
Computation

Visualization

Programming

MATLAB Function Reference
Volume 2: F - O
Version 6

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 2: F - O
 COPYRIGHT 1984 - 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing For MATLAB 5
June 1997 Online only Revised for 5.1
October 1997 Online only Revised for 5.2
January 1999 Online only Revised for Release 11
June 1999 Second printing For Release 11
June 2001 Online only Revised for 6.1
July 2002 Online only Revised for 6.5 (Release 13)

i

Contents

1
Functions – By Category

Development Environment . 1-2
Starting and Quitting . 1-2
Command Window . 1-2
Getting Help . 1-3
Workspace, File, and Search Path . 1-3
Programming Tools . 1-4
System . 1-5
Performance Improvement Tools and Techniques 1-5

Mathematics . 1-6
Arrays and Matrices . 1-7
Linear Algebra . 1-9
Elementary Math . 1-11
Data Analysis and Fourier Transforms 1-13
Polynomials . 1-14
Interpolation and Computational Geometry 1-15
Coordinate System Conversion . 1-16
Nonlinear Numerical Methods . 1-16
Specialized Math . 1-18
Sparse Matrices . 1-18
Math Constants . 1-20

Programming and Data Types . 1-21
Data Types . 1-21
Arrays . 1-25
Operators and Operations . 1-27
Programming in MATLAB . 1-29

File I/O . 1-34
Filename Construction . 1-34
Opening, Loading, Saving Files . 1-34
Low-Level File I/O . 1-35
Text Files . 1-35
XML Documents . 1-35

ii Contents

Spreadsheets . 1-35
Scientific Data . 1-36
Audio and Audio/Video . 1-36
Images . 1-37

Graphics . 1-38
Basic Plots and Graphs . 1-38
Annotating Plots . 1-38
Specialized Plotting . 1-39
Bit-Mapped Images . 1-41
Printing . 1-41
Handle Graphics . 1-42

3-D Visualization . 1-44
Surface and Mesh Plots . 1-44
View Control . 1-45
Lighting . 1-46
Transparency . 1-47
Volume Visualization . 1-47

Creating Graphical User Interfaces . 1-48
Predefined Dialog Boxes . 1-48
Deploying User Interfaces . 1-49
Developing User Interfaces . 1-49
User Interface Objects . 1-49
Finding Objects from Callbacks . 1-49
GUI Utility Functions . 1-49
Controlling Program Execution . 1-50

2
Functions – Alphabetical List

Index

1
Functions – By Category

The MATLAB Function Reference contains descriptions of all MATLAB commands and functions.

Select a category from the following table to see a list of related functions.

See Simulink, Stateflow, Real-Time Workshop, and the individual toolboxes for lists of their functions

Development Environment Startup, Command Window, help, editing and debugging, other
general functions

Mathematics Arrays and matrices, linear algebra, data analysis, other areas of
mathematics

Programming and Data
Types

Function/expression evaluation, program control, function handles,
object oriented programming, error handling, operators, data types,
dates and times, timers

File I/O General and low-level file I/O, plus specific file formats, like audio,
spreadsheet, HDF, images

Graphics Line plots, annotating graphs, specialized plots, images, printing,
Handle Graphics

3-D Visualization Surface and mesh plots, view control, lighting and transparency,
volume visualization.

Creating Graphical User
Interface

GUIDE, programming graphical user interfaces.

External Interfaces Java, COM, Serial Port functions.

1 Functions – By Category

1-2

Development Environment
General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

Starting and Quitting
exit Terminate MATLAB (same as quit)
finish MATLAB termination M-file
matlab Start MATLAB (UNIX systems only)
matlabrc MATLAB startup M-file for single user systems or

administrators
quit Terminate MATLAB
startup MATLAB startup M-file for user-defined options

Command Window
clc Clear Command Window
diary Save session to file
dos Execute DOS command and return result
format Control display format for output
home Move cursor to upper left corner of Command Window
more Control paged output for Command Window
notebook Open M-book in Microsoft Word (Windows only)
system Execute operating system command and return result
unix Execute UNIX command and return result

“Starting and Quitting” Startup and shutdown options

“Command Window” Controlling Command Window

“Getting Help” Finding information

“Workspace, File, and
Search Path”

File, search path, variable management

“Programming Tools” Editing and debugging, source control, Notebook

“System” Identifying current computer, license, product
version, and more

“Performance
Improvement Tools and
Techniques”

Improving and assessing performance, e.g.,
profiling and memory use

Development Environment

1-3

Getting Help
doc Display online documentation in MATLAB Help browser
demo Access product demos via Help browser
docopt Location of help file directory for UNIX platforms
help Display help for MATLAB functions in Command Window
helpbrowser Display Help browser for access to extensive online help
helpwin Display M-file help, with access to M-file help for all functions
info Display information about The MathWorks or products
lookfor Search for specified keyword in all help entries
support Open MathWorks Technical Support Web page
web Point Help browser or Web browser to file or Web site
whatsnew Display information about MATLAB and toolbox releases

Workspace, File, and Search Path
• “Workspace”

• “File”

• “Search Path”

Workspace
assignin Assign value to workspace variable
clear Remove items from workspace, freeing up system memory
evalin Execute string containing MATLAB expression in a workspace
exist Check if variable or file exists
openvar Open workspace variable in Array Editor for graphical editing
pack Consolidate workspace memory
which Locate functions and files
who, whos List variables in the workspace
workspace Display Workspace browser, a tool for managing the workspace

File
cd Change working directory
copyfile Copy file or directory
delete Delete files or graphics objects
dir Display directory listing
exist Check if a variable or file exists
fileattrib Set or get attributes of file or directory
filebrowser Display Current Directory browser, a tool for viewing files
lookfor Search for specified keyword in all help entries
ls List directory on UNIX

1 Functions – By Category

1-4

matlabroot Return root directory of MATLAB installation
mkdir Make new directory
movefile Move file or directory
pwd Display current directory
rehash Refresh function and file system caches
rmdir Remove directory
type List file
what List MATLAB specific files in current directory
which Locate functions and files

See also “File I/O” functions.

Search Path
addpath Add directories to MATLAB search path
genpath Generate path string
partialpath Partial pathname
path View or change the MATLAB directory search path
path2rc Save current MATLAB search path to pathdef.m file
pathtool Open Set Path dialog box to view and change MATLAB path
rmpath Remove directories from MATLAB search path

Programming Tools
• “Editing and Debugging”

• “Source Control”

• “Notebook”

Editing and Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints in M-file function
dbtype List M-file with line numbers
dbup Change local workspace context
edit Edit or create M-file
keyboard Invoke the keyboard in an M-file

Development Environment

1-5

Source Control
checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system
customverctrlAllow custom source control system
undocheckout Undo previous checkout from source control system
verctrl Version control operations on PC platforms

Notebook
notebook Open M-book in Microsoft Word (Windows only)

System
computer Identify information about computer on which MATLAB is

running
javachk Generate error message based on Java feature support
license Show license number for MATLAB
prefdir Return directory containing preferences, history, and .ini files
usejava Determine if a Java feature is supported in MATLAB
ver Display version information for MathWorks products
version Get MATLAB version number

Performance Improvement Tools and Techniques
memory Help for memory limitations
pack Consolidate workspace memory
profile Optimize performance of M-file code
profreport Generate profile report
rehash Refresh function and file system caches
sparse Create sparse matrix
zeros Create array of all zeros

1 Functions – By Category

1-6

Mathematics
Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

“Arrays and Matrices” Basic array operators and operations, creation of
elementary and specialized arrays and matrices

“Linear Algebra” Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

“Elementary Math” Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

“Data Analysis and
Fourier Transforms”

Descriptive statistics, finite differences, correlation,
filtering and convolution, fourier transforms

“Polynomials” Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem, curve
fitting, partial fraction expansion

“Interpolation and
Computational
Geometry”

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

“Coordinate System
Conversion”

Conversions between Cartesian and polar or
spherical coordinates

“Nonlinear Numerical
Methods”

Differential equations, optimization, integration

“Specialized Math” Airy, Bessel, Jacobi, Legendre, beta, elliptic, error,
exponential integral, gamma functions

“Sparse Matrices” Elementary sparse matrices, operations, reordering
algorithms, linear algebra, iterative methods, tree
operations

“Math Constants” Pi, imaginary unit, infinity, Not-a-Number, largest
and smallest positive floating point numbers,
floating point relative accuracy

Mathematics

1-7

Arrays and Matrices
• “Basic Information”

• “Operators”

• “Operations and Manipulation”

• “Elementary Matrices and Arrays”

• “Specialized Matrices”

Basic Information
disp Display array
display Display array
isempty True for empty matrix
isequal True if arrays are identical
islogical True for logical array
isnumeric True for numeric arrays
issparse True for sparse matrix
length Length of vector
ndims Number of dimensions
numel Number of elements
size Size of matrix

Operators
+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
^ Matrix power
\ Backslash or left matrix divide
/ Slash or right matrix divide
' Transpose
.' Nonconjugated transpose
.* Array multiplication (element-wise)
.^ Array power (element-wise)
.\ Left array divide (element-wise)
./ Right array divide (element-wise)

Operations and Manipulation
: (colon) Index into array, rearrange array
blkdiag Block diagonal concatenation

1 Functions – By Category

1-8

cat Concatenate arrays
cross Vector cross product
cumprod Cumulative product
cumsum Cumulative sum
diag Diagonal matrices and diagonals of matrix
dot Vector dot product
end Last index
find Find indices of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip matrix along specified dimension
horzcat Horizontal concatenation
ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product
max Maximum elements of array
min Minimum elements of array
permute Rearrange dimensions of multidimensional array
prod Product of array elements
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
sort Sort elements in ascending order
sortrows Sort rows in ascending order
sum Sum of array elements
sqrtm Matrix square root
sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix
triu Upper triangular part of matrix
vertcat Vertical concatenation

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

Elementary Matrices and Arrays
: (colon) Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
diag Diagonal matrices and diagonals of matrix
eye Identity matrix
freqspace Frequency spacing for frequency response
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors

Mathematics

1-9

meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
repmat Replicate and tile array
zeros Create array of all zeros

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra
• “Matrix Analysis”

• “Linear Equations”

• “Eigenvalues and Singular Values”

• “Matrix Logarithms and Exponentials”

• “Factorization”

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant
norm Matrix or vector norm
normest Estimate matrix 2-norm
null Null space
orth Orthogonalization
rank Matrix rank
rcond Matrix reciprocal condition number estimate

1 Functions – By Category

1-10

rref Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
\ and / Linear equation solution
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cond Condition number with respect to inversion
condest 1-norm condition number estimate
funm Evaluate general matrix function
inv Matrix inverse
lscov Least squares solution in presence of known covariance
lsqnonneg Nonnegative least squares
lu LU matrix factorization
luinc Incomplete LU factorization
pinv Moore-Penrose pseudoinverse of matrix
qr Orthogonal-triangular decomposition
rcond Matrix reciprocal condition number estimate

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
condeig Condition number with respect to eigenvalues
eig Eigenvalues and eigenvectors
eigs Eigenvalues and eigenvectors of sparse matrix
gsvd Generalized singular value decomposition
hess Hessenberg form of matrix
poly Polynomial with specified roots
polyeig Polynomial eigenvalue problem
qz QZ factorization for generalized eigenvalues
rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition
svds Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials
expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root

Mathematics

1-11

Factorization
balance Diagonal scaling to improve eigenvalue accuracy
cdf2rdf Complex diagonal form to real block diagonal form
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cholupdate Rank 1 update to Cholesky factorization
lu LU matrix factorization
luinc Incomplete LU factorization
planerot Givens plane rotation
qr Orthogonal-triangular decomposition
qrdelete Delete column or row from QR factorization
qrinsert Insert column or row into QR factorization
qrupdate Rank 1 update to QR factorization
qz QZ factorization for generalized eigenvalues
rsf2csf Real block diagonal form to complex diagonal form

Elementary Math
• “Trigonometric”

• “Exponential”

• “Complex”

• “Rounding and Remainder”

• “Discrete Math (e.g., Prime Factors)”

Trigonometric
acos Inverse cosine
acosh Inverse hyperbolic cosine
acot Inverse cotangent
acoth Inverse hyperbolic cotangent
acsc Inverse cosecant
acsch Inverse hyperbolic cosecant
asec Inverse secant
asech Inverse hyperbolic secant
asin Inverse sine
asinh Inverse hyperbolic sine
atan Inverse tangent
atanh Inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
cos Cosine
cosh Hyperbolic cosine
cot Cotangent
coth Hyperbolic cotangent

1 Functions – By Category

1-12

csc Cosecant
csch Hyperbolic cosecant
sec Secant
sech Hyperbolic secant
sin Sine
sinh Hyperbolic sine
tan Tangent
tanh Hyperbolic tangent

Exponential
exp Exponential
log Natural logarithm
log2 Base 2 logarithm and dissect floating-point numbers into

exponent and mantissa
log10 Common (base 10) logarithm
nextpow2 Next higher power of 2
pow2 Base 2 power and scale floating-point number
reallog Natural logarithm for nonnegative real arrays
realpow Array power for real-only output
realsqrt Square root for nonnegative real arrays
sqrt Square root

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
cplxpair Sort numbers into complex conjugate pairs
i Imaginary unit
imag Complex imaginary part
isreal True for real array
j Imaginary unit
real Complex real part
unwrap Unwrap phase angle

Rounding and Remainder
fix Round towards zero
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus after division
rem Remainder after division
sign Signum

Mathematics

1-13

Discrete Math (e.g., Prime Factors)
factor Prime factors
factorial Factorial function
gcd Greatest common divisor
isprime True for prime numbers
lcm Least common multiple
nchoosek All combinations of N elements taken K at a time
perms All possible permutations
primes Generate list of prime numbers
rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms
• “Basic Operations”

• “Finite Differences”

• “Correlation”

• “Filtering and Convolution”

• “Fourier Transforms”

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of array
prod Product of array elements
sort Sort elements in ascending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

1 Functions – By Category

1-14

Correlation
corrcoef Correlation coefficients
cov Covariance matrix
subspace Angle between two subspaces

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
convn N-dimensional convolution
deconv Deconvolution and polynomial division
detrend Linear trend removal
filter Filter data with infinite impulse response (IIR) or finite

impulse response (FIR) filter
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
fft One-dimensional discrete Fourier transform
fft2 Two-dimensional discrete Fourier transform
fftn N-dimensional discrete Fourier Transform
fftshift Shift DC component of discrete Fourier transform to center of

spectrum
ifft Inverse one-dimensional discrete Fourier transform
ifft2 Inverse two-dimensional discrete Fourier transform
ifftn Inverse multidimensional discrete Fourier transform
ifftshift Inverse fast Fourier transform shift
nextpow2 Next power of two
unwrap Correct phase angles

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial

Mathematics

1-15

coefficients
roots Polynomial roots

Interpolation and Computational Geometry
• “Interpolation”

• “Delaunay Triangulation and Tessellation”

• “Convex Hull”

• “Voronoi Diagrams”

• “Domain Generation”

Interpolation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional

data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using fast Fourier transform

method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
mkpp Make piecewise polynomial
ndgrid Generate arrays for multidimensional functions and

interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearchn Multidimensional closest simplex search
unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation
delaunay Delaunay triangulation
delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search

1 Functions – By Category

1-16

tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot Two-dimensional triangular plot
trisurf Triangular surface plot
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

Convex Hull
convhull Convex hull
convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams
dsearch Search for nearest point
patch Create patch graphics object
plot Linear two-dimensional plot
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams

Domain Generation
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and

interpolation

Coordinate System Conversion

Cartesian
cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods
• “Ordinary Differential Equations (IVP)”

• “Delay Differential Equations”

• “Boundary Value Problems”

Mathematics

1-17

• “Partial Differential Equations”

• “Optimization”

• “Numerical Integration (Quadrature)”

Ordinary Differential Equations (IVP)
deval Evaluate solution of differential equation problem
ode113 Solve non-stiff differential equations, variable order method
ode15s Solve stiff ODEs and DAEs Index 1, variable order method
ode23 Solve non-stiff differential equations, low order method
ode23s Solve stiff differential equations, low order method
ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal

rule
ode23tb Solve stiff differential equations, low order method
ode45 Solve non-stiff differential equations, medium order method
odeget Get ODE options parameters
odeset Create/alter ODE options structure

Delay Differential Equations
dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters
ddeset Create/alter DDE options structure

Boundary Value Problems
bvp4c Solve two-point boundary value problems for ODEs by

collocation
bvpget Get BVP options parameters
bvpset Create/alter BVP options structure
deval Evaluate solution of differential equation problem

Partial Differential Equations
pdepe Solve initial-boundary value problems for parabolic-elliptic

PDEs
pdeval Evaluates by interpolation solution computed by pdepe

Optimization
fminbnd Scalar bounded nonlinear function minimization
fminsearch Multidimensional unconstrained nonlinear minimization, by

Nelder-Mead direct search method
fzero Scalar nonlinear zero finding
lsqnonneg Linear least squares with nonnegativity constraints

1 Functions – By Category

1-18

optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

Numerical Integration (Quadrature)
quad Numerically evaluate integral, adaptive Simpson quadrature

(low order)
quadl Numerically evaluate integral, adaptive Lobatto quadrature

(high order)
dblquad Numerically evaluate double integral
triplequad Numerically evaluate triple integral

Specialized Math
airy Airy functions
besselh Bessel functions of third kind (Hankel functions)
besseli Modified Bessel function of first kind
besselj Bessel function of first kind
besselk Modified Bessel function of second kind
bessely Bessel function of second kind
beta Beta function
betainc Incomplete beta function
betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of first and second kind
erf Error function
erfc Complementary error function
erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
legendre Associated Legendre functions
psi Psi (polygamma) function

Sparse Matrices
• “Elementary Sparse Matrices”

• “Full to Sparse Conversion”

• “Working with Sparse Matrices”

Mathematics

1-19

• “Reordering Algorithms”

• “Linear Algebra”

• “Linear Equations (Iterative Methods)”

• “Tree Operations”

Elementary Sparse Matrices
spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse random symmetric matrix

Full to Sparse Conversion
find Find indices of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import from sparse matrix external format

Working with Sparse Matrices
issparse True for sparse matrix
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero matrix elements
spones Replace nonzero sparse matrix elements with ones
spparms Set parameters for sparse matrix routines
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd Column minimum degree permutation
colperm Column permutation
dmperm Dulmage-Mendelsohn permutation
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symmmd Symmetric minimum degree permutation
symrcm Symmetric reverse Cuthill-McKee permutation

1 Functions – By Category

1-20

Linear Algebra
cholinc Incomplete Cholesky factorization
condest 1-norm condition number estimate
eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization
normest Estimate matrix 2-norm
sprank Structural rank
svds Singular values and vectors of sparse matrix

Linear Equations (Iterative Methods)
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
gmres Generalized Minimum Residual method
lsqr LSQR implementation of Conjugate Gradients on Normal

Equations
minres Minimum Residual method
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
spaugment Form least squares augmented system
symmlq Symmetric LQ method

Tree Operations
etree Elimination tree
etreeplot Plot elimination tree
gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity, ∞
j Imaginary unit
NaN Not-a-Number
pi Ratio of a circle’s circumference to its diameter, π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number

Programming and Data Types

1-21

Programming and Data Types
Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB
programs.

Data Types
• “Numeric”

• “Characters and Strings”

• “Structures”

• “Cell Arrays”

• “Data Type Conversion”

• “Determine Data Type”

Numeric
[] Array constructor
cat Concatenate arrays
class Return object’s class name (e.g., numeric)
find Find indices and values of nonzero array elements
ipermute Inverse permute dimensions of multidimensional array
isa Detect object of given class (e.g., numeric)
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal
isnumeric Determine if item is numeric array
isreal Determine if all array elements are real numbers
permute Rearrange dimensions of multidimensional array

“Data Types” Numeric, character, structures, cell arrays,
and data type conversion

“Arrays” Basic array operations and manipulation

“Operators and Operations” Special characters and arithmetic, bit-wise,
relational, logical, set, date and time
operations

“Programming in MATLAB” M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

1 Functions – By Category

1-22

reshape Reshape array
squeeze Remove singleton dimensions from array
zeros Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings Describes MATLAB string handling

Creating and Manipulating Strings

blanks Create string of blanks
char Create character array (string)
cellstr Create cell array of strings from character array
datestr Convert to date string format
deblank Strip trailing blanks from the end of string
lower Convert string to lower case
sprintf Write formatted data to string
sscanf Read string under format control
strcat String concatenation
strjust Justify character array
strread Read formatted data from string
strrep String search and replace
strvcat Vertical concatenation of strings
upper Convert string to upper case

Comparing and Searching Strings

class Return object’s class name (e.g., char)
findstr Find string within another, longer string
isa Detect object of given class (e.g., char)
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isletter Detect array elements that are letters of the alphabet
isspace Detect elements that are ASCII white spaces
regexp Match regular expression
regexpi Match regular expression, ignoring case
regexprep Replace string using regular expression
strcmp Compare strings
strcmpi Compare strings, ignoring case
strfind Find one string within another
strmatch Find possible matches for string
strncmp Compare first n characters of strings

Programming and Data Types

1-23

strncmpi Compare first n characters of strings, ignoring case
strtok First token in string

Evaluating String Expressions

eval Execute string containing MATLAB expression
evalc Evaluate MATLAB expression with capture
evalin Execute string containing MATLAB expression in workspace

Structures
cell2struct Cell array to structure array conversion
class Return object’s class name (e.g., struct)
deal Deal inputs to outputs
fieldnames Field names of structure
isa Detect object of given class (e.g., struct)
isequal Determine if arrays are numerically equal
isfield Determine if item is structure array field
isstruct Determine if item is structure array
orderfields Order fields of a structure array
rmfield Remove structure fields
struct Create structure array
struct2cell Structure to cell array conversion

Cell Arrays
{ } Construct cell array
cell Construct cell array
cellfun Apply function to each element in cell array
cellstr Create cell array of strings from character array
cell2mat Convert cell array of matrices into single matrix
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display structure of cell arrays
class Return object’s class name (e.g., cell)
deal Deal inputs to outputs
isa Detect object of given class (e.g., cell)
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
isequal Determine if arrays are numerically equal
mat2cell Divide matrix up into cell array of matrices
num2cell Convert numeric array into cell array
struct2cell Structure to cell array conversion

1 Functions – By Category

1-24

Data Type Conversion

Numeric

double Convert to double-precision
int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

String to Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number
str2num Convert string to number

Numeric to String

char Convert to character array (string)
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string
mat2str Convert a matrix to string
num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices into single matrix
cell2struct Convert cell array to structure array
datestr Convert serial date number to string
func2str Convert function handle to function name string
logical Convert numeric to logical array
mat2cell Divide matrix up into cell array of matrices
num2cell Convert a numeric array to cell array
str2func Convert function name string to function handle
struct2cell Convert structure to cell array

Programming and Data Types

1-25

Determine Data Type
is* Detect state
isa Detect object of given MATLAB class or Java class
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isfield Determine if item is character array
isjava Determine if item is Java object
islogical Determine if item is logical array
isnumeric Determine if item is numeric array
isobject Determine if item is MATLAB OOPs object
isstruct Determine if item is MATLAB structure array

Arrays
• “Array Operations”

• “Basic Array Information”

• “Array Manipulation”

• “Elementary Arrays”

Array Operations
[] Array constructor
, Array row element separator
; Array column element separator
: Specify range of array elements
end Indicate last index of array
+ Addition or unary plus
- Subtraction or unary minus
.* Array multiplication
./ Array right division
.\ Array left division
.^ Array power
.' Array (nonconjugated) transpose

Basic Array Information
disp Display text or array
display Overloaded method to display text or array
isempty Determine if array is empty
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal

1 Functions – By Category

1-26

isnumeric Determine if item is numeric array
islogical Determine if item is logical array
length Length of vector
ndims Number of array dimensions
numel Number of elements in matrix or cell array
size Array dimensions

Array Manipulation
: Specify range of array elements
blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays
circshift Shift array circularly
find Find indices and values of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip array along specified dimension
horzcat Horizontal concatenation
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
shiftdim Shift dimensions
sort Sort elements in ascending order
sortrows Sort rows in ascending order
squeeze Remove singleton dimensions
sub2ind Single index from subscripts
vertcat Horizontal concatenation

Elementary Arrays
: Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and

interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create array of all zeros

Programming and Data Types

1-27

Operators and Operations
• “Special Characters”

• “Arithmetic Operations”

• “Bit-wise Operations”

• “Relational Operations”

• “Logical Operations”

• “Set Operations”

• “Date and Time Operations”

Special Characters
: Specify range of array elements
() Pass function arguments, or prioritize operations
[] Construct array
{ } Construct cell array
. Decimal point, or structure field separator
... Continue statement to next line
, Array row element separator
; Array column element separator
% Insert comment line into code
! Command to operating system
= Assignment

Arithmetic Operations
+ Plus
- Minus
. Decimal point
= Assignment
* Matrix multiplication
/ Matrix right division
\ Matrix left division
^ Matrix power
' Matrix transpose
.* Array multiplication (element-wise)
./ Array right division (element-wise)
.\ Array left division (element-wise)
.^ Array power (element-wise)
.' Array transpose

1 Functions – By Category

1-28

Bit-wise Operations
bitand Bit-wise AND
bitcmp Bit-wise complement
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit at specified position
bitshift Bit-wise shift
bitget Get bit at specified position
bitxor Bit-wise XOR

Relational Operations
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

Logical Operations
&& Logical AND
|| Logical OR
& Logical AND for arrays
| Logical OR for arrays
~ Logical NOT
all Test to determine if all elements are nonzero
any Test for any nonzero elements
false False array
find Find indices and values of nonzero elements
is* Detect state
isa Detect object of given class
iskeyword Determine if string is MATLAB keyword
isvarname Determine if string is valid variable name
logical Convert numeric values to logical
true True array
xor Logical EXCLUSIVE OR

Set Operations
intersect Set intersection of two vectors
ismember Detect members of set
setdiff Return set difference of two vectors
issorted Determine if set elements are in sorted order

Programming and Data Types

1-29

setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of vector

Date and Time Operations
calendar Calendar for specified month
clock Current time as date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Convert serial date number to string
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Programming in MATLAB
• “M-File Functions and Scripts”

• “Evaluation of Expressions and Functions”

• “Timer Functions”

• “Variables and Functions in Memory”

• “Control Flow”

• “Function Handles”

• “Object-Oriented Programming”

• “Error Handling”

• “MEX Programming”

M-File Functions and Scripts
() Pass function arguments
% Insert comment line into code
... Continue statement to next line
depfun List dependent functions of M-file or P-file
depdir List dependent directories of M-file or P-file
function Function M-files
input Request user input

1 Functions – By Category

1-30

inputname Input argument name
mfilename Name of currently running M-file
namelengthmaxReturn maximum identifier length
nargin Number of function input arguments
nargout Number of function output arguments
nargchk Check number of input arguments
nargoutchk Validate number of output arguments
pcode Create preparsed pseudocode file (P-file)
script Describes script M-file
varargin Accept variable number of arguments
varargout Return variable number of arguments

Evaluation of Expressions and Functions
builtin Execute builtin function from overloaded method
cellfun Apply function to each element in cell array
eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace
feval Evaluate function
iskeyword Determine if item is MATLAB keyword
isvarname Determine if item is valid variable name
pause Halt execution temporarily
run Run script that is not on current path
script Describes script M-file
symvar Determine symbolic variables in expression
tic, toc Stopwatch timer

Timer Functions
delete Delete timer object from memory
disp Display information about timer object
get Retrieve information about timer object properties
isvalid Determine if timer object is valid
set Display or set timer object properties
start Start a timer
startat Start a timer at a specific timer
stop Stop a timer
timer Create a timer object
timerfind Return an array of all timer object in memory
wait Block command line until timer completes

Variables and Functions in Memory
assignin Assign value to workspace variable

Programming and Data Types

1-31

global Define global variables
inmem Return names of functions in memory
isglobal Determine if item is global variable
mislocked True if M-file cannot be cleared
mlock Prevent clearing M-file from memory
munlock Allow clearing M-file from memory
namelengthmaxReturn maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable
rehash Refresh function and file system caches

Control Flow
break Terminate execution of for loop or while loop
case Case switch
catch Begin catch block
continue Pass control to next iteration of for or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminate conditional statements, or indicate last index
error Display error messages
for Repeat statements specific number of times
if Conditionally execute statements
otherwise Default part of switch statement
return Return to invoking function
switch Switch among several cases based on expression
try Begin try block
while Repeat statements indefinite number of times

Function Handles
class Return object’s class name (e.g. function_handle)
feval Evaluate function
function_handle

Describes function handle data type
functions Return information about function handle
func2str Constructs function name string from function handle
isa Detect object of given class (e.g. function_handle)
isequal Determine if function handles are equal
str2func Constructs function handle from function name string

1 Functions – By Category

1-32

Object-Oriented Programming

MATLAB Classes and Objects

class Create object or return class of object
fieldnames List public fields belonging to object,
inferiorto Establish inferior class relationship
isa Detect object of given class
isobject Determine if item is MATLAB OOPs object
loadobj User-defined extension of load function for user objects
methods Display method names
methodsview Displays information on all methods implemented by class
saveobj User-defined extension of save function for user objects
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B
subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I} and A.field
substruct Create structure argument for subsasgn or subsref
superiorto Establish superior class relationship

Java Classes and Objects

cell Convert Java array object to cell array
class Return class name of Java object
clear Clear Java packages import list
depfun List Java classes used by M-file
exist Detect if item is Java class
fieldnames List public fields belonging to object
im2java Convert image to instance of Java image object
import Add package or class to current Java import list
inmem List names of Java classes loaded into memory
isa Detect object of given class
isjava Determine whether object is Java object
javaArray Constructs Java array
javaMethod Invokes Java method
javaObject Constructs Java object
methods Display methods belonging to class
methodsview Display information on all methods implemented by class
which Display package and class name for method

Error Handling
catch Begin catch block of try/catch statement
error Display error message
ferror Query MATLAB about errors in file input or output

Programming and Data Types

1-33

lasterr Return last error message generated by MATLAB
lasterror Last error message and related information
lastwarn Return last warning message issued by MATLAB
rethrow Reissue error
try Begin try block of try/catch statement
warning Display warning message

MEX Programming
dbmex Enable MEX-file debugging
inmem Return names of currently loaded MEX-files
mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1 Functions – By Category

1-34

File I/O
Functions to read and write data to files of different format types.

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction
fileparts Return parts of filename
filesep Return directory separator for this platform
fullfile Build full filename from parts
tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

Opening, Loading, Saving Files
importdata Load data from various types of files
load Load all or specific data from MAT or ASCII file
open Open files of various types using appropriate editor or program
save Save all or specific data to MAT or ASCII file
winopen Open file in appropriate application (Windows only)

“Filename Construction” Get path, directory, filename
information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between files
and MATLAB workspace

“Low-Level File I/O” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted I/O to text files

“XML Documents” Documents written in Extensible
Markup Language

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions; SparcStation,
Wave, AVI files

“Images” Graphics files

File I/O

1-35

Low-Level File I/O
fclose Close one or more open files
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
fgetl Return next line of file as string without line terminator(s)
fgets Return next line of file as string with line terminator(s)
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file
frewind Rewind open file
fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

Text Files
csvread Read numeric data from text file, using comma delimiter
csvwrite Write numeric data to text file, using comma delimiter
dlmread Read numeric data from text file, specifying your own delimiter
dlmwrite Write numeric data to text file, specifying your own delimiter
textread Read data from text file, specifying format for each value

XML Documents
xmlread Parse XML document
xmlwrite Serialize XML Document Object Model node
xslt Transform XML document using XSLT engine

Spreadsheets

Microsoft Excel Functions
xlsfinfo Determine if file contains Microsoft Excel (.xls) spreadsheet
xlsread Read Microsoft Excel spreadsheet file (.xls)

Lotus123 Functions
wk1read Read Lotus123 WK1 spreadsheet file into matrix
wk1write Write matrix to Lotus123 WK1 spreadsheet file

1 Functions – By Category

1-36

Scientific Data

Common Data Format (CDF)
cdfinfo Return information about CDF file
cdfread Read CDF file

Flexible Image Transport System
fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)
hdf Interface to HDF files
hdfinfo Return information about HDF or HDF-EOS file
hdfread Read HDF file

Audio and Audio/Video

General
audioplayer Create audio player object
audiorecorderPerform real-time audio capture
beep Produce beep sound
lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions
wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

File I/O

1-37

Audio Video Interleaved (AVI) Functions
addframe Add frame to AVI file
avifile Create new AVI file
aviinfo Return information about AVI file
aviread Read AVI file
close Close AVI file
movie2avi Create AVI movie from MATLAB movie

Images
im2java Convert image to instance of Java image object
imfinfo Return information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file

1 Functions – By Category

1-38

Graphics
2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs
box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars
hold Hold current graph
LineSpec Line specification syntax
loglog Plot using log-log scales
polar Polar coordinate plot
plot Plot vectors or matrices.
plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Annotating Plots
clabel Add contour labels to contour plot
datetick Date formatted tick labels
gtext Place text on 2-D graph using mouse
legend Graph legend for lines and patches
texlabel Produce the TeX format from character string

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour plots,
function plotters

Bit-Mapped Images Display image object, read and write graphics file,
convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,
finding handles

Graphics

1-39

title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Specialized Plotting
• “Area, Bar, and Pie Plots”

• “Contour Plots”

• “Direction and Velocity Plots”

• “Discrete Data Plots”

• “Function Plots”

• “Histograms”

• “Polygons and Surfaces”

• “Scatter Plots”

• “Animation”

Area, Bar, and Pie Plots
area Area plot
bar Vertical bar chart
barh Horizontal bar chart
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char
pie Pie plot
pie3 3-D pie plot

Contour Plots
contour Contour (level curves) plot
contour3 3-D contour plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter

Direction and Velocity Plots
comet Comet plot
comet3 3-D comet plot

1 Functions – By Category

1-40

compass Compass plot
feather Feather plot
quiver Quiver (or velocity) plot
quiver3 3-D quiver (or velocity) plot

Discrete Data Plots
stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
fplot Plot a function

Histograms
hist Plot histograms
histc Histogram count
rose Plot rose or angle histogram

Polygons and Surfaces
convhull Convex hull
cylinder Generate cylinder
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
ellipsoid Generate ellipsoid
fill Draw filled 2-D polygons
fill3 Draw filled 3-D polygons in 3-space
inpolygon True for points inside a polygonal region
pcolor Pseudocolor (checkerboard) plot
polyarea Area of polygon
ribbon Ribbon plot
slice Volumetric slice plot
sphere Generate sphere

Graphics

1-41

tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
waterfall Waterfall plot

Scatter Plots
plotmatrix Scatter plot matrix
scatter Scatter plot
scatter3 3-D scatter plot

Animation
frame2im Convert movie frame to indexed image
getframe Capture movie frame
im2frame Convert image to movie frame
movie Play recorded movie frames
noanimate Change EraseMode of all objects to normal

Bit-Mapped Images
frame2im Convert movie frame to indexed image
image Display image object
imagesc Scale data and display image object
imfinfo Information about graphics file
imformats Manage file format registry
im2frame Convert image to movie frame
im2java Convert image to instance of Java image object
imread Read image from graphics file
imwrite Write image to graphics file
ind2rgb Convert indexed image to RGB image

Printing
frameedit Edit print frame for Simulink and Stateflow diagram
orient Hardcopy paper orientation
pagesetupdlg Page position dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
printpreview Preview figure to be printed
saveas Save figure to graphic file

1 Functions – By Category

1-42

Handle Graphics
• Finding and Identifying Graphics Objects

• Object Creation Functions

• Figure Windows

• Axes Operations

Finding and Identifying Graphics Objects
allchild Find all children of specified objects
copyobj Make copy of graphics object and its children
delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
figflag Test if figure is on screen
findfigs Display off-screen visible figure windows
findobj Find objects with specified property values
gca Get current Axes handle
gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing callback object
gco Return handle of current object
get Get object properties
ishandle True if value is valid object handle
set Set object properties

Object Creation Functions
axes Create axes object
figure Create figure (graph) windows
image Create image (2-D matrix)
light Create light object (illuminates Patch and Surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D rectangle)
rootobject List of root properties
surface Create surface (quadrilaterals)
text Create text object (character strings)
uicontextmenuCreate context menu (popup associated with object)

Figure Windows
capture Screen capture of the current figure
clc Clear figure window
clf Clear figure

Graphics

1-43

close Close specified window
closereq Default close request function
drawnow Complete any pending drawing
figflag Test if figure is on screen
gcf Get current figure handle
hgload Load graphics object hierarchy from a FIG-file
hgsave Save graphics object hierarchy to a FIG-file
newplot Graphics M-file preamble for NextPlot property
opengl Change automatic selection mode of OpenGL rendering
refresh Refresh figure
saveas Save figure or model to desired output format

Axes Operations
axis Plot axis scaling and appearance
box Display axes border
cla Clear Axes
gca Get current Axes handle
grid Grid lines for 2-D and 3-D plots
ishold Get the current hold state

1 Functions – By Category

1-44

3-D Visualization
Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots
• Creating Surfaces and Meshes

• Domain Generation

• Color Operations

• Colormaps

Creating Surfaces and Meshes
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Surface and Mesh Plots Plot matrices, visualize functions of two variables,
specify colormap

View Control Control the camera viewpoint, zooming, rotation,
aspect ratio, set axis limits

Lighting Add and control scene lighting

Transparency Specify and control object transparency

Volume Visualization Visualize gridded volume data

3-D Visualization

1-45

Color Operations
brighten Brighten or darken color map
caxis Pseudocolor axis scaling
colormapeditorStart colormap editor
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion
rgbplot Plot color map
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow color map
bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast
cool Shades of cyan and magenta color map
copper Linear copper-tone color map
flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map
hot Black-red-yellow-white color map
hsv Hue-saturation-value (HSV) color map
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
winter Shades of blue and green color map

View Control
• Controlling the Camera Viewpoint

• Setting the Aspect Ratio and Axis Limits

• Object Manipulation

• Selecting Region of Interest

1 Functions – By Category

1-46

Controlling the Camera Viewpoint
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
xlim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits

Object Manipulation
reset Reset axis or figure
rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizeInteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest
dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

Lighting
camlight Cerate or position Light
light Light object creation function
lightangle Position light in sphereical coordinates
lighting Lighting mode
material Material reflectance mode

3-D Visualization

1-47

Transparency
alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
curl Compute curl and angular velocity of vector field
divergence Compute divergence of vector field
flow Generate scalar volume data
interpstreamspeedInterpolate streamline vertices from vector-field

magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and

vector)

1 Functions – By Category

1-48

Creating Graphical User Interfaces
Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes
dialog Create dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetdir Display dialog box to retrieve name of directory
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Set ColorSpec using dialog box
uisetfont Set font using dialog box
waitbar Display wait bar
warndlg Create warning dialog box

Predefined Dialog Boxes Dialog boxes for error, user input, waiting, etc.

Deploying User
Interfaces

Launching GUIs, creating the handles structure

Developing User
Interfaces

Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding Objects from
Callbacks

Finding object handles from within callbacks
functions

GUI Utility Functions Moving objects, text wrapping

Controlling Program
Execution

Wait and resume based on user input

Creating Graphical User Interfaces

1-49

Deploying User Interfaces
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces
guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input
ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects
menu Generate menu of choices for user input
uicontextmenuCreate context menu
uicontrol Create user interface control
uimenu Create user interface menu

Finding Objects from Callbacks
findall Find all graphics objects
findfigs Display off-screen visible figure windows
findobj Find specific graphics object
gcbf Return handle of figure containing callback object
gcbo Return handle of object whose callback is executing

GUI Utility Functions
selectmoveresizeSelect, move, resize, or copy axes and uicontrol graphics

objects
textwrap Return wrapped string matrix for given uicontrol

1 Functions – By Category

1-50

Controlling Program Execution
uiresume Resumes program execution halted with uiwait
uiwait Halts program execution, restart with uiresume

2

Functions – Alphabetical
List

2 Functions – Alphabetical List

2-2

factor . 2-12
factorial . 2-13
false . 2-14
fclose . 2-15
fclose (serial) . 2-16
feather . 2-17
feof . 2-19
ferror . 2-20
feval . 2-21
fft . 2-23
fft2 . 2-27
fftn . 2-28
fftshift . 2-29
fgetl . 2-30
fgetl (serial) . 2-31
fgets . 2-33
fgets (serial) . 2-34
fieldnames . 2-36
figflag . 2-38
figure . 2-40
Figure Properties . 2-49
file formats . 2-74
fileattrib . 2-77
filebrowser . 2-83
fileparts . 2-84
filesep . 2-85
fill . 2-86
fill3 . 2-89
filter . 2-92
filter2 . 2-95
find . 2-96
findall . 2-98
findfigs . 2-99
findobj . 2-100
findstr . 2-102
finish . 2-103
fitsinfo . 2-104

2-3

fitsread . 2-112
fix . 2-114
flipdim . 2-115
fliplr . 2-116
flipud . 2-117
floor . 2-119
flops . 2-120
flow . 2-121
fmin . 2-122
fminbnd . 2-125
fmins . 2-128
fminsearch . 2-131
fopen . 2-135
fopen (serial) . 2-138
for . 2-140
format . 2-142
fplot . 2-145
fprintf . 2-149
fprintf (serial) . 2-155
frame2im . 2-158
frameedit . 2-159
fread . 2-162
fread (serial) . 2-167
freeserial . 2-171
freqspace . 2-172
frewind . 2-173
fscanf . 2-174
fscanf (serial) . 2-177
fseek . 2-180
ftell . 2-182
full . 2-183
fullfile . 2-184
func2str . 2-185
function . 2-186
function_handle (@) . 2-188
functions . 2-190
funm . 2-191

2 Functions – Alphabetical List

2-4

fwrite . 2-193
fwrite (serial) . 2-194
fzero . 2-198
gallery . 2-202
gamma, gammainc, gammaln . 2-223
gca . 2-225
gcbf . 2-226
gcbo . 2-227
gcd . 2-228
gcf . 2-230
gco . 2-231
genpath . 2-232
get . 2-235
get (COM) . 2-238
get (serial) . 2-240
get (timer) . 2-242
getappdata . 2-244
getenv . 2-245
getfield . 2-246
getframe . 2-248
ginput . 2-251
global . 2-252
gmres . 2-254
gplot . 2-259
gradient . 2-261
graymon . 2-264
grid . 2-265
griddata . 2-266
griddata3 . 2-269
griddatan . 2-270
gsvd . 2-272
gtext . 2-277
guidata . 2-278
guide . 2-280
guihandles . 2-281
hadamard . 2-282
hankel . 2-283

2-5

hdf . 2-284
hdfinfo . 2-286
hdfread . 2-293
hdftool . 2-304
help . 2-305
helpbrowser . 2-308
helpdesk . 2-310
helpdlg . 2-311
helpwin . 2-313
hess . 2-314
hex2dec . 2-316
hex2num . 2-317
hgload . 2-318
hgsave . 2-319
hidden . 2-320
hilb . 2-321
hist . 2-322
histc . 2-325
hold . 2-326
home . 2-327
horzcat . 2-328
hsv2rgb . 2-330
i . 2-331
if . 2-332
ifft . 2-335
ifft2 . 2-336
ifftn . 2-337
ifftshift . 2-338
im2frame . 2-339
im2java . 2-340
imag . 2-342
image . 2-343
Image Properties . 2-350
imagesc . 2-359
imfinfo . 2-362
imformats . 2-366
import . 2-368

2 Functions – Alphabetical List

2-6

importdata . 2-370
imread . 2-371
imwrite . 2-379
ind2rgb . 2-388
ind2sub . 2-389
Inf . 2-392
inferiorto . 2-393
info . 2-394
inline . 2-395
inmem . 2-398
inpolygon . 2-399
input . 2-400
inputdlg . 2-401
inputname . 2-403
inspect . 2-404
instrcallback . 2-406
instrfind . 2-407
int2str . 2-409
int8, int16, int32, int64 . 2-410
interp1 . 2-412
interp2 . 2-417
interp3 . 2-420
interpft . 2-422
interpn . 2-423
interpstreamspeed . 2-425
intersect . 2-429
inv . 2-430
invhilb . 2-433
invoke (COM) . 2-434
ipermute . 2-436
is* . 2-437
isa . 2-439
isappdata . 2-441
iscell . 2-442
iscellstr . 2-443
ischar . 2-444
isempty . 2-445

2-7

isequal . 2-446
isequalwithequalnans . 2-448
isevent (COM) . 2-449
isfield . 2-450
isfinite . 2-451
isglobal . 2-452
ishandle . 2-453
ishold . 2-454
isinf . 2-455
isjava . 2-456
iskeyword . 2-457
isletter . 2-459
islogical . 2-460
ismember . 2-461
ismethod (COM) . 2-463
isnan . 2-464
isnumeric . 2-465
isobject . 2-466
isocaps . 2-467
isocolors . 2-469
isonormals . 2-473
isosurface . 2-475
ispc . 2-478
isprime . 2-479
isprop (COM) . 2-480
isreal . 2-481
isruntime . 2-483
issorted . 2-484
isspace . 2-486
issparse . 2-487
isstr . 2-488
isstruct . 2-489
isstudent . 2-490
isunix . 2-491
isvalid . 2-492
isvalid (timer) . 2-493
isvarname . 2-494

2 Functions – Alphabetical List

2-8

j . 2-495
javaArray . 2-496
javachk . 2-497
javaMethod . 2-499
javaObject . 2-501
keyboard . 2-503
kron . 2-504
lasterr . 2-506
lasterror . 2-508
lastwarn . 2-510
lcm . 2-512
legend . 2-513
legendre . 2-517
length . 2-520
length (serial) . 2-521
license . 2-522
light . 2-524
Light Properties . 2-528
lightangle . 2-533
lighting . 2-534
lin2mu . 2-535
line . 2-536
Line Properties . 2-543
LineSpec . 2-551
linspace . 2-557
listdlg . 2-558
load . 2-560
load (COM) . 2-562
load (serial) . 2-563
loadobj . 2-565
log . 2-567
log10 . 2-568
log2 . 2-569
logical . 2-570
loglog . 2-571
logm . 2-573
logspace . 2-575

2-9

lookfor . 2-576
lower . 2-577
ls . 2-578
lscov . 2-579
lsqnonneg . 2-580
lsqr . 2-583
lu . 2-587
luinc . 2-593
magic . 2-600
mat2cell . 2-603
mat2str . 2-606
material . 2-607
matlab . 2-609
matlabrc . 2-618
matlabroot . 2-619
max . 2-620
mean . 2-621
median . 2-622
memory . 2-623
menu . 2-624
mesh, meshc, meshz . 2-625
meshgrid . 2-629
methods . 2-631
methodsview . 2-633
mex . 2-635
mexext . 2-637
mfilename . 2-638
min . 2-639
minres . 2-640
mislocked . 2-644
mkdir . 2-645
mkpp . 2-647
mlock . 2-650
mod . 2-651
more . 2-652
move (COM) . 2-653
movefile . 2-655

2 Functions – Alphabetical List

2-10

movegui . 2-658
movie . 2-660
movie2avi . 2-662
moviein . 2-664
msgbox . 2-665
mu2lin . 2-667
multibandread . 2-668
multibandwrite . 2-672
munlock . 2-676
namelengthmax . 2-677
NaN . 2-678
nargchk . 2-679
nargin, nargout . 2-680
nargoutchk . 2-682
nchoosek . 2-683
ndgrid . 2-684
ndims . 2-686
newplot . 2-687
nextpow2 . 2-689
nnls . 2-690
nnz . 2-692
noanimate . 2-693
nonzeros . 2-694
norm . 2-695
normest . 2-697
notebook . 2-698
now . 2-699
null . 2-700
num2cell . 2-702
num2str . 2-703
numel . 2-704
nzmax . 2-706
ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb 2-707
odefile . 2-717
odeget . 2-723
odeset . 2-724
ones . 2-730

2-11

open . 2-731
openfig . 2-734
opengl . 2-736
openvar . 2-737
optimget . 2-738
optimset . 2-739
orderfields . 2-744
orient . 2-746
orth . 2-748
otherwise . 2-749

factor

2-12

2factorPurpose Prime factors

Syntax f = factor(n)

Description f = factor(n) returns a row vector containing the prime factors of n.

Examples f = factor(123)
f =
 3 41

See Also isprime, primes

factorial

2-13

2factorialPurpose Factorial function

Syntax factorial(n)

Description factorial(n) is the product of all the integers from 1 to n, i.e. prod(1:n).
Since double pricision numbers only have about 15 digits, the answer is only
accurate for n <= 21. For larger n, the answer will have the right magnitute,
and is accurate for the first 15 digits.

See Also prod

false

2-14

2falsePurpose False array

Syntax false
false(n)
false(m,n)
false(m,n,p,...)
false(size(A))

Description false is shorthand for logical(0).

false(n) is an n-by-n matrix of logical zeros.

false(m,n) or false([m,n]) is an m-by-n matrix of logical zeros.

false(m,n,p,...) or false([m n p ...]) is an m-by-n-by-p-by-... array of
logical zeros.

false(size(A)) is an array of logical zeros that is the same size as array A.

Remarks false(n) is much faster and more memory efficient than logical(zeros(n)).

See Also true, logical

fclose

2-15

2fclosePurpose Close one or more open files

Syntax status = fclose(fid)
status = fclose('all')

Description status = fclose(fid) closes the specified file, if it is open, returning 0 if
successful and –1 if unsuccessful. Argument fid is a file identifier associated
with an open file. (See fopen for a complete description of fid).

status = fclose('all') closes all open files, (except standard input, output,
and error), returning 0 if successful and –1 if unsuccessful.

See Also ferror, fopen, fprintf, fread, frewind, fscanf, fseek, ftell, fwrite

fclose (serial)

2-16

2fclose (serial)Purpose Disconnect a serial port object from the device

Syntax fclose(obj)

Arguments

Description fclose(obj) disconnects obj from the device.

