Synchronization Parameters
The picture below shows the VxWorks Task Synchronization block dialog box.

Parameters associated with the Task Synchronization block are:

• Task Name — An optional name, which if provided, is used as the first 
argument to the taskSpawn() system call. This name is used by VxWorks 
routines to identify the task they are called from to aid in debugging. 

• Task Priority — The task priority is the VxWorks priority that the 
function-call subsystem task is given when it is spawned. The priority can be 
a very important consideration in relation to other tasks priorities in the 
VxWorks system. In particular, the default priority of the model code is 30 
and, when multitasking is enabled, the priority of the each subrate task 
increases by one from the default model base rate. Other task priorities in 
the system should also be considered when choosing a task priority. 
VxWorks priorities range from 0 to 255 where a lower number is a higher 
priority. 

• Stack Size — The function-call subsystem is spawned with the stack size 
specified. This is maximum size to which the task’s stack can grow. The value 
should be chosen based on the number of local variables in the task. 

By default, Real-Time Workshop limits the number of bytes for local 
variables in all of the generated code to 8192 bytes (see assignment of 
MaxStackSize in 
matlabroot/rtw/c/tornado/tornado.tlc). As a rule, providing twice 8192 
bytes (16384) for the one function that is being spawned as a task should be 
sufficient.
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Task Synchronization Block Example
This example shows a Task Synchronization block as a simple ISR.

The Task Synchronization block inserts this code during the Target Language 
Compiler phase of code generation:

• In MdlStart, the Task Synchronization block is registered by the Interrupt 
Control block as an ISR. The Task Synchronization block creates and 
initializes the synchronization semaphore. It also spawns the function-call 
subsystem as an independent task. 
/* Create and spawn task: <Root>/Faster Rate(.015) */
if ((*(SEM_ID *)rtPWork.s6_S_Function.SemID =
semBCreate(SEM_Q_PRIORITY, SEM_EMPTY)) == NULL) 
ssSetErrorStatus(rtS,"semBCreate call failed "

"for block <Root>/Faster Rate(.015).\n ");
}
if ((rtIWork.s6_S_Function.TaskID = taskSpawn("root_Faster_", 20, 
VX_FP_TASK, 1024, (FUNCPTR)Sys_root_Faster__OutputUpdate,

(int_T)rtS, 0, 0, 0, 0, 0, 0, 0, 0, 0)) == ERROR) {
ssSetErrorStatus(rtS,"taskSpawn call failed for block 

<Root>/ Faster Rate " "(.015).\n");
  }

• The Task Synchronization block modifies the downstream function-call 
subsystem by wrapping it inside an infinite loop and adding semaphore 
synchronization code.
/* Output and update for function-call system: <Root>/Faster 

Rate(.015) */
void Sys_root_Faster__OutputUpdate(void *reserved, int_T 

controlPortIdx, int_T tid)
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{
  /* Wait for semaphore to be released by system: <Root>/Task 
Synchronization */
  for(;;) {
    if (semTake(*(SEM_ID *)rtPWork.s6_S_Function.SemID,NO_WAIT) 
!= ERROR) {
      logMsg("Rate for function-call subsystem"
 "Sys_root_Faster__OutputUpdate() 

fast.\n",0,0,0,0,0,0);
#if STOPONOVERRUN
      logMsg("Aborting real-time simulation.\n",0,0,0,0,0,0);
      semGive(stopSem);
      return(ERROR);
#endif
    } else {

      semTake(*(SEM_ID 
*)rtPWork.s6_S_Function.SemID, WAIT_FOREVER);
    }
    /* UniformRandomNumber Block: <S3>/Uniform Random Number */
    rtB.s3_Uniform_Random_Number =

rtRWork.s3_Uniform_Random_Number.NextOutput;
   .
   .
   .

}
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Asynchronous Rate Transition Block
The VxWorks Asynchronous Rate Transition blocks are meant to be used to 
interface signals to asynchronous function-call subsystems in a model. This is 
needed whenever a function-call subsystem has input or output signals and its 
control input ultimately connects (sources) to the VxWorks Interrupt Control 
block or Task Synchronization block. 

Because an asynchronous function-call subsystem can preempt or be 
preempted by other model code, an inconsistency arises when more than one 
signal element is connected to it. The issue is that signals passed to and/or from 
the function-call subsystem can be in the process of being written or read when 
the preemption occurs. Thus, partial old and partial new data will be used.

This situation can also occur with scalar signals in some cases. For example, if 
a signal is a double (8 bytes), the read or write operation may require two 
assembly instructions.

The Asynchronous Rate Transition blocks can be used to guarantee the data 
passed to and/or from the function-call subsystem is all from the same 
iteration. 

The Asynchronous Rate Transition blocks are used in pairs, with a write side 
driving the read side. To ensure the data integrity, no other connections are 
allowed between the two Asynchronous Rate Transition blocks. The pair works 
by using two buffers (“double buffering”) to pass the signal and, by using 
mutually exclusive control, allow only exclusive access to each buffer. For 
example, if the write side is currently writing into one buffer, the read side can 
only read from the other buffer. 

The initial buffer is filled with zeros so that if the read side executes before the 
write side has had time to fill the other buffer, the read side will collect zeros 
from the initial buffer.
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Asynchronous Rate Transition Block Parameters
There are two kinds of Asynchronous Rate Transition blocks, a reader and a 
writer. The picture below shows the Asynchronous Rate Transition block’s 
dialog boxes.

Both blocks require the Sample Time parameter. The sample time should be 
set to -1 inside a function call and to the desired time otherwise.
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Asynchronous Rate Transition Block Example
This example shows how you might use the Asynchronous Rate Transition 
block to control the execution of an interrupt service routine.

The ISR0 subsystem block, which is configured as a function-call subsystem, 
contains another set of Asynchronous Rate Transition blocks.

Unprotected Asynchronous Rate Transition Block
The VxWorks Unprotected Asynchronous Rate Transition block provides a 
sample time for blocks connected to an asynchronous function-call subsystem 
when double buffering is not required. There are two options for connecting I/O 
to an asynchronous function-call subsystem: 

• Use the Unprotected Asynchronous Rate Transition block, or some other 
block that requires a sample time to be set, at the input or output of the 
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asynchronous function-call subsystem. This will cause blocks up- or 
downstream from it, which would otherwise inherit from the function-call 
subsystem, to use the sample time specified. Note that if the signal width is 
greater than 1, data consistency is not guaranteed, which may or may not an 
issue. See next option.

The Unprotected Asynchronous Rate Transition block does not introduce any 
system delay. It only specifies the sample time of the downstream blocks. It 
also informs Simlink to allow a non-buffered asynchronous connection. This 
block is typically used for scalar signals that do not require double buffering.

• Use the Asynchronous Rate Transition block pair. This not only will set the 
sample time of the blocks up or downstream that would otherwise inherit 
from the function-call subsystem, and also guarantees consistency of the 
data on the signal. See the Asynchronous Rate Transition block for more 
information on data consistency. 

Unprotected Asynchronous Rate Transition Block Parameters
This picture shows the VxWorks Unprotected Asynchronous Rate Transition 
block’s dialog box.

The Sample time parameter sets the sample time to the desired rate.
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Unprotected Asynchronous Rate Transition Block Example
This picture shows a sample application of the Rate Transition block in an ISR.

In this example, the Rate Transition block on the input to the function-call 
subsystem causes both the In and Gain1 blocks to run at the 0.1 second rate. 
The Rate Transition block on the output of the function-call subsystem causes 
both the Gain2 and Out blocks to run at the 0.2 second rate. Using this scheme 
informs Simlink to allow non-buffered connections to an asynchronous 
function-call subsystem.
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Creating a Customized Asynchronous Library
You can use the Real-Time Workshop VxWorks asynchronous blocks as 
templates that provide a starting point for creating your own asynchronous 
blocks. Templates are provided for these blocks:

• Asynchronous Rate Transition block

• Interrupt Control block

• Unprotected Asynchronous Rate Transition block

• Task Synchronization block

You can customize each of these blocks by implementing a set of modifications 
to files associated with each template. These files are:

• The block’s underlying S-function C MEX-file

Note that SS_OPTION_ASYNCHRONOUS_INTERRUPT should be used when a 
function-call subsystem is attached to an interrupt. For further information, 
see documentation for SS_OPTION and SS_OPTION_ASYNCHRONOUS in 
matlabroot/simulink/include/simstuc.h 

• The block’s mask and the associated mask M-file

Note that the strings 'read' and 'write' must appear in the mask types for 
rate transition blocks.

• The TLC files that control code generation of the block

At a minimum, you must rename the system calls generated by the TLC files 
to the correct names for the new real-time operating system (RTOS) and supply 
the correct arguments for each file. There is a collection of files that you must 
copy (and rename) from matlabroot/rtw/c/tornado/devices into a new 
directory, for example, matlabroot/rtw/c/my_os/devices. These files are:

• Asynchronous Rate Transition block — vxdbuffer.tlc, vxdbuffer.c

• Interrupt Control block — vxinterrupt.tlc, vxinterrupt.c, vxintbuild.m

• O/S include file — vxlib.tlc

• Task Synchronization block — vxtask.tlc, vxtask.c
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This chapter provides information necessary to implement a custom target configuration, and covers 
the followng topics:

Introduction (p. 14-2) Motivation for implementing a custom target 
configuration

Components of a Custom Target 
Configuration (p. 14-3)

Overview of the code and control files that make up a 
custom target configuration

Tutorial: Creating a Custom Target 
Configuration (p. 14-9)

A hands-on exercise in building a custom rapid 
prototyping target

Customizing the Build Process 
(p. 14-16)

 Information on System Target File Structure and 
Template Makefiles, and how to modify them

Creating Device Drivers (p. 14-39) Implementation of device drivers as S-Function blocks, 
including both inlined and noninlined drivers

Interfacing Parameters and Signals 
(p. 14-70)

Guidelines for use of the Real-Time Workshop signal 
monitoring and parameter tuning APIs

Creating an External Mode 
Communication Channel (p. 14-94)

How to support external mode on your custom target, 
using your own low-level communications layer

Combining Multiple Models (p. 14-103) Strategies for combining several models (or several 
instances of the same model) into a single executable

DSP Processor Support (p. 14-107) How to emulate register sizes smaller than 32 bits
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Introduction
The target configurations bundled with Real-Time Workshop are suitable for 
many different applications and development environments. Third-party 
targets provide additional versatility. However, a number of users find that 
they require a custom target configuration.You may want to implement a 
custom target configuration for any of the following reasons:

• To support custom hardware and incorporate custom device driver blocks 
into your models.

• To customize a bundled target configuration — such as the generic real-time 
(GRT) or Real-Time Workshop Embedded Coder targets — to your needs.

• To configure the build process for a special compiler (such as a compiler for 
an embedded microcontroller or DSP board).

As part of your custom target implementation, you may also need to:

• Interface generated model code with existing supervisory or supporting code 
that calls the generated code.

• Interface signals and parameters within generated code to your own code.

• Combine code generated from multiple models into a single system.

• Implement external mode communication via your own low-level protocol 
layer.
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Components of a Custom Target Configuration
The components of a custom target configuration are:

• Code to supervise and support execution of generated model code

• Control files:

- A system target file to control the code generation process

- A template makefile to build the real-time executable

This section summarizes key concepts and terminology you will need to know 
to begin developing each component. References to more detailed information 
sources are provided, in case any of these topics are unfamiliar to you.

Code Components
A Real-Time Workshop program containing code generated from a Simulink 
model consists of a number of code modules and data structures. These fall into 
two categories.

Application Components
Application components are those which are specific to a particular model; they 
implement the functions represented by the blocks in the model. Application 
components are not specific to the target. Application components include:

• Modules generated from the model

• User-written blocks (S-functions)

• Parameters of the model that are visible, and can be interfaced to, external 
code

Run-Time Interface Components
A number of code modules and data structures, referred to collectively as the 
run-time interface, are responsible for managing and supporting the execution 
of the generated program. The run-time interface modules are not 
automatically generated. To develop a custom target, you must implement 
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certain parts of the run-time interface. Table 14-1 summarizes the run-time 
interface components.

The components of the run-time interface vary, depending upon whether the 
target is an embedded system or a rapid prototyping environment.

User-Written Run-Time Interface Code
Most of the run-time interface is provided by Real-Time Workshop. You must 
implement the following elements:

• A timer interrupt service routine (ISR). The timer runs at the program’s base 
sample rate. The timer ISR is responsible for operations that must be 
completed within a single clock period, such as computing the current output 
sample. The timer ISR usually calls the Real-Time Workshop-supplied 
function, rt_OneStep.

• The main program. Your main program initializes the blocks in the model, 
installs the ISR, and executes a background task or loop. The timer 
periodically interrupts the main loop. If the main program is designed to run 
for a finite amount of time, it is also responsible for cleanup operations - such 
as memory deallocation and masking the timer interrupt - before 
terminating the program.

Table 14-1:  Run-Time Interface Components

User Provides: Real-Time Workshop Provides:

Customized main program Generic main program

Timer interrupt handler to 
run model

Execution engine and integration 
solver (called by timer interrupt 
handler)

Other interrupt handlers Example interrupt handlers 
(Asynchronous Interrupt Blocks)

Device drivers Example device drivers

Data logging and signal 
monitoring user interface

Data logging, parameter tuning, 
signal monitoring, and external mode 
support
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• Device drivers to communicate with your target hardware.

Run-Time Interface for Rapid Prototyping
The run-time interface for a rapid prototyping target includes:

• Supervisory logic

- The main program

- Execution engine and integration solver

• Supporting logic

- I/O drivers 

- Code to handle timing, and interrupts

• Monitoring, tuning, and debugging support

- Data logging code

- Signal monitoring

- Real-time parameter tuning

- External mode communications

The structure of the rapid prototyping run-time interface, and the execution of 
rapid prototyping code, are detailed in Chapter 7, “Program Architecture” and 
Chapter 8, “Models with Multiple Sample Rates.”

Development of a custom rapid prototyping target generally begins with 
customization of one of the generic main programs, grt_main.c or 
grt_malloc_main.c. As described in “User-Written Run-Time Interface Code” 
above, you must modify the main program for real-time interrupt-driven 
execution. You must also supply device drivers (optionally inlined).

Run-Time Interface for Embedded Targets
The run-time interface for an embedded (production) target includes:

• Supervisory logic

- The main program

- Execution engine and integration solver

• Supporting logic

- I/O drivers 

- Code to handle timing, and interrupts
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• Monitoring and debugging support

- Data logging code

- Access to tunable parameters and external signals

Development of a custom embedded target generally begins with customization 
of the Real-Time Workshop Embedded Coder main program, ert_main.c. The 
Real-Time Workshop Embedded Coder documentation details the structure of 
the Real-Time Workshop Embedded Coder run-time interface and the 
execution of Real-Time Workshop Embedded Coder code, and provides 
guidelines for customizing ert_main.c. 

Control Files

System Target Files
The Target Language Compiler (TLC) generates target-specific C code from an 
intermediate description of your Simulink block diagram (model.rtw). The 
Target Language Compiler reads model.rtw and executes a program 
consisting of several target files (.tlc files.) The output of this process is a 
number of source files, which are fed to your development system’s make 
utility.

The system target file controls the code generation process. You will need to 
create a customized system target file to set code generation parameters for 
your target. We recommend that you copy, rename, and modify one of the 
standard system target files:

• The generic real-time (GRT) target file, matlabroot/rtw/c/grt/grt.tlc, for 
rapid prototyping targets

• The Real-Time Workshop Embedded Coder target file, 
matlabroot/rtw/c/ert/ert.tlc, for embedded (production) targets

Chapter 2, “Building an Application” of the Getting Started Guide and Chapter 
2, “Code Generation and the Build Process” describe the role of the system 
target file in the code generation and build process. Guidelines for creating a 
custom system target file are given in “Customizing the Build Process” on 
page 14-16.
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Template Makefiles
A template makefile (.tmf file) provides information about your model and 
your development system. Real-Time Workshop uses this information to create 
an appropriate makefile (.mk file) to build an executable program. Real-Time 
Workshop provides a large number of template makefiles suitable for different 
types of targets and development systems. The standard template makefiles 
are described in “Template Makefiles and Make Options” on page 2-54.

If one of the standard template makefiles meets your requirements, you can 
simply copy and rename it in accordance with the conventions of your project. 
If you need to make more extensive modifications, see “Template Makefiles” on 
page 14-28 for a full description of the structure of template makefiles.

Hook Files for Communicating Target-specific Word Characteristics
In order to communicate details about target hardware characteristics, such as 
word lengths and overflow behavior, you need to supply an M-file named 
<target>_rtw_info_hook.m. Each system target file needs to implement a 
hook file. Those provided for built-in targets are placed in the respective target 
directories under toolbox/rtw/targets/.

Hook files provide an API to describe two essential aspects of hardware 
characteristics:

• Word lengths (number of bits), specified via

- CharNumBits Size of C char type

- ShortNumBits Size of C short type

- IntNumBits Size of C int type

- LongNumBits Size of C long type

• Implementation-specific properties, specified as logical values

- ShiftRightIntArith Set true if shift right on a signed integer is 
implemented as arithmetic shift, and false 
otherwise. 

- Float2IntSaturates Conversion from float to integer automatically 
saturates, thus do not generate software 
saturation code.

- IntPlusIntSaturates Integer addition automatically saturates, thus 
do not generate software saturation code.
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- IntTimesIntSaturates Integer multiply automatically saturates, thus 
do not generate software saturation code.

To supply a hookfile for the GRT target (grt.tlc), for example, you must name 
the file grt_rtw_info_hook.m, and place it somewhere on the MATLAB path. 
If the hook file is present, the target-specific information is extracted via the 
API found in this file. If the hookfile is not provided, default values based on 
the host’s characteristics will be used, which may not be appropriate.

For an example, see toolbox/rtw/rtwdemos/example_rtw_info_hook.m. 

Note  The TLC directive %assign DSP = 1 no longer has any effect. You need 
to provide a hook file instead.
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Tutorial: Creating a Custom Target Configuration
This tutorial walks through the task of creating a skeletal rapid prototyping 
target. This exercise illustrates several tasks that are usually required when 
creating a custom target:

• Incorporating a noninlined S-function into a model for use in simulation.

• Inlining the S-function in the generated code, using a corresponding TLC 
file.

In a real-world application, you would incorporate inlined and noninlined 
device driver S-functions into the model and the generated code. In this 
tutorial, we inline a simple S-function that multiplies its input by two.

• Making minor modifications to a standard system target file and template 
makefile.

• Generating code from the model by invoking your customized system target 
file and template makefile.

You can use this process as a starting point for your own projects. 

This example uses the LCC compiler under Windows. LCC is distributed with 
Real-Time Workshop. If you use a different compiler, you can set up LCC 
temporarily as your default compiler by typing the MATLAB command

mex -setup

A command prompt window will open; follow the prompts and select LCC.

Note  On UNIX systems, make sure that you have a C compiler installed. You 
can then do this exercise substituting appropriate UNIX directory syntax.

In this example, the code is generated from targetModel.mdl, a very simple 
fixed-step model (see Figure 14-1). The resultant program behaves exactly as 
if it had been built for the generic real-time target.
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Figure 14-1:  targetModel.mdl

The S-Function block will use the source code from the timestwo example. See 
the Writing S-Functions manual for a complete discussion of this S-function. 
The Target Language Compiler documentation discusses timestwo.tlc, the 
inlined version of timestwo.

To create the skeletal target system:

1 Create a directory to store your C source files and .tlc and .tmf files. We 
refer to this directory as d:/work/mytarget.

2 Add d:/work/mytarget to your MATLAB path.

addpath d:/work/mytarget

3 Make d:/work/mytarget your working directory. Real-Time Workshop 
writes the output files of the code generation process into a build directory 
within the working directory.

4 Copy the timestwo S-function C source code from 
matlabroot/toolbox/rtw/rtwdemos/tlctutorial/timestwo/timestwo.c 
to
d:/work/mytarget.

5 Build the timestwo MEX-file in d:/work/mytarget.

mex timestwo.c

6 Create the model as illustrated in Figure 14-1. Use an S-Function block from 
the Simulink Functions & Tables library in the Library Browser. Set the 
solver options to fixed-step and ode4.

7 Double-click the S-Function block to open the Block Parameters dialog. 
Enter the S-function name timestwo. The block is now bound to the 
timestwo MEX-file. Click OK.
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8 Open the Scope and run the simulation. Verify that the timestwo S-function 
multiplies its input by 2.0.

9 In order to generate inlined code from the timestwo S-Function block, you 
must have a corresponding TLC file in the working directory. If the Target 
Language Compiler detects a C-code S-function and a TLC file with the 
same name in the working directory, it generates inline code from the TLC 
file. Otherwise, it generates a function call to the external S-function.

To ensure that the build process generates inlined code from the timestwo 
block, copy the timestwo TLC source code from 
matlabroot/toolbox/rtw/rtwdemos/tlctutorial/timestwo/timestwo.tl
c to
d:/work/mytarget.

10 Make local copies of the main program and system target files. 
matlabroot/rtw/c/grt contains the main program (grt_main.c) and the 
system target file (grt.tlc) for the generic real-time target. Copy 
grt_main.c and grt.tlc to d:/work/mytarget. Rename them to 
mytarget_main.c and mytarget.tlc.

11 Remove the initial comment lines from mytarget.tlc. The lines to remove 
are shown below.

%% SYSTLC: Generic Real-Time Target \
%%    TMF: grt_default_tmf MAKE: make_rtw EXTMODE: ext_comm 
%% SYSTLC: Visual C/C++ Project Makefile only for the "grt" target 
\
%%    TMF: grt_msvc.tmf MAKE: make_rtw EXTMODE: ext_comm

The initial comment lines have significance only if you want to add 
my_target to the System Target File Browser. For now you should remove 
them. 
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12 Real-Time Workshop creates a build directory in your working directory to 
store files created during the code generation process. The build directory is 
given the name of the model, followed by a suffix. This suffix is specified in 
the rtwgensettings structure in the system target file.

To set the suffix to a more appropriate string, change the line

rtwgensettings.BuildDirSuffix = '_grt_rtw'

to

rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

Your build directory will be named targetModel__mytarget_rtw.

13 Make a local copy of the template makefile. matlabroot/rtw/c/grt contains 
several compiler-specific template makefiles for the generic real-time target. 
The appropriate template makefile for the LCC compiler is grt_lcc.tmf. 
Copy grt_lcc.tmf to d:/work/mytarget, and rename it to mytarget.tmf.

Note  Some of the template makefile modifications described in the next step 
are specific to the LCC template makefile. If you are using a different compiler 
and template makefile, the rules for the source (REQ_SRCS) and object file 
(%.obj :) lists may differ slightly. 
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14 Modify mytarget.tmf. The SYS_TARGET FILE parameter must be changed so 
that the correct file reference is generated in the make file. Change the line

SYS_TARGET FILE = grt.tlc

to

SYS_TARGET FILE = mytarget.tlc

Also, change the source file list to include mytarget_main.c instead of 
grt_main.c.

REQ_SRCS = $(MODEL).c $(MODULES) mytarget_main.c... 

Finally, change the line

%.obj : $(MATLAB_ROOT)/rtw/c/grt/%.c

to

%.obj : d:/work/mytarget/%.c

15 This exercise requires no changes to mytarget_main.c. In an actual 
application, you would modify mytarget_main.c to execute your model code 
under the control of a timer interrupt, and make other changes.
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16 Open the Real-Time Workshop pane in the Simulation Parameters dialog. 
Select Target configuration from the Category menu. Enter the system 
target file, template makefile, and Make command parameters as below.

Be sure to explicitly specify the full name and extension of the template 
makefile (mytarget.tmf) in the Make command field, as shown.

17 Click the Apply button.

18 Click the Build button. If the build is successful, MATLAB will display the 
message below.

### Created executable: targetModel.exe 
### Successful completion of Real-Time Workshop build procedure 
for model: targetModel

Your working directory will contain the targetModel.exe file and the build 
directory, targetModel_mytarget_rtw.
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19 Edit the generated file 
d:/work/mytarget/targetModel_mytarget_rtw/targetModel.c and locate 
the MdlOutputs function. Observe the inlined code.

/* S-Function Block: <Root>/S-Function (timestwo) */
rtB.S_Function = 2.0 * rtB.Sine_Wave;

Because the working directory contained a TLC file (timestwo.tlc) with 
the same name as the timestwo S-Function block, the Target Language 
Compiler generated inline code instead of a function call to the external C- 
code S-function.

20 As an optional final step to this exercise, you may want to add your custom 
target configuration to the System Target File Browser. See “Adding a 
Custom Target to the System Target File Browser” on page 14-27 to learn 
how to do this.
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Customizing the Build Process
The Real-Time Workshop build process proceeds in two stages. The first stage 
is code generation. The system target file exerts overall control of the code 
generation stage. In the second stage, the template makefile generates a .mk 
file, which compiles and links code modules into an executable.

In developing your custom target, you may need to create a customized system 
target file and/or template makefile. This section provides information on the 
structure of these files, and guidelines for modifying them.

System Target File Structure
This section is a guide to the structure and contents of a system target file. You 
may want to refer to the system target files provided with Real-Time Workshop 
while reading this section. Most of these files are stored in the target-specific 
directories under matlabroot/rtw/c. Additional system target files are stored 
in matlabroot/toolbox/rtw/targets/rtwin/rtwin and 
matlabroot/toolbox/rtw/targets/xpc/xpc.

Before creating or modifying a system target file, you should acquire a working 
knowledge of the Target Language Compiler. The Target Language Compiler 
documentation documents the features and syntax of the language.

Figure 14-2 shows the general structure of a system target file.
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Figure 14-2:  Structure of a System Target File

Browser Comments
This section is optional. You can place comment lines at the head of the file to 
identify your system target file to the System Target File Browser. These lines 
have significance to the browser only. During code generation, the Target 
Language Compiler treats them as comments.

%% SYSTLC: Example Real-Time Target
%%    TMF: example.tmf MAKE: make_rtw EXTMODE: ext_comm
%% Inital comments contain directives for System Target File Browser.
%% Documentation, date, copyright, and other info may follow.
%%
%% TLC Configuration Variables Section ------------------------------
%% Assign code format, language, target type.
%%
%assign CodeFormat = "Embedded-C"
%assign TargetType = "RT"
%assign Language   = "C"
%%
%% TLC Program Entry Point ------------------------------------------
%% Call entry point function.
%include "codegenentry.tlc"
%%
%% RTW Options Section ----------------------------------------------
/%
BEGIN_RTW_OPTIONS
%% Define rtwoptions structure array. This array defines target-specific
%% code generation variables, and controls how they are displayed.
rtwoptions(1).prompt = 'example code generation options';

.

.
rtwoptions(6).prompt = 'Show eliminated statements';
rtwoptions(6).type = 'Checkbox';

.

.
%% Define additional TLC variables here.

