
1

Accelerated Simulations Using Real-Time
Workshop and the Rapid Simulation Target

Abstract:
Real-Time Workshop’s Rapid Simulation (RSim) Target, available in MATLAB
Release 11, achieves dramatic speedup of Simulink fixed-step simulations. The
RSim Target enables you to use generated code to create fast, compiled
simulations that also read new signal data and parameter data directly from
MATLAB MAT-files without needing to recompile your model. An RSim
simulation lets you run accelerated simulations on either your host computer,
or on other similar computers. Test results show up to an 18 times speed
improvement over Simulink simulations using the RSim Target. When many
simulation runs are needed, additional speedup is possible by using distributed
computing with RSim executables running on multiple independent computers
to achieve maximum simulation performance.

Fast, Portable Simulations
Real-Time Workshop generates C code for your Simulink block diagram and
uses your C compiler to create an executable that is capable of increasing
simulation performance by a factor of up to 18 times speed improvement for
large models. Actual performance will vary. Factors that affect the overall time
to run a simulation include the size of the model (the number of blocks as well
as the number of operations required by the set of blocks in your model) and
the number of time steps needed to complete the simulation.

In aerospace, automotive, communications, and other industries, users are
often confronted with both large models and large numbers of time steps
making simulation time particularly long. In such applications the advantages
provided by an RSim simulation are most apparent.

2

The reason why RSim simulations created with Real-Time Workshop run
faster than normal Simulink simulations is that the simulation is performed
using compiled C code. The C code is highly optimized for your model. When
you change your model structure, new C code is generated, compiled, and
linked. The use of a compiled model-specific C code is a valuable initial step for
improving speed. If your needs include running many simulations with the
same model while using either different signal data or parameter data, your
application could also benefit by running independent simulations on several
computers. This combined approach using model-specific C code and
distributed computing—each simulation running a separate data set—has the
ability to provide speedup of several orders of magnitude over a standard
Simulink simulation running on a single computer.

Below is a table providing some comparisons of speedup using one computer.
Speedup was measured by running Simulink and RSim simulations from the
MATLAB command line using the following M-file.

tic
sim(’model’) % Run Simulink simulation
a = toc % Get elapsed time for Simulink simulation
tic
!modelname % Run an RSim simulation (modelname.exe)
b = toc % Get elapsed time for RSim simulation
x = a/b % Determine speedup ratio

Table 1: Speedup Factor Computed for Three Simulink Models

Model Speedup using RSim

dspafsf
demo

2X (very small DSP model with only 8 blocks and one
CMEX S-function)

f14 demo 6X (small model with 39 blocks)

Spacecraft
model

18X (large model with over 1,000 blocks)

Architecture

3

Architecture
To understand why Rapid Simulation Target simulations are faster than
normal Simulink simulations, which are considered interpretive simulations,
let’s explore the architecture of Simulink and Real-Time Workshop.

The Rapid Simulation Target is built upon Real-Time Workshop. Real-Time
Workshop is a tool that transforms Simulink block diagrams into generated
code for your selected target. In this case, the target is the Rapid
SimulationTarget. Once code is generated, the code is compiled and linked
using your C compiler. Rapid Simulation Target delivers significantly faster
simulations.

Simulink Engine

Simulink GUI

Real-Time Workshop

Compiled Model Specific C code

Simulink GUI enables you to build
diagrams using your mouse.

Simulink Engine transforms block
diagrams into a format that can be
simulated. Once the transformation
is complete, you can perform normal
simulations using an interpretive
scheme that lets you quickly start,
stop, and restart simulations even after
signfiicant model edits such as adding
or deleting blocks.

Real-Time Workshop generates C code,
and invokes your compiler to create
an executable.

Architecture

4

In this paper we refer to the expression compiled model specific C code to refer
to an executable created for the Rapid Simulation Target. This executable is
created using Real-Time Workshop.