Remarks If obj was successfully disconnected, then the Status property is configured to
closed and the RecordStatus property is configured to off. You can reconnect
obj to the device using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with the
stopasync function, or wait for the write operation to complete.

If you use the help command to display help for fclose, then you need to
supply the pathname shown below.

help serial/fclose

Example This example creates the serial port object s, connects s to the device, writes
and reads text data, and then disconnects s from the device using fclose.

s = serial('COM1');
fopen(s)
fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

At this point, the device is available to be connected to a serial port object. If
you no longer need s, you should remove from memory with the delete
function, and remove it from the workspace with the clear command.

See Also Functions
clear, delete, fopen, stopasync

Properties
RecordStatus, Status

obj A serial port object or an array of serial port objects.

feather

2-17

2featherPurpose Plot velocity vectors

Syntax feather(U,V)
feather(Z)
feather(...,LineSpec)

Description A feather plot displays vectors emanating from equally spaced points along a
horizontal axis. You express the vector components relative to the origin of the
respective vector.

feather(U,V) displays the vectors specified by U and V, where U contains the x
components as relative coordinates, and V contains the y components as
relative coordinates.

feather(Z) displays the vectors specified by the complex numbers in Z. This is
equivalent to feather(real(Z),imag(Z)).

feather(...,LineSpec) draws a feather plot using the line type, marker
symbol, and color specified by LineSpec.

Examples Create a feather plot showing the direction of theta.

theta = (–90:10:90)*pi/180;
r = 2*ones(size(theta));
[u,v] = pol2cart(theta,r);
feather(u,v);

feather

2-18

See Also compass, LineSpec, rose

“Direction and Velocity Plots” for related functions

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

feof

2-19

2feofPurpose Test for end-of-file

Syntax eofstat = feof(fid)

Description eofstat = feof(fid) returns 1 if the end-of-file indicator for the file, fid, has
been set, and 0 otherwise. (See fopen for a complete description of fid.)

The end-of-file indicator is set when there is no more input from the file.

See Also fopen

ferror

2-20

2ferrorPurpose Query MATLAB about errors in file input or output

Syntax message = ferror(fid)
message = ferror(fid,'clear')
[message,errnum] = ferror(...)

Description message = ferror(fid) returns the error string, message. Argument fid is a
file identifier associated with an open file (See fopen for a complete description
of fid).

message = ferror(fid,'clear') clears the error indicator for the specified
file.

[message,errnum] = ferror(...) returns the error status number errnum of
the most recent file I/O operation associated with the specified file.

If the most recent I/O operation performed on the specified file was successful,
the value of message is empty and ferror returns an errnum value of 0.

A nonzero errnum indicates that an error occurred in the most recent file I/O
operation. The value of message is a string that may contain information about
the nature of the error. If the message is not helpful, consult the C run-time
library manual for your host operating system for further details.

See Also fclose, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

feval

2-21

2fevalPurpose Function evaluation

Syntax [y1,y2,...] = feval(fhandle,x1,...,xn)
[y1,y2,...] = feval(function,x1,...,xn)

Description [y1,y2,...] = feval(fhandle,x1,...,xn) evaluates the function handle,
fhandle, using arguments x1 through xn. If the function handle is bound to
more than one built-in or M-file, (that is, it represents a set of overloaded
functions), then the data type of the arguments x1 through xn, determines
which function is dispatched to.

[y1,y2...] = feval(function,x1,...,xn) If function is a quoted string
containing the name of a function (usually defined by an M-file), then
feval(function,x1,...,xn) evaluates that function at the given arguments.
The function parameter must be a simple function name; it cannot contain
path information.

Note The preferred means of evaluating a function by reference is to use a
function handle. To support backward compatibility, feval also accepts a
function name string as a first argument. However, function handles offer the
additional performance, reliability, and source file control benefits listed in the
section “Benefits of Using Function Handles”.

Remarks The following two statements are equivalent.

[V,D] = eig(A)
[V,D] = feval(@eig,A)

Examples The following example passes a function handle, fhandle, in a call to fminbnd.
The fhandle argument is a handle to the humps function.

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

The fminbnd function uses feval to evaluate the function handle that was
passed in.

function [xf,fval,exitflag,output] = ...

feval

2-22

 fminbnd(funfcn,ax,bx,options,varargin)
 .
 .
 .
fx = feval(funfcn,x,varargin{:});

In the next example, @deblank returns a function handle to variable, fhandle.
Examining the handle using functions(fhandle) reveals that it is bound to
two M-files that implement the deblank function. The default, strfun\
deblank.m, handles most argument types. However, the function is overloaded
by a second M-file (in the @cell subdirectory) to handle cell array arguments
as well.

fhandle = @deblank;

ff = functions(fhandle);
ff.default
ans =
 matlabroot\toolbox\matlab\strfun\deblank.m
ff.methods
ans =
 cell: 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'

When the function handle is evaluated on a cell array, feval determines from
the argument type that the appropriate function to dispatch to is the one that
resides in strfun\@cell.

feval(fhandle, {'string ','with ','blanks '})
ans =
 'string' 'with' 'blanks'

See Also assignin, function_handle, functions, builtin, eval, evalin

fft

2-23

2fftPurpose Discrete Fourier transform

Syntax Y = fft(X)
Y = fft(X,n)
Y = fft(X,[],dim)
Y = fft(X,n,dim)

Definition The functions X = fft(x) and x = ifft(X) implement the transform and
inverse transform pair given for vectors of length by:

where

is an th root of unity.

Description Y = fft(X) returns the discrete Fourier transform (DFT) of vector X,
computed with a fast Fourier transform (FFT) algorithm.

If X is a matrix, fft returns the Fourier transform of each column of the matrix.

If X is a multidimensional array, fft operates on the first nonsingleton
dimension.

Y = fft(X,n) returns the n-point DFT. If the length of X is less than n, X is
padded with trailing zeros to length n. If the length of X is greater than n, the
sequence X is truncated. When X is a matrix, the length of the columns are
adjusted in the same manner.

Y = fft(X,[],dim) and Y = fft(X,n,dim) applies the FFT operation across
the dimension dim.

N

X k() x j()ω
N

j 1–() k 1–()

j 1=

N

∑=

x j() 1 N⁄() X k()ωN
j 1–() k 1–()–

k 1=

N

∑=

ωN e 2πi–() N⁄=

N

fft

2-24

Examples A common use of Fourier transforms is to find the frequency components of a
signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz.
Form a signal containing 50 Hz and 120 Hz and corrupt it with some zero-mean
random noise:

t = 0:0.001:0.6;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));
plot(1000*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')

It is difficult to identify the frequency components by looking at the original
signal. Converting to the frequency domain, the discrete Fourier transform of
the noisy signal y is found by taking the 512-point fast Fourier transform
(FFT):

Y = fft(y,512);

The power spectrum, a measurement of the power at various frequencies, is

Pyy = Y.* conj(Y) / 512;

0 10 20 30 40 50
−4

−3

−2

−1

0

1

2

3

4

5
Signal Corrupted with Zero−Mean Random Noise

time (milliseconds)

fft

2-25

Graph the first 257 points (the other 255 points are redundant) on a
meaningful frequency axis:

f = 1000*(0:256)/512;
plot(f,Pyy(1:257))
title('Frequency content of y')
xlabel('frequency (Hz)')

This represents the frequency content of y in the range from DC up to and
including the Nyquist frequency. (The signal produces the strong peaks.)

Algorithm The FFT functions (fft, fft2, fftn, ifft, ifft2, ifftn) are based on a library
called FFTW [3],[4]. To compute an -point DFT when is composite (that
is, when), the FFTW library decomposes the problem using the
Cooley-Tukey algorithm [1], which first computes transforms of size ,
and then computes transforms of size . The decomposition is applied
recursively to both the - and -point DFTs until the problem can be
solved using one of several machine-generated fixed-size “codelets.” The
codelets in turn use several algorithms in combination, including a variation of
Cooley-Tukey [5], a prime factor algorithm [6], and a split-radix algorithm [2].
The particular factorization of is chosen heuristically.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80
Frequency content of y

frequency (Hz)

N N
N N1N2=

N1 N2
N2 N1

N1 N2

N

fft

2-26

When is a prime number, the FFTW library first decomposes an -point
problem into three ()-point problems using Rader’s algorithm [7]. It then
uses the Cooley-Tukey decomposition described above to compute the
()-point DFTs.

For most , real-input DFTs require roughly half the computation time of
complex-input DFTs. However, when has large prime factors, there is little
or no speed difference.

The execution time for fft depends on the length of the transform. It is fastest
for powers of two. It is almost as fast for lengths that have only small prime
factors. It is typically several times slower for lengths that are prime or which
have large prime factors.

See Also fft2, fftn, fftshift, ifft

dftmtx, filter, and freqz in the Signal Processing Toolbox

References [1] Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine Computation
of the Complex Fourier Series,” Mathematics of Computation, Vol. 19, April
1965, pp. 297-301.

[2] Duhamel, P. and M. Vetterli, “Fast Fourier Transforms: A Tutorial Review
and a State of the Art,” Signal Processing, Vol. 19, April 1990, pp. 259-299.

[3] FFTW (http://www.fftw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for
the FFT,” Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

[5] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 611.

[6] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 619.

[7] Rader, C. M., “Discrete Fourier Transforms when the Number of Data
Samples Is Prime,” Proceedings of the IEEE, Vol. 56, June 1968, pp. 1107-1108.

N N
N 1–

N 1–

N
N

fft2

2-27

2fft2Purpose Two-dimensional discrete Fourier transform

Syntax Y = fft2(X)
Y = fft2(X,m,n)

Description Y = fft2(X) returns the two-dimensional discrete Fourier transform (DFT) of
X, computed with a fast Fourier transform (FFT) algorithm. The result Y is the
same size as X.

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n array
before doing the transform. The result is m-by-n.

Algorithm fft2(X) can be simply computed as

fft(fft(X).').'

This computes the one-dimensional DFT of each column X, then of each row of
the result. The execution time for fft depends on the length of the transform.
It is fastest for powers of two. It is almost as fast for lengths that have only
small prime factors. It is typically several times slower for lengths that are
prime or which have large prime factors.

See Also fft, fftn, fftshift, ifft2

fftn

2-28

2fftnPurpose Multidimensional discrete Fourier transform

Syntax Y = fftn(X)
Y = fftn(X,siz)

Description Y = fftn(X) returns the discrete Fourier transform (DFT) of X, computed
with a multidimensional fast Fourier transform (FFT) algorithm. The result Y
is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform. The size
of the result Y is siz.

Algorithm fftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = fft(Y,[],p);
end

This computes in-place the one-dimensional fast Fourier transform along each
dimension of X. The execution time for fft depends on the length of the
transform. It is fastest for powers of two. It is almost as fast for lengths that
have only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

See Also fft, fft2, fftn, ifftn

fftshift

2-29

2fftshiftPurpose Shift zero-frequency component of discrete Fourier transform to center of
spectrum

Syntax Y = fftshift(X)
Y = fftshift(X,dim)

Description Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving the
zero-frequency component to the center of the array. It is useful for visualizing
a Fourier transform with the zero-frequency component in the middle of the
spectrum.

For vectors, fftshift(X) swaps the left and right halves of X. For matrices,
fftshift(X) swaps quadrants one and three of X with quadrants two and four.
For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X along
each dimension.

Y = fftshift(X,dim) applies the fftshift operation along the dimension
dim.

Examples For any matrix X

Y = fft2(X)

has Y(1,1) = sum(sum(X)); the zero-frequency component of the signal is in
the upper-left corner of the two-dimensional FFT. For

Z = fftshift(Y)

this zero-frequency component is near the center of the matrix.

See Also circshift, fft, fft2, fftn, ifftshift

fgetl

2-30

2fgetlPurpose Read line from file, discard newline character

Syntax tline = fgetl(fid)

Description tline = fgetl(fid) returns the next line of the file associated with the file
identifier fid. If fgetl encounters the end-of-file indicator, it returns –1. (See
fopen for a complete description of fid.) fgetl is intended for use with text
files only.

The returned string tline does not include the line terminator(s) with the text
line. To obtain the line terminators, use fgets.

Examples The example reads every line of the M-file fgetl.m.

fid=fopen('fgetl.m');
while 1
 tline = fgetl(fid);
 if ~ischar(tline), break, end
 disp(tline)
end
fclose(fid);

See Also fgets

fgetl (serial)

2-31

2fgetl (serial)Purpose Read one line of text from the device and discard the terminator

Syntax tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

Arguments

Description tline = fgetl(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data does not include the
terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the
read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fgetl is issued.

If you use the help command to display help for fgetl, then you need to supply
the pathname shown below.

help serial/fgetl

Rules for Completing a Read Operation with fgetl
A read operation with fgetl blocks access to the MATLAB command line until:

obj A serial port object.

tline Text read from the instrument, excluding the terminator.

count The number of values read, including the terminator.

msg A message indicating if the read operation was unsuccessful.

fgetl (serial)

2-32

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
 17

Use fgetl to read the data returned from the previous write operation, and
discard the terminator.

settings = fgetl(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =
 16

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgets, fopen

fgets

2-33

2fgetsPurpose Read line from file, keep newline character

Syntax tline = fgets(fid)
tline = fgets(fid,nchar)

Description tline = fgets(fid) returns the next line of the file associated with file
identifier fid. If fgets encounters the end-of-file indicator, it returns –1. (See
fopen for a complete description of fid.) fgets is intended for use with text
files only.

The returned string tline includes the line terminators associated with the
text line. To obtain the string without the line terminators, use fgetl.

tline = fgets(fid,nchar) returns at most nchar characters of the next line.
No additional characters are read after the line terminators or an end-of-file.

See Also fgetl

fgets (serial)

2-34

2fgets (serial)Purpose Read one line of text from the device and include the terminator

Syntax tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

Arguments

Description tline = fgets(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data includes the terminator with
the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the
read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fgets is issued.

If you use the help command to display help for fgets, then you need to supply
the pathname shown below.

help serial/fgets

Rules for Completing a Read Operation with fgets
A read operation with fgets blocks access to the MATLAB command line until:

obj A serial port object.

tline Text read from the instrument, including the terminator.

count The number of bytes read, including the terminator.

msg A message indicating if the read operation was unsuccessful.

fgets (serial)

2-35

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
 17

Use fgets to read the data returned from the previous write operation, and
include the terminator.

settings = fgets(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =
 17

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgetl, fopen

Properties
BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
Timeout, ValuesReceived

fieldnames

2-36

2fieldnamesPurpose Return field names of a structure, or property names of an object

Syntax names = fieldnames(s)
names = fieldnames(obj)
names = fieldnames(obj,'-full')

Description names = fieldnames(s) returns a cell array of strings containing the
structure field names associated with the structure s.

names = fieldnames(obj) returns a cell array of strings containing the
names of the public data fields associated with obj, which is either a MATLAB,
COM, or Java object.

names = fieldnames(obj,'-full') returns a cell array of strings containing
the name, type, attributes, and inheritance of each field associated with obj,
which is either a MATLAB, COM, or Java object.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

the command n = fieldnames(mystr) yields

n =
 'name'
 'ID'

In another example, if f is an object of Java class java.awt.Frame, the
command fieldnames(f) lists the properties of f.

f = java.awt.Frame;

fieldnames(f)
ans =
 'WIDTH'
 'HEIGHT'
 'PROPERTIES'
 'SOMEBITS'

fieldnames

2-37

 'FRAMEBITS'
 'ALLBITS'
 .
 .

See Also isfield, orderfields, rmfield, dynamic field names

Properties
BytesAvailable, InputBufferSize, ReadAsyncMode, Status, Terminator,
Timeout, ValuesReceived

figflag

2-38

2figflagPurpose Test if figure is on screen

Syntax [flag] = figflag('figurename')
[flag,fig] = figflag('figurename')
[...] = figflag('figurename',silent)

Description Use figflag to determine if a particular figure exists, bring a figure to the
foreground, or set the window focus to a figure.

[flag] = figflag('figurename') returns a 1 if the figure named
'figurename' exists and sends the figure to the foreground; otherwise this
function returns 0.

[flag,fig] = figflag('figurename') returns a 1 in flag, returns the
figure’s handle in fig, and sends the figure to the foreground, if the figure
named 'figurename' exists. Otherwise this function returns 0.

[...] = figflag('figurename',silent) pops the figure window to the
foreground if silent is 0, and leaves the figure in its current position if silent
is 1.

Examples To determine if a figure window named 'Fluid Jet Simulation' exists, type

[flag,fig] = figflag('Fluid Jet Simulation')

MATLAB returns:

flag =
1

fig =
1

If two figures with handles 1 and 3 have the name 'Fluid Jet Simulation',
MATLAB returns:

flag =
1

fig =
1 3

See Also figure

figflag

2-39

“Figure Windows” for related functions

figure

2-40

2figurePurpose Create a figure graphics object

Syntax figure
figure('PropertyName',PropertyValue,...)
figure(h)
h = figure(...)

Description figure creates figure graphics objects. figure objects are the individual
windows on the screen in which MATLAB displays graphical output.

figure creates a new figure object using default property values.

figure('PropertyName',PropertyValue,...) creates a new figure object
using the values of the properties specified. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

figure(h) does one of two things, depending on whether or not a figure with
handle h exists. If h is the handle to an existing figure, figure(h) makes the
figure identified by h the current figure, makes it visible, and raises it above all
other figures on the screen. The current figure is the target for graphics output.
If h is not the handle to an existing figure, but is an integer, figure(h) creates
a figure, and assigns it the handle h. figure(h) where h is not the handle to a
figure, and is not an integer, is an error.

h = figure(...) returns the handle to the figure object.

Remarks To create a figure object, MATLAB creates a new window whose characteristics
are controlled by default figure properties (both factory installed and user
defined) and properties specified as arguments. See the properties section for
a description of these properties.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Use set to modify the properties of an existing figure or get to query the
current values of figure properties.

The gcf command returns the handle to the current figure and is useful as an
argument to the set and get commands.

figure

2-41

Example To create a figure window that is one quarter the size of your screen and is
positioned in the upper-left corner, use the root object’s ScreenSize property to
determine the size. ScreenSize is a four-element vector: [left, bottom, width,
height]:

scrsz = get(0,'ScreenSize');
figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

See Also axes, uicontrol, uimenu, close, clf, gcf, rootobject

“Object Creation Functions” for related functions

Figure Properties for additional information on figure properties

Object
Hierarchy

Setting Default Properties
You can set default figure properties only on the root level.

set(0,'DefaultFigureProperty',PropertyValue...)

Where Property is the name of the figure property and PropertyValue is the
value you are specifying. Use set and get to access figure properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

figure

2-42

Property List The following table lists all figure properties and provides a brief description of
each. The property name links bring you an expanded description of the
properties.

Property Name Property Description Property Value

Positioning the Figure

Position Location and size of figure Value: a 4-element vector
[left, bottom, width, height]
Default: depends on display

Units Units used to interpret the Position
property

Values: inches, centimeters,
normalized, points, pixels,
characters
Default: pixels

Specifying Style and Appearance

Color Color of the figure background Values: ColorSpec
Default: depends on color
scheme (see colordef)

MenuBar Toggle the figure menu bar on and
off

Values: none, figure
Default: figure

Name Figure window title Values: string
Default: '' (empty string)

NumberTitle Display “Figure No. n”, where n is
the figure number

Values: on, off
Default: on

Resize Specify whether the figure window
can be resized using the mouse

Values: on, off
Default: on

SelectionHighlight Highlight figure when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the figure visible or invisible Values: on, off
Default: on

figure

2-43

WindowStyle Select normal or modal window Values: normal, modal
Default: normal

Controlling the Colormap

Colormap The figure colormap Values: m-by-3 matrix of
RGB values
Default: the jet colormap

Dithermap Colormap used for truecolor data on
pseudocolor displays

Values: m-by-3 matrix of
RGB values
Default: colormap with full
range of colors

DithermapMode Enable MATLAB-generated
dithermap

Values: auto, manual
Default: manual

FixedColors Colors not obtained from colormap Values: m-by-3 matrix of
RGB values (read only)

MinColormap Minimum number of system color
table entries to use

Values: scalar
Default: 64

ShareColors Allow MATLAB to share system
color table slots

Values on, off
Default: on

Specifying Transparency

Alphamap The figure alphamap m-by-1 matrix of alpha
values

Specifying the Renderer

BackingStore Enable off screen pixel buffering Values: on, off
Default: on

DoubleBuffer Flash-free rendering for simple
animations

Values: on, off
Default: off

Property Name Property Description Property Value

figure

2-44

Renderer Rendering method used for screen
and printing

Values: painters, zbuffer,
OpenGL
Default: automatic selection
by MATLAB

General Information About the Figure

Children Handle of any uicontrol, uimenu, and
uicontextmenu objects displayed in
the figure

Values: vector of handles

FileName Used by guide String

Parent The root object is the parent of all
figures

Value: always 0

Selected Indicate whether figure is in a
“selected” state.

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'figure'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

RendererMode Automatic or user-selected renderer Values: auto, manual
Default: auto

Information About Current State

CurrentAxes Handle of the current axes in this
figure

Values: axes handle

CurrentCharacter The last key pressed in this figure Values: single character

CurrentObject Handle of the current object in this
figure

Values: graphics object
handle

Property Name Property Description Property Value

figure

2-45

CurrentPoint Location of the last button click in
this figure

Values: 2-element vector
[x-coord, y-coord]

SelectionType Mouse selection type Values: normal, extended,
alt, open

Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a mouse button is
pressed on an unoccupied spot in the
figure

Values: string or function
handle
Default: empty string

CloseRequestFcn Define a callback routine that
executes when you call the close
command

Values: string or function
handle
Default: closereq

CreateFcn Define a callback routine that
executes when a figure is created

Values: string or function
handle
Default: empty string

DeleteFcn Define a callback routine that
executes when the figure is deleted
(via close or delete)

Values: string or function
handle
Default: empty string

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

KeyPressFcn Define a callback routine that
executes when a key is pressed in the
figure window

Values: string or function
handle
Default: empty string

ResizeFcn Define a callback routine that
executes when the figure is resized

Values: string or function
handle
Default: empty string

Property Name Property Description Property Value

figure

2-46

UIContextMenu Associate a context menu with the
figure

Values: handle of a
Uicontrextmenu

WindowButtonDownFcn Define a callback routine that
executes when you press the mouse
button down in the figure

Values: string or function
handle
Default: empty string

WindowButtonMotionFcn Define a callback routine that
executes when you move the pointer
in the figure

Values: string or function
handle
Default: empty string

WindowButtonUpFcn Define a callback routine that
executes when you release the mouse
button

Values: string or function
handle
Default: empty string

Controlling Access to Objects

IntegerHandle Specify integer or noninteger figure
handle

Values: on, off
Default: on (integer handle)

HandleVisibility Determine if figure handle is visible
to users or not

Values: on, callback, off
Default: on

HitTest Determine if the figure can become
the current object (see the figure
CurrentObject property)

Values: on, off
Default: on

NextPlot Determine how to display additional
graphics to this figure

Values: add, replace,
replacechildren
Default: add

Defining the Pointer

Pointer Select the pointer symbol Values: crosshair, arrow,
watch, topl, topr, botl, botr,
circle, cross, fleur, left,
right, top, bottom,
fullcrosshair, ibeam,
custom
Default: arrow

Property Name Property Description Property Value

figure

2-47

PointerShapeCData Data that defines the pointer Values: 16-by-16 matrix
Default: set Pointer to
custom and see

PointerShapeHotSpot Specify the pointer active spot Values: 2-element vector
[row, column]
Default: [1,1]

Properties That Affect Printing

InvertHardcopy Change figure colors for printing Values: on, off
Default: on

PaperOrientation Horizontal or vertical paper
orientation

Values: portrait, landscape
Default: portrait

PaperPosition Control positioning figure on printed
page

Values: 4-element vector
[left, bottom, width, height]

PaperPositionMode Enable WYSIWYG printing of figure Values: auto, manual
Default: manual

PaperSize Size of the current PaperType
specified in PaperUnits

Values: [width, height]

PaperType Select from standard paper sizes Values: see property
description
Default: usletter

PaperUnits Units used to specify the PaperSize
and PaperPosition

Values: normalized, inches,
centimeters, points
Default: inches

Controlling the XWindows Display (UNIX only)

Property Name Property Description Property Value

figure

2-48

XDisplay Specify display for MATLAB (UNIX
only)

Values: display identifier
Default: :0.0

XVisual Select visual used by MATLAB
(UNIX only)

Values: visual ID

XVisualMode Auto or manual selection of visual
(UNIX only)

Values: auto, manual
Default: auto

Property Name Property Description Property Value

Figure Properties

2-49

2Figure PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Figure
Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

Alphamap m-by-1 matrix of alpha values

Figure alphamap. This property is an m-by-1 array of non-NaN alpha values.
MATLAB accesses alpha values by their row number. For example, an index of
1 specifies the first alpha value, an index of 2 specifies the second alpha value,
and so on. Alphamaps can be any length. The default alphamap contains 64
values that progress linearly from 0 to 1.

Alphamaps affect the rendering of surface, image, and patch objects, but do not
affect other graphics objects.

BackingStore {on} | off

Off screen pixel buffer. When BackingStore is on, MATLAB stores a copy of the
figure window in an off-screen pixel buffer. When obscured parts of the figure
window are exposed, MATLAB copies the window contents from this buffer
rather than regenerating the objects on the screen. This increases the speed
with which the screen is redrawn.

While refreshing the screen quickly is generally desirable, the buffers required
do consume system memory. If memory limitations occur, you can set
BackingStore to off to disable this feature and release the memory used by
the buffers. If your computer does not support backingstore, setting the
BackingStore property results in a warning message, but has no other effect.

Setting BackingStore to off can increase the speed of animations because it
eliminates the need to draw into both an off-screen buffer and the figure
window.

Figure Properties

2-50

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routines always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback routine that executes whenever you
press a mouse button while the pointer is in the figure window, but not over a
child object (i.e., uicontrol, axes, or axes child). Define this routine as a string
that is a valid MATLAB expression or the name of an M-file. The expression
executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Children vector of handles

Children of the figure. A vector containing the handles of all axes, uicontrol,
uicontextmenu, and uimenu objects displayed within the figure. You can
change the order of the handles and thereby change the stacking of the objects
on the display.

Clipping {on} | off

This property has no effect on figures.

CloseRequestFcn string or function handle

Function executed on figure close. This property defines a function that
MATLAB executes whenever you issue the close command (either a

Figure Properties

2-51

close(figure_handle) or a close all), when you close a figure window from
the computer’s window manager menu, or when you quit MATLAB.

The CloseRequestFcn provides a mechanism to intervene in the closing of a
figure. It allows you to, for example, display a dialog box to ask a user to
confirm or cancel the close operation or to prevent users from closing a figure
that contains a GUI.

The basic mechanism is:

• A user issues the close command from the command line, by closing the
window from the computer’s window manager menu, or by quiting MATLAB.

• The close operation executes the function defined by the figure
CloseRequestFcn. The default function is named closereq and is predefined
as:

shh = get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','on');
currFig = get(0,'CurrentFigure');
set(0,'ShowHiddenHandles',shh);
delete(currFig);

These statements unconditionally delete the current figure, destroying the
window. closereq takes advantage of the fact that the close command makes
all figures specified as arguments the current figure before calling the
respective close request function.

You can set CloseRequestFcn to any string that is a valid MATLAB statement,
including the name of an M-file. For example,

set(gcf,'CloseRequestFcn','disp(''This window is immortal'')')

This close request function never closes the figure window; it simply echoes
“This window is immortal” on the command line. Unless the close request
function calls delete, MATLAB never closes the figure. (Note that you can
always call delete(figure_handle) from the command line if you have
created a window with a nondestructive close request function.)

A more useful application of the close request function is to display a question
dialog box asking the user to confirm the close operation. The following M-file
illustrates how to do this.

% my_closereq

Figure Properties

2-52

% User-defined close request function
% to display a question dialog box

selection = questdlg('Close Specified Figure?',...
 'Close Request Function',...
 'Yes','No','Yes');
switch selection,
 case 'Yes',
 delete(gcf)
 case 'No'
 return
end

Now assign this M-file to the CloseRequestFcn of a figure:

set(figure_handle,'CloseRequestFcn','my_closereq')

To make this M-file your default close request function, set a default value on
the root level.

set(0,'DefaultFigureCloseRequestFcn','my_closereq')

MATLAB then uses this setting for the CloseRequestFcn of all subsequently
created figures.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Color ColorSpec

Background color. This property controls the figure window background color.
You can specify a color using a three-element vector of RGB values or one of the
MATLAB predefined names. See ColorSpec for more information.

Colormap m-by-3 matrix of RGB values

Figure colormap. This property is an m-by-3 array of red, green, and blue
(RGB) intensity values that define m individual colors. MATLAB accesses
colors by their row number. For example, an index of 1 specifies the first RGB
triplet, an index of 2 specifies the second RGB triplet, and so on. Colormaps can
be any length (up to 256 only on MS-Windows), but must be three columns
wide. The default figure colormap contains 64 predefined colors.

Figure Properties

2-53

Colormaps affect the rendering of surface, image, and patch objects, but
generally do not affect other graphics objects. See colormap and ColorSpec for
more information.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a figure object. You must
define this property as a default value for figures. For example, the statement,

set(0,'DefaultFigureCreateFcn',...
'set(gcbo,''IntegerHandle'',''off'')')

defines a default value on the root level that causes the created figure to use
noninteger handles whenever you (or MATLAB) create a figure. MATLAB
executes this routine after setting all properties for the figure. Setting this
property on an existing figure object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

CurrentAxes handle of current axes

Target axes in this figure. MATLAB sets this property to the handle of the
figure’s current axes (i.e., the handle returned by the gca command when this
figure is the current figure). In all figures for which axes children exist, there
is always a current axes. The current axes does not have to be the topmost axes,
and setting an axes to be the CurrentAxes does not restack it above all other
axes.

You can make an axes current using the axes and set commands. For example,
axes(axes_handle) and set(gcf,'CurrentAxes',axes_handle) both make
the axes identified by the handle axes_handle the current axes. In addition,
axes(axes_handle) restacks the axes above all other axes in the figure.

If a figure contains no axes, get(gcf,'CurrentAxes') returns the empty
matrix. Note that the gca function actually creates an axes if one does not exist.

CurrentCharacter single character

Last key pressed. MATLAB sets this property to the last key pressed in the
figure window. CurrentCharacter is useful for obtaining user input.

Figure Properties

2-54

CurrentMenu (Obsolete)

This property produces a warning message when queried. It has been
superseded by the root CallbackObject property.

CurrentObject object handle

Handle of current object. MATLAB sets this property to the handle of the object
that is under the current point (see the CurrentPoint property). This object is
the front-most object in the view. You can use this property to determine which
object a user has selected. The function gco provides a convenient way to
retrieve the CurrentObject of the CurrentFigure.

CurrentPoint two-element vector: [x-coordinate, y-coordinate]

Location of last button click in this figure. MATLAB sets this property to the
location of the pointer at the time of the most recent mouse button press.
MATLAB updates this property whenever you press the mouse button while
the pointer is in the figure window.

In addition, MATLAB updates CurrentPoint before executing callback
routines defined for the figure WindowButtonMotionFcn and
WindowButtonUpFcn properties. This enables you to query CurrentPoint from
these callback routines. It behaves like this:

• If there is no callback routine defined for the WindowButtonMotionFcn or the
WindowButtonUpFcn, then MATLAB updates the CurrentPoint only when
the mouse button is pressed down within the figure window.

• If there is a callback routine defined for the WindowButtonMotionFcn, then
MATLAB updates the CurrentPoint just before executing the callback. Note
that the WindowButtonMotionFcn executes only within the figure window
unless the mouse button is pressed down within the window and then held
down while the pointer is moved around the screen. In this case, the routine
executes (and the CurrentPoint is updated) anywhere on the screen until
the mouse button is released.

• If there is a callback routine defined for the WindowButtonUpFcn, MATLAB
updates the CurrentPoint just before executing the callback. Note that the
WindowButtonUpFcn executes only while the pointer is within the figure
window unless the mouse button is pressed down initially within the
window. In this case, releasing the button anywhere on the screen triggers
callback execution, which is preceded by an update of the CurrentPoint.

Figure Properties

2-55

The figure CurrentPoint is updated only when certain events occur, as
previously described. In some situations, (such as when the
WindowButtonMotionFcn takes a long time to execute and the pointer is moved
very rapidly) the CurrentPoint may not reflect the actual location of the
pointer, but rather the location at the time when the WindowButtonMotionFcn
began execution.

The CurrentPoint is measured from the lower-left corner of the figure window,
in units determined by the Units property.

The root PointerLocation property contains the location of the pointer
updated synchronously with pointer movement. However, the location is
measured with respect to the screen, not a figure window.

See uicontrol for information on how this property is set when you click on a
uicontrol object.

DeleteFcn string or function handle

Delete figure callback routine. A callback routine that executes when the figure
object is deleted (e.g., when you issue a delete or a close command). MATLAB
executes the routine before destroying the object’s properties so these values
are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Dithermap m-by-3 matrix of RGB values

Colormap used for true-color data on pseudocolor displays. This property
defines a colormap that MATLAB uses to dither true-color CData for display on
pseudocolor (8-bit or less) displays. MATLAB maps each RGB color defined as
true-color CData to the closest color in the dithermap. The default Dithermap
contains colors that span the full spectrum so any color values map reasonably
well.

However, if the true-color data contains a wide range of shades in one color, you
may achieve better results by defining your own dithermap. See the
DithermapMode property.

Figure Properties

2-56

DithermapMode auto | {manual}

MATLAB generated dithermap. In manual mode, MATLAB uses the colormap
defined in the Dithermap property to display direct color on pseudocolor
displays. When DithermapMode is auto, MATLAB generates a dithermap based
on the colors currently displayed. This is useful if the default dithermap does
not produce satisfactory results.

The process of generating the dithermap can be quite time consuming and is
repeated whenever MATLAB re-renders the display (e.g., when you add a new
object or resize the window). You can avoid unnecessary regeneration by
setting this property back to manual and save the generated dithermap (which
MATLAB loaded into the Dithermap property).

DoubleBuffer on | {off}

Flash-free rendering for simple animations. Double buffering is the process of
drawing to an off-screen pixel buffer and then blitting the buffer contents to the
screen once the drawing is complete. Double buffering generally produces
flash-free rendering for simple animations (such as those involving lines, as
opposed to objects containing large numbers of polygons). Use double buffering
with the animated objects’ EraseMode property set to normal. Use the set
command to enable double buffering.

set(figure_handle,'DoubleBuffer','on')

Double buffering works only when the figure Renderer property is set to
painters.

FileName String

GUI FIG-file name. GUIDE stores the name of the FIG-file used to save the
GUI layout in this property.

FixedColors m-by-3 matrix of RGB values (read only)

Non-colormap colors. Fixed colors define all colors appearing in a figure
window that are not obtained from the figure colormap. These colors include
axis lines and labels, the color of line, text, uicontrol, and uimenu objects, and
any colors that you explicitly define, for example, with a statement like:

set(gcf,'Color',[0.3,0.7,0.9]).

Fixed color definitions reside in the system color table and do not appear in the
figure colormap. For this reason, fixed colors can limit the number of

Figure Properties

2-57

simultaneously displayed colors if the number of fixed colors plus the number
of entries in the figure colormap exceed your system’s maximum number of
colors.

(See the root ScreenDepth property for information on determining the total
number of colors supported on your system. See the MinColorMap and
ShareColors properties for information on how MATLAB shares colors
between applications.)

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Figure Properties

2-58

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the figure can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the figure. If HitTest is off, clicking
on the figure sets the CurrentObject to the empty matrix.

IntegerHandle {on} | off (GUIDE default off)

Figure handle mode. Figure object handles are integers by default. When
creating a new figure, MATLAB uses the lowest integer that is not used by an
existing figure. If you delete a figure, its integer handle can be reused.

If you set this property to off, MATLAB assigns nonreusable real-number
handles (e.g., 67.0001221) instead of integers. This feature is designed for
dialog boxes where removing the handle from integer values reduces the
likelihood of inadvertently drawing into the dialog box.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a figure callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn,
KeyPressFcn, WindowButtonDownFcn, WindowButtonMotionFcn, and
WindowButtonUpFcn are affected by the Interruptible property. MATLAB
checks for events that can interrupt a callback routine only when it encounters
a drawnow, figure, getframe, or pause command in the routine. See the
BusyAction property for related information.

InvertHardcopy {on} | off

Change hardcopy to black objects on white background. This property affects
only printed output. Printing a figure having a background color (Color
property) that is not white results in poor contrast between graphics objects
and the figure background and also consumes a lot of printer toner.

When InvertHardCopy is on, MATLAB eliminates this effect by changing the
color of the figure and axes to white and the axis lines, tick marks, axis labels,

Figure Properties

2-59

etc., to black. lines, text, and the edges of patches and surfaces may be changed
depending on the print command options specified.

If you set InvertHardCopy to off, the printed output matches the colors
displayed on the screen.

See print for more information on printing MATLAB figures.

KeyPressFcn string or function handle

Key press callback function. A callback routine invoked by a key press occurring
in the figure window. You can define KeyPressFcn as any legal MATLAB
expression or the name of an M-file.

The callback routine can query the figure’s CurrentCharacter property to
determine what particular key was pressed and thereby limit the callback
execution to specific keys.

The callback routine can also query the root PointerWindow property to
determine in which figure the key was pressed. Note that pressing a key while
the pointer is in a particular figure window does not make that figure the
current figure (i.e., the one referred by the gcf command).

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

MenuBar none | {figure} (GUIDE default is none)

Enable-disable figure menu bar. This property enables you to display or hide
the menu bar placed at the top of a figure window. The default (figure) is to
display the menu bar.

This property affects only built in menus. Menus defined with the uimenu
command are not affected by this property.

MinColormap scalar (default = 64)

Minimum number of color table entries used. This property specifies the
minimum number of system color table entries used by MATLAB to store the
colormap defined for the figure (see the ColorMap property). In certain
situations, you may need to increase this value to ensure proper use of colors.

For example, suppose you are running color-intensive applications in addition
to MATLAB and have defined a large figure colormap (e.g., 150 to 200 colors).
MATLAB may select colors that are close but not exact from the existing colors

Figure Properties

2-60

in the system color table because there are not enough slots available to define
all the colors you specified.

To ensure MATLAB uses exactly the colors you define in the figure colormap,
set MinColorMap equal to the length of the colormap.

set(gcf,'MinColormap',length(get(gcf,'ColorMap')))

Note that the larger the value of MinColorMap, the greater the likelihood other
windows (including other MATLAB figure windows) will display in false colors.

Name string

Figure window title. This property specifies the title displayed in the figure
window. By default, Name is empty and the figure title is displayed as
Figure No. 1, Figure No. 2, and so on. When you set this parameter to a
string, the figure title becomes Figure No. 1: <string>. See the NumberTitle
property.

NextPlot {add} | replace | replacechildren

How to add next plot. NextPlot determines which figure MATLAB uses to
display graphics output. If the value of the current figure is:

• add — use the current figure to display graphics (the default).

• replace — reset all figure properties, except Position, to their defaults and
delete all figure children before displaying graphics (equivalent to clf
reset).

• replacechildren — remove all child objects, but do not reset figure
properties (equivalent to clf).

The newplot function provides an easy way to handle the NextPlot property.
Also see the NextPlot axes property and Controlling creating_plotsGraphics
Output for more information.

NumberTitle {on} | off (GUIDE default off)

Figure window title number. This property determines whether the string
Figure No. N (where N is the figure number) is prefixed to the figure window
title. See the Name property.

PaperOrientation {portrait} | landscape

Horizontal or vertical paper orientation. This property determines how printed
figures are oriented on the page. portrait orients the longest page dimension

Figure Properties

2-61

vertically; landscape orients the longest page dimension horizontally. See the
orient command for more detail.

PaperPosition four-element rect vector

Location on printed page. A rectangle that determines the location of the figure
on the printed page. Specify this rectangle with a vector of the form

 rect = [left, bottom, width, height]

where left specifies the distance from the left side of the paper to the left side
of the rectangle and bottom specifies the distance from the bottom of the page
to the bottom of the rectangle. Together these distances define the lower-left
corner of the rectangle. width and height define the dimensions of the
rectangle. The PaperUnits property specifies the units used to define this
rectangle.

PaperPositionMode auto | {manual}

WYSIWYG printing of figure. In manual mode, MATLAB honors the value
specified by the PaperPosition property. In auto mode, MATLAB prints the
figure the same size as it appears on the computer screen, centered on the page.

PaperSize [width height]

Paper size. This property contains the size of the current PaperType, measured
in PaperUnits. See PaperType to select standard paper sizes.

PaperType Select a value from the following table

Selection of standard paper size. This property sets the PaperSize to the one of
the following standard sizes.

Property Value Size (Width x Height)

usletter (default) 8.5-by-11 inches

uslegal 11-by-14 inches

tabloid 11-by-17 inches

A0 841-by-1189mm

A1 594-by-841mm

A2 420-by-594mm

Figure Properties

2-62

Note that you may need to change the PaperPosition property in order to
position the printed figure on the new paper size. One solution is to use
normalized PaperUnits, which enables MATLAB to automatically size the
figure to occupy the same relative amount of the printed page, regardless of the
paper size.

A3 297-by-420mm

A4 210-by-297mm

A5 148-by-210mm

B0 1029-by-1456mm

B1 728-by-1028mm

B2 514-by-728mm

B3 364-by-514mm

B4 257-by-364mm

B5 182-by-257mm

arch-A 9-by-12 inches

arch-B 12-by-18 inches

arch-C 18-by-24 inches

arch-D 24-by-36 inches

arch-E 36-by-48 inches

A 8.5-by-11 inches

B 11-by-17 inches

C 17-by-22 inches

D 22-by-34 inches

E 34-by-43 inches

Property Value Size (Width x Height)

Figure Properties

2-63

PaperUnits normalized | {inches} | centimeters |
points

Hardcopy measurement units. This property specifies the units used to define
the PaperPosition and PaperSize properties. All units are measured from the
lower-left corner of the page. normalized units map the lower-left corner of the
page to (0, 0) and the upper-right corner to (1.0, 1.0). inches, centimeters, and
points are absolute units (one point equals 1/72 of an inch).

If you change the value of PaperUnits, it is good practice to return it to its
default value after completing your computation so as not to affect other
functions that assume PaperUnits is set to the default value.

Parent handle

Handle of figure’s parent. The parent of a figure object is the root object. The
handle to the root is always 0.

Pointer crosshair | {arrow} | watch | topl |
topr | botl | botr | circle | cross |
fleur | left | right | top | bottom |
fullcrosshair | ibeam | custom

Pointer symbol selection. This property determines the symbol used to indicate
the pointer (cursor) position in the figure window. Setting Pointer to custom
allows you to define your own pointer symbol. See the PointerShapeCData
property and Specifying the Figure Pointer for more information.

PointerShapeCData 16-by-16 matrix

User-defined pointer. This property defines the pointer that is used when you
set the Pointer property to custom. It is a 16-by-16 element matrix defining the
16-by-16 pixel pointer using the following values:

• 1 – color pixel black

• 2 – color pixel white

• NaN – make pixel transparent (underlying screen shows through)

Element (1,1) of the PointerShapeCData matrix corresponds to the upper-left
corner of the pointer. Setting the Pointer property to one of the predefined
pointer symbols does not change the value of the PointerShapeCData.
Computer systems supporting 32-by-32 pixel pointers fill only one quarter of
the available pixmap.

Figure Properties

2-64

PointerShapeHotSpot2-element vector

Pointer active area. A two-element vector specifying the row and column
indices in the PointerShapeCData matrix defining the pixel indicating the
pointer location. The location is contained in the CurrentPoint property and
the root object’s PointerLocation property. The default value is element (1,1),
which is the upper-left corner.

Position four-element vector

Figure position. This property specifies the size and location on the screen of
the figure window. Specify the position rectangle with a four-element vector of
the form:

rect = [left, bottom, width, height]

where left and bottom define the distance from the lower-left corner of the
screen to the lower-left corner of the figure window. width and height define
the dimensions of the window. See the Units property for information on the
units used in this specification. The left and bottom elements can be negative
on systems that have more than one monitor.

You can use the get function to obtain this property and determine the position
of the figure and you can use the set function to resize and move the figure to
a new location.

Renderer painters | zbuffer | OpenGL

Rendering method used for screen and printing. This property enables you to
select the method used to render MATLAB graphics. The choices are:

• painters – The original rendering method used by MATLAB is faster when
the figure contains only simple or small graphics objects.

• zbuffer – MATLAB draws graphics object faster and more accurately
because objects are colored on a per pixel basis and MATLAB renders only
those pixels that are visible in the scene (thus eliminating front-to-back
sorting errors). Note that this method can consume a lot of system memory
if MATLAB is displaying a complex scene.

• OpenGL – OpenGL is a renderer that is available on many computer systems.
This renderer is generally faster than painters or zbuffer and in some cases
enables MATLAB to access graphics hardware that is available on some
systems.

Figure Properties

2-65

Using the
OpenGL
Renderer

Hardware vs. Software OpenGL Implementations
There are two kinds of OpenGL implementations – hardware and software.

The hardware implementation makes use of special graphics hardware to
increase performance and is therefore significantly faster than the software
version. Many computers have this special hardware available as an option or
may come with this hardware right out of the box.

Software implementations of OpenGL are much like the ZBuffer renderer that
is available on MATLAB version 5.0, however, OpenGL generally provides
superior performance to ZBuffer.

OpenGL Availability
OpenGL is available on all computers that MATLAB runs on. MATLAB
automatically finds hardware versions of OpenGl if they are available. If the
hardware version is not available, then MATLAB uses the software version.

The software versions that are available on different platforms are:

• On UNIX systems, MATLAB uses the software version of OpenGL that is
included in the MATLAB distribution.

• On MS-Windows, OpenGL is available as part of the operating system. If you
experience problems with OpenGL, contact your graphics driver vender to
obtain the latest qualified version of OpenGL.

MATLAB issues a warning if it cannot find a usable OpenGL library.

Determining What Version You Are Using
To determine the version and vendor of the OpenGL library that MATLAB is
using on your system, type the following command at the MATLAB prompt

opengl info

This command also returns a string of extensions to the OpenGL specification
that are available with the particular library MATLAB is using. This
information is helpful to The MathWorks, so please include this information if
you need to report bugs.

OpenGL vs. Other MATLAB Renderers
There are some difference between drawings created with OpenGL and those
created with the other renderers. The OpenGL specific differences include:

Figure Properties

2-66

• OpenGL does not do colormap interpolation. If you create a surface or patch
using indexed color and interpolated face or edge coloring, OpenGL will
interpolate the colors through the RGB color cube instead of through the
colormap.

• OpenGL does not support the phong value for the FaceLighting and
EdgeLighting properties of surfaces and patches.

• OpenGL does not support logarithmic-scale axes.

If You Are Having Problems
Consult the OpenGL Technical Note if you are having problems using OpenGL.

RendererMode {auto} | manual

Automatic, or user selection of Renderer. This property enables you to specify
whether MATLAB should choose the Renderer based on the contents of the
figure window, or whether the Renderer should remain unchanged.

When the RendererMode property is set to auto, MATLAB selects the rendering
method for printing as well as for screen display based on the size and
complexity of the graphics objects in the figure.

For printing, MATLAB switches to zbuffer at a greater scene complexity than
for screen rendering because printing from a Z-buffered figure can be
considerably slower than one using the painters rendering method, and can
result in large PostScript files. However, the output does always match what
is on the screen. The same holds true for OpenGL: the output is the same as
that produced by the ZBuffer renderer – a bitmap with a resolution determined
by the print command’s −r option.

Criteria for Autoselection of OpenGL Renderer
When the RendererMode property is set to auto, MATLAB uses the following
criteria to determine whether to select the OpenGL renderer:

If the opengl autoselection mode is autoselect, MATLAB selects OpenGL if:

• The host computer has OpenGL installed and is in True Color mode
(OpenGL does not fully support 8-bit color mode).

• The figure contains no logarithmic axes (logarithmic axes are not supported
in OpenGL).

• MATLAB would select zbuffer based on figure contents.

Figure Properties

2-67

• Patch objects faces have no more than three vertices (some OpenGL
implementations of patch tesselation are unstable).

• The figure contains less than 10 uicontrols (OpenGL clipping around
uicontrols is slow).

• No line objects use markers (drawing markers is slow).

• Phong lighting is not specified (OpenGL does not support Phong lighting; if
you specify Phong lighting, MATLAB uses the ZBuffer renderer).

Or

• Figure objects use transparency (OpenGL is the only MATLAB renderer that
supports transparency).

When the RendererMode property is set to manual, MATLAB does not change
the Renderer, regardless of changes to the figure contents.

Resize {on} | off

Window resize mode. This property determines if you can resize the figure
window with the mouse. on means you can resize the window, off means you
cannot. When Resize is off, the figure window does not display any resizing
controls (such as boxes at the corners) to indicate that it cannot be resized.

ResizeFcn string or function handle

Window resize callback routine. MATLAB executes the specified callback
routine whenever you resize the figure window. You can query the figure’s
Position property to determine the new size and position of the figure window.
During execution of the callback routine, the handle to the figure being resized
is accessible only through the root CallbackObject property, which you can
query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not directly supported
by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object at a constant
height in pixels and attached to the top of the figure, but always matches the
width of the figure. The following ResizeFcn accomplishes this; it keeps the
uicontrol whose Tag is 'StatusBar' 20 pixels high, as wide as the figure, and
attached to the top of the figure. Note the use of the Tag property to retrieve the
uicontrol handle, and the gcbo function to retrieve the figure handle. Also note
the defensive programming regarding figure Units, which the callback

Figure Properties

2-68

requires to be in pixels in order to work correctly, but which the callback also
restores to their previous value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn callback;
however the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be called if the
PaperPositionMode property is set to manual and you have defined a resize
function. If you do not want your resize function called by print, set the
PaperPositionMode to auto.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See Resize Behavior for information on creating resize functions using GUIDE.