.

.
%% Define suffix string for naming build directory here.
%%
rtwgensettings.BuildDirSuffix = '_mytarget_rtw'
END_RTW_OPTIONS
%/

Browser 
Comments

TLC Configuration 
Variables

TLC Program Entry 
Point

rtwoptions Array 
and Other TLC 
Variables

Build 
Directory 
Name 
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Note that you must place the browser comments at the head of the file, before 
any other comments or TLC statements.

The comments contain the following directives:

• SYSTLC: This string is a descriptor that appears in the browser.

• TMF: Name of the template makefile to use during build process. When the 
target is selected, this filename is displayed in the Template makefile field 
of the Target configuration section of the Real-Time Workshop pane.

• MAKE: make command to use during build process. When the target is selected, 
this command is displayed in the Make command field of the Target 
configuration section of the Real-Time Workshop pane.

• EXTMODE: Name of external mode interface file (if any) associated with your 
target. If your target does not support external mode, use no_ext_comm.

The following browser information comments are from 
matlabroot/rtw/c/grt/grt.tlc.

%% SYSTLC: Generic Real-Time Target 
%%    TMF: grt_default_tmf MAKE: make_rtw EXTMODE: ext_comm

See “Adding a Custom Target to the System Target File Browser” on 
page 14-27 for further information.

Target Language Compiler Configuration Variables
This section assigns global TLC variables that affect the overall code 
generation process. The following variables must be assigned:

• CodeFormat: The CodeFormat variable selects one of the available code 
formats: 

- RealTime: Designed for rapid prototyping, with static memory allocation.

- RealTimeMalloc: Similar to RealTime, but with dynamic memory 
allocation.

- Embedded-C: Designed for production code, minimal memory usage, 
simplified interface to generated code.

- S-Function: For use by S-function and Accelerator targets only.

The default CodeFormat value is RealTime.

Chapter 3, “Generated Code Formats” summarizes available code formats 
and provides pointers to further details.
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• Language: Selects code generation (currently C only).

It is possible to generate code in a language other than C. To do this would 
require considerable development effort, including reimplementation of all 
block target files to generate the desired target language code. See the 
Target Language Compiler documentation for a discussion of the issues.

• TargetType: Real-Time Workshop defines the preprocessor symbols RT and 
NRT to distinguish simulation code from real-time code. These symbols are 
used in conditional compilation. The TargetType variable determines 
whether RT or NRT is defined. 

Most targets are intended to generate real-time code. They assign 
TargetType as follows.
%assign TargetType = "RT"

Some targets, such as the Simulink Accelerator, generate code for use in non 
real-time only. Such targets assign TargetType as follows.
%assign TargetType = "NRT"

See “Conditional Compilation for Simulink and Real-Time” on page 14–45 
for further information on the use of these symbols.

Target Language Compiler Program Entry Point
The code generation process normally begins with codegenentry.tlc. The 
system target file invokes codegenentry.tlc as follows.

%include "codegenentry.tlc"
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codegenentry.tlc in turn invokes other TLC files:

• genmap.tlc maps the block names to corresponding language-specific block 
target files.

• commonsetup.tlc sets up global variables.

• commonentry.tlc starts the process of generating code in the format 
specified by CodeFormat.

To customize the code generation process, you can call the lower-level TLC files 
explicitly and include your own TLC functions at each stage of the process. See 
the Target Language Compiler documentation for guidelines.

Note  codegenentry.tlc and the lower-level TLC files assume that 
CodeFormat, TargetType, and Language have been correctly assigned. Set 
these variables before including codegenentry.tlc. 

RTW_OPTIONS Section
The RTW_OPTIONS section (see Figure 14-2) is bounded by the directives:

%/
BEGIN_RTW_OPTIONS
.
.
END_RTW_OPTIONS
/%

The first part of the RTW_OPTIONS section defines an array of rtwoptions 
structures. The rtwoptions structure is discussed in this section.

The second part of the RTW_OPTIONS section defines rtwgensettings, a 
structure defining the build directory name and other settings for the code 
generation process. See “Build Directory Name” on page 14-26 for information 
about rtwgensettings.

The rtwoptions Structure. The fields of the rtwoptions structure define variables 
and associated user interface elements to be displayed in the Real-Time 
Workshop pane. Using the rtwoptions structure array, you can customize the 
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Category menu in the Real-Time Workshop pane, define the options displayed 
in each category, and specify how these options are processed.

When the Real-Time Workshop pane opens, the rtwoptions structure array is 
scanned and the listed options are displayed. Each option is represented by an 
assigned user interface element (check box, edit field, pop-up menu, or 
pushbutton), which displays the current option value.

The user interface elements can be in an enabled or disabled (grayed-out) state. 
If the option is enabled, the user can change the option value. 

You can also use the rtwoptions structure array to define special NonUI 
elements that cause callback functions to be executed, but that are not 
displayed in the Real-Time Workshop pane. See “NonUI Elements” on page 14–
24 for details.

The elements of the rtwoptions structure array are organized into groups that 
correspond to items in the Category menu in the Real-Time Workshop pane. 
Each group of items begins with a header element of type Category. The 
default field of a Category header must contain a count of the remaining 
elements in the category.

The header is followed by options to be displayed on the Real-Time Workshop 
pane. The header in each category is followed by a maximum of seven elements.

Table 14-2 summarizes the fields of the rtwoptions structure.

The following example is excerpted from 
matlabroot/rtw/c/rtwsfcn/rtwsfcn.tlc, the system target file for the 
S-Function target. The code defines an rtwoptions structure array of three 
elements. The default field of the first (header) element is set to 2, indicating 
the number of elements that follow the header.

rtwoptions(1).prompt = 'RTW S-function code generation options';
rtwoptions(1).type = 'Category';
rtwoptions(1).enable = 'on';  
rtwoptions(1).default = 2; % Number of items under this category

% excluding this one.
rtwoptions(1).popupstrings  = '';
rtwoptions(1).tlcvariable   = '';
rtwoptions(1).tooltip       = '';
rtwoptions(1).callback      = '';
rtwoptions(1).opencallback  = '';
rtwoptions(1).closecallback = '';
rtwoptions(1).makevariable  = '';

rtwoptions(2).prompt = 'Create New Model';
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rtwoptions(2).type = 'Checkbox';
rtwoptions(2).default = 'on';
rtwoptions(2).tlcvariable = 'CreateModel';
rtwoptions(2).makevariable = 'CREATEMODEL';
rtwoptions(2).tooltip = ...
['Create a new model containing the generated RTW S-Function block inside it'];

rtwoptions(3).prompt = 'Use Value for Tunable Parameters';
rtwoptions(3).type = 'Checkbox';
rtwoptions(3).default = 'off';
rtwoptions(3).tlcvariable = 'UseParamValues';
rtwoptions(3).makevariable = 'USEPARAMVALUES';
rtwoptions(3).tooltip = ...
['Use value instead of variable name in generated block mask edit fields'];

The first element adds the RTW S-function code generation options item to 
the Category menu of the Real-Time Workshop pane. The options defined in 
rtwoptions(2) and rtwoptions(3) display as shown in Figure 14-3.

Figure 14-3:  Code Generation Options for S-Function Target

If you want to define more than seven options, you can define multiple 
Category menu items within a single system target file. For an example, see 
the Tornado system target file, matlabroot/rtw/c/tornado/tornado.tlc.

Note that to verify the syntax of your rtwoptions definitions, you can execute 
the commands in MATLAB by copying and pasting them to the MATLAB 
command window.
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For further examples of target-specific rtwoptions definitions, see “Using 
rtwoptions: the Real-Time Workshop Options Example Target” on page 14-25. 

The following table lists the fields of the rtwoptions structure.

Table 14-2:  rtwoptions Structure Fields Summary

Field Name Description

callback Name of M-code function to call when value of option 
changes. To access objects such as your Simulation 
Parameters dialog custom option fields, pass in a 
handle to the Simulation Parameters dialog. To do this, 
use the reserved keyword DialogFig.

Note that DialogFig is a reserved keyword that should 
be used with extreme caution. For an example of 
callback usage, see “Using rtwoptions: the Real-Time 
Workshop Options Example Target” on page 14-25.

closecallback Name of M-code function to call when be executed when 
dialog closes. To access objects such as your Simulation 
Parameters dialog custom option fields, pass in a 
handle to the Simulation Parameters dialog. To do this, 
use the reserved keyword DialogFig.

Note that DialogFig is a reserved keyword that should 
be used with extreme caution. For an example of 
closecallback usage, see “Using rtwoptions: the 
Real-Time Workshop Options Example Target” on 
page 14-25.

default Default value of the option (empty if the type is 
Pushbutton).

enable Must be on or off. If on, the option is displayed as an 
enabled item; otherwise, as a disabled item.
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NonUI Elements
Elements of the rtwoptions array that have type NonUI exist solely to invoke 
callbacks. A NonUI element is not displayed in the Simulation Parameters 
dialog. You can use a NonUI element if you wish to execute a callback that is not 
associated with any user interface element, when the dialog opens or closes. 
Only the opencallback and closecallback fields of a NonUI element have 
significance. See the next section,“Using rtwoptions: the Real-Time Workshop 
Options Example Target” for an example.

makevariable Template makefile token (if any) associated with 
option. The makevariable will be expanded during 
processing of the template makefile. See “Template 
Makefile Tokens” on page 14-29.

opencallback M-code to be executed when dialog opens. The purpose 
of the code is to synchronize the displayed value of the 
option with its previous setting. For an example of 
opencallback usage, see “Using rtwoptions: the 
Real-Time Workshop Options Example Target” on 
page 14-25.

popupstrings If type is Popup, popupstrings defines the items in the 
pop-up menu. Items are delimited by the “|” (vertical 
bar) character. The following example defines the items 
of the MAT-file variable name modifier menu used by 
the GRT target:

'rt_|_rt|none'

prompt Label for the option.

tlcvariable Name of TLC variable associated with the option.

tooltip Help string displayed when mouse is over the item.

type Type of element: Checkbox, Edit, NonUI, Popup, 
Pushbutton, or Category.

Table 14-2:  rtwoptions Structure Fields Summary

Field Name Description
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Using rtwoptions: the Real-Time Workshop Options Example Target
A working system target file, with M-file callback functions, has been provided 
as an example of how to use the rtwoptions structure to display and process 
custom options on the Real-Time Workshop pane. The example files are in the 
directory 
matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo. The example target 
files are:

• usertarget.tlc: the example system target file. This file defines several 
popups, checkboxes, an edit field, and a nonUI item. The file demonstrates 
the use of callbacks, open callbacks, and close callbacks.

• usertargetcallback.m: an M-file callback invoked by a popup.

• usertargetclosecallback.m: an M-file callback invoked by an edit field.

Please refer to the example files while reading this section. The example 
system target file, usertarget.tlc: demonstrates the use of callbacks 
associated with the following UI elements:

• The Execution Mode popup executes an open callback that is coded inline 
within the system target file. This callback displays a message and sets a 
model property via a set_param().

• The Real-Time Interrupt Source popup executes a callback defined in an 
external M-file, usertargetcallback.m. A handle to the popup object is 
passed in to the callback, which displays the popup’s current value.

• The edit field Signal Logging Buffer Size in Doubles executes a close 
callback defined in an external M-file, usertargetclosecallback.m. The 
callback obtains a handle to the edit field object and displays the current 
value of the edit field.

• The External Mode checkbox executes an open callback that is coded inline 
within the system target file. The callback obtains a handle to the checkbox 
object and sets its value to 1.

• The NonUi item defined in rtwoptions(8) executes open and close callbacks 
that are coded inline within the system target file. Each callback simply 
prints a status message.

We suggest that you study the example code while interacting with the 
example target options in the Simulation Parameters dialog. To interact with 
the example target file:
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1 Make matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo your working 
directory.

2 Open any model of your choice.

3 Open the Real-Time Workshop pane in the Simulation Parameters dialog. 
Select Target Configuration from the Category menu. 

4 Click the Browse button. The System Target File Browser opens. Select 
Real-Time Workshop Options Example Target. Then click OK.

5 Observe that the Category menu of the Real-Time Workshop pane contains 
two custom items: userPreferred target options (I) and userPreferred 
target options (II).

6 As you interact with the options in these two categories and open and close 
the Simulation Parameters dialog, observe the messages displayed in the 
MATLAB window. These messages are printed from code in the system 
target file, or from callbacks invoked from the system target file.

Additional Code Generation Options
“Target Language Compiler Variables and Options” on page 2-59 describes 
additional code generation variables. For readability, it is recommended that 
you assign these variables in the Configure RTW code generation settings 
section of the system target file. 

Alternatively, you can append statements of the form

-aVariable=val

to the System target filename field on the Real-Time Workshop pane.

Build Directory Name
The final part of the system target file defines the BuildDirSuffix field of the 
rtwgensettings structure. The build process appends the BuildDirSuffix 
string to the model name to form the name of the build directory. For example, 
if you define BuildDirSuffix as follows

rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

the build directories are named model_mytarget_rtw.
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See the Target Language Compiler documentation for further information on 
the rtwgensettings structure.

Adding a Custom Target to the System Target
File Browser
As a convenience to end users of your custom target configuration, you can add 
a custom target configuration to the System Target File Browser. To do this:

1 Modify (or add) browser comments at the head of your custom system target 
file. For example,

%% SYSTLC: John’s Real-Time Target \
%%    TMF: mytarget.tmf  MAKE: make_rtw EXTMODE: no_ext_comm 

2 Create a directory <targetname> (e.g., /mytarget). Move your custom system 
target file, custom template makefile, and run-time interface files (such as 
your main program and S-functions) into the <targetname> subdirectory.

Note  Your <targetname> subdirectory should not be located anywhere in the 
MATLAB directory tree (that is, in or under the matlabroot directory). The 
reason for this restriction is that if you install a new version of MATLAB, (or 
reinstall your current version) the MATLAB directories will be recreated. This 
process deletes any custom target directories existing within the MATLAB 
tree.

3 Add your target directory to the MATLAB path.

addpath <targetname>

If you want <targetname> included in the MATLAB path each time 
MATLAB starts up, include this addpath command in your startup.m file.

4 When the System Target File Browser opens, Real-Time Workshop detects 
system target files that are on the MATLAB path, and displays the target 
filenames and target description comments. Figure 14-4 shows how the 
target file mytarget.tlc, which contains the browser comments above, 
appears in the System Target File Browser.
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Figure 14-4:  Custom System Target File Displayed in Browser

Template Makefiles
To configure or customize template makefiles, you should be familiar with how 
the make command works and how the make command processes makefiles. You 
should also understand makefile build rules. For information of these topics, 
please refer to the documentation provided with the make utility you use. 
There are also several good books on the make utility.

Template makefiles are made up of statements containing tokens. The 
Real-Time Workshop build process expands tokens and creates a makefile, 
model.mk. Template makefiles are designed to generate makefiles for specific 
compilers on specific platforms. The generated model.mk file is specifically 
tailored to compile and link code generated from your model, using commands 
specific to your development system.
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Figure 14-5:  Creation of model.mk

Template Makefile Tokens
The make_rtw M-file command (or a different command provided with some 
targets) directs the process of generating model.mk. The make_rtw command 
processes the template makefile specified on the Target configuration section 
of the Real-Time Workshop pane of the Simulation Parameters dialog. 
make_rtw copies the template makefile, line by line, expanding each token 
encountered. Table 14-3 lists the tokens and their expansions.

Table 14-3:  Template Makefile Tokens Expanded by make_rtw

Token Expansion

|>COMPUTER<| Computer type. See the MATLAB 
computer command.

|>MAKEFILE_NAME<| model.mk — The name of the makefile 
that was created from the template 
makefile.

|>MATLAB_ROOT<| Path to where MATLAB is installed.

|>MATLAB_BIN<| Location of the MATLAB executable.

|>MEM_ALLOC<| Either RT_MALLOC or RT_STATIC. 
Indicates how memory is to be allocated.

|>MEXEXT<| MEX-file extension. See the MATLAB 
mexext command.

|>MODEL_NAME<| Name of the Simulink block diagram 
currently being built.

Template
Makefile

Makefile:
model.mk

system.tmf
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|>MODEL_MODULES<| Any additional generated source (.c) 
modules. For example, you can split a 
large model into two files, model.c and 
model1.c. In this case, this token 
expands to model1.c.

|>MODEL_MODULES_OBJ<| Object filenames (.obj) corresponding 
to any additional generated source (.c) 
modules.

|>MULTITASKING<| True (1) if solver mode is multitasking, 
otherwise False (0).

|>NUMST<| Number of sample times in the model.

|>RELEASE_VERSION<| The release version of MATLAB.

|>S_FUNCTIONS<| List of noninlined S-function (.c) 
sources.

|>S_FUNCTIONS_LIB<| List of S-function libraries available for 
linking.

|>S_FUNCTIONS_OBJ<| Object (.obj) file list corresponding to 
noninlined S-function sources.

|>SOLVER<| Solver source filename, e.g., ode3.c.

|>SOLVER_OBJ<| Solver object (.obj) filename, e.g., 
ode3.obj.

|>TID01EQ<| True (1) if sampling rates of the 
continuous task and the first discrete 
task are equal, otherwise False (0). 

|>NCSTATES<| Number of continuous states.

Table 14-3:  Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion
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These tokens are expanded by substitution of parameter values known to the 
build process. For example, if the source model contains blocks with two 
different sample times, the template makefile statement

NUMST = |>NUMST<| 

expands to the following in model.mk.

NUMST = 2 

In addition to the above, make_rtw expands tokens from other sources:

• Target-specific tokens defined via the Target configuration section of the 
Real-Time Workshop pane of the Simulation Parameters dialog box. 

• Structures in the RTW Options section of the system target file. Any 
structures in the rtwoptions structure array that contain the field 
makevariable are expanded.

The following example is extracted from matlabroot/rtw/c/grt/grt.tlc. 
The section starting with BEGIN_RTW_OPTIONS contains M-file code that sets 
up rtwoptions. The directive
rtwoptions(2).makevariable = 'EXT_MODE'

causes the |>EXT_MODE<| token to be expanded into 1 (on) or 0 (off), 
depending on how you set the External mode option in the Code generation 
options section of the Real-Time Workshop pane.

|>BUILDARGS<| Options passed to make_rtw. This token 
is provided so that the contents of your 
model.mk file will change when you 
change the build arguments, thus 
forcing an update of all modules when 
your build options change.

|>EXT_MODE<| True (1) to enable generation of 
external mode support code, otherwise 
False (0).

Table 14-3:  Template Makefile Tokens Expanded by make_rtw (Continued)

Token Expansion
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The Make Command
After creating model.mk from your template makefile, Real-Time Workshop 
invokes a make command. To invoke make, Real-Time Workshop issues this 
command.

makecommand -f model.mk

makecommand is defined by the MAKE macro in your system’s template makefile 
(see Figure 14-6 on page 14-35). You can specify additional options to make in 
the Make command field of the Real-Time Workshop pane. (see “Make 
Command Field” on page 2-6 and “Template Makefiles and Make Options” on 
page 2-54.) 

For example, specifying OPT_OPTS=-O2 in the Make command field causes 
make_rtw to generate the following make command.

makecommand -f model.mk OPT_OPTS=-O2

A comment at the top of the template makefile specifies the available make 
command options. If these options do not provide you with enough flexibility, 
you can configure your own template makefile. 

Make Utilities 

The make utility lets you control nearly every aspect of building your real-time 
program. There are several different versions of make available. Real-Time 
Workshop provides the Free Software Foundation’s GNU Make for both UNIX 
and PC platforms in the platform-specific subdirectories below 
matlabroot/rtw/bin.

It is possible to use other versions of make with Real-Time Workshop, although 
GNU Make is recommended. To ensure compatibility with Real-Time 
Workshop, make sure that your version of make supports the following 
command format.

makecommand −f model.mk

Structure of the Template Makefile
A template makefile has four sections:

• The first section contains initial comments that describe what this makefile 
targets. 
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• The second section defines macros that tell make_rtw how to process the 
template makefile. The macros are:

- MAKE — This is the command used to invoke the make utility. For example, 
if MAKE = mymake, then the make command invoked is

mymake −f model.mk
- HOST — What platform this template makefile is targeted for. This can be 
HOST=PC, UNIX, computer_name (see the MATLAB computer command), or 
ANY.

- BUILD — This tells make_rtw whether or not (BUILD=yes or no) it should 
invoke make from the Real-Time Workshop build procedure.

- SYS_TARGET_FILE — Name of the system target file. This is used for 
consistency checking by make_rtw to verify that the correct system target 
file was specified in the Target configuration section of the Real-Time 
Workshop pane of the Simulation Parameters dialog box.

- BUILD_SUCCESS — An optional macro that specifies the build success string 
to be displayed on successful make completion on the PC. For example,
BUILD_SUCCESS = ### Successful creation of

The BUILD_SUCCESS macro, if used, replaces the standard build success 
string found in the template makefiles distributed with the bundled 
Real-Time Workshop targets (such as GRT):

@echo ### Created executable $(MODEL).exe

Your template makefile must include either the standard build success 
string, or use the BUILD_SUCCESS macro. For an example of the use of 
BUILD_SUCCESS, see

matlabroot/toolbox/rtw/c/grt/grt_bc.tmf

- BUILD_ERROR — An optional macro that specifies the build error message 
to be displayed when an error is encountered during the make procedure. 
For example,
BUILD_ERROR = ['Error while building ', modelName]

The following DOWNLOAD options apply only to the Tornado target:

- DOWNLOAD — An optional macro that you can specify as yes or no. If 
specified as yes (and BUILD=yes), then make is invoked a second time with 
the download target.
make -f model.mk download
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- DOWNLOAD_SUCCESS — An optional macro that you can use to specify the 
download success string to be used when looking for a successful 
download. For example,
DOWNLOAD_SUCCESS = ### Downloaded

- DOWNLOAD_ERROR — An optional macro that you can use to specify the 
download error message to be displayed when an error is encountered 
during the download. For example, 
DOWNLOAD_ERROR = ['Error while downloading ', modelName]

• The third section defines the tokens make_rtw expands (see Table 14-3).

• The fourth section contains the make rules used in building an executable 
from the generated source code. The build rules are typically specific to your 
version of make.
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Figure 14-6 shows the general structure of a template makefile.

Figure 14-6:  Structure of aTemplate Makefile

Customizing and Creating Template Makefiles
To customize or create a new template makefile, we recommend that you copy 
an existing template makefile to your local working directory and modify it.

This section shows, through an example, how to use macros and 
file-pattern-matching expressions in a template makefile to generate 
commands in the model.mk file.

#-- Section 1: Comments -------------------------------------------------------
#
# Description of target type and version of make for which 
# this template makefile is intended.
# Also documents any optional build arguments.
#-- Section 2: Macros read by make_rtw ----------------------------------------
#
# The following macros are read by the Real-Time Workshop build procedure:
#
# MAKE            - This is the command used to invoke the make utility.
# HOST            - Platform this template makefile is designed 
#                    (i.e., PC or UNIX)
# BUILD           - Invoke make from the Real-Time Workshop build procedure 
#                    (yes/no)?
# SYS_TARGET_FILE - Name of system target file.

MAKE            = make
HOST            = UNIX
BUILD           = yes
SYS_TARGET_FILE = system.tlc
#-- Section 3: Tokens expanded by make_rtw ------------------------------------
#

MODEL           = |>MODEL_NAME<|
MODULES         = |>MODEL_MODULES<|
MAKEFILE        = |>MAKEFILE_NAME<|
MATLAB_ROOT     = |>MATLAB_ROOT<|
...
COMPUTER        = |>COMPUTER<|
BUILDARGS       = |>BUILDARGS<|

#-- Section 4: Build rules ----------------------------------------------------
#
# The build rules are specific to your target and version of make.

Comments

make_rtw 
macros

make_rtw 
tokens

Build rules
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The make utility processes the model.mk makefile and generates a set of 
commands based upon dependency rules defined in model.mk. After make 
generates the set of commands needed to build or rebuild test, make executes 
them. 

For example, to build a program called test, make must link the object files. 
However, if the object files don’t exist or are out of date, make must compile the 
C code. Thus there is a dependency between source and object files.

Each version of make differs slightly in its features and how rules are defined. 
For example, consider a program called test that gets created from two 
sources, file1.c and file2.c. Using most versions of make, the dependency 
rules would be

test: file1.o file2.o
cc −o test file1.o file2.o

file1.o: file1.c
cc −c file1.c

file2.o: file2.c
cc −c file2.c

In this example, we assumed a UNIX environment. In a PC environment the 
file extensions and compile and link commands will be different.

In processing the first rule

test: file1.o file2.o 

make sees that to build test, it needs to build file1.o and file2.o. To build 
file1.o, make processes the rule

file1.o: file1.c

If file1.o doesn’t exist, or if file1.o is older than file1.c, make compiles 
file1.c.

The format of Real-Time Workshop template makefiles follows the above 
example. Our template makefiles use additional features of make such as 
macros and file-pattern-matching expressions. In most versions of make, a 
macro is defined via

MACRO_NAME = value
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References to macros are made via $(MACRO_NAME). When make sees this form 
of expression, it substitutes value for $(MACRO_NAME).

You can use pattern matching expressions to make the dependency rules more 
general. For example, using GNU Make you could replace the two "file1.o: 
file1.c" and "file2.o: file2.c" rules with the single rule

%.o : %.c
cc −c $<

Note that $< above is a special macro that equates to the dependency file (i.e., 
file1.c or file2.c). Thus, using macros and the “%” pattern matching 
character, the above example can be reduced to

SRCS = file1.c file2.c
OBJS = $(SRCS:.c=.o)

test: $(OBJS)
cc −o $@ $(OBJS)

%.o : %.c
cc −c $<

Note that the $@ macro above is another special macro that equates to the name 
of the current dependency target, in this case test.

This example generates the list of objects (OBJS) from the list of sources (SRCS) 
by using the string substitution feature for macro expansion. It replaces the 
source file extension (.c) with the object file extension (.o). This example also 
generalized the build rule for the program, test, to use the special “$@” macro.

Customizing the Makefile Include Path
Real-Time Workshop template makefiles provide rules and macros that let you 
add source directories, include directories, and libraries to generated makefiles 
without having to modify the template makefiles themselves. This feature is 
useful if you need to include your code when building S-functions.

To include a directory needed for a S-Function, you must create an M-function, 
rtwmakecfg, in a file rtwmakecfg.m. This file must reside in the same directory 
as your S-function component (.dll on Windows, .mex on UNIX). The 
rtwmakecfg function is called during the build process. The rtwmakecfg 
function must return a structured array with following elements:
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• makeInfo.includePath: a cell array containing additional include directory 
names, which must be organized as row vector. These directory names will 
be expanded into include instructions in the generated makefile.

• makeInfo.sourcePath: a cell array containing additional source directory 
names, which must be organized as a row vector. These directory names will 
be expanded into make rules in the generated makefile.