Another important term is parameter transformation. In Simulink, you can
create a block diagram that uses numeric values, variables, or parameter
transformations to correspond to the “value” or “values” to be used in a
simulation. Parameter transformations can arise when you have any type of
expression such as 2*3, 2*A, sin(2*pi*alpha). Each of these expressions is
evaluated to a numeric value in the form of a scalar, vector, or matrix. In
Simulink you use Ctrl-D to update a block diagram. During this process,
parameter transformations are evaluated so that the corresponding value(s)
can be used in a simulation. This information is useful in understanding
differences between Simulink simulations and simulations using the Rapid
Simulation Target.

The Real-Time Workshop Generic Real-Time Target

5

The Real-Time Workshop Generic Real-Time Target
Before discussing RSim in detail, let us first review the Generic Real-Time
(GRT) Target to better understand the distinction between the GRT Target and
the RSim Target. Although GRT can be used to create a fast, stand-alone
executable, the RSim Target is preferred for this type of application.

GRT stands for Generic Real-Time. The reason why we use the term “generic”
is that the set of target files for GRT does not include any hardware-specific
code for interrupt service routines (ISRs), operating systems, or other
target-specific timing devices. Without any modifications GRT allows you to
exercise generated code as a nonreal-time simulation, for example, simulating
your model on your host computer and logging data to a MAT-file. This
addresses the initial purpose for GRT. GRT lets you confirm that the generated
code performs correctly and provides the same results as when running a
fixed-step simulation in Simulink.

The second purpose for GRT Target files is for use as a starting point or set of
templates that you can modify in order to create your own custom target to run
in real time on your selected hardware. GRT Target files include comments
that instruct you where to modify code in order to enable or disable interrupts
when writing your own ISR to control real-time execution of the model code.
Once you make these modifications to a set of target files (after renaming
them), you now have a custom target rather than a generic target. Your custom
target, based on the GRT Target, is suited for real-time execution in a rapid
prototyping or hardware-in-the-loop application.

Since the intended use of the GRT Target is real-time execution, certain
assumptions are made about the target. First of all, GRT assumes that a file
system may not be available. Because of this assumption, signal data for all
targets other than the RSim Target is placed within the generated code for both
From File and From Workspace block data, thereby eliminating the need for
functions to read data from a file. For most real-time systems, you would
normally avoid the use of From File or From Workspace blocks and use an I/O
device such as an analog to digital converter to measure signal data at each
sample interval. You would also avoid the use of MAT-file data logging in
real-time systems for the same reason. However, the GRT Target allows you to
select MAT-file data logging so you can compare simulation results from
generated code on your host computer against your Simulink simulation
results.

The Real-Time Workshop Generic Real-Time Target

6

GRT has another valuable capability. With the grt_main.c file, function calls
are included that are ready to use with external mode. External mode allows
you to change parameters on-the-fly which is particularly useful in rapid
prototyping systems. With external mode, you open the dialog box for a
particular block for which you would like change parameter values and simply
type the new value. External mode does the rest. New parameter values are
then exported to the external model via TCP/IP, or some other communication
transport where they are installed while the simulation continues to run.

Additional targets supplied with Real-Time Workshop are intended for other
special purposes. For example, the Embedded Real-Time (ERT) Target serves
as a starting point when you want to use generated code in an embedded
application requiring minimal memory usage. The ERT Target provides
significantly tighter code generation requiring less RAM and ROM as
necessary in an embedded application.

When using a model containing From File blocks, the GRT Target places From
File data into the intermediate model.rtw file. Next, the Target Language
Compiler (TLC) reads the model.rtw file during generation of the C code. This
C code also includes From File block data.

Running stand-alone simulations using the GRT Target and From File blocks
also has a performance issue during code generation. Placing data into the
generated C code takes additional time. Compilation is also slower since signal
data is also passed through the compiler. This is particularly noticeable for
models with large From File block data sets. Perhaps the most compelling
reason not to use the GRT Target for stand-alone simulations is that signal
data for From File blocks cannot be changed from one simulation to the next
without recompiling.

In comparison, the RSim Target was created explicitly for the purpose of
creating fast, stand-alone (nonreal-time) simulations that read new signal and
parameter data for each simulation run. Data is read directly from MATLAB
MAT-files for maximum convenience without the need to recompile your model
between runs.