Selected on | off

Is object selected. This property indicates whether the figure is selected. You
can, for example, define the ButtonDownFcn to set this property, allowing users
to select the object with the mouse.

SelectionHighlight {on} | off

figures do not indicate selection.

SelectionType {normal} | extend | alt | open

Mouse selection type. MATLAB maintains this property to provide information
about the last mouse button press that occurred within the figure window. This
information indicates the type of selection made. Selection types are actions
that are generally associated with particular responses from the user interface
software (e.g., single clicking on a graphics object places it in move or resize
mode; double-clicking on a filename opens it, etc.).

Figure Properties

2-69

The physical action required to make these selections varies on different
platforms. However, all selection types exist on all platforms.

Note that the ListBox style of uicontrols set the figure SelectionType property
to normal to indicate a single mouse click or to open to indicate a double mouse
click. See uicontrol for information on how this property is set when you click
on a uicontrol object.

ShareColors {on} | off

Share slots in system colortable with like colors. This property affects the way
MATLAB stores the figure colormap in the system color table. By default,
MATLAB looks at colors already defined and uses those slots to assign pixel
colors. This leads to an efficient use of color resources (which are limited on
systems capable of displaying 256 or less colors) and extends the number of
figure windows that can simultaneously display correct colors.

However, in situations where you want to change the figure colormap quickly
without causing MATLAB to re-render the displayed graphics objects, you
should disable color sharing (set ShareColors to off). In this case, MATLAB
can swap one colormap for another without changing pixel color assignments
because all the slots in the system color table used for the first colormap are
replaced with the corresponding color in the second colormap. (Note that this
applies only in cases where both colormaps are the same length and where the
computer hardware allows user modification of the system color table.)

Selection Type MS-Windows X-Windows

Normal Click left mouse button Click left mouse button

Extend Shift - click left mouse
button or click both left
and right mouse buttons

Shift - click left mouse
button or click
middle mouse button

Alternate Control - click left mouse
button or click right
mouse button

Control - click left mouse
button or click
right mouse button

Open Double click any mouse
button

Double click any mouse
button

Figure Properties

2-70

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular figure, regardless of user actions that may have changed the
current figure. To do this, identify the figure with a Tag.

figure('Tag','Plotting Figure')

Then make that figure the current figure before drawing by searching for the
Tag with findobj.

figure(findobj('Tag','Plotting Figure'))

Type string (read only)

Object class. This property identifies the kind of graphics object. For figure
objects, Type is always the string 'figure'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the figure. Assign this property the handle of a
uicontextmenu object created in the figure. Use the uicontextmenu function to
create the context menu. MATLAB displays the context menu whenever you
right-click over the figure.

Units {pixels} | normalized | inches |
centimeters | points | characters

(Guide default characters)

Units of measurement. This property specifies the units MATLAB uses to
interpret size and location data. All units are measured from the lower-left
corner of the window.

• normalized units map the lower-left corner of the figure window to (0,0) and
the upper-right corner to (1.0,1.0).

• inches, centimeters, and points are absolute units (one point equals 1/72
of an inch).

• The size of a pixel depends on screen resolution.

Figure Properties

2-71

• Characters units are defined by characters from the default system font; the
width of one character is the width of the letter x, the height of one character
is the distance between the baselines of two lines of text.

This property affects the CurrentPoint and Position properties. If you change
the value of Units, it is good practice to return it to its default value after
completing your computation so as not to affect other functions that assume
Units is set to the default value.

When specifying the units as property/value pairs during object creation, you
must set the Units property before specifying the properties that you want to
use these units.

UserData matrix

User specified data. You can specify UserData as any matrix you want to
associate with the figure object. The object does not use this data, but you can
access it using the set and get commands.

Visible {on} | off

Object visibility. The Visible property determines whether an object is
displayed on the screen. If the Visible property of a figure is off, the entire
figure window is invisible.

WindowButtonDownFcnstring or functional handle

Button press callback function. Use this property to define a callback routine
that MATLAB executes whenever you press a mouse button while the pointer
is in the figure window. Define this routine as a string that is a valid MATLAB
expression or the name of an M-file. The expression executes in the MATLAB
workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

WindowButtonMotionFcnstring or functional handle

Mouse motion callback function. Use this property to define a callback routine
that MATLAB executes whenever you move the pointer within the figure
window. Define this routine as a string that is a valid MATLAB expression or
the name of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Figure Properties

2-72

WindowButtonUpFcn string or function handle

Button release callback function. Use this property to define a callback routine
that MATLAB executes whenever you release a mouse button. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

The button up event is associated with the figure window in which the
preceding button down event occurred. Therefore, the pointer need not be in
the figure window when you release the button to generate the button up event.

If the callback routines defined by WindowButtonDownFcn or
WindowButtonMotionFcn contain drawnow commands or call other functions
that contain drawnow commands and the Interruptible property is set to off,
the WindowButtonUpFcn may not be called. You can prevent this problem by
setting Interruptible to on.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

WindowStyle {normal} | modal

Normal or modal window behavior. When WindowStyle is set to modal, the
figure window traps all keyboard and mouse events over all MATLAB windows
as long as they are visible. Windows belonging to applications other than
MATLAB are unaffected. Modal figures remain stacked above all normal
figures and the MATLAB command window. When multiple modal windows
exist, the most recently created window keeps focus and stays above all other
windows until it becomes invisible, or is returned to WindowStyle normal, or is
deleted. At that time, focus reverts to the window that last had focus.

Figures with WindowStyle modal and Visible off do not behave modally until
they are made visible, so it is acceptable to hide a modal window instead of
destroying it when you want to reuse it.

You can change the WindowStyle of a figure at any time, including when the
figure is visible and contains children. However, on some systems this may
cause the figure to flash or disappear and reappear, depending on the
windowing-system’s implementation of normal and modal windows. For best
visual results, you should set WindowStyle at creation time or when the figure
is invisible.

Figure Properties

2-73

Modal figures do not display uimenu children or built-in menus, but it is not an
error to create uimenus in a modal figure or to change WindowStyle to modal
on a figure with uimenu children. The uimenu objects exist and their handles
are retained by the figure. If you reset the figure’s WindowStyle to normal, the
uimenus are displayed.

Use modal figures to create dialog boxes that force the user to respond without
being able to interact with other windows. Typing Control C at the MATLAB
prompt causes all figures with WindowStyle modal to revert to WindowStyle
normal, allowing you to type at the command line.

XDisplay display identifier (UNIX only)

Specify display for MATLAB. You can display figure windows on different
displays using the XDisplay property. For example, to display the current
figure on a system called fred, use the command:

set(gcf,'XDisplay','fred:0.0')

XVisual visual identifier (UNIX only)

Select visual used by MATLAB. You can select the visual used by MATLAB by
setting the XVisual property to the desired visual ID. This can be useful if you
want to test your application on an 8-bit or grayscale visual. To see what
visuals are avail on your system, use the UNIX xdpyinfo command. From
MATLAB, type

!xdpyinfo

The information returned will contain a line specifying the visual ID. For
example,

visual id: 0x21

To use this visual with the current figure, set the XVisual property to the ID.

set(gcf,'XVisual','0x21')

XVisualMode auto | manual

Auto or manual selection of visual. VisualMode can take on two values – auto
(the default) and manual. In auto mode, MATLAB selects the best visual to use
based on the number of colors, availability of the OpenGL extension, etc. In
manual mode, MATLAB does not change the visual from the one currently in
use. Setting the XVisual property sets this property to manual.

file formats

2-74

2file formatsPurpose Readable file formats

Description This table shows the file formats that MATLAB is capable of reading.

File
Format

Extension File Content Read
Comman
d

Returns

Text MAT Saved MATLAB
workspace

load Variables in
the file

CSV Comma-separated
numbers

csvread Double array

DLM Delimited text dlmread Double array

TAB Tab-separated text dlmread Double array

Scientific
Data

CDF Data in Common
Data Format

cdfread Cell array of
CDF records

FITS Flexible Image
Transport System
data

fitsread Primary or
extension
table data

HDF Data in
Hierarchical Data
Format

hdfread HDF or
HDF-EOS
data set

Spread-
sheet

XLS Excel worksheet xlsread Double or cell
array

WK1 Lotus 123
worksheet

wk1read Double or cell
array

file formats

2-75

Image TIFF TIFF image imread Truecolor,
grayscale or
indexed
image(s)

PNG PNG image imread Truecolor,
grayscale or
indexed image

HDF HDF image imread Truecolor,
grayscale or
indexed
image(s)

BMP BMP image imread Truecolor or
indexed image

JPEG JPEG image imread Truecolor or
grayscale
image

GIF GIF image imread Indexed
image

PCX PCX image imread Indexed
image

XWD XWD image imread Indexed
image

CUR Cursor image imread Indexed
image

ICO Icon image imread Indexed
image

File
Format

Extension File Content Read
Comman
d

Returns

file formats

2-76

See Also fscanf, fread, textread, importdata

Audio
file

AU NeXT/Sun sound auread Sound data
and sample
rate

WAV Microsoft Wave
sound

wavread Sound data
and sample
rate

Movie AVI Movie aviread MATLAB
movie

File
Format

Extension File Content Read
Comman
d

Returns

fileattrib

2-77

2fileattribPurpose Set or get attributes of file or directory

Syntax fileattrib
fileattrib('name')
fileattrib('name','attrib')
fileattrib('name','attrib','users')
fileattrib('name','attrib','users','s')
[status,message,messageid] =

fileattrib('name','attrib','users','s')

Description The fileattrib function is like the DOS attrib command or the UNIX chmod
command.

fileattrib displays the attributes for the current directory. Values are

fileattrib('name') displays the attributes for name, where name is the
absolute or relative pathname for a directory or file. Use the wildcard * at the
end of name to view attributes for all matching files.

fileattrib('name','attrib') sets the attribute for name, where name is the
absolute or relative pathname for a directory or file. Specify the + qualifier
before the attribute to set it, and specify the - qualifier before the attribute to
clear it. Use the wildcard * at the end of name to set attributes for all matching
files. Values for attrib are

Value Description

0 Attribute is off

1 Attribute is set (on)

NaN Attribute does not apply

Value for attrib Description

a Archive (Windows only)

h Hidden file (Windows only)

fileattrib

2-78

For example, fileattrib('myfile.m','+w') makes myfile.m a writable file.

fileattrib('name','attrib','users') sets the attribute for name, where
name is the absolute or relative pathname for a directory or file, and defines
which users are affected by attrib, where users is applicable only for UNIX
systems. For more information about these attributes, see UNIX reference
information for chmod. The default value for users is u. Values for users are

fileattrib('name','attrib','users','s') sets the attribute for name,
where name is the absolute or relative pathname for a file or a directory and its
contents, and defines which users are affected by attrib. Here the s specifies
that attrib be applied to all contents of name, where name is a directory. The s
argument is not supported on Windows 98 and ME.

[status,message,messageid] =
fileattrib('name','attrib','users','s') sets the attribute for name,
returning the status, a message, and the MATLAB error message ID (see error
and lasterr). Here, status is 1 for success and is 0 for no error. If attrib,
users, and s are not specified, and status is 1, message is a structure
containing the file attributes and messageid is blank. If status is 0, messageid
contains the error. If you use a wildcard * at the end of name, mess will be a
structure.

s System file (Windows only)

w Write access (Windows and UNIX)

x Executable (UNIX only)

Value for users Description

a All users

g Group of users

o All other users

u Current user

Value for attrib Description

fileattrib

2-79

Examples Get Attributes of File
To view the attributes of myfile.m, type

fileattrib('myfile.m')

MATLAB returns

 Name: 'd:/work/myfile.m'
 archive: 0
 system: 0
 hidden: 0
 directory: 0
 UserRead: 1
 UserWrite: 0
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

UserWrite is 0, meaning myfile.m is read only. The Group and Other values
are NaN because they do not apply to the current operating system, Windows.

Set File Attribute
To make myfile.m become writable, type

fileattrib('myfile.m','+w')

Running fileattrib('myfile.m') now shows UserWrite to be 1.

Set Attributes for Specified Users
To make the directory d:/work/results be a read-only directory for all users,
type

fileattrib('d:/work/results','-w','a')

The - preceding the write attribute, w, specifies that write status is removed.

fileattrib

2-80

Set Multiple Attributes for Directory and Its Contents
To make the directory d:/work/results and all its contents be read only and
be hidden, on Windows, type

fileattrib('d:/work/results','+h-w','','s')

Because users is not applicable on Windows systems, its value is empty. Here,
s applies the attribute to the contents of the specified directory.

Return Status and Structure of Attributes
To return the attributes for the directory results to a structure, type

[stat,mess]=fileattrib('results')

MATLAB returns

stat =
 1

mess =
 Name: 'd:\work\results'
 archive: 0
 system: 0
 hidden: 0
 directory: 1
 UserRead: 1
 UserWrite: 1
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

fileattrib

2-81

The operation was successful as indicated by the status, stat, being 1. The
structure mess contains the file attributes. Access the attribute values in the
structure. For example, typing

mess.Name

returns the path for results

ans =
d:\work\results

Return Attributes with Wildcard for name
Return the attributes for all files in the current directory whose names begin
with new.

[stat,mess]=fileattrib('new*')

MATLAB returns

stat =
 1

mess =
1x3 struct array with fields:
 Name
 archive
 system
 hidden
 directory
 UserRead
 UserWrite
 UserExecute
 GroupRead
 GroupWrite
 GroupExecute
 OtherRead
 OtherWrite
 OtherExecute

The results indicate there are three matching files. To view the filenames, type

mess.Name

fileattrib

2-82

MATLAB returns

ans =
d:\work\results\newname.m

ans =
d:\work\results\newone.m

ans =
d:\work\results\newtest.m

To view just the first filename, type

mess(1).Name

ans =
d:\work\results\newname.m

See Also copyfile, cd, dir, filebrowser, ls, mkdir, movefile, rmdir

filebrowser

2-83

2filebrowserPurpose Display Current Directory browser, a tool for viewing files in current directory

Graphical
Interface

As an alternative to the filebrowser function, select Current Directory from
the View menu in the MATLAB desktop.

Syntax filebrowser

Description filebrowser displays the Current Directory browser.

See Also cd, copyfile, fileattrib, ls, mkdir, movefile, pwd, rmdir

Use the pathname edit box to view
directories and their contents.

Click the find button to
search for content
within M-files.

Double-click a file to
open it in an
appropriate tool.

View the help portion of
the selected M-file.

fileparts

2-84

2filepartsPurpose Return filename parts

Syntax [pathstr,name,ext,versn] = fileparts('filename')

Description [pathstr,name,ext,versn] = fileparts('filename') returns the path,
filename, extension, and version for the specified file. The returned ext field
contains a dot (.) before the file extension.

The fileparts function is platform dependent.

You can reconstruct the file from the parts using

fullfile(pathstr,[name ext versn])

Examples This example returns the parts of file to path, name, ext, and ver.

file = '\home\user4\matlab\classpath.txt';

[pathstr,name,ext,versn] = fileparts(file)

pathstr =
\home\user4\matlab

name =
classpath

ext =
.txt

versn =
 ''

See Also fullfile

filesep

2-85

2filesepPurpose Return the directory separator for this platform

Syntax f = filesep

Description f = filesep returns the platform-specific file separator character. The file
separator is the character that separates individual directory names in a path
string.

Examples On the PC

iofun_dir = ['toolbox' filesep 'matlab' filesep 'iofun']

iofun_dir =

toolbox\matlab\iofun

On a UNIX system

iodir = ['toolbox' filesep 'matlab' filesep 'iofun']

iodir =

toolbox/matlab/iofun

See Also fullfile, fileparts

fill

2-86

2fillPurpose Filled two-dimensional polygons

Syntax fill(X,Y,C)
fill(X,Y,ColorSpec)
fill(X1,Y1,C1,X2,Y2,C2,...)
fill(...,'PropertyName',PropertyValue)
h = fill(...)

Description The fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with vertex color
specified by C. C is a vector or matrix used as an index into the colormap. If C is
a row vector, length(C) must equal size(X,2) and size(Y,2); if C is a column
vector, length(C) must equal size(X,1) and size(Y,1). If necessary, fill
closes the polygon by connecting the last vertex to the first.

fill(X,Y,ColorSpec) fills two-dimensional polygons specified by X and Y with
the color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional filled
areas.

fill(...,'PropertyName',PropertyValue) allows you to specify property
names and values for a patch graphics object.

h = fill(...) returns a vector of handles to patch graphics objects, one
handle per patch object.

Remarks If X or Y is a matrix, and the other is a column vector with the same number of
elements as rows in the matrix, fill replicates the column vector argument to
produce a matrix of the required size. fill forms a vertex from corresponding
elements in X and Y and creates one polygon from the data in each column.

The type of color shading depends on how you specify color in the argument list.
If you specify color using ColorSpec, fill generates flat-shaded polygons by
setting the patch object’s FaceColor property to the corresponding RGB triple.

If you specify color using C, fill scales the elements of C by the values specified
by the axes property CLim. After scaling C, C indexes the current colormap.

fill

2-87

If C is a row vector, fill generates flat-shaded polygons where each element
determines the color of the polygon defined by the respective column of the X
and Y matrices. Each patch object’s FaceColor property is set to 'flat'. Each
row element becomes the CData property value for the nth patch object, where
n is the corresponding column in X or Y.

If C is a column vector or a matrix, fill uses a linear interpolation of the vertex
colors to generate polygons with interpolated colors. It sets the patch graphics
object FaceColor property to 'interp' and the elements in one column become
the CData property value for the respective patch object. If C is a column vector,
fill replicates the column vector to produce the required sized matrix.

Examples Create a red octagon.

t = (1/16:1/8:1)'*2*pi;
x = sin(t);
y = cos(t);
fill(x,y,'r')
axis square

See Also axis, caxis, colormap, ColorSpec, fill3, patch

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fill

2-88

“Polygons and Surfaces” for related functions

fill3

2-89

2fill3Purpose Filled three-dimensional polygons

Syntax fill3(X,Y,Z,C)
fill3(X,Y,Z,ColorSpec)
fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...)
fill3(...,'PropertyName',PropertyValue)
h = fill3(...)

Description The fill3 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,C) fills three-dimensional polygons. X, Y, and Z triplets specify
the polygon vertices. If X, Y, or Z is a matrix, fill3 creates n polygons, where n
is the number of columns in the matrix. fill3 closes the polygons by
connecting the last vertex to the first when necessary.

C specifies color, where C is a vector or matrix of indices into the current
colormap. If C is a row vector, length(C)must equal size(X,2) and size(Y,2);
if C is a column vector, length(C) must equal size(X,1) and size(Y,1).

fill3(X,Y,Z,ColorSpec) fills three-dimensional polygons defined by X, Y, and
Z with color specified by ColorSpec.

fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...) specifies multiple filled
three-dimensional areas.

fill3(...,'PropertyName',PropertyValue) allows you to set values for
specific patch properties.

h = fill3(...) returns a vector of handles to patch graphics objects, one
handle per patch.

Algorithm If X, Y, and Z are matrices of the same size, fill3 forms a vertex from the
corresponding elements of X, Y, and Z (all from the same matrix location), and
creates one polygon from the data in each column.

If X, Y, or Z is a matrix, fill3 replicates any column vector argument to produce
matrices of the required size.

If you specify color using ColorSpec, fill3 generates flat-shaded polygons and
sets the patch object FaceColor property to an RGB triple.

fill3

2-90

If you specify color using C, fill3 scales the elements of C by the axes property
CLim, which specifies the color axis scaling parameters, before indexing the
current colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets the
FaceColor property of the patch objects to 'flat'. Each element becomes the
CData property value for the respective patch object.

If C is a column vector or a matrix, fill3 generates polygons with interpolated
colors and sets the patch object FaceColor property to 'interp'. fill3 uses a
linear interpolation of the vertex colormap indices when generating polygons
with interpolated colors. The elements in one column become the CData
property value for the respective patch object. If C is a column vector, fill3
replicates the column vector to produce the required sized matrix.

Examples Create four triangles with interpolated colors.

X = [0 1 1 2;1 1 2 2;0 0 1 1];
Y = [1 1 1 1;1 0 1 0;0 0 0 0];
Z = [1 1 1 1;1 0 1 0;0 0 0 0];
C = [0.5000 1.0000 1.0000 0.5000;

1.0000 0.5000 0.5000 0.1667;
0.3330 0.3330 0.5000 0.5000];

fill3(X,Y,Z,C)

fill3

2-91

See Also axis, caxis, colormap, ColorSpec, fill, patch

“Polygons and Surfaces” for related functions

filter

2-92

2filterPurpose Filter data with an infinite impulse response (IIR) or finite impulse response
(FIR) filter

Syntax y = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
[...] = filter(b,a,X,[],dim)

Description The filter function filters a data sequence using a digital filter which works
for both real and complex inputs. The filter is a direct form II transposed
implementation of the standard difference equation (see “Algorithm”).

y = filter(b,a,X) filters the data in vector X with the filter described by
numerator coefficient vector b and denominator coefficient vector a. If a(1) is
not equal to 1, filter normalizes the filter coefficients by a(1). If a(1) equals
0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a multidimensional
array, filter operates on the first nonsingleton dimension.

[y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays.
If X is a row or column vector, output zf is a column vector of
max(length(a),length(b))-1. If X is a matrix, zf is an array of such vectors,
one for each column of X, and similarly for multidimensional arrays.

[y,zf] = filter(b,a,X,zi) accepts initial conditions, zi, and returns the
final conditions, zf, of the filter delays. Input zi is a vector of length
max(length(a),length(b))-1, or an array with the leading dimension of size
max(length(a),length(b))-1 and with remaining dimensions matching
those of X.

y = filter(b,a,X,zi,dim) and [...] = filter(b,a,X,[],dim) operate
across the dimension dim.

Example You can use filter to find a running average without using a for loop. This
example finds the running average of a 16-element vector, using a window size
of 5.

data = [1:0.2:4]';

filter

2-93

windowSize = 5;
filter(ones(1,windowSize)/windowSize,1,data)

ans =
 0.2000
 0.4400
 0.7200
 1.0400
 1.4000
 1.6000
 1.8000
 2.0000
 2.2000
 2.4000
 2.6000
 2.8000
 3.0000
 3.2000
 3.4000
 3.6000

Algorithm The filter function is implemented as a direct form II transposed structure,

or

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
 - a(2)*y(n-1) - ... - a(na+1)*y(n-na)

where n-1 is the filter order, and which handles both FIR and IIR filters [1].

Σ Z–1

x(m)

–a(n)

Zn–1(m)

. . .

. . .

b(n)

. . . Σ Z–1

Z2(m)

Σ Z–1

Z1(m)

–a(3)

b(3)

–a(2)

b(2)

Σ

b(1)

y(m)

filter

2-94

The operation of filter at sample is given by the time domain difference
equations

The input-output description of this filtering operation in the -transform
domain is a rational transfer function,

See Also filter2

filtfilt, filtic in the Signal Processing Toolbox

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311-312.

m

y m() b 1()x m() z1 m 1–()+=

z1 m() b 2()x m() z2 m 1–() a 2() y m()–+=

zn 2– m() b n 1–()x m() zn 1– m 1–() a n 1–() y m()–+=

zn 1– m() b n()x m() a n() y m()–=

...=

z

Y z() b 1() b 2()z 1– … b nb 1+()z nb–+ ++
1 a 2()z 1– … a na 1+()z na–+ + +

--- X z()=

filter2

2-95

2filter2Purpose Two-dimensional digital filtering

Syntax Y = filter2(h,X)
Y = filter2(h,X,shape)

Description Y = filter2(h,X) filters the data in X with the two-dimensional FIR filter in
the matrix h. It computes the result, Y, using two-dimensional correlation, and
returns the central part of the correlation that is the same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

Remarks Two-dimensional correlation is equivalent to two-dimensional convolution
with the filter matrix rotated 180 degrees. See the Algorithm section for more
information about how filter2 performs linear filtering.

Algorithm Given a matrix X and a two-dimensional FIR filter h, filter2 rotates your filter
matrix 180 degrees to create a convolution kernel. It then calls conv2, the
two-dimensional convolution function, to implement the filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of the FIR
filter with the input matrix. By default, filter2 then extracts the central part
of the convolution that is the same size as the input matrix, and returns this
as the result. If the shape parameter specifies an alternate part of the
convolution for the result, filter2 returns the appropriate part.

See Also conv2, filter

'full' Returns the full two-dimensional correlation. In this case, Y is
larger than X.

'same' (default) Returns the central part of the correlation. In this
case, Y is the same size as X.

'valid' Returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

find

2-96

2findPurpose Find indices and values of nonzero elements

Syntax k = find(x)
[i,j] = find(X)
[i,j,v] = find(X)

Description k = find(X) returns the indices of the array X that point to nonzero elements.
If none is found, find returns an empty matrix.

[i,j] = find(X) returns the row and column indices of the nonzero entries in
the matrix X. This is often used with sparse matrices.

[i,j,v] = find(X) returns a column vector v of the nonzero entries in X, as
well as row and column indices.

In general, find(X) regards X as X(:), which is the long column vector formed
by concatenating the columns of X.

Examples [i,j,v] = find(X~=0) produces a vector v with all 1s, and returns the row and
column indices.

Some operations on a vector

x = [11 0 33 0 55]';
find(x)

ans =

 1
 3
 5

find(x == 0)

ans =

 2
 4

find(0 < x & x < 10*pi)

find

2-97

ans =

 1

And on a matrix

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

[i,j,v] = find(M > 6)

i = j = v =

 1 1 1
 3 2 1
 2 3 1

See Also nonzeros, sparse, colon, logical operators, relational operators

findall

2-98

2findallPurpose Find handles of all graphics objects

Syntax object_handles = findall(handle_list)
object_handles = findall(handle_list,'property','value',...)

Description object_handles = findall(handle_list) returns the handles of all objects
in the hierarchy under the objects identified in handle_list.

object_handles = findall(handle_list,'property','value',...)
returns the handles of all objects in the hierarchy under the objects identified
in handle_list that have the specified properties set to the specified values.

Remarks findall is similar to findobj, except that it finds objects even if their
HandleVisibility is set to off.

Examples plot(1:10)
xlabel xlab
a = findall(gcf)
b = findobj(gcf)
c = findall(b,'Type','text') % return the xlabel handle twice
d = findobj(b,'Type','text') % can't find the xlabel handle

See Also allchild, findobj

findfigs

2-99

2findfigsPurpose Find visible off-screen figures

Syntax findfigs

Description findfigs finds all visible figure windows whose display area is off the screen
and positions them on the screen.

A window appears to MATLAB to be off-screen when its display area (the area
not covered by the window’s title bar, menu bar, and toolbar) does not appear
on the screen.

This function is useful when bringing an application from a larger monitor to
a smaller one (or one with lower resolution). Windows visible on the larger
monitor may appear off-screen on a smaller monitor. Using findfigs ensures
that all windows appear on the screen.

See Also figflag

“Finding and Identifying Graphics Objects” for related functions

findobj

2-100

2findobjPurpose Locate graphics objects with specific properties

Syntax h = findobj
h = findobj('PropertyName',PropertyValue,...)
h = findobj(objhandles,...)
h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)

Description findobj locates graphics objects and returns their handles. You can limit the
search to objects with particular property values and along specific branches of
the hierarchy.

h = findobj returns the handles of the root object and all its descendants.

h = findobj('PropertyName',PropertyValue,...) returns the handles of
all graphics objects having the property PropertyName, set to the value
PropertyValue. You can specify more than one property/value pair, in which
case, findobj returns only those objects having all specified values.

h = findobj(objhandles,...) restricts the search to objects listed in
objhandles and their descendants.

h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)
restricts the search to those objects listed in objhandles and does not search
descendants.

Remarks findobj returns an error if a handle refers to a non-existent graphics object.

Findobj correctly matches any legal property value. For example,

findobj('Color','r')

finds all objects having a Color property set to red, r, or [1 0 0].

When a graphics object is a descendant of more than one object identified in
objhandles, MATLAB searches the object each time findobj encounters its
handle. Therefore, implicit references to a graphics object can result in its
handle being returned multiple times.

Examples Find all line objects in the current axes:

h = findobj(gca,'Type','line')

findobj

2-101

See Also copyobj, gcf, gca, gcbo, gco, get, set

Graphics objects include:

axes, figure, image, light, line, patch, surface, text, uicontrol, uimenu

“Finding and Identifying Graphics Objects” for related functions

findstr

2-102

2findstrPurpose Find a string within another, longer string

Syntax k = findstr(str1,str2)

Description k = findstr(str1,str2) searches the longer of the two input strings for any
occurrences of the shorter string, returning the starting index of each such
occurrence in the double array, k. If no occurrencs are found, then findstr
returns the empty array, [].

The search performed by findstr is case sensitive. Any leading and trailing
blanks in either input string are explicitly included in the comparison.

Unlike the strfind function, the order of the input arguments to findstr is not
important. This can be useful if you are not certain which of the two input
strings is the longer one.

Examples s = 'Find the starting indices of the shorter string.';

findstr(s,'the')
ans =
 6 30

findstr('the',s)
ans =
 6 30

See Also strfind, strmatch, strtok, strcmp, strncmp, strcmpi, strncmpi, regexp,
regexpi, regexprep

finish

2-103

2finishPurpose MATLAB termination M-file

Description When MATLAB quits, it runs a script called finish.m, if it exists and is on the
MATLAB search path. This is a file that you create yourself in order to have
MATLAB perform any final tasks just prior to terminating. For example, you
might want to save the data in your workspace to a MAT-file before MATLAB
exits.

finish.m is invoked whenever you do one of the following:

• Click the close box in the MATLAB desktop

• Select Exit MATLAB from the desktop File menu

• Type quit or exit at the Command Window prompt

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or drawnow so
that figures are visible. See the reference pages for these functions for more
information.

Examples Two sample finish.m files are provided with MATLAB in toolbox/local. Use
them to help you create your own finish.m, or rename one of the files to
finish.m to use it.

• finishsav.m—Saves the workspace to a MAT-file when MATLAB quits.

• finishdlg.m—Displays a dialog allowing you to cancel quitting; it uses quit
cancel and contains the following code.

button = questdlg('Ready to quit?', ...
 'Exit Dialog','Yes','No','No');
switch button
 case 'Yes',
 disp('Exiting MATLAB');
 %Save variables to matlab.mat
 save
 case 'No',
 quit cancel;
end

See Also quit, startup

fitsinfo

2-104

2fitsinfoPurpose Return information about a FITS file

Syntax S = fitsinfo(filename)

Description S = fitsinfo(filename)returns a structure whose fields contain information
about the contents of a Flexible Image Transport System (FITS) file. filename
is a string that specifies the name of the FITS file.

The structure, S, obtained from a basic FITS file, contains the following fields.

A FITS file may also include any number of extensions. For such files,
fitsinfo returns a structure, S, with the fields listed above plus one or more
of the following structure arrays.

Information Returned From a Basic FITS File

Fieldname Description Return Type

Contents List of extensions in the file in the
order that they occur

Cell array of
Strings

FileModDate File modification date String

Filename Name of the file String

FileSize Size of the file in bytes Double

PrimaryData Information about the primary data
in the FITS file

Structure array

Additional Information Returned From FITS Extensions

Fieldname Description Return Type

AsciiTable ASCII Table extensions Structure array

BinaryTable Binary Table extensions Structure array

Image Image extensions Structure array

Unknown Nonstandard extensions Structure array

fitsinfo

2-105

The tables that follow show the fields of each of the structure arrays that can
be returned by fitsinfo.

Note For all Intercept and Slope fieldnames below, the equation used to
calculate actual values is, actual_value = (Slope * array_value) +
Intercept.

Fields of the PrimaryData Structure Array

Fieldname Description Return Type

DataSize Size of the primary data in bytes Double

DataType Precision of the data String

Intercept Value, used with Slope, to
calculate actual pixel values from
the array pixel values

Double

Keywords Keywords, values and comments of
the header in each column

Cell array of
strings

MissingDataValu
e

Value used to represent undefined
data

Double

Offset Number of bytes from beginning of
the file to the first data value

Double

Size Sizes of each dimension Double array

Slope Value, used along with Intercept,
to calculate actual pixel values
from the array pixel values

Double

fitsinfo

2-106

Fields of the AsciiTable Structure Array

Fieldname Description Return Type

DataSize Size of the data in the ASCII Table
in bytes

Double

FieldFormat Formats in which each field is
encoded, using FORTRAN-77
format codes

Cell array of
strings

FieldPos Starting column for each field Double array

FieldPrecision Precision in which the values in
each field are stored

Cell array of
strings

FieldWidth Number of characters in each field Double array

Intercept Values, used along with Slope, to
calculate actual data values from
the array data values

Double array

Keywords Keywords, values and comments in
the ASCII table header

Cell array of
strings

MissingDataValue Representation of undefined data in
each field

Cell array of
strings

NFields Number of fields in each row Double array

Offset Number of bytes from beginning of
the file to the first data value

Double

Rows Number of rows in the table Double

RowSize Number of characters in each row Double

Slope Values, used with Intercept, to
calculate actual data values from
the array data values

Double array

fitsinfo

2-107

Fields of the BinaryTable Structure Array

Fieldname Description Return Type

DataSize Size of the data in the Binary Table,
in bytes. Includes any data past the
main part of the Binary Table.

Double

ExtensionOffset Number of bytes from the beginning
of the file to any data past the main
part of the Binary Table

Double

ExtensionSize Size of any data past the main part
of the Binary Table, in bytes

Double

FieldFormat Data type for each field, using FITS
binary table format codes

Cell array of
strings

FieldPrecision Precisions in which the values in
each field are stored

Cell array of
strings

FieldSize Number of values in each field Double array

Intercept Values, used along with Slope, to
calculate actual data values from
the array data values

Double array

Keywords Keywords, values and comments in
the Binary Table header

Cell array of
strings

MissingDataValue Representation of undefined data in
each field

Cell array of
double

NFields Number of fields in each row Double

Offset Number of bytes from beginning of
the file to the first data value

Double

Rows Number of rows in the table Double

fitsinfo

2-108

RowSize Number of bytes in each row Double

Slope Values, used with Intercept, to
calculate actual data values from
the array data values

Double array

Fields of the Image Structure Array

Fieldname Description Return Type

DataSize Size of the data in the Image
extension in bytes

Double

DataType Precision of the data String

Intercept Value, used along with Slope, to
calculate actual pixel values from
the array pixel values

Double

Keywords Keywords, values and comments in
the Image header

Cell array of
strings

MissingDataValue Representation of undefined data Double

Offset Number of bytes from the beginning
of the file to the first data value

Double

Size Sizes of each dimension Double array

Slope Value, used along with Intercept,
to calculate actual pixel values from
the array pixel values

Double

Fields of the BinaryTable Structure Array

Fieldname Description Return Type

fitsinfo

2-109

Example Use fitsinfo to obtain information about FITS file, tst0012.fits. In addition
to its primary data, the file also contains three extensions: Binary Table,
Image, and ASCII Table.

S = fitsinfo('tst0012.fits');
S =
 Filename: 'tst0012.fits'
 FileModDate: '27-Nov-2000 13:25:55'
 FileSize: 109440
 Contents: {'Primary' 'Binary Table' 'Image' 'ASCII'}
 PrimaryData: [1x1 struct]
 BinaryTable: [1x1 struct]
 Image: [1x1 struct]
 AsciiTable: [1x1 struct]

Fields of the Unknown Structure Array

Fieldname Description Return Type

DataSize Size of the data in nonstandard
extensions, in bytes

Double

DataType Precision of the data String

Intercept Value, used along with Slope, to
calculate actual data values from
the array data values

Double

Keywords Keywords, values and comments in
the extension header

Cell array of
strings

MissingDataValue Representation of undefined data Double

Offset Number of bytes from beginning of
the file to the first data value

Double

Size Sizes of each dimension Double array

Slope Value, used along with Intercept, to
calculate actual data values from
the array data values

Double

fitsinfo

2-110

The PrimaryData substructure shows that the data resides in a 102-by-109
matrix of single-precision values. There are 44,472 bytes of primary data
starting at an offset of 2,880 bytes from the start of the file.

S.PrimaryData
ans =
 DataType: 'single'
 Size: [102 109]
 DataSize: 44472
 MissingDataValue: []
 Intercept: 0
 Slope: 1
 Offset: 2880
 Keywords: {25x3 cell}

Examining the ASCII Table substructure, you can see that this table has 53
rows, 59 columns, and contains 8 fields per row. The last field in each row, for
example, begins in the 55th column and contains a 4-digit integer.

S.AsciiTable
ans =
 Rows: 53
 RowSize: 59
 NFields: 8
 FieldFormat: {1x8 cell}
 FieldPrecision: {1x8 cell}
 FieldWidth: [9 6.2000 3 10.4000 20.1500 5 1 4]
 FieldPos: [1 11 18 22 33 54 54 55]
 DataSize: 3127

MissingDataValue: {'*' '---.--' '*' [] '*' '*' '*' ''}
 Intercept: [0 0 -70.2000 0 0 0 0 0]
 Slope: [1 1 2.1000 1 1 1 1 1]
 Offset: 103680
 Keywords: {65x3 cell}

S.AsciiTable.FieldFormat
ans =

'A9' 'F6.2' 'I3' 'E10.4' 'D20.15' 'A5' 'A1' 'I4'

The ASCII Table includes 65 keyword entries arranged in a 65-by-3 cell array.

key = S.AsciiTable.Keywords

fitsinfo

2-111

key =
S.AsciiTable.Keywords
ans =
 'XTENSION' 'TABLE' [1x48 char]
 'BITPIX' [8] [1x48 char]
 'NAXIS' [2] [1x48 char]
 'NAXIS1' [59] [1x48 char]
 . . .
 . . .
 . . .

One of the entries in this cell array is shown here. Each row of the array
contains a keyword, its value, and comment.

key{2,:}

ans =
BITPIX % Keyword

ans =
 8 % Keyword value

ans =
 Character data 8 bits per pixel % Keyword comment

See Also fitsread

fitsread

2-112

2fitsreadPurpose Extract data from a FITS file

Syntax data = fitsread(filename)
data = fitsread(filename, 'raw')
data = fitsread(filename, extname)
data = fitsread(filename, extname, index)

Description data = fitsread(filename)reads the primary data of the Flexible Image
Transport System (FITS) file specified by filename. Undefined data values are
replaced by NaN. Numeric data are scaled by the slope and intercept values and
are always returned in double precision.

data = fitsread(filename, extname)reads data from a FITS file according
to the data array or extension specified in extname. You can specify only one
extname. The valid choices for extname are shown in the following table.

data = fitsread(filename, extname, index)is the same as the above
syntax, except that if there is more than one of the specified extension type
extname in the file, then only the one at the specified index is read.

data = fitsread(filename, 'raw', ...)reads the primary or extension
data of the FITS file, but, unlike the above syntaxes, does not replace undefined
data values with NaN and does not scale the data. The data returned has the
same class as the data stored in the file.

Data Arrays or Extensions

extname Description

'primary' Read data from the primary data array

'table' Read data from the ASCII Table extension

'bintable' Read data from the Binary Table extension

'image' Read data from the Image extension

'unknown' Read data from the Unknown extension

fitsread

2-113

Example Read FITS file, tst0012.fits, into a 109-by-102 matrix called data.

data = fitsread('tst0012.fits');

whos data
 Name Size Bytes Class

 data 109x102 88944 double array

Here is the beginning of the data read from the file.

data(1:5,1:6)
ans =
 135.2000 134.9436 134.1752 132.8980 131.1165 128.8378
 137.1568 134.9436 134.1752 132.8989 131.1167 126.3343
 135.9946 134.9437 134.1752 132.8989 131.1185 128.1711
 134.0093 134.9440 134.1749 132.8983 131.1201 126.3349
 131.5855 134.9439 134.1749 132.8989 131.1204 126.3356

Read only the Binary Table extension from the file.

data = fitsread('tst0012.fits', 'bintable')

data =
 Columns 1 through 4
 {11x1 cell} [11x1 int16] [11x3 uint8] [11x2 double]
 Columns 5 through 9

[11x3 cell] {11x1 cell} [11x1 int8] {11x1 cell} [11x3 int32]
 Columns 10 through 13
 [11x2 int32] [11x2 single] [11x1 double] [11x1 uint8]

See Also fitsinfo

fix

2-114

2fixPurpose Round towards zero

Syntax B = fix(A)

Description B = fix(A) rounds the elements of A toward zero, resulting in an array of
integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
 Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

fix(a)

ans =
 Columns 1 through 4
-1.0000 0 3.0000 5.0000

 Columns 5 through 6
 7.0000 2.0000 + 3.0000i

See Also ceil, floor, round

flipdim

2-115

2flipdimPurpose Flip array along a specified dimension

Syntax B = flipdim(A,dim)

Description B = flipdim(A,dim) returns A with dimension dim flipped.

When the value of dim is 1, the array is flipped row-wise down. When dim is 2,
the array is flipped columnwise left to right. flipdim(A,1) is the same as
flipud(A), and flipdim(A,2) is the same as fliplr(A).

Examples flipdim(A,1) where

A =

 1 4
 2 5
 3 6

produces

 3 6
 2 5
 1 4

See Also fliplr, flipud, permute, rot90

fliplr

2-116

2fliplrPurpose Flip matrices left-right

Syntax B = fliplr(A)

Description B = fliplr(A) returns A with columns flipped in the left-right direction, that
is, about a vertical axis.

If A is a row vector, then fliplr(A) returns a vector of the same length with
the order of its elements reversed. If A is a column vector, then fliplr(A)
simply returns A.

Examples If A is the 3-by-2 matrix,

A =
 1 4

2 5
3 6

then fliplr(A) produces

4 1
5 2
6 3

If A is a row vector,

A =
 1 3 5 7 9

then fliplr(A) produces

 9 7 5 3 1

Limitations The array being operated on cannot have more than two dimensions. This
limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

See Also flipdim, flipud, rot90

flipud

2-117

2flipudPurpose Flip matrices up-down

Syntax B = flipud(A)

Description B = flipud(A) returns A with rows flipped in the up-down direction, that is,
about a horizontal axis.

If A is a column vector, then flipud(A) returns a vector of the same length with
the order of its elements reversed. If A is a row vector, then flipud(A) simply
returns A.

Examples If A is the 3-by-2 matrix,

A =
 1 4
 2 5
 3 6

then flipud(A) produces

 3 6
 2 5
 1 4

If A is a column vector,

A =
 3
 5
 7

then flipud(A) produces

A =
 7
 5
 3

Limitations The array being operated on cannot have more than two dimensions. This
limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

flipud

2-118

See Also flipdim, fliplr, rot90

floor

2-119

2floorPurpose Round towards minus infinity

Syntax B = floor(A)

Description B = floor(A) rounds the elements of A to the nearest integers less than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
 Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

floor(a)

ans =
 Columns 1 through 4
-2.0000 -1.0000 3.0000 5.0000

 Columns 5 through 6
 7.0000 2.0000 + 3.0000i

See Also ceil, fix, round

flops

2-120

2flopsPurpose Count floating-point operations

Description This is an obsolete function. With the incorporation of LAPACK in MATLAB
version 6, counting floating-point operations is no longer practical.

flow

2-121

2flowPurpose A simple function of three variables

Syntax v = flow
v = flow(n)
v = flow(x,y,z)
[x,y,z,v] = flow(...)

Description flow, a function of three variables, is the speed profile of a submerged jet
within a infinite tank. flow is useful for demonstrating slice, interp3, and for
generating scalar volume data.

v = flow produces a 50-by-25-by-25 array.

v = flow(n) produces a 2n-by-n-by-n array.

v = flow(x,y,z) evaluates the speed profile at the points x, y, and z.

[x,y,z,v] = flow(...) returns the coordinates as well as the volume data.

See Also “Volume Visualization” for related functions

fmin

2-122

2fminPurpose Minimize a function of one variable

Note The fmin function was replaced by fminbnd in Release 11 (MATLAB
5.3). In Release 12 (MATLAB 6.0), fmin displays a warning message and calls
fminbnd.

Syntax x = fmin('fun',x1,x2)
x = fmin('fun',x1,x2,options)
x = fmin('fun',x1,x2,options,P1,P2, ...)
[x,options] = fmin(...)

Description x = fmin('fun',x1,x2) returns a value of x which is a local minimizer of
fun(x) in the interval .

x = fmin('fun',x1,x2,options) does the same as the above, but uses
options control parameters.

x = fmin('fun',x1,x2,options,P1,P2,...) does the same as the above, but
passes arguments to the objective function, fun(x,P1,P2,...). Pass an empty
matrix for options to use the default value.

[x,options] = fmin(...) returns, in options(10), a count of the number of
steps taken.

Arguments

x1 x x2< <

x1,x2 Interval over which fun is minimized.

P1,P2... Arguments to be passed to fun.

fun A string containing the name of the function to be minimized.

fmin

2-123

Examples fmin('cos',3,4) computes to a few decimal places.

fmin('cos',3,4,[1,1.e-12]) displays the steps taken to compute to 12
decimal places.

To find the minimum of the function on the interval (0,2),
write an M-file called f.m.

function y = f(x)
y = x.^3-2*x-5;

Then invoke fmin with

x = fmin('f', 0, 2)

The result is

x =
 0.8165

The value of the function at the minimum is

y = f(x)

y =
 -6.0887

Algorithm The algorithm is based on golden section search and parabolic interpolation. A
Fortran program implementing the same algorithms is given in [1].

options A vector of control parameters. Only three of the 18
components of options are referenced by fmin; Optimization
Toolbox functions use the others. The three control options
used by fmin are:

• options(1) — If this is nonzero, intermediate steps in the so-
lution are displayed. The default value of options(1) is 0.

• options(2) — This is the termination tolerance. The default
value is 1.e-4.

• options(14) — This is the maximum number of steps. The
default value is 500.

π

π

f x() x 3 2x– 5–=

fmin

2-124

See Also fmins, fzero, foptions in the Optimization Toolbox (or type help foptions).

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

fminbnd

2-125

2fminbndPurpose Minimize a function of one variable on a fixed interval

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(fun,x1,x2,options,P1,P2,...)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the
function that is described in fun in the interval x1 <= x <= x2.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

x = fminbnd(fun,x1,x2,options,P1,P2,...) provides for additional
arguments, P1, P2, etc., which are passed to the objective function,
fun(x,P1,P2,...). Use options=[] as a placeholder if no options are set.

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes
the exit condition of fminbnd:

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) dislays
output only if the function does not converge.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

TolX Termination tolerance on x.

fminbnd

2-126

[x,fval,exitflag,output] = fminbnd(...) returns a structure output that
contains information about the optimization:

Arguments fun is the function to be minimized. fun accepts a scalar x and returns a scalar
f, the objective function evaluated at x. The function fun can be specified as a
function handle.

x = fminbnd(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x.

fun can also be an inline object.

x = fminbnd(inline('sin(x*x)'),x0);

Other arguments are described in the syntax descriptions above.

Examples x = fminbnd(@cos,3,4) computes to a few decimal places and gives a
message on termination.

[x,fval,exitflag] =
 fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))

computes to about 12 decimal places, suppresses output, returns the
function value at x, and returns an exitflag of 1.

The argument fun can also be an inline function. To find the minimum of the
function on the interval (0,2), create an inline object f

>0 Indicates that the function converged to a solution x.

 0 Indicates that the maximum number of function evaluations was
exceeded.

<0 Indicates that the function did not converge to a solution.

output.algorithm The algorithm used

output.funcCount The number of function evaluations

output.iterations The number of iterations taken

π

π

f x() x 3 2x– 5–=

fminbnd

2-127

f = inline('x.^3-2*x-5');

Then invoke fminbnd with

x = fminbnd(f, 0, 2)

The result is

x =
 0.8165

The value of the function at the minimum is

y = f(x)

y =
 -6.0887

Algorithm The algorithm is based on Golden Section search and parabolic interpolation.
A Fortran program implementing the same algorithm is given in [1].

Limitations The function to be minimized must be continuous. fminbnd may only give local
solutions.

fminbnd often exhibits slow convergence when the solution is on a boundary of
the interval.

fminbnd only handles real variables.

See Also fminsearch, fzero, optimset, function_handle (@), inline

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

fmins

2-128

2fminsPurpose Minimize a function of several variables

Note The fmins function was replaced by fminsearch in Release 11
(MATLAB 5.3). In Release 12 (MATLAB 6.0), fmins displays a warning
message and calls fminsearch.

Syntax x = fmins('fun',x0)
x = fmins('fun',x0,options)
x = fmins('fun',x0,options,[],P1,P2, ...)
[x,options] = fmins(...)

Description x = fmins('fun',x0) returns a vector x which is a local minimizer of fun(x)
near .

x = fmins('fun',x0,options) does the same as the above, but uses options
control parameters.

x = fmins('fun',x0,options,[],P1,P2,...) does the same as above, but
passes arguments to the objective function, fun(x,P1,P2, ...). Pass an empty
matrix for options to use the default value.

[x,options] = fmins(...) returns, in options(10), a count of the number
of steps taken.

Arguments

x0

x0 Starting vector.

P1,P2... Arguments to be passed to fun.

[] Argument needed to provide compatibility with fminu in the
Optimization Toolbox.

fun A string containing the name of the objective function to be
minimized. fun(x) is a scalar valued function of a vector
variable.

fmins

2-129

Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The M-file banana.m defines the function.

function f = banana(x)
f = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;

The statements

[x,out] = fmins('banana',[-1.2, 1]);
x
out(10)

produce

x =

 1.0000 1.0000

ans =

 165

options A vector of control parameters. Only four of the 18
components of options are referenced by fmins;
Optimization Toolbox functions use the others. The four
control options used by fmins are:

• options(1) — If this is nonzero, intermediate steps in the
solution are displayed. The default value of options(1) is
0.

• options(2) and options(3) — These are the termination
tolerances for x and function(x), respectively. The de-
fault values are 1.e-4.

• options(14) — This is the maximum number of steps.
The default value is 500.

f x() 100 x2 x1
2–()

2
1 x1–()2+=

fmins

2-130

This indicates that the minimizer was found to at least four decimal places in
165 steps.

Move the location of the minimum to the point [a,a^2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2, a = 1; end
f = 100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,out] = fmins('banana', [-1.2, 1], [0, 1.e-8], [], sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default.