• makeInfo.library: a structure containing additional runtime library names 
and module objects, which must be organized as a row vector. This 
information will be expanded into make rules in the generated makefile.

- makeInfo.library(n).Name: String. Specifies the name of the library 
(without extension).

- makeInfo.library(n).Location: String. Directory in which the library is 
located.

- makeInfo.library(n).Modules: Cell array. Specifies the C files in the 
library.
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Creating Device Drivers
Device drivers that communicate with target hardware are essential to many 
real-time development projects. This section describes how to integrate device 
drivers into your target system. This includes incorporating drivers into your 
Simulink model and into the code generated from that model.

Device drivers are implemented as Simulink device driver blocks. A device 
driver block is an S-Function block that is bound to user-written driver code.

To implement device drivers, you should be familiar with the Simulink C MEX 
S-function format and API. The following documents contain more information 
about C MEX S-functions:

• Writing S-Functions describes S-functions, including how to write both 
inlined and noninlined S-functions and how to access parameters from a 
masked S-function. Writing S-Functions also describes how to use the special 
mdlRTW function to parameterize an inlined S-function.

• “External Interfaces/API” in the MATLAB online documentation explains 
how to write C and other programs that interact with MATLAB via the MEX 
API. The Simulink S-function API is built on top of this API. To pass 
parameters to your device driver block from MATLAB/Simulink you must 
use the MEX API. “External Interfaces/API Reference” in the MATLAB 
online documentation contains reference descriptions for the required 
MATLAB mx* routines.

• The Target Language Compiler documentation describes the Target 
Language Compiler. Knowledge of the Target Language Compiler is 
required in order to inline S-functions. The Target Language Compiler 
Reference Guide also describes the structure of the model.rtw file.

• “Using Masks to Customize Blocks” in Using Simulink describes how to 
create a mask for an S-function.

Note  Device driver blocks must be implemented as C MEX S-functions, not 
as M-file S-functions. C MEX S-functions are limited to a subset of the 
features available in M-file S-functions. See “Limitations of Device Driver 
Blocks” on page 14-42 for information. 
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This section covers the following topics:

• Inlined and noninlined device drivers

• General requirements and limitations for device drivers

• Obtaining S-function parameter values from a dialog box

• Writing noninlined device drivers

• Writing inlined device drivers

• Building the device driver MEX-file

Inlined and Noninlined Drivers
In your target system, a device driver has a dual function. First, it functions as 
a code module that you compile and link with other code generated from your 
model by Real-Time Workshop. In addition, the driver must interact with 
Simulink during simulation. To meet both these requirements, you must 
incorporate your driver code into a Simulink device driver block.

You can build your driver S-function in several ways:

• As a MEX-file component, bound to an S-Function block, for use in a 
Simulink model. In this case, the Simulink engine calls driver routines in the 
MEX-file during execution of the model.

• As a module within a stand-alone real-time program that is generated from 
a model by Real-Time Workshop. The driver routines are called from within 
the application in essentially the same way that Simulink calls them.

In many cases, the code generated from driver blocks for real-time execution 
must run differently from the code used by the blocks in simulation. For 
example, an output driver may write to hard device addresses in real time; 
but these write operations could cause errors in simulation.

Real-Time Workshop provides standard compilation conditionals and 
include files to let you build the drivers for both cases. (See “Conditional 
Compilation for Simulink and Real-Time” on page 14-45.)

• As inlined code. The Target Language Compiler enables you to generate the 
explicit code from your routines (instead of calls to these routines) in the body 
of the application. Inlined code eliminates calling overhead, and reduces 
memory usage.
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Inlining an S-function can improve its performance significantly. However, 
there is a tradeoff in increased development and maintenance effort. To inline 
a device driver block, you must implement the block twice: first, as a C 
MEX-file, and second, as a TLC program.

The C MEX-file version is for use in simulation. Since a simulation normally 
does not have access to I/O boards or other target hardware, the C MEX-file 
version often acts as a “dummy” block within a model. For example, a 
digital-to-analog converter (DAC) device driver block is often implemented as 
a stub for simulation.

Alternatively, the C MEX-file version can simulate the behavior of the 
hardware. For example, an analog-to-digital converter (ADC) device driver 
block might read sample values from a data file or from the MATLAB 
workspace. 

The TLC version generates actual working code that accesses the target 
hardware in a production system.

Inlined device drivers are an appropriate design choice when:

• You are using the Real-Time Workshop Embedded Coder target. Inlined 
S-functions are required when building code from the Real-Time Workshop 
Embedded Coder target. S-functions for other targets can be either inlined 
or noninlined.

• You need production code generated from the S-function to behave 
differently than code used during simulation. For example, an output device 
block may write to an actual hardware address in generated code, but 
perform no output during simulation.

• You want to avoid overhead associated with calling the S-function API.

• You want to reduce memory usage. Note that each noninlined S-function 
creates its own Simstruct. Each Simstruct uses over 1K of memory. Inlined 
S-functions do not allocate any Simstruct. For optimal memory usage, 
consider using inlined S-functions with the Real-Time Workshop Embedded 
Coder target.

• You want to avoid making calls to routines that are required by Simulink, 
but which are empty, in your generated code.
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Device Driver Requirements and Limitations
In order to create a device driver block, the following components are required:

• Hardware-specific driver code, which handles communication between a 
real-time program and an I/O device. See your I/O device documentation for 
information on hardware requirements.

• S-function code, which implements the model initialization, output, and 
other functions required by the S-function API. The S-function code calls 
your driver code.

Your S-function code and the hardware-specific driver code are compiled and 
linked into a component that is bound to an S-Function block in your 
Simulink model. The MATLAB mex utility builds this component (a DLL 
under Windows, or a shared library under UNIX).

We recommend that you use the S-function template provided by Real-Time 
Workshop as a starting point for developing your driver S-functions. The 
template file is

matlabroot/simulink/src/sfuntmpl_basic.c 

An extensively commented version of the S-function template is also available. 
See matlabroot/simulink/src/sfuntmpl_doc.c.

The following components are optional:

• A TLC file that generates inline code for the S-function.

• A mask for the device driver block to create a customized user interface.

Limitations of Device Driver Blocks
The following limitations apply to noninlined driver blocks:

• Only a subset of MATLAB API functions are supported. See the “Noninlined 
S-functions” section of Writing S-Functions for a complete list of supported 
calls.

• Parameters must be doubles or characters contained in scalars, vectors, or 
2-D matrices. 

The following applies to inlined driver blocks:
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• If the driver does not have a mdlRTW function, parameter restrictions are the 
same as for noninlined drivers.

• If the driver has a mdlRTW function, any parameter type is supported.

Preemption
Consider preemption issues in the design of your drivers. In a typical real-time 
program, a timer interrupt invokes rtOneStep, which in turn calls MdlOutputs, 
which in turn calls your input (ADC) and /or output (DAC) drivers. In this 
situation, your drivers are interruptible.

Parameterizing Your Driver
You can add a custom icon, dialog box, and initialization commands to an 
S-Function block by masking it. This provides an easy-to-use graphical user 
interface for your device driver in the Simulink environment.

You can parameterize your driver by letting the user enter hardware-related 
variables. Figure 14-7 shows the dialog box of a masked device driver block for 
an input (ADC) device. The Simulink user can enter the device address, the 
number of channels, and other operational parameters.

Figure 14-7:  Dialog Box for a Masked ADC Driver Block
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A masked S-Function block obtains parameter data from its dialog box using 
macros and functions provided for the purpose.

To obtain a parameter value from the dialog:

1 Access the parameter from the dialog box using the ssGetSFcnParam macro. 
The arguments to ssGetSFcnParam are a pointer to the block’s Simstruct, 
and the index (0-based) to the desired parameter. For example, use the 
following call to access the Number of Channels parameter from the dialog 
above.

ssGetSFcnParam(S,3); /* S points to block’s Simstruct */

2 Parameters are stored in arrays of type mxArray, even if there is only a 
single value. Get a particular value from the input mxArray using the 
mxGetPr function. The following code fragment extracts the first (and only) 
element in the Number of Channels parameter.

#define  NUM_CHANNELS_PARAM         (ssGetSFcnParam(S,3))
#define NUM_CHANNELS ((uint_T) mxGetPr(NUM_CHANNELS_PARAM)[0])
uint_T num_channels;
num_channels = NUM_CHANNELS;

It is typical for a device driver block to read and validate input parameters in 
its mdlInitializeSizes function. See the listing “adc.c” on page 14-60 for an 
example.

By default, S-function parameters are tunable. To make a parameter 
nontunable, use the ssSetSFcParamNotTunable macro in the 
mdlInitializeSizes routine. Nontunable S-function parameters become 
constants in the generated code, improving performance.

For further information on creation and use of masked blocks, see the Using 
Simulink and Writing S-Functions manuals.

Writing a Noninlined S-Function Device Driver
Device driver S-functions are relatively simple to implement because they 
perform only a few operations. These operations include:

• Initializing the SimStruct.

• Initializing the I/O device.
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• Calculating the block outputs. How this is done depends upon the type of 
driver being implemented:

- An input driver for a device such as an ADC reads values from an I/O 
device and assigns these values to the block’s output vector y.

- An output driver for a device such as a DAC writes values from the block’s 
input vector u to an I/O device.

• Terminating the program. This may require setting hardware to a “neutral” 
state; for example, zeroing DAC outputs.

Your driver performs these operations by implementing certain specific 
functions required by the S-function API. 

Since these functions are private to the source file, you can incorporate 
multiple instances of the same S-function into a model. Note that each such 
noninlined S-function also instantiates a SimStruct.

Conditional Compilation for Simulink and Real-Time
Noninlined S-functions must function in both Simulink and in real-time 
environments. Real-Time Workshop defines the preprocessor symbols 
MATLAB_MEX_FILE, RT, and NRT to distinguish simulation code from real-time 
code. Use these symbols as follows:

• MATLAB_MEX_FILE

Conditionally include code that is intended only for use in simulation under 
this symbol. When you build your S-function as a MEX-file via the mex 
command, MATLAB_MEX_FILE is automatically defined.

• RT

Conditionally include code that is intended to run only in a real-time 
program under this symbol. When you generate code via the Real-Time 
Workshop build command, RT is automatically defined.

• NRT

Conditionally include code that is intended only for use with a variable-step 
solver, in a non-real-time standalone simulation or in a MEX-file for use with 
Simulink, under this symbol.

Real-Time Workshop provides these conditionals to help ensure that your 
driver S-functions access hardware only when it is appropriate to do so. Since 
your target I/O hardware is not present during simulation, writing to 
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addresses in the target environment can result in illegal memory references, 
overwriting system memory, and other severe errors. Similarly, read 
operations from nonexistent hardware registers can cause model execution 
errors.

In the following code fragment, a hardware initialization call is compiled in 
generated real-time code. During simulation, a message is printed to the 
MATLAB command window.

#if defined(RT)
/* generated code calls function to initialize an A/D device */
INIT_AD();

#elif defined(MATLAB_MEX_FILE)
/* during simulation, just print a message */
if (ssGetSimMode(S) == SS_SIMMODE_NORMAL) {
mexPrintf("\n adc.c: Simulating initialization\n”);

}
#endif

The MATLAB_MEX_FILE and RT conditionals also control the use of certain 
required include files. See “Required Defines and Include Files” below.

You may prefer to control execution of real-time and simulation code by some 
other means. For an example, see the use of the variable ACCESS_HW in 
matlabroot/rtw/c/dos/devices/das16ad.c

Required Defines and Include Files
Your driver S-function must begin with the following three statements, in the 
following order:

1 #define S_FUNCTION_NAME name

This defines the name of the entry point for the S-function code. name must 
be the name of the S-function source file, without the .c extension. For 
example, if the S-function source file is das16ad.c:

#define S_FUNCTION_NAME das16ad
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2 #define S_FUNCTION_LEVEL 2

This statement defines the file as a level 2 S-function. This allows you to 
take advantage of the full feature set included with S-functions. Level-1 
S-functions are currently used only to maintain backwards compatibility.

3 #include “simstruc.h”

The file simstruc.h defines the SimStruct (the Simulink data structure) 
and associated accessor macros. It also defines access methods for the mx* 
functions from the MATLAB MEX API.

Depending upon whether you intend to build your S-function as a MEX file or 
as real-time code, you must include one of the following files at the end of your 
S-function:

• simulink.c provides required functions interfacing to Simulink.

• cg_sfun.h provides the required S-function entry point for generated code.

A noninlined S-function should conditionally include both these files, as in the 
following code from sfuntmpl_basic.c:

#ifdef  MATLAB_MEX_FILE    /* File being compiled as a MEX-file? */
#include "simulink.c"      /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Required Functions
The S-function API requires you to implement several functions in your driver:

• mdlInitializeSizes specifies the sizes of various parameters in the 
SimStruct, such as the number of output ports for the block.

• mdlInitializeSampleTimes specifies the sample time(s) of the block.

If your device driver block is masked, your initialization functions can obtain 
the sample time and other parameters entered by the user in the block’s 
dialog box. 

• mdlOutputs: for an input device, reads values from the hardware and sets 
these values in the output vector y. For an output device, reads the input u 
from the upstream block and outputs the value(s) to the hardware.
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• mdlTerminate resets hardware devices to a desired state, if any. This 
function may be implemented as a stub.

In addition to the above, you may want to implement the mdlStart function. 
mdlStart, which is called once at the start of model execution, is useful for 
operations such as setting I/O hardware to some desired initial state. 

This following sections provide guidelines for implementing these functions.

mdlInitializeSizes 
In this function you specify the sizes of various parameters in the SimStruct. 
This information may depend upon the parameters passed to the S-function. 
“Parameterizing Your Driver” on page 14-43 describes how to access parameter 
values specified in S-function dialog boxes.

Initializing Sizes - Input Devices. The mdlInitializeSizes function sets size 
information in the SimStruct. The following implementation of 
mdlInitializeSizes initializes a typical ADC driver block.

static void mdlInitializeSizes(SimStruct *S)
{
uint_T num_channels;

ssSetNumSFcnParams(S, 3); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)){
  /*Return if number of expected != number of actual params */
  return;
  }
num_channels = mxGetPr(NUM_CHANNELS_PARAM)[0];

ssSetNumInputPorts(S, 0);
ssSetNumOutputPorts(S, num_channels);
ssSetNumSampleTimes(S,1);
}

This routine first validates that the number of input parameters is equal to the 
number of parameters in the block’s dialog box. Next, it obtains the Number of 
Channels parameter from the dialog.

ssSetNumInputPorts sets the number of input ports to 0 because an ADC is a 
source block, having only outputs.
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ssSetNumOutputPorts sets the number of output ports equal to the number of 
I/O channels obtained from the dialog box.

ssSetNumSampleTimes sets the number of sample times to 1. This would be the 
case where all ADC channels run at the same rate. Note that the actual sample 
period is set in mdlInitializeSampleTimes.

Note that by default, the ADC block has no direct feedthrough. The ADC output 
is calculated based on values read from hardware, not from data obtained from 
another block.

Initializing Sizes - Output Devices. Initializing size information for an output 
device, such as a DAC, differs in several important ways from initializing sizes 
for an ADC: 

• Since the DAC obtains its inputs from other blocks, the number of channels 
is equal to the number of inputs.

• The DAC is a sink block. That is, it has input ports but no output ports. Its 
output is written to a hardware device.

• The DAC block has direct feedthrough. The DAC block cannot execute until 
the block feeding it updates its outputs.

The following example is an implementation of mdlInitializeSizes for a DAC 
driver block.

static void mdlInitializeSizes(SimStruct *S)
{
uint_T num_channels;

ssSetNumSFcnParams(S, 3); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)){ 
  /* Return if number of expected != number of actual params */
  return;
  }
num_channels = mxGetPr(NUM_CHANNELS_PARAM)[0];
ssSetNumInputPorts(S, num_channels);
/* Number of inputs is now the number of channels. */
ssSetNumOutputPorts(S, 0);
/* Set direct feedthrough for all ports */
  {
  uint_T i;
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  for(i=0, i < num_channels, i++) { 
    ssSetInputPortDirectFeedThrough(S,i,1);
    }
  }
ssSetNumSampleTimes(S, 1);
}

mdlInitializeSampleTimes
Device driver blocks are discrete blocks, requiring you to set a sample time. The 
procedure for setting sample times is the same for both input and output device 
drivers. Assuming that all channels of the device run at the same rate, the 
S-function has only one sample time.

The following implementation of mdlInitializeSampleTimes reads the sample 
time from a block’s dialog box. In this case, sample time is the fifth parameter 
in the dialog box. The sample time offset is set to 0.

static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime(S, 0, mxGetPr(ssGetSFcnParams(S,4))[0]);
ssSetOffsetTime(S, 0, 0.0);
}

mdlStart
mdlStart is an optional function. It is called once at the start of model 
execution, and is often used to initialize hardware. Since it accesses hardware, 
you should compile it conditionally for use in real-time code or simulation, as 
in this example:

static void mdlStart(SimStruct *S)
{
#if defined(RT)
  /* Generated code calls function to initialize an A/D device */
  INIT_AD(); /* This call accesses hardware */
#elif defined(MATLAB_MEX_FILE)
  /* During simulation, just print a message */
  if (ssGetSimMode(S) == SS_SIMMODE_NORMAL) {
    mexPrintf("\n adc.c: Simulating initialization\n");
    }
#endif
}
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mdlOutputs
The basic purpose of a device driver block is to allow your program to 
communicate with I/O hardware. Typically, you accomplish this by using low 
level hardware calls that are part of your compiler’s C library, or by using 
C-callable functions provided with your I/O hardware.

All S-functions implement a mdlOutputs function to calculate block outputs. 
For a device driver block, mdlOutputs contains the code that reads from or 
writes to the hardware.

mdlOutputs - Input Devices. In a driver for an input device (such as an ADC), 
mdlOutputs must:

• Initiate a conversion for each channel.

• Read the board’s ADC output for each channel (and perhaps apply scaling to 
the values read).

• Set these values in the output vector y for use by the model.

The following code is the mdlOutputs function from the ADC driver 
matlabroot/rtw/c/dos/devices/das16ad.c. The function uses macros 
defined in matlabroot/rtw/c/dos/devices/das16ad.h to perform low-level 
hardware access. Note that the Boolean variable ACCESS_HW (rather than 
conditional compilation) controls execution of simulation and real-time code. 
The real-time code reads values from the hardware and stores them to the 
output vector. The simulation code simply outputs 0 on all channels.

static void mdlOutputs(SimStruct *S, int_T tid)
{
real_T *y = ssGetOutputPortRealSignal(S,0);
uint_T  i;
if (ACCESS_HW) {
    /* Real-time code reads hardware*/
    ADCInfo   *adcInfo    = ssGetUserData(S);
    uint_T    baseAddr    = adcInfo->baseAddr;
    real_T    offset      = adcInfo->offset;
    real_T    resolution  = adcInfo->resolution;
    /* For each ADC channel initiate conversion,*/
    /* then read channel value, scale and offset it and store */
    /* it to output y */
    for (i = 0; i < NUM_CHANNELS; i++) {
      uint_T adcValue;
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      adcStartConversion(baseAddr);
      for ( ;  ; ){
        if (!adcIsBusy(baseAddr)) break;
        }
      adcValue = adcGetValue(baseAddr);
      y[i] = offset + resolution*adcValue;
      }
    }
else {
  /* simulation code just zeroes the output for all channels*/
  for (i = 0; i < NUM_CHANNELS; i++){
    y[i] = 0.0;
    }
  }
}

mdlOutputs - Output Devices. In a driver for an output device (such as a DAC), 
mdlOutputs must:

• Read the input u from the upstream block.

• Set the board’s DAC output for each channel (and apply scaling to the input 
values if necessary).

• Initiate a conversion for each channel.

The following code is the mdlOutputs function from the DAC driver 
matlabroot/rtw/c/dos/devices/das16da.c. The function uses macros 
defined in matlabroot/rtw/c/dos/devices/das16ad.h to perform low-level 
hardware access. This function iterates over all channels, obtaining and 
scaling a block input value. It then range-checks and (if necessary) trims each 
value. Finally it writes the value to the hardware.

In simulation, this function is a stub. 

static void mdlOutputs(SimStruct *S, int_T tid)
{
if (ACCESS_HW) {
  int_T             i;
  DACInfo           *dacInfo   = ssGetUserData(S);
  uint_T            baseAddr   = dacInfo->baseAddr;
  real_T            resolution = dacInfo->resolution;
  InputRealPtrsType uPtrs  = ssGetInputPortRealSignalPtrs(S,0);
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  for (i = 0; i < NUM_CHANNELS; i++) {
    uint_T codeValue;
    /* Get and scale input for channel i. */
    real_T value = (*uPtrs[i] - MIN_OUTPUT)*resolution;
    /* Range check value */
    value = (value < DAC_MIN_OUTPUT) ? DAC_MIN_OUTPUT : value;
    value = (value > DAC_MAX_OUTPUT) ? DAC_MAX_OUTPUT : value;
    codeValue = (uint_T) value;
    /* Output to hardware */
    switch (i) {
case 0:
        dac0SetValue(baseAddr, codeValue);
        break;
      case 1:
        dac1SetValue(baseAddr, codeValue);
        break; }
    }
  }
}

mdlTerminate
This final required function is typically needed only in DAC drivers. The 
following routine sets the output of each DAC channel to zero:

static void mdlTerminate(SimStruct *S)
{
uint_T num_channels;
uint_T i;

num_channels = (uint_t)mxGetPr(ssGetSFcnParams(S,0)[0]);
for (i = 0; i < num_channels; i++){ 
  ds1102_da(i + 1, 0.0); /* Hardware-specific DAC output */
  }
}

ADC drivers usually implement mdlTerminate as an empty stub.

Writing an Inlined S-Function Device Driver 
To inline a device driver, you must provide:
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• driver.c: C MEX S-function source code, implementing the functions 
required by the S-function API. These are the same functions required for 
noninlined drivers, as described in “Required Functions” on page 14-47. For 
these functions, only the code for simulation in Simulink simulation is 
required.

It is important to ensure that driver.c does not attempt to read or write 
memory locations that are intended to be used in the target hardware 
environment. The real-time driver implementation, generated via a 
driver.tlc file, should access the target hardware.

• Any hardware support files such as header files, macro definitions, or code 
libraries that are provided with your I/O devices.

• Optionally, a mdlRTW function within driver.c. The sole purpose of this 
function is to evaluate and format parameter data during code generation. 
The parameter data is output to the model.rtw file. If your driver block does 
not need to pass information to the code generation process, you do not need 
to write a mdlRTW function. See “mdlRTW and Code Generation” on 
page 14-57 .

• driver.dll (PC) or driver (UNIX): MEX-file built from your C MEX 
S-function source code. This component is used:

- In simulation: Simulink calls the simulation versions of the required 
functions

- During code generation: if a mdlRTW function exists in the MEX-file, the 
code generator executes it to write parameter data to the model.rtw file.

• driver.tlc: TLC functions that generate real-time implementations of the 
functions required by the S-function API.

Example: An Inlined ADC Driver
As an aid to understanding the process of inlining a device driver, this section 
describes an example driver block for an ADC device. “Source Code for Inlined 
ADC Driver” on page 14-60 lists code for:

• adc.c, the C MEX S-function

• adc.tlc, the corresponding TLC file

• device.h, a hardware-specific header file included in both the simulation 
and real-time generated code
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The driver S-Function block is masked and has an icon. Figure 14-8 shows a 
model using the driver S-Function block. Figure 14-9 shows the block’s dialog 
box.

Figure 14-8:  ADC S-function Driver Block in a Model

The dialog box lets the user enter:

• The ADC base address

• An array defining its signal range

• Its gain factor

• The block’s sample time
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Figure 14-9:  ADC Driver Dialog Box

Simulation Code. adc.c consists almost entirely of functions to be executed 
during simulation. (The sole exception is mdlRTW, which executes during code 
generation.) Most of these functions are similar to the examples of 
non-real-time code given in “Writing a Noninlined S-Function Device Driver” 
on page 14-44. The S-function implements the following functions:

• mdlInitializeSizes validates input parameters (via mdlCheckParameters) 
and declares all parameters nontunable. This function also initializes ports 
and sets the number of sample times.

• mdlInitializeSampleTimes sets the sample time using the user-entered 
value.

• mdlStart prints a message to the MATLAB command window.

• mdlOutputs outputs zero on all channels.

• mdlTerminate is a stub routine.

Since adc.c contains only simulation code, it uses a single test of 
MATLAB_MEX_FILE to ensure that it is compiled as a C MEX-file.

#ifndef MATLAB_MEX_FILE
#error "Fatal Error: adc.c can only be used to create C-MEX 
S-Function"
#endif
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For the same reason, adc.c unconditionally includes simulink.c.

mdlRTW and Code Generation. mdlRTW is a mechanism by which an S-function can 
generate and write data structures to the model.rtw file. The Target Language 
Compiler, in turn, uses these data structures when generating code. Unlike the 
other functions in the driver, mdlRTW executes at code generation time. 

In this example, mdlRTW calls the ssWriteRTWParamSettings function to 
generate a structure that contains both user-entered parameter values (base 
address, hardware gain) and values computed from user-entered values 
(resolution, offset).

static void mdlRTW(SimStruct *S)
{
    boolean_T polarity   = adcIsUnipolar(MIN_SIGNAL_VALUE, MAX_SIGNAL_VALUE);
    real_T    offset     = polarity ? 0.0 : MIN_SIGNAL_VALUE/HARDWARE_GAIN;
    real_T    resolution = (((MAX_SIGNAL_VALUE-MIN_SIGNAL_VALUE)/HARDWARE_GAIN)/
                            ADC_NUM_LEVELS);
    char_T    baseAddrStr[128];

    if ( mxGetString(BASE_ADDRESS_PARAM, baseAddrStr, 128) ) {
        ssSetErrorStatus(S, "Error reading Base Address parameter, "
                         "need to increase string buffer size.");
        return;
    }

    if ( !ssWriteRTWParamSettings(S, 4,
                       SSWRITE_VALUE_QSTR, "BaseAddress",  baseAddrStr,
                       SSWRITE_VALUE_NUM,  "HardwareGain", HARDWARE_GAIN,
                       SSWRITE_VALUE_NUM,  "Resolution",   resolution,
                       SSWRITE_VALUE_NUM,  "Offset",       offset) ) {

        return; /* An error occured, which will be reported by Simulink. */
    }
} /* end: mdlRTW */
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The structure defined in model.rtw is

SFcnParamSettings {
 BaseAddress "0x300"
 HardwareGain 1.0
 Resolution 0.0048828125
 Offset -10.0
}

(The actual values of SFcnParamSettings derive from data entered by the 
user.)

Values stored in the SFcnParamSettings structure are referenced in 
driver.tlc, as in the following assignment statement.