Using the Rapid Simulation Target

7

Using the Rapid Simulation Target
The Rapid Simulation (RSim) Target consists of a set of files that are included
with Real-Time Workshop and ready for use without modification. These files
result in subtle but important differences in the code that is generated from a
Simulink model. The RSim Target’s system target file rsim.tlc is used by the
Target Language Compiler to place function calls in the generated code to
perform MAT-file open, read signal and parameter data, check signal and
parameter consistency, MAT-file close, and so on. Once you’ve selected the
RSim Target, the generated code accommodates changes necessary for
improved handling of From File, To File, and From Workspace blocks.

Template makefiles are included for Watcom C, Microsoft Visual C, Borland C,
and UNIX C compilers and are ready to use without modification. You can
manually select a template makefile or allow Real-Time Workshop to use a
makefile for the C compiler you previously selected for building MEX-files.
When code generation is completed, the RSim template makefile immediately
invokes your C compiler to create an executable that you can run stand-alone.

At the start of the simulation, the file rsim_main.c looks for optional
user-supplied arguments that specify replacement filenames containing new
signal or parameter data. Then rsim_main.c runs the simulation by
incrementing the simulation time and running the function rt_onestep that
evaluates blocks at each sample interval. Data logging is also controlled from
rsim_main.c and upon completing a simulation, logged data is stored to a
MAT-file. As with other files provided with the RSim Target, there is no need
to modify rsim_main.c, it is ready to use.

Model specific C code

Run-time interface

rsim_main.c

model.c

MAT Engine

An RSim simulation
consists of models
as shown.

Using the Rapid Simulation Target

8

How Does RSim Handle Input Signal Data?
The RSim Target handles From File blocks quite differently than other
Real-Time Workshop targets. RSim assumes you will run the generated code
on a desktop computer or workstation where a file system is always available.
This eliminates the need to embed From File block data into the generated
code, which means code generation occurs much faster and compilation time is
also reduced. With the RSim Target From File block data is read at run time
from a MATLAB MAT-file during initialization.

The MAT-file containing signal data is virtually ignored during code
generation with the exception that RSim checks and stores information about
the width of input signals used in From File blocks. This ensures correct
treatment in the generated code for blocks and signals that are subject to loop
rolling, for example, handling vectorized block inputs and outputs. However, if
your RSim simulation contains From File blocks, the MAT-file(s) must be
present so that the data can be read at the start of the simulation. If your model
does not contain any From File blocks, then a corresponding MAT-file with
data for a From File block is not needed.

Running an RSim Simulation for Models Containing
From File Blocks
Let’s assume that your model includes one or more From File blocks. The RSim
model opens the MAT-file(s), reads the data, and runs the simulation to
completion. Assume you’ve already generated a RSim executable for your
model named mymodel and you have MAT-file called input.mat containing
From File block data. You can run your simulation from the system command
prompt by typing the model name.

mymodel
Your simulation runs until reaching the stop time specified in the dialog box at
the time the code was generated. Assuming you selected MAT-file logging
options prior to generating code, simulation results are saved to a file named
mymodel.mat.

You can also specify a replacement filename for the From File block MAT-file
as a command line argument. To use mynewinput.mat as the replacement From

Using the Rapid Simulation Target

9

File block data, you would use the -f flag (f corresponding to “From File”) as
follows.

mymodel -f input.mat=mynewinput.mat
In this case your simulation reads From File block data from the file
mynewinput.mat and checks to insure that the data is compatible. For example,
the new data must contain the same number of inputs signals as existed when
generating the model code. However, it is not necessary to keep the signal
length the same.

Data for From File blocks is read only at the initialization of the simulation.
This makes RSim well suited for running batch simulations. You can gather
sets of signal data, store data in MAT-files, and issue commands that repeat a
series of simulation runs using new data sets for each simulation run.

Changing Parameter Data and From Workspace
Data with RSim Simulations
Simulink includes a highly flexible feature calling masking. A mask lets you
alter the appearance of a block and utilize MATLAB parameters and scripts
that are executed upon initialization of the simulation. During code generation,
MATLAB scripts and MATLAB workpace variables are evaluated and the
resulting values are mapped into the model.rtw file. Ultimately these values
are placed in the generated C code. MATLAB scripts cannot be re-evaluated by
the generated code since MATLAB is necessary to parse and execute a
MATLAB script or M-file.