Algorithm The algorithm is the Nelder-Mead simplex search described in the two refer-
ences. It is a direct search method that does not require gradients or other
derivative information. If n is the length of x, a simplex in n-dimensional space
is characterized by the n+1 distinct vectors which are its vertices. In two-space,
a simplex is a triangle; in three-space, it is a pyramid.

At each step of the search, a new point in or near the current simplex is gener-
ated. The function value at the new point is compared with the function’s
values at the vertices of the simplex and, usually, one of the vertices is replaced
by the new point, giving a new simplex. This step is repeated until the diameter
of the simplex is less than the specified tolerance.

See Also fmin, foptions in the Optimization Toolbox (or type help foptions).

References [1] Nelder, J. A. and R. Mead, “A Simplex Method for Function Minimization,”
Computer Journal, Vol. 7, p. 308-313.

[2] Dennis, J. E. Jr. and D. J. Woods, “New Computing Environments:
Microcomputers in Large-Scale Computing,” edited by A. Wouk, SIAM, 1987,
pp. 116-122.

fminsearch

2-131

2fminsearchPurpose Minimize a function of several variables

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options,P1,P2,...)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and finds a local minimum x of
the function described in fun. x0 can be a scalar, vector, or matrix.

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these options
structure fields:

x = fminsearch(fun,x0,options,P1,P2,...) passes the problem-dependent
parameters P1, P2, etc., directly to the function fun. Use options = [] as a
placeholder if no options are set.

[x,fval] = fminsearch(...) returns in fval the value of the objective
function fun at the solution x.

Display Level of display. 'off' displays no output; 'iter' displays
output at each iteration; 'final' displays just the final
output; 'notify' (default) dislays output only if the
function does not converge.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

TolX Termination tolerance on x.

fminsearch

2-132

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that
describes the exit condition of fminsearch:

[x,fval,exitflag,output] = fminsearch(...) returns a structure output
that contains information about the optimization:

Arguments fun is the function to be minimized. It accepts an input x and returns a scalar
f, the objective function evaluated at x. The function fun can be specified as a
function handle.

x = fminsearch(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be an inline object.

x = fminsearch(inline('sin(x*x)'),x0,A,b);

Other arguments are described in the syntax descriptions above.

Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The M-file banana.m defines the function.

>0 Indicates that the function converged to a solution x.

 0 Indicates that the maximum number of function evaluations was
exceeded.

<0 Indicates that the function did not converge to a solution.

output.algorithm The algorithm used

output.funcCount The number of function evaluations

output.iterations The number of iterations taken

f x() 100 x2 x1
2–()

2
1 x1–()2+=

fminsearch

2-133

function f = banana(x)
f = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;

The statement

[x,fval] = fminsearch(@banana,[-1.2, 1])

produces

x =

 1.0000 1.0000

fval =

 8.1777e-010

This indicates that the minimizer was found to at least four decimal places
with a value near zero.

Move the location of the minimum to the point [a,a^2] by adding a second
parameter to banana.m.

function f = banana(x,a)
if nargin < 2, a = 1; end
f = 100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,fval] = fminsearch(@banana, [-1.2, 1], ...
optimset('TolX',1e-8), sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default on x.

Algorithm fminsearch uses the simplex search method of []. This is a direct search
method that does not use numerical or analytic gradients.

If n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;
in three-space, it is a pyramid. At each step of the search, a new point in or near
the current simplex is generated. The function value at the new point is
compared with the function’s values at the vertices of the simplex and, usually,

fminsearch

2-134

one of the vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified
tolerance.

Limitations fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, must only consist
of real numbers and must only return real numbers. When has complex
variables, they must be split into real and imaginary parts.

See Also fminbnd, optimset, function_handle (@), inline

References Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM
Journal of Optimization, Vol. 9 Number 1, pp. 112-147, 1998.

x
f x() x

fopen

2-135

2fopenPurpose Open a file or obtain information about open files

Syntax fid = fopen(filename)
fid = fopen(filename,permission)
[fid,message] = fopen(filename,permission,machineformat)
fids = fopen('all')
[filename,permission, machineormat] = fopen(fid)

Description fid = fopen(filename) opens the file filename for read access. (On PCs,
fopen opens files for binary read access.)

fid is a scalar MATLAB integer, called a file identifier. You use the fid as the
first argument to other file input/output routines. If fopen cannot open the file,
it returns -1. Two file identifiers are automatically available and need not be opened.
They are fid=1 (standard output) and fid=2 (standard error).

fid = fopen(filename,permission) opens the file filename in the mode
specified by permission. permission can be:

filename can be a MATLABPATH relative partial pathname if the file is opened
for reading only. A relative path is always searched for first with respect to the

'r' Open file for reading (default).

'w' Open file, or create new file, for writing; discard existing
contents, if any.

'a' Open file, or create new file, for writing; append data to the
end of the file.

'r+' Open file for reading and writing.

'w+' Open file, or create a new file, for reading and writing;
discard existing contents, if any.

'a+' Open file, or create new file, for reading and writing; append
data to the end of the file.

'A' Append without automatic flushing; used with tape drives

'W' Write without automatic flushing; used with tape drives

fopen

2-136

current directory. If it is not found and reading only is specified or implied then
fopen does an additional search of the MATLABPATH

Files can be opened in binary mode (the default) or in text mode. In binary
mode, no characters are singled out for special treatment. In text mode on the
PC, , the carriage return character preceding a newline character is deleted on input
and added before the newline character on output. To open in text mode, add
“t” to the permission string, for example 'rt' and 'wt+'. (On Unix, text and
binary mode are the same so this has no effect. But on PC systems this is
critical.)

Note If the file is opened in update mode ('+'), an input command like fread,
fscanf, fgets, or fgetl cannot be immediately followed by an output
command like fwrite or fprintf without an intervening fseek or frewind.
The reverse is also true. Namely, an output command like fwrite or fprintf
cannot be immediately followed by an input command like fread, fscanf,
fgets, or fgetl without an intervening fseek or frewind.

[fid,message] = fopen(filename,permission) opens a file as above. If it
cannot open the file, fid equals -1 and message contains a system-dependent
error message. If fopen successfully opens a file, the value of message is empty.

[fid,message] = fopen(filename,permission,machineformat) opens the
specified file with the specified permission and treats data read using fread
or data written using fwrite as having a format given by machineformat.
machineformat is one of the following strings:

'cray' or 'c' Cray floating point with big-endian byte
ordering

'ieee–be' or 'b' IEEE floating point with big-endian byte
ordering

'ieee–le' or 'l' IEEE floating point with little-endian byte
ordering

fopen

2-137

fids = fopen('all') returns a row vector containing the file identifiers of all
open files, not including 1 and 2 (standard output and standard error). The
number of elements in the vector is equal to the number of open files.

[filename,permission,machineformat] = fopen(fid) returns the
filename, permission string, and machineformat string associated with the
specified file. An invalid fid returns empty strings for all output arguments.

The 'W' and 'A' permissions are designed for use with tape drives and do not
automatically perform a flush of the current output buffer after output
operations. For example, open a 1/4" cartridge tape on a SPARCstation for
writing with no auto-flush:

 fid = fopen('/dev/rst0','W')

Examples The example uses fopen to open a file and then passes the fid, returned by
fopen, to other file I/O functions to read data from the file and then close the
file.

fid=fopen('fgetl.m');
while 1
 tline = fgetl(fid);
 if ~ischar(tline), break, end
 disp(tline)
end
fclose(fid);

See Also fclose, ferror, fprintf, fread, fscanf, fseek, ftell, fwrite

'ieee-be.l64' or 's' IEEE floating point with big-endian byte
ordering and 64-bit long data type

'ieee-le.l64' or 'a' IEEE floating point with little-endian byte
ordering and 64-bit long data type

'native' or 'n' Numeric format of the machine on which
MATLAB is running (the default).

'vaxd' or 'd' VAX D floating point and VAX ordering

'vaxg' or 'g' VAX G floating point and VAX ordering

fopen (serial)

2-138

2fopen (serial)Purpose Connect a serial port object to the device

Syntax fopen(obj)

Arguments

Description fopen(obj) connects obj to the device.

Remarks Before you can perform a read or write operation, obj must be connected to the
device with the fopen function. When obj is connected to the device:

• Data remaining in the input buffer or the output buffer is flushed.

• The Status property is set to open.

• The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput
properties are set to 0.

An error is returned if you attempt to perform a read or write operation while
obj is not connected to the device. You can connect only one serial port object
to a given device.

Some properties are read-only while the serial port object is open (connected),
and must be configured before using fopen. Examples include
InputBufferSize and OutputBufferSize. Refer to the property reference
pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected to the
device. If any of these properties are incorrectly configured, then an error is
returned when fopen is issued and obj is not connected to the device.
Properties of this type include BaudRate, and are associated with device
settings.

If you use the help command to display help for fopen, then you need to supply
the pathname shown below.

help serial/fopen

Example This example creates the serial port object s, connects s to the device using
fopen, writes and reads text data, and then disconnects s from the device.

s = serial('COM1');

obj A serial port object or an array of serial port objects.

fopen (serial)

2-139

fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)

See Also Functions
fclose

Properties
BytesAvailable, BytesToOutput, Status, ValuesReceived, ValuesSent

for

2-140

2forPurpose Repeat statements a specific number of times

Syntax for variable = expression
statements

end

Description The general format is

for variable = expression
statement

 ...
statement

end

The columns of the expression are stored one at a time in the variable while
the following statements, up to the end, are executed.

In practice, the expression is almost always of the form scalar : scalar, in
which case its columns are simply scalars.

The scope of the for statement is always terminated with a matching end.

Examples Assume k has already been assigned a value. Create the Hilbert matrix, using
zeros to preallocate the matrix to conserve memory:

a = zeros(k,k) % Preallocate matrix
for m = 1:k
 for n = 1:k
 a(m,n) = 1/(m+n -1);
 end
end

Step s with increments of -0.1

for s = 1.0: -0.1: 0.0,..., end

Successively set e to the unit n-vectors:

for e = eye(n),..., end

The line

for V = A,..., end

for

2-141

has the same effect as

for k = 1:n, V = A(:,k);..., end

except k is also set here.

See Also end, while, break, continue, return, if, switch, colon

format

2-142

2formatPurpose Control display format for output

Graphical
Interface

As an alternative to format, use preferences. Select Preferences from the File
menu in the MATLAB desktop and use Command Window preferences.

Syntax format
format type
format('type')

Description MATLAB performs all computations in double precision. Use the format
function to control the output format of the numeric values displayed in the
Command Window. The format function affects only how numbers are
displayed, not how MATLAB computes or saves them. The specified format
applies only to the current session. To maintain a format across sessions,
instead use MATLAB preferences.

format by itself, changes the output format to the default type, short, which is
5-digit scaled, fixed-point values.

format type changes the format to the specified type. The table below
describes the allowable values for type and provides an example for pi, unless
otherwise noted. To see the current type file, use get(0,'Format'), or for
compact versus loose, use get(0,'FormatSpacing').

Value for type Result Example

+ +, -, blank +

bank Fixed dollars and cents 3.14

compact Suppresses excess line
feeds to show more
output in a single screen.
Contrast with loose.

theta = pi/2
theta=
 1.5708

format

2-143

format('type') is the function form of the syntax.

Examples Change the format to long by typing

format long

View the result for the value of pi by typing

pi

and MATLAB returns

ans =
 3.14159265358979

hex Hexadecimal
(hexadecimal
representation of a
binary double-precision
number)

400921fb54442d18

long 15-digit scaled fixed point 3.14159265358979

long e 15-digit floating point 3.141592653589793e+00

long g Best of 15-digit fixed or
floating point

3.14159265358979

loose Adds linefeeds to make
output more readable.
Contrast with compact.

theta = pi/2

theta=

 1.5708

rat Ratio of small integers 355/113

short 5-digit scaled fixed point 3.1416

short e 5-digit floating point 3.1416e+00

short g Best of 5-digit fixed or
floating point

3.1416

Value for type Result Example

format

2-144

View the current format by typing

get(0,'Format')

MATLAB returns

ans =
long

Set the format to short e by typing

format short e

or use the function form of the syntax

format('short','e')

Algorithms If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats. The
function format + displays +, -, and blank characters for positive, negative, and
zero elements. format hex displays the hexadecimal representation of a binary
double-precision number. format rat uses a continued fraction algorithm to
approximate floating-point values by ratios of small integers. See rat.m for the
complete code.

See Also display, fprintf, num2str, rat, sprintf, spy

fplot

2-145

2fplotPurpose Plot a function between specified limits

Syntax fplot('function',limits)
fplot('function',limits,LineSpec)
fplot('function',limits,tol)
fplot('function',limits,tol,LineSpec)
fplot('function',limits,n)
[X,Y] = fplot('function',limits,...)
[...] = plot('function',limits,tol,n,LineSpec,P1,P2,...)

Description fplot plots a function between specified limits. The function must be of the
form y = f(x), where x is a vector whose range specifies the limits, and y is a
vector the same size as x and contains the function’s value at the points in x
(see the first example). If the function returns more than one value for a given
x, then y is a matrix whose columns contain each component of f(x) (see the
second example).

fplot('function',limits) plots 'function' between the limits specified by
limits. limits is a vector specifying the x-axis limits ([xmin xmax]), or the x-
and y-axis limits, ([xmin xmax ymin ymax]).

'function' must be the name of an M-file function or a string with variable x
that may be passed to eval, such as 'sin(x)', 'diric(x,10)' or
'[sin(x),cos(x)]'.

The function f(x) must return a row vector for each element of vector x. For
example, if f(x) returns [f1(x),f2(x),f3(x)] then for input [x1;x2] the
function should return the matrix

f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)

fplot('function',limits,LineSpec) plots 'function' using the line
specification LineSpec.

fplot('function',limits,tol) plots 'function' using the relative error
tolerance tol (The default is 2e–3, i.e., 0.2 percent accuracy).

fplot

2-146

fplot('function',limits,tol,LineSpec) plots 'function' using the
relative error tolerance tol and a line specification that determines line type,
marker symbol, and color.

fplot('function',limits,n) with n >= 1 plots the function with a minimum
of n+1 points. The default n is 1. The maximum step size is restricted to be
(1/n)*(xmax-xmin).

fplot(fun,lims,...) accepts combinations of the optional arguments tol, n,
and LineSpec, in any order.

[X,Y] = fplot('function',limits,...) returns the abscissas and ordinates
for 'function' in X and Y. No plot is drawn on the screen, however you can plot
the function using plot(X,Y).

[...] = plot('function',limits,tol,n,LineSpec,P1,P2,...) enablesyou
to pass parameters P1, P2, etc. directly to the function 'function':

Y = function(X,P1,P2,...)

To use default values for tol, n, or LineSpec, you can pass in the empty matrix
([]).

Remarks fplot uses adaptive step control to produce a representative graph,
concentrating its evaluation in regions where the function’s rate of change is
the greatest.

Examples Plot the hyperbolic tangent function from -2 to 2:

fplot

2-147

fplot('tanh',[-2 2])

Create an M-file, myfun, that returns a two column matrix:

function Y = myfun(x)
Y(:,1) = 200∗ sin(x(:))./x(:);
Y(:,2) = x(:).^2;

Plot the function with the statement:

fplot('myfun',[–20 20]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fplot

2-148

Addition Examples
subplot(2,2,1);fplot('humps',[0 1])
subplot(2,2,2);fplot('abs(exp(-j*x*(0:9))*ones(10,1))',[0 2*pi])
subplot(2,2,3);fplot('[tan(x),sin(x),cos(x)]',2*pi*[-1 1 -1 1])
subplot(2,2,4);fplot('sin(1./x)',[0.01 0.1],1e-3)

See Also eval, ezplot, feval, LineSpec, plot

“Function Plots” for related functions

−20 −15 −10 −5 0 5 10 15 20
−50

0

50

100

150

200

250

300

350

400

fprintf

2-149

2fprintfPurpose Write formatted data to file

Syntax count = fprintf(fid,format,A,...)

Description count = fprintf(fid,format,A,...) formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the
specified format string, and writes it to the file associated with file identifier
fid. fprintf returns a count of the number of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It may also be
1 for standard output (the screen) or 2 for standard error. See fopen for more
information.) Omitting fid causes output to appear on the screen.

Format String
The format argument is a string containing C language conversion
specifications. A conversion specification controls the notation, alignment,
significant digits, field width, and other aspects of output format. The format
string can contain escape characters to represent non-printing characters such
as newline characters and tabs.

Conversion specifications begin with the % character and contain these optional
and required elements:

• Flags (optional)

• Width and precision fields (optional)

• A subtype specifier (optional)

• Conversion character (required)

You specify these elements in the following order:

%–12.5eStart of conversion specif ication

Field width

Conversion character

Flags

Precision

fprintf

2-150

Flags
You can control the alignment of the output using any of these optional flags.

Field Width and Precision Specifications
You can control the width and precision of the output by including these
options in the format string.

Conversion Characters
Conversion characters specify the notation of the output.

Character Description Example

A minus sign (–) Left-justifies the converted argument in
its field.

%–5.2d

A plus sign (+) Always prints a sign character (+ or –). %+5.2d

Zero (0) Pad with zeros rather than spaces. %05.2d

Character Description Example

Field width A digit string specifying the minimum
number of digits to be printed.

%6f

Precision A digit string including a period (.)
specifying the number of digits to be
printed to the right of the decimal point.

%6.2f

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in
3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

fprintf

2-151

Conversion characters %o, %u, %x, and %X support subtype specifiers. See
Remarks for more information.

Escape Characters

This table lists the escape character sequences you use to specify non-printing
characters in a format specification.

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2].
Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%i Decimal notation (signed)

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

Specifier Description

fprintf

2-152

Remarks The fprintf function behaves like its ANSI C language namesake with these
exceptions and extensions.

• If you use fprintf to convert a MATLAB double into an integer, and the
double contains a value that cannot be represented as an integer (for
example, it contains a fraction), MATLAB ignores the specified conversion
and outputs the value in exponential format. To successfully perform this
conversion, use the fix, floor, ceil, or round functions to change the value
in the double into a value that can be represented as an integer before
passing it to sprintf.

• The following, non-standard subtype specifiers are supported for the
conversion characters %o, %u, %x, and %X.

For example, to print a double value in hexadecimal use the format '%bx'

• The fprintf function is vectorized for nonscalar arguments. The function
recycles the format string through the elements of A (columnwise) until all
the elements are used up. The function then continues in a similar manner
through any additional matrix arguments.

\'' or ''

(two single
quotes)

Single quotation mark

%% Percent character

Character Description

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned
integer.

fprintf

2-153

Note fprintf displays negative zero (-0) differently on some platforms, as
shown in the following table.

Examples The statements

x = 0:.1:1;
y = [x; exp(x)];
fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8f\n',y);
fclose(fid)

create a text file called exp.txt containing a short table of the exponential
function:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

The command

fprintf('A unit circle has circumference %g.\n',2∗ pi)

displays a line on the screen:

A unit circle has circumference 6.283186.

Conversion Character

Platform %e or %E %f %g or %G

PC 0.000000e+000 0.000000 0

SGI 0.000000e+00 0.000000 0

HP700 -0.000000e+00 -0.000000 0

Others -0.000000e+00 -0.000000 -0

fprintf

2-154

To insert a single quotation mark in a string, use two single quotation marks
together. For example,

fprintf(1,'It''s Friday.\n')

displays on the screen:

It's Friday.

The commands

B = [8.8 7.7; 8800 7700]
fprintf(1,'X is %6.2f meters or %8.3f mm\n',9.9,9900,B)

display the lines:

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

Explicitly convert MATLAB double-precision variables to integral values for
use with an integral conversion specifier. For instance, to convert signed 32-bit
data to hexadecimal format:

a = [6 10 14 44];
fprintf('%9X\n',a + (a<0)∗ 2^32)
 6
 A
 E
 2C

See Also fclose, ferror, fopen, fread, fscanf, fseek, ftell, fwrite, disp

References [1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.

fprintf (serial)

2-155

2fprintf (serial)Purpose Write text to the device

Syntax fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Arguments

Description fprintf(obj,'cmd') writes the string cmd to the device connected to obj. The
default format is %s\n. The write operation is synchronous and blocks the
command line until execution is complete.

fprintf(obj,'format','cmd') writes the string using the format specified by
format. format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d, i, o, u, x,
X, f, e, E, g, G, c, and s. Refer to the sprintf file I/O format specifications or a
C manual for more information.

fprintf(obj,'cmd','mode') writes the string with command line access
specified by mode. If mode is sync, cmd is written synchronously and the
command line is blocked. If mode is async, cmd is written asynchronously and
the command line is not blocked. If mode is not specified, the write operation is
synchronous.

fprintf(obj,'format','cmd','mode') writes the string using the specified
format. If mode is sync, cmd is written synchronously. If mode is async, cmd is
written asynchronously.

Remarks Before you can write text to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of

obj A serial port object.

'cmd' The string written to the device.

'format' C language conversion specification.

'mode' Specifies whether data is written synchronously or
asynchronously.

fprintf (serial)

2-156

open. An error is returned if you attempt to perform a write operation while obj
is not connected to the device.

The ValuesSent property value is increased by the number of values written
each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fprintf, then you need to
supply the pathname shown below.

help serial/fprintf

Synchronous Versus Asynchronous Write Operations
By default, text is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

• The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Controlling Access to the MATLAB Command Line.

Rules for Completing a Write Operation with fprintf
A synchronous or asynchronous write operation using fprintf completes
when:

• The specified data is written.

• The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation with the
stopasync function.

fprintf (serial)

2-157

Rules for Writing the Terminator
All occurrences of \n in cmd are replaced with the Terminator property value.
Therefore, when using the default format %s\n, all commands written to the
device will end with this property value. The terminator required by your
device will be described in its documentation.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default format for fprintf is %s\n, the terminator specified by the
Terminator property was automatically written. However, in some cases you
might want to suppress writing the terminator. To do so, you must explicitly
specify a format for the data that does not include the terminator, or configure
the terminator to empty.

fprintf(s,'%s','RS232?')

See Also Functions
fopen, fwrite, stopasync

Properties
BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status,
TransferStatus, ValuesSent

frame2im

2-158

2frame2imPurpose Convert movie frame to indexed image

Syntax [X,Map] = frame2im(F)

Description [X,Map] = frame2im(F) converts the single movie frame F into the indexed
image X and associated colormap Map. The functions getframe and im2frame
create a movie frame. If the frame contains truecolor data, then Map is empty.

See Also getframe, im2frame, movie

“Bit-Mapped Images” for related functions

frameedit

2-159

2frameeditPurpose Create and edit print frames for Simulink and Stateflow block diagrams

Syntax frameedit
frameedit filename

Description frameedit starts the PrintFrame Editor, a graphical user interface you use to
create borders for Simulink and Stateflow block diagrams. With no argument,
frameedit opens the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (.fig) previously created and saved
using frameedit.

frameedit

2-160

Remarks This illustrates the main features of the PrintFrame Editor.

Closing the PrintFrame Editor
To close the PrintFrame Editor window, click the close box in the upper right
corner, or select Close from the File menu.

Use these buttons to create and edit

Use the File menu for page setup, and saving and opening print frames. Change the information in a cell, and resize, add,
and remove cells.

Add
and
remove

Zoom in or
out on
selected

Use these
buttons to
align
information

Get help for the PrintFrame Editor.

Use the list box and button to
add information in cells, such
as text or the date.

frameedit

2-161

Printing Simulink Block Diagrams with Print Frames
Select Print from the Simulink File menu. Check the Frame box and supply
the filename for the print frame you want to use. Click OK in the Print dialog
box.

Getting Help for the PrintFrame Editor
For further instructions on using the PrintFrame Editor, select PrintFrame
Editor Help from the Help menu in the PrintFrame Editor.

fread

2-162

2freadPurpose Read binary data from file

Syntax [A,count] = fread(fid,size,precision)
[A,count] = fread(fid,size,precision,skip)

Description [A,count] = fread(fid,size,precision) reads binary data from the
specified file and writes it into matrix A. Optional output argument count
returns the number of elements successfully read. fid is an integer file
identifier obtained from fopen.

size is an optional argument that determines how much data is read. If size
is not specified, fread reads to the end of the file and the file pointer is at the
end of the file (see feof for details). Valid options are:

precision is a string that specifies the format of the data to be read. It
commonly contains a datatype specifier such as int or float, followed by an
integer giving the size in bits. Any of the strings in the following table, either
the MATLAB version or their C or Fortran equivalent, may be used. If precision
is not specified, the default is 'uchar'..

n Reads n elements into a column vector.

inf Reads to the end of the file, resulting in a column vector containing
the same number of elements as are in the file.

[m,n] Reads enough elements to fill an m–by–n matrix, filling in elements
in column order, padding with zeros if the file is too small to fill the
matrix. n can be specified as inf, but m cannot.

MATLAB C or Fortran Interpretation

'schar' 'signed char' Signed character; 8 bits

'uchar' 'unsigned char' Unsigned character; 8 bits

'int8' 'integer*1' Integer; 8 bits

'int16' 'integer*2' Integer; 16 bits

'int32' 'integer*4' Integer; 32 bits

fread

2-163

The following platform dependent formats are also supported but they are not
guaranteed to be the same size on all platforms.

'int64' 'integer*8' Integer; 64 bits

'uint8' 'integer*1' Unsigned integer; 8 bits

'uint16' 'integer*2' Unsigned integer; 16 bits

'uint32' 'integer*4' Unsigned integer; 32 bits

'uint64' 'integer*8' Unsigned integer; 64 bits

'float32' 'real*4' Floating-point; 32 bits

'float64' 'real*8' Floating-point; 64 bits

'double' 'real*8' Floating-point; 64 bits

MATLAB C or Fortran Interpretation

'char' 'char*1' Character; 8 bits

'short' 'short' Integer; 16 bits

'int' 'int' Integer; 32 bits

'long' 'long' Integer; 32 or 64 bits

'ushort' 'unsigned short' Unsigned integer; 16 bits

'uint' 'unsigned int' Unsigned integer; 32 bits

'ulong' 'unsigned long' Unsigned integer; 32 or 64 bits

'float' 'float' Floating-point; 32 bits

MATLAB C or Fortran Interpretation

fread

2-164

The following formats map to an input stream of bits rather than bytes.

By default, numeric values are returned in class double arrays. To return
numeric values stored in classes other than double, create your precision
argument by first specifying your source format, and then following it with the
characters “=>”, and finally specifying your destination format. You are not
required to use the exact name of a MATLAB class type for destination. (See
class for details). fread translates the name to the most appropriate MATLAB
class type. If the source and destination formats are the same, the following
shorthand notation can be used.

*source

which means

source=>source

This table shows some example precision format strings.

[A,count] = fread(fid,size,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip after each precision value

MATLAB C or Fortran Interpretation

'bitN' - Signed integer; N bits (1 ≤ N ≤ 64)

'ubitN' - Unsigned integer; N bits (1 ≤ N ≤ 64)

'uint8=>uint8' Read in unsigned 8-bit integers and save them in
an unsigned 8-bit integer array.

'*uint8' Shorthand version of the above.

'bit4=>int8' Read in signed 4-bit integers packed in bytes and
save them in a signed 8-bit array. Each 4-bit
integer becomes an 8-bit integer.

'double=>real*4' Read in doubles, convert and save as a 32-bit
floating point array.

fread

2-165

is read. If precision specifies a bit format, like 'bitN' or 'ubitN', the skip
argument is interpreted as the number of bits to skip.

When skip is used, the precision string may contain a positive integer
repetition factor of the form 'N*' which prepends the source format
specification, such as '40*uchar'.

Note Do not confuse the asterisk (*) used in the repetition factor with the
asterisk used as precision format shorthand. The format string '40*uchar' is
equivalent to '40*uchar=>double', not '40*uchar=>uchar'.

When skip is specified, fread reads in, at most, a repetition factor number of
values (default is 1), skips the amount of input specified by the skip argument,
reads in another block of values, again skips input, and so on, until size
number of values have been read. If a skip argument is not specified, the
repetition factor is ignored. Use the repetition factor with the skip argument
to extract data in noncontiguous fields from fixed length records.

If the input stream is bytes and fread reaches the end of file (see feof) in the
middle of reading the number of bytes required for an element, the partial
result is ignored. However, if the input stream is bits, then the partial result is
returned as the last value. If an error occurs before reaching the end of file, only
full elements read up to that point are used.

Examples For example,

type fread.m

displays the complete M-file containing this fread help entry. To simulate this
command using fread, enter the following:

fid = fopen('fread.m','r');
F = fread(fid);
s = char(F')

In the example, the fread command assumes the default size, inf, and the
default precision, 'uchar'. fread reads the entire file, converting the unsigned
characters into a column vector of class 'double' (double precision floating
point). To display the result as readable text, the 'double' column vector is

fread

2-166

transposed to a row vector and converted to class 'char' using the char
function.

As another example,

s = fread(fid,120,'40*uchar=>uchar',8);

reads in 120 characters in blocks of 40, each separated by 8 characters. Note
that the class type of s is 'uint8' since it is the appropriate class
corresponding to the destination format, 'uchar'. Also, since 40 evenly divides
120, the last block read is a full block which means that a final skip will be done
before the command is finished. If the last block read is not a full block then
fread will not finish with a skip.

See fopen for information about reading Big and Little Endian files.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite, feof

fread (serial)

2-167

2fread (serial)Purpose Read binary data from the device

Syntax A = fread(obj,size)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

Arguments

Description A = fread(obj,size) reads binary data from the device connected to obj, and
returns the data to A. The maximum number of values to read is specified by
size. Valid options for size are:

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. A value is defined as a byte
multiplied by the precision (see below).

A = fread(obj,size,'precision') reads binary data with precision
specified by precision.

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. By

obj A serial port object.

size The number of values to read.

'precision' The number of bits read for each value, and the interpretation
of the bits as character, integer, or floating-point values.

A Binary data returned from the device.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix in column
order.

fread (serial)

2-168

default, numeric values are returned in double-precision arrays. The supported
values for precision are listed below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read
operation was unsuccessful.

Remarks Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read,
each time fread is issued.

If you use the help command to display help for fread, then you need to supply
the pathname shown below.

help serial/fread

Rules for Completing a Binary Read Operation
A read operation with fread blocks access to the MATLAB command line until:

• The specified number of values are read.

• The time specified by the Timeout property passes.

Note The Terminator property is not used for binary read operations.

fread (serial)

2-169

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation

Character uchar 8-bit unsigned character

schar 8-bit signed character

char 8-bit signed or unsigned character

Integer int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

float64 64-bit floating point

fread (serial)

2-170

See Also Functions
fgetl, fgets, fopen, fscanf

Properties
BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
ValuesReceived

freeserial

2-171

2freeserialPurpose Release hold on a serial port

Syntax freeserial
freeserial('port')
freeserial(obj)

Arguments

Description freeserial releases the hold MATLAB has on all serial ports.

freeserial('port') releases the hold MATLAB has on the serial port
specified by port. port can be a cell array of strings.

freeserial(obj) releases the hold MATLAB has on the serial port associated
with the object specified by obj. obj can be an array of serial port objects.

Remarks An error is returned if a serial port object is connected to the port that is being
freed. Use the fclose function to disconnect the serial port object from the
serial port.

freeserial is necessary only on Windows platforms. You should use
freeserial if you need to connect to the serial port from another application
after a serial port object has been connected to that port, and you do not want
to exit MATLAB.

See Also Functions
fclose

'port' A serial port name, or a cell array of serial port names

obj A serial port object, or an array of serial port objects.

freqspace

2-172

2freqspacePurpose Determine frequency spacing for frequency response

Syntax [f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,'meshgrid')
f = freqspace(N)
f = freqspace(N,'whole')

Description freqspace returns the implied frequency range for equally spaced frequency
responses. freqspace is useful when creating desired frequency responses for
various one- and two-dimensional applications.

[f1,f2] = freqspace(n) returns the two-dimensional frequency vectors f1
and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both f1 and f2 are [-n:2:n-2]/n.

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency
vectors f1 and f2 for an m-by-n matrix.

[x1,y1] = freqspace(...,'meshgrid') is equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

f = freqspace(N) returns the one-dimensional frequency vector f assuming
N evenly spaced points around the unit circle. For N even or odd, f is (0:2/N:1).
For N even, freqspace therefore returns (N+2)/2 points. For N odd, it returns
(N+1)/2 points.

f = freqspace(N,'whole') returns N evenly spaced points around the whole
unit circle. In this case, f is 0:2/N:2*(N-1)/N.

See Also meshgrid

frewind

2-173

2frewindPurpose Move the file position indicator to the beginning of an open file

Syntax frewind(fid)

Description frewind(fid) sets the file position indicator to the beginning of the file
specified by fid, an integer file identifier obtained from fopen.

Remarks Rewinding a fid associated with a tape device may not work even though
frewind does not generate an error message.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

fscanf

2-174

2fscanfPurpose Read formatted data from file

Syntax A = fscanf(fid,format)
[A,count] = fscanf(fid,format,size)

Description A = fscanf(fid,format) reads all the data from the file specified by fid,
converts it according to the specified format string, and returns it in matrix A.
Argument fid is an integer file identifier obtained from fopen. format is a
string specifying the format of the data to be read. See “Remarks” for details.

[A,count] = fscanf(fid,format,size) reads the amount of data specified
by size, converts it according to the specified format string, and returns it
along with a count of elements successfully read. size is an argument that
determines how much data is read. Valid options are:

fscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

Remarks When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector
containing the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the matrix
in column order. n can be Inf, but not m.

fscanf

2-175

matched and involve the character %, optional width fields, and conversion
characters, organized as shown below:

Add one or more of these characters between the % and the conversion
character:

Valid conversion characters are:

If %s is used, an element read may use several MATLAB matrix elements, each
holding one character. Use %c to read space characters or %s to skip all white
space.

An asterisk (*) Skip over the matched value. If %*d, then the value that
matches d is ignored and does not get stored.

A digit string Maximum field width. For example, %10d.

A letter The size of the receiving object; for example, h for short as
in %hd for a short integer, or l for long as in %ld for a long
integer or %lg for a double floating-point number.

%c Sequence of characters; number specified by field width

%d Decimal numbers

%e, %f, %g Floating-point numbers

%i Signed integer

%o Signed octal integer

%s A series of non-white-space characters

%u Signed decimal integer

%x Signed hexadecimal integer

[...] Sequence of characters (scanlist)

%12e

Initial % character Field width Conversion
character

fscanf

2-176

Mixing character and numeric conversion specifications cause the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.

Examples The example in fprintf generates an ASCII text file called exp.txt that looks
like:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

Read this ASCII file back into a two-column MATLAB matrix:

fid = fopen('exp.txt');
a = fscanf(fid,'%g %g',[2 inf]) % It has two rows now.
a = a';
fclose(fid)

See Also fgetl, fgets, fread, fprintf, fscanf, input, sscanf, textread

fscanf (serial)

2-177

2fscanf (serial)Purpose Read data from the device, and format as text

Syntax A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)

Arguments

Description A = fscanf(obj) reads data from the device connected to obj, and returns it
to A. The data is converted to text using the %c format.

A = fscanf(obj,'format') reads data and converts it according to format.
format is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, o, u, x, X, f, e, E, g,
G, c, and s. Refer to the sscanf file I/O format specifications or a C manual for
more information.

A = fscanf(obj,'format',size) reads the number of values specified by
size. Valid options for size are:

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. If size is not of the form [m,n], and a
character conversion is specified, then A is returned as a row vector. You specify

obj A serial port object.

'format' C language conversion specification.

size The number of values to read.

A Data read from the device and formatted as text.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix in column
order.

fscanf (serial)

2-178

the size, in bytes, of the input buffer with the InputBufferSize property. An
ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

Remarks Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
– including the terminator – each time fscanf is issued.

If you use the help command to display help for fscanf, then you need to
supply the pathname shown below.

help serial/fscanf

Rules for Completing a Read Operation with fscanf
A read operation with fscanf blocks access to the MATLAB command line
until:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The number of values specified by size is read.

• The input buffer is filled (unless size is specified)

Example Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying sine wave.

s = serial('COM1');
fopen(s)

fscanf (serial)

2-179

Use the fprintf function to configure the scope to measure the peak-to-peak
voltage of the sine wave, return the measurement type, and return the
peak-to-peak voltage.

fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VALUE?')

Because the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input
buffer.

s.BytesAvailable
ans =
 21

Use fscanf to read the measurement type. The operation will complete when
the first terminator is read.

meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number, and
exclude the terminator.

pk2pk = fscanf(s,'%e',14)
pk2pk =
 2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

See Also Functions
fgetl, fgets, fopen, fread, strread

Properties
BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
Timeout

fseek

2-180

2fseekPurpose Set file position indicator

Syntax status = fseek(fid,offset,origin)

Description status = fseek(fid,offset,origin) repositions the file position indicator in
the file with the given fid to the byte with the specified offset relative to
origin.

For a file having n bytes, the bytes are numbered from 0 to n-1. The position
immediately following the last byte is the end of the file, or eof, position. You
would seek to the eof position if you wanted to add data to the end of a file.

This figure represents a file having 12 bytes, numbered 0 through 11. The first
command shown seeks to the ninth byte of data in the file. The second
command seeks just past the end of the file data, to the eof position.

fseek does not seek beyond the end of file, eof, position. If you attempt to seek
beyond eof, MATLAB returns an error status.

Arguments

0 1 2 3 4 5 6 7 8 10

fseek(fid,0,'eof')fseek(fid,8,'bof')

EOFd

9

a t a i n f i l e

11 12

fid An integer file identifier obtained from fopen.

offset A value that is interpreted as follows:

offset > 0 Move position indicator offset bytes toward the
end of the file.

offset = 0 Do not change position.

offset < 0 Move position indicator offset bytes toward the
beginning of the file.

origin A string whose legal values are:

'bof' –1: Beginning of file.

'cof' 0: Current position in file.

fseek

2-181

Examples This example opens the file test1.dat, seeks to the 20th byte, reads fifty
32-bit, unsigned integers into variable A, and closes the file. It then opens a
second file, test2.dat, seeks to the end-of-file position, appends the data in A
to the end of this file, and closes the file.

fid = fopen('test1.dat', 'r');
fseek(fid, 19, 'bof');
A = fread(fid, 50, 'uint32');
fclose(fid);

fid = fopen('test2.dat', 'r+');
fseek(fid, 0, 'eof');
fwrite(fid, A, 'uint32');
fclose(fid);

See Also fopen, fclose, ferror, fprintf, fread, fscanf, ftell, fwrite

'eof' 1: End of file.

status A returned value that is 0 if the fseek operation is successful
and –1 if it fails. If an error occurs, use the function ferror to
get more information.

ftell

2-182

2ftellPurpose Get file position indicator

Syntax position = ftell(fid)

Description position = ftell(fid) returns the location of the file position indicator for
the file specified by fid, an integer file identifier obtained from fopen. The
position is a nonnegative integer specified in bytes from the beginning of the
file. A returned value of –1 for position indicates that the query was
unsuccessful; use ferror to determine the nature of the error.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, fwrite

full

2-183

2fullPurpose Convert sparse matrix to full matrix

Syntax A = full(S)

Description A = full(S) converts a sparse matrix S to full storage organization. If S is a
full matrix, it is left unchanged. If A is full, issparse(A) is 0.

Remarks Let X be an m-by-n matrix with nz = nnz(X) nonzero entries. Then full(X)
requires space to store m*n real numbers while sparse(X) requires space to
store nz real numbers and (nz+n) integers.

On most computers, a real number requires twice as much storage as an
integer. On such computers, sparse(X) requires less storage than full(X) if
the density, nnz/prod(size(X)), is less than one third. Operations on sparse
matrices, however, require more execution time per element than those on full
matrices, so density should be considerably less than two-thirds before sparse
storage is used.

Examples Here is an example of a sparse matrix with a density of about two-thirds.
sparse(S) and full(S) require about the same number of bytes of storage.

S = sparse(+(rand(200,200) < 2/3));
A = full(S);
whos
Name Size Bytes Class

A 200X200 320000 double array
 S 200X200 318432 double array (sparse)

See Also sparse

fullfile

2-184

2fullfilePurpose Build a full filename from parts

Syntax fullfile('dir1','dir2',...,'filename')
f = fullfile('dir1','dir2',...,'filename')

Description fullfile(dir1,dir2,...,filename) builds a full filename from the
directories and filename specified. This is conceptually equivalent to

f = [dir1 dirsep dir2 dirsep ... dirsep filename]

except that care is taken to handle the cases when the directories begin or end
with a directory separator.

Examples To create the full filename from a disk name, directories, and filename,

f = fullfile('C:','Applications','matlab','myfun.m')
f =
C:\Applications\matlab\myfun.m

The following examples both produce the same result on UNIX, but only the
second one works on all platforms.

fullfile(matlabroot,'toolbox/matlab/general/Contents.m') and

fullfile(matlabroot,'toolbox','matlab','general','Contents.m')

See Also fileparts, genpath

func2str

2-185

2func2strPurpose Constructs a function name string from a function handle

Syntax s = func2str(fhandle)

Description func2str(fhandle) constructs a string, s, that holds the name of the function
to which the function handle, fhandle, belongs.

When you need to perform a string operation, such as compare or display, on a
function handle, you can use func2str to construct a string bearing the
function name.

Examples To create a function name string from the function handle, @humps

funname = func2str(@humps)

funname =

humps

See Also function_handle, str2func, functions

function

2-186

2functionPurpose Function M-files

Description You add new functions to the MATLAB vocabulary by expressing them in
terms of existing functions. The existing commands and functions that
compose the new function reside in a text file called an M-file.

M-files can be either scripts or functions. Scripts are simply files containing a
sequence of MATLAB statements. Functions make use of their own local
variables and accept input arguments.

The name of an M-file begins with an alphabetic character, and has a filename
extension of .m . The M-file name, less its extension, is what MATLAB searches
for when you try to use the script or function.

A line at the top of a function M-file contains the syntax definition. The name
of a function, as defined in the first line of the M-file, should be the same as the
name of the file without the .m extension. For example, the existence of a file
on disk called stat.m with

function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/n));

defines a new function called stat that calculates the mean and standard
deviation of a vector. The variables within the body of the function are all local
variables.

A subfunction,visible only to the other functions in the same file, is created by
defining a new function with the function keyword after the body of the
preceding function or subfunction. For example, avg is a subfunction within the
file stat.m:

function [mean,stdev] = stat(x)
n = length(x);
mean = avg(x,n);
stdev = sqrt(sum((x-avg(x,n)).^2)/n);

function mean = avg(x,n)
mean = sum(x)/n;

function

2-187

Subfunctions are not visible outside the file where they are defined. Functions
normally return when the end of the function is reached. Use a return
statement to force an early return.

When MATLAB does not recognize a function by name, it searches for a file of
the same name on disk. If the function is found, MATLAB compiles it into
memory for subsequent use. In general, if you input the name of something to
MATLAB, the MATLAB interpreter:

1 Checks to see if the name is a variable.

2 Checks to see if the name is an internal function (eig, sin) that was not
overloaded.

3 Checks to see if the name is a local function (local in sense of multifunction
file).

4 Checks to see if the name is a function in a private directory.

5 Locates any and all occurrences of function in method directories and on the
path. Order is of no importance.

At execution, MATLAB:

6 Checks to see if the name is wired to a specific function (2, 3, & 4 above)

7 Uses precedence rules to determine which instance from 5 above to call (we
may default to an internal MATLAB function). Constructors have higher
precedence than anything else.

When you call an M-file function from the command line or from within
another M-file, MATLAB parses the function and stores it in memory. The
parsed function remains in memory until cleared with the clear command or
you quit MATLAB. The pcode command performs the parsing step and stores
the result on the disk as a P-file to be loaded later.

See Also nargin, nargout, pcode, varargin, varargout, what

function_handle (@)

2-188

2function_handle (@)Purpose MATLAB data type that is a handle to a function

Syntax handle = @functionname

Description handle = @functionname returns a handle to the specified MATLAB function.

A function handle captures all the information about a function that MATLAB
needs to execute that function. Typically, a function handle is passed in an
argument list to other functions. The receiving functions can then execute the
function through the handle that was passed in. Always use feval to execute,
or evaluate, a function through its function handle.

When creating a function handle, the function you specify must be on the
MATLAB path and in the current scope. This condition does not apply when
you evaluate the function handle. You can, for example, execute a subfunction
from a separate (out of scope) M-file using a function handle, as long as the
handle was created within the subfunction’s M-file (in scope).

Remarks For nonoverloaded functions, subfunctions, and private functions, a function
handle references just the one function specified in the @functionname syntax.

When you evaluate an overloaded function through its handle, the arguments
the handle is evaluated with determine the actual function that MATLAB
dispatches to.

The function handle is a standard MATLAB data type. As such, you can
manipulate and operate on function handles in the same manner as on other
MATLAB data types. This includes using function handles in arrays,
structures, and cell arrays.

Function handles enable you to do all of the following:

• Pass function access information to other functions

• Allow wider access to subfunctions and private functions

• Ensure reliability when evaluating functions

• Reduce the number of files that define your functions

• Improve performance in repeated operations

Examples The following example creates a function handle for the humps function and
assigns it to the variable, fhandle.

function_handle (@)

2-189

fhandle = @humps;

Pass the handle to another function in the same way you would pass any
argument. This example passes the function handle just created to fminbnd,
which then minimizes over the interval [0.3, 1].

x = fminbnd(fhandle, 0.3, 1)
x =
 0.6370

The fminbnd function evaluates the @humps function handle using feval. A
small portion of the fminbnd M-file is shown below. In line 1, the funfcn input
parameter receives the function handle, @humps, that was passed in. The feval
statement, in line 113, evaluates the handle.

1 function [xf,fval,exitflag,output] = ...
 fminbnd(funfcn,ax,bx,options,varargin)
 .
 .
 .
113 fx = feval(funfcn,x,varargin{:});

See Also str2func, func2str, functions

functions

2-190

2functionsPurpose Return information about a function handle

Syntax f = functions(funhandle)

Description f = functions(funhandle) returns, in a MATLAB structure, the function
name, type, filename, and other information for the function handle stored in
the variable, funhandle.

Note The functions function is provided for querying and debugging
purposes. Its behavior may change in subsequent releases, so it should not be
relied upon for programming purposes.

Remarks For handles to functions that overload one of the MATLAB classes, like double
or char, the structure returned by functions contains an additional field
named methods. The methods field is a substructure containing one fieldname
for each MATLAB class that overloads the function. The value of each field is
the path and name of the file that defines the method.

Examples To obtain information on a function handle for the deblank function,

f = functions(@deblank)
f =
 function: 'deblank'
 type: 'overloaded'
 file: 'matlabroot\toolbox\matlab\strfun\deblank.m'
 methods: [1x1 struct]

See Also function_handle

funm

2-191

2funmPurpose Evaluate general matrix function

Syntax F = funm(A,fun)
[F,esterr] = funm(A,fun)

Description F = funm(A,fun) for a square matrix argument A, evaluates the matrix
version of the function fun. For matrix exponentials, logarithms and square
roots, use expm(A), logm(A) and sqrtm(A) instead.

[F,esterr] = funm(A,fun) does not print any message, but returns a very
rough estimate of the relative error in the computed result.

If A is symmetric or Hermitian, then its Schur form is diagonal and funm is able
to produce an accurate result.

L = logm(A) uses funm to do its computations, but it can get more reliable error
estimates by comparing expm(L) with A. S = sqrtm(A) and E = expm(A) use
completely different algorithms.

Examples Example 1. fun can be specified using @:

F = funm(magic(3),@sin)

is the matrix sine of the 3-by-3 magic matrix.

Example 2. The statements

S = funm(X,@sin);
C = funm(X,@cos);

produce the same results to within roundoff error as

E = expm(i*X);
C = real(E);
S = imag(E);

In either case, the results satisfy S*S+C*C = I, where I = eye(size(X)).

Algorithm funm uses a potentially unstable algorithm. If A is close to a matrix with
multiple eigenvalues and poorly conditioned eigenvectors, funm may produce
inaccurate results. An attempt is made to detect this situation and print a

funm

2-192

warning message. The error detector is sometimes too sensitive and a message
is printed even though the the computed result is accurate.

The matrix functions are evaluated using Parlett’s algorithm, which is
described in [1].

See Also expm, logm, sqrtm, function_handle (@)

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

fwrite

2-193

2fwritePurpose Write binary data to a file

Syntax count = fwrite(fid,A,precision)
count = fwrite(fid,A,precision,skip)

Description count = fwrite(fid,A,precision) writes the elements of matrix A to the
specified file, translating MATLAB values to the specified precision. The data
is written to the file in column order, and a count is kept of the number of
elements written successfully.

fid is an integer file identifier obtained from fopen, or 1 for standard output or
2 for standard error.

precision controls the form and size of the result. See fread for a list of
allowed precisions. For 'bitN' or 'ubitN' precisions, fwrite sets all bits in A
when the value is out-of-range.

count = fwrite(fid,A,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip before each precision
value is written. With the skip argument present, fwrite skips and writes one
value, skips and writes another value, etc. until all of A is written. If precision
is a bit format like 'bitN' or 'ubitN', skip is specified in bits. This is useful
for inserting data into noncontiguous fields in fixed-length records.

Examples For example,

fid = fopen('magic5.bin','wb');
fwrite(fid,magic(5),'integer*4')

creates a 100-byte binary file, containing the 25 elements of the 5-by-5 magic
square, stored as 4-byte integers.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell

fwrite (serial)

2-194

2fwrite (serial)Purpose Write binary data to the device

Syntax fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,’mode')
fwrite(obj,A,'precision',’mode')

Arguments

Description fwrite(obj,A) writes the binary data A to the device connected to obj.

fwrite(obj,A,'precision') writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. The
supported values for precision are listed below in Remarks.

fwrite(obj,A,'mode') writes binary data with command line access specified
by mode. If mode is sync, A is written synchronously and the command line is
blocked. If mode is async, A is written asynchronously and the command line is
not blocked. If mode is not specified, the write operation is synchronous.

fwrite(obj,A,'precision','mode') writes binary data with precision
specified by precision and command line access specified by mode.