%assign baseAddr = SFcnParamSettings.BaseAddress

The Target Language Compiler uses variables such as baseAddr to generate 
parameters in real-time code files such as model.c and model.h. This is 
discussed in the next section.

Note  During code generation, RTW writes all runtime parameters 
automatically to the model.rtw file, eliminating the need for the device driver 
S-function to perform this task via a mdlRTW method. See the discussion of 
runtime parameters in Writing S-Functions for further information.

The TLC File
adc.tlc contains three TLC functions. The BlockTypeSetup function 
generates the statement

#include "device.h"

in the model.h file. The other two functions, Start and Outputs, generate code 
within the MdlStart and MdlOutputs functions of model.c.

Statements in adc.tlc, and in the generated code, employ macros and symbols 
defined in device.h, and parameter values in the SFcnParamSettings 
structure. The following code uses the values from the SFcnParamSettings 
structure above to generate code containing constant values:

%assign baseAddr = SFcnParamSettings.BaseAddress
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%assign hwGain = SFcnParamSettings.HardwareGain
...
adcSetHardwareGain(%<baseAddr>, adcGetGainMask(%<hwGain>));

The TLC code above generates this statement in the MdlOutputs function of 
model.c.

adcSetHardwareGain(0x300, adcGetGainMask(1.0));

adcSetHardwareGain and adcGetGainMask are macros that expand to low-level 
hardware calls.

S-Function Wrappers
Another technique for integrating driver code into your target system is to use 
S-function wrappers. In this approach, you write:

• An S-function (the wrapper) that calls your driver code as an external 
module

• A TLC file that generates a call to the same driver code that was called in the 
wrapper

See Writing S-Functions for a full description of how to use wrapper 
S-functions.

Building the MEX-File and the Driver Block
This section outlines how to build a MEX-file from your driver source code for 
use in Simulink. For full details on how to use mex to compile the device driver 
S-function into an executable MEX-file, see “External Interfaces/API” in the 
MATLAB online documentation. For details on masking the device driver 
block, see “Using Masks to Customize Blocks” in Using Simulink.

1 Your C S-function source code should be in your working directory. To build 
a MEX-file from mydriver.c type

mex mydriver.c

mex builds mydriver.dll (PC) or mydriver (UNIX).

2 Add an S-Function block (from the Simulink Functions & Tables library in 
the Library Browser) to your model.
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3 Double-click the S-Function block to open the Block Parameters dialog. 
Enter the S-function name mydriver. The block is now bound to the 
mydriver MEX-file.

4 Create a mask for the block if you want to use a custom icon or dialog.

Source Code for Inlined ADC Driver
These files are described in “Example: An Inlined ADC Driver” on page 14-54.

adc.c
/*
 * File    : adc.c
 * Abstract:
 * Example S-function device driver (analog to digital convertor) for use
 * with Simulink and Real-Time Workshop.
 * This S-function contains simulation code only (except mdlRTW, used
 * only during code generation.) An error will be generated if
 * this code is compiled without MATLAB_MEX_FILE defined. That
 * is,it must be compiled via the MATLAB mex utility.
 *
 * DEPENDENCIES:
 * (1) This S-function is intended for use in conjunction with adc.tlc,
 * a Target Language Compiler program that generates inlined, real-time code that
 * implements the real-time I/O functions required by mdlOutputs, etc.
 *
 * (2) device.h defines hardware-specific macros, etc. that implement
 * actual I/O to the board
 *
 * (3) This file contains a mdlRTW function that writes parameters to
 * the model.rtw file during code generation.
 *
 * Copyright (c) 1994-2000 by The MathWorks, Inc. All Rights Reserved.
 *
 */

/*********************
 * Required  defines *
 *********************/

#define S_FUNCTION_NAME adc
#define S_FUNCTION_LEVEL 2

/*********************
 * Required includes *
 *********************/

#include "simstruc.h"    /* The Simstruct API, definitions and macros */
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/*
 * Generate a fatal error if this file is (by mistake) used by Real-Time
 * Workshop. There is a  target file corresponding to this S-function: adc.tlc,
 * which should be used to generate inlined code for this S-funciton.
 */
#ifndef MATLAB_MEX_FILE
# error "Fatal Error: adc.c can only be used to create C-MEX S-Function"
#endif

/*
 * Define the number of S-function parameters and set up convenient macros to
 * access the parameter values.
 */
#define  NUM_S_FUNCTION_PARAMS      (4)
#define N_CHANNELS (2) /* For this example, num. of channels is fixed */

/* 1. Base Address */
#define  BASE_ADDRESS_PARAM         (ssGetSFcnParam(S,0))

/* 2. Analog Signal Range */
#define  SIGNAL_RANGE_PARAM         (ssGetSFcnParam(S,1))
#define  MIN_SIGNAL_VALUE           ((real_T) (mxGetPr(SIGNAL_RANGE_PARAM)[0]))
#define  MAX_SIGNAL_VALUE           ((real_T) (mxGetPr(SIGNAL_RANGE_PARAM)[1]))

/* 3. Hardware Gain */
#define  HARDWARE_GAIN_PARAM        (ssGetSFcnParam(S,2))
#define  HARDWARE_GAIN              ((real_T) (mxGetPr(HARDWARE_GAIN_PARAM)[0]))

/* 4. Sample Time */
#define  SAMPLE_TIME_PARAM          (ssGetSFcnParam(S,3))
#define  SAMPLE_TIME                ((real_T) (mxGetPr(SAMPLE_TIME_PARAM)[0]))

/*
 * Hardware specific information pertaining to the A/D board. This information
 * should be provided with the documentation that comes with the board.
 */
#include "device.h"

/*====================*
 * S-function methods *
 *====================*/

/* Function: mdlCheckParameters ================================================
 * Abstract:
 *      Check that the parameters passed to this S-function are valid.
 */
#define MDL_CHECK_PARAMETERS
static void mdlCheckParameters(SimStruct *S)
{
    static char_T errMsg[256];
    boolean_T allParamsOK = 1;
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    /*
     * Base I/O Address
     */
    if (!mxIsChar(BASE_ADDRESS_PARAM)) {
        sprintf(errMsg, "Base address parameter must be a string.\n");
        allParamsOK = 0;
        goto EXIT_POINT;
    }
    /*
     * Signal Range
     */
    if (mxGetNumberOfElements(SIGNAL_RANGE_PARAM) != 2) {
        sprintf(errMsg,
               "Signal Range must be a two element vector [minInp maxInp]\n");
        allParamsOK = 0;
        goto EXIT_POINT;
    }
    if ( !adcIsSignalRangeParamOK(MIN_SIGNAL_VALUE, MAX_SIGNAL_VALUE) ) {
        sprintf(errMsg,
               "The specified Signal Range is not supported by I/O board.\n");
        allParamsOK = 0;
        goto EXIT_POINT;
    }
    /*
     * Hardware Gain
     */
    if (mxGetNumberOfElements(HARDWARE_GAIN_PARAM) != 1) {
        sprintf(errMsg, "Hardware Gain must be a scalar valued real number\n");
        allParamsOK = 0;
        goto EXIT_POINT;
    }
    if (!adcIsHardwareGainParamOK(HARDWARE_GAIN)) {
        sprintf(errMsg, "The specified hardware gain is not supported.\n");
        allParamsOK = 0;
        goto EXIT_POINT;
    }
 
    /*
     * Sample Time
     */
    if (mxGetNumberOfElements(SAMPLE_TIME_PARAM) != 1) {
        sprintf(errMsg, "Sample Time must be a positive scalar.\n");
        allParamsOK = 0;
        goto EXIT_POINT;
    }
EXIT_POINT:
    if ( !allParamsOK ) {
        ssSetErrorStatus(S, errMsg);
    }

} /* end: mdlCheckParameters */
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/* Function: mdlInitializeSizes ================================================
 * Abstract:
 * Validate parameters,set number and width of ports.
 */
static void mdlInitializeSizes(SimStruct *S)
{
    /* Set the number of parameters expected. */
    ssSetNumSFcnParams(S, NUM_S_FUNCTION_PARAMS);
    if ( ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S) ) {
        /*
         * If the number of parameter passed in is equal to the number of
         * parameters expected, then check that the specified parameters
         * are valid.
         */
        mdlCheckParameters(S);
        if ( ssGetErrorStatus(S) != NULL ) {
            return; /* Error was reported in mdlCheckParameters. */
        }
    } else {
        return; /* Parameter mismatch. Error will be reported by Simulink. */
    }

    /*
     * This S-functions's parameters cannot be changed in the middle of a
     * simulation, hence set them to be nontunable.
     */
    {
        int_T i;
        for (i=0; i < NUM_S_FUNCTION_PARAMS; i++) {
            ssSetSFcnParamNotTunable(S, i);
        }
    }

    /* Has no input ports */
    if ( !ssSetNumInputPorts(S, 0) ) return;

    /* Number of output ports = number of channels specified */
    if ( !ssSetNumOutputPorts(S, N_CHANNELS) ) return;

    /* Set the width of each output ports to be one. */
    {
        int_T oPort;
        for (oPort = 0; oPort < ssGetNumOutputPorts(S); oPort++) {
            ssSetOutputPortWidth(S, oPort, 1);
        }
    }

    ssSetNumSampleTimes( S, 1);

} /* end: mdlInitializeSizes */
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/* Function: mdlInitializeSampleTimes ==========================================
 * Abstract:
 *      Set the sample time of this block as specified via the sample time
 *      parameter.
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
    ssSetSampleTime(S, 0, SAMPLE_TIME);
    ssSetOffsetTime(S, 0, 0.0);

} /* end: mdlInitializeSampleTimes */

/* Function: mdlStart ==========================================================
 * Abstract:
 *      At the start of simulation in Simulink, print a message to the MATLAB
 *      command window indicating that output of this block will be zero during 
 *      simulation.
 */
#define MDL_START
static void mdlStart(SimStruct *S)
{
    if (ssGetSimMode(S) == SS_SIMMODE_NORMAL) {
        mexPrintf("\n adc.c: The output of the A/D block '%s' will be set "
                  "to zero during simulation in Simulink.\n", ssGetPath(S));
    }
} /* end: mdlStart */

/* Function: mdlOutputs ========================================================
 * Abstract:
 *      Set the output to zero.
 */
static void mdlOutputs(SimStruct *S, int_T tid)
{
    int oPort;

    for (oPort = 0; oPort < ssGetNumOutputPorts(S); oPort++) {
        real_T *y = ssGetOutputPortRealSignal(S, oPort);
        y[0] = 0.0;

    }
} /* end: mdlOutputs */

/* Function: mdlTerminate ======================================================
 * Abstract:
 *      Required S-function method that gets called at the end of simulation
 *      and code generation. Nothing to do in simulation.
 */
static void mdlTerminate(SimStruct *S)
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{
} /* end: mdlTerminate */

/* Function: mdlRTW ============================================================
 * Abstract:
 *      Evaluate parameter data and write it to the model.rtw file.
 */
#define MDL_RTW
static void mdlRTW(SimStruct *S)
{
    boolean_T polarity   = adcIsUnipolar(MIN_SIGNAL_VALUE, MAX_SIGNAL_VALUE);
    real_T    offset     = polarity ? 0.0 : MIN_SIGNAL_VALUE/HARDWARE_GAIN;
    real_T    resolution = (((MAX_SIGNAL_VALUE-MIN_SIGNAL_VALUE)/HARDWARE_GAIN)/
                            ADC_NUM_LEVELS);
    char_T    baseAddrStr[128];

    if ( mxGetString(BASE_ADDRESS_PARAM, baseAddrStr, 128) ) {
        ssSetErrorStatus(S, "Error reading Base Address parameter, "
                         "need to increase string buffer size.");
        return;
    }

    if ( !ssWriteRTWParamSettings(S, 4,
                       SSWRITE_VALUE_QSTR, "BaseAddress",  baseAddrStr,
                       SSWRITE_VALUE_NUM,  "HardwareGain", HARDWARE_GAIN,
                       SSWRITE_VALUE_NUM,  "Resolution",   resolution,
                       SSWRITE_VALUE_NUM,  "Offset",       offset) ) {

        return; /* An error occured, which will be reported by Simulink. */
    }
} /* end: mdlRTW */

/*
 * Required include for Simulink-MEX interface mechanism
 */
#include "simulink.c"
/* EOF: adc.c */

adc.tlc
%% File    : adc.tlc
%% Abstract:
%%      Target file for the C-Mex S-function adc.c
%%
%% Copyright (c) 1994-2000 by The MathWorks, Inc. All Rights Reserved.
%%

%implements "adc" "C"
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%% Function: BlockTypeSetup ===========================================
%% Abstract:
%%      This function is called once for all instance of the S-function
%% "dac" in the model. Since this block requires hardware specific
%% information about the I/O board, we generate code to include
%% "device.h" in the generated model.h file.
%%
%function BlockTypeSetup(block, system) void
  %%
  %% Use the Target Language Ccompiler global variable INCLUDE_DEVICE_H to make 
sure that
%% the line "#include device.h" gets generated into the model.h
%%file only once.

  %%
  %if !EXISTS("INCLUDE_DEVICE_H")
    %assign ::INCLUDE_DEVICE_H = 1
    %openfile buffer
    /* Include information about the I/O board */
    #include "device.h"
    %closefile buffer
    %<LibCacheIncludes(buffer)>
  %endif
  
%endfunction %% BlockTypeSetup

%% Function: Start ====================================================
%% Abstract:
%%      Generate code to set the number of channels and the hardware gain
%% mask in the start function.
%%
%function Start(block, system) Output
  /* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */
  %%
  %assign numChannels = block.NumDataOutputPorts
  %assign baseAddr    = SFcnParamSettings.BaseAddress
  %assign hwGain      = SFcnParamSettings.HardwareGain
  %%
  %% Initialize the Mux Scan Register to scan from 0 to NumChannels-1.
  %% Also set the Gain Select Register to the appropriate value.
  %%
  adcSetLastChannel(%<baseAddr>, %<numChannels-1>);
  adcSetHardwareGain(%<baseAddr>, adcGetGainMask(%<hwGain>));

%endfunction %% Start

%% Function: Outputs =================================================
%% Abstract:
%%      Generate inlined code to perform one A/D conversion on the enabled
%%      channels.
%%
%function Outputs(block, system) Output
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  %%
  %assign offset     = SFcnParamSettings.Offset
  %assign resolution = SFcnParamSettings.Resolution
  %assign baseAddr   = SFcnParamSettings.BaseAddress
  %%
  /* %<Type> Block: %<Name> (%<ParamSettings.FunctionName>) */
  {
    int_T  chIdx;
    uint_T adcValues[%<NumDataOutputPorts>];

    for (chIdx = 0; chIdx < %<NumDataOutputPorts>; chIdx++) {
      adcStartConversion(%<baseAddr>);
      while (adcIsBusy(%<baseAddr>)) {

/* wait for conversion */
      }
      adcValues[chIdx] = adcGetValue(%<baseAddr>);
    }
    
    %foreach oPort = NumDataOutputPorts
      %assign y = LibBlockOutputSignal(oPort, "", "", 0)
      %<y> = %<offset> + %<resolution>*adcValues[%<oPort>];
    %endforeach
  }

%endfunction %% Outputs
%% EOF: adc.tlc

device.h
/*
* File    : device.h
*
* Copyright (c) 1994-2000 by The MathWorks, Inc. All Rights
* Reserved.
*
*/

/*
* Operating system utilities to read and write to hardware
* registers.
*/
#define  ReadByte(addr)        inp(addr)
#define  WriteByte(addr,val)   outp(addr,val)

/*=============================================================*
* Specification of the Analog  Input Section of the I/O board
* (used in the ADC device driver S-function, adc.c and  *adc.tlc)
*=======================================================*/

/*
* Define macros for the attributes of the A/D board, such as the
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* number of A/D channels and bits per channel.
*/
#define  ADC_MAX_CHANNELS              (16)
#define  ADC_BITS_PER_CHANNEL          (12)
#define  ADC_NUM_LEVELS ((uint_T) (1 << ADC_BITS_PER_CHANNEL))

/*
* Macros to check if the specified parameters are valid.
* These macros are used by the C-Mex S-function, adc.c
*/
#define  adcIsUnipolar(lo,hi)          (lo      == 0.0 && 0.0 < hi)
#define  adcIsBipolar(lo,hi)           (lo + hi == 0.0 && 0.0 < hi)
#define  adcIsSignalRangeParamOK(l,h)  (adcIsUnipolar(l,h) || adcIsBipolar(l,h))

#define  adcGetGainMask(g) ( (g==1.0) ? 0x0 : \
                            ( (g==10.0) ? 0x1 : \
                             ( (g==100.0) ? 0x2 : \
                               ( (g==500.0) ? 0x3 : 0x4 ) ) ) )
#define  adcIsHardwareGainParamOK(g)   (adcGetGainMask(g) != 0x4)
#define  adcIsNumChannelsParamOK(n)    (1 <= n && n <= ADC_MAX_CHANNELS)

/* Hardware registers used by the A/D section of the I/O board */

#define  ADC_START_CONV_REG(bA)     (bA)
#define  ADC_LO_BYTE_REG(bA)        (bA)
#define  ADC_HI_BYTE_REG(bA)        (bA + 0x1)
#define  ADC_MUX_SCAN_REG(bA)       (bA + 0x2)
#define  ADC_STATUS_REG(bA)         (bA + 0x8)
#define  ADC_GAIN_SELECT_REG(bA)    (bA + 0xB)

/*
* Macros for the A/D section of the I/O board
*/
#define  adcSetLastChannel(bA,n) WriteByte(ADC_MUX_SCAN_REG(bA), n<<4)
#define  adcSetHardwareGain(bA,gM) WriteByte(ADC_GAIN_SELECT_REG(bA), gM)
#define  adcStartConversion(bA) WriteByte(ADC_START_CONV_REG(bA), 0x00)
#define  adcIsBusy(bA) (ReadByte(ADC_STATUS_REG(bA)) & 0x80)
#define  adcGetLoByte(bA) ReadByte(ADC_LO_BYTE_REG(bA))
#define  adcGetHiByte(bA) ReadByte(ADC_HI_BYTE_REG(bA))
#define  adcGetValue(bA) ((adcGetLoByte(bA)>>4) | (adcGetHiByte(bA)<<4))

/*============================================================*
* Specification of the Analog Output Section of the I/O board
* (used in the DAC device driver S-function, adc.c and adc.tlc)
*============================================================*/

#define DAC_BITS_PER_CHANNEL  (12)
#define DAC_UNIPOLAR_ZERO     ( 0)
#define DAC_BIPOLAR_ZERO      (1 << (DAC_BITS_PER_CHANNEL-1))
#define DAC_MIN_OUTPUT        (0.0)
#define DAC_MAX_OUTPUT        ((real_T) ((1 << DAC_BITS_PER_CHANNEL)-1))
#define DAC_NUM_LEVELS        ((uint_T) (1 << DAC_BITS_PER_CHANNEL))
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/*
* Macros to check if the specified parameters are valid.
* These macros are used by the C-Mex S-function,dac.c.
*/
#define dacIsUnipolar(lo,hi)         (lo    == 0.0 && 0.0 < hi)
#define dacIsBipolar(lo,hi)          (lo+hi == 0.0 && 0.0 < hi)
#define dacIsSignalRangeParamOK(l,h) (dacIsUnipolar(l,h) || dacIsBipolar(l,h))

/* Hardware registers */
#define DAC_LO_BYTE_REG(bA)     (bA + 0x4)
#define DAC_HI_BYTE_REG(bA)     (bA + 0x5)

#define dacSetLoByte(bA,c) WriteByte(DAC_LO_BYTE_REG(bA),(c & 0x00f)<<4)
#define dacSetHiByte(bA,c) WriteByte(DAC_HI_BYTE_REG(bA),(c & 0xff0)>>4)
#define dacSetValue(bA,c) dacSetLoByte(bA,c); dacSetHiByte(bA,c)

/* EOF: device.h */
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Interfacing Parameters and Signals
Simulink external mode (see Chapter 6, “External Mode”) offers a quick and 
easy way to monitor signals and modify parameter values while generated 
model code executes. However, external mode may not be appropriate for your 
target or optimal for your application. S-function targets do not support 
external mode, nor do DOS targets. In other cases, you may prefer to use 
existing code to access parameters and signals of a model directly, rather than 
using the external mode mechanism.

Real-Time Workshop supports several approaches to the task of interfacing 
block parameters and signals to your hand-written code.

The Model Parameter Configuration dialog enables you to declare how the 
generated code allocates memory for variables used in your model. This allows 
your supervisory software to read or write block parameter variables as your 
model executes. Similarly, the Signal Properties dialog gives your code access 
to selected signals within your model. Operation of these dialogs is described 
in “Parameters: Storage, Interfacing, and Tuning” on page 5-2 and “Signals: 
Storage, Optimization, and Interfacing” on page 5-17.

In addition, the MathWorks provides C and Target Language Compiler APIs 
that give your code additional access to block outputs, and parameters that are 
stored in global data structures and global variables created by Real-Time 
Workshop. This section is an overview of these APIs. This section also includes 
pointers to additional detailed API documents shipped with Real-Time 
Workshop.

Signal Monitoring via Block Outputs
All block output data is written to the block outputs structure or specified 
global variables with each time step in the model code. To access the output of 
a given block in the generated code, your supervisory software must have the 
following information, per port:

• The address of the field of the rtB structure, or the global variable where the 
data is stored

• The number of output ports of the block

• The width of the signal

• The data type of the signal
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This information is contained in the BlockIOSignals data structure. The TLC 
code generation variable, BlockIOSignals, determines whether 
BlockIOSignals data is generated. If BlockIOSignals is set to 1, a file 
containing an array of BlockIOSignals structures is written during code 
generation. This file is named model_bio.c, and by default is not generated.

BlockIOSignals is disabled by default. To enable generation of model_bio.c, 
use the following statement in the Configure RTW code generation settings 
section of your system target file:

%assign BlockIOSignals = 1

Alternatively, you can append the following command to the System target 
file field on the Target configuration section of the Real-Time Workshop 
pane.

-aBlockIOSignals=1

Note that depending on the size of your model, the BlockIOSignals array can 
consume a considerable amount of memory.

BlockIOSignals and the Local Block Outputs Option
When the Local block outputs code generation option is selected, block 
outputs are declared locally in functions instead of being declared globally in 
the rtB structure when possible. The BlockIOSignals array in model_bio.c 
will not contain information about such locally declared signals. (Note that 
even when all outputs in the system are declared locally, enabling 
BlockIOSignals will generate model_bio.c. In such a case the 
BlockIOSignals array will contain only a null entry.)

Signals that are designated as test points via the Signal Properties dialog are 
declared globally in the rtB structure, even when the Local block outputs 
option is selected. Information about test-pointed signals is therefore written 
to the BlockIOSignals array in model_bio.c. Similarly, signals whose storage 
class is set are declared as global variables and represented in the 
BlockIOSignals array.

Therefore, you can interface your code to selected signals by test-pointing them 
or using storage classes, without losing the benefits of the Local block outputs 
optimization for the other signals in your model.
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model_bio.c and the BlockIO Data Structure
The BlockIOSignals data structure is declared as follows.

typedef struct BlockIOSignals_tag {
char_T *blockName; /* Block's full pathname 

(mangled by the Real-Time Workshop) */
char_T *signalName; /* Signal label (unmangled) */
uint_T portNumber; /* Block output port number (start at 0) */
uint_T signalWidth; /* Signal's width */
void *signalAddr; /* Signal's address in the rtB vector */
char_T *dtName; /* The C language data type name */
uint_T dtSize; /* The size (# of bytes) for the data type*/

} BlockIOSignals;

The structure definition is in matlabroot/rtw/c/src/bio_sig.h. The 
model_bio.c file includes bio_sig.h. Any source file that references the array 
should also include bio_sig.h.

model_bio.c defines an array of BlockIOSignals structures. Each array 
element, except the last, describes one output port for a block. The final 
element is a sentinel, with all fields set to null values.

The code fragment below is an example of an array of BlockIOSignals 
structures from a model_bio.c file.

#include "bio_sig.h"
/* Block output signal information */
static const BlockIOSignals rtBIOSignals[] =
  {
  /* blockName,
     signalName, portNumber, signalWidth, signalAddr,
     dtName, dtSize */
  {
    "simple/Constant",
    NULL, 0, 1, &rtB.Constant,
    "double", sizeof(real_T)
  },
  {
    "simple/Constant1",
    NULL, 0, 1, &rtB.Constant1,
    "double", sizeof(real_T)
  },
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  {
    "simple/Gain",
    "accel", 0, 2, &rtB.accel[0],
    "double", sizeof(real_T)
  },
  {
    NULL, NULL, 0, 0, 0, NULL, 0
  }
};

Thus, a given block will have as many entries as it has output ports. In the 
example above, the entry corresponding to the signal at output port 0 (indexing 
is 0-based) of the block with path simple/Gain is named accel and has width 2.

Using BlockIOSignals to Obtain Block Outputs
The model_bio.c array is accessed via the name rtBIOSignals. To avoid 
overstepping array bounds, you can do either of the following:

• Use the rtModel access macro rtmGetNumBlockIO to determine the number 
of elements in the array.

• Use the rtModel access macro rtmGetModelMappingInfo to return the 
mapping info corresponding to the model, and then access the array through 
the mapping info.

• Test for a null blockName to identify the last element in the array.

You must then write code that iterates over the rtBIOSignals array and 
chooses the signals to be monitored based on the blockName and signalName or 
portNumber. How the signals are monitored is up to you. For example, you 
could collect the signals at every time step. Alternatively, you could sample 
signals asynchronously in a separate, lower priority task. 