Simulink provides powerful and extensive block parameter handling
capabilities. For example, you can specify a Gain block parameter as a numeric
value, MATLAB variable, or an arbitrary MATLAB expression. When the
parameter is not a numeric value, MATLAB evaluates the parameter to
determine a numeric value (or values when a matrix may result) and uses the
numeric values during simulation. Operations that evalute parameter
expressions are referred to as parameter transformations. Simulink masking
is another feature that may introduce parameter transformations.

Parameter transformations must be evaluated using MATLAB and Simulink
in order to obtain the correct mapping of a value to a memory location in the
generated code. To achieve the correct mapping, RSim includes an M-file called
rsimgetrtp. This function updates the block diagram (same as Ctrl-D),
extracts the entire parameter structure, and allows you to save it to a MAT-file
for later use in an RSim simulation. This parameter structure provides support

Using the Rapid Simulation Target

10

for all of Simulink’s intrinsic data types including; int8, uint8, int16, uint16,
int32, uint32, float, and double. It also supports complex value data in any
of these data types. You can change any parameter value including parameters
used in masks located anywhere in the model. This can be done by manually
changing the value or it can be done programatically using an M-file.

For a better understanding, let’s consider a simple example where a dialog box
uses a very basic parameter transformation 2*A. Assume that the variable “A”
is defined as a scalar in the MATLAB workspace. You can simply change the
value of A in MATLAB (e.g., A=5) and then run the M-file rsimgetrtp.
Simulink evaluates all parameters and masks throughout the block diagram
and returns the rtP structure to the MATLAB workspace. The following
illustrates how to use rsimgetrtp to save the parameter structure to a MAT-file
myparams.mat.

rtP = rsimgetrtp(’mymodel’);
save myparams rtP;

The RSim executable can later read parameter MAT-files at the start of
execution, and compare model checksums to ensure that the set of blocks and
block connectivity matches at the time of code generation. If the checksums
match, the new parameters are loaded and the simulation runs. You can run
this by typing the following from MATLAB.

!mymodel -p myparams.mat

In the event that a parameter file was not provided, the model would execute
using the orignal set of parameter values within the executable. The parameter
MAT-file is entirely optional and only needs to be used when you want to
change a parameter value in the RSim model.

Extending this example, you could create a script that changes model
parameters, runs rsimgetrtp to extract a new rtP parameter structure from
the Simulink block diagram, and stores the parameter structure to a MAT-file.
This can be repeated within a loop using unique names such as
myparams_1.mat, myparams_2.mat, and so on to create multiple sets of data for
later use in RSim simulations. Real-Time Workshop includes a demo examples
rsimdemo1 and rsimdemo2 which include M-file scripts that illustrate
precisely how this is done. You may want to use these as a starting point that
you edit for your own purposes.

You can run a set of RSim simulations from the MATLAB command line, from
DOS, or from a UNIX prompt. Scripts, for example, .bat file, can be created to

Using the Rapid Simulation Target

11

automatically run a series of RSim simulation runs. And you can also write
M-files that use bang (!) to run multiple simulation runs directly from
MATLAB.

When using the From Workspace block, RSim treats signal data as
parameters. This differs significantly from the From File block. Since the From
File block requires signal data to be available in a separate MAT-file in
addition to the executable, you must have the signal data file available to run
a simulation. In contrast, the From Workspace block data is placed in the
generated code as a parameter. This allows your RSim executable to run
without any additional MAT-files. There are subtleties when using the From
Workspace block with the RSim Target. Code generation and compilation time
are slower since signal data is placed in the model.rtw file, in the generated
code, and then compiled. Also, it is not possible to change the length of the
signal data used for the From Workspace block in subsequent RSim
simulations. But, with the From Workspace block, you do have the flexibility of
having masked blocks or other blocks that have parameter transformations.
This is not the case with the From File block.

In summary, the length of signals used in the From Workspace block directly
impacts code generation and compilation time. Signal lengths for From
Workspace blocks must remain constant when using RSim. Parameter
transformations are handled by using rsimgetrtp to extract the new rtP
parameter structure. Generation of the new rtP structure requires that you use
MATLAB, Simulink, and Real-Time Workshop in order to run rsimgetrtp.