Remarks Before you can write data to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a write operation while obj
is not connected to the device.

obj A serial port object.

A The binary data written to the device.

'precision' The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

'mode' Specifies whether data is written synchronously or
asynchronously.

fwrite (serial)

2-195

The ValuesSent property value is increased by the number of values written
each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fwrite, then you need to
supply the pathname shown below.

help serial/fwrite

Synchronous Versus Asynchronous Write Operations
By default, data is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

• The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Writing Data.

Rules for Completing a Write Operation with fwrite
A binary write operation using fwrite completes when:

• The specified data is written.

• The time specified by the Timeout property passes.

Note The Terminator property is not used with binary write operations.

fwrite (serial)

2-196

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation

Character uchar 8-bit unsigned character

schar 8-bit signed character

char 8-bit signed or unsigned character

Integer int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

ulong 32- or 64-bit unsigned integer

Floating-point single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

float64 64-bit floating point

fwrite (serial)

2-197

See Also Functions
fopen, fprintf

Properties
BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status, Timeout,
TransferStatus, ValuesSent

fzero

2-198

2fzeroPurpose Find zero of a function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
x = fzero(fun,x0,options,P1,P2,...)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0, if x0 is a scalar. The
value x returned by fzero is near a point where fun changes sign, or NaN if the
search fails. In this case, the search terminates when the search interval is
expanded until an Inf, NaN, or complex value is found.

If x0 is a vector of length two, fzero assumes x0 is an interval where the sign
of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs if this is not
true. Calling fzero with such an interval guarantees fzero will return a value
near a point where fun changes sign.

x = fzero(fun,x0,options) minimizes with the optimization parameters
specified in the structure options. You can define these parameters using the
optimset function. fzero uses these options structure fields:

x = fzero(fun,x0,options,P1,P2,...) provides for additional arguments
passed to the function, fun. Use options = [] as a placeholder if no options
are set.

[x,fval] = fzero(...) returns the value of the objective function fun at the
solution x.

Display Level of display. 'off' displays no output; 'iter' displays
output at each iteration; 'final' displays just the final
output; 'notify' (default) dislays output only if the function
does not converge.

TolX Termination tolerance on x.

fzero

2-199

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes
the exit condition of fzero:

[x,fval,exitflag,output] = fzero(...) returns a structure output that
contains information about the optimization:

Note For the purposes of this command, zeros are considered to be points
where the function actually crosses, not just touches, the x-axis.

Arguments fun is the function whose zero is to be computed. It accepts a vector x and
returns a scalar f, the objective function evaluated at x. The function fun can
be specified as a function handle.

x = fzero(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be an inline object.

x = fzero(inline('sin(x*x)'),x0);

Other arguments are described in the syntax descriptions above.

Examples Example 1. Calculate by finding the zero of the sine function near 3.

>0 Indicates that the function found a zero x.

<0 No interval was found with a sign change, or a NaN or Inf function
value was encountered during search for an interval containing a
sign change, or a complex function value was encountered during
the search for an interval containing a sign change.

output.algorithm The algorithm used

output.funcCount The number of function evaluations

output.iterations The number of iterations taken

π

fzero

2-200

x = fzero(@sin,3)
x =
 3.1416

Example 2. To find the zero of cosine between 1 and 2

x = fzero(@cos,[1 2])
x =

1.5708

Note that cos(1) and cos(2) differ in sign.

Example 3. To find a zero of the function

write an M-file called f.m.

function y = f(x)
y = x.^3-2*x-5;

To find the zero near 2

z = fzero(@f,2)
z =
 2.0946

Because this function is a polynomial, the statement roots([1 0 -2 -5]) finds
the same real zero, and a complex conjugate pair of zeros.

 2.0946
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

Algorithm The fzero command is an M-file. The algorithm, which was originated by
T. Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements, is given
in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

Limitations The fzero command finds a point where the function changes sign. If the
function is continuous, this is also a point where the function has a value near
zero. If the function is not continuous, fzero may return values that are
discontinuous points instead of zeros. For example, fzero(@tan,1) returns
1.5708, a discontinuous point in tan.

f x() x3 2x– 5–=

fzero

2-201

Furthermore, the fzero command defines a zero as a point where the function
crosses the x-axis. Points where the function touches, but does not cross, the
x-axis are not valid zeros. For example, y = x.^2 is a parabola that touches the
x-axis at 0. Because the function never crosses the x-axis, however, no zero is
found. For functions with no valid zeros, fzero executes until Inf, NaN, or a
complex value is detected.

See Also roots, fminbnd, function_handle (@), inline, optimset

References [1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall,
1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

gallery

2-202

2galleryPurpose Test matrices

Syntax [A,B,C,...] = gallery('tmfun',P1,P2,...)
gallery(3) a badly conditioned 3-by-3 matrix
gallery(5) an interesting eigenvalue problem

Description [A,B,C,...] = gallery('tmfun',P1,P2,...) returns the test matrices
specified by string tmfun. tmfun is the name of a matrix family selected from
the table below. P1, P2,... are input parameters required by the individual
matrix family. The number of optional parameters P1,P2,... used in the
calling syntax varies from matrix to matrix.The exact calling syntaxes are
detailed in the individual matrix descriptions below.

The gallery holds over fifty different test matrix functions useful for testing
algorithms and other purposes.

Test Matrices

cauchy chebspec chebvand chow

circul clement compar condex

cycol dorr dramadah fiedler

forsythe frank gearmat grcar

hanowa house invhess invol

ipjfact jordbloc kahan kms

krylov lauchli lehmer leslie

lesp lotkin minij moler

neumann orthog parter pei

poisson prolate randcolu randcorr

rando randhess randsvd redheff

riemann ris rosser smoke

gallery

2-203

cauchy—Cauchy matrix

C = gallery('cauchy',x,y) returns an n-by-n matrix,
C(i,j) = 1/(x(i)+y(j)). Arguments x and y are vectors of length n. If you
pass in scalars for x and y, they are interpreted as vectors 1:x and 1:y.

C = gallery('cauchy',x) returns the same as above with y = x. That is, the
command returns C(i,j) = 1/(x(i)+x(j)).

Explicit formulas are known for the inverse and determinant of a Cauchy
matrix. The determinant det(C) is nonzero if x and y both have distinct
elements. C is totally positive if 0 < x(1) <... < x(n) and
0 < y(1) < ... < y(n).

chebspec—Chebyshev spectral differentiation matrix

C = gallery('chebspec',n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (C^n = 0) and has
the null vector ones(n,1). The matrix C is similar to a Jordan block of size n
with eigenvalue zero.

For switch = 1, C is nonsingular and well-conditioned, and its eigenvalues have
negative real parts.

The eigenvector matrix of the Chebyshev spectral differentiation matrix is
ill-conditioned.

chebvand—Vandermonde-like matrix for the Chebyshev polynomials

C = gallery('chebvand',p) produces the (primal) Chebyshev Vandermonde
matrix based on the vector of points p, which define where the Chebyshev
polynomial is calculated.

toeppd tridiag triw vander

wathen wilk

Test Matrices (Continued)

gallery

2-204

C = gallery('chebvand',m,p) where m is scalar, produces a rectangular
version of the above, with m rows.

If p is a vector, then where is the Chebyshev
polynomial of degree i-1. If p is a scalar, then p equally spaced points on the
interval [0,1] are used to calculate C.

chow—Singular Toeplitz lower Hessenberg matrix

A = gallery('chow',n,alpha,delta) returns A such that
A = H(alpha) + delta*eye(n), where and argument n is
the order of the Chow matrix. Default value for scalars alpha and delta are
1 and 0, respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The rest of
the eigenvalues are equal to 4*alpha*cos(k*pi/(n+2))^2, k=1:n-p.

circul—Circulant matrix

C = gallery('circul',v) returns the circulant matrix whose first row is the
vector v.

A circulant matrix has the property that each row is obtained from the previous
one by cyclically permuting the entries one step forward. It is a special Toeplitz
matrix in which the diagonals “wrap around.”

If v is a scalar, then C = gallery('circul',1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root of unity,
then the inner product of v and is an eigenvalue of C and
w(n:-1:1) is an eigenvector.

clement—Tridiagonal matrix with zero diagonal entries

A = gallery('clement',n,sym) returns an n-by-n tridiagonal matrix with
zeros on its main diagonal and known eigenvalues. It is singular if order n is
odd. About 64 percent of the entries of the inverse are zero. The eigenvalues
include plus and minus the numbers n-1, n-3, n-5, ..., as well as (for odd n) a
final eigenvalue of 1 or 0.

C i j,() Ti 1– p j()()= Ti 1–

Hi j, α() α i j– 1+()
=

w 1 t t2…t n 1–()[]=

gallery

2-205

Argument sym determines whether the Clement matrix is symmetric. For
sym = 0 (the default) the matrix is nonsymmetric, while for sym = 1, it is
symmetric.

compar—Comparison matrices

A = gallery('compar',A,1) returns A with each diagonal element replaced
by its absolute value, and each off-diagonal element replaced by minus the
absolute value of the largest element in absolute value in its row. However, if
A is triangular compar(A,1) is too.

gallery('compar',A) is diag(B) - tril(B,-1) - triu(B,1), where
B = abs(A). compar(A) is often denoted by M(A) in the literature.

gallery('compar',A,0) is the same as gallery('compar',A).

condex—Counter-examples to matrix condition number estimators

A = gallery('condex',n,k,theta) returns a “counter-example” matrix to a
condition estimator. It has order n and scalar parameter theta (default 100).

The matrix, its natural size, and the estimator to which it applies are specified
by k:

If n is not equal to the natural size of the matrix, then the matrix is padded out
with an identity matrix to order n.

cycol—Matrix whose columns repeat cyclically

A = gallery('cycol',[m n],k) returns an m-by-n matrix with cyclically
repeating columns, where one “cycle” consists of randn(m,k). Thus, the rank of
matrix A cannot exceed k, and k must be a scalar.

k = 1 4-by-4 LINPACK

k = 2 3-by-3 LINPACK

k = 3 arbitrary LINPACK (rcond) (independent of theta)

k = 4 n >= 4 LAPACK (RCOND) (default). It is the inverse of
this matrix that is a counter-example.

gallery

2-206

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery('cycol',n,k), where n is a scalar, is the same as
gallery('cycol',[n n],k).

dorr—Diagonally dominant, ill-conditioned, tridiagonal matrix

[c,d,e] = gallery('dorr',n,theta) returns the vectors defining an n-by-n,
row diagonally dominant, tridiagonal matrix that is ill-conditioned for small
nonnegative values of theta. The default value of theta is 0.01. The Dorr
matrix itself is the same as gallery('tridiag',c,d,e).

A = gallery('dorr',n,theta) returns the matrix itself, rather than the
defining vectors.

dramadah—Matrix of zeros and ones whose inverse has large integer entries

A = gallery('dramadah',n,k) returns an n-by-n matrix of 0’s and 1’s for
which mu(A) = norm(inv(A),'fro') is relatively large, although not
necessarily maximal. An anti-Hadamard matrix A is a matrix with elements
0 or 1 for which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of the
output matrix:

k = 1 Default. A is Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)^n, where c is a constant. The inverse of A has
integer entries.

k = 2 A is upper triangular and Toeplitz. The inverse of A has integer
entries.

k = 3 A has maximal determinant among lower Hessenberg (0,1)
matrices. det(A) = the nth Fibonacci number. A is Toeplitz. The
eigenvalues have an interesting distribution in the complex plane.

gallery

2-207

fiedler—Symmetric matrix

A = gallery('fiedler',c), where c is a length n vector, returns the n-by-n
symmetric matrix with elements abs(n(i)-n(j)). For scalar c,
A = gallery('fiedler',1:c).

Matrix A has a dominant positive eigenvalue and all the other eigenvalues are
negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic
Numerical Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and
Academic Press, New York, 1977, p. 159] and attributed to Fiedler. These
indicate that inv(A) is tridiagonal except for nonzero (1,n) and (n,1)
elements.

forsythe—Perturbed Jordan block

A = gallery('forsythe',n,alpha,lambda) returns the n-by-n matrix equal
to the Jordan block with eigenvalue lambda, excepting that A(n,1) = alpha.
The default values of scalars alpha and lambda are sqrt(eps) and 0,
respectively.

The characteristic polynomial of A is given by:

det(A-t*I) = (lambda-t)^N - alpha*(-1)^n.

frank—Matrix with ill-conditioned eigenvalues

F = gallery('frank',n,k) returns the Frank matrix of order n. It is upper
Hessenberg with determinant 1. If k = 1, the elements are reflected about the
anti-diagonal (1,n)—(n,1). The eigenvalues of F may be obtained in terms of
the zeros of the Hermite polynomials. They are positive and occur in reciprocal
pairs; thus if n is odd, 1 is an eigenvalue. F has floor(n/2) ill-conditioned
eigenvalues—the smaller ones.

gearmat—Gear matrix

A = gallery('gearmat',n,i,j) returns the n-by-n matrix with ones on the
sub- and super-diagonals, sign(i) in the (1,abs(i)) position, sign(j) in the

gallery

2-208

(n,n+1-abs(j)) position, and zeros everywhere else. Arguments i and j
default to n and -n, respectively.

Matrix A is singular, can have double and triple eigenvalues, and can be
defective.

All eigenvalues are of the form 2*cos(a) and the eigenvectors are of the form
[sin(w+a), sin(w+2*a), ..., sin(w+n*a)], where a and w are given in
Gear, C. W., “A Simple Set of Test Matrices for Eigenvalue Programs”, Math.
Comp., Vol. 23 (1969), pp. 119-125.

grcar—Toeplitz matrix with sensitive eigenvalues

A = gallery('grcar',n,k) returns an n-by-n Toeplitz matrix with -1s on the
subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The default is
k = 3. The eigenvalues are sensitive.

hanowa—Matrix whose eigenvalues lie on a vertical line in the complex plane

A = gallery('hanowa',n,d) returns an n-by-n block 2-by-2 matrix of the
form:

[d*eye(m) -diag(1:m)
diag(1:m) d*eye(m)]

Argument n is an even integer n=2*m. Matrix A has complex eigenvalues of the
form d ± k*i, for 1 <= k <= m. The default value of d is -1.

house—Householder matrix

[v,beta,s] = gallery('house',x,k) takes x, an n-element column vector,
and returns V and beta such that H*x = s*e1. In this expression, e1 is the first
column of eye(n), abs(s) = norm(x), and H = eye(n) - beta*V*V' is a
Householder matrix.

k determines the sign of s:

k = 0 sign(s) = -sign(x(1)) (default)

k = 1 sign(s) = sign(x(1))

k = 2 sign(s) = 1 (x must be real)

gallery

2-209

If x is complex, then sign(x) = x./abs(x) when x is nonzero.

If x = 0, or if x = alpha*e1 (alpha >= 0) and either k = 1 or k = 2, then V = 0,
beta = 1, and s = x(1). In this case, H is the identity matrix, which is not
strictly a Householder matrix.

invhess—Inverse of an upper Hessenberg matrix

A = gallery('invhess',x,y), where x is a length n vector and y is a length
n-1 vector, returns the matrix whose lower triangle agrees with that of
ones(n,1)*x' and whose strict upper triangle agrees with that of
[1 y]*ones(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i, and its
inverse is an upper Hessenberg matrix. Argument y defaults to -x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

invol—Involutory matrix

A = gallery('invol',n) returns an n-by-n involutory (A*A = eye(n)) and
ill-conditioned matrix. It is a diagonally scaled version of hilb(n).

B = (eye(n)-A)/2 and B = (eye(n)+A)/2 are idempotent (B*B = B).

ipjfact—Hankel matrix with factorial elements

[A,d] = gallery('ipjfact',n,k) returns A, an n-by-n Hankel matrix, and d,
the determinant of A, which is known explicitly. If k = 0 (the default), then the
elements of A are A(i,j) = (i+j)! If k = 1, then the elements of A are
A(i,j) = 1/(i+j).

Note that the inverse of A is also known explicitly.

jordbloc—Jordan block

A = gallery('jordbloc',n,lambda) returns the n-by-n Jordan block with
eigenvalue lambda. The default value for lambda is 1.

gallery

2-210

kahan—Upper trapezoidal matrix

A = gallery('kahan',n,theta,pert) returns an upper trapezoidal matrix
that has interesting properties regarding estimation of condition and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is n-by-n. The
useful range of theta is 0 < theta < pi, with a default value of 1.2.

To ensure that the QR factorization with column pivoting does not interchange
columns in the presence of rounding errors, the diagonal is perturbed by
pert*eps*diag([n:-1:1]). The default pert is 25, which ensures no
interchanges for gallery('kahan',n) up to at least n = 90 in IEEE arithmetic.

kms—Kac-Murdock-Szego Toeplitz matrix

A = gallery('kms',n,rho) returns the n-by-n Kac-Murdock-Szego Toeplitz
matrix such that A(i,j) = rho^(abs(i-j)), for real rho.

For complex rho, the same formula holds except that elements below the
diagonal are conjugated. rho defaults to 0.5.

The KMS matrix A has these properties:

• An LDL' factorization with L = inv(gallery('triw',n,-rho,1))', and
D(i,i) = (1-abs(rho)^2)*eye(n), except D(1,1) = 1.

• Positive definite if and only if 0 < abs(rho) < 1.

• The inverse inv(A) is tridiagonal.

krylov—Krylov matrix

B = gallery('krylov',A,x,j) returns the Krylov matrix

[x, Ax, A^2x, ..., A^(j-1)x]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x = ones(n,1), and j = n.

B = gallery('krylov',n) is the same as gallery('krylov',(randn(n)).

gallery

2-211

lauchli—Rectangular matrix

A = gallery('lauchli',n,mu) returns the (n+1)-by-n matrix

[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A'*A. Argument mu defaults to
sqrt(eps).

lehmer—Symmetric positive definite matrix

A = gallery('lehmer',n) returns the symmetric positive definite n-by-n
matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

• A is totally nonnegative.

• The inverse inv(A) is tridiagonal and explicitly known.

• The order n <= cond(A) <= 4*n*n.

leslie—

L = gallery('leslie',a,b) is the n-by-n matrix from the Leslie population
model with average birth numbers a(1:n) and survival rates b(1:n-1). It is
zero, apart from the first row (which contains the a(i)) and the first
subdiagonal (which contains the b(i)). For a valid model, the a(i) are
nonnegative and the b(i) are positive and bounded by 1, i.e., 0 < b(i) <= 1.

L = gallery('leslie',n) generates the Leslie matrix with a = ones(n,1),
b = ones(n-1,1).

lesp—Tridiagonal matrix with real, sensitive eigenvalues

A = gallery('lesp',n) returns an n-by-n matrix whose eigenvalues are real
and smoothly distributed in the interval approximately [-2*N-3.5, -4.5].

The sensitivities of the eigenvalues increase exponentially as the eigenvalues
grow more negative. The matrix is similar to the symmetric tridiagonal matrix

gallery

2-212

with the same diagonal entries and with off-diagonal entries 1, via a similarity
transformation with D = diag(1!,2!,...,n!).

lotkin—Lotkin matrix

A = gallery('lotkin',n) returns the Hilbert matrix with its first row
altered to all ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and
has many negative eigenvalues of small magnitude. Its inverse has integer
entries and is known explicitly.

minij—Symmetric positive definite matrix

A = gallery('minij',n) returns the n-by-n symmetric positive definite
matrix with A(i,j) = min(i,j).

The minij matrix has these properties:

• The inverse inv(A) is tridiagonal and equal to -1 times the second difference
matrix, except its (n,n) element is 1.

• Givens’ matrix, 2*A-ones(size(A)), has tridiagonal inverse and
eigenvalues 0.5*sec((2*r-1)*pi/(4*n))^2, where r=1:n.

• (n+1)*ones(size(A))-A has elements that are max(i,j) and a tridiagonal
inverse.

moler—Symmetric positive definite matrix

A = gallery('moler',n,alpha) returns the symmetric positive definite
n-by-n matrix U'*U, where U = gallery('triw',n,alpha).

For the default alpha = -1, A(i,j) = min(i,j)-2, and A(i,i) = i. One of the
eigenvalues of A is small.

neumann—Singular matrix from the discrete Neumann problem (sparse)

C = gallery('neumann',n) returns the sparse n-by-n singular, row
diagonally dominant matrix resulting from discretizing the Neumann problem
with the usual five-point operator on a regular mesh. Argument n is a perfect
square integer or a two-element vector. C is sparse and has a
one-dimensional null space with null vector ones(n,1).

n m2=

gallery

2-213

orthog—Orthogonal and nearly orthogonal matrices

Q = gallery('orthog',n,k) returns the kth type of matrix of order n, where
k > 0 selects exactly orthogonal matrices, and k < 0 selects diagonal scalings
of orthogonal matrices. Available types are:

parter—Toeplitz matrix with singular values near pi

C = gallery('parter',n) returns the matrix C such that
C(i,j) = 1/(i-j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of C are
very close to pi.

k = 1 Q(i,j) = sqrt(2/(n+1)) * sin(i*j*pi/(n+1))
Symmetric eigenvector matrix for second difference matrix. This is
the default.

k = 2 Q(i,j) = 2/(sqrt(2*n+1)) * sin(2*i*j*pi/(2*n+1))
Symmetric.

k = 3 Q(r,s) = exp(2*pi*i*(r-1)*(s-1)/n) / sqrt(n)
Unitary, the Fourier matrix. Q^4 is the identity. This is essentially
the same matrix as fft(eye(n))/sqrt(n)!

k = 4 Helmert matrix: a permutation of a lower Hessenberg matrix,
whose first row is ones(1:n)/sqrt(n).

k = 5 Q(i,j) = sin(2*pi*(i-1)*(j-1)/n) +
cos(2*pi*(i-1)*(j-1)/n)
Symmetric matrix arising in the Hartley transform.

K = 6 Q(i,j) = sqrt(2/n)*cos((i-1/2)*(j-1/2)*pi/n)
Symmetric matrix arising as a discrete cosine transform.

k = -1 Q(i,j) = cos((i-1)*(j-1)*pi/(n-1))
Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).

k = -2 Q(i,j) = cos((i-1)*(j-1/2)*pi/n))
Chebyshev Vandermonde-like matrix, based on zeros of T(n).

gallery

2-214

pei—Pei matrix

A = gallery('pei',n,alpha), where alpha is a scalar, returns the symmetric
matrix alpha*eye(n) + ones(n). The default for alpha is 1. The matrix is
singular for alpha equal to either 0 or -n.

poisson—Block tridiagonal matrix from Poisson's equation (sparse)

A = gallery('poisson',n) returns the block tridiagonal (sparse) matrix of
order n^2 resulting from discretizing Poisson's equation with the 5-point
operator on an n-by-n mesh.

prolate—Symmetric, ill-conditioned Toeplitz matrix

A = gallery('prolate',n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

If 0 < w < 0.5 then A is positive definite

• The eigenvalues of A are distinct, lie in (0,1), and tend to cluster around 0
and 1.

• The default value of w is 0.25.

randcolu — Random matrix with normalized cols and specified singular
values

A = gallery('randcolu',n) is a random n-by-n matrix with columns of unit
2-norm, with random singular values whose squares are from a uniform
distribution.

A'*A is a correlation matrix of the form produced by gallery('randcorr',n).

gallery('randcolu',x) where x is an n-vector (n > 1), produces a random
n-by-n matrix having singular values given by the vector x. The vector x must
have nonnegative elements whose sum of squares is n.

gallery('randcolu',x,m) where m >= n, produces an m-by-n matrix.

gallery('randcolu',x,m,k) provides a further option:

gallery

2-215

For more information, see:

[1] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

randcorr — Random correlation matrix with specified eigenvalues

gallery('randcorr',n) is a random n-by-n correlation matrix with random
eigenvalues from a uniform distribution. A correlation matrix is a symmetric
positive semidefinite matrix with 1s on the diagonal (see corrcoef).

gallery('randcorr',x) produces a random correlation matrix having
eigenvalues given by the vector x, where length(x) > 1. The vector x must
have nonnegative elements summing to length(x).

gallery('randcorr',x,k) provides a further option:

For more information, see:

[1] Bendel, R. B. and M. R. Mickey, “Population Correlation Matrices for
Sampling Experiments,” Commun. Statist. Simulation Comput., B7, 1978,
pp. 163-182.

[2] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

k = 0 diag(x) is initially subjected to a random two-sided orthogonal
transformation, and then a sequence of Givens rotations is applied
(default).

k = 1 The initial transformation is omitted. This is much faster, but the
resulting matrix may have zero entries.

k = 0 The diagonal matrix of eigenvalues is initially subjected to a
random orthogonal similarity transformation, and then a
sequence of Givens rotations is applied (default).

k = 1 The initial transformation is omitted. This is much faster, but the
resulting matrix may have some zero entries.

gallery

2-216

randhess—Random, orthogonal upper Hessenberg matrix

H = gallery('randhess',n) returns an n-by-n real, random, orthogonal
upper Hessenberg matrix.

H = gallery('randhess',x) if x is an arbitrary, real, length n vector with
n > 1, constructs H nonrandomly using the elements of x as parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

rando—Random matrix composed of elements -1, 0 or 1

A = gallery('rando',n,k) returns a random n-by-n matrix with elements
from one of the following discrete distributions:

Argument n may be a two-element vector, in which case the matrix is
n(1)-by-n(2).

randsvd—Random matrix with preassigned singular values

A = gallery('randsvd',n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and singular
values from the distribution mode. If n is a two-element vector, A is
n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper off-diagonals,
respectively, in A. If they are omitted, a full matrix is produced. If only kl is
present, ku defaults to kl.

Distribution mode can be:

k = 1 A(i,j) = 0 or 1 with equal probability (default).

k = 2 A(i,j) = -1 or 1 with equal probability.

k = 3 A(i,j) = -1, 0 or 1 with equal probability.

1 One large singular value.

2 One small singular value.

3 Geometrically distributed singular values (default).

gallery

2-217

Condition number kappa defaults to sqrt(1/eps). In the special case where
kappa < 0, A is a random, full, symmetric, positive definite matrix with
cond(A) = -kappa and eigenvalues distributed according to mode. Arguments
kl and ku, if present, are ignored.

A = gallery('randsvd',n,kappa,mode,kl,ku,method) specifies how the
computations are carried out. method = 0 is the default, while method = 1
uses an alternative method that is much faster for large dimensions, even
though it uses more flops.

redheff—Redheffer’s matrix of 1s and 0s

A = gallery('redheff',n) returns an n-by-n matrix of 0’s and 1’s defined by
A(i,j) = 1, if j = 1 or if i divides j, and A(i,j) = 0 otherwise.

The Redheffer matrix has these properties:

• (n-floor(log2(n)))-1 eigenvalues equal to 1

• A real eigenvalue (the spectral radius) approximately sqrt(n)

• A negative eigenvalue approximately -sqrt(n)

• The remaining eigenvalues are provably “small.”

• The Riemann hypothesis is true if and only if for every
epsilon > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside the unit
circle abs(Z) = 1,” and a proof of this conjecture, together with a proof that
some eigenvalue tends to zero as n tends to infinity, would yield a new proof of
the prime number theorem.

4 Arithmetically distributed singular values.

5 Random singular values with uniformly distributed logarithm.

< 0 If mode is -1, -2, -3, -4, or -5, then randsvd treats mode as abs(mode),
except that in the original matrix of singular values the order of the
diagonal entries is reversed: small to large instead of large to small.

1 One large singular value.

det A() O n
1
2
--- ε+

()=

gallery

2-218

riemann—Matrix associated with the Riemann hypothesis

A = gallery('riemann',n) returns an n-by-n matrix for which the Riemann
hypothesis is true if and only if

 for every .

The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)

where B(i,j) = i-1 if i divides j, and B(i,j) = -1 otherwise.

The Riemann matrix has these properties:

• Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, where m = n+1.

• i <= e(i) <= i+1 with at most m-sqrt(m) exceptions.

• All integers in the interval (m/3, m/2] are eigenvalues.

ris—Symmetric Hankel matrix

A = gallery('ris',n) returns a symmetric n-by-n Hankel matrix with
elements

A(i,j) = 0.5/(n-i-j+1.5)

The eigenvalues of A cluster around and . This matrix was invented
by F.N. Ris.

det A() O n!n
1
2
---– ε+

()=

ε 0>

π 2⁄ π 2⁄–

gallery

2-219

rosser—Classic symmetric eigenvalue test matrix

A = rosser returns the Rosser matrix. This matrix was a challenge for many
matrix eigenvalue algorithms. But the QR algorithm, as perfected by
Wilkinson and implemented in MATLAB, has no trouble with it. The matrix
is 8-by-8 with integer elements. It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

smoke—Complex matrix with a 'smoke ring' pseudospectrum

A = gallery('smoke',n) returns an n-by-n matrix with 1’s on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity along the
diagonal.

A = gallery('smoke',n,1) returns the same except that element A(n,1) is
zero.

The eigenvalues of gallery('smoke',n,1) are the nth roots of unity; those of
gallery('smoke',n) are the nth roots of unity times 2^(1/n).

toeppd—Symmetric positive definite Toeplitz matrix

A = gallery('toeppd',n,m,w,theta) returns an n-by-n symmetric, positive
semi-definite (SPD) Toeplitz matrix composed of the sum of m rank 2 (or, for
certain theta, rank 1) SPD Toeplitz matrices. Specifically,

T = w(1)*T(theta(1)) + ... + w(m)*T(theta(m))

where T(theta(k)) has (i,j) element cos(2*pi*theta(k)*(i-j)).

By default: m = n, w = rand(m,1), and theta = rand(m,1).

gallery

2-220

toeppen—Pentadiagonal Toeplitz matrix (sparse)

P = gallery('toeppen',n,a,b,c,d,e) returns the n-by-n sparse,
pentadiagonal Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1) = b,
P(1,1) = c, P(1,2) = d, and P(1,3) = e, where a, b, c, d, and e are scalars.

By default, (a,b,c,d,e) = (1,-10,0,10,1), yielding a matrix of Rutishauser.
This matrix has eigenvalues lying approximately on the line segment
2*cos(2*t) + 20*i*sin(t).

tridiag—Tridiagonal matrix (sparse)

A = gallery('tridiag',c,d,e) returns the tridiagonal matrix with
subdiagonal c, diagonal d, and superdiagonal e. Vectors c and e must have
length(d)-1.

A = gallery('tridiag',n,c,d,e), where c, d, and e are all scalars, yields the
Toeplitz tridiagonal matrix of order n with subdiagonal elements c, diagonal
elements d, and superdiagonal elements e. This matrix has eigenvalues

d + 2*sqrt(c*e)*cos(k*pi/(n+1))

where k = 1:n. (see [1].)

A = gallery('tridiag',n) is the same as
A = gallery('tridiag',n,-1,2,-1), which is a symmetric positive definite
M-matrix (the negative of the second difference matrix).

triw—Upper triangular matrix discussed by Wilkinson and others

A = gallery('triw',n,alpha,k) returns the upper triangular matrix with
ones on the diagonal and alphas on the first k >= 0 superdiagonals.

Order n may be a 2-element vector, in which case the matrix is n(1)-by-n(2)
and upper trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices, J. Reine
Angew. Math., 1954] shows that

cond(gallery('triw',n,2)) = cot(pi/(4*n))^2,

gallery

2-221

and, for large abs(alpha), cond(gallery('triw',n,alpha)) is approximately
abs(alpha)^n*sin(pi/(4*n-2)).

Adding -2^(2-n) to the (n,1) element makes triw(n) singular, as does adding
-2^(1-n) to all the elements in the first column.

vander—Vandermonde matrix

A = gallery('vander',c) returns the Vandermonde matrix whose second to
last column is c. The jth column of a Vandermonde matrix is given by
A(:,j) = C^(n-j).

wathen—Finite element matrix (sparse, random entries)

A = gallery('wathen',nx,ny) returns a sparse, random, n-by-n finite
element matrix where n = 3*nx*ny + 2*nx + 2*ny + 1.

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny grid of
8-node (serendipity) elements in two dimensions. A is symmetric, positive
definite for any (positive) values of the “density,” rho(nx,ny), which is chosen
randomly in this routine.

A = gallery('wathen',nx,ny,1) returns a diagonally scaled matrix such
that

0.25 <= eig(inv(D)*A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any densities
rho(nx,ny).

wilk—Various matrices devised or discussed by Wilkinson

[A,b] = gallery('wilk',n) returns a different matrix or linear system
depending on the value of n.

n = 3 Upper triangular system Ux=b illustrating inaccurate solution.

n = 4 Lower triangular system Lx=b, ill-conditioned.

gallery

2-222

See Also hadamard, hilb, invhilb, magic, wilkinson

References [1] The MATLAB gallery of test matrices is based upon the work of Nicholas J.
Higham at the Department of Mathematics, University of Manchester,
Manchester, England. Additional detail on these matrices is documented in
The Test Matrix Toolbox for MATLAB by N. J. Higham, September, 1995. This
report is available via anonymous ftp from The MathWorks at
ftp://ftp.mathworks.com/pub/contrib/linalg/testmatrix/testmatrix.p
s or on the Web at ftp://ftp.ma.man.ac.uk/pub/narep or
http://www.ma.man.ac.uk/MCCM/MCCM.html. Further background can be
found in the book Accuracy and Stability of Numerical Algorithms, Nicholas J.
Higham, SIAM, 1996.

[2] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University
Press, London, 1965, p.308.

n = 5 hilb(6)(1:5,2:6)*1.8144. A symmetric positive definite matrix.

n = 21 W21+, a tridiagonal matrix. Eigenvalue problem. For more detail,
see [2].

gamma, gammainc, gammaln

2-223

2gamma, gammainc, gammalnPurpose Gamma functions

Syntax Y = gamma(A) Gamma function
Y = gammainc(X,A) Incomplete gamma function
Y = gammaln(A) Logarithm of gamma function

Definition The gamma function is defined by the integral:

The gamma function interpolates the factorial function. For integer n:

gamma(n+1) = n! = prod(1:n)

The incomplete gamma function is:

Description Y = gamma(A) returns the gamma function at the elements of A. A must be real.

Y = gammainc(X,A) returns the incomplete gamma function of corresponding
elements of X and A. Arguments X and A must be real and the same size (or
either can be scalar).

Y = gammaln(A) returns the logarithm of the gamma function,
gammaln(A) = log(gamma(A)). The gammaln command avoids the underflow
and overflow that may occur if it is computed directly using log(gamma(A)).

Algorithm The computations of gamma and gammaln are based on algorithms outlined in
[1]. Several different minimax rational approximations are used depending
upon the value of A. Computation of the incomplete gamma function is based
on the algorithm in [2].

Γ a() e t– ta 1– td
0

∞
∫=

P x a,() 1
Γ a()
------------ e t– ta 1– td

0

x
∫=

gamma, gammainc, gammaln

2-224

References [1] Cody, J., An Overview of Software Development for Special Functions,
Lecture Notes in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson
(ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sec. 6.5.

gca

2-225

2gcaPurpose Get current axes handle

Syntax h = gca

Description h = gca returns the handle to the current axes for the current figure. If no axes
exists, MATLAB creates one and returns its handle. You can use the statement

get(gcf,'CurrentAxes')

if you do not want MATLAB to create an axes if one does not already exist.

The current axes is the target for graphics output when you create axes
children. Graphics commands such as plot, text, and surf draw their results
in the current axes. Changing the current figure also changes the current axes.

See Also axes, cla, gcf, findobj

figure CurrentAxes property

“Finding and Identifying Graphics Objects” for related functions

gcbf

2-226

2gcbfPurpose Get handle of figure containing object whose callback is executing

Syntax fig = gcbf

Description fig = gcbf returns the handle of the figure that contains the object whose
callback is currently executing. This object can be the figure itself, in which
case, gcbf returns the figure’s handle.

When no callback is executing, gcbf returns the empty matrix, [].

The value returned by gcbf is identical to the figure output argument
returned by gcbo.

See Also gcbo, gco, gcf, gca

gcbo

2-227

2gcboPurpose Return the handle of the object whose callback is currently executing

Syntax h = gcbo

[h, figure] = gcbo

Description h = gcbo returns the handle of the graphics object whose callback is executing.

[h, figure] = gcbo returns the handle of the current callback object and the
handle of the figure containing this object.

Remarks MATLAB stores the handle of the object whose callback is executing in the root
CallbackObject property. If a callback interrupts another callback, MATLAB
replaces the CallbackObject value with the handle of the object whose
callback is interrupting. When that callback completes, MATLAB restores the
handle of the object whose callback was interrupted.

The root CallbackObject property is read-only, so its value is always valid at
any time during callback execution. The root CurrentFigure property, and the
figure CurrentAxes and CurrentObject properties (returned by gcf, gca, and
gco respectively) are user settable, so they can change during the execution of
a callback, especially if that callback is interrupted by another callback.
Therefore, those functions are not reliable indicators of which object’s callback
is executing.

When you write callback routines for the CreateFcn and DeleteFcn of any
object and the figure ResizeFcn, you must use gcbo since those callbacks do not
update the root’s CurrentFigure property, or the figure’s CurrentObject or
CurrentAxes properties; they only update the root’s CallbackObject property.

When no callbacks are executing, gcbo returns [] (an empty matrix).

See Also gca, gcf, gco, rootobject

“Finding and Identifying Graphics Objects” for related functions

gcd

2-228

2gcdPurpose Greatest common divisor

Syntax G = gcd(A,B)
[G,C,D] = gcd(A,B)

Description G = gcd(A,B) returns an array containing the greatest common divisors of the
corresponding elements of integer arrays A and B. By convention, gcd(0,0)
returns a value of 0; all other inputs return positive integers for G.

[G,C,D] = gcd(A,B) returns both the greatest common divisor array G, and
the arrays C and D, which satisfy the equation: A(i).*C(i) + B(i).*D(i) =
G(i). These are useful for solving Diophantine equations and computing
elementary Hermite transformations.

Examples The first example involves elementary Hermite transformations.

For any two integers a and b there is a 2-by-2 matrix E with integer entries and
determinant = 1 (a unimodular matrix) such that:

E * [a;b] = [g,0],

where g is the greatest common divisor of a and b as returned by the command
[g,c,d] = gcd(a,b).

The matrix E equals:

c d
-b/g a/g

In the case where a = 2 and b = 4:

[g,c,d] = gcd(2,4)
g =
 2
c =
 1
d =
 0

gcd

2-229

So that

E =
1 0

 -2 1

In the next example, we solve for x and y in the Diophantine equation
30x + 56y = 8.

[g,c,d] = gcd(30,56)
g =
 2
c =
 -13
d =
 7

By the definition, for scalars c and d:

30(-13) + 56(7) = 2,

Multiplying through by 8/2:

30(-13*4) + 56(7*4) = 8

Comparing this to the original equation, a solution can be read by inspection:

x = (-13*4) = -52; y = (7*4) = 28

See Also lcm

References [1] Knuth, Donald, The Art of Computer Programming, Vol. 2, Addison-Wesley:
Reading MA, 1973. Section 4.5.2, Algorithm X.

gcf

2-230

2gcfPurpose Get current figure handle

Syntax h = gcf

Description h = gcf returns the handle of the current figure. The current figure is the
figure window in which graphics commands such as plot, title, and surf
draw their results. If no figure exists, MATLAB creates one and returns its
handle. You can use the statement

get(0,'CurrentFigure')

if you do not want MATLAB to create a figure if one does not already exist.

See Also clf, figure, gca

root CurrentFigure property

“Finding and Identifying Graphics Objects” for related functions

gco

2-231

2gcoPurpose Return handle of current object

Syntax h = gco
h = gco(figure_handle)

Description h = gco returns the handle of the current object.

h = gco(figure_handle) returns the value of the current object for the figure
specified by figure_handle.

Remarks The current object is the last object clicked on, excluding uimenus. If the mouse
click did not occur over a figure child object, the figure becomes the current
object. MATLAB stores the handle of the current object in the figure’s
CurrentObject property.

The CurrentObject of the CurrentFigure does not always indicate the object
whose callback is being executed. Interruptions of callbacks by other callbacks
can change the CurrentObject or even the CurrentFigure. Some callbacks,
such as CreateFcn and DeleteFcn, and uimenu Callback intentionally do not
update CurrentFigure or CurrentObject.

gcbo provides the only completely reliable way to retrieve the handle to the
object whose callback is executing, at any point in the callback function,
regardless of the type of callback or of any previous interruptions.

Examples This statement returns the handle to the current object in figure window 2:

h = gco(2)

See Also gca, gcbo, gcf

The root object description

“Finding and Identifying Graphics Objects” for related functions

genpath

2-232

2genpathPurpose Generate a path string

Syntax genpath
genpath directory
p = genpath('directory')

Description genpath returns a path string formed by recursively adding all the directories
below matlabroot/toolbox. Empty directories are not included.

genpath directory returns a path string formed by recursively adding all the
directories below directory. Empty directories are not included.

p = genpath('directory') returns the path string to variable, p.

Examples You generate a path that includes matlabroot/toolbox/images and all
directories below that with the following command:

p = genpath(fullfile(matlabroot,'toolbox','images'))

p =

matlabroot\toolbox\images;matlabroot\toolbox\images\images;
matlabroot\toolbox\images\images\ja;matlabroot\toolbox\images\
imdemos;matlabroot\toolbox\images\imdemos\ja;

genpath

2-233

You can also use genpath in conjunction with addpath to add subdirectories to
the path from the command line. The following example adds the /control
directory and its subdirectories to the current path.

% Display the current path
path

 MATLABPATH

 K:\toolbox\matlab\general
 K:\toolbox\matlab\ops
 K:\toolbox\matlab\lang
 K:\toolbox\matlab\elmat
 K:\toolbox\matlab\elfun
 :
 :
 :

% Use GENPATH to add /control and its subdirectories
addpath(genpath('K:/toolbox/control'))

% Display the new path
path

 MATLABPATH

 K:\toolbox\control
 K:\toolbox\control\ctrlutil
 K:\toolbox\control\control
 K:\toolbox\control\ctrlguis
 K:\toolbox\control\ctrldemos
 K:\toolbox\matlab\general
 K:\toolbox\matlab\ops
 K:\toolbox\matlab\lang
 K:\toolbox\matlab\elmat
 K:\toolbox\matlab\elfun
 :
 :
 :

genpath

2-234

See Also path, addpath, rmpath

get

2-235

2getPurpose Get object properties

Syntax get(h)
get(h,'PropertyName')
<m-by-n value cell array> = get(H,<property cell array>)
a = get(h)
a = get(0,'Factory')
a = get(0,'FactoryObjectTypePropertyName')
a = get(h,'Default')
a = get(h,'DefaultObjectTypePropertyName')

Description get(h) returns all properties and their current values of the graphics object
identified by the handle h.

get(h,'PropertyName') returns the value of the property 'PropertyName' of
the graphics object identified by h.

<m-by-n value cell array> = get(H,pn) returns n property values for m
graphics objects in the m-by-n cell array, where m = length(H) and n is equal
to the number of property names contained in pn.

a = get(h) returns a structure whose field names are the object’s property
names and whose values are the current values of the corresponding
properties. h must be a scalar. If you do not specify an output argument,
MATLAB displays the information on the screen.

a = get(0,'Factory') returns the factory-defined values of all user-settable
properties. a is a structure array whose field names are the object property
names and whose field values are the values of the corresponding properties.
If you do not specify an output argument, MATLAB displays the information
on the screen.

a = get(0,'FactoryObjectTypePropertyName') returns the factory-defined
value of the named property for the specified object type. The argument,
FactoryObjectTypePropertyName, is the word Factory concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

FactoryFigureColor

get

2-236

a = get(h,'Default') returns all default values currently defined on object
h. a is a structure array whose field names are the object property names and
whose field values are the values of the corresponding properties. If you do not
specify an output argument, MATLAB displays the information on the screen.

a = get(h,'DefaultObjectTypePropertyName') returns the factory-defined
value of the named property for the specified object type. The argument,
DefaultObjectTypePropertyName, is the word Default concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

DefaultFigureColor

Examples You can obtain the default value of the LineWidth property for line graphics
objects defined on the root level with the statement:

get(0,'DefaultLineLineWidth')

ans =
 0.5000

To query a set of properties on all axes children define a cell array of property
names:

props = {'HandleVisibility', 'Interruptible';
'SelectionHighlight', 'Type'};

output = get(get(gca,'Children'),props);

The variable output is a cell array of dimension
length(get(gca,'Children')−by−4.

For example, type

patch;surface;text;line
output = get(get(gca,'Children'),props)
output =

'on' 'on' 'on' 'line'
'on’ 'off' 'on' 'text'
'on' 'on' 'on' 'surface'
'on' 'on' 'on' 'patch'

See Also findobj, gca, gcf, gco, set

Handle Graphics Properties

get

2-237

“Finding and Identifying Graphics Objects” for related functions

get (COM)

2-238

2get (COM)Purpose Retrieve a property value from an interface or get a list of properties

Syntax v = get(h[, 'propertyname'])

Arguments h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string that is the name of the property value to be retrieved.

Description Returns the value of the property specified by propertyname. If no property is
specified, then get returns a list of all properties for the object or interface.

The meaning and type of the return value is dependent upon the specific
property being retrieved. The object’s documentation should describe the
specific meaning of the return value. See “Converting Data” in the External
Interfaces documentation for a description of how MATLAB converts COM
data types.

Examples Create a COM server running Microsoft Excel:

e = actxserver ('Excel.Application');

Retrieve a single property value:

get(e, 'Path')
ans =
 D:\Applications\MSOffice\Office

Retrieve a list of all properties for the CommandBars interface:

c = get(e, 'CommandBars');
get(c)
ans =
 Application: [1x1
Interface.excel.application.CommandBars.Application]
 Creator: 1.4808e+009
 ActionControl: []
 ActiveMenuBar: [1x1
Interface.excel.application.CommandBars.ActiveMenuBar]
 Count: 94

get (COM)

2-239

 DisplayTooltips: 1
 DisplayKeysInTooltips: 0
 LargeButtons: 0
 MenuAnimationStyle: 'msoMenuAnimationNone'
 Parent: [1x1
Interface.excel.application.CommandBars.Parent]
 AdaptiveMenus: 0
 DisplayFonts: 1

See Also set, inspect, isprop, addproperty, deleteproperty

get (serial)

2-240

2get (serial)Purpose Return serial port object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments

Description get(obj) returns all property names and their current values to the command
line for obj.

out = get(obj) returns the structure out where each field name is the name
of a property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a 1-by-n or
n-by-1 cell array of strings containing property names, then get returns a
1-by-n cell array of values to out. If obj is an array of serial port objects, then
out will be a m-by-n cell array of property values where m is equal to the length
of obj and n is equal to the number of properties specified.

Remarks Refer to “Displaying Property Names and Property Values” for a list of serial
port object properties that you can return with get.

When you specify a property name, you can do so without regard to case, and
you can make use of property name completion. For example, if s is a serial port
object, then these commands are all valid.

out = get(s,'BaudRate');
out = get(s,'baudrate');
out = get(s,'BAUD');

If you use the help command to display help for get, then you need to supply
the pathname shown below.

help serial/get

obj A serial port object or an array of serial port objects.

'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property values, or
a cell array of property values.

get (serial)

2-241

Example This example illustrates some of the ways you can use get to return property
values for the serial port object s.

s = serial('COM1');
out1 = get(s);
out2 = get(s,{'BaudRate','DataBits'});
get(s,'Parity')
ans =
none

See Also Functions
set

get (timer)

2-242

2get (timer)Purpose Display or get timer object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Description get(obj) displays all property names and their current values for timer object
obj.

V = get(obj) returns a structure, V, where each field name is the name of a
property of obj and each field contains the value of that property.

V = get(obj,'PropertyName') returns the value, V, of the timer object
property specified in PropertyName.

If PropertyName is a1-by-N or N-by-1 cell array of strings containing property
names, V is a 1-by-N cell array of values. If obj is a vector of timer objects, V is
an M-by-N cell array of property values where M is equal to the length of obj
and N is equal to the number of properties specified.

Example t = timer;
get(t)
 AveragePeriod: NaN
 BusyMode: 'drop'
 ErrorFcn: []
 ExecutionMode: 'singleShot'
 InstantPeriod: NaN
 LastError: 'none'
 Name: 'timer-1'
 Period: 1
 Running: 'off'
 StartDelay: 0
 StartFcn: []
 StopFcn: []
 Tag: ''

TasksToExecute: Inf
 TasksExecuted: 0
 TimerFcn: []
 Type: 'timer'
 UserData: []

get (timer)

2-243

get(t, {'StartDelay','Period'})
ans =

 [0] [1]

See Also timer, set

getappdata

2-244

2getappdataPurpose Get value of application-defined data

Syntax value = getappdata(h,name)
values = getappdata(h)

Description value = getappdata(h,name) gets the value of the application-defined data
with the name specified by name, in the object with the handle h. If the
application-defined data does not exist, MATLAB returns an empty matrix in
value.

value = getappdata(h) returns all application-defined data for the object
with handle h.

See Also setappdata, rmappdata, isappdata

getenv

2-245

2getenvPurpose Get environment variable

Syntax getenv 'name'
N = getenv('name')

Description getenv 'name' searches the underlying operating system's environment list
for a string of the form name=value, where name is the input string. If found,
MATLAB returns the string, value. If the specified name cannot be found, an
empty matrix is returned.

N = getenv('name') returns value to the variable, N.

Examples os = getenv('OS')

os =
Windows_NT

See Also computer, pwd, ver, path

getfield

2-246

2getfieldPurpose Get field of structure array

Note getfield is obsolete and will be removed in a future release. Please use
dynamic field names instead.

Syntax f = getfield(s,'field')
f = getfield(s,{i,j},'field',{k})

Description f = getfield(s,'field'), where s is a 1-by-1 structure, returns the contents
of the specified field. This is equivalent to the syntax f = s.field.