The following code example is drawn from the main program (rt_main.c) of the 
Tornado target. The code illustrates how the StethoScope Graphical 
Monitoring/Data Analysis Tool uses BlockIOSignals to collect signal 
information in Tornado targets. The following function, 
rtInstallRemoveSignals, selectively installs signals from the 
BlockIOSignals array into the StethoScope Tool by calling 
ScopeInstallSignal. The main simulation task then collects signals by calling 
ScopeCollectSignals.
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static int_T rtInstallRemoveSignals(RT_MODEL *rtM, char_T 
*installStr,

     int_T fullNames, int_T install)
{
  uint_T                  i, w;
  char_T                 *blockName;
  char_T                 name[1024];
ModelMappingInfo mapInfo = rtmGetModelMappingInfo(rtM);
BlockIOSignals *rtBIOSignals = mapInfo.Signals.blockIOSignals;
int_T                  ret = -1;

  
  if (installStr == NULL) {
    return -1;
  }

  i = 0;
  while(rtBIOSignals[i].blockName != NULL) {
    BlockIOSignals *blockInfo = &rtBIOSignals[i++];
    
    if (fullNames) {
      blockName = blockInfo->blockName;
    } else {
      blockName = strrchr(blockInfo->blockName, '/');
      if (blockName == NULL) {

blockName = blockInfo->blockName;
      } else {

blockName++;
      }
    }

    if ((*installStr) == '*') {
    } else if (strcmp("[A-Z]*", installStr) == 0) {
      if (!isupper(*blockName)) {

continue;
      }
    } else {
      if (strncmp(blockName, installStr, strlen(installStr)) != 
0) {

continue;
      }
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    }
    /*install/remove the signals*/
    for (w = 0; w < blockInfo->signalWidth; w++) {
      sprintf(name, "%s_%d_%s_%d", blockName, 
blockInfo->portNumber,

      
!strcmp(blockInfo->signalName,"NULL")?"":blockInfo->signalName, 
w);
      if (install) { /*install*/
          if (!ScopeInstallSignal(name, "units", 
                                  (void *)((int)blockInfo->signalAddr + 
                                           w*blockInfo->dtSize),
                                  blockInfo->dtName, 0)) {
              fprintf(stderr,"rtInstallRemoveSignals: 
ScopeInstallSignal "
                      "possible error: over 256 signals.\n");
              return -1;
          } else {
              ret =0;
          }
      } else { /*remove*/

if (!ScopeRemoveSignal(name, 0)) {
  fprintf(stderr,"rtInstallRemoveSignals: 

ScopeRemoveSignal\n"
  "%s not found.\n",name);

} else {
          ret =0;
        }
      }
    }
  }
  return ret;
}

Below is an excerpt from an example routine that collects signals taken from 
the main simulation loop.

/*******************************************
         * Step the model for the base sample time *
         *******************************************/
        OUTPUTS(rtM,FIRST_TID);
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        rtExtModeUploadCheckTrigger();
        rtExtModeUpload(FIRST_TID,rtmGetTaskTime(rtM, FIRST_TID));

#ifdef MAT_FILE
        if (rt_UpdateTXYLogVars(rtmGetRTWLogInfo(rtM),
                                rtmGetTPtr(rtM)) != NULL) {
            fprintf(stderr,"rt_UpdateTXYLogVars() failed\n");
            return(1);
        }
#endif
        
#ifdef STETHOSCOPE
        ScopeCollectSignals(0);
#endif
        
        UPDATED(rtM,FIRST_TID);
        
        if (rtmGetSampleTime(rtM,0) == CONTINUOUS_SAMPLE_TIME) {
            rt_ODEUpdateContinuousStates(rtmGetRTWSolverInfo(rtM));
        } else {
            rt_SimUpdateDiscreteTaskTime(rtmGetTPtr(rtM),
                                         rtmGetTimingData(rtM),0);
        }
#if FIRST_TID == 1
        rt_SimUpdateDiscreteTaskTime(rtmGetTPtr(rtM),
                                     rtmGetTimingData(rtM),1);
#endif

        rtExtModeCheckEndTrigger();
    }  /* end while(1) */
    return(1);
} /* end tBaseRate */
<code continues ...>

See Chapter 12, “Targeting Tornado for Real-Time Applications” for more 
information on using StethoScope.



Interfacing Parameters and Signals

14-77

C API for Parameter Tuning
Before reading this section, you should be familiar with the parameter storage 
and tuning concepts described in “Parameters: Storage, Interfacing, and 
Tuning” on page 5-2.

Overview
Real-Time Workshop provides data structures and a C API that enable a 
running program to access model parameters without use of external mode. 
Using the C API, you can

• Modify all occurrences of a MATLAB variable within a Simulink model

• Modify Stateflow machine data

• Modify a specified block parameter

• Modify a specific element within a block parameter

To access model parameters via the C API, you generate a model-specific 
parameter mapping file, model_pt.c. This file contains parameter mapping 
arrays containing information required for parameter tuning:

• The rtBlockTuning array contains information on all the modifiable block 
parameters in the model by block name and parameter name. Each element 
of the array is a BlockTuning struct. Note that if the Inline parameters 
option is selected, an empty rtBlockTuning array is generated.

• The rtVariableTuning array contains information about all workspace 
variables that were referenced as block parameters by one or more blocks or 
Stateflow charts in the model. Each element of the array is a 
VariableTuning struct. Note that if the Inline parameters option is not 
selected, the elements of this array correspond to Stateflow sata of machine 
scope.

• The rtParametersMap array, or map vector, contains the absolute base 
address of all block or model parameters. The entries of the map are 
initialized by the function model_InitializeParametersMap, which is called 
during model initialization.

• The rtDimensionsMap array, or dimensions map, is a structure that contains 
the dimensions sizes for parameters having dimensions greater than 2.

Your code should not access the data structures of model_pt.c directly. 
Pointers to these arrays are loaded into a ModelMappingInfo structure that is 
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cached in the rtModel data structure. Your code must obtain a pointer to the 
ModelMappingInfo structure, using an accessor macro provided for the 
purpose. Your code can then use the rtBlockTuning and rtVariableTuning 
structures to access model parameters.

Real-Time Workshop provides sample code demonstrating how to use the 
parameter mapping information. You can use this sample code as a starting 
point in developing your own parameter tuning code.

The following sections discuss:

• How to generate the model_pt.c file

• Details of the parameter mapping structures

• Mapping of inlined and non-inlined parameters.

• Using the sample code

• Restrictions on the use of the parameter tuning API

• Summary of relevant source files

Generating the model.pt File
To generate the model_pt.c file, you must set the global TLC variable 
ParameterTuning to 1 (by default, ParameterTuning is disabled.) You can use 
the following statement in your system target file for this purpose.

%assign ParameterTuning = 1

Alternatively, you can append the following command to the System target 
file field on the Target configuration section of the Real-Time Workshop 
pane.

-aParameterTuning=1

The the model_pt.c file is written to the build directory.

Parameter Map Data Types and Data Structures
The file matlabroot/rtw/c/src/pt_info.h defines enumerated data types 
and data structures used in the parameter map. Please refer to pt_info.h 
while reading this discussion. 

Enumerated Types. Two enumerations, ParamClass and ParamSource, are 
defined in pt_info.h.
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The ParamClass enumeration specifies how a parameter is to be updated. The 
values rt_SCALAR and rt_VECTOR represent scalars and column vectors, 
respectively. The C declarations for these types are

   real_T scalarParam; /* correpsponds to rt_SCALAR */
   real_T vectorParam[width]; /* correpsponds to rt_VECTOR */

The value rt_MATRIX_ROW_MAJOR indicates that the parameter is a matrix that 
is stored in memory in row major ordering. Conceptually, the C declaration for 
a parameter of this type is

   real_T param[nRows][nCols];

The value rt_MATRIX_COL_MAJOR specifies that the parameter is a matrix that 
is stored in memory in column major ordering. Conceptually, the C declaration 
for a parameter of this type is

   real_T param[nCols][nRows];

The value rt_MATRIX_COL_MAJOR_ND specifies that the parameter is an 
N-dimensional matrix. Conceptually, the C declaration for a parameter of this 
type is

   real_T param[dim2Size][dim1Size][dim3Size][dim4Size][...]

Note that Real-Time Workshop actually declares matrices as vectors in column 
major order in each case. For example, a 2x3 matrix is represented as follows.

• In MATLAB:
matrix = [1,2,3; 4,5,6]

• In Real-Time Workshop:

real_T matrix[6] = {1.0, 4.0, 2.0, 5.0, 3.0, 6.0}

The ParamSource enumeration specifies the source of the parameter, which 
may be one of the following:

• rt_SL_PARAM indicates a parameter used by a Simulink block.

• rt_SF_PARAM indicates Stateflow machine data.

• rt_SHARED_PARAM indicates data shared by Simulink and Stateflow.
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Map Vector. The map vector (rtParametersMap) is an array containing the 
absolute base addresses of all block parameters that are members of rtP, the 
global parameter data structure. The code fragment below shows an example 
map vector. This example was generated from the model shown in Figure 14-1.

static void * const rtParametersMap[] = {
  &rtP.amp,                             /* 0: amp */
  &rtP.freq,                            /* 1: freq */
};

ParameterTuning, BlockTuning, and VariableTuning Structures. The ParameterTuning 
structure contains the core of information stored in the BlockTuning and 
VariableTuning structures. ParameterTuning is defined as follows:

typedef struct ParameterTuning_tag {
ParamClass paramClass; /* Class of parameter */
int_T nRows; /* Number of rows */
int_T nCols; /* Number of columns */
int_T nDims; /* Number of dimensions */
int_T dimsOffset; /* Offset into dimensions vector */
ParamSource source; /* Source of parameter */
uint_T dataType; /* data type enumeration */
uint_T numInstances; /* Num of parameter instances */
int_T mapOffset; /* Offset into map vector */

} ParameterTuning;

The paramClass and source fields take on one of the enumerated values 
mentioned in “Enumerated Types” on page 14-78.

The dataType field is the Simulink data type of the parameter, indicated by an 
enumerated value such as SS_DOUBLE.

The mapOffset field is the offset to the parameter’s entry in the map vector. 
Using mapOffset, your code can obtain the actual address of the parameter.

The numInstances field is described in “Mapping Parameter Instances in 
Simulink and Stateflow” on page 14-85.

The fields nDims, nRows and nCols indicate the number of dimensions, rows and 
columns in the parameter, respectively.

If the number of dimensions of the parameter is greater than 2, the value 
dimsOffset is used to index into the dimensions map. This array contains the 
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dimensions sizes for parameters having dimensions greater than 2. If there are 
no parameters having more than 2 dimensions, the dimensions map is empty.

The following table summarizes the relationship of the number of dimensions 
to the dimensions information in the ParameterTuning structure.

The BlockTuning structure, in addition to the ParameterTuning information, 
contains the names of the originating block and parameter.

The VariableTuning structure, in addition to the ParameterTuning 
information, contains the name of the workspace variable.

Inlining Parameters
The Inline parameters option affects the information generated in the 
rtBlockTuning and rtVariableTuning arrays.

If Inline parameters is deselected:

• The rtBlockTuning array contains an entry for every modifiable parameter 
of every block in the model.

• The rtVariableTuning array contains only Stateflow data of machine scope 
(it contains only a null entry in the absence of such data).

If Inline parameters is selected:

• The rtBlockTuning array is empty (it contains only a null entry).

• The rtVariableTuning array contains an entry for all workspace variables 
that are referenced as tunable Simulink block parameters or Stateflow data 
of machine scope.

Example Parameter Maps. In this section, we will examine parameter mapping 
information generated from a simple model. In the example model, the 

Table 14-4:  Parameter Tuning Dimensions Information

Number of
Dimensions

Dimensions Information Fields

<= 2 nRows and nCols valid, nDims = 2, dimsOffset = -1

> 2 nRows=-1, nCols=-1, nDims and dimsOffset valid 
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amplitude and frequency of the Sine Wave block are controlled by the 
workspace variables amp and freq, as shown below.

Figure 14-10:  Example Model Referencing Workspace Variables as 
Parameters

The following code fragment shows the rtBlockTuning and rtVariableTuning 
arrays generated from this model (in model_pt.c), as well as the parameter 
map and the function initializing the map, with Inline parameters off. 

/* Tunable block parameters */

static const BlockTuning rtBlockTuning[] = {

  /* blockName, parameterName,
   * class, nRows, nCols, nDims, dimsOffset, source, dataType, numInstances,
   * mapOffset
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   */

  /* Sin */
  {"simple/Sine Wave", "Amplitude",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 0}
  },
  /* Sin */
  {"simple/Sine Wave", "Bias",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 1}
  },
  /* Sin */
  {"simple/Sine Wave", "Frequency",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 2}
  },
  /* Sin */
  {"simple/Sine Wave", "Phase",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 3}
  },
  /* Gain */
  {"simple/Gain", "Gain",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 4}
  },
  {NULL, NULL,
    {(ParamClass)0, 0, 0, 0, 0, (ParamSource)0, 0, 0, 0}
  }
};

/* Tunable variable parameters */

static const VariableTuning rtVariableTuning[] = {

  /* variableName,
   * class, nRows, nCols, nDims, dimsOffset, source, dataType, numInstances,
   * mapOffset
   */

  {NULL,
    {(ParamClass)0, 0, 0, 0, 0, (ParamSource)0, 0, 0, 0}
  }
};

static void * rtParametersMap[5];

void simple_InitializeParametersMap(void) {
  rtParametersMap[0] = &rtP.Sine_Wave_Amp; /* 0 */
  rtParametersMap[1] = &rtP.Sine_Wave_Bias; /* 1 */
  rtParametersMap[2] = &rtP.Sine_Wave_Freq; /* 2 */
  rtParametersMap[3] = &rtP.Sine_Wave_Phase; /* 3 */
  rtParametersMap[4] = &rtP.Gain_Gain; /* 4 */
}
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The following code fragment shows the rtBlockTuning and rtVariableTuning 
arrays generated (in model_pt.c), as well as the parameter map and the 
function initializing the map, with Inline parameters on. The workspace 
variables amp and freq have been declared tunable with storage class 
SimulinkGlobal(Auto).

/* Individual block tuning is not valid when inline parameters is selected. *
 * An empty map is produced to provide a consistent interface independent   *
 * of inlining parameters.                                                  */

static const BlockTuning rtBlockTuning[] = {

  /* blockName, parameterName,
   * class, nRows, nCols, nDims, dimsOffset, source, dataType, numInstances,
   * mapOffset
   */

  {NULL, NULL,
    {(ParamClass)0, 0, 0, 0, 0, (ParamSource)0, 0, 0, 0}
  }
};

/* Tunable variable parameters */

static const VariableTuning rtVariableTuning[] = {

  /* variableName,
   * class, nRows, nCols, nDims, dimsOffset, source, dataType, numInstances,
   * mapOffset
   */

  {"amp",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 0}
  },
  {"freq",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 1}
  },
  {NULL,
    {(ParamClass)0, 0, 0, 0, 0, (ParamSource)0, 0, 0, 0}
  }
};

static void * rtParametersMap[2];

void simple_inline_InitializeParametersMap(void) {
  rtParametersMap[0] = &rtP.amp;        /* 0: amp */
  rtParametersMap[1] = &rtP.freq;       /* 1: freq */
}
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Mapping Parameter Instances in Simulink and Stateflow
Simulink and Stateflow can have a shared or nonshared mapping of a 
parameter, depending on the parameter's Simulink storage class and Stateflow 
scope. A shared mapping is one in which the address of the parameter is the 
same in the code generated for Simulink blocks and Stateflow charts.  This 
table shows how Simulink storage class and Stateflow scope affect the sharing 
of parameters in Simulink and Stateflow.

Note a: Recommended; does not require any user defined data definition.

Note b: Requires user defined data definition.

Therefore, to best share data between Simulink and Stateflow, define 
parameters as exported in Stateflow and as ImportedExtern in Simulink.  
When the mapping is nonshared, separate instances of that parameter appear 
in the code generated for Simulink and Stateflow.

As an example, consider the model shown in this picture.In this model, the 
MATLAB variable Kp is specified in two Gain blocks and as data of machine 
scope in a Stateflow chart.

Simulink
SimulinkGlobal
storage class

Simulink
Exported- 
Global
storage class

Simulink
ImportedExtern
storage class

Simulink
ImportedExtern- 
Pointer
storage class

Stateflow
imported
scope

Nonshared Shared
(see note b)

Shared
(see note b)

Error

Stateflow
exported
scope

Nonshared Error Shared
(recommended: 
see note a)

Error



14 Targeting Real-Time Systems

14-86

When Inline parameters is selected, both Gain blocks share a single instance 
of Kp, and the Stateflow chart references a second instance. In such cases, the 
numInstances and mapOffset fields of the ParameterTuning structure are 
used in conjunction. The numInstances field specifies the number of parameter 
instances, while mapOffset is the offset into the map vector 
(rtParametersMap). The map vector determines the actual address of each 
instance from its source.

The following code shows the rtVariableTuning and rtParametersMap arrays 
for this case.

/* Tunable variable parameters */

static const VariableTuning rtVariableTuning[] = {

  /* variableName,
   * class, nRows, nCols, nDims, dimsOffset, source, dataType, numInstances,
   * mapOffset
   */

  {"Kp",
    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 2, 0}
  },
  {NULL,
    {(ParamClass)0, 0, 0, 0, 0, (ParamSource)0, 0, 0, 0}
  }
};

static void * rtParametersMap[2];

void complex_inline_InitializeParametersMap(void) {
  rtParametersMap[0] = &rtP.Kp;         /* 0: Kp */
  rtParametersMap[1] = &Kp;             /* 1: Kp */
}

static uint_T const rtDimensionsMap[] = {
  0                                     /* Dummy */
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};

When Inline parameters is not selected, Real-Time Workshop creates two 
instances of Kp in the global parameters structure rtP for the two Simulink 
Gain blocks referencing Kp, and a third instance as a global variable for the 
Stateflow chart. All three instances must be updated to reflect any change in 
Kp. In the code example below, the entries for the Gain blocks in rtBlockTuning 
correspond to the two instances of Kp for those blocks. In addition, the entry for 
Kp in rtVariableTuning corresponds to the third instance for the Stateflow 
chart.

/* Tunable block parameters */

static const BlockTuning rtBlockTuning[] = {

  /* blockName, parameterName,

   * class, nRows, nCols, nDims, dimsOffset, source, dataType, numInstances,

   * mapOffset

   */

  /* Sin */

  {"complex_noninline/Sine Wave", "Amplitude",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 0}

  },

  /* Sin */

  {"complex_noninline/Sine Wave", "Bias",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 1}

  },

  /* Sin */

  {"complex_noninline/Sine Wave", "Frequency",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 2}

  },

  /* Sin */

  {"complex_noninline/Sine Wave", "Phase",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 3}

  },

  /* Gain */

  {"complex_noninline/Gain", "Gain",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 4}

  },

  /* Sin */
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  {"complex_noninline/Sine Wave1", "Amplitude",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 5}

  },

  /* Sin */

  {"complex_noninline/Sine Wave1", "Bias",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 6}

  },

  /* Sin */

  {"complex_noninline/Sine Wave1", "Frequency",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 7}

  },

  /* Sin */

  {"complex_noninline/Sine Wave1", "Phase",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 8}

  },

  /* Gain */

  {"complex_noninline/Gain1", "Gain",

    {rt_SCALAR, 1, 1, 2, -1, rt_SL_PARAM, SS_DOUBLE, 1, 9}

  },

  {NULL, NULL,

    {(ParamClass)0, 0, 0, 0, 0, (ParamSource)0, 0, 0, 0}

  }

};

/* Tunable variable parameters */

static const VariableTuning rtVariableTuning[] = {

  /* variableName,
   * class, nRows, nCols, nDims, dimsOffset, source, dataType, numInstances,
   * mapOffset
   */

  {"Kp",
    {rt_SCALAR, 1, 1, 2, -1, rt_SF_PARAM, SS_DOUBLE, 1, 10}
  },
  {NULL,
    {(ParamClass)0, 0, 0, 0, 0, (ParamSource)0, 0, 0, 0}
  }
};

static void * rtParametersMap[11];

void complex_noninline_InitializeParametersMap(void) {
  rtParametersMap[0] = &rtP.Sine_Wave_Amp; /* 0 */
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  rtParametersMap[1] = &rtP.Sine_Wave_Bias; /* 1 */
  rtParametersMap[2] = &rtP.Sine_Wave_Freq; /* 2 */
  rtParametersMap[3] = &rtP.Sine_Wave_Phase; /* 3 */
  rtParametersMap[4] = &rtP.Gain_Gain; /* 4 */
  rtParametersMap[5] = &rtP.Sine_Wave1_Amp; /* 5 */
  rtParametersMap[6] = &rtP.Sine_Wave1_Bias; /* 6 */
  rtParametersMap[7] = &rtP.Sine_Wave1_Freq; /* 7 */
  rtParametersMap[8] = &rtP.Sine_Wave1_Phase; /* 8 */
  rtParametersMap[9] = &rtP.Gain1_Gain; /* 9 */
  rtParametersMap[10] = &Kp;            /* 10: Kp */
}

static uint_T const rtDimensionsMap[] = {
  0                                     /* Dummy */
};

Accessing the Parameter Mapping Structures.
The parameter mapping arrays in model_pt.c are declared static. Pointers to 
the parameter mapping arrays are stored in a ModelMappingInfo structure, 
defined as follows in matlabroot/rtw/c/src/mdl_info.h.

typedef struct ModelMappingInfo_tag {
  /* block signal monitoring */
  struct {
    BlockIOSignals const *blockIOSignals;    /* Block signals map             */
    uint_T               numBlockIOSignals;  /* Num signals in map            */
  } Signals;

  /* parameter tuning */
  struct {
    BlockTuning const    *blockTuning;       /* Block parameters map          */
    VariableTuning const *variableTuning;    /* Variable parameters map       */
    void * const         *parametersMap;     /* Parameter index map           */
    uint_T const         *dimensionsMap;     /* Dimensions index map          */
    uint_T                numBlockTuning;    /* Num block parameters in map   */
    uint_T                numVariableTuning; /* Num variable parameter in map */
  } Parameters;
} ModelMappingInfo;

The ModelMappingInfo structure is cached in the rtModel data structure. Use 
the rtmGetModelMappingInfo macro to obtain a pointer to the 
ModelMappingInfo structure, as in the following example.

#include "mdl_info.h"
/* note: rTM is a pointer to the real-time Model Object */
.
.
.
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ModelMappingInfo *MMI = rtmGetModelMappingInfo(rtM);

In mdl_info.h, Real-Time Workshop provides additional macros that let you 
access members of the ModelMappingInfo structurevia a ModelMappingInfo 
pointer.

Using the Example Code
Real-Time Workshop provides example code that uses the parameter tuning 
API in matlabroot/rtw/c/src/pt_print.c. This file contains three functions:

• rt_PrintParamInfo displays all the tunable block parameters and MATLAB 
variables to the standard output.

• rt_PrintPTRec prints and then tests a parameter tuning record.

• rt_ModifyParameter updates all parameters associated with a specified 
parameter tuning record.

This code is intended as a starting point for your parameter tuning code. For 
more information see the function abstracts preceding each function.

To become familiar with the example code, we suggest building a model that 
displays all the tunable block parameters and MATLAB variables to the 
screen. You can use ptdemo, the parameter tuning demo model, for this 
purpose. First, run the demo with Inline parameters on:

1 Open the ptdemo model.

ptdemo

2 From the Simulation menu, choose Simulation Parameters.

3 Select the Advanced tab. Make sure that the Inline parameters option is 
selected. Click Apply if necessary.

4 Click on the Real-Time Workshop tab of the Simulation Parameters dialog 
box. The Real-Time Workshop pane activates. Select Target configuration 
from the Category menu. Note the System target file edit field contains:

grt.tlc -aParameterTuning=1 -aParameterTuningTestFile="ptinfotestfile.tlc" -p0

The second argument:
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-aParameterTuningTestFile="ptinfotestfile.tlc"

includes the TLC file matlabroot/rtw/c/tlc/mw/ptinfotestfile.tlc. 
This file generates code required to display the parameter tuning 
information.

5 Click the Build button.

6 When the build completes, run the executable program:

!ptdemo

Parameter information will be displayed in the MATLAB command window. 
You can inspect the parameter map in the build directory 
(./ptdemo_grt_rtw/ptdemo_pt.c).

Next, run the demo with Inline parameters off:

1 Select the Advanced tab of the Simulation Parameters dialog. Make sure 
that the Inline parameters option is deselected. Click Apply if necessary.

2 Repeat steps 4-6 above. Note the difference, in the displayed parameter 
information and the ptdemo_pt.c file, with Inline parameters on versus off.

Restrictions
The parameter tuning C API does not support:

• Complex parameters (e.g., k=1+i)

• Parameters local to Stateflow (e.g., chart parented data)

• Parameters transformed by Simulink (e.g., parameters of zero-pole TF)

• Parameters transformed by mask initialization code

Note, however, that transformations that do not change the value of a 
masked parameter (such as a=k) are supported.

• The S-function code format

• The Simulink Accelerator

• Fixed-point parameters. Fixed-point Blockset parameters are not supported 
unless they have a nominal scaling. 

Note that Simulink built-in data types are supported. This includes signed 
and unsigned 8, 16, and 32-bit integer, double, single and boolean.
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The coefficients of the Transfer Fcn, State-Space, Discrete Filter, Discrete 
Transfer Function and Discrete State-Space blocks are tunable, subject to 
requirements described in “Tunability of Linear Block Parameters” on 
page 5-14.

Summary of Parameter Tuning Source Files

• matlabroot/rtw/c/src/mdl_info.h: model mapping structure definition

• matlabroot/rtw/c/src/pt_info.h: parameter tuning structure definitions

• matlabroot/rtw/c/tlc/ptinfo.tlc: TLC file to produce model_pt.c

• matlabroot/rtw/c/tlc/mw/ptinfotestfile.tlc: TLC file to hook in 
example print code

• matlabroot/rtw/c/src/pt_print.c: example code to print/modify 
parameters

Target Language Compiler API for
Signals and Parameters
Real-Time Workshop provides a TLC function library that lets you create a 
global data map record. The global data map record, when generated, is added 
to the CompiledModel structure in the model.rtw file. The global data map 
record is a database containing all information required for accessing memory 
in the generated code, including:

• Signals (Block I/O)

• Parameters

• Data type work vectors (DWork)

• External inputs

• External outputs

Use of the global data map requires knowledge of the Target Language 
Compiler and of the structure of the model.rtw file. See the Target Language 
Compiler documentation for information on these topics.

The TLC functions that are required to generate and access the global data 
map record are contained in matlabroot/rtw/c/tlc/mw/globalmaplib.tlc. 
The comments in the source code fully document the global data map 
structures and the library functions.



Interfacing Parameters and Signals

14-93

Note  The global data map structures and functions maybe modified and/or 
enhanced in future releases.
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Creating an External Mode Communication Channel
This section provides information you will need in order to support external 
mode on your custom target, using your own low-level communications layer. 
This information includes:

• An overview of the design and operation of external mode

• A description of external mode source files

• Guidelines for modifying the external mode source files and rebuilding the 
ext_comm MEX-file

This section assumes that you are familiar with the execution of Real-Time 
Workshop programs, and with the basic operation of external mode. These 
topics are described in Chapter 7, “Program Architecture” and Chapter 6, 
“External Mode.”

The Design of External Mode
External mode communication between Simulink and a target system is based 
on a client/server architecture. The client (Simulink) transmits messages 
requesting the server (target) to accept parameter changes or to upload signal 
data. The server responds by executing the request.

A low-level transport layer handles physical transmission of messages. Both 
Simulink and the model code are independent of this layer. Both the transport 
layer and code directly interfacing to the transport layer are isolated in 
separate modules that format, transmit and receive messages and data 
packets. 

This design makes it possible for different targets to use different transport 
layers. For example, the GRT, GRT malloc, ERT, and Tornado targets support 
host/target communication via TCP/IP, whereas the xPC Target supports both 
RS232 (serial) and TCP/IP communication.