In contrast, From File block data does not support parameter transformations.
From File blocks are ideal for long time vectors since From File blocks do not
impact the time required for code generation or compiling. New MAT-files
containing From File block data can be created using only MATLAB, or, if you
write your own C program that uses functions provided with libmat.dll, you
can create new signal data without MATLAB. In order to increase the overall
flexibility of RSim, slight differences exist in the way data is handled by From
File blocks and From Workspace blocks. Theses differences in handling data
for From File and From Workspace blocks are summarized in table 2.

Using the Rapid Simulation Target

12

Portability of RSIM Simulations
Since the RSim Target creates a stand-alone executable, you can copy this
executable to another computer for remote execution (e.g., one with the same
processor and same operating system). For example, if you are using a PC and
a friendly coworker also has a PC, he or she may let you to use idle CPU time
at the end of the day. RSim can help by letting you run independent
simulations on idle machines.

There are a few things to consider when running an RSim executable on
another computer. Assume the other computers do not include MATLAB. In
order for RSim to read MAT-files for either new From File block data or new
parameter data, the files libmat.dll and libmx.dll must be available. You
can copy these to the machine’s working directory or use file sharing and an
appropriate path so that these files can be found elsewhere. An easy approach
is to simply copy these files to the working directory where you intend to run
your RSim simulations.

If you use a model with one or more From File blocks, you also need to copy the
MAT-file(s) to your working directory. The same requirements exist for using
replacement parameter MAT-files.

Table 2: Comparisons Between From File and From Workspace Behavior
Using the RSim Target

From File block From Workspace block

Length of input signals can change
between simulations.

Length of input signals is always
the same.

Signal data remains stored in
MAT-file.

Signal data placed in generated
code requires longer compile time.

Parameter transformations not
supported.

Parameter transformations are
supported.

Always requires a MAT-file
containing signal data to run the
RSim simulation.

Data encapsulated in executable,
therefore can run simulation
without having the MAT-file
present.

Using the Rapid Simulation Target

13

Once this has been done, you can write a simple .bat file for a PC or write a
UNIX script to run your set of simulations. The flags available with RSim
executables are as follows.

-f oldfromfile.mat=newfromfile.mat (replace From File block data using
newfromfile.mat)

-o myoutput.mat (log simulation results to the file myoutput.mat)

-p myparams.mat (specify a new parameter .mat file myparams.mat which can
also including data for From Workspace blocks)

-s 10.9 (stop the simulation when it reaches t = 10.9)

-t oldtofile.mat=newtofile.mat (replace oldtofile.mat with
newtofile.mat for saving data from To File blocks)

-v (set verbosity on to see which file(s) are being used as replacements)

Simulation Results
With RSim simulations, logging of simulation results is controlled by menu
selections in the Simulink model before code generation takes place. Scope
blocks and outports can be connected to signals that you want to view and
analyze once the simulation has completed. Be sure to check the appropriate
check boxes in the Simulation Parameters dialog box under the Workspace I/O
tab. This will allow you to control whether or not signals are saved to a
MAT-file. Once the simulation has completed, you can load the simulation
results into MATLAB for plotting and analysis of the resulting data.

At the time of code generation, the variable name used to store the time vector
and output vector (e.g., y-vector) is selected. If you plan to load simulation
results from multiple RSim simulations, rename these variables upon loading
data to avoid overwritting these vectors when the next set of simulation results
is loaded.

This paper was written by Jim Shefcyk, a member of the Real-Time Workshop
development team at The MathWorks, Inc. In this paper it is assumed that
you are using the MATLAB Release 11 CD for MATLAB, Simulink and
Real-Time Workshop. Please forward any comments, questions, or suggestions
on the Rapid Simulation Target, to jims@mathworks.com.

	Fast, Portable Simulations
	Architecture
	The Real-Time Workshop Generic Real-Time Target
	Using the Rapid Simulation Target
	How Does RSim Handle Input Signal Data?
	Running an RSim Simulation for Models Containing From File Blocks
	Changing Parameter Data and From Workspace Data with RSim Simulations
	Portability of RSIM Simulations
	Simulation Results