If s is a structure having dimensions greater than 1-by-1, getfield returns the
first of all output values requested in the call. That is, for structure array
s(m,n), getfield returns f = s(1,1).field.

f = getfield(s,{i,j},'field',{k}) returns the contents of the specified
field. This is equivalent to the syntax f = s(i,j).field(k). All subscripts
must be passed as cell arrays—that is, they must be enclosed in curly braces
(similar to{i,j} and {k} above). Pass field references as strings.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

Then the command f = getfield(mystr,{2,1},'name') yields

f =

gertrude

To list the contents of all name (or other) fields, embed getfield in a loop.

for k = 1:2
 name{k} = getfield(mystr,{k,1},'name');
end
name

getfield

2-247

name =

 'alice' 'gertrude'

The following example starts out by creating a structure using the standard
structure syntax. It then reads the fields of the structure using getfield with
variable and quoted field names and additional subscripting arguments.

class = 5; student = 'John_Doe';
grades(class).John_Doe.Math(10,21:30) = ...
 [85, 89, 76, 93, 85, 91, 68, 84, 95, 73];

Use getfield to access the structure fields.

getfield(grades,{class}, student, 'Math', {10,21:30})

ans =

 85 89 76 93 85 91 68 84 95 73

See Also fieldnames, isfield, orderfields, rmfield

getframe

2-248

2getframePurpose Get movie frame

Syntax F = getframe
F = getframe(h)
F = getframe(h,rect)
[X,Map] = getframe(...)

Description getframe returns a movie frame. The frame is a snapshot (pixmap) of the
current axes or figure.

F = getframe gets a frame from the current axes.

F = getframe(h) gets a frame from the figure or axes identified by the handle
h.

F = getframe(h,rect) specifies a rectangular area from which to copy the
pixmap. rect is relative to the lower-left corner of the figure or axes h, in pixel
units. rect is a four-element vector in the form [left bottom width height],
where width and height define the dimensions of the rectangle.

F = getframe(...) returns a movie frame, which is a structure having two
fields:

• cdata – The image data stored as a matrix of uint8 values. The dimensions
of F.cdata are height-by-width-by-3.

• colormap – The colormap stored as an n-by-3 matrix of doubles. F.colormap
is empty on true color systems.

To capture an image, use this approach:

F = getframe(gcf);
image(F.cdata)
colormap(F.colormap)

[X,Map] = getframe(...) returns the frame as an indexed image matrix X
and a colormap Map. This version is obsolete and is supported only for
compatibility with earlier version of MATLAB. Since indexed images cannot
always capture true color displays, you should use the single output argument
form of getframe. To write code that is compatible with earlier version of

getframe

2-249

MATLAB and that can take advantage of true color support, use the following
approach:

F = getframe(gcf);
[X,Map] = frame2im(f);
imshow(X,Map)

Remarks Usually, getframe is used in a for loop to assemble an array of movie frames
for playback using movie. For example,

for j = 1:n
plotting commands
F(j) = getframe;

end
movie(F)

To create movies that are compatible with earlier versions of MATLAB (before
Release 11/MATLAB 5.3) use this approach:

M = moviein(n);
for j = 1:n

plotting commands
M(:,j) = getframe;

end
movie(M)

Capture Regions
Note that F = getframe; returns the contents of the current axes, exclusive of
the axis labels, title, or tick labels. F = getframe(gcf); captures the entire
interior of the current figure window. To capture the figure window menu, use
the form F = getframe(h,rect) with a rectangle sized to include the menu.

Examples Make the peaks function vibrate.

Z = peaks; surf(Z)
axis tight
set(gca,'nextplot','replacechildren');
for j = 1:20

surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end

getframe

2-250

movie(F,20) % Play the movie twenty times

See Also frame2im, image, im2frame, movie

“Bit-Mapped Images” for related functions

ginput

2-251

2ginputPurpose Input data using the mouse

Syntax [x,y] = ginput(n)
[x,y] = ginput
[x,y,button] = ginput(...)

Description ginput enables you to select points from the figure using the mouse or arrow
keys for cursor positioning. The figure must have focus before ginput receives
input.

[x,y] = ginput(n) enables you to select n points from the current axes and
returns the x- and y-coordinates in the column vectors x and y, respectively.
You can press the Return key to terminate the input before entering n points.

[x,y] = ginput gathers an unlimited number of points until you press the
Return key.

[x,y,button] = ginput(...) returns the x-coordinates, the y-coordinates,
and the button or key designation. button is a vector of integers indicating
which mouse buttons you pressed (1 for left, 2 for middle, 3 for right), or ASCII
numbers indicating which keys on the keyboard you pressed.

Remarks If you select points from multiple axes, the results you get are relative to those
axes coordinates systems.

Examples Pick 10 two-dimensional points from the figure window.

[x,y] = ginput(10)

Position the cursor with the mouse (or the arrow keys on terminals without a
mouse, such as Tektronix emulators). Enter data points by pressing a mouse
button or a key on the keyboard. To terminate input before entering 10 points,
press the Return key.

See Also gtext

Interactive Plotting for an example

global

2-252

2globalPurpose Define a global variable

Syntax global X Y Z

Description global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own local
variables, which are separate from those of other functions, and from those of
the base workspace. However, if several functions, and possibly the base
workspace, all declare a particular name as global, they all share a single copy
of that variable. Any assignment to that variable, in any function, is available
to all the functions declaring it global.

If the global variable does not exist the first time you issue the global
statement, it is initialized to the empty matrix.

If a variable with the same name as the global variable already exists in the
current workspace, MATLAB issues a warning and changes the value of that
variable to match the global.

Remarks Use clear global variable to clear a global variable from the global
workspace. Use clear variable to clear the global link from the current
workspace without affecting the value of the global.

To use a global within a callback, declare the global, use it, then clear the global
link from the workspace. This avoids declaring the global after it has been
referenced. For example,

uicontrol('style','pushbutton','CallBack',...

'global MY_GLOBAL,disp(MY_GLOBAL),MY_GLOBAL = MY_GLOBAL+1,clear MY_GLOBAL',...

'string','count')

There is no function form of the global command (i.e., you cannot use
parentheses and quote the variable names).

Examples Here is the code for the functions tic and toc (some comments abridged).
These functions manipulate a stopwatch-like timer. The global variable TICTOC
is shared by the two functions, but it is invisible in the base workspace or in
any other functions that do not declare it.

function tic

global

2-253

% TIC Start a stopwatch timer.
% TIC; any stuff; TOC
% prints the time required.
% See also: TOC, CLOCK.
global TICTOC
TICTOC = clock;

function t = toc
% TOC Read the stopwatch timer.
% TOC prints the elapsed time since TIC was used.
% t = TOC; saves elapsed time in t, does not print.
% See also: TIC, ETIME.
global TICTOC
if nargout < 1
 elapsed_time = etime(clock,TICTOC)
else
 t = etime(clock,TICTOC);
end

See Also clear, isglobal, who

“Interactive User Input” for related functions

gmres

2-254

2gmresPurpose Generalized Minimum Residual method (with restarts)

Syntax x = gmres(A,b)
gmres(A,b,restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol,maxit)
gmres(A,b,restart,tol,maxit,M)
gmres(A,b,restart,tol,maxit,M1,M2)
gmres(A,b,restart,tol,maxit,M1,M2,x0)
gmres(afun,b,restart,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = gmres(A,b,...)
[x,flag,relres] = gmres(A,b,...)
[x,flag,relres,iter] = gmres(A,b,...)
[x,flag,relres,iter,resvec] = gmres(A,b,...)

Description x = gmres(A,b) attempts to solve the system of linear equations A*x = b for
x. The n-by-n coefficient matrix A must be square and should be large and
sparse. The column vector b must have length n. A can be a function afun such
that afun(x) returns A*x. For this syntax, gmres does not restart; the
maximum number of iterations is min(n,10).

If gmres converges, a message to that effect is displayed. If gmres fails to
converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

gmres(A,b,restart) restarts the method every restart inner iterations. The
maximum number of outer iterations is min(n/restart,10). The maximum
number of total iterations is restart*min(n/restart,10). If restart is n or
[], then gmres does not restart and the maximum number of total iterations is
min(n,10).

gmres(A,b,restart,tol) specifies the tolerance of the method. If tol is [],
then gmres uses the default, 1e-6.

gmres(A,b,restart,tol,maxit) specifies the maximum number of outer
iterations, i.e., the total number of iterations does not exceed restart*maxit.
If maxit is [] then gmres uses the default, min(n/restart,10). If restart is n

gmres

2-255

or [], then the maximum number of total iterations is maxit (instead of
restart*maxit).

gmres(A,b,restart,tol,maxit,M) and
gmres(A,b,restart,tol,maxit,M1,M2) use preconditioner M or M = M1*M2 and
effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is [] then gmres
applies no preconditioner. M can be a function that returns M\x.

gmres(A,b,restart,tol,maxit,M1,M2,x0) specifies the first initial guess. If
x0 is [], then gmres uses the default, an all-zero vector.

gmres(afun,b,restart,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes
parameters to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = gmres(A,b,...) also returns a convergence flag:

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = gmres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = gmres(A,b,...) also returns both the outer and
inner iteration numbers at which x was computed, where
0 <= iter(1) <= maxit and 0 <= iter(2) <= restart.

[x,flag,relres,iter,resvec] = gmres(A,b,...) also returns a vector of
the residual norms at each inner iteration, including norm(b-A*x0).

flag = 0 gmres converged to the desired tolerance tol within maxit
outer iterations.

flag = 1 gmres iterated maxit times but did not converge.

flag = 2 Preconditioner M was ill-conditioned.

flag = 3 gmres stagnated. (Two consecutive iterates were the same.)

gmres

2-256

Examples Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = gmres(A,b,10,tol,maxit,M1,[],[]);
gmres(10) converged at iteration 2(10) to a solution with relative
residual 1.9e-013

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;
 x(1:n-1)] + [((n-1)/2:-1:0)';
 (1:(n-1)/2)'] .*x + [x(2:n);
 0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to gmres

x1 = gmres(@afun,b,10,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept the gmres extra input n=21.

Example 2.

load west0479
A = west0479
b = sum(A,2)
[x,flag] = gmres(A,b,5)

flag is 1 because gmres does not converge to the default tolerance 1e-6 within
the default 10 outer iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = gmres(A,b,5,1e-6,5,L1,U1);

gmres

2-257

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and
gmres fails in the first iteration when it tries to solve a system such as
U1*y = r for y using backslash.

[L2,U2] = luinc(A,1e-6);
tol = 1e-15;
[x4,flag4,relres4,iter4,resvec4] = gmres(A,b,4,tol,5,L2,U2);
[x6,flag6,relres6,iter6,resvec6] = gmres(A,b,6,tol,3,L2,U2);
[x8,flag8,relres8,iter8,resvec8] = gmres(A,b,8,tol,3,L2,U2);

flag4, flag6, and flag8 are all 0 because gmres converged when restarted at
iterations 4, 6, and 8 while preconditioned by the incomplete LU factorization
with a drop tolerance of 1e-6. This is verified by the plots of outer iteration
number against relative residual. A combined plot of all three clearly shows the
restarting at iterations 4 and 6. The total number of iterations computed may
be more for lower values of restart, but the number of length n vectors stored
is fewer, and the amount of work done in the method decreases proportionally.

See Also bicg, bicgstab, cgs, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

0 1 2 3 4

10
−10

10
0

gmres(4)

number of outer iterations
0 1 2

10
−10

10
0

gmres(6)

number of outer iterations

0 1

10
−10

10
0

gmres(8)

number of outer iterations
0 4 8 12 16 20

10
−10

10
0

number of inner iterations

gmres

2-258

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci.
Stat. Comput., July 1986, Vol. 7, No. 3, pp. 856-869.

gplot

2-259

2gplotPurpose Plot set of nodes using an adjacency matrix

Syntax gplot(A,Coordinates)
gplot(A,Coordinates,LineSpec)

Description The gplot function graphs a set of coordinates using an adjacency matrix.

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates
according to the n-by-n adjacency matrix A, where n is the number of nodes.
Coordinates is an n-by-2 or an n-by-3 matrix, where n is the number of nodes
and each coordinate pair or triple represents one node.

gplot(A,Coordinates,LineSpec) plots the nodes using the line type, marker
symbol, and color specified by LineSpec.

Remarks For two-dimensional data, Coordinates(i,:) = [x(i) y(i)] denotes node i,
and Coordinates(j,:) = [x(j) y(j)] denotes node j. If node i and node j are
joined, A(i,j) or A(j,i) are nonzero; otherwise, A(i,j) and A(j,i) are zero.

Examples To draw half of a Bucky ball with asterisks at each node:

k = 1:30;
[B,XY] = bucky;
gplot(B(k,k),XY(k,:),'-*')

gplot

2-260

axis square

See Also LineSpec, sparse, spy

“Tree Operations” for related functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

gradient

2-261

2gradientPurpose Numerical gradient

Syntax FX = gradient(F)
[FX,FY] = gradient(F)
[Fx,Fy,Fz,...] = gradient(F)
[...] = gradient(F,h)
[...] = gradient(F,h1,h2,...)

Definition The gradient of a function of two variables, , is defined as

and can be thought of as a collection of vectors pointing in the direction of
increasing values of . In MATLAB, numerical gradients (differences) can be
computed for functions with any number of variables. For a function of
variables, ,

Description FX = gradient(F) where F is a vector returns the one-dimensional numerical
gradient of F. FX corresponds to , the differences in the direction.

[FX,FY] = gradient(F) where F is a matrix returns the and components
of the two-dimensional numerical gradient. FX corresponds to , the
differences in the (column) direction. FY corresponds to , the
differences in the (row) direction. The spacing between points in each
direction is assumed to be one.

[FX,FY,FZ,...] = gradient(F) where F has N dimensions returns the N
components of the gradient of F. There are two ways to control the spacing
between values in F:

• A single spacing value, h, specifies the spacing between points in every
direction.

• N spacing values (h1,h2,...) specifies the spacing for each dimension of F.
Scalar spacing parameters specify a constant spacing for each dimension.
Vector parameters specify the coordinates of the values along corresponding

F x y,()

F∇
x∂

∂Fî
y∂

∂F ĵ+=

F
N

F x y z …, , ,()

F∇
x∂

∂Fî
y∂

∂F ĵ
z∂

∂Fk̂ …+ + +=

F∂ x∂⁄ x

x y
F∂ x∂⁄

x F∂ y∂⁄
y

gradient

2-262

dimensions of F. In this case, the length of the vector must match the size of
the corresponding dimension.

[...] = gradient(F,h) where h is a scalar uses h as the spacing between
points in each direction.

[...] = gradient(F,h1,h2,...) with N spacing parameters specifies the
spacing for each dimension of F.

Examples The statements

v = -2:0.2:2;
[x,y] = meshgrid(v);
z = x .* exp(-x.^2 - y.^2);
[px,py] = gradient(z,.2,.2);
contour(v,v,z), hold on, quiver(v,v,px,py), hold off

produce

Given,

F(:,:,1) = magic(3); F(:,:,2) = pascal(3);
gradient(F) takes dx = dy = dz = 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

gradient

2-263

[PX,PY,PZ] = gradient(F,0.2,0.1,0.2) takes dx = 0.2, dy = 0.1, and
dz = 0.2.

See Also del2, diff

graymon

2-264

2graymonPurpose Set default figure properties for grayscale monitors

Syntax graymon

Description graymon sets defaults for graphics properties to produce more legible displays
for grayscale monitors.

See Also axes, figure

“Color Operations” for related functions

grid

2-265

2gridPurpose Grid lines for two- and three-dimensional plots

Syntax grid on
grid off
grid minor
grid
grid(axes_handle,...)

Description The grid function turns the current axes’ grid lines on and off.

grid on adds major grid lines to the current axes.

grid off removes major and minor grid lines from the current axes.

grid toggles the major grid visibility state.

grid(axes_handle,...) uses the axes specified by axes_handle instead of the
current axes.

Algorithm grid sets the XGrid, YGrid, and ZGrid properties of the axes.

grid minor sets the XGridMinor, YGridMinor, and ZGridMinor properties of
the axes.

You can set the grid lines for just one axis using the set command and the
individual property. For example,

set(axes_handle,'XGrid','on')

turns on only x-axis grid lines.

See Also axes, set

The properties of axes objects

“Axes Operations” for related functions

griddata

2-266

2griddataPurpose Data gridding

Syntax ZI = griddata(x,y,z,XI,YI)
[XI,YI,ZI] = griddata(x,y,z,xi,yi)
[...] = griddata(...,method)

Description ZI = griddata(x,y,z,XI,YI) fits a surface of the form z = f(x,y) to the data
in the (usually) nonuniformly spaced vectors (x,y,z). griddata interpolates
this surface at the points specified by (XI,YI) to produce ZI. The surface
always passes through the data points. XI and YI usually form a uniform grid
(as produced by meshgrid).

XI can be a row vector, in which case it specifies a matrix with constant
columns. Similarly, YI can be a column vector, and it specifies a matrix with
constant rows.

[XI,YI,ZI] = griddata(x,y,z,xi,yi) returns the interpolated matrix ZI as
above, and also returns the matrices XI and YI formed from row vector xi and
column vector yi. These latter are the same as the matrices returned by
meshgrid.

[...] = griddata(...,method) uses the specified interpolation method:

The method defines the type of surface fit to the data. The 'cubic' and 'v4'
methods produce smooth surfaces while 'linear' and 'nearest' have
discontinuities in the first and zero’th derivatives, respectively. All the
methods except 'v4' are based on a Delaunay triangulation of the data.

Note Occasionally, griddata may return points on or very near the convex
hull of the data as NaNs. This is because roundoff in the computations
sometimes makes it difficult to determine if a point near the boundary is in
the convex hull.

'linear' Triangle-based linear interpolation (default)

'cubic' Triangle-based cubic interpolation

'nearest' Nearest neighbor interpolation

'v4' MATLAB 4 griddata method

griddata

2-267

Remarks XI and YI can be matrices, in which case griddata returns the values for the
corresponding points (XI(i,j),YI(i,j)). Alternatively, you can pass in the
row and column vectors xi and yi, respectively. In this case, griddata
interprets these vectors as if they were matrices produced by the command
meshgrid(xi,yi).

Algorithm The griddata(...,'v4') command uses the method documented in [3]. The
other griddatamethods are based on a Delaunay triangulation of the data that
uses Qhull [2]. This triangulation uses the Qhull joggle option ('QJ'). For
information about Qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

Examples Sample a function at 100 random points between ±2.0:

rand('seed',0)
x = rand(100,1)*4-2; y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

x, y, and z are now vectors containing nonuniformly sampled data. Define a
regular grid, and grid the data to it:

ti = -2:.25:2;
[XI,YI] = meshgrid(ti,ti);
ZI = griddata(x,y,z,XI,YI);

Plot the gridded data along with the nonuniform data points used to generate
it:

mesh(XI,YI,ZI), hold
plot3(x,y,z,'o'), hold off

griddata

2-268

See Also delaunay, griddata3, griddatan, interp2, meshgrid

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

[3] Sandwell, David T., “Biharmonic Spline Interpolation of GEOS-3 and
SEASAT Altimeter Data”, Geophysical Research Letters, 2, 139-142,1987.

[4] Watson, David E., Contouring: A Guide to the Analysis and Display of
Spatial Data, Tarrytown, NY: Pergamon (Elsevier Science, Inc.): 1992.

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

griddata3

2-269

2griddata3Purpose Data gridding and hypersurface fitting for 3-D data

Syntax w = griddata3(x,y,z,v,xi,yi,zi)
w = griddata3(...,'method')

Description w = griddata3(x, y, z, v, xi, yi, zi) fits a hypersurface of the form
to the data in the (usually) nonuniformly spaced vectors (x, y, z,

v). griddata3 interpolates this hypersurface at the points specified by
(xi,yi,zi) to produce w. w is the same size as xi, yi, and zi.

(xi,yi,zi) is usually a uniform grid (as produced by meshgrid) and is where
griddata3 gets its name.

w = griddata3(...,method) defines the type of surface that is fit to the data,
where method is either:

Algorithm The griddata3methods are based on a Delaunay triangulation of the data that
uses Qhull [2]. This triangulation uses the Qhull joggle option ('QJ'). For
information about Qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also delaunayn, griddata, griddatan, meshgrid

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

'linear' Tesselation-based linear interpolation (default)

'nearest' Nearest neighbor interpolation

w f x y z, ,()=

griddatan

2-270

2griddatanPurpose Data gridding and hypersurface fitting (dimension >= 2)

Syntax yi = griddatan(X,y,xi)
yi = griddatan(...,'method')

Description yi = griddatan(X, y, xi) fits a hyper-surface of the form to the
data in the (usually) nonuniformly-spaced vectors (X, y). griddatan
interpolates this hyper-surface at the points specified by xi to produce yi. xi
can be nonuniform.

X is of dimension m-by-n, representing m points in n-D space. y is of dimension
m-by-1, representing m values of the hyper-surface (X). xi is a vector of size
p-by-n, representing p points in the n-D space whose surface value is to be
fitted. yi is a vector of length p approximating the values (xi). The
hypersurface always goes through the data points (X,y). xi is usually a uniform
grid (as produced by meshgrid).

[...] = griddatan(...,'method') defines the type of surface fit to the data,
where 'method' is one of:

All the methods are based on a Delaunay tessellation of the data.

Algorithm The griddatanmethods are based on a Delaunay triangulation of the data that
uses Qhull [2]. This triangulation uses the Qhull joggle option ('QJ'). For
information about Qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also delaunayn, griddata, griddata3, meshgrid

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

'linear' Tessellation-based linear interpolation (default)

'nearest' Nearest neighbor interpolation

y f X()=

f

f

griddatan

2-271

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

gsvd

2-272

2gsvdPurpose Generalized singular value decomposition

Syntax [U,V,X,C,S] = gsvd(A,B)
[U,V,X,C,S] = gsvd(A,B,0)
sigma = gsvd(A,B)

Description [U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a (usually)
square matrix X, and nonnegative diagonal matrices C and S so that

A = U*C*X'
B = V*S*X'
C'*C + S'*S = I

A and B must have the same number of columns, but may have different
numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, V is n-by-n and
X is p-by-q where q = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sqrt(diag(C'*C)./diag(S'*S)).

The nonzero elements of S are always on its main diagonal. If m >= p the
nonzero elements of C are also on its main diagonal. But if m < p, the nonzero
diagonal of C is diag(C,p-m). This allows the diagonal elements to be ordered
so that the generalized singular values are nondecreasing.

gsvd(A,B,0), with three input arguments and either m or n >= p, produces the
“economy-sized” decomposition where the resulting U and V have at most p
columns, and C and S have at most p rows. The generalized singular values are
diag(C)./diag(S).

When B is square and nonsingular, the generalized singular values, gsvd(A,B),
are equal to the ordinary singular values, svd(A/B), but they are sorted in the
opposite order. Their reciprocals are gsvd(B,A).

In this formulation of the gsvd, no assumptions are made about the individual
ranks of A or B. The matrix X has full rank if and only if the matrix [A;B] has
full rank. In fact, svd(X) and cond(X) are are equal to svd([A;B]) and
cond([A;B]). Other formulations, eg. G. Golub and C. Van Loan [1], require
that null(A) and null(B) do not overlap and replace X by inv(X) or inv(X').

Note, however, that when null(A) and null(B) do overlap, the nonzero
elements of C and S are not uniquely determined.

gsvd

2-273

Examples Example 1. The matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)

A =
 1 6 11
 2 7 12
 3 8 13
 4 9 14
 5 10 15

B =
 8 1 6
 3 5 7
 4 9 2

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal V, a 3-by-3 nonsingular X,

X =
 2.8284 -9.3761 -6.9346
 -5.6569 -8.3071 -18.3301
 2.8284 -7.2381 -29.7256

and

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807
 0 0 0
 0 0 0

S =
 1.0000 0 0
 0 0.9489 0
 0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.

gsvd

2-274

The economy sized decomposition,

[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
 0.5700 -0.6457 -0.4279
 -0.7455 -0.3296 -0.4375
 -0.1702 -0.0135 -0.4470
 0.2966 0.3026 -0.4566
 0.0490 0.6187 -0.4661

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained with the
full decomposition.

The generalized singular values are the ratios of the diagonal elements of C and
S.

sigma = gsvd(A,B)

sigma =
 0.0000
 0.3325
 5.0123

These values are a reordering of the ordinary singular values

svd(A/B)

ans =
 5.0123
 0.3325
 0.0000

Example 2. The matrices have at least as many columns as rows.

A = reshape(1:15,3,5)
B = magic(5)

gsvd

2-275

A =

1 4 7 10 13
 2 5 8 11 14
 3 6 9 12 15

B =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal V, a 5-by-5 nonsingular X
and

C =
 0 0 0.0000 0 0
 0 0 0 0.0439 0
 0 0 0 0 0.7432

S =
 1.0000 0 0 0 0
 0 1.0000 0 0 0
 0 0 1.0000 0 0
 0 0 0 0.9990 0
 0 0 0 0 0.6690

In this situation, the nonzero diagonal of C is diag(C,2). The generalized
singular values include three zeros.

sigma = gsvd(A,B)

gsvd

2-276

sigma =
 0
 0
 0.0000
 0.0439
 1.1109

Reversing the roles of A and B reciprocates these values, producing two
infinities.

gsvd(B,A)

ans =
 1.0e+016 *

 0.0000
 0.0000
 4.4126
 Inf
 Inf

Algorithm The generalized singular value decomposition uses the C-S decomposition
described in [1], as well as the built-in svd and qr functions. The C-S
decomposition is implemented in a subfunction in the gsvd M-file.

Diagnostics The only warning or error message produced by gsvd itself occurs when the two
input arguments do not have the same number of columns.

See Also qr, svd

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

gtext

2-277

2gtextPurpose Mouse placement of text in two-dimensional view

Syntax gtext('string')
h = gtext('string')

Description gtext displays a text string in the current figure window after you select a
location with the mouse.

gtext('string') waits for you to press a mouse button or keyboard key while
the pointer is within a figure window. Pressing a mouse button or any key
places 'string' on the plot at the selected location.

h = gtext('string') returns the handle to a text graphics object after you
place 'string' on the plot at the selected location.

Remarks As you move the pointer into a figure window, the pointer becomes a crosshair
to indicate that gtext is waiting for you to select a location. gtext uses the
functions ginput and text.

Examples Place a label on the current plot:

gtext('Note this divergence!')

See Also ginput, text

“Annotating Plots” for related functions

guidata

2-278

2guidataPurpose Store or retrieve application data

Syntax guidata(object_handle, data)
data = guidata(object_handle)

Description guidata(object_handle,data) stores the variable data in the figure's
application data. If object_handle is not a figure handle, then the object’s
parent figure is used. data can be any MATLAB variable, but is typically a
structure, which enables you to add new fields as requred.

Note that there can be only one variable stored in a figure’s application data at
any time. Subsequent calls to guidata(object_handle,data) overwrite the
previously created version of data. See the Examples section for information on
how to use this function.

data = guidata(object_handle) returns previously stored data, or an empty
matrix if nothing has been stored.

guidata provides application developers with a convenient interface to a
figure's application data:

• You do not need to create and maintain a hard-coded property name for the
application data throughout your source code.

• You can access the data from within a subfunction callback routine using the
component's handle (which is returned by gcbo), without needing to find the
figure's handle.

guidata is particularly useful in conjunction with guihandles, which creates a
structure in the figure’s application data containing the handles of all the
components in a GUI.

Examples In this example, guidata is used to save a structure on a GUI figure’s
application data from within the initialization section of the application M-file.
This structure is initially created by guihandles and then used to save
additional data as well.

% create structure of handles
handles = guihandles(figure_handle);
% add some additional data
handles.numberOfErrors = 0;

guidata

2-279

% save the structure
guidata(figure_handle,handles)

You can recall the data from within a subfunction callback routine and then
save the structure again:

% get the structure in the subfunction
handles = guidata(gcbo);
handles.numberOfErrors = handles.numberOfErrors + 1;
% save the changes to the structure
guidata(gcbo,handles)

See Also guide, guihandles, getappdata, setappdata

guide

2-280

2guidePurpose Start the GUI Layout Editor

Syntax guide
guide('filename.fig')
guide(figure_handles)

Description guide displays the GUI Layout Editor open to a new untitled FIG-file.

guide('filename.fig') opens the FIG-file named filename.fig. You can
specify the path to a file not on your MATLAB path.

guide('figure_handles') opens FIG-files in the Layout Editor for each
existing figure listed in figure_handles. MATLAB copies the contents of each
figure into the FIG-file, with the exception of axes children (image, light, line,
patch, rectangle, surface, and text objects), which are not copied.

See Also inspect

Creating GUIs

guihandles

2-281

2guihandlesPurpose Create a structure of handles

Syntax handles = guihandles(object_handle)
handles = guihandles

Description handles = guihandles(object_handle) returns a structure containing the
handles of the objects in a figure, using the value of their Tag properties as the
fieldnames, with the following caveats:

• Objects are excluded if their Tag properties are empty, or are not legal
variable names.

• If several objects have the same Tag, that field in the structure contains a
vector of handles.

• Objects with hidden handles are included in the structure.

handles = guihandles returns a structure of handles for the current figure.

See Also guidata, guide, getappdata, setappdata

hadamard

2-282

2hadamardPurpose Hadamard matrix

Syntax H = hadamard(n)

Description H = hadamard(n) returns the Hadamard matrix of order n.

Definition Hadamard matrices are matrices of 1’s and -1’s whose columns are orthogonal,

H'*H = n*I

where [n n] = size(H) and I = eye(n,n).

They have applications in several different areas, including combinatorics,
signal processing, and numerical analysis, [1], [2].

An n-by-n Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This
function handles only the cases where n, n/12, or n/20 is a power of 2.

Examples The command hadamard(4) produces the 4-by-4 matrix:

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

See Also compan, hankel, toeplitz

References [1] Ryser, H. J., Combinatorial Mathematics, John Wiley and Sons, 1963.

[2] Pratt, W. K., Digital Signal Processing, John Wiley and Sons, 1978.

hankel

2-283

2hankelPurpose Hankel matrix

Syntax H = hankel(c)
H = hankel(c,r)

Description H = hankel(c) returns the square Hankel matrix whose first column is c and
whose elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and whose
last row is r. If the last element of c differs from the first element of r, the last
element of c prevails.

Definition A Hankel matrix is a matrix that is symmetric and constant across the
anti-diagonals, and has elements h(i,j) = p(i+j-1), where vector
p = [c r(2:end)] completely determines the Hankel matrix.

Examples A Hankel matrix with anti-diagonal disagreement is

c = 1:3; r = 7:10;
h = hankel(c,r)
h =
 1 2 3 8
 2 3 8 9
 3 8 9 10

p = [1 2 3 8 9 10]

See Also hadamard, toeplitz

hdf

2-284

2hdfPurpose HDF interface

Syntax hdf*(functstr,param1,param2,...)

Description MATLAB provides a set of functions that enable you to access the HDF library
developed and supported by the National Center for Supercomputing
Applications (NCSA). MATLAB supports all or a portion of these HDF
interfaces: SD, V, VS, AN, DRF8, DF24, H, HE, and HD.

To use these functions you must be familiar with the HDF library.
Documentation for the library is available on the NCSA HDF Web page at
http://hdf.ncsa.uiuc.edu. MATLAB additionally provides extensive
command line help for each of the provided functions.

This table lists the interface-specific HDF functions in MATLAB.

Function Interface

hdfan Multifile annotation

hdfdf24 24-bit raster image

hdfdfr8 8-bit raster image

hdfgd HDF-EOS GD interface

hdfh HDF H interface

hdfhd HDF HD interface

hdfhe HDF HE interface

hdfml Gateway utilities

hdfpt HDF-EOS PT interface

hdfsd Multifile scientific data set

hdfsw HDF-EOS SW interface

hdfv Vgroup

hdfvf Vdata VF functions

hdf

2-285

See Also hdfread, imfinfo, imread, imwrite, int8, int16, int32, single, uint8,
uint16, uint32

hdfvh Vdata VH functions

hdfvs Vdata VS functions

hdfinfo

2-286

2hdfinfoPurpose Return information about an HDF or HDF-EOS file

Syntax S = hdfinfo(filename)
S = hdfinfo(filename,mode)

Description S = hdfinfo(filename) returns a structure, S, whose fields contain
information about the contents of an HDF or HDF-EOS file. filename is a
string that specifies the name of the HDF file.

S = hdfinfo(filename,mode) reads the file as an HDF file, if mode is 'hdf',
or as an HDF-EOS file, if mode is 'eos'. If mode is 'eos', only HDF-EOS data
objects are queried. To retrieve information on the entire contents of a file
containing both HDF and HDF-EOS objects, mode must be 'hdf'.

Note hdfinfo can be used on version 4.x HDF files or version 2.x HDF-EOS
files.

hdfinfo

2-287

The set of fields in the returned structure, S, depends on the individual file.
Fields that may be present in the S structure are shown in the following table.

Those fields in the table above that contain structure arrays are further
described in the tables shown below.

HDF Object Fields

Mode Fieldname Description Return Type

HDF Attributes Attributes of the data set Structure array

Description Annotation description Cell array

Filename Name of the file String

Label Annotation label Cell array

Raster8 Description of 8-bit raster
images

Structure array

Raster24 Description of 24-bit raster
images

Structure array

SDS Description of scientific data
sets

Structure array

Vdata Description of Vdata sets Structure array

Vgroup Description of Vgroups Structure array

EOS Filename Name of the file String

Grid Grid data Structure array

Point Point data Structure array

Swath Swath data Structure array

hdfinfo

2-288

Fields Common to Returned Structure Arrays
Structure arrays returned by hdfinfo contain some common fields. These are
shown in the table below. Not all structure arrays will contain all of these
fields.

Fields Specific to Certain Structures
Structure arrays returned by hdfinfo also contain fields that are unique to
each structure. These are shown in the tables below.

Common Fields

Fieldname Description Data Type

Attributes Data set attributes. Contains fields
Name and Value

Structure array

Description Annotation description Cell array

Filename Name of the file String

Label Annotation label Cell array

Name Name of the data set String

Rank Number of dimensions of the data set Double

Ref Data set reference number Double

Type Type of HDF or HDF-EOS object String

Fields of the Attribute Structure

Fieldname Description Data Type

Name Attribute name String

Value Attribute value or description Numeric or string

hdfinfo

2-289

Fields of the Raster8 and Raster24 Structures

Fieldname Description Data Type

HasPalette 1 (true) if the image has an associated palette,
otherwise 0 (false). (8-bit only)

Logical

Height Height of the image, in pixels Number

Interlace Interlace mode of the image (24-bit only) String

Name Name of the image String

Width Width of the image, in pixels Number

Fields of the SDS Structure

Fieldname Description Data Type

DataType Data precision String

Dims Dimensions of the data set. Contains fields:
Name, DataType, Size, Scale, and Attributes.
Scale is an array of numbers to place along the
dimension and demarcate intervals in the data
set

Structure
array

Index Index of the SDS Number

Fields of the Vdata Structure

Fieldname Description Data Type

DataAttribute
s

Attributes of the entire data set.
Contains fields: Name and Value

Structure array

Class Class name of the data set String

Fields Fields of the Vdata. Contains fields:
Name and Attributes

Structure array

hdfinfo

2-290

NumRecords Number of data set records. Double

IsAttribute 1 (true) if Vdata is an attribute,
otherwise 0 (false).

Logical

Fields of the Vgroup Structure

Fieldname Description Data Type

Class Class name of the data set. String

Raster8 Description of the 8-bit raster image. Structure array

Raster24 Description of the 24-bit raster image. Structure array

SDS Description of the Scientific Data sets. Structure array

Tag Tag of this Vgroup. Number

Vdata Description of the Vdata sets. Structure array

Vgroup Description of the Vgroups. Structure array

Fields of the Grid Structure

Fieldname Description Data Type

Columns Number of columns in the grid. Number

DataFields Description of the data fields in each Grid field
of the grid. Contains fields: Name, Rank, Dims,
NumberType, FillValue, and TileDims.

Structure
array

LowerRight Lower right corner location, in meters. Number

Origin
Code

Origin code for the grid. Number

PixRegCode Pixel registration code. Number

Fields of the Vdata Structure

Fieldname Description Data Type

hdfinfo

2-291

Examples To retrieve information about the file, example.hdf

Projection Projection code, zone code, sphere code, and
projection parameters of the grid. Contains
fields: ProjCode, ZoneCode, SphereCode, and
ProjParam.

Structure

Rows Number of rows in the grid. Number

UpperLeft Upper left corner location, in meters. Number

Fields of the Point Structure

Fieldname Description Data Type

Level Description of each level of the point. Contains
fields: Name, NumRecords, FieldNames,
DataType, and Index.

Structure

Fields of the Swath Structure

Fieldname Description Data Type

DataFields Data fields in the swath. Contains
fields: Name, Rank, Dims, NumberType,
and FillValue.

Structure
array

GeolocationFields Geolocation fields in the swath.
Contains fields: Name, Rank, Dims,
NumberType, and FillValue.

Structure
array

IdxMapInfo Relationship between indexed
elements of the geolocation mapping.
Contains fields: Map, and Size.

Structure

MapInfo Relationship between data and
geolocation fields. Contains fields:
Map, Offset, and Increment.

Structure

Fields of the Grid Structure

Fieldname Description Data Type

hdfinfo

2-292

fileinfo = hdfinfo('example.hdf')

fileinfo =
 Filename: 'example.hdf'
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

And to retrieve information from this about the scientific data set in
example.hdf

sds_info = fileinfo.SDS

sds_info =
 Filename: 'example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 0

See Also hdfread, hdf

hdfread

2-293

2hdfreadPurpose Extract data from an HDF or HDF-EOS file

Syntax data = hdfread(filename, dataset)
data = hdfread(hinfo)
data = hdfread(...,param1,value1,param2,value2,...)
[data,map] = hdfread(...)

Description data = hdfread(filename, dataset) returns all the data in the specified
data set, dataset, from the HDF or HDF-EOS file, filename. To determine the
name of the data sets in an HDF file, use the hdfinfo function. The
information returned by hdfinfo contains structures describing the data sets
contained in the file. You can extract one of these structures and pass it directly
to hdfread.

Note hdfread can be used on Version 4.x HDF files or Version 2.x HDF-EOS
files.

data = hdfread(hinfo) returns all the data in the data set specified in the
structure, hinfo. The hinfo structure can be extracted from the data returned
by the hdfinfo function.

data = hdfread(...,param1,value1,param2,value2,...) returns subsets
of the data according to the specified parameter and value pairs. See the tables
below to find the valid parameters and values for different types of data sets.

[data,map] = hdfread(...) returns the image, data, and the colormap, map,
for an 8-bit raster image.

Subsetting
Parameters

The following tables show the subsetting parameters that can be used with the
hdfread function for certain types of HDF data. These data types are

• HDF Scientific Data (SD)

• HDF Vdata (V)

• HDF-EOS Grid Data

• HDF-EOS Point Data

• HDF-EOS Swath Data

hdfread

2-294

Note the following:

• If a parameter requires multiple values, the values must be stored in a cell
array. For example, the 'Index' parameter requires three values: start,
stride, and edge. Enclose these values in curly braces as a cell array.
hdfread(dataset_name, 'Index', {start,stride,edge})

• All values that are indices are 1-based.

Subsetting Parameters for HDF Scientific Data (SD) Data Sets
When working with HDF SD files, hdfread supports the parameters listed in
this table.

For example, this code reads the data set, Example SDS, from the HDF file,
example.hdf. The 'Index' parameter specifies that hdfread start reading data
at the beginning of each dimension, read until the end of each dimension, but
only read every other data value in the first dimension.

hdfread('example.hdf','Example SDS', ...
 'Index', {[], [2 1], []})

Parameter Description

'Index' Three-element cell array, {start,stride,edge}, specifying
the location, range, and values to be read from the data set.

• start— A 1-based array specifying the position in the file
to begin reading
Default: 1, start at the first element of each dimension.
The values specified must not exceed the size of any
dimension of the data set.

• stride — A 1-based array specifying the interval
between the values to read
Default: 1, read every element of the data set

• edge — A 1-based array specifying the length of each
dimension to read.
Default: An array containing the lengths of the
corresponding dimensions

hdfread

2-295

Subsetting Parameters for HDF Vdata Sets
When working with HDF Vdata files, hdfread supports these parameters.

For example, this code reads the Vdata set, Example Vdata, from the HDF file,
example.hdf.

hdfread('example.hdf', 'Example Vdata', 'FirstRecord', 400,
'NumRecords', 50)

Subsetting Parameters for HDF-EOS Grid Data
When working with HDF-EOS grid data, hdfread supports three types of
parameters:

• Required parameters

• Optional parameters

• Mutually exclusive parameters—You can only specify one of these
parameters in a call to hdfread and you cannot use these parameters in
combination with any optional parameter.

Parameter Description

'Fields' Text string specifying the name of the data set field to
be read from. When specifying multiple field names, use
a comma-separated list.

'FirstRecord' 1-based number specifying the record from which to
begin reading.

'NumRecords' Number specifying the total number of records to read.

hdfread

2-296

Parameter Description

Required Parameter

'Fields' String naming the data set field to be read. You can specify only one
field name for a Grid data set

Mutually Exclusive Optional Parameters

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set.

• start — An array specifying the position in the file to begin
reading
Default: 1, start at the first element of each dimension. The values
must not exceed the size of any dimension of the data set.

• stride — An array specifying the interval between the values to
read
Default: 1, read every element of the data set

• edge — An array specifying the length of each dimension to read.
Default: An array containing the lengths of the corresponding
dimensions

'Interpolate' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude points that define a region for bilinear
interpolation. Each element is an N-length vector specifying
longitude and latitude coordinates.

'Pixels' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. Each
element is an N-length vector specifying longitude and latitude
coordinates. This region is converted into pixel rows and columns
with the origin in the upper left corner of the grid.
Note: This is the pixel equivalent of reading a 'Box' region.

hdfread

2-297

For example,

hdfread(grid_dataset, 'Fields', fieldname, ...
 'Vertical', {dimension, [min, max]})

'Tile' Vector specifying the coordinates of the tile to read, for HDF-EOS
Grid files that support tiles.

Optional Parameters

'Box' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. longitude
and latitude are each two-element vectors specifying longitude and
latitude coordinates.

'Time' Two-element cell array, [start stop], where start and stop are
numbers that specify the start and end-point for a period of time.

'Vertical' Two-element cell array, {dimension, range}

• dimension — String specifying the name of the data set field to be
read from. You can specify only one field name for a Grid data set.

• range — Two-element array specifying the minimum and
maximum range for the subset. If dimension is a dimension name,
then range specifies the range of elements to extract. If dimension
is a field name, then range specifies the range of values to extract.

'Vertical' subsetting may be used alone or in conjunction with
'Box' or 'Time'. To subset a region along multiple dimensions,
vertical subsetting may be used up to eight times in one call to
hdfread

Parameter Description

hdfread

2-298

Subsetting Parameters for HDF-EOS Point Data
When working with HDF-EOS point data, hdfread has two required
parameters and three optional parameters.

For example,

hdfread(point_dataset, 'Fields', {field1, field2}, ...
'Level', level, 'RecordNumbers', [1:50, 200:250])

Subsetting Parameters for HDF-EOS Swath Data
When working with HDF-EOS Swath data, hdfread supports three types of
parameters:

• Required parameters

• Optional parameters

• Mutually exclusive

Parameter Description

Required Parameters

'Fields' String naming the data set field to be read. For
multiple field names, use a comma-separated list.

'Level' 1-based number specifying which level to read from in
an HDF-EOS Point data set.

Optional Parameters

'Box' Two-element cell array, {longitude,latitude},
specifying the longitude and latitude coordinates that
define a region. longitude and latitude are each
two-element vectors specifying longitude and latitude
coordinates.

'RecordNumbers' Vector specifying the record numbers to read.

'Time' Two-element cell array, [start stop], where start
and stop are numbers that specify the start and
end-point for a period of time.

hdfread

2-299

You can only use one of the mutually exclusive parameters in a call to hdfread,
and you cannot use these parameters in combination with any optional
parameter.

Parameter Description

Required Parameter

'Fields' String naming the data set field to be read. You can specify only one
field name for a Swath data set

Mutually Exclusive Optional Parameters

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set:

• start — An array specifying the position in the file to begin reading
Default: 1, start at the first element of each dimension. The values
must not exceed the size of any dimension of the data set.

• stride — An array specifying the interval between the values to
read.
Default: 1, read every element of the data set.

• edge — An array specifying the length of each dimension to read.
Default: An array containing the lengths of the corresponding
dimensions

'Time' Three-element cell array, {start, stop, mode}, where start and
stop specify the beginning and the end-point for a period of time, and
mode is a string defining the criterion for the inclusion of a cross track
in a region. The cross track is within a region if any of these
conditions are met:

• Its midpoint is within the box (mode='midpoint')

• Either endpoint is within the box (mode='endpoint')

• Any point is within the box (mode='anypoint').

hdfread

2-300

For example,

hdfread('example.hdf',swath_dataset, 'Fields', fieldname, ...
'Time', {start, stop, 'midpoint'})

Optional Parameters

'Box' Three-element cell array, {longitude, latitude, mode} specifying
the longitude and latitude coordinates that define a region.
longitude and latitude are two-element vectors that specify
longitude and latitude coordinates. mode is a string defining the
criterion for the inclusion of a cross track in a region. The cross track
is within a region if any of these conditions are met:

• Its midpoint is within the box (mode='midpoint')

• Either endpoint is within the box (mode='endpoint')

• Any point is within the box (mode='anypoint')

'ExtMode' String specifying whether geolocation fields and data fields must be in
the same swath (mode='internal'), or may be in different swaths
(mode='external').
Note: mode is only used when extracting a time period or a region.

'Vertical' Two-element cell array, {dimension, range}

• dimension is a string specifying either a dimension name or field
name to subset the data by.

• range is a two-element vector specifying the minimum and
maximum range for the subset. If dimension is a dimension name,
then range specifies the range of elements to extract. If dimension
is a field name, then range specifies the range of values to extract

'Vertical' subsetting may be used alone or in conjunction with 'Box'
or 'Time'. To subset a region along multiple dimensions, vertical
subsetting may be used up to eight times in one call to hdfread

Parameter Description

hdfread

2-301

Examples Importing a Data Set by Name
When you know the name of the data set, you can refer to the data set by name
in the hdfread command. To read a data set named 'Example SDS', use

data = hdfread('example.hdf', 'Example SDS')

Importing a Data Set Using the Hinfo Structure
When you don’t know the name of the data set, follow this procedure.

1 Use hdfinfo first to retrieve information on the data set.
fileinfo = hdfinfo('example.hdf')
fileinfo =

 Filename: 'N:\toolbox\matlab\demos\example.hdf'
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

2 Extract the structure containing information about the particular data set
you want to import from fileinfo.
sds_info = fileinfo.SDS
sds_info =

 Filename: 'N:\toolbox\matlab\demos\example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 0

3 Pass this structure to hdfread to import the data in the data set.

data = hdfread(sds_info)

Importing a Subset of a Data Set
You can check the size of the information returned as follows.

hdfread

2-302

sds_info.Dims.Size
ans =
 16
ans =
 5

Using hdfread parameter/value pairs, you can read a subset of the data in the
data set. This example specifies a starting index of [3 3], an interval of 1
between values ([] meaning the default value of 1), and a length of 10 rows and
2 columns.

data = hdfread(sds_info, 'Index', {[3 3],[],[10 2]});

data(:,1)
ans =
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

data(:,2)
ans =
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

hdfread

2-303

Importing Fields from a Vdata Set
This example retrieves information from example.hdf first, and then reads two
fields of the data, Idx and Temp.

info = hdfinfo('example.hdf');

data = hdfread(info.Vdata,...
 'Fields',{'Idx','Temp'})

data =
 [1x10 int16]
 [1x10 int16]

index = data{1,1};
temp = data{2,1};

temp(1:6)
ans =
 0 12 3 5 10 -1

See Also hdfinfo, hdf

hdftool

2-304

2hdftoolPurpose Browse and import data from HDF or HDF-EOS files

Syntax hdftool
hdftool(filename)
h = hdfinfo(...)

Description hdftool starts the HDF Import Tool, a graphical user interface used to browse
the contents of HDF and HDF-EOS files and import data and data subsets from
these files. When you use hdftool without an argument, the tool displays the
Choose an HDF file dialog box. Select an HDF or HDF-EOS file to start the
HDF Import Tool.

hdftool(filename) opens the HDF or HDF-EOS file, filename, in the HDF
Import Tool.

h = hdftool(...) returns a handle, h, to the HDF Import Tool. To close the
tool from the command line, use dispose(h).

You can run only one instance of the HDF Import Tool during a MATLAB
session; however, you can open multiple files.

Using the HDF Import Tool, HDF-EOS files can be viewed as either HDF-EOS
files or as HDF files. HDF files can only be viewed as HDF files.

Example hdftool('example.hdf');

See Also hdf, hdfinfo, hdfread, uiimport

help

2-305

2helpPurpose Display help for MATLAB functions in Command Window

Syntax help
help /
help function
help toolbox/
help toolbox/function
help syntax

Description help lists all primary help topics in the Command Window. Each main help
topic corresponds to a directory name on the MATLAB search path.

help / lists all operators and special characters, along with their descriptions.

help function displays M-file help, which is a brief description and the syntax
for function, in the Command Window. If function is overloaded, help
displays the M-file help for the first function found on the search path, and
lists the overloaded functions.

help toolbox/ displays the contents file for the specified directory named
toolbox. It is not necessary to give the full pathname of the directory; the last
component, or the last several components, are sufficient.

help toolbox/function displays the M-file help for function that belongs to
the toolbox directory.

help syntax displays M-file help describing the syntax used in MATLAB
commands and functions.

Note M-file help displayed in the Command Window uses all uppercase
characters for the function and variable names to make them stand out from
the rest of the text. When typing function names, however, use lowercase
characters. Some functions for interfacing to Java do use mixed case; the
M-file help accurately reflects that and you should use mixed case when
typing them. For example, the javaObject function uses mixed case.

help

2-306

Remarks Creating Online Help for Your Own M-Files
The MATLAB help system, like MATLAB itself, is highly extensible. You can
write help descriptions for your own M-files and toolboxes using the same
self-documenting method that MATLAB M-files and toolboxes use.