Real-Time Workshop provides full source code for both the client and 
server-side external mode modules, as used by the GRT, GRT malloc, ERT, 
rapid simulation, real-time Windows, xPC, and Tornado targets. The main 
client-side module is ext_comm.c. The main server-side module is ext_svr.c.

These two modules call the TCP/IP transport layer. ext_transport.c 
implements the client-side transport functions. ext_svr_transport.c 
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contains the corresponding server-side functions. You can modify these files to 
support external mode via your own low-level communications layer.

You need only modify those parts of the code that implement low-level 
communications. You need not be concerned with issues such as data 
conversions between host and target, or with the formatting of messages. Code 
provided by Real-Time Workshop handles these functions.

On the client (Simulink) side, communications are handled by ext_comm, a C 
MEX-file. This component is implemented as a DLL on Windows, or as a 
shared library on UNIX.

On the server (target) side, external mode modules are linked into the target 
executable. This takes place automatically if the External mode code 
generation option is selected at code generation time. These modules, called 
from the main program and the model execution engine, are independent of the 
generated model code.

To implement your own low-level protocol:

• On the client side, you must replace low-level TCP/IP calls in 
ext_transport.c with your own communication calls, and rebuild ext_comm 
using the mex command. You should then designate your custom ext_comm 
component as the MEX-file for external interface in the Simulink External 
Target Interface dialog.

• On the server side, you must replace low-level TCP/IP calls in 
ext_svr_transport.c with your own communication calls. If you are writing 
your own system target file and/or template makefile, make sure that the 
EXT_MODE code generation option is defined. The generated makefile will then 
link ext_svr_transport.c and other server code into your executable.

• Define symbols and functions common to both the client and server sides in 
ext_transport_share.h.

External Mode Communications Overview
This section gives a high-level overview of how a Real-Time Workshop 
generated program communicates with Simulink in external mode. This 
description is based on the TCP/IP version of external mode that ships with 
Real-Time Workshop.
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For communication to take place:

• The server (target) program must have been built with the conditional 
EXT_MODE defined. EXT_MODE is defined in the model.mk file if the External 
mode code generation option was selected at code generation time.

• Both the server program and Simulink must be executing. Note that this 
does not mean that the model code in the server system must be executing. 
The server may be waiting for Simulink to issue a command to start model 
execution. 

The client and server communicate via two sockets. Each socket supports a 
distinct channel. The message channel is bidirectional; it carries commands, 
responses, and parameter downloads. The unidirectional upload channel is for 
uploading signal data to the client. The message channel is given higher 
priority.

If the target program was invoked with the -w command line option, the 
program enters a wait state until it receives a message from the host. 
Otherwise, the program begins execution of the model. While the target 
program is in a wait state, Simulink can download parameters to the target 
and configure data uploading.

When the user chooses the Connect to target option from the Simulation 
menu, the host initiates a handshake by sending an EXT_CONNECT message. The 
server responds with information about itself. This information includes:

• Checksums. The host uses model checksums to determine that the target 
code is an exact representation of the current Simulink model.

• Data format information. The host uses this information when formatting 
data to be downloaded, or interpreting data that has been uploaded.

At this point, host and server are connected. The server is either executing the 
model or in the wait state. (In the latter case, the user can begin model 
execution by selecting Start real-time code from the Simulation menu.)

During model execution, the message server runs as a background task. This 
task receives and processes messages such as parameter downloads.

Data uploading comprises both foreground execution and background servicing 
of the upload channel. As the target computes model outputs, it also copies 
signal values into data upload buffers. This occurs as part of the task 
associated with each task identifier (tid). Therefore, data collection occurs in 
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the foreground. Transmission of the collected data, however, occurs as a 
background task. The background task sends the data in the collection buffers 
to Simulink via the upload channel.

The host initiates most exchanges on the message channel. The target usually 
sends a response confirming that it has received and processed the message. 
Examples of messages and commands are:

• Connection message / connection response

• Start target simulation / start response

• Parameter download / parameter download response

• Arm trigger for data uploading

• Terminate target simulation / target shutdown response

Model execution terminates when the model reaches its final time, when the 
host sends a terminate command, or when a Stop Simulation block terminates 
execution. On termination, the server informs the host that model execution 
has stopped, and shuts down both sockets. The host also shuts down its sockets, 
and exits external mode.

External Mode Source Files

Host (ext_comm) Source Files
The source files for the ext_comm component are located in the directory 
matlabroot/rtw/ext_mode:

• ext_comm.c

This file is the core of external mode communication. It acts as a relay station 
between the target and Simulink. ext_comm.c communicates to Simulink via 
a shared data structure, ExternalSim. It communicates to the target via calls 
to the transport layer. 

Tasks carried out by ext_comm include establishment of a connection with 
the target, downloading of parameters, and termination of the connection 
with the target.

• ext_transport.c

This file implements required transport layer functions. (Note that 
ext_transport.c includes ext_transport_share.h, which contains 
functions common to client and server sides.) The version of 
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ext_transport.c shipped with Real-Time Workshop uses TCP/IP functions 
including recv(), send(), and socket().

• ext_main.c

This file is a MEX-file wrapper for external mode. ext_main interfaces to 
Simulink via the standard mexFunction call. (See “External Interfaces/API” 
in the MATLAB online documentation for information on mexFunction.) 
ext_main contains a function dispatcher, esGetAction, that sends requests 
from Simulink to ext_comm.

• ext_convert.c

This file contains functions used for converting data from host to target 
formats (and vice versa). Functions include byte-swapping (big to little- 
endian), conversion from non-IEEE floats to IEEE doubles, and other 
conversions. These functions are called both by ext_comm.c and directly by 
Simulink (via function pointers).

Note  You do not need to customize ext_convert in order to implement a 
custom transport layer. However, it may be necessary to customize 
ext_convert for the intended target. For example, if the target represents the 
float data type in Texas Instruments (TI) format, ext_convert must be 
modified to perform a TI to IEEE conversion. 

• extsim.h

This file defines the ExternalSim data structure and access macros. This 
structure is used for communication between Simulink and ext_comm.c.

• extutil.h

This file contains only conditionals for compilation of the assert macro.

Target (Server) Source Files
These files are part of the run-time interface and are linked into the model.exe 
executable. They are located in the directory matlabroot/rtw/c/src.

• ext_svr.c

ext_svr.c is analogous to ext_comm.c on the host, but generally is 
responsible for more tasks. It acts as a relay station between the host and the 
generated code. Like ext_comm.c, ext_svr.c carries out tasks such as 
establishing and terminating connection with the host. ext_svr.c also 
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contains the background task functions that either write downloaded 
parameters to the target model, or extract data from the target data buffers 
and send it back to the host.

The version of ext_svr.c shipped with Real-Time Workshop uses TCP/IP 
functions including recv(), send(), and socket().

• ext_svr_transport.c

This file implements required transport layer functions. (Note that 
ext_svr_transport.c includes ext_transport_share.h, which contains 
functions common to client and server sides.) The version of 
ext_svr_transport.c shipped with Real-Time Workshop uses TCP/IP 
functions including recv(), send(), and socket().

• updown.c

updown.c handles the details of interacting with the target model. During 
parameter downloads, updown.c does the work of installing the new 
parameters into the model’s parameter vector. For data uploading, updown.c 
contains the functions that extract data from the model’s blockio vector and 
write the data to the upload buffers. updown.c provides services both to 
ext_svr.c and to the model code (e.g., grt_main.c). It contains code that is 
called via the background tasks of ext_svr.c as well as code that is called as 
part of the higher priority model execution.

• dt_info.h and model.dt

These files contain data type transition information that allows access to 
multi-data type structures across different computer architectures. This 
information is used in data conversions between host and target formats.

• updown_util.h

This file contains only conditionals for compilation of the assert macro.

Other Files

• ext_share.h

Contains message code definitions and other definitions required by both the 
host and target modules.

• ext_transport_share.h

Contains functions and data structures required by both the host and target 
modules of the transport layer. The version of ext_transport_share.h 
shipped with Real-Time Workshop is specific to TCP/IP communications.
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Guidelines for Implementing the Transport Layer

Requirements

• ext_svr.c and updown.c use malloc to allocate buffers in target memory for 
messages, data collection, and other purposes. If your target uses some other 
memory allocation scheme, you must modify these modules appropriately.

• The target is assumed to support both int32_T and uint32_T data types.

Modifying ext_transport
The function prototypes in ext_transport.h define the calling interface for the 
host (client) side transport layer functions. The implementation is in 
ext_transport.c.

To implement the host side of your transport layer:

• Replace the functions in the “Visible Functions” section of ext_transport.c 
with functions that call your low-level communications primitives. The 
visible functions are called from other external mode modules such as 
ext_comm.c. You must implement all the functions defined in 
ext_transport.h. Your implementations must conform to the prototypes 
defined in ext_transport.h.

• Supply a definition for the UserData structure in ext_transport.c. This 
structure is required. If UserData is not necessary for your external mode 
implementation, define a UserData structure with one dummy field.

• Replace the functions in ext_transport_share.h with functions that call 
your low-level communications primitives, or remove these functions. 
Functions defined in ext_transport_share.h are common to the host and 
target, and are not part of the public interface to the transport layer.

• Rebuild the ext_comm MEX-file, using the MATLAB mex command. This 
requires a compiler supported by the MATLAB API. See “External 
Interfaces/API” in the MATLAB online documentation for more information 
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on the mex command. The following table lists the form of the commands to 
build the standard ext_comm module on PC and UNIX platforms. 

The ext_transport and ext_transport_share source code modules are fully 
commented. See these files for further details. 

Guidelines for Modifying ext_svr_transport
The function prototypes in ext_svr_transport.h define the calling interface 
for the target (server) side transport layer functions. The implementation is in 
ext_svr_transport.c.

To implement the target side of your transport layer:

• Replace the functions in ext_svr_transport.c with functions that call your 
low-level communications primitives. These are the functions called from 
other target modules such as the main program. You must implement all the 
functions defined in ext_svr_transport.h. Your implementations must 
conform to the prototypes defined in ext_svr_transport.h.

• Supply a definition for the ExtUserData structure in ext_svr_transport.c. 
This structure is required. If ExtUserData is not necessary for your external 
mode implementation, define an ExtUserData structure with one dummy 
field.

• Define the EXT_BLOCKING conditional in ext_svr_transport.c as needed:

Table 14-5:  Commands to Rebuild ext_comm MEX-Files

Platform Commands

PC cd matlabroot\toolbox\rtw
mex matlabroot\rtw\ext_mode\ext_comm.c 

 matlabroot\rtw\ext_mode\ext_convert.c
 matlabroot\rtw\ext_mode\ext_transport.c
–Imatlab\rtw\c\src –DWIN32 
compiler_library_path\wsock32.lib

UNIX cd matlabroot/toolbox/rtw
mex matlabroot/rtw/ext_mode/ext_comm.c

matlabroot/rtw/ext_mode/ext_convert.c
 matlabroot/rtw/ext_mode/ext_transport.c
–Imatlab/rtw/c/src
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- Define EXT_BLOCKING as 0 to poll for a connection to the host (appropriate 
for single-threaded applications).

- Define EXT_BLOCKING as 1 in multi-threaded applications where tasks are 
able to block for a connection to the host without blocking the entire 
program.

See also the comments on EXT_BLOCKING in ext_svr_transport.c.

The ext_svr_transport source code modules are fully commented. See these 
files for further details.
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Combining Multiple Models
If you want to combine several models (or several instances of the same model) 
into a single executable, Real-Time Workshop offers several options.

One solution is to use the S-function target to combine the models into a single 
model, and then generate an executable using either the GRT or GRT malloc 
targets. Simulink and Real-Time workshop implicitly handle connections 
between models, sequencing of calls to the models, and multiple sample rates. 
This is the simplest solution in many cases. See Chapter 10, “The S-Function 
Target” for further information.

A second option, for embedded systems development, is to generate code from 
your models using the Real-Time Workshop Embedded Coder target. You can 
interface the model code to a common harness program by directly calling the 
entry points to each model. The Real-Time Workshop Embedded Coder target 
has certain restrictions that may not be appropriate for your application. For 
more information, see the Real-Time Workshop Embedded Coder 
documentation. 

The GRT malloc target is a third solution. It is appropriate in situations where 
you want do any or all of the following:

• Selectively control calls to more than one model.

• Use dynamic memory allocation.

• Include models that employ continuous states.

• Log data to multiple files.

• Run one of the models in external mode.

This section discusses how to use the GRT malloc target to combine models into 
a single program. Before reading this section, you should become familiar with 
model execution in Real-Time Workshop programs. (See Chapter 7, “Program 
Architecture” and Chapter 8, “Models with Multiple Sample Rates.”) It will be 
helpful to refer to grt_malloc_main.c while reading these chapters.

The procedure for building a multiple-model executable is fairly 
straightforward. The first step is to generate and compile code from each of the 
models that are to be combined. Next, the makefiles for each of the models are 
combined into one makefile for creating the final multimodel executable. The 
next step is create a combined simulation engine by modifying 
grt_malloc_main.c to initialize and call the models correctly. Finally, the 
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combination makefile links the object files from the models and the main 
program into an executable. “Example Mutliple-Model Program Using the 
GRT_malloc Target” on page 14-105 discusses an example implementation.

Sharing Data Across Models
We recommend using unidirectional signal connections between models. This 
affects the order in which models are called. For example, if an output signal 
from modelA is used as input to modelB, modelA’s output computation should 
be called first.

Timing Issues
You must generate all the models you are combining with the same solver mode 
(either all singletasking or all multitasking.) In addition, if the models employ 
continuous states, the same solver should be used for all models.

Since each model has its own model-specific definition of the rtModel data 
structure, an alternative mechanism must be used to control model execution.  
The file rtw/c/src/rtmcmacros.h provides an rtModel API clue that can be 
used to call the rt_OneStep procedure.  The rtmcmacros.h header file defines 
the rtModelCommon data structure which has the minimum common elements 
in the rtModel structure required to step a model forward one time step.  The 
#define rtmcsetCommon populates an object of type rtModelCommon by copying 
the respective similar elements in the model's rtModel object. Your main 
routine must create one rtModelCommon structure for each model being called 
by the main routine.  The main routine will subsequently invoke rt_OneStep 
with a pointer to the rtModelCommon structure instead of a pointer to the 
rtModel structure.

If the base rates for the models are not the same, the main program (such as 
grt_malloc_main) must set up the timer interrupt to occur at the greatest 
common divisor rate of the models. The main program is responsible for calling 
each of the models at the appropriate time interval.

Data Logging and External Mode Support
A multiple-model program can log data to separate MAT-files for each model 
(as in the example program discussed below.)

Only one of the models in a multiple-model program can use external mode.
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Example Mutliple-Model Program Using the GRT_malloc Target
An demonstration of combining multiple-models, distributed with Real-Time 
Workshop, is located at matlabroot/toolbox/rtw/rtwdemos. This example 
combines two models, multimallockP (a plant model) and multimallocK (a 
controller model). Both models have the same base rate and the same number 
of sample times. Each model logs outputs and simulation time to a separate 
model.mat file. The plant model also logs states. You can run the demo by 
typing

multimallocdemo

at the MATLAB prompt. The interface for multimallocdemo is shown below.

Double-click the models to see each system’s blocks and how they work 
together. Double-click on the blue labels in order from top to bottom to generate 
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code, and see how main programs and makefiles were modified to combine the 
two models.

When reviewing the differences between grt_malloc_main.c and 
combine_malloc_main.c, search for comments containing “customize”. The 
string “customize” denotes regions in the main routine which you must change 
in order to customize this file to work with your models.
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DSP Processor Support
Real-Time Workshop now supports target processors that have only one 
register size (e.g., 32-bit). This makes data type emulation of 8 and 16 bits on 
the TCI_C30/C40 DSP and similar processors possible.

To support these processors:

• Add the command
-DDSP32=1

to your template makefile.

• Add the statement

%assign DSP32=1

to your system target file.

For DSP Blockset Users
Note that previous releases of the DSP Blockset did not fully support Simulink 
Accelerator, Generic real-time malloc (GRT malloc), and S-function targets. 
The current DSP Blockset supports code generation for all packaged targets.
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Application modules — With respect to Real-Time Workshop program 
architecture, these are collections of programs that implement functions 
carried out by the system dependent, system independent, and application 
components.

Atomic subsystem — A subsystem whose blocks are executed as a unit before 
moving on. Conditionally executed subsystems are atomic, and atomic 
subsystems are nonvirtual. Unconditionally executed subsystems are virtual 
by default, but can be designated as atomic. Real-Time Workshop can generate 
reusable code only for nonvirtual subsystems.

Block target file — A file that describes how a specific Simulink block is to be 
transformed to a language such as C, based on the block’s description in the 
Real-Time Workshop file (model.rtw). Typically, there is one block target file 
for each Simulink block.

Code reuse — An optimization whereby code generated for identical 
nonvirtual subsystems is collapsed into one function that is called for each 
subsystem instance with appropriate parameters. Code reuse, along with 
expression folding, can dramatically reduce the amount of generated code.

Embedded Real-Time (ERT) target − A target configuration that generates 
model code for execution on an independent embedded real-time system. 
Requires Real-Time Workshop Embedded Coder.

Expression folding — A code optimization technique that minimizes the 
computation of intermediate results at block outputs and the storage of such 
results in temporary buffers or variables. It can dramatically improve the 
efficiency of generated code, achieving results that compare favorably to 
hand-optimized code.

File extensions — The table below lists the file extensions associated with 
Simulink, the Target Language Compiler, and Real-Time Workshop.

Extension Created by Description

.c Target Language 
Compiler

The generated C code

.h Target Language 
Compiler

A C include header file used by the .c 
program
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Generic Real-Time (GRT) target — A target configuration that generates 
model code for a real-time system, with the resulting code executed on your 
workstation. (Note that execution is not tied to a real-time clock.) You can use 
GRT as a starting point for targeting custom hardware.

Host system — The computer system on which you create and may compile 
your real-time application.

Inline — Generally, this means to place something directly in the generated 
source code. You can inline parameters and S-functions using Real-Time 
Workshop.

Inlined parameters (Target Language Compiler Boolean global variable: 
InlineParameters) — The numerical values of the block parameters are hard 
coded into the generated code. Advantages include faster execution and less 
memory use, but you lose the ability to change the block parameter values at 
run-time.

.mdl Simulink Contains structures associated with 
Simulink block diagrams

.mk Real-Time Workshop A makefile specific to your model that 
is derived from the template makefile

.rtw Real-Time Workshop An intermediate compilation 
(“model.rtw”) of a .mdl file used in 
generating C code

.tlc The MathWorks and 
Real-Time Workshop 
users

Target Language Compiler script 
files that Real-Time Workshop uses 
to generate code for targets and 
blocks

.tmf Supplied with 
Real-Time Workshop

Template makefiles

.tmw Real-Time Workshop A project marker file inside a build 
directory that identifies the date and 
product version of generated code

Extension Created by Description



A Glossary

A-4

Inlined S-function — An S-function can be inlined into the generated code by 
implementing it as a .tlc file. The code for this S-function is placed in the 
generated model code itself. In contrast, noninlined S-functions require a 
function call to S-function residing in an external MEX-file.

Interrupt Service Routine (ISR) — A piece of code that your processor 
executes when an external event, such as a timer, occurs.

Loop rolling (Target Language Compiler global variable: RollThreshold) — 
Depending on the block's operation and the width of the input/output ports, the 
generated code uses a for statement (rolled code) instead of repeating identical 
lines of code (flat code) over the signal width.

Make — A utility to maintain, update, and regenerate related programs and 
files. The commands to be executed are placed in a makefile.

Makefiles — Files that contain a collection of commands that allow groups of 
programs, object files, libraries, etc., to interact. Makefiles are executed by your 
development system’s make utility.

Multitasking — A process by which your microprocessor schedules the 
handling of multiple tasks. The number of tasks is equal to the number of 
sample times in your model.

Noninlined S-function — In the context of Real-Time Workshop, this is any C 
MEX S-function that is not implemented using a customized .tlc file. If you 
create an C MEX S-function as part of a Simulink model, it is by default 
noninlined unless you write your own .tlc file that inlines it.

Nonreal-time — A simulation environment of a block diagram provided for 
high-speed simulation of your model. Execution is not tied to a real-time clock.

Nonvirtual block — Any block that performs some algorithm, such as a Gain 
block. Real-Time Workshop generates code for all nonvirtual blocks, either 
inline or as separate functions and files, as directed by users.

Pseudomultitasking — n processors that do not offer multitasking support, 
you can perform pseudomultitasking by scheduling events on a fixed 
time-sharing basis.

Real-time model data structure — Real-Time Workshop encapsulates 
information about the root model in the real-time model data structure, often 
abbreviated as rtM. rtM contains global information related to timing, solvers, 
and logging, and model data such as inputs, outputs, states, and parameters.
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Real-time system — A computer that processes real-world events as they 
happen, under the constraint of a real-time clock, and which may implement 
algorithms in dedicated hardware. Examples include mobile telephones, test 
and measurement devices, and avionic and automotive control systems.

Run-time interface — A wrapper around the generated code that can be built 
into a stand-alone executable. The run-time interface consists of routines to 
move the time forward, save logged variables at the appropriate time steps, etc. 
The run-time interface is responsible for managing the execution of the 
real-time program created from your Simulink block diagram.

S-function — A customized Simulink block written in C, Fortran, or M-code. 
Real-Time Workshop can target C-code S-functions “as is” or users can inline 
C-code S-functions through preparing TLC scripts for them.

Simstruct — A Simulink data structure and associated application 
programming interface (API) that enables S-functions to communicate with 
other entities in models. Simstructs are included in code generated by 
Real-Time Workshop for noninlined S-functions.

Singletasking — A mode in which a model runs in one task.

System target file — The entry point to the Target Language Compiler 
program, used to transform the Real-Time Workshop file into target specific 
code.

Target file — A file that is compiled and executed by the Target Language 
Compiler. The block and system target TLC files used specify how to transform 
the Real-Time Workshop file (model.rtw) into target-specific code.

Targeting — The process of creating software modules appropriate for 
execution on your target system.

Target Language Compiler (TLC) — A program that compiles and executes 
system and target files by translating a model.rtw file into a target language 
by means of TLC scripts and template makefiles.

Target Language Compiler program — One or more TLC script files that 
describe how to convert a model.rtw file into generated code. There is one TLC 
file for the target, plus one for each built-in block. Users can provide their own 
TLC files in order to inline S-functions or to “wrap” existing user code.

Target system — The specific or generic computer system on which your 
real-time application executes.



A Glossary

A-6

Template makefile — A line-for-line makefile used by a make utility. The 
template makefile is converted to a makefile by copying the contents of the 
template makefile (usually system.tmf) to a makefile (usually system.mk) 
replacing tokens describing your model’s configuration.

Task identifier (tid) — In generated code, each sample rate in a multirate 
model is assigned a task identifier (tid). The tid is passed to the model output 
and update routines to control which portion of your model should execute at a 
given time step. Single-rate systems ignore the tid.

Virtual block — A connection or graphical block, for example a Mux block, that 
has no algorithmic functionality. Virtual blocks incur no real-time overhead as 
no code is generated for them.



 

B
Blocks That Depend on 
Absolute Time

Some Simulink blocks use the value of absolute time (i.e., the time from the 
beginning of the program to the present time) to calculate their outputs. If you 
are designing a program that is intended to run indefinitely, then you cannot 
use blocks that have a dependency on absolute time.

The problem arises when the value of time reaches the largest value that can 
be represented by a double precision number. At that point, time is no longer 
incremented and the output of the block is no longer correct.

Note  In addition to the blocks listed below, logging Time (in the Workspace 
I/O page of the Simulation Parameters dialog box) also requires absolute 

time.

The following Simulink blocks depend on absolute time:

• Continuous Blocks

- Derivative

- Transport Delay

- Variable Transport Delay

• Discrete Blocks

- Discrete-Time Integrator (when used in triggered subsystems)

• Nonlinear Blocks

- Rate Limiter

• Sinks

- Scope

- To File

- To Workspace (only if logging to StructureWithTime format)

• Sources
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The following Simulink blocks depend on absolute time:

• Chirp Signal

• Clock

• Digital Clock

• From File

• From Workspace

• Pulse Generator

• Ramp

• Repeating Sequence

• Signal Generator

• SineWave

• Step

Note  The Sine Wave block is dependent on absolute time only when the Sine 
type parameter is set to Time-based. Set this parameter to Sample-based to 
avoid absolute time computations.

In addition to the Simulink block above:

• Blocks in other Blocksets may reference absolute time. Please refer to the 
documentation for the Blocksets that you use.

• Stateflow charts that use time are dependent on absolute time.



 

C
Targeting DOS for 
Real-Time Applications

The following sections describe the DOS target, which developments in Microsoft Windows and other 
technologies have rendered oboslete. The DOS target is currently unsupported, and the information 
provided here is for demonstration purposes only, particularly as a guide for developing device drivers 
for other Real-Time Workshop targets. We cover the following DOS target topics:

DOS Target Basics (p. C-2) Gaining an overview of the DOS target

Implementation Overview (p. C-4) Understanding code architecture and hardware/software 
requirements

Device Driver Blocks (p. C-10) Using the DOS Device Drivers library

Building the Program (p. C-18) Building the executable and running it under DOS
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DOS Target Basics
The discussion that follows describes using Real-Time Workshop in a DOS 
environment. Advances in computing technology have resulted in DOS-based 
systems being replaced by a variety of alternative platforms. Particularly, the 
xPC Target and the Real-Time Windows Target provide significantly greater 
capabilities than does the DOS target. We recommend use of these targets for 
real-time development on PC platforms. For detailed information, see the 
Real-Time Windows Documentation and the xPC documentation.

Note  The DOS target is provided only as an unsupported example. Also, note 
that the DOS target requires the Watcom C compiler. See “A Note on the 
Watcom Compiler” on page C-6.

This chapter includes a discussion of:

• DOS-based Real-Time Workshop applications

• Supported compilers and development tools

• Device driver blocks — adding them to your model and configuring them for 
use with your hardware

• Building the program

The DOS target creates an executable for DOS, using Watcom for DOS. The 
executable runs on a computer running the DOS operating system. It will not 
run under the Microsoft Windows DOS command prompt. This executable 
installs interrupt service routines and effectively takes over the computer, 
which allows the generated code to run in real time. If you want to run the 
generated code in real time under Microsoft Windows, you should use the 
Real-Time Windows Target. See the Real-Time Windows Target User’s Guide 
for more information about this product.

DOS Device Drivers Library
Real-Time Workshop provides DOS-compatible analog and digital I/O device 
driver blocks in the DOS Device Drivers library. Select DOS Device Drivers 
under the Real-Time Workshop library in the Simulink Library Browser to 
open the DOS Device Drivers library.



DOS Target Basics

C-3



C Targeting DOS for Real-Time Applications

C-4

Implementation Overview
Real-Time Workshop includes DOS run-time interface modules designed to 
implement programs that execute in real time under DOS. These modules, 
when linked with the code generated from a Simulink model, build a complete 
program that is capable of executing the model in real time. The DOS run-time 
interface files can be found in the matlabroot/rtw/c/dos/rti directory.

Real-Time Workshop DOS run-time interface modules and the generated code 
for the f14 demonstration model are shown in Figure C-1.

Figure C-1:  Source Modules Used to Build the DOS Real-Time Program
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Simulink

drt_watc.tmf
drt_time.c
Timer

drt_key.c
Keyboard

Interrupt
Support
drt_cpu.c
drt_cpu.h
drt_fpu.asm



Implementation Overview

C-5

This diagram illustrates the code modules that are used to build a DOS 
real-time program.

To execute the code in real time, the program runs under the control of an 
interrupt driven timing mechanism. The program installs its own interrupt 
service routine (ISR) to execute the model code periodically at predefined 
sample intervals. The PC-AT’s 8254 Programmable Interval Timer is used to 
time these intervals.

In addition to the modules shown in Figure C-1, the DOS run-time interface 
also consists of device driver modules to read from and write to I/O devices 
installed on the DOS target.

Figure C-2 shows the recommended hardware setup for designing control 
systems using Simulink, and then building them into DOS real-time 
applications using Real-Time Workshop. The figure shows a robotic arm being 
controlled by a program (i.e., the controller) executing on the target PC. The 
controller senses the arm position and applies inputs to the motors accordingly, 
via the I/O devices on the target PC. The controller code executes on the PC and 
communicates with the apparatus it controls via I/O hardware.

Figure C-2:  Typical Hardware Setup

System Configuration
You can use Real-Time Workshop with a variety of system configurations, as 
long as these systems meet the following hardware and software requirements.

I/O Devices
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Running Windows

with MATLAB, Simulink

and Real-Time Workshop
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Hardware Requirements
The hardware needed to develop and run a real-time program includes:

• A workstation running Windows and capable of running MATLAB/Simulink. 
This workstation is the host where the real-time program is built.

• A PC-AT (386 or later) running DOS. This system is the target, where the 
real-time program executes.

• I/O boards, which include analog to digital converter and digital to analog 
converters (collectively referred to as I/O devices), on the target.

• Electrical connections from the I/O devices to the apparatus you want to 
control (or to use as inputs and outputs to the program in the case of 
hardware-in-the-loop simulations).

Once built, you can run the executable on the target hardware as a stand-alone 
program that is independent of Simulink.

Software Requirements
The development host must have the following software:

• MATLAB and Simulink to develop the model, and Real-Time Workshop to 
create the code for the model. You also need the run-time interface modules 
included with Real-Time Workshop. These modules contain the code that 
handles timing, interrupts, data logging, and background tasks.

• Watcom C/C++ compiler, Version 10.6 or 11.0. (see “A Note on the Watcom 
Compiler” below.)

The target PC must have the following software:

• DOS4GW extender dos4gw.exe, included with your Watcom compiler 
package) must be on the search path on the DOS-targeted PC.

You can compile the generated code (i.e., the files model.c, model.h, etc.) along 
with user-written code using other compilers. However, the use of 16-bit 
compilers is not recommended for any application.

A Note on the Watcom Compiler
As of this writing, the Watcom C compiler is no longer available from the 
manufacturer. Real-Time Workshop continues to ship Watcom-related target 
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configurations at this time. However, this policy may be subject to change in 
the future.

Device Drivers
If your application needs to access its I/O devices on the target, then the 
real-time program must contain device driver code to handle communication 
with the I/O boards. The Real-Time Workshop DOS run-time interface includes 
source code of the device drivers for the Keithley Metrabyte DAS-1600/1400 
Series I/O boards. See “Device Driver Blocks” on page C-10 for information on 
how to use these blocks.

Simulink Host
The development host must have Windows to run Simulink. However, the 
real-time target requires only DOS, since the executable built from the 
generated code is not a Windows application. The real-time target will not run 
in a “DOS box” (i.e., a DOS window on Windows 95/98/NT).

Although it is possible to reboot the host PC under DOS for real-time execution, 
the computer would need to be rebooted under Windows for any subsequent 
changes to the block diagram in Simulink. Since this process of repeated 
rebooting the computer is inconvenient, we recommend a second PC running 
only DOS as the real-time target.

Sample Rate Limits
Program timing is controlled by installing an interrupt service routine that 
executes the model code. The target PC’s CPU is then interrupted at the 
specified rate (this rate is determined from the step size). 

The rate at which interrupts occur is controlled by application code supplied 
with Real-Time Workshop. This code uses the PC-AT’s 8254 Counter/Timer to 
determine when to generate interrupts.

The code that sets up the 8254 Timer is in drt_time.c, which is in the 
matlabroot\rtw\c\dos\rti directory. It is automatically linked in when you 
build the program using the DOS real-time template makefile. 

The 8254 Timer is a 16-bit counter that operates at a frequency of 1.193 MHz. 
However, the timing module drt_time.c in the DOS run-time interface can 
extend the range by an additional 16 bits in software, effectively yielding a 
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32-bit counter. This means that the slowest base sample rate your model can 
have is 

This corresponds to a maximum base step size of approximately one hour.

The fastest sample rate you can define is determined by the minimum value 
from which the counter can count down. This value is 3, hence the fastest 
sample rate that the 8254 is capable of achieving is

 This corresponds to a minimum base step size of

However, note that the above number corresponds to the fastest rate at which 
the timer can generate interrupts. It does not account for execution time for the 
model code, which would substantially reduce the fastest sample rate possible 
for the model to execute in real time. Execution speed is machine dependent 
and varies with the type of processor and the clock rate of the processor on the 
target PC.

The slowest and fastest rates computed above refer to the base sample times in 
the model. In a model with more than one sample time, you can define blocks 
that execute at slower rates as long as the sample times are an integer multiple 
of the base sample time.

Modifying Program Timing
If you have access to an alternate timer (e.g., some I/O boards include their own 
clock devices), you can replace the file drt_time.c with an equivalent file that 
makes use of the separate clock source. See the comments in drt_time.c to 
understand how the code works.

You can use your version of the timer module by redefining the TIMER_OBJS 
macros with the build command. For example, in the Real-Time Workshop 
pane of the Simulation parameters dialog box, changing the build command 
to

make_rtw TIMER_OBJS=my_timer.obj

1.193
6×10 232 1–( )÷ 1

3600
-------------Hz≈

1.193 106× 3÷ 4 105× Hz≈

1 4 105×÷ 2.5 10 6–× ondssec≈
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replaces the file drt_time.c with my_timer.c in the list of source files used to 
build the program.
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Device Driver Blocks
The real-time program communicates with external hardware via a set of 
device drivers. These device drivers contain the necessary code for interfacing 
to specific I/O devices.

Real-Time Workshop includes device drivers for commercially available 
Keithley Metrabyte DAS-1600/1400 Series I/O boards. These device drivers are 
implemented as C MEX S-functions to interface with Simulink. This means 
you can add them to your model like any other block. 

In addition, each of these S-function device drivers has a corresponding target 
file to inline the device driver in the model code. See “Creating Device Drivers” 
on page 14-39 for information on implementing your own device drivers.

Since the device drivers are provided as source code, you can use these device 
drivers as a template to serve a a starting point for creating custom device 
drivers for other I/O boards.

Device Driver Block Library
The device driver blocks for the Keithley Metrabyte DAS-1600/1400 Series I/O 
boards designed for use with DOS applications are contained in a block library 
called doslib (matlabroot\toolbox\rtw\doslib.mdl). To display this library, 
type

doslib

at the MATLAB prompt. This window will appear.
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To access the device driver blocks, double-click on the sublibrary icon. 

The blocks in the library contain device drivers that can be used for the 
DAS-1600/1400 Series I/O boards. The DAS-1601/1602 boards have 16 analog 
input (ADC) channels, two 12-bit analog output (DAC) channels and 4-bits of 
digital I/O. The DAS-1401/1402 boards do not have DAC channels. The 
DAS-1601/1401 boards have high programmable gains (1, 10, 100 and 500), 
while the DAS-1602/1402 boards offer low programmable gains (1, 2, 4 and 8). 

For more information, contact the manufacturer via the Web site: 
http://www.keithley.com. The documentation for the DAS-1600/1400 Series 
I/O boards is the DAS-1600/1400 Series User’s Guide, Revision B (Part 
Number: 80940).

Configuring Device Driver Blocks
Each device driver block has a dialog box that you use to set configuration 
parameters. As with all Simulink blocks, double-clicking on the block displays 
the dialog box. Some of the device driver block parameters (such as Base I/O 
Address) are hardware specific and are set either at the factory or configured 
via DIP switches at the time of installation.
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Analog Input (ADC) Block Parameters

• Base I/O Address: The beginning of the I/O address space assigned to the 
board. The value specified here must match the board’s configuration. Note 
that this parameter is a hexadecimal number and must be entered in the 
dialog as a MATLAB string (e.g., '0x300').

• Analog Input Range: This two-element vector specifies the range of values 
supported by the ADC. The specified range must match the 
I/O board’s settings. Specifically, the DAS-1600/1400 Series boards switches 
can be configured to either [0 10] for unipolar or [-10 10] for bipolar input 
signals.

• Hardware Gain: This parameter specifies the programmable gain that is 
applied to the input signal before presenting it to the ADC. Specifically, the 
DAS-1601/1401 boards have programmable gains of 1, 10, 100, and 500. The 
DAS-1602/1402 boards have programmable gains of 1, 2, 4, and 8. Configure 
the Analog Input Range and the Hardware Gain parameters depending on 
the type and range of the input signal being measured. For example, a 
DAS-1601 board in bipolar configuration with a programmable gain of 100 is 
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best suited to measure input signals in the range between [±10v] ÷ 100 = 
±0.1v.

Voltage levels beyond this range will saturate the block output form the ADC 
block. Please adhere to manufacturers’ electrical specifications to avoid 
damage to the board.

• Number of Channels: The number of analog input channels enabled on the 
I/O board. The DAS-1600/1400 Series boards offer up to 16 ADC channels 
when configured in unipolar mode (8 ADC channels if you select differential 
mode). The output port width of the ADC block is equal to the number of 
channels enabled.

• Sample Time (sec): Device drivers are discrete blocks that require you to 
specify a sample time. In the generated code, these blocks are executed at the 
specified rate. Specifically, when the ADC block is executed, it causes the 
ADC to perform a single conversion on the enabled channels, and the 
converted values are written to the block output vector.
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Analog Output (DAC) Block Parameters

• Base I/O Address: The beginning of the I/O address space assigned to the 
board. The value specified here must match the board’s configuration. Note 
that this parameter is a hexadecimal number and must be entered in the 
dialog as a MATLAB string (e.g., '0x300').

• Analog Output Range: This parameter specifies the output range settings 
of the DAC section of the I/O board. Typically, unipolar ranges are between 
[0 10] volts and bipolar ranges are between [-10 10] volts. Refer to the 
DAS-1600 documentation for other supported output ranges.

• Initial Output(s): This parameter can be specified either as a scalar or as 
an N element vector, where N is the number of channels. If a single scalar 
value is entered, the same scalar is applied to output. The specified initial 
output(s) is written to the DAC channels in the mdlInitializeConditions 
function.

• Final Output(s): This parameter is specified in a manner similar to the 
Initial Output(s) parameter except that the specified final output values are 
written out to the DAC channels in the mdlTerminate function. Once the 
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generated code completes execution, the code sets the final output values 
prior to terminating execution.

• Number of Channels: Number of DAC channels enabled. The DAS-1600 
Series I/O boards have two 12-bit DAC channels. The DAS-1400 Series I/O 
boards do not have any DAC channels. The input port width of this block is 
equal to the number of channels enabled.

• Sample Time (sec): DAC device drivers are discrete blocks that require you 
to specify a sample time. In the generated code, these blocks are executed at 
the specified rate. Specifically, when the DAC block is executed, it causes the 
DAC to convert a single value on each of the enabled DAC channels, which 
produces a corresponding voltage on the DAC output pin(s).

Digital Input Block Parameters

• Base I/O Address: The beginning of the I/O address space assigned to the 
board. The value specified here must match the board’s configuration. Note 
that this parameter is a hexadecimal number and must be entered in the 
dialog as a MATLAB string (e.g., '0x300').

• Number of Channels: This parameter specifies the number of 1-bit digital 
input channels being enabled. This parameter also determines the output 
port width of the block in Simulink. Specifically, the DAS-1600/1400 Series 
boards provide four bits (i.e., channels) for digital I/O.
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• Sample Time (sec): Digital input device drivers are discrete blocks that 
require you to specify a sample time. In the generated code, these blocks are 
executed at the specified rate. Specifically, when the digital input block is 
executed, it reads a boolean value from the enabled digital input channels. 
The corresponding input values are written to the block output vector.

Digital Output Block Parameters

• Base I/O Address: The beginning of the I/O address space assigned to the 
board. The value specified here must match the board’s configuration. Note 
that this parameter is a hexadecimal number and must be entered in the 
dialog as a MATLAB string (e.g., '0x300').

• Low/High Threshold Values: This parameter specifies the threshold 
levels, [lo hi], for converting the block inputs into 0/1 digital values. The 
signal in the block diagram connected to the block input should rise above 
the high threshold level for a 0 to 1 transition in the corresponding digital 
output channel on the I/O board. Similarly, the input should fall below the 
low threshold level for a 1 to 0 transition.
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• Initial Output(s): Same as the Analog Output block, except the specified 
values are converted to 0 or 1 based on the lower threshold value before they 
are written to the corresponding digital output channel.

• Final Output(s): Same as the Analog Output block, except the specified 
values are converted to 0 or 1 based on the lower threshold value before they 
are written to the corresponding digital output channel on the I/O board.

• Number of Channels: This parameter specifies the number of 1-bit digital 
I/O channels being enabled. This parameter also determines the output port 
width of the block. Specifically, the DAS-1600/1400 Series boards provide 
four bits (i.e., channels) for digital I/O.

• Sample Time (sec): Digital output device drivers are discrete blocks that 
require you to specify a sample time. In the generated code, these blocks are 
executed at the specified rate. Specifically, when the digital output block is 
executed, it causes corresponding boolean values to be output from the 
board’s digital I/O channels.

Adding Device Driver Blocks to the Model
Add device driver blocks to the Simulink block diagram as you would any other 
block — simply drag the block from the block library and insert it into the 
model. Connect the ADC or Digital Input block to the model’s inputs and 
connect the DAC or Digital Output block to the model’s outputs.

Including Device Driver Code
Device driver blocks are implemented as S-functions written in C. The C code 
for a device driver block is compiled as a MEX-file so that it can be called by 
Simulink. See “External Interfaces/API” in the MATLAB online 
documentation for information on MEX-files.

The same C code can also be compiled and linked to the generated code just like 
any other C-coded, S-function. However, by using the target (.tlc) file that 
corresponds to each of the C file S-functions, the device driver code is inlined in 
the generated code.

The matlabroot\rtw\c\dos\devices directory contains the MEX-files, C files, 
and target files (.tlc) for the device driver blocks included in doslib. This 
directory is automatically added to your MATLAB path when you include any 
of the blocks from doslib in your model.
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Building the Program
Once you have created your Simulink model and added the appropriate device 
driver blocks, you are ready to build a DOS target application. To do this, select 
the Real-Time Workshop pane of the Simulink parameters dialog box, and 
select Target configuration from the Category menu.

Click Browse to open the System Target File Browser. Select drt.tlc; this 
automatically fills in the correct files as shown above:

• drt.tlc as the System target file

• drt_watc.tmf as the Template makefile. This is used with the Watcom 
compiler, assembler, linker, and WMAKE utility.

• make_rtw as the Make command

You can specify Target Language Compiler options in the System target file 
field following drt.tlc. You can also specify and make options in the Make 
command field. See Chapter 2, “Code Generation and the Build Process” for 
descriptions of the available Target Language Compiler and make options.

The DOS system target file, drt.tlc, and the template makefile, 
drt_watc.tmf, are located in the matlab\rtw\c\dos directory.

The template makefile assumes that the Watcom C/386 compiler, assembler, 
and linker have been correctly installed on the host workstation. You can verify 
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this by checking the environment variable, WATCOM, which correctly points to 
the directory where the Watcom files are installed.

The program builder invokes the Watcom wmake utility on the generated 
makefile, so the directory where wmake is installed must be on your path.

Running the Program
The result of the build process is a DOS 32-bit protected-mode executable. The 
default name of the executable is model.exe, where model is the name of your 
Simulink model. You must run this executable in DOS; you cannot run the 
executable in Windows.
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Development Process

The following sections summarize the capabilities of Real-Time Workshop from a software 
development perspective, discussing, among other topics, its code generation architecture, key 
features and benefits, target environments supported, and code optimization features.
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Introduction
The primary features of Real-Time Workshop are

• Simulink Code Generator: Automatically generates C code from your 
Simulink model.

• Make Process: Real-Time Workshop’s user-extensible make process lets you 
create your own production or rapid prototyping target.

• Simulink External Mode: External mode enables communication between 
Simulink and a model executing on a real-time test environment, or in 
another process on the same machine. External mode lets you perform 
real-time parameter tuning and data viewing using Simulink as a front end.

• Targeting Support: Using the Real-Time Workshop bundled targets, you 
can build systems for a number of environments, including Tornado and 
DOS. The generic real-time and embedded real-time targets provide a 
framework for developing customized rapid prototyping or production target 
environments. In addition to the bundled targets, the Real-Time Windows 
Target and/or the xPC Target let you turn a PC of any form factor into a rapid 
prototyping target, or a small to medium volume production target.

• Rapid Simulations: Using Simulink Accelerator (part of the Simulink 
Performance Tools product), S-Function Target, or Rapid Simulation Target, 
you can accelerate your simulations by 5 to 20 times on average. Executables 
built with these targets bypass Simulink normal interpretive simulation 
modes, which must handle all configurations of each basic modeling 
primitive. The code generated by Simulink Accelerator, S-Function Target, 
or Rapid Simulation Target is optimized to execute only the algorithms used 
in your specific model. In addition, these targets apply many optimizations, 
such as eliminating ones and zeros in computations for filter blocks.
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A Next-Generation Development Tool
The MathWorks tools, including Simulink and Real-Time Workshop, are 
revolutionizing the way embedded systems are designed. Simulink is a very 
high-level language (VHLL) — a next-generation programing language. A brief 
look at the history of dynamic and embedded system design methodologies 
reveals a steady progression toward higher-level design tools and processes:

• Design -> analog components: Before the introduction of microcontrollers, 
design was done on paper and realized using analog components.

• Design -> hand written assembly -> early microcontrollers: In the early 
microprocessor era, design was done on paper and realized by writing 
assembly code and placing it on microcontrollers. Today, very low-end 
applications still use assembly language, but advancements in Real-Time 
Workshop and C compiler technology are obsolescing such techniques.

• Design -> high-level language (HLL) -> object code -> microcontroller: 
The advent of efficient HLL compilers led to the realization of paper designs 
in languages such as C. HLL code, transformed to assembly language by a 
compiler, was then placed on a microcontroller. In the early days of 
high-level languages, programmers often inspected the machine-generated 
assembly code produced by compilers for correctness. Today, it is taken for 
granted that the assembly code is correct.

• Design -> modeling tool -> manual HLL coding -> object code -> 
microcontroller: When design tools such as Simulink appeared, designers 
were able to express system designs graphically and simulate them for 
correctness. While this process saved considerable time and improved 
performance, designs were still translated to C code manually before being 
placed on a microcontroller. This translation process was both time 
consuming and error prone.

• Design -> Simulink -> Real-Time Workshop (automatic code generation) 
-> object code -> microcontroller: With the addition of Real-Time 
Workshop, Simulink itself becomes a VHLL. Modeling constructs in 
Simulink are the basic elements of the language. Real-Time Workshop then 
compiles models to produce C code. This machine-generated code is produced 
quickly and correctly. The manual process of transforming designs to code 
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has now been eliminated, yielding significant improvements in system 
design.

The Simulink code generator included within Real-Time Workshop is a 
next-generation graphical block diagram compiler. Real-Time Workshop has 
capabilities beyond those of a typical HLL compiler. Generated code is highly 
readable and customizable. It is normally unnecessary to read the object code 
produced by the HLL compiler.. You can use Real-Time Workshop in a wide 
variety of applications, improving your design process.

Key Features
The general goal of the MathWorks tools, including Real-Time Workshop, is to 
enable you to accelerate your design process while reducing cost, decreasing 
time to market, and improving quality.

Traditional development practices tend to be very labor intensive. Poor tools 
often lead to a proliferation of ad hoc software projects that fail to deliver 
reusable code. With the MathWorks tools, you can focus energy on design and 
achieve better results in less time with fewer people. 
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Real-Time Workshop, along with other components of the MathWorks tools, 
provides

• A rapid and direct path from system design to implementation

• Seamless integration with MATLAB and Simulink

• A simple graphical user interface

• An open and extensible architecture

The following features of Real-Time Workshop enable you to reach the above 
goal:

• Code generator for Simulink models
- Generates optimized, customizable code. There are several styles of 

generated code, which can be classified as either embedded (production 
phase) or rapid prototyping.

- Supports all Simulink features, including 8, 16, and 32 bit integers and 
floating-point data types.

- Fixed-Point Blockset and Real-Time Workshop allow for scaling of integer 
words ranging from 2 to 128 bits. Code generation is limited by the 
implementation of char, short, int, and long in embedded C compiler 
environments (usually 8, 16, and 32 bits).

- Generated code is processor independent. The generated code represents 
your model exactly. A separate run-time interface is used to execute this 
code. We provide several example run-time interfaces as well as 
production run-time interfaces.

- Supports any single or multitasking operating system. Also supports 
“bare-board” (no operating system) environments.

- The Target Language Compiler allows extensive customization of the 
generated code via TLC scripting.

- Enables custom code generation for S-functions (user-created blocks) 
using TLC files, enabling you to embed very efficient custom code into the 
model’s generated code.

• Extensive model-based debugging support
- External mode enables you to examine what the generated code is doing 

by uploading data from your target to the graphical display elements in 
your model. There is no need to use a conventional C debugger to look at 
your generated code.
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- External mode also enables you to tune the generated code via your 
Simulink model. When you change a parametric value of a block in your 
model, the new value is passed down to the generated code, running on 
your target, and the corresponding target memory location is updated. 
Again, there is no need to use an embedded compiler debugger to perform 
this type of operation. Your model is your debugger user interface.

• Integration with Simulink
- Code validation. You can generate code for your model and create a 

standalone executable that exercises the generated code and produces a 
MAT-file containing the execution results.

- Generated code contains system/block identification tags to help you 
identify the block, in your source model, that generated a given line of 
code. The MATLAB command hilite_system recognizes these tags and 
highlights the corresponding blocks in your model.

- Support for Simulink data objects lets you define how your signals and 
block parameters interface to the external world.

• Rapid simulations
- Real-Time Workshop supports several ways to speed up your simulations 

by creating optimized, model-specific executables.
• Target support

- Turnkey solutions for rapid prototyping substantially reduce design 
cycles, allowing for fast turnaround of design iterations.

- Bundled rapid prototyping example targets are provided.

- Add-on targets (Real-Time Windows Target and xPC Target) for PC-based 
hardware are available from The MathWorks. These targets enable you to 
turn a PC with fast, high-quality, low cost hardware into a rapid 
prototyping system. 

- Supports a variety of third-party hardware and tools, with extensible 
device driver support.

• Extensible make process
- Allows for easy integration with any embedded compiler and linker.

- Provides for easy linkage with your hand-written supervisory or 
supporting code.
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• Real-Time Workshop Embedded Coder
- Customizable, portable, and readable C code that is designed to be placed 

in a production embedded environment.

- More efficient code is created, because inlined S-functions are required 
and continuous time states are not allowed.

- Software-in-the-loop. With Real-Time Workshop Embedded Coder, you 
can generate code for your embedded application and bring it back into 
Simulink for verification via simulation.

- Web-viewable code generation report describes code modules, analyzes the 
generated code, and helps to identify code generation optimizations 
relevant to your program.

- Annotation of the generated code using the Description block property.

- Hooks for external parameter tuning and signal monitoring are provided 
enabling easy interfacing of the generated code in your real-time system.

Benefits
You can benefit by using Real-Time Workshop in the following applications. 
This is not an exhaustive list, but a general survey:

• Production Embedded Real-Time Applications

Real-Time Workshop lets you generate, cross-compile, link, and download 
production C code for real-time systems (such as controllers or DSP 
applications) onto your target processor directly from Simulink. You can 
customize the generated code by inserting S-functions into your model and 
specifying, via the Target Language Compiler, what the generated code 
should look like. Using the optimized, automatically generated code, you can 
focus your coding efforts on specific features of your product, such as device 
drivers and general device interfacing. 

• Rapid Prototyping

As a rapid prototyping tool, Real-Time Workshop enables you to implement 
your embedded systems designs quickly, without lengthy hand-coding and 
debugging. Rapid prototyping is typically used in the software/hardware 
integration and testing phases of the design cycle enabling you to

- Conceptualize solutions graphically in a block diagram modeling 
environment.
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- Evaluate system performance early on - prior to laying out hardware, 
coding production software, or committing to a fixed design.

- Refine your design by rapid iteration between algorithm design and 
prototyping.

- Tune parameters while your real-time model runs, using Simulink 
operating in external mode as a graphical front end.

You can use Real-Time Workshop to generate downloadable, targeted C code 
that runs on top of a real-time operating system (RTOS). Alternatively, you 
can generate code to run on the bare hardware at interrupt level, using a 
simple rate monotonic scheduling executive that you create from examples 
provided with Real-Time Workshop. There are many rapid prototyping 
targets provided; or you can create your own.

During rapid prototyping, the generated code is fully instrumented enabling 
direct access via Simulink external mode for easy monitoring and debugging. 
The generated code contains a data structure that encapsulates the details 
of your model. This data structure is used in the bidirectional connection to 
Simulink running in external mode. Using Simulink external mode, you can 
monitor signal and tune parameters to further refine your model in rapid 
iterations enabling you to achieve desired results quickly.

• Real-Time Simulation

You can create and execute code for an entire system or specified subsystems 
for hardware-in-the-loop simulations. Typical applications include training 
simulators, real-time model validation, and prototype testing.

• Turnkey Solutions

Bundled Real-Time Workshop targets and third-party turnkey solutions 
support a variety of control and DSP applications. The target environments 
include embedded PC, PCI, ISA, VME, and custom hardware, running 
off-the-shelf real-time operating systems, DOS, or Microsoft Windows. 
Target system processor architectures include Motorola MC680x0 and 
PowerPC processors, Intel-80x86 and compatibles, Alpha, and Texas 
Instruments DSPs. Third-party vendors are regularly adding other 
architectures. For a current list of third-party turnkey solutions, see the 
MATLAB Connections Web page: 
http://www.mathworks.com/products/connections.