The help function lists all help topics by displaying the first line (the H1 line)
of the contents files in each directory on the MATLAB search path. The
contents files are the M-files named Contents.m within each directory.

Typing help topic, where topic is a directory name, displays the comment
lines in the Contents.m file located in that directory. If a contents file does not
exist, help displays the H1 lines of all the files in the directory.

Typing help topic, where topic is a function name, displays help for the
function by listing the first contiguous comment lines in the M-file topic.m.

Create self-documenting online help for your own M-files by entering text on
one or more contiguous comment lines, beginning with the second line of the
file (first line if it is a script). For example, an abridged version of the M-file
angle.m provided with MATLAB could contain

function p = angle(h)
% ANGLE Polar angle.
% ANGLE(H) returns the phase angles, in radians, of a matrix
% with complex elements. Use ABS for the magnitudes.
p = atan2(imag(h),real(h));

When you execute help angle, lines 2, 3, and 4 display. These lines are the first
block of contiguous comment lines. After the first contiguous comment lines,
enter an executable statement or blank line, which effectively ends the help
section. Any later comments in the M-file do not appear when you type help for
the function.

The first comment line in any M-file (the H1 line) is special. It should contain
the function name and a brief description of the function. The lookfor function
searches and displays this line, and help displays these lines in directories that
do not contain a Contents.m file.

Creating Contents Files for Your Own M-File Directories
A Contents.m file is provided for each M-file directory included with the
MATLAB software. If you create directories in which to store your own M-files,

help

2-307

you should create Contents.m files for them too. To do so, simply follow the
format used in an existing Contents.m file.

Examples Typing

help datafun

displays help for the datafun directory.

Typing

help fft

displays help for the fft function.

To prevent long descriptions from scrolling off the screen before you have time
to read them, enter more on, and then enter the help function.

See Also doc, helpbrowser, helpwin, lookfor, more, partialpath, path, what, which

helpbrowser

2-308

2helpbrowserPurpose Display the MATLAB Help browser, providing access to extensive online help

Graphical
Interface

As an alternative to the helpbrowser function, select Help from the View
menu or click the help button on the toolbar in the MATLAB desktop.

Syntax helpbrowser

Description helpbrowser displays the Help browser, providing direct access to a
comprehensive library of online help, including reference pages and manuals.
If the Help browser was previously opened in the current session, it shows the
last page viewed; otherwise it shows the Begin Here page. For details, see
“Using the Help Browser” in MATLAB Development Environment
documentation.

helpbrowser

2-309

See Also doc, docopt, help, helpdesk, helpwin, lookfor, web

Tabs in Help Navigator pane provide different ways to f ind documentation.

Drag the separator bar to adjust the width of the panes.

View documentation in the display pane.

Use the close box to hide the pane.

Use the Product filter to limit the
documentation shown.

Click reload button to refresh a page, such as, to
remove highlighted search hits.

helpdesk

2-310

2helpdeskPurpose Display Help browser

Syntax helpdesk

Description helpdesk displays the Help browser and shows the “Begin Here” page. In
previous releases, helpdesk displayed the Help Desk, which was the precursor
to the Help browser. In a future release, the helpdesk function will be phased
out—use the helpbrowser function instead.

See Also helpbrowser

helpdlg

2-311

2helpdlgPurpose Create a help dialog box

Syntax helpdlg
helpdlg('helpstring')
helpdlg('helpstring','dlgname')
h = helpdlg(...)

Description helpdlg creates a help dialog box or brings the named help dialog box to the
front.

helpdlg displays a dialog box named 'Help Dialog' containing the string
'This is the default help string.'

helpdlg('helpstring') displays a dialog box named 'Help Dialog' containing
the string specified by 'helpstring'.

helpdlg('helpstring','dlgname') displays a dialog box named 'dlgname'
containing the string 'helpstring'.

h = helpdlg(...) returns the handle of the dialog box.

Remarks MATLAB wraps the text in 'helpstring' to fit the width of the dialog box. The
dialog box remains on your screen until you press the OK button or the Return
key. After pressing the button, the help dialog box disappears.

Examples The statement,

helpdlg('Choose 10 points from the figure','Point Selection');

displays this dialog box:

See Also dialog, errordlg, questdlg, warndlg

helpdlg

2-312

“Predefined Dialog Boxes” for related functions

helpwin

2-313

2helpwinPurpose Display M-file help, with access to M-file help for all functions

Syntax helpwin
helpwin topic

Description helpwin lists topics for groups of functions in the Help browser. It shows brief
descriptions of the topics and provides links to access M-file help for the
functions. You cannot follow links in the helpwin list of functions if MATLAB
is busy (for example, running a program).

helpwin topic displays help information for the topic in the Help browser. If
topic is a directory, it displays all functions in the directory. If topic is a
function, it displays M-file help for that function. From the page, you can access
a list of directories (the Default Topics link) as well as the reference page help
for the function (the Go to online doc link). You cannot follow links in the
helpwin list of functions if MATLAB is busy (for example, running a program).

Examples Typing

helpwin datafun

displays the functions in the datafun directory and a brief description of each.

Typing

helpwin fft

displays the M-file help for the fft function in the Help browser.

See Also doc, docopt, help, helpbrowser, lookfor, web

hess

2-314

2hessPurpose Hessenberg form of a matrix

Syntax [P,H] = hess(A)
H = hess(A)

Description H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix P so
that A = P*H*P' and P'*P = eye(size(A)).

Definition A Hessenberg matrix is zero below the first subdiagonal. If the matrix is
symmetric or Hermitian, the form is tridiagonal. This matrix has the same
eigenvalues as the original, but less computation is needed to reveal them.

Examples H is a 3-by-3 eigenvalue test matrix:

H =
 -149 -50 -154
 537 180 546
 -27 -9 -25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
 -149.0000 42.2037 -156.3165
 -537.6783 152.5511 -554.9272
 0 0.0728 2.4489

Algorithm hess uses LAPACK routines to compute the Hessenberg form of a matrix:

Matrix A Routine

Real symmetric DSYTRD
DSYTRD, DORGTR, (with output P)

Real nonsymmetric DGEHRD
DGEHRD, DORGHR (with output P)

hess

2-315

See Also eig, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

Complex Hermitian ZHETRD
ZHETRD, ZUNGTR (with output P)

Complex non-Hermitian ZGEHRD
ZGEHRD, ZUNGHR (with output P)

Matrix A Routine

hex2dec

2-316

2hex2decPurpose Hexadecimal to decimal number conversion

Syntax d = hex2dec('hex_value')

Description d = hex2dec('hex_value') converts hex_value to its floating-point integer
representation. The argument hex_value is a hexadecimal integer stored in a
MATLAB string. The value of hex_value must be smaller than hexadecimal
10,000,000,000,000.

If hex_value is a character array, each row is interpreted as a hexadecimal
string.

Examples hex2dec('3ff')

ans =

 1023

For a character array S

S =
0FF
2DE
123

hex2dec(S)

ans =

255
734
291

See Also dec2hex, format, hex2num, sprintf

hex2num

2-317

2hex2numPurpose Hexadecimal to double number conversion

Syntax f = hex2num('hex_value')

Description f = hex2num('hex_value') converts hex_value to the IEEE
double-precision floating-point number it represents. NaN, Inf, and
denormalized numbers are all handled correctly. Fewer than 16 characters are
padded on the right with zeros.

Examples f = hex2num('400921fb54442d18')

f =

 3.14159265358979

See Also format, hex2dec, sprintf

hgload

2-318

2hgloadPurpose Loads Handle Graphics object hierarchy from a file

Syntax h = hgload('filename')
[h,old_props] = hgload(...,property_structure)
h = hgload(...,'all')

Description h = hgload('filename') loads handle graphics objects and its children if any
from the FIG-file specified by filename and returns handles to the top-level
objects. If filename contains no extension, then MATLAB adds the .fig
extension.

[h,old_prop_values] = hgload(...,property_structure) overrides the
properties on the top-level objects stored in the FIG-file with the values in
property_structure, and returns their pervious values in old_prop_values.

property_structure must be a structure having field names that correspond
to property names and values that are the new property values.

old_prop_values is a cell array equal in length to h, containing the old values
of the overridden properties for each object. Each cell contains a structure
having field names that are property names, each of which contains the
original value of each property that has been changed. Any property specified
in property_structure that is not a property of a top-level object in the
FIG-file is not included in old_prop_values.

hgload(...,'all') overrides the default behavior, which does not reload
non-serializable objects saved in the file. These objects include the default
toolbars and default menus.

Non-serializable objects (such as the default toolbars and the default menus)
are normally not reloaded because they are loaded from different files at figure
creation time. This allows revisions of the default menus and toolbars to occur
without affecting existing FIG-files. Passing the string all to hgload insures
that any non-serializable objects contained in the file are also reloaded.

Note that by default, hgsave excludes non- serializable objects from the fig-file
unless you use the all flag.

See Also hgsave, open

“Figure Windows” for related functions

hgsave

2-319

2hgsavePurpose Saves a Handle Graphics object hierarchy to a file

Syntax hgsave('filename')
hgsave(h,'filename')
hgsave(...,'all')

Description hgsave('filename') saves the current figure to a file named filename.

hgsave(h,'filename') saves the objects identified by the array of handles h to
a file named filename. If you do not specify an extension for filename, then
MATLAB adds the extension ".fig". If h is a vector, none of the handles in h
may be ancestors or descendents of any other handles in h.

hgsave(...,'all') overrides the default behavior, which does not save
non-serializable objects. Non-serializable objects include the default toolbars
and default menus. This allows revisions of the default menus and toolbars to
occur without affecting existing FIG-files and also reduces the size of FIG-files.
Passing the string all to hgsave insures that non-serializable objects are also
saved.

Note: the default behavior of hgload is to ignore non- serializable objects in the
file at load time. This behavior can be overwritten using the all argument with
hgload.

See Also hgload, open

“Figure Windows” for related functions

hidden

2-320

2hiddenPurpose Remove hidden lines from a mesh plot

Syntax hidden on
hidden off
hidden

Description Hidden line removal draws only those lines that are not obscured by other
objects in the field of view.

hidden on turns on hidden line removal for the current graph so lines in the
back of a mesh are hidden by those in front. This is the default behavior.

hidden off turns off hidden line removal for the current graph.

hidden toggles the hidden line removal state.

Algorithm hidden on sets the FaceColor property of a surface graphics object to the
background Color of the axes (or of the figure if axes Color is none).

Examples Set hidden line removal off and on while displaying the peaks function.

mesh(peaks)
hidden off
hidden on

See Also shading, mesh

The surface properties FaceColor and EdgeColor

“Creating Surfaces and Meshes” for related functions

hilb

2-321

2hilbPurpose Hilbert matrix

Syntax H = hilb(n)

Description H = hilb(n) returns the Hilbert matrix of order n.

Definition The Hilbert matrix is a notable example of a poorly conditioned matrix [1]. The
elements of the Hilbert matrices are .

Examples Even the fourth-order Hilbert matrix shows signs of poor conditioning.

cond(hilb(4)) =
1.5514e+04

Note See the M-file for a good example of efficient MATLAB programming
where conventional for loops are replaced by vectorized statements.

See Also invhilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

H i j,() 1 i j 1–+()⁄=

hist

2-322

2histPurpose Histogram plot

Syntax n = hist(Y)
n = hist(Y,x)
n = hist(Y,nbins)
[n,xout] = hist(...)

Description A histogram shows the distribution of data values.

n = hist(Y) bins the elements in vector Y into 10 equally spaced containers
and returns the number of elements in each container as a row vector. If Y is
an m-by-p matrix, hist treats the columns of Y as vectors and returns a 10-by-p
matrix n. Each column of n contains the results for the corresponding column
of Y.

n = hist(Y,x) where x is a vector, returns the distribution of Y among
length(x) bins with centers specified by x. For example, if x is a 5-element
vector, hist distributes the elements of Y into five bins centered on the x-axis
at the elements in x. Note: use histc if it is more natural to specify bin edges
instead of centers.

n = hist(Y,nbins) where nbins is a scalar, uses nbins number of bins.

[n,xout] = hist(...) returns vectors n and xout containing the frequency
counts and the bin locations. You can use bar(xout,n) to plot the histogram.

hist(...) without output arguments, hist produces a histogram plot of the
output described above. hist distributes the bins along the x-axis between the
minimum and maximum values of Y.

Remarks All elements in vector Y or in one column of matrix Y are grouped according to
their numeric range. Each group is shown as one bin.

The histogram’s x-axis reflects the range of values in Y. The histogram’s y-axis
shows the number of elements that fall within the groups; therefore, the y-axis
ranges from 0 to the greatest number of elements deposited in any bin.

The histogram is created with a patch graphics object. If you want to change
the color of the graph, you can set patch properties. See the “Example” section

hist

2-323

for more information. By default, the graph color is controlled by the current
colormap, which maps the bin color to the first color in the colormap.

Examples Generate a bell-curve histogram from Gaussian data.

x = –2.9:0.1:2.9;
y = randn(10000,1);
hist(y,x)

Change the color of the graph so that the bins are red and the edges of the bins
are white.

h = findobj(gca,'Type','patch');

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

400

hist

2-324

set(h,'FaceColor','r','EdgeColor','w')

See Also bar, ColorSpec, histc, patch, rose, stairs

“Specialized Plotting” for related functions

Histograms for examples

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

400

histc

2-325

2histcPurpose Histogram count

Syntax n = histc(x,edges)
n = histc(x,edges,dim)
[n,bin] = histc(...)

Description n = histc(x,edges) counts the number of values in vector x that fall between
the elements in the edges vector (which must contain monotonically
non-decreasing values). n is a length(edges) vector containing these counts.

n(k) counts the value x(i) if edges(k) <= x(i) < edges(k+1). The last bin
counts any values of x that match edges(end). Values outside the values in
edges are not counted. Use -inf and inf in edges to include all non-NaN values.

For matrices, histc(x,edges) returns a matrix of column histogram counts.
For N-D arrays, histc(x,edges) operates along the first non-singleton
dimension.

n = histc(x,edges,dim) operates along the dimension dim.

[n,bin] = histc(...) also returns an index matrix bin. If x is a vector,
n(k) = sum(bin==k). bin is zero for out of range values. If x is an M-by-N
matrix, then,

for j=1:N, n(k,j) = sum(bin(:,j)==k); end

To plot the histogram, use the bar command.

See Also hist

“Specialized Plotting” for related functions

hold

2-326

2holdPurpose Hold current graph in the figure

Syntax hold on
hold off
hold

Description The hold function determines whether new graphics objects are added to the
graph or replace objects in the graph.

hold on retains the current plot and certain axes properties so that
subsequent graphing commands add to the existing graph.

hold off resets axes properties to their defaults before drawing new plots.
hold off is the default.

hold toggles the hold state between adding to the graph and replacing the
graph.

Remarks Test the hold state using the ishold function.

Although the hold state is on, some axes properties change to accommodate
additional graphics objects. For example, the axes’ limits increase when the
data requires them to do so.

The hold function sets the NextPlot property of the current figure and the
current axes. If several axes objects exist in a figure window, each axes has its
own hold state. hold also creates an axes if one does not exist.

hold on sets the NextPlot property of the current figure and axes to add.

hold off sets the NextPlot property of the current axes to replace.

hold toggles the NextPlot property between the add and replace states.

See Also axis, cla, ishold, newplot

The NextPlot property of axes and figure graphics objects.

“Basic Plots and Graphs” for related functions

home

2-327

2homePurpose Move the cursor to the upper left corner of the Command Window

Syntax home

Description home moves the cursor to the upper-left corner of the Command Window and
clears the screen. You can use the scroll bar to see the history of previous
functions.

Examples Use home in an M-file to return the cursor to the upper-left corner of the screen.

See Also clc

horzcat

2-328

2horzcatPurpose Horizontal concatenation

Syntax C = horzcat(A1,A2,...)

Description C = horzcat(A1,A2,...) horizontally concatenates matrices A1, A2, and so
on. All matrices in the argument list must have the same number of rows.

horzcat concatenates N-dimensional arrays along the second dimension. The
first and remaining dimensions must match.

MATLAB calls C = horzcat(A1,A2,...) for the syntax C = [A1 A2 ...] when
any of A1, A2, etc. is an object.

Examples Create a 3-by-5 matrix, A, and a 3-by-3 matrix, B. Then horizontally
concatenate A and B.

A = magic(5); % Create 3-by-5 matrix, A
A(4:5,:) = []

A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22

B = magic(3)*100 % Create 3-by-3 matrix, B

B =

 800 100 600
 300 500 700
 400 900 200

C = horzcat(A,B) % Horizontally concatenate A and B

C =

 17 24 1 8 15 800 100 600

horzcat

2-329

 23 5 7 14 16 300 500 700
 4 6 13 20 22 400 900 200

See Also vertcat, cat

hsv2rgb

2-330

2hsv2rgbPurpose Convert HSV colormap to RGB colormap

Syntax M = hsv2rgb(H)

Description M = hsv2rgb(H) converts a hue-saturation-value (HSV) colormap to a
red-green-blue (RGB) colormap. H is an m-by-3 matrix, where m is the number
of colors in the colormap. The columns of H represent hue, saturation, and
value, respectively. M is an m-by-3 matrix. Its columns are intensities of red,
green, and blue, respectively.

rgb_image = hsv2rgb(hsv_image) converts the HSV image to the equivalent
RGB image. HSV is an m-by-n-by-3 image array whose three planes contain
the hue, saturation, and value components for the image. RGB is returned as
an m-by-n-by-3 image array whose three planes contain the red, green, and
blue components for the image.

Remarks As H(:,1) varies from 0 to 1, the resulting color varies from red through yellow,
green, cyan, blue, and magenta, and returns to red. When H(:,2) is 0, the
colors are unsaturated (i.e., shades of gray). When H(:,2) is 1, the colors are
fully saturated (i.e., they contain no white component). As H(:,3) varies from
0 to 1, the brightness increases.

The MATLAB hsv colormap uses hsv2rgb([hue saturation value]) where
hue is a linear ramp from 0 to 1, and saturation and value are all 1’s.

See Also brighten, colormap, rgb2hsv

“Color Operations” for related functions

i

2-331

2iPurpose Imaginary unit

Syntax i
a+bi
x+i*y

Description As the basic imaginary unit sqrt(-1), i is used to enter complex numbers.
Since i is a function, it can be overridden and used as a variable. This permits
you to use i as an index in for loops, etc.

If desired, use the character i without a multiplication sign as a suffix in
forming a complex numerical constant.

You can also use the character j as the imaginary unit.

Examples Z = 2+3i
Z = x+i*y
Z = r*exp(i*theta)

See Also conj, imag, j, real

if

2-332

2ifPurpose Conditionally execute statements

Syntax if expression
statements

end

Description MATLAB evaluates the expression and, if the evaluation yields a logical true
or nonzero result, executes one or more MATLAB commands denoted here as
statements.

When nesting ifs, each if must be paired with a matching end.

When using elseif and/or else within an if statement, the general form of
the statement is

if expression1
statements1

elseif expression2
statements2

else
statements3

end

Arguments expression
expression is a MATLAB expression, usually consisting of variables or
smaller expressions joined by relational operators (e.g., count < limit), or
logical functions (e.g., isreal(A)).

Simple expressions can be combined by logical operators (&,|,~) into compound
expressions such as the following. MATLAB evaluates compound expressions
from left to right, adhering to operator precedence rules.

(count < limit) & ((height - offset) >= 0)

statements
statements is one or more MATLAB statements to be executed only if the
expression is true or nonzero.

if

2-333

Remarks Nonscalar Expressions
If the evaluated expression yields a nonscalar value, then every element of
this value must be true or nonzero for the entire expression to be considered
true. For example, the statement, if (A < B) is true only if each element of
matrix A is less than its corresponding element in matrix B. See Example 2,
below.

Partial Evaluation of the expression Argument
Within the context of an if or while expression, MATLAB does not necessarily
evaluate all parts of a logical expression. In some cases it is possible, and often
advantageous, to determine whether an expression is true or false through only
partial evaluation.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no need to
evaluate B and MATLAB does not do so. In statement 2, if A is nonzero, then
the expression is true, regardless of B. Again, MATLAB does not evaluate the
latter part of the expression.

1) if (A & B) 2) if (A | B)

You can use this property to your advantage to cause MATLAB to evaluate a
part of an expression only if a preceding part evaluates to the desired state.
Here are some examples.

while (b ~= 0) & (a/b > 18.5)

if exist('myfun.m') & (myfun(x) >= y)

if iscell(A) & all(cellfun('isreal', A))

Examples Example 1 - Simple if Statement
In this example, if both of the conditions are satisfied, then the student passes
the course.

if ((attendance >= 0.90) & (grade_average >= 60))
 pass = 1;
end;

Example 2 - Nonscalar Expression
Given matrices A and B

if

2-334

A = B =
 1 0 1 1
 2 3 3 4

See Also else, elseif, end, for, while, switch, break, return, relational_operators,
logical_operators

Expression Evaluates As Because

A < B false A(1,1) is not less than B(1,1).

A < (B + 1) true Every element of A is less than that same
element of B with 1 added.

A & B false A(1,2) & B(1,2) is false.

B < 5 true Every element of B is less than 5.

ifft

2-335

2ifftPurpose Inverse discrete Fourier transform

Syntax y = ifft(X)
y = ifft(X,n)
y = ifft(X,[],dim)
y = ifft(X,n,dim)

Description y = ifft(X) returns the inverse discrete Fourier transform (DFT) of vector X,
computed with a fast Fourier transform (FFT) algorithm.

If X is a matrix, ifft returns the inverse DFT of each column of the matrix.

If X is a multidimensional array, ifft operates on the first non-singleton
dimension.

y = ifft(X,n) returns the n-point inverse DFT of vector X.

y = ifft(X,[],dim) and y = ifft(X,n,dim) return the inverse DFT of X
across the dimension dim.

For any X, ifft(fft(X)) equals X to within roundoff error. If X is real,
ifft(fft(X)) may have small imaginary parts.

Algorithm The algorithm for ifft(X) is the same as the algorithm for fft(X), except for
a sign change and a scale factor of n = length(X). As for fft, the execution
time for ifft depends on the length of the transform. It is fastest for powers of
two. It is almost as fast for lengths that have only small prime factors. It is
typically several times slower for lengths that are prime or which have large
prime factors.

See Also fft, ifft2, ifftn, ifftshift

dftmtx and freqz, in the Signal Processing Toolbox

ifft2

2-336

2ifft2Purpose Two-dimensional inverse discrete Fourier transform

Syntax Y = ifft2(X)
Y = ifft2(X,m,n)

Description Y = ifft2(X) returns the two-dimensional inverse discrete Fourier transform
(DFT) of X, computed with a fast Fourier transform (FFT) algorithm. The
result Y is the same size as X.

Y = ifft2(X,m,n) returns the m-by-n inverse fast Fourier transform of
matrix X.

For any X, ifft2(fft2(X)) equals X to within roundoff error. If X is real,
ifft2(fft2(X)) may have small imaginary parts.

Algorithm The algorithm for ifft2(X) is the same as the algorithm for fft2(X), except
for a sign change and scale factors of [m,n] = size(X). The execution time for
ifft2 depends on the length of the transform. It is fastest for powers of two. It
is almost as fast for lengths that have only small prime factors. It is typically
several times slower for lengths that are prime or which have large prime
factors.

See Also dftmtx and freqz in the Signal Processing Toolbox, and:

fft2, fftshift, ifft, ifftn, ifftshift

ifftn

2-337

2ifftnPurpose Multidimensional inverse discrete Fourier transform

Syntax Y = ifftn(X)
Y = ifftn(X,siz)

Description Y = ifftn(X) returns the n-dimensional inverse discrete Fourier transform
(DFT) of X, computed with a multidimensional fast Fourier transform (FFT)
algorithm. The result Y is the same size as X.

Y = ifftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the inverse transform.
The size of the result Y is siz.

Remarks For any X, ifftn(fftn(X)) equals X within roundoff error. If X is real,
ifftn(fftn(X)) may have small imaginary parts.

Algorithm ifftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = ifft(Y,[],p);
end

This computes in-place the one-dimensional inverse DFT along each dimension
of X.

The execution time for ifftn depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only small
prime factors. It is typically several times slower for lengths that are prime or
which have large prime factors.

See Also fftn, ifft, ifft2, ifftshift

ifftshift

2-338

2ifftshiftPurpose Inverse FFT shift

Syntax ifftshift(X)
ifftshift(X,dim)

Description ifftshift(X) undoes the results of fftshift.

If X is a vector, iffshift(X) swaps the left and right halves of X. For matrices,
ifftshift(X) swaps the first quadrant with the third and the second quadrant
with the fourth. If X is a multidimensional array, ifftshift(X) swaps
“half-spaces” of X along each dimension.

ifftshift(X,dim) applies the ifftshift operation along the dimension
dim.

See Also fft, fft2, fftn, fftshift

im2frame

2-339

2im2framePurpose Convert indexed image into movie format

Syntax f = im2frame(X,map)
f = im2frame(X)

Description f = im2frame(X,map) converts the indexed image X and associated colormap
map into a movie frame f. If X is a truecolor (m-by-n-by-3) image, then map is
optional and has no affect.

Typical usage:

M(1) = im2frame(X1,map);
M(2) = im2frame(X2,map);

...
M(n) = im2frame(Xn,map);
movie(M)

f = im2frame(X) converts the indexed image X into a movie frame f using the
current colormap if X contains an indexed image.

See Also frame2im, movie, capture

“Bit-Mapped Images” for related functions

im2java

2-340

2im2javaPurpose Convert image to Java image

Syntax jimage = im2java(I)
jimage = im2java(X,MAP)
jimage = im2java(RGB)

Description To work with a MATLAB image in the Java environment, you must convert the
image from its MATLAB representation into an instance of the Java image
class, java.awt.Image.

jimage = im2java(I) converts the intensity image I to an instance of the Java
image class, java.awt.Image.

jimage = im2java(X,MAP) converts the indexed image X, with colormap MAP,
to an instance of the Java image class, java.awt.Image.

jimage = im2java(RGB) converts the RGB image RGB to an instance of the Java
image class, java.awt.Image.

Class Support The input image can be of class uint8, uint16, or double.

Note Java requires uint8 data to create an instance of the Java image class,
java.awt.Image. If the input image is of class uint8, jimage contains the
same uint8 data. If the input image is of class double or uint16, im2java
makes an equivalent image of class uint8, rescaling or offsetting the data as
necessary, and then converts this uint8 representation to an instance of the
Java image class, java.awt.Image.

Example This example reads an image into the MATLAB workspace and then uses
im2java to convert it into an instance of the Java image class.

I = imread('your_image.tif');
javaImage = im2java(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);
frame.getContentPane.add(label);
frame.pack

im2java

2-341

frame.show

See Also “Bit-Mapped Images” for related functions

imag

2-342

2imagPurpose Imaginary part of a complex number

Syntax Y = imag(Z)

Description Y = imag(Z) returns the imaginary part of the elements of array Z.

Examples imag(2+3i)

ans =

 3

See Also conj, i, j, real

image

2-343

2imagePurpose Display image object

Syntax image(C)
image(x,y,C)
image(...,'PropertyName',PropertyValue,...)
image('PropertyName',PropertyValue,...) Formal synatx – PN/PV only
handle = image(...)

Description image creates an image graphics object by interpreting each element in a
matrix as an index into the figure’s colormap or directly as RGB values,
depending on the data specified.

The image function has two forms:

• A high-level function that calls newplot to determine where to draw the
graphics objects and sets the following axes properties:

XLim and YLim to enclose the image

Layer to top to place the image in front of the tick marks and grid lines

YDir to reverse

View to [0 90]

• A low-level function that adds the image to the current axes without calling
newplot. The low-level function argument list can contain only property
name/property value pairs.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see set and get for examples of how to specify these
data types).

image(C) displays matrix C as an image. Each element of C specifies the color
of a rectangular segment in the image.

image(x,y,C) where x and y are two-element vectors, specifies the range of the
x- and y-axis labels, but produces the same image as image(C). This can be
useful, for example, if you want the axis tick labels to correspond to real
physical dimensions represented by the image.

image

2-344

image(x,y,C,'PropertyName',PropertyValue,...) is a high-level function
that also specifies property name/property value pairs. This syntax calls
newplot before drawing the image.

image('PropertyName',PropertyValue,...) is the low-level syntax of the
image function. It specifies only property name/property value pairs as input
arguments.

handle = image(...) returns the handle of the image object it creates. You
can obtain the handle with all forms of the image function.

Remarks image data can be either indexed or true color. An indexed image stores colors
as an array of indices into the figure colormap. A true color image does not use
a colormap; instead, the color values for each pixel are stored directly as RGB
triplets. In MATLAB , the CData property of a truecolor image object is a
three-dimensional (m-by-n-by-3) array. This array consists of three m-by-n
matrices (representing the red, green, and blue color planes) concatenated
along the third dimension.

The imread function reads image data into MATLAB arrays from graphics files
in various standard formats, such as TIFF. You can write MATLAB image data
to graphics files using the imwrite function. imread and imwrite both support
a variety of graphics file formats and compression schemes.

When you read image data into MATLAB using imread, the data is usually
stored as an array of 8-bit integers. However, imread also supports reading
16-bit-per-pixel data from TIFF and PNG files. These are more efficient storage
method than the double-precision (64-bit) floating-point numbers that
MATLAB typically uses. However, it is necessary for MATLAB to interpret

image

2-345

8-bit and 16-bit image data differently from 64-bit data. This table summarizes
these differences.

Indexed Images
In an indexed image of class double, the value 1 points to the first row in the
colormap, the value 2 points to the second row, and so on. In a uint8 or uint16
indexed image, there is an offset; the value 0 points to the first row in the
colormap, the value 1 points to the second row, and so on.

If you want to convert a uint8 or uint16 indexed image to double, you need to
add 1 to the result. For example,

X64 = double(X8) + 1;

or

X64 = double(X16) + 1;

To convert from double to uint8 or unit16, you need to first subtract 1, and
then use round to ensure all the values are integers.

X8 = uint8(round(X64 – 1));

or

X16 = uint16(round(X64 – 1));

Image Type Double-precision Data
(double array)

8-bit Data (uint8 array)
16-bit Data (uint16 array)

indexed
(colormap)

Image is stored as a two-dimensional
(m-by-n) array of integers in the range
[1, length(colormap)]; colormap is an
m-by-3 array of floating-point values in
the range [0, 1]

Image is stored as a two-dimensional
(m-by-n) array of integers in the range
[0, 255] (unit8) or [0, 65535]
(uint16); colormap is an m-by-3 array
of floating-point values in the range
[0, 1]

truecolor
(RGB)

Image is stored as a three-dimensional
(m-by-n-by-3) array of floating-point
values in the range [0, 1]

Image is stored as a
three-dimensional (m-by-n-by-3) array
of integers in the range [0, 255]
(unit8) or [0, 65535] (uint16)

image

2-346

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 or uint16 arrays.

When you write an indexed image using imwrite, MATLAB automatically
converts the values if necessary.

Colormaps
Colormaps in MATLAB are always m-by-3 arrays of double-precision
floating-point numbers in the range [0, 1]. In most graphics file formats,
colormaps are stored as integers, but MATLAB does not support colormaps
with integer values. imread and imwrite automatically convert colormap
values when reading and writing files.

True Color Images
In a truecolor image of class double, the data values are floating-point
numbers in the range [0, 1]. In a truecolor image of class uint8, the data values
are integers in the range [0, 255] and for truecolor image of class uint16 the
data values are integers in the range [0, 65535]

If you want to convert a truecolor image from one data type to the other, you
must rescale the data. For example, this statement converts a uint8 truecolor
image to double,

RGB64 = double(RGB8)/255;

or for uint16 images,

RGB64 = double(RGB16)/65535;

This statement converts a double truecolor image to uint8.

RGB8 = uint8(round(RGB64*255));

or for uint16 images,

RGB16 = uint16(round(RGB64*65535));

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 or uint16 arrays.

When you write a truecolor image using imwrite, MATLAB automatically
converts the values if necessary.

image

2-347

Object
Hierarchy

The following table lists all image properties and provides a brief description
of each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Data Defining the Object

CData The image data Values: matrix or
m-by-n-by-3 array
Default: enter
image;axis image ij
and see

CDataMapping Specify the mapping of data to
colormap

Values: scaled, direct
Default: direct

XData Control placement of image along
x-axis

Values: [min max]
Default: [1 size(CData,2)]

YData Control placement of image along
y-axis

Values: [min max]
Default: [1 size(CData,1)]

Specifying Transparency

image

2-348

AlphaData Transparency data m-by-n matrix of double or
uint8
Default: 1 (opaque)

AlphaDataMapping Transparency mapping method none, direct, scaled
Default: none

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
image (useful for animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Highlight image when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Make the image visible or invisible Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the the line’s
handle is visible to other functions

Values: on, callback, off
Default: on

HitTest Determine if image can become the
current object (see the figure
CurrentObject property)

Values: on, off
Default: on

General Information About the Image

Children Image objects have no children Values: [] (empty matrix)

Parent The parent of an image object is
always an axes object

Value: axes handle

Selected Indicate whether image is in a
“selected” state.

Values: on, off
Default: on

Property Name Property Description Property Value

image

2-349

See Also colormap, imfinfo, imread, imwrite, pcolor, newplot, surface

Displaying Bit-Mapped Images chapter

“Bit-Mapped Images” for related functions

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'image'

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a mouse button is
pressed on over the image

Values: string or function
handle
Default: empty string

CreateFcn Define a callback routine that
executes when an image is created

Values: string or function
handle
Default: empty string

DeleteFcn Define a callback routine that
executes when the image is deleted
(via close or delete)

Values: string or function
handle
Default: empty string

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu Associate a context menu with the
image

Values: handle of a
uicontextmenu

Property Name Property Description Property Value

Image Properties

2-350

2Image PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Image
Properties

This section lists property names along with the types of values each property
accepts.

AlphaData m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each element in the image data. The AlphaData can be of class
double or uint8.

MATLAB determines the transparency in one of three ways:

• Using the elements of AlphaData as transparency values (AlphaDataMapping
set to none, the default).

• Using the elements of AlphaData as indices into the current alphamap
(AlphaDataMapping set to direct).

• Scaling the elements of AlphaData to range between the minimum and
maximum values of the axes ALim property (AlphaDataMapping set to
scaled).

AlphaDataMapping {none} | direct | scaled

Transparency mapping method. This property determines how MATLAB
interprets indexed alpha data. It can be any of the following:

• none - The transparency values of AlphaData are between 0 and 1 or are
clamped to this range (the default).

• scaled - Transform the AlphaData to span the portion of the alphamap
indicated by the axes ALim property, linearly mapping data values to alpha
values.

• direct - Use the AlphaData as indices directly into the alphamap. When not
scaled, the data are usually integer values ranging from 1 to
length(alphamap). MATLAB maps values less than 1 to the first alpha
value in the alphamap, and values greater than length(alphamap) to the

Image Properties

2-351

last alpha value in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array unit8 integers, then the
indexing begins at 0 (i.e., MATLAB maps a value of 0 to the first alpha value
in the alphamap).

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the image object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

CData matrix or m-by-n-by-3 array

The image data. A matrix or 3D array of values specifying the color of each
rectangular area defining the image. image(C) assigns the values of C to CData.
MATLAB determines the coloring of the image in one of three ways:

Image Properties

2-352

• Using the elements of CData as indices into the current colormap (the
default) (CDataMapping set to direct)

• Scaling the elements of CData to range between the values
min(get(gca,'CLim')) and max(get(gca,'CLim')) (CDataMapping set to
scaled)

• Interpreting the elements of CData directly as RGB values (true color
specification)

Note that the behavior of NaNs in image CData is not defined. See the image
AlphaData property for information on using transparency with images.

A true color specification for CData requires an m-by-n-by-3 array of RGB
values. The first page contains the red component, the second page the green
component, and the third page the blue component of each element in the
image. RGB values range from 0 to 1. The following picture illustrates the
relative dimensions of CData for the two color models.

If CData has only one row or column, the height or width respectively is always
one data unit and is centered about the first YData or XData element
respectively. For example, using a 4-by-1 matrix of random data,

C = rand(4,1);
image(C,'CDataMapping','scaled')
axis image

Red

Green
Blue

CData

CData

Indexed Colors True Colors

Image Properties

2-353

produces:

CDataMapping scaled | {direct}

Direct or scaled indexed colors. This property determines whether MATLAB
interprets the values in CData as indices into the figure colormap (the default)
or scales the values according to the values of the axes CLim property.

When CDataMapping is direct, the values of CData should be in the range 1 to
length(get(gcf,'Colormap')). If you use true color specification for CData,
this property has no effect.

Children handles

The empty matrix; image objects have no children.

Clipping on | off

Clipping mode. By default, MATLAB clips images to the axes rectangle. If you
set Clipping to off, the image can display outside the axes rectangle. For
example, if you create an image, set hold to on, freeze axis scaling (axis
manual), and then create a larger image, it extends beyond the axis limits.

0.5 1 1.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Image Properties

2-354

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates an image object. You
must define this property as a default value for images. For example, the
statement,

set(0,'DefaultImageCreateFcn','axis image')

defines a default value on the root level that sets the aspect ratio and the axis
limits so the image has square pixels. MATLAB executes this routine after
setting all image properties. Setting this property on an existing image object
has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Delete image callback routine. A callback routine that executes when you delete
the image object (i.e., when you issue a delete command or clear the axes or
figure containing the image). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase image objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the

Image Properties

2-355

slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none – Do not erase the image when it is moved or changed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

• xor – Draw and erase the image by performing an exclusive OR (XOR) with
the color of the screen beneath it. This mode does not damage the color of the
objects beneath the image. However, the image’s color depends on the color
of whatever is beneath it on the display.

• background – Erase the image by drawing it in the axes’ background Color,
or the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased image, but images are always properly
colored.

Printing with Non-normal Erase Modes. MATLAB always prints figures as if the
EraseMode of all objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers of colors (e.g.,
XORing a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing non-normal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provide a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Image Properties

2-356

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaling a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the image can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the image. If HitTest is off, clicking
on the image selects the object below it (which maybe the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an image callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

Parent handle of parent axes

Image’s parent. The handle of the image object’s parent axes. You can move an
image object to another axes by changing this property to the new axes handle.

Image Properties

2-357

Selected on | {off}

Is object selected? When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For image objects, Type is always 'image'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the image. Assign this property the handle of a
uicontextmenu object created in the same figure as the image. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the image.

UserData matrix

User specified data. This property can be any data you want to associate with
the image object. The image does not use this property, but you can access it
using set and get.

Visible {on} | off

Image visibility. By default, image objects are visible. Setting this property to
off prevents the image from being displayed. However, the object still exists
and you can set and query its properties.

Image Properties

2-358

XData [1 size(CData,2)] by default

Control placement of image along x-axis. A vector specifying the locations of the
centers of the elements CData(1,1) and CData(m,n), where CData has a size of
m-by-n. Element CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered over the
coordinate defined by the last elements in XData and YData. The centers of the
remaining elements of CData are evenly distributed between those two points.

The width of each CData element is determined by the expression:

(XData(2)-XData(1))/(size(CData,2)-1)

You can also specify a single value for XData. In this case, image centers the
first element at this coordinate and centers each following element one unit
apart.

YData [1 size(CData,1)] by default

Control placement of image along y-axis. A vector specifying the locations of the
centers of the elements CData(1,1) and CData(m,n), where CData has a size of
m-by-n. Element CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered over the
coordinate defined by the last elements in XData and YData. The centers of the
remaining elements of CData are evenly distributed between those two points.

The height of each CData element is determined by the expression:

(YData(2)-YData(1))/(size(CData,1)-1)

You can also specify a single value for YData. In this case, image centers the
first element at this coordinate and centers each following elements one unit
apart.

imagesc

2-359

2imagescPurpose Scale data and display an image object

Syntax imagesc(C)
imagesc(x,y,C)
imagesc(...,clims)
h = imagesc(...)

Description The imagesc function scales image data to the full range of the current
colormap and displays the image. (See Examples for an illustration.)

imagesc(C) displays C as an image. Each element of C corresponds to a
rectangular area in the image. The values of the elements of C are indices into
the current colormap that determine the color of each patch.

imagesc(x,y,C) displays C as an image and specifies the bounds of the x- and
y-axis with vectors x and y.

imagesc(...,clims) normalizes the values in C to the range specified by
clims and displays C as an image. clims is a two-element vector that limits the
range of data values in C. These values map to the full range of values in the
current colormap.

h = imagesc(...) returns the handle for an image graphics object.

Remarks x and y do not affect the elements in C; they only affect the annotation of the
axes. If length(x) > 2 or length(y) > 2, imagesc ignores all except the first
and last elements of the respective vector.

imagesc creates an image with CDataMapping set to scaled, and sets the axes
CLim property to the value passed in clims.

Examples If the size of the current colormap is 81-by-3, the statements

clims = [10 60]
imagesc(C,clims)

map the data values in C to the colormap as shown in this illustration.

imagesc

2-360

In this example, the left image maps to the gray colormap using the statements

load clown
imagesc(X)
colormap(gray)

The right image has values between 10 and 60 scaled to the full range of the
gray colormap using the statements

load clown
clims = [10 60];
imagesc(X,clims)
colormap(gray)

81
80
79
78

4
3
2
1

60

59
58

11
10

12

81

1

Data Colormap
 ValuesValues

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200
50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

imagesc

2-361

See Also image

“Bit-Mapped Images” for related functions

imfinfo

2-362

2imfinfoPurpose Information about graphics file

Syntax info = imfinfo(filename,fmt)
info = imfinfo(filename)

Description info = imfinfo(filename,fmt) returns a structure, info, whose fields
contain information about an image in a graphics file. filename is a string that
specifies the name of the graphics file, and fmt is a string that specifies the
format of the file. The file must be in the current directory or in a directory on
the MATLAB path. If imfinfo cannot find a file named filename, it looks for a
file named filename.fmt.

This table lists all the possible values for fmt.

Format File Type

'bmp' Windows Bitmap (BMP)

'cur' Windows Cursor resources (CUR)

'gif' Graphics Interchange Format (GIF)

'hdf' Hierarchical Data Format (HDF)

'ico' Windows Icon resources (ICO)

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pbm' Portable Bitmap (PBM)

'pcx' Windows Paintbrush (PCX)

'pgm' Portable Graymap (PGM)

'png' Portable Network Graphics (PNG)

'ppm' Portable Pixmap (PPM)

'ras' Sun Raster (RAS)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

imfinfo

2-363

If filename is a TIFF, HDF, ICO, GIF, or CUR file containing more than one
image, info is a structure array with one element (i.e., an individual structure)
for each image in the file. For example, info(3) would contain information
about the third image in the file.

info = imfinfo(filename) attempts to infer the format of the file from its
contents.

Information
Returned

The set of fields in info depends on the individual file and its format. However,
the first nine fields are always the same. This table lists these common fields
and describes their values.

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file

FileModDate A string containing the date when the file was last
modified

FileSize An integer indicating the size of the file in bytes

Format A string containing the file format, as specified by fmt;
for JPEG and TIFF files, the three-letter variant is
returned

FormatVersion A string or number describing the version of the
format

Width An integer indicating the width of the image in pixels

Height An integer indicating the height of the image in pixels

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either
'truecolor' for a truecolor RGB image, 'grayscale'
for a grayscale intensity image, or 'indexed' for an
indexed image

imfinfo

2-364

Example info = imfinfo('canoe.tif')

info =

 Filename:'canoe.tif'
 FileModDate: '25-Oct-1996 22:10:39'
 FileSize: 69708
 Format: 'tif'
 FormatVersion: []
 Width: 346
 Height: 207
 BitDepth: 8
 ColorType: 'indexed'
 FormatSignature: [73 73 42 0]
 ByteOrder: 'little-endian'
 NewSubfileType: 0
 BitsPerSample: 8
 Compression: 'PackBits'
 PhotometricInterpretation: 'RGB Palette'
 StripOffsets: [9x1 double]
 SamplesPerPixel: 1
 RowsPerStrip: 23
 StripByteCounts: [9x1 double]
 XResolution: 72
 YResolution: 72
 ResolutionUnit: 'Inch'
 Colormap: [256x3 double]
 PlanarConfiguration: 'Chunky'
 TileWidth: []
 TileLength: []
 TileOffsets: []
 TileByteCounts: []
 Orientation: 1
 FillOrder: 1
 GrayResponseUnit: 0.0100
 MaxSampleValue: 255
 MinSampleValue: 0
 Thresholding: 1

See Also imformats, imread, imwrite

imfinfo

2-365

“Bit-Mapped Images” for related functions

imformats

2-366

2imformatsPurpose Manage file format registry

Syntax imformats
formats = imformats
formats = imformats('fmt')
formats = imformats(format_struct)
formats = imformats('factory')

Description imformats displays a table of information listing all of the values in the
MATLAB file format registry. This registry determines which file formats are
supported by the imfinfo, imread, and imwrite functions.

formats = imformats returns a structure containing all of the values in the
MATLAB file format registry. The fields in this structure are listed below.

Field Value

ext A cell array of strings that specify filename
extensions that are valid for this format

isa A string specifying the name of the function that
determines if a file is a certain format. This can also
be a function handle.

info A string specifying the name of the function that
reads information about a file. This can also be a
function handle.

read A string specifying the name of the function that
reads image data in a file. This can also be a function
handle.

write A string specifying the name of the function that
writes MATLAB data to a file. This can also be a
function handle.

alpha Returns 1 if the format has an alpha channel, 0
otherwise

description A text description of the file format

imformats

2-367

Note The values for the isa, info, read, and write fields must be functions
on the MATLAB search path or function handles.

formats = imformats('fmt') searches the known formats in the MATLAB
file format registry for the format associated with the filename extension 'fmt'.
If found, imformats returns a structure containing the characteristics and
function names associated with the format. Otherwise, it returns an empty
structure.

formats = imformats(format_struct) sets the MATLAB file format registry
to the values in format_struct. The output structure, formats, contains the
new registry settings.

Caution Using imformats to specify values in the MATLAB file format
registry can result in the inability to load any image files. To return the file
format registry to a working state, use imformats with the 'factory' setting.

formats = imformats('factory') resets the MATLAB file format registry to
the default format registry values. This removes any user-specified settings.

Changes to the format registry do not persist between MATLAB sessions. To
have a format always available when you start MATLAB, add the appropriate
imformats command to the MATLAB startup file, startup.m, located in
$MATLAB/toolbox/local on UNIX systems, or $MATLAB\toolbox\local on
Windows systems.

See Also fileformats, imfinfo, imread, imwrite, path

“Bit-Mapped Images” for related functions

import

2-368

2importPurpose Add a package or class to the current Java import list for the MATLAB
command environment or for the calling function

Syntax import package_name.*
import class_name
import cls_or_pkg_name1 cls_or_pkg_name2...
import
L = import

Description import package_name.* adds all the classes in package_name to the current
import list. Note that package_name must be followed by .*.

import class_name adds a single class to the current import list. Note that
class_name must be fully qualified (that is, it must include the package name).

import cls_or_pkg_name1 cls_or_pkg_name2... adds all named classes and
packages to the current import list. Note that each class name must be fully
qualified, and each package name must be followed by .*.

import with no input arguments displays the current import list, without
adding to it.

L = import with no input arguments returns a cell array of strings containing
the current import list, without adding to it.

The import command operates exclusively on the import list of the function
from which it is invoked. When invoked at the command prompt, import uses
the import list for the MATLAB command environment. If import is used in a
script invoked from a function, it affects the import list of the function. If
import is used in a script that is invoked from the command prompt, it affects
the import list for the command environment.

The import list of a function is persistent across calls to that function and is
only cleared when the function is cleared.

To clear the current import list, use the following command.

clear import

This command may only be invoked at the command prompt. Attempting to use
clear import within a function results in an error.

import

2-369

Remarks The only reason for using import is to allow your code to refer to each imported
class with the immediate class name only, rather than with the fully qualified
class name. import is particularly useful in streamlining calls to constructors,
where most references to Java classes occur.

Examples This example shows importing and using the single class, java.lang.String,
and two complete packages, java.util and java.awt.

import java.lang.String
import java.util.* java.awt.*
f = Frame; % Create java.awt.Frame object
s = String('hello'); % Create java.lang.String object
methods Enumeration % List java.util.Enumeration methods

See Also clear

importdata

2-370

2importdataPurpose Load data from disk file.

Syntax importdata('filename')
A = importdata('filename')
importdata('filename','delimiter')

Description importdata('filename') loads data from filename into the workspace.

A = importdata('filename') loads data from filename into A.

A = importdata('filename','delimiter') loads data from filename using
delimiter as the column separator (if text). Use '\t' for tab.

Remarks importdata looks at the file extension to determine which helper function to
use. If it can recognize the file extension, importdata calls the appropriate
helper function, specifying the maximum number of output arguments. If it
cannot recognize the file extension, importdata calls finfo to determine which
helper function to use. If no helper function is defined for this file extension,
importdata treats the file as delimited text. importdata removes from the
result empty outputs returned from the helper function.

Examples s = importdata('ding.wav')
s =

 data: [11554x1 double]
 fs: 22050

See Also load

imread

2-371

2imreadPurpose Read image from graphics files

Syntax A = imread(filename,fmt)
[X,map] = imread(filename,fmt)
[...] = imread(filename)
[...] = imread(URL,...)
[...] = imread(...,idx) (CUR, ICO, and TIFF only)
[...] = imread(...,'frames',idx) (GIF only)
[...] = imread(...,ref) (HDF only)
[...] = imread(...,'BackgroundColor',BG) (PNG only)
[A,map,alpha] = imread(...) (ICO, CUR, and PNG only)

Description The imread function supports four general syntaxes, described below. The
imread function also supports several other format-specific syntaxes. See
“Special Case Syntax” on page 2-372 for information about these syntaxes.

A = imread(filename,fmt) reads a grayscale or truecolor image named
filename into A. If the file contains a grayscale intensity image, A is a
two-dimensional array. If the file contains a truecolor (RGB) image, A is a
three-dimensional (m-by-n-by-3) array.

filename is a string that specifies the name of the graphics file, and fmt is a
string that specifies the format of the file. If the file is not in the current
directory or in a directory in the MATLAB path, specify the full pathname of
the location on your system. If imread cannot find a file named filename, it
looks for a file named filename.fmt. See “Formats” on page 2-371 for a list of
all the possible values for fmt.

[X,map] = imread(filename,fmt) reads the indexed image in filename into
X and its associated colormap into map. The colormap values are rescaled to the
range [0,1].

[...] = imread(filename) attempts to infer the format of the file from its
content.

[...] = imread(URL,...) reads the image from an Internet URL. The URL
must include the protocol type (e.g., http://).

Formats This table lists the possible values for fmt. You can also get a list of all
supported formats by using the imformats function. Note that, for certain

imread

2-372

formats, imread may take additional parameters, described in Special Case
Syntax.

Special Case
Syntax

CUR- and ICO-Specific Syntax
[...] = imread(...,idx) reads in one image from a multi-image icon or
cursor file. idx is an integer value that specifies the order that the image

Format File Type

'bmp' Windows Bitmap (BMP)

'cur' Windows Cursor resources (CUR)

'gif' Graphics Interchange Format (GIF)

'hdf' Hierarchical Data Format (HDF)

'ico' Windows Icon resources (ICO)

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pbm' Portable Bitmap (PBM)

'pcx' Windows Paintbrush (PCX)

'pgm' Portable Graymap (PGM)

'png' Portable Network Graphics (PNG)

'pnm' Portable Anymap (PNM). PNM is not a file format
itself; it is a common name for any of the other three
members of the Portable Bitmap family of image
formats: Portable Bitmap (PBM), Portable Graymap
(PGM) and Portable Pixel Map (PPM).

'ppm' Portable Pixmap (PPM)

'ras' Sun Raster (RAS)

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

imread

2-373

appears in the file. For example, if idx is 3, imread reads the third image in the
file. If you omit this argument, imread reads the first image in the file.

[A,map,alpha] = imread(...) returns the AND mask for the resource, which
can be used to determine the transparency information. For cursor files, this
mask may contain the only useful data.

Note By default, Microsoft Windows cursors are 32-by-32 pixels. MATLAB
pointers must be 16-by-16. You will probably need to scale your image. If you
have the Image Processing Toolbox, you can use the imresize function.

GIF-Specific Syntaxes
[...] = imread(...,idx) reads in one or more frames from a multiframe (i.e.,
animated) GIF file. idx must be an integer scalar or vector of integer values.
For example, if idx is 3, imread reads the third image in the file. If idx is 1:5,
imread returns only the first five frames.

[...] = imread(...,'frames',idx) is the same as the syntax above except
that idx can be 'all'. In this case, all of the frames are read and returned in
the order that they appear in the file.

Note Because of the way that GIF files are structured, all of the frames must
be read when a particular frame is requested. Consequently, it is much faster
to specify a vector of frames or 'all' for idx than to call imread in a loop
when reading multiple frames from the same GIF file.

HDF-Specific Syntax
[...] = imread(...,ref) reads in one image from a multi-image HDF file.
ref is an integer value that specifies the reference number used to identify the
image. For example, if ref is 12, imread reads the image whose reference
number is 12. (Note that in an HDF file the reference numbers do not
necessarily correspond to the order of the images in the file. You can use
imfinfo to match image order with reference number.) If you omit this
argument, imread reads the first image in the file.

imread

2-374

PNG-Specific Syntax
The discussion in this section is only relevant to PNG files that contain
transparent pixels. A PNG file does not necessarily contain transparency data.
Transparent pixels, when they exist, are identified by one of two components:
a transparency chunk or an alpha channel. (A PNG file can only have one of
these components, not both.)

The transparency chunk identifies which pixel values are treated as
transparent. For example, if the value in the transparency chunk of an 8-bit
image is 0.5020, all pixels in the image with the color 0.5020 can be displayed
as transparent. An alpha channel is an array with the same number of pixels
as are in the image, which indicates the transparency status of each
corresponding pixel in the image (transparent or nontransparent).

Another potential PNG component related to transparency is the background
color chunk, which (if present) defines a color value that can be used behind all
transparent pixels. This section identifies the default behavior of the toolbox
for reading PNG images that contain either a transparency chunk or an alpha
channel, and describes how you can override it.

Case 1. You do not ask to output the alpha channel and do not specify a
background color to use. For example,

[A,map] = imread(filename);
A = imread(filename);

If the PNG file contains a background color chunk, the transparent pixels are
composited against the specified background color.

If the PNG file does not contain a background color chunk, the transparent
pixels are composited against 0 for grayscale (black), 1 for indexed (first color
in map), or [0 0 0] for RGB (black).

Case 2. You do not ask to output the alpha channel, but you specify the
background color parameter in your call. For example,

[...] = imread(...,'BackgroundColor',bg);

The transparent pixels will be composited against the specified color. The form
of bg depends on whether the file contains an indexed, intensity (grayscale), or
RGB image. If the input image is indexed, bg should be an integer in the range
[1,P] where P is the colormap length. If the input image is intensity, bg should

imread

2-375

be an integer in the range [0,1]. If the input image is RGB, bg should be a
three-element vector whose values are in the range [0,1].

There is one exception to the toolbox’s behavior of using your background color.
If you set background to 'none' no compositing is performed. For example,

[...] = imread(...,'Back','none');

Note If you specify a background color, you cannot output the alpha channel.

Case 3. You ask to get the alpha channel as an output variable. For example,

[A,map,alpha] = imread(filename);
[A,map,alpha] = imread(filename,fmt);

No compositing is performed; the alpha channel is stored separately from the
image (not merged into the image as in cases 1 and 2). This form of imread
returns the alpha channel if one is present, and also returns the image and any
associated colormap. If there is no alpha channel, alpha returns []. If there is
no colormap, or the image is grayscale or truecolor, map may be empty.

TIFF-Specific Syntax
[...] = imread(...,idx) reads in one image from a multi-image TIFF file.
idx is an integer value that specifies the order in which the image appears in
the file. For example, if idx is 3, imread reads the third image in the file. If you
omit this argument, imread reads the first image in the file.

Format Support
This table summarizes the types of images that imread can read.

Format Variants

BMP 1-bit, 4-bit, 8-bit, 16-bit, 24-bit, and 32-bit uncompressed
images; 4-bit and 8-bit run-length encoded (RLE) images

CUR 1-bit, 4-bit, and 8-bit uncompressed images

HDF 8-bit raster image datasets, with or without an associated
colormap; 24-bit raster image datasets

imread

2-376

Class Support In most of the image file formats supported by imread, pixels are stored using
8 or fewer bits per color plane. If the file contains only 1 bit per pixel, the class
of the output (A or X) is logical. When reading other files with 8 or fewer bits per
color plane, the class of the output is uint8. imread also supports reading
16-bit-per-pixel data from BMP, TIFF and PNG files. For 16-bit TIFF and PNG

ICO 1-bit, 4-bit, and 8-bit uncompressed images

JPEG Any baseline JPEG image; JPEG images with some
commonly used extensions

PBM Any 1-bit PBM image; raw (binary) or ASCII (plain)
encoded

PCX 1-bit, 8-bit, and 24-bit images

PGM Any standard PGM image; ASCII (plain) encoded with
arbitrary color depth; raw (binary) encoded with up to 16
bits per gray value

PNG Any PNG image, including 1-bit, 2-bit, 4-bit, 8-bit, and
16-bit grayscale images; 8-bit and 16-bit indexed images;
24-bit and 48-bit RGB images

PPM Any PPM image; ASCII (plain) encoded with arbitrary color
depth; raw (binary) encoded with up to 16 bits per color
component

RAS Any RAS image, including 1-bit bitmap, 8-bit indexed,
24-bit truecolor and 32-bit truecolor with alpha

TIFF Any baseline TIFF image, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, and 24-bit images with
packbits compression; 1-bit images with CCITT
compression; also 16-bit grayscale, 16-bit indexed, and
48-bit RGB images

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

Format Variants

imread

2-377

image files, the class of the output (A or X) is uint16 and for 16-bit BMP image
files, the class of the output is uint8.

Note For indexed images, imread always reads the colormap into an array of
class double, even though the image array itself may be of class uint8 or
uint16.

Remarks imread is a function in MATLAB.

Examples This example reads the sixth image in a TIFF file.

[X,map] = imread('your_image.tif',6);

This example reads the fourth image in an HDF file.

info = imfinfo('your_hdf_file.hdf');
[X,map] = imread('your_hdf_file.hdf',info(4).Reference);

This example reads a 24-bit PNG image and sets any of its fully transparent
(alpha channel) pixels to red.

bg = [255 0 0];
A = imread('your_image.png','BackgroundColor',bg);

This example returns the alpha channel (if any) of a PNG image.

[A,map,alpha] = imread('your_image.png');

This example reads an ICO image, applies a transparency mask, and then
displays the image.

[a,b,c] = imread('your_icon.ico');
% Augment colormap for background color (white).
b2 = [b; 1 1 1];
% Create new image for display.
d = ones(size(a)) * (length(b2) - 1);
% Use the AND mask to mix the background and
% foreground data on the new image
d(c == 0) = a(c == 0);
% Display new image

imread

2-378

image(uint8(d)), colormap(b2)

See Also double, fread, imfinfo, imformats, imwrite, uint8, uint16

“Bit-Mapped Images” for related functions

imwrite

2-379

2imwritePurpose Write image to graphics file

Syntax imwrite(A,filename,fmt)
imwrite(X,map,filename,fmt)
imwrite(...,filename)
imwrite(...,Param1,Val1,Param2,Val2...)

Description imwrite(A,filename,fmt) writes the image in A to filename in the format
specified by fmt. A can be either a grayscale image (M-by-N) or a truecolor
image (M-by-N-by-3). filename is a string that specifies the name of the output
file. Empty image data is not allowed. The possible values for fmt are
determined by the MATLAB file format registry. See imformats for more
information about this registry. To view a summary of these formats, see
“Supported Formats” on page 2-379.

imwrite(X,map,filename,fmt) writes the indexed image in X and its
associated colormap map to filename in the format specified by fmt. If X is of
class uint8 or uint16, imwrite writes the actual values in the array to the
file. If X is of class double, the imwrite function offsets the values in the array
before writing using uint8(X–1). The map parameter must be a valid MATLAB
colormap. Note that most image file formats do not support colormaps with
more than 256 entries.

imwrite(...,filename) writes the image to filename, inferring the format to
use from the filename’s extension. The extension must be one of the legal
values for fmt.

imwrite(...,Param1,Val1,Param2,Val2...) specifies parameters that
control various characteristics of the output file. For example, if you are
writing a JPEG file, you can set the quality of the JPEG compression.
Parameter settings can currently be made for HDF, JPEG, PBM, PGM, PNG,
PPM, and TIFF files. For the lists of parameters available for each format, see
“Format-Specific Parameters” on page 2-381.

Supported
Formats

This table summarizes the types of images that imwrite can write. The
MATLAB file format registry determines which file formats are supported. See
imformats for more information about this registry. Note that, for certain

imwrite

2-380

formats, imwrite may take additional parameters, described in
“Format-Specific Parameters” on page 2-381.

Format Full Name Variants

'bmp' Windows
Bitmap

1-bit, 8-bit, and 24-bit uncompressed images

'hdf' Hierarchical
Data Format

8-bit raster image datasets, with or without associated
colormap, 24-bit raster image datasets; uncompressed or with
RLE or JPEG compression

'jpg' or
'jpeg'

Joint
Photographic
Experts
Group

Baseline JPEG images (8- or 24-bit) Note: Indexed images are
converted to RGB before writing out JPEG files, because the
JPEG format does not support indexed images.

'pbm' Portable
Bitmap

Any 1-bit PBM image, ASCII (plain) or raw (binary) encoding

'pcx' Windows
Paintbrush

8-bit images

'pgm' Portable
Graymap

Any standard PGM image; ASCII (plain) encoded with
arbitrary color depth; raw (binary) encoded with up to 16 bits
per gray value

'png' Portable
Network
Graphics

1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images; 8-bit and
16-bit grayscale images with alpha channels; 1-bit, 2-bit, 4-bit,
and 8-bit indexed images; 24-bit and 48-bit truecolor images
with or without alpha channels

'pnm' Portable
Anymap

Any of the PPM/PGM/PBM formats, chosen automatically

'ppm' Portable
Pixmap

Any standard PPM image. ASCII (plain) encoded with
arbitrary color depth; raw (binary) encoded with up to 16 bits
per color component

'ras' Sun Raster Any RAS image, including 1-bit bitmap, 8-bit indexed, 24-bit
truecolor and 32-bit truecolor with alpha

imwrite

2-381

Format-Specific
Parameters

The following tables list parameters that can be used with specific file formats.

HDF-Specific Parameters
This table describes the available parameters for HDF files.

'tif' or
'tiff'

Tagged Image
File Format

Baseline TIFF images, including 1-bit, 8-bit, 16-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, 16-bit, and 24-bit images
with packbits compression; 1-bit images with CCITT 1D,
Group 3, and Group 4 compression

'xwd' X Windows
Dump

8-bit ZPixmaps

Format Full Name Variants

Parameter Values Default

'Compression' One of these strings:
'none'
'jpeg' (valid only for grayscale and RGB images)
'rle' (valid only for grayscale and indexed images)

'rle'

'Quality' A number between 0 and 100; this parameter
applies only if 'Compression' is 'jpeg'.
Higher numbers mean higher quality (less image
degradation due to compression), but the resulting
file size is larger.

75

'WriteMode' One of these strings: 'overwrite', or 'append'. 'overwrite'

imwrite

2-382

JPEG-Specific Parameters
This table describes the available parameters for JPEG files.

RAS-Specific Parameters
This table describes the available parameters for RAS files.

Parameter Values Default

'Quality' A number between 0 and 100; higher numbers
mean higher quality (less image degradation due to
compression), but the resulting file size is larger.

75

'Comment' A column vector cell array of strings or a character
matrix. Each row of input is written out as a
comment in the JPEG file

Empty

Parameter Values Default

'Type' One of these strings:
'standard' (uncompressed, b-g-r color order with
truecolor images)
'rgb' (like 'standard', but uses r-g-b color order
for truecolor images)
'rle' (run-length encoding of 1-bit and 8-bit
images).

'standard'

'Alpha' A matrix specifying the transparency of each pixel
individually; the row and column dimensions must
be the same as the data array; may be uint8,
uint16, or double. May only be used with truecolor
images.

Empty matrix
([])

imwrite

2-383

TIFF-Specific Parameters
This table describes the available parameters for TIFF files.

PNG-Specific Parameters
This table describes the available parameters for PNG files.

Parameter Values Default

'Compression' One of these strings: 'none', 'packbits', 'ccitt',
'fax3', or 'fax4'. The 'ccitt', 'fax3', and
'fax4' compression schemes are valid for binary
images only.

'ccitt' for
binary images;
'packbits' for
nonbinary images

'Description' Any string; fills in the ImageDescription field
returned by imfinfo.

Empty

'Resolution' A two-element vector containing the XResolution
and YResolution, or a scalar indicating both
resolutions.

72

'WriteMode' One of these strings: 'overwrite' or 'append'. 'overwrite'

Parameter Values Default

'Author' A string Empty

'Description' A string Empty

'Copyright' A string Empty

'CreationTime' A string Empty

'Software' A string Empty

'Disclaimer' A string Empty

'Warning' A string Empty

'Source' A string Empty

'Comment' A string Empty

imwrite

2-384

'InterlaceType' Either 'none' or 'adam7'. 'none'

'BitDepth' A scalar value indicating desired bit depth. For
grayscale images this can be 1, 2, 4, 8, or 16.
For grayscale images with an alpha channel this
can be 8 or 16. For indexed images this can be 1, 2,
4, or 8. For truecolor images with or without an
alpha channel this can be 8 or 16.

8 bits per pixel if
image is double or
uint8
16 bits per pixel if
image is uint16
1 bit per pixel if
image is logical

'Transparency' This value is used to indicate transparency
information only when no alpha channel is used. Set
to the value that indicates which pixels should be
considered transparent. (If the image uses a
colormap, this value represents an index number to
the colormap.)

For indexed images: a Q-element vector in the range
[0,1], where Q is no larger than the colormap length
and each value indicates the transparency
associated with the corresponding colormap entry.
In most cases, Q=1.

For grayscale images: a scalar in the range [0,1].
The value indicates the grayscale color to be
considered transparent.

For truecolor images: a three-element vector in the
range [0,1]. The value indicates the truecolor color
to be considered transparent.

Note: You cannot specify 'Transparency' and
'Alpha' at the same time.

Empty

Parameter Values Default

imwrite

2-385

In addition to these PNG parameters, you can use any parameter name that
satisfies the PNG specification for keywords, including only printable

'Background' The value specifies background color to be used
when compositing transparent pixels. For indexed
images: an integer in the range [1,P], where P is the
colormap length. For grayscale images: a scalar in
the range [0,1]. For truecolor images: a
three-element vector in the range [0,1].

Empty

'Gamma' A nonnegative scalar indicating the file gamma. Empty

'Chromaticities' An eight-element vector [wx wy rx ry gx gy bx
by] that specifies the reference white point and the
primary chromaticities.

Empty

'XResolution' A scalar indicating the number of pixels/unit in the
horizontal direction.

Empty

'YResolution' A scalar indicating the number of pixels/unit in the
vertical direction.

Empty

'ResolutionUnit' Either 'unknown' or 'meter'. Empty

'Alpha' A matrix specifying the transparency of each pixel
individually. The row and column dimensions must
be the same as the data array; they can be uint8,
uint16, or double, in which case the values should
be in the range [0,1].

Empty

'SignificantBits' A scalar or vector indicating how many bits in the
data array should be regarded as significant; values
must be in the range [1,BitDepth].
For indexed images: a three-element vector. For
grayscale images: a scalar. For grayscale images
with an alpha channel: a two-element vector. For
truecolor images: a three-element vector. For
truecolor images with an alpha channel: a
four-element vector.

Empty

Parameter Values Default

imwrite

2-386

characters, 80 characters or fewer, and no leading or trailing spaces. The value
corresponding to these user-specified parameters must be a string that
contains no control characters other than linefeed.

PBM-, PGM-, and PPM-Specific Parameters
This table describes the available parameters for PBM, PGM, and PPM files.

Class Support Most of the supported image file formats store uint8 data. PNG and TIFF
formats additionally support uint16 data. For grayscale and RGB images, if
the data array is double, the assumed dynamic range is [0,1]. The data array
is automatically scaled by 255 before being written as uint8. If the data array
is uint8 or uint16, it is written without scaling as uint8 or uint16,
respectively.

Note When the imwrite function writes logical data to a BMP, PNG or
TIFF file, it assumes the data is a binary image and writes it to the file with a
bit-depth of 1.

For indexed images, if the index array is double, then the indices are first
converted to zero-based indices by subtracting 1 from each element, and then
they are written as uint8. If the index array is uint8 or uint16, then it is
written without modification as uint8 or uint16, respectively. When writing
PNG files, you can override this behavior with the 'BitDepth' parameter; see
“PNG-Specific Syntax” on page 2-374 for details.

Parameter Values Default

'Encoding' One of these strings: 'ASCII' for plain encoding or
'rawbits' for binary encoding.

'rawbits'

'MaxValue' A scalar indicating the maximum gray or color
value. Available only for PGM and PPM files.
For PBM files, this value is always 1.

Default is 65535
if image array is
'uint16'; 255
otherwise

imwrite

2-387

Example This example appends an indexed image X and its colormap map to an existing
uncompressed multipage HDF file.

imwrite(X,map,'your_hdf_file.hdf','Compression','none',...
'WriteMode','append')

See Also fwrite, imfinfo, imformats, imread

“Bit-Mapped Images” for related functions

ind2rgb

2-388

2ind2rgbPurpose Convert an indexed image to an RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts the matrix X and corresponding colormap map
to RGB (truecolor) format.

Class Support X can be of class uint8, uint16, or double. RGB is an m-by-n-3 array of class
double.

See Also image

“Bit-Mapped Images” for related functions

ind2sub

2-389

2ind2subPurpose Subscripts from linear index

Syntax [I,J] = ind2sub(siz,IND)
[I1,I2,I3,...,In] = ind2sub(siz,IND)

Description The ind2sub command determines the equivalent subscript values
corresponding to a single index into an array.

[I,J] = ind2sub(siz,IND) returns the matrices I and J containing the
equivalent row and column subscripts corresponding to each linear index in the
matrix IND for a matrix of size siz. siz is a 2-element vector, where siz(1) is
the number of rows and siz(2) is the number of columns.

Note For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns the same
values as [I,J] = find(A>5).

[I1,I2,I3,...,In] = ind2sub(siz,IND) returns n subscript arrays
I1,I2,..,In containing the equivalent multidimensional array subscripts
equivalent to IND for an array of size siz. siz is an n-element vector that
specifies the size of each array dimension.

Examples Example 1. The mapping from linear indexes to subscript equivalents for a
3-by-3 matrix is

This code determines the row and column subscripts in a 3-by-3 matrix, of
elements with linear indices 3, 4, 5, 6.

3

1 4

2 5

6

7

8

9 3,1

1,1 1,2

2,1 2,2

3,2

1,3

2,3

3,3

ind2sub

2-390

IND = [3 4 5 6]
s = [3,3];
[I,J] = ind2sub(s,IND)

I =
 3 1 2 3

J =
 1 2 2 2

Example 2. The mapping from linear indexes to subscript equivalents for a
2-by-2-by-2 array is

This code determines the subscript equivalents in a 2-by-2-by-2 array, of
elements whose linear indices 3, 4, 5, 6 are specified in the IND matrix.

IND = [3 4;5 6];
s = [2,2,2];
[I,J,K] = ind2sub(s,IND)

I =
 1 2
 1 2

J =
 2 2
 1 1

1,2,21,1,2

2,2,22,1,2

1,2,11,1,1

2,2,12,1,1

75

86

31

42

ind2sub

2-391

K =
 1 1
 2 2

See Also find, size, sub2ind

Inf

2-392

2InfPurpose Infinity

Syntax inf

Description Inf returns the IEEE arithmetic representation for positive infinity. Infinity
results from operations like division by zero and overflow, which lead to results
too large to represent as conventional floating-point values.

Examples 1/0, 1.e1000, 2^1000, and exp(1000) all produce Inf.

log(0) produces -Inf.

Inf-Inf and Inf/Inf both produce NaN (Not-a-Number).

See Also isinf, NaN

inferiorto

2-393

2inferiortoPurpose Inferior class relationship

Syntax inferiorto('class1','class2',...)

Description The inferiorto function establishes a hierarchy which determines the order
in which MATLAB calls object methods.

inferiorto('class1','class2',...) invoked within a class constructor
method (say myclass.m) indicates that myclass's method should not be invoked
if a function is called with an object of class myclass and one or more objects of
class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of class
'class_c'. Also suppose the constructor class_c.m contains the statement:
inferiorto('class_a'). Then e = fun(a,c) or e = fun(c,a) invokes
class_a/fun.

If a function is called with two objects having an unspecified relationship, the
two objects are considered to have equal precedence, and the leftmost object's
method is called. So, fun(b,c) calls class_b/fun, while fun(c,b) calls
class_c/fun.

See Also superiorto

info

2-394

2infoPurpose Display information about The MathWorks or products

Syntax info
info toolbox

Description info displays contact information about MATLAB and The MathWorks in the
Command Window, including phone and fax numbers and e-mail addresses.

info toolbox displays the Readme file for the specified toolbox in the Help
browser. If the Readme file does not exist, the Release Notes for the specified
toolbox are displayed instead. These documents contain information about
problems from previous releases that have been fixed in the current release.

inline

2-395

2inlinePurpose Construct an inline object

Syntax g = inline(expr)
g = inline(expr,arg1,arg2,...)
g = inline(expr,n)

Description inline(expr) constructs an inline function object from the MATLAB
expression contained in the string expr. The input argument to the inline
function is automatically determined by searching expr for an isolated lower
case alphabetic character, other than i or j, that is not part of a word formed
from several alphabetic characters. If no such character exists, x is used. If the
character is not unique, the one closest to x is used. If two characters are found,
the one later in the alphabet is chosen.

inline(expr,arg1,arg2, ...) constructs an inline function whose input
arguments are specified by the strings arg1, arg2,.... Multicharacter symbol
names may be used.

inline(expr,n) where n is a scalar, constructs an inline function whose input
arguments are x, P1, P2,

Remarks Three commands related to inline allow you to examine an inline function
object and determine how it was created.

char(fun) converts the inline function into a character array. This is identical
to formula(fun).

argnames(fun) returns the names of the input arguments of the inline object
fun as a cell array of strings.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ^, * or /' in the
formula for fun. The result is a vectorized version of the inline function.

Examples Example 1. This example creates a simple inline function to square a number.

g = inline('t^2')
g =

 Inline function:

inline

2-396

 g(t) = t^2

You can convert the result to a string using the char function.

char(g)

ans =

t^2

Example 2. This example creates an inline function to represent the formula
. The resulting inline function can be evaluated with the

argnames and formula functions.

f = inline('3*sin(2*x.^2)')

f =
 Inline function:
 f(x) = 3*sin(2*x.^2)

argnames(f)

ans =
 'x'

formula(f)
ans =

3*sin(2*x.^2)ans =

Example 3. This call to inline defines the function f to be dependent on two
variables, alpha and x:

f = inline('sin(alpha*x)')

f =
 Inline function:
 f(alpha,x) = sin(alpha*x)

If inline does not return the desired function variables or if the function
variables are in the wrong order, you can specify the desired variables
explicitly with the inline argument list.

f 3 2x2()sin=

inline

2-397

g = inline('sin(alpha*x)','x','alpha')

g =

 Inline function:
 g(x,alpha) = sin(alpha*x)

inmem

2-398

2inmemPurpose Return functions in memory

Syntax M = inmem
[M,X] = inmem
[M,X,J] = inmem

Description M = inmem returns a cell array of strings containing the names of the M-files
that are currently loaded.

[M,X] = inmem returns an additional cell array, X, containing the names of
the MEX-files that are currently loaded.

[M,X,J] = inmem also returns a cell array, J, containing the names of the
Java classes that are currently loaded.

Examples This example lists the M-files that are required to run erf.

clear all; % Clear the workspace
erf(0.5);
M = inmem

M =

 'erf'

See Also clear

inpolygon

2-399

2inpolygonPurpose Detect points inside a polygonal region

Syntax IN = inpolygon(X,Y,xv,yv)

Description IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as X and Y.
Each element of IN is assigned one of the values 1, 0.5 or 0, depending on
whether the point (X(p,q),Y(p,q)) is inside the polygonal region whose
vertices are specified by the vectors xv and yv. In particular:

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
x = randn(250,1); y = randn(250,1);
in = inpolygon(x,y,xv,yv);
plot(xv,yv,x(in),y(in),'r+',x(~in),y(~in),'bo')

IN(p,q) = 1 If (X(p,q),Y(p,q)) is inside the polygonal region

IN(p,q) = 0.5 If (X(p,q),Y(p,q)) is on the polygon boundary

IN(p,q) = 0 If (X(p,q),Y(p,q)) is outside the polygonal region

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

input

2-400

2inputPurpose Request user input

Syntax user_entry = input('prompt')
user_entry = input('prompt','s')

Description The response to the input prompt can be any MATLAB expression, which is
evaluated using the variables in the current workspace.

user_entry = input('prompt') displays prompt as a prompt on the screen,
waits for input from the keyboard, and returns the value entered in
user_entry.

user_entry = input('prompt','s') returns the entered string as a text
variable rather than as a variable name or numerical value.

Remarks If you press the Return key without entering anything, input returns an empty
matrix.

The text string for the prompt may contain one or more '\n' characters. The
'\n' means to skip to the next line. This allows the prompt string to span
several lines. To display just a backslash, use '\\'.

Examples Press Return to select a default value by detecting an empty matrix:

reply = input('Do you want more? Y/N [Y]: ','s');
if isempty(reply)
 reply = 'Y';
end

See Also keyboard, menu, ginput, uicontrol

inputdlg

2-401

2inputdlgPurpose Create input dialog box

Syntax answer = inputdlg(prompt)
answer = inputdlg(prompt,dlg_title)
answer = inputdlg(prompt,dlg_title,num_lines)
answer = inputdlg(prompt,dlg_title,num_lines,defAns)
answer = inputdlg(prompt,dlg_title,num_lines,defAns,Resize)

Description answer = inputdlg(prompt) creates a modal dialog box and returns user
inputs in the cell array. prompt is a cell array containing prompt strings.

answer = inputdlg(prompt,dlg_title) dlg_title specifies a title for the
dialog box.

answer = inputdlg(prompt,dlg_title,num_lines) num_lines specifies the
number of lines for each user entered value. num_lines can be a scalar, column
vector, or matrix.

• If num_lines is a scalar, it applies to all prompts.

• If num_lines is a column vector, each element specifies the number of lines
of input for a prompt.

• If num_lines is a matrix, it should be size m-by-2, where m is the number of
prompts on the dialog box. Each row refers to a prompt. The first column
specifies the number of lines of input for a prompt. The second column
specifies the width of the field in characters.

answer = inputdlg(prompt,dlg_title,num_lines,defAns) defAns specifies
the default value to display for each prompt. defAns must contain the same
number of elements as prompt and all elements must be strings.

answer = inputdlg(prompt,dlg_title,num_lines,defAns,Resize) Resize
specifies whether or not the dialog box can be resized. Permissible values are
'on' and 'off' where 'on' means that the dialog box can be resized and that
the dialog box is not modal.

Example Create a dialog box to input an integer and colormap name. Allow one line for
each value.

prompt = {'Enter matrix size:','Enter colormap name:'};

inputdlg

2-402

dlg_title = 'Input for peaks function';
num_lines= 1;
def = {'20','hsv'};
answer = inputdlg(prompt,dlg_title,num_lines,def);

See Also dialog, errordlg, helpdlg, questdlg, warndlg

“Predefined Dialog Boxes” for related functions

inputname

2-403

2inputnamePurpose Input argument name

Syntax inputname(argnum)

Description This command can be used only inside the body of a function.

inputname(argnum) returns the workspace variable name corresponding to
the argument number argnum. If the input argument has no name (for
example, if it is an expression instead of a variable), the inputname command
returns the empty string ('').

Examples Suppose the function myfun.m is defined as:

function c = myfun(a,b)
disp(sprintf('First calling variable is "%s".',inputname(1))

Then

x = 5; y = 3; myfun(x,y)

produces

First calling variable is "x".

But

myfun(pi+1,pi-1)

produces

First calling variable is "".

See Also nargin, nargout, nargchk

inspect

2-404

2inspectPurpose Display graphical user interface to list and modify property values

Syntax inspect
inspect(h)

Description inspect creates a separate Property Inspector window to enable the display
and modification of the properties of any object you select in the figure window
or Layout Editor.

inspect(h) creates a Property Inspector window for the graphics, Java, or
COM object attached to handle, h.

To change the value of any property, click on the property name shown at the
left side of the window, and then enter the new value in the field at the right.

Note If you modify properties at the MATLAB command line, you must
refresh the Property Inspector window to see the change reflected there.
Refresh the Property Inspector by reinvoking inspect on the object.

Example Create a COM Excel server and open a Property Inspector window with
inspect:

h = actxserver('excel.application');
inspect(h)

Scroll down until you see the DefaultFilePath property. Click on the property
name shown at the left. Then replace the text at the right with C:\ExcelWork.

inspect

2-405

Check this field in the MATLAB command window and confirm that it has
changed:

get(h, 'DefaultFilePath')
ans =
 C:\ExcelWork

See Also get, set, isprop, guide, addproperty, deleteproperty

instrcallback

2-406

2instrcallbackPurpose Display event information when an event occurs

Syntax instrcallback(obj,event)

Arguments

Description instrcallback(obj,event) displays a message that contains the event type,
the time the event occurred, and the name of the serial port object that caused
the event to occur.

For error events, the error message is also displayed. For pin status events, the
pin that changed value and its value are also displayed.

Remarks You should use instrcallback as a template from which you create callback
functions that suit your specific application needs.

Example The following example creates the serial port objects s, and configures s to
execute instrcallback when an output-empty event occurs. The event occurs
after the *IDN? command is written to the instrument.

s = serial('COM1');
set(s,'OutputEmptyFcn',@instrcallback)
fopen(s)
fprintf(s,'*IDN?','async')

The resulting display from instrcallback is shown below.

OutputEmpty event occurred at 08:37:49 for the object:
Serial-COM1.

Read the identification information from the input buffer and end the serial
port session.

idn = fscanf(s);
fclose(s)
delete(s)
clear s

obj An serial port object.

event The event that caused the callback to execute.

instrfind

2-407

2instrfindPurpose Return serial port objects from memory to the MATLAB workspace

Syntax out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Arguments

Description out = instrfind returns all valid serial port objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an array of
serial port objects whose property names and property values match those
specified.

out = instrfind(S) returns an array of serial port objects whose property
names and property values match those defined in the structure S. The field
names of S are the property names, while the field values are the associated
property values.

out = instrfind(obj,'PropertyName',PropertyValue,...) restricts the
search for matching property name/property value pairs to the serial port
objects listed in obj.

Remarks Refer to “Displaying Property Names and Property Values” for a list of serial
port object properties that you can use with instrfind.

You must specify property values using the same format as the get function
returns. For example, if get returns the Name property value as MyObject,
instrfind will not find an object with a Name property value of myobject.
However, this is not the case for properties that have a finite set of string

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

S A structure of property names and property values.

obj A serial port object, or an array of serial port objects.

out An array of serial port objects.

instrfind

2-408

values. For example, instrfind will find an object with a Parity property
value of Even or even.

You can use property name/property value string pairs, structures, and cell
array pairs in the same call to instrfind.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'BaudRate',4800)
fopen([s1 s2])

You can use instrfind to return serial port objects based on property values.

out1 = instrfind('Port','COM1');
out2 = instrfind({'Port','BaudRate'},{'COM2',4800});

You can also use instrfind to return cleared serial port objects to the
MATLAB workspace.

clear s1 s2
newobjs = instrfind

 Instrument Object Array
 Index: Type: Status: Name:
 1 serial open Serial-COM1
 2 serial open Serial-COM2

To close both s1 and s2

fclose(newobjs)

See Also Functions
clear, get

int2str

2-409

2int2strPurpose Integer to string conversion

Syntax str = int2str(N)

Description str = int2str(N) converts an integer to a string with integer format. The
input N can be a single integer or a vector or matrix of integers. Noninteger
inputs are rounded before conversion.

Examples int2str(2+3) is the string '5'.

One way to label a plot is

title(['case number ' int2str(n)])

For matrix or vector inputs, int2str returns a string matrix:

int2str(eye(3))

ans =

1 0 0
0 1 0
0 0 1

See Also fprintf, num2str, sprintf

int8, int16, int32, int64

2-410

2int8, int16, int32, int64Purpose Convert to signed integer

Syntax i = int8(x)
i = int16(x)
i = int32(x)
i = int64(x)

Description i = int*(x) converts the vector x into a signed integer. x can be any numeric
object (such as a double). The results of an int* operation are shown in the
next table.

A value of x above or below the range for a class is mapped to one of the
endpoints of the range. If x is already a signed integer of the same class, int*
has no effect.

The int* class is primarily meant to store integer values. Most operations that
manipulate arrays without changing their elements are defined. (Examples
are reshape, size, the logical and relational operators, subscripted
assignment, and subscripted reference.) No math operations except for sum are
defined for int* since such operations are ambiguous on the boundary of the
set. (For example, they could wrap or truncate there.) You can define your own
methods for int* (as you can for any object) by placing the appropriately
named method in an @int* directory within a directory on your path.

Type help datatypes for the names of the methods you can overload.

Operation Output Range Output Type Bytes per
Element

Output Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32,768 to 32,767 Signed 16-bit
integer

2 int16

int32 -2,147,483,648 to 2,147,483,647 Signed 32-bit
integer

4 int32

int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit
integer

8 int64

int8, int16, int32, int64

2-411

See Also double, single, uint8, uint16, uint32, uint64

interp1

2-412

2interp1Purpose One-dimensional data interpolation (table lookup)

Syntax yi = interp1(x,Y,xi)
yi = interp1(Y,xi)
yi = interp1(x,Y,xi,method)
yi = interp1(x,Y,xi,method,'extrap')
yi = interp1(x,Y,xi,method,extrapval)

Description yi = interp1(x,Y,xi) returns vector yi containing elements corresponding
to the elements of xi and determined by interpolation within vectors x and Y.
The vector x specifies the points at which the data Y is given. If Y is a matrix,
then the interpolation is performed for each column of Y and yi is
length(xi)-by-size(Y,2).

yi = interp1(Y,xi) assumes that x = 1:N, where N is the length of Y for
vector Y, or size(Y,1) for matrix Y.

yi = interp1(x,Y,xi,method) interpolates using alternative methods:

For the 'nearest', 'linear', and 'v5cubic' methods,
interp1(x,Y,xi,method) returns NaN for any element of xi that is outside the
interval spanned by x. For all other methods, interp1 performs extrapolation
for out of range values.

yi = interp1(x,Y,xi,method,'extrap') uses the specified method to
perform extrapolation for out of range values.

yi = interp1(x,Y,xi,method,extrapval) returns the scalar extrapval for
out of range values. NaN and 0 are often used for extrapval.

'nearest' Nearest neighbor interpolation

'linear' Linear interpolation (default)

'spline' Cubic spline interpolation

'pchip' Piecewise cubic Hermite interpolation

'cubic' (Same as 'pchip')

'v5cubic' Cubic interpolation used in MATLAB 5

interp1

2-413

The interp1 command interpolates between data points. It finds values at
intermediate points, of a one-dimensional function that underlies the
data. This function is shown below, along with the relationship between
vectors x, Y, xi, and yi.

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is [x,Y] and interp1 looks up the elements of xi in x, and,
based upon their locations, returns values yi interpolated within the elements
of Y.

Note interp1q is quicker than interp1 on non-uniformly spaced data
because it does no input checking. For interp1q to work properly, x must be a
monotonically increasing column vector and Y must be a column vector or
matrix with length(X) rows. Type help interp1q at the command line for
more information.

Examples Example 1. Generate a coarse sine curve and interpolate over a finer abscissa.

x = 0:10;
y = sin(x);
xi = 0:.25:10;
yi = interp1(x,y,xi);
plot(x,y,'o',xi,yi)

f x()

x

xi

Y yi

f(x)

interp1

2-414

Example 2. Here are two vectors representing the census years from 1900 to
1990 and the corresponding United States population in millions of people.

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669...
 150.697 179.323 203.212 226.505 249.633];

The expression interp1(t,p,1975) interpolates within the census data to
estimate the population in 1975. The result is

ans =
 214.8585

Now interpolate within the data at every year from 1900 to 2000, and plot the
result.

 x = 1900:1:2000;
 y = interp1(t,p,x,'spline');
 plot(t,p,'o',x,y)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

interp1

2-415

Sometimes it is more convenient to think of interpolation in table lookup
terms, where the data are stored in a single table. If a portion of the census
data is stored in a single 5-by-2 table,

tab =
 1950 150.697
 1960 179.323
 1970 203.212
 1980 226.505
 1990 249.633

then the population in 1975, obtained by table lookup within the matrix tab, is

p = interp1(tab(:,1),tab(:,2),1975)
p =
 214.8585

Algorithm The interp1 command is a MATLAB M-file. The 'nearest' and 'linear'
methods have straightforward implementations.

For the 'spline' method, interp1 calls a function spline that uses the
functions ppval, mkpp, and unmkpp. These routines form a small suite of
functions for working with piecewise polynomials. spline uses them to

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
50

100

150

200

250

300

interp1

2-416

perform the cubic spline interpolation. For access to more advanced features,
see the spline reference page, the M-file help for these functions, and the
Spline Toolbox.

For the 'pchip' and 'cubic' methods, interp1 calls a function pchip that
performs piecewise cubic interpolation within the vectors x and y. This method
preserves monotonicity and the shape of the data. See the pchip reference page
for more information.

See Also interpft, interp2, interp3, interpn, pchip, spline

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

interp2

2-417

2interp2Purpose Two-dimensional data interpolation (table lookup)

Syntax ZI = interp2(X,Y,Z,XI,YI)
ZI = interp2(Z,XI,YI)
ZI = interp2(Z,ntimes)
ZI = interp2(X,Y,Z,XI,YI,method)

Description ZI = interp2(X,Y,Z,XI,YI) returns matrix ZI containing elements
corresponding to the elements of XI and YI and determined by interpolation
within the two-dimensional function specified by matrices X, Y, and Z. X and Y
must be monotonic, and have the same format (“plaid”) as if they were
produced by meshgrid. Matrices X and Y specify the points at which the data Z
is given. Out of range values are returned as NaNs.

XI and YI can be matrices, in which case interp2 returns the values of Z
corresponding to the points (XI(i,j),YI(i,j)). Alternatively, you can pass in
the row and column vectors xi and yi, respectively. In this case, interp2
interprets these vectors as if you issued the command meshgrid(xi,yi).

ZI = interp2(Z,XI,YI) assumes that X = 1:n and Y = 1:m, where
[m,n] = size(Z).

ZI = interp2(Z,ntimes) expands Z by interleaving interpolates between
every element, working recursively for ntimes. interp2(Z) is the same as
interp2(Z,1).

ZI = interp2(X,Y,Z,XI,YI,method) specifies an alternative interpolation
method:

All interpolation methods require that X and Y be monotonic, and have the
same format (“plaid”) as if they were produced by meshgrid. If you provide two
monotonic vectors, interp2 changes them to a plaid internally. Variable
spacing is handled by mapping the given values in X, Y, XI, and YI to an equally

'nearest' Nearest neighbor interpolation

'linear' Bilinear interpolation (default)

'spline' Cubic spline interpolation

'cubic' Bicubuc interpolation

interp2

2-418

spaced domain before interpolating. For faster interpolation when X and Y are
equally spaced and monotonic, use the methods '*linear', '*cubic',
'*spline', or '*nearest'.

Remarks The interp2 command interpolates between data points. It finds values of a
two-dimensional function underlying the data at intermediate points.

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is tab = [NaN,Y; X,Z] and interp2 looks up the elements of
XI in X, YI in Y, and, based upon their location, returns values ZI interpolated
within the elements of Z.

Examples Example 1. Interpolate the peaks function over a finer grid.

[X,Y] = meshgrid(-3:.25:3);
Z = peaks(X,Y);
[XI,YI] = meshgrid(-3:.125:3);
ZI = interp2(X,Y,Z,XI,YI);
mesh(X,Y,Z), hold, mesh(XI,YI,ZI+15)
hold off
axis([-3 3 -3 3 -5 20])

f x y,()

f(x,y)
Interpolated points P(XI,YI,ZI)

Grid points P(X,Y,Z)

interp2

2-419

Example 2. Given this set of employee data,

years = 1950:10:1990;
service = 10:10:30;
wage = [150.697 199.592 187.625

179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.243];

it is possible to interpolate to find the wage earned in 1975 by an employee with
15 years’ service:

w = interp2(service,years,wage,15,1975)
w =
 190.6287

See Also griddata, interp1, interp3, interpn, meshgrid

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−5

0

5

10

15

20

interp3

2-420

2interp3Purpose Three-dimensional data interpolation (table lookup)

Syntax VI = interp3(X,Y,Z,V,XI,YI,ZI)
VI = interp3(V,XI,YI,ZI)
VI = interp3(V,ntimes)
VI = interp3(...,method)

Description VI = interp3(X,Y,Z,V,XI,YI,ZI) interpolates to find VI, the values of the
underlying three-dimensional function V at the points in arrays XI,YI and ZI.
XI,YI, ZImust be arrays of the same size, or vectors. Vector arguments that are
not the same size, and have mixed orientations (i.e. with both row and column
vectors) are passed through meshgrid to create the Y1, Y2, Y3 arrays. Arrays X,
Y, and Z specify the points at which the data V is given. Out of range values are
returned as NaN.

VI = interp3(V,XI,YI,ZI) assumes X=1:N, Y=1:M, Z=1:P where
[M,N,P]=size(V).

VI = interp3(V,ntimes) expands V by interleaving interpolates between
every element, working recursively for ntimes iterations. The command
interp3(V) is the same as interp3(V,1).

VI = interp3(...,method) specifies alternative methods:

Discussion All the interpolation methods require that X,Y and Z be monotonic and have the
same format (“plaid”) as if they were created using meshgrid. X, Y, and Z can be
non-uniformly spaced. For faster interpolation when X, Y, and Z are equally
spaced and monotonic, use the methods '*linear', '*cubic', or '*nearest'.

Examples To generate a coarse approximation of flow and interpolate over a finer mesh:

[x,y,z,v] = flow(10);
[xi,yi,zi] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);

'linear' Linear interpolation (default)

'cubic' Cubic interpolation

'spline' Cubic spline interpolation

'nearest' Nearest neighbor interpolation

interp3

2-421

vi = interp3(x,y,z,v,xi,yi,zi); % vi is 25-by-40-by-25
slice(xi,yi,zi,vi,[6 9.5],2,[-2 .2]), shading flat

See Also interp1, interp2, interpn, meshgrid

0
2

4
6

8
10

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

interpft

2-422

2interpftPurpose One-dimensional interpolation using the FFT method

Syntax y = interpft(x,n)
y = interpft(x,n,dim)

Description y = interpft(x,n) returns the vector y that contains the value of the periodic
function x resampled to n equally spaced points.

If length(x) = m, and x has sample interval dx, then the new sample interval
for y is dy = dx*m/n. Note that n cannot be smaller than m.

If X is a matrix, interpft operates on the columns of X, returning a matrix Y
with the same number of columns as X, but with n rows.

y = interpft(x,n,dim) operates along the specified dimension.

Algorithm The interpft command uses the FFT method. The original vector x is
transformed to the Fourier domain using fft and then transformed back with
more points.

See Also interp1

interpn

2-423

2interpnPurpose Multidimensional data interpolation (table lookup)

Syntax VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...)
VI = interpn(V,Y1,Y2,Y3,...)
VI = interpn(V,ntimes)
VI = interpn(...,method)

Description VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...) interpolates to find VI, the
values of the underlying multidimensional function V at the points in the
arrays Y1, Y2, Y3, etc. For an N-D V, interpn is called with 2*N+1 arguments.
Arrays X1, X2, X3, etc. specify the points at which the data V is given. Out of
range values are returned as NaNs. Y1, Y2, Y3, etc. must be arrays of the same
size, or vectors. Vector arguments that are not the same size, and have mixed
orientations (i.e. with both row and column vectors) are passed through ndgrid
to create the Y1, Y2, Y3, etc. arrays. interpn works for all N-D arrays with 2 or
more dimensions.

VI = interpn(V,Y1,Y2,Y3,...) interpolates as above, assuming
X1 = 1:size(V,1), X2 = 1:size(V,2), X3 = 1:size(V,3), etc.

VI = interpn(V,ntimes) expands V by interleaving interpolates between
each element, working recursively for ntimes iterations. interpn(V,1) is the
same as interpn(V).

VI = interpn(...,method) specifies alternative methods:

Discussion All the interpolation methods require that X1,X2, and X3 be monotonic and have
the same format (“plaid”) as if they were created using ndgrid. X1,X2,X3,... and
Y1, Y2, Y3, etc. can be non-uniformly spaced. For faster interpolation when X1,
X2, X3, etc. are equally spaced and monotonic, use the methods '*linear',
'*cubic', or '*nearest'.

'linear' Linear interpolation (default)

'cubic' Cubic interpolation

'spline' Cubic spline interpolation

'nearest' Nearest neighbor interpolation

interpn

2-424

See Also interp1, interp2, interp3, ndgrid

interpstreamspeed

2-425

2interpstreamspeedPurpose Interpolate stream line vertices from flow speed

Syntax interpstreamspeed(X,Y,Z,U,V,W,vertices)
interpstreamspeed(U,V,W,vertices)
interpstreamspeed(X,Y,Z,speed,vertices)
interpstreamspeed(speed,vertices)

interpstreamspeed(X,Y,U,V,vertices)
interpstreamspeed(U,V,vertices)
interpstreamspeed(X,Y,speed,vertices)
interpstreamspeed(speed,vertices)

interpstreamspeed(...,sf)
vertsout = interpstreamspeed(...)

Description interpstreamspeed(X,Y,Z,U,V,W,vertices) interpolates stream line
vertices based on the magnitude of the vector data U, V, W. The arrays X, Y, Z
define the coordinates for U, V, W and must be monotonic and 3-D plaid (as if
produced by meshgrid).

interpstreamspeed(U,V,W,vertices) assumes X, Y, and Z are determined by
the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(U).

interpstreamspeed(X,Y,Z,speed,vertices) uses the 3-D array speed for the
speed of the vector field.

interpstreamspeed(speed,vertices) assumes X, Y, and Z are determined by
the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p]=size(speed).

interpstreamspeed(X,Y,U,V,vertices) interpolates streamline vertices
based on the magnitude of the vector data U, V. The arrays X, Y define the

interpstreamspeed

2-426

coordinates for U, V and must be monotonic and 2-D plaid (as if produced by
meshgrid)

interpstreamspeed(U,V,vertices) assumes X and Y are determined by the
expression:

[X Y] = meshgrid(1:n,1:m)

where [M N]=size(U).

interpstreamspeed(X,Y,speed,vertices) uses the 2-D array speed for the
speed of the vector field.

interpstreamspeed(speed,vertices) assumes X and Y are determined by the
expression:

[X Y] = meshgrid(1:n,1:m)

where [M,N]= size(speed)

interpstreamspeed(...,sf) uses sf to scale the magnitude of the vector data
and therefore controls the number of interpolated vertices. For example, if sf
is 3, then interpstreamspeed creates only one third of the vertices.

vertsout = interpstreamspeed(...) returns a cell array of vertex arrays.

Examples This example draws stream lines using the vertices returned by
interpstreamspeed. Dot markers indicate the location of each vertex. This
example enables you to visualize the relative speeds of the flow data. Stream
lines having widely space vertices indicate