The open environment of Real-Time Workshop also lets you create your own 
turnkey solution.
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• Intellectual Property Protection

The S-Function Target, in addition to speeding up your simulation, allows 
you to protect your intellectual property: the designs and algorithms 
embodied in your models. Using the S-Function Target, you can generate 
and distribute binaries from your models or subsystems. End users have 
access to the interface, but not to the body, of your algorithms.

• Rapid Simulations

The MathWorks tools can be used in the design of most dynamic systems. 
Generally Simulink is either used to model a high-fidelity dynamic system 
(e.g., an engine) or a real-time system (such as an engine controller or a 
signal processing system).

When modeling high-fidelity systems, you can use Real-Time Workshop to 
accelerate the design process by speeding up your simulations. This is 
achieved by using one of the following Real-Time Workshop components:

- Simulink Accelerator: Creates a dynamically linked library (MEX-file) 
from code optimized and generated for your specific model configuration. 
This executable is used in place of the normal interpretive mode of 
simulation. Typical speed improvements range from 2 to 8 times faster 
than normal simulation time. Simulink Accelerator supports both fixed 
and variable step solvers. Simulink Accelerator is part of the Simulink 
Performance Tools product.

- Rapid Simulation Target: Creates a stand-alone executable from code 
optimized and generated for your specific model configuration. This 
stand-alone executable does not need to interact with a graphics 
subsystem. Typical speed improvements range from 5 to 20 times faster 
than normal simulation times. The Rapid Simulation Target is ideal for 
repetitive (batch) simulations where you are adjusting model parameters 
or coefficients. Rapid Simulation Target supports only fixed-step solvers.

- S-Function Target: This target, like Simulink Accelerator, creates a 
dynamically linked library (MEX-file) from a model. You can incorporate 
this component into another model using the Simulink S-function block. 

Integration with Simulink
If the Real-Time Workshop target you are using supports Simulink external 
mode, you can use Simulink as the monitoring/debugging interface for the 
generated code. With external mode, you can
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• Change parameters via the block dialogs, gauges, and the set_param 
MATLAB command. The set_param command lets you interact 
programmatically with your target.

• View target signals in Scope blocks, Display blocks, general S-Function 
blocks, and via gauges.

These concepts are illustrated by Figure D-1 and Figure D-2.

Figure D-1:  Signal Viewing and Parameter Tuning in External Mode
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Figure D-2:  Dials and Gauges Provide Front End to Target System

Simulink
model

Target system
TCP/IP, serial, shared memory or other
communication link



D The Real-Time Workshop Development Process

D-12

How MathWorks Tools Streamline Development
Figure D-3 is a high-level view of a traditional development process without the 
MathWorks tools.

Figure D-3:  Traditional Development Process Without MathWorks Tools
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many months after they have specified the design. This can result in poor time 
to market and inferior quality.

In this environment, different tools are used in each phase. Designs are 
communicated via paper. This enforces a serial, rather than an iterative, 
development process. Developers must reenter the result of the previous phase 
before they can begin work on a new phase. This leads to miscommunication 
and errors, resulting in lost work hours. Errors found in later phases are very 
expensive and time consuming to correct. Correction often involves going back 
several phases. This is difficult because of the poor communication between the 
phases.

The MathWorks does not suggest or impose a development process. The 
MathWorks tools can be used to complement any development process. In the 
above process, use of our tools in each phase can help eliminate paper work.

Our tools also lends itself well to the spiral design process shown in Figure D-4.
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Figure D-4:  Spiral Design Process
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involving them in your system development process from the start. This helps 
compress the overall development cycle while increasing quality.

Another advantage of the MathWorks tools is that it enables people to work on 
tasks that they are good at and enjoy doing. For example, control system 
engineers specialize in design control rules, while embedded system engineers 
enjoy assembling systems consisting of hardware and low-level software. It is 
possible to have very talented people perform different roles, but it is not 
efficient. Embedded system engineers, for example, are rewarded by specifying 
and building the hardware and creating low-level software such as device 
drivers, or real-time operating systems. They do not find data entry operations, 
such as the manual conversion of a set of equations to efficient code, to be 
rewarding. This is where the MathWorks tools shines. The equations are 
represented as models and Real-Time Workshop converts them to highly 
efficient code ready for deployment.
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Role of the MathWorks Tools in Your Development Process
The following figure outlines where the MathWorks tools, including Real-Time 
Workshop, helps you in your development process. 

Figure D-5:  Roles of MathWorks Tools in Software Design
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After you have a functional model, you may need to tune your model’s 
coefficients. This can be done quickly using Real-Time Workshop Rapid 
Simulation Target for Monte-Carlo type simulations (varying coefficients over 
many simulations).

After you’ve tuned your model, you can move into system development testing 
by exercising your model on a rapid prototyping system such as the Real-Time 
Windows Target or the xPC Target. With a rapid prototyping target, you 
connect your model to your physical system. This lets you locate design flaws 
or modeling errors quickly.

After your prototype system is created, you can use the Real-Time Workshop 
Embedded Coder to create embeddable code for deployment on your custom 
target. The signal monitoring and parameter tuning capabilities enable you to 
easily integrate the embedded code into a production environment equipped 
with debugging and upgrade capabilities.
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Code Formats
The Real-Time Workshop code generator transforms your model to HLL code. 
Real-Time Workshop supports a variety of code formats designed for different 
execution environments, or targets.

In the traditional embedded system development process, an engineer develops 
an algorithm (or equations) to be implemented in an embedded system. These 
algorithms are manually converted to a computer language such as C. This 
translation process, usually done by an embedded system engineer, is much 
like data entry. 

Using Simulink to specify the algorithm (or equations), and Real-Time 
Workshop to generate corresponding code, engineers can bypass this 
redundant translation step. This enables embedded system engineers to focus 
on the key issues involved in creating an embedded system: the hardware 
configuration, device drivers, supervisory logic, and supporting logic for the 
model equations. Simulink itself is the programming language that expresses 
the algorithmic portion of the system.
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The Simulink code generator provided with Real-Time Workshop is an open 
“graphical compiler” supporting a variety of code formats. The relationship 
between code formats and targets is shown below.

Figure D-6:  Relationship Between Code Formats and Targets
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S-Function/Accelerator Code Format
This code format, used by the S-function Target and Simulink Accelerator, 
generates code that conforms to Simulink C MEX S-function API.

Real-Time Code Format
The real-time code format is ideally suited for rapid prototyping. This code 
format (C only) supports increased monitoring and tuning capabilities, 
enabling easy connection with external mode. Real-time code format supports 
continuous-time models, discrete-time singlerate or multirate models, and 
hybrid continuous-time and discrete-time models. Real-time code format 
supports both inlined and noninlined S-functions. Memory allocation is 
declared statically at compile time.

Real-Time Malloc Code Format
The real-time malloc code format is similar to the real-time code format. The 
primary difference is that the real-time malloc code format declares memory 
dynamically. This supports multiple instances of the same model, with each 
instance including a unique data set. Multiple models can be combined into one 
executable without name clashing. Multiple instances of a given model can also 
be created in one executable.

Embedded Code Format
The embedded code format is designed for embedded targets. The generated 
code is optimized for speed, memory usage, and simplicity. Generally, this 
format is used in deeply embedded or deployed applications. There are no 
dynamic memory allocation calls; all persistent memory is statically allocated.

Real-Time Workshop can generate either C code in the embedded code format. 
Generating embedded code format requires the Real-Time Workshop 
Embedded Coder, a separate add-on product for use with Real-Time Workshop.

The embedded code format provides a simplified calling interface and reduced 
memory usage. This format manages model and timing data in a compact 
real-time model data structure. This contrasts with the other code formats, 
which use a significantly larger data structure to manage the generated code.

The embedded code format improves readability of the generated code, reduces 
code size, and speeds up execution. The embedded code format supports all 
discrete-time singlerate or multirate models.



Code Formats

D-21

Because of its optimized and specialized data structures, the embedded code 
format supports only inlined S-functions.

Target Environments
Real-Time Workshop supports many target environments. These include 
ready-to-run configurations and third-party targets. You can also develop your 
own custom target.

This section begins with a list of available target configurations. Following the 
list, we summarize the characteristics of each target.

Available Target Configurations

Target Configurations Bundled with Real-Time Workshop. The MathWorks supplies the 
following target configurations with Real-Time Workshop:

• DOS (4GW) Target (example only) 

• Generic Real-Time (GRT) Target

• LE/O (Lynx Embedded OSEK) Real-Time Target (example only) 

• Rapid Simulation Target

• Tornado (VxWorks) Real-Time Target

Target Configurations Bundled with Real-Time Workshop Embedded Coder. The 
MathWorks supplies the following target configuration with Real-Time 
Workshop Embedded Coder (a separate product from Real-Time Workshop):

• Real-Time Workshop Embedded Coder Target

Turnkey Rapid Prototyping Target Products. These self-contained solutions ( separate 
products from Real-Time Workshop) include:

• Real-Time Windows Target

• xPC Target

DSP Target Products. See Developer's Kit for Texas Instruments DSP User’s Guide 
for information on this target:

• Texas Instruments TMS320C6701 Evaluation Module Target
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Third-Party Targets. Numerous software vendors have developed customized 
targets for Real-Time Workshop. For an up-to-date listing of third-party 
targets, visit the MATLAB Connections Web page at 
http://www.mathworks.com/products/connections

View Third-Party Solutions by Product Type, and then select Real-Time 
Workshop Target from the drop-down list.

Custom Targets. Typically, to target custom hardware, you must write a harness 
(main) program for your target system to execute the generated code, and I/O 
device drivers to communicate with your hardware. You must also create a 
system target file and a template makefile.

Real-Time Workshop supplies generic harness programs as starting points for 
custom targeting. See Chapter 14, “Targeting Real-Time Systems” in the 
Real-Time Workshop documentation for the information you will need to 
develop a custom target.

Rapid Simulation Target
Rapid Simulation Target (RSIM) consists of a set of target files for 
non-real-time execution on your host computer. RSIM enables you to use 
Real-Time Workshop to generate fast, stand-alone simulations. RSIM allows 
batch parameter tuning and downloading of new simulation data (signals) 
from a standard MATLAB MAT-file without the need to recompile the model.

The speed of the generated code also makes RSIM ideal for Monte Carlo 
simulations. The RSIM target enables the generated code to read and write 
data from or to standard MATLAB MAT-files. RSIM reads new signals and 
parameters from MAT-files at the start of simulation.

RSIM enables you to run stand-alone, fixed-step simulations on your host 
computer or on additional computers. If you need to run 100 large simulations, 
you can generate the RSIM model code, compile it, and run the executables on 
10 identical computers. The RSIM target allows you to change the model 
parameters and the signal data, achieving significant speed improvements by 
using a compiled simulation.

S-Function and Accelerator Targets
S-Function Target provides the ability to transform a model into a Simulink 
S-function component. Such a component can then be used in a larger model. 
This allows you to speed up simulations and/or reuse code. You can include 
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multiple instances of the same S-function in the same model, with each 
instance maintaining independent data structures. You can also share 
S-function components without exposing the details of the a proprietary source 
model.

The Accelerator Target is similar to the S-Function Target in that an 
S-function is created for a model. The Accelerator Target differs from the 
S-Function Target in that the generated S-function operates in the 
background. It provides for faster simulations while preserving all existing 
simulation capabilities (parameter change, signal visualization, full S-function 
support, etc.).

Turnkey Rapid Prototyping Targets
The Real-Time Windows Target and the xPC Target are add-on products to 
Real-Time Workshop. Both of these targets turn an Intel 80x86/Pentium or 
compatible PC into a real-time system. Both support a large selection of 
off-the-shelf I/O cards (both ISA and PCI). 

With turnkey target systems, all you need to do is install the MathWorks 
software and a compiler, and insert the I/O cards. You can then use a PC as a 
real-time system connected to external devices via the I/O cards.

Real-Time Windows Target. The Real-Time Windows Target brings rapid 
prototyping and hardware-in-the-loop simulation to your desktop. It is the 
most portable solution available today for rapid prototyping and 
hardware-in-the-loop simulation when used on a laptop outfitted with a 
PCMCIA I/O card. The Real-Time Windows Target is ideal since a second PC 
or other real-time hardware is often unnecessary, impractical or cumbersome. 
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This picture shows the basic components of the Real-Time Windows Target.

Figure D-7:  Real-Time Windows (rtwin) Target

As a prototyping environment, the Real-Time Windows Target is exceptionally 
easy to use, due to tight integration with Simulink and external mode. It is 
much like using Simulink itself, with the added benefit of gaining real-time 
performance and connectivity to the real world through a wide selection of 
supported I/O boards. You can control your real-time execution with buttons 
located on the Simulink toolbar. Parameter tuning is done interactively, by 
simply editing Simulink blocks and changing parameter values. For viewing 
signals, the Real-Time Windows Target uses standard Simulink Scope blocks, 
without any need to alter your Simulink block diagram. Signal data can also be 
logged to a file or set of files for later analysis in MATLAB.

The Real-Time Windows Target is often called the “one-box rapid prototyping 
system,” since both Simulink and the generated code run on the same PC. A 
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run-time interface enables you to run generated code on the same processor 
that runs Windows The generated code executes in real time, allowing 
Windows to execute when there are free CPU cycles. The Real-Time Windows 
Target supports over 100 I/O boards, including ISA, PCI, CompactPCI, and 
PCMCIA. Sample rates in excess of 10 to 20 kHz can be achieved on Pentium 
PCs.

In universities, the Real-Time Windows Target provides a cost effective 
solution since only a single computer is required. In commercial applications, 
the Real-Time Windows Target is often used at an engineer’s desk prior to 
taking a project to an expensive dedicated real-time testing environment. Its 
portability is unrivaled, allowing you to use your laptop as a real-time test bed 
for applications in the field.

Figure D-8 illustrates the use of the Real-Time Windows Target in a model 
using magnetic levitation to suspend a metal ball in midair. The system is 
controlled by the model shown in Figure D-9.

Figure D-8:  Magnetic Levitation System
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Figure D-9:  Model for Controlling Magnetic Levitation System

Rapid Prototyping Targets
There are two classes of rapid prototyping targets: those using the real-time 
code format and those using the real-time malloc code format. These differ in 
the way they allocate memory (statically versus dynamically). Most rapid 
prototyping targets use the real-time code format. 

We define two forms of rapid prototyping environments:

• Heterogeneous rapid prototyping environments use rapid prototyping 
hardware (such as an Intel-80x86/Pentium or similar processor) that differs 
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from the final production hardware. For example, an Intel-80x86/Pentium or 
similar processor might be used during rapid prototyping of a system that is 
eventually deployed onto a fixed-point Motorola microcontroller.

• Homogeneous rapid prototyping environments are characterized by the 
use of similar hardware for the rapid prototyping system and the final 
production system. The main difference is that the rapid prototyping system 
has extra memory and/or interfacing hardware to support increased 
debugging capabilities, such as communication with external mode.

Homogeneous rapid prototyping environments eliminate uncertainty because 
the rapid prototyping environment is closer to the final production system. 
However, a turnkey system for your specific hardware may not exist. In this 
case, you must weigh the advantages and disadvantages of using one of the 
existing turnkey systems for heterogeneous rapid prototyping, versus creating 
a homogeneous rapid prototyping environment.

Several rapid prototyping targets are bundled with Real-Time Workshop.

Generic Real-Time (GRT) Target. This target uses the real-time code format and 
supports external mode communication. It is designed to be used as a starting 
point when creating a custom rapid prototyping target, or for validating the 
generated code on your workstation.

Generic Real-Time Malloc (GRTM) Target. This target is similar to the GRT target but 
it uses the real-time malloc code format. This format uses the C malloc and 
free routines to manage all data. With this code format, you can have multiple 
instances of your model and/or multiple models in one executable.

Tornado Target. The Tornado target uses the real-time or real-time malloc code 
format. A set of run-time interface files are provided to execute your models on 
the Wind River System’s real-time operating system, VxWorks. The Tornado 
target supports singletasking, multitasking, and hybrid continuous and 
discrete-time models. 

The Tornado run-time interface and device driver files can also be used as a 
starting point when targeting other real-time operating system environments. 
The run-time interface provides full support for external mode, enabling you to 
take full advantage of the debugging capabilities for parameter tuning and 
data monitoring via graphical devices.
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DOS Target. The DOS target (provided as an example only) uses the real-time 
code format to turn a PC running the DOS operating system into a real-time 
system. This target includes a set of run-time interface files for executing the 
generated code. This run-time interface installs interrupt service routines to 
execute the generated code and handle other interrupts. While the DOS target 
is running, the user does not have access to the DOS operating system. Sample 
device drivers are provided. 

The MathWorks recommends that you use the Real-Time Windows Target or 
the xPC Target as alternatives to the DOS Target. The DOS target is provided 
only as an example and its support will be discontinued in the future.

OSEK Targets. The OSEK target (provided as an example only) lets you use the 
automotive standard open real-time operating system. The run-time interface 
and OSEK configuration files that are included with this target make it easy 
to port applications to a wide range of OSEK environments.

Embedded Targets
The embedded real-time target is the main component of the Real-Time 
Workshop Embedded Coder. It consists of a set of run-time interface files that 
drive code, generated in the embedded code format, on your workstation. This 
target is ideal for memory-constrained embedded applications. Real-Time 
Workshop supports generation of embedded code in C.

In its default configuration, the embedded real-time target is designed for use 
as a starting point for targeting custom embedded applications, and as a means 
by which you can validate the generated code. To create a custom embedded 
target, you start with the embedded real-time target run-time interface files 
and edit them as needed for your application.

In the terminology of Real-Time Workshop, an embedded target is a deeply 
embedded system. Note that it is possible to use a rapid prototyping target in 
an embedded (production) environment. This may make more sense in your 
application.

Code Generation Optimizations
The Simulink code generator included with Real-Time Workshop is packed 
with optimizations to help create fast and minimal size code. The optimizations 
are classified either as cross-block optimizations, or block specific 
optimizations. Cross-block optimizations apply to groups of blocks or the 
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general structure of a model. Block specific optimizations are handled locally 
by the object generating code for a given block. Listing each block specific 
optimization here is not practical; suffice it to say that the Target Language 
Compiler technology generates very tight and fast code for each block in your 
model.

The following sections discuss some of the cross-block optimizations.

Multirate Support
One of the more powerful features of Simulink is its implicit support for 
multirate systems. The ability to run different parts of a model at different 
rates guarantees optimal use of the target processor. In addition, Simulink 
enforces correctness by requiring that you create your model in a manner that 
guarantees deterministic execution.

Inlining S-Function Blocks for Optimal Code
The ability to add blocks to Simulink via S-functions is enhanced by the Target 
Language Compiler. You can create blocks that embed the minimal amount of 
instructions into the generated code. For example, if you create a device driver 
using an S-function, you can have the generated code produce one line for the 
device read, as in the following code fragment:

mdlOutputs(void)
{

.

.
rtB.deviceout = READHW(); /* Macro to read hw device using 
. assembly code */
.

}

Note that the generic S-function API is suitable for any basic block-type 
operation.

Loop Rolling Threshold
The code generated for blocks can contain for loops, or the loop iterations can 
be “flattened out” into inline statements. For example, the general gain block 
equation is



D The Real-Time Workshop Development Process

D-30

for (i = 0; i < N; i++) {
y[i] = k[i] * u[i];

}

If N is less than a specified roll threshold, Real-Time Workshop expands out the 
for loop, otherwise Real-Time Workshop retains the for loop.

Tightly Coupled Optimal Stateflow Interface
The generated code for models that combine Simulink blocks and Stateflow 
charts is tightly integrated and very efficient.

Stateflow Optimizations
The Stateflow Coder contains a large number of optimizations that produce 
highly readable and very efficient generated code.

Inlining of Systems
In Simulink, a system starting at a nonvirtual subsystem boundary (e.g. an 
enabled, triggered, enabled and triggered, function-call, or atomic subsystem) 
can be inlined by selecting the RTW inline subsystem option from the 
subsystem block properties dialog. The default action is to inline the 
subsystem, unless it is a function-call subsystem with multiple callers.

Block I/O Reuse
Consider a model with a D/A converter feeding a gain block (for scaling), then 
feeding a transfer function block, then feeding a A/D block. If all signals refer 
to the same memory location, then less memory will be used. This is referred 
to as block I/O reuse. It is a powerful optimization technique for re-using 
memory locations. It reduces the number of global variables improving the 
executing speed (faster execution) and reducing the size of the generated code.

Declaration of Block I/O Variables in Local Scope
If input/output signal variables are not used across function scope, then they 
can be placed in local scope. This optimization technique reduces code size and 
improves the execution speed (faster execution).

Inlining of Parameters
If you select the Inline parameters option, the numeric values of block 
parameters that represent coefficients are embedded in the generated code. If 
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Inline parameters is off, block parameters that represent coefficients can be 
changed while the model is executing.

Note that it is possible to specify which parameters to tune using the 
Workspace parameter attributes dialog box.

Inlining of Invariant Signals
An invariant signal is a block output signal that does not change during 
Simulink simulation. For example, the output of a sum block that is fed by two 
constants cannot change. When Inline invariant signals is selected on the 
General code generation options portion of the Real-Time Workshop pane, 
a single numeric value is placed in the generated code to represent the output 
value of the sum block. The Inline invariant signals option is available when 
the Inline parameters option is on.

Parameter Pooling
The Parameter pooling option is available when Inline parameters is 
selected. If Real-Time Workshop detects identical usage of parameters (e.g. two 
lookup tables with same tables), it will pool these parameters together, thereby 
reducing code size.

Block Reduction Optimizations
Real-Time Workshop can detect block patterns (e.g. an accumulator 
represented by a constant, sum and a delay block) and reduce these patterns to 
a single operation, resulting in very efficient generated code.

Creation of Contiguous Signals to Speed Block Computations
Some block algorithms (for example a matrix multiply) can be implemented 
more efficiently if the signals entering the blocks are contiguous. 
Noncontiguous signals occur because of the handling of virtual blocks. For 
example, the output of a Mux block is noncontiguous. When this class of block 
requires a contiguous signal, Simulink will insert (if needed) a copy block 
operator to make the signal contiguous. This results in better code efficiency.

Support for Noncontiguous Signals by Blocks
Noncontiguous signals occur because of the block virtualization capabilities of 
Simulink. For example, the output of a Mux block is generally a noncontiguous 
signal (i.e., the output signal consists of signals from multiple sources). General 
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blocks in Simulink support this behavior by generating very efficient code to 
handle each different signal source in a noncontiguous signal.

Data Type Support
Simulink models support a wide range of data types. You can use double 
precision values to represent real-world values and then when needed use 
integers or Booleans for discrete valued signals. You can also use fixed-point 
(integer scaling) capabilities to target models for fixed-point embedded 
processors. The wide selection of data types in Simulink models enables you to 
realize your models efficiently.

Frame Support
In signal processing, a frame of data represents time sampled sequences of an 
input. Many devices have support in hardware for collecting frames of data. 
With Simulink and the DSP Blockset, you can use frames and perform frame 
based operations on the data. Frames are a very efficient way of handling high 
frequency signal processing applications.

Matrix Support
Most blocks in Simulink support the use of matrices. This enables you to create 
models that represent high levels of abstractions and produce very efficient 
generated code.

Virtualization of Blocks
Nearly half of the blocks in a typical model are connection type blocks (e.g. 
Virtual Subsystem, Inport, Outport, Goto, From, Selector, Bus Selector, Mux, 
Demux, Ground, and Terminator). These blocks are provided to enable you to 
create complex models with your desired levels of abstraction. Simulink treats 
these blocks as virtual, meaning that they impose no overhead during 
simulation or in the generated code.
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An Open and Extensible Environment
The Simulink and Real-Time Workshop model-based software development 
environment is extensible in several ways.

Custom Code Support
S-functions are dynamically linked objects (.dll or .so) that bind with 
Simulink to extend the modeling environment. By developing S-functions, you 
can add custom block algorithms to Simulink. Such S-functions provide 
supporting logic for the model. S-functions are flexible, allowing you to 
implement complex algorithmic equations or basic low-level device drivers. 
Real-Time Workshop support for S-functions includes the ability to inline 
S-function code directly into the generated code. Inlining, supported by the 
Target Language Compiler, can significantly reduce memory usage and calling 
overhead.

Support for Supervisory Code
The generated code implements an algorithm that corresponds exactly to the 
algorithm defined in your model. With the embedded code format, you can call 
the generated model code as a procedure. This enables you to incorporate the 
generated code into larger systems that decide when to execute the generated 
code. Conceptually, you can think of the generated code as set of equations, 
wrapped in a function called by your supervisory code. This facilitates 
integration of model code into large existing systems, or into environments that 
consist of more than signal-flow processing (Simulink) and state machines 
(Stateflow).

Monitoring and Parameter Tuning APIs
External mode provides a communication channel for interfacing the 
generated code running on your target with Simulink. External mode lets you 
use Simulink as a debugging front end for an executing model. Typically, the 
external mode configuration works in conjunction with either the real-time 
code format or the real-time malloc code format. 

Real-Time Workshop provides other mechanisms for making model signals and 
block parameters visible to your own monitoring and tuning interfaces. These 
mechanisms, suitable for use on all code formats, include:
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• The Model Parameter Configuration dialog box, where you declare how to 
allocate memory for variables that are used in your model. For example, if a 
Gain block contains the variable k, you can declare k as an external variable, 
a pointer to an external variable, a global variable, or let Real-Time 
Workshop decide where and how to declare the variable.

The Model Parameter Configuration feature enables you to specify block 
parameters as tunable or global. This gives your supervisory code complete 
access to any block parameter variables that you may need to alter while 
your model is executing. You can also use this feature to interface 
parameters to specific constant read-only memory locations.

• You can mark signals in your model as test points. Declaring a test point 
indicates that you may want to see the signal’s value while the model is 
executing. After marking a signal as a test point, you specify how the 
memory for the signal is to be allocated. This gives your supervisory code 
complete read-only access to signals in your model, so that you can monitor 
the internal workings of your model.

• C and Target Language Compiler APIs provide another form of access to the 
signals and parameters in your model. The Target Language Compiler API 
is a means to access the internal signals and parameters during code 
generation. With this information, you can generate monitoring/tuning code 
that is optimized specifically for your model or target.

Interrupt Support
Interrupt blocks enable you to create models that handle synchronous and 
asynchronous events, including interrupt service routines (ISRs), 
hardware-generated interrupts, and asynchronous read and write operations. 
The blocks provided work with the Tornado target. You can use these blocks as 
templates when creating new interrupt blocks for your target environment. 
Interrupt blocks include

• Asynchronous Interrupt block

• Task Synchronization block

• Asynchronous Buffer block (read)

• Asynchronous Buffer block (write)

• Asynchronous Rate Transition block
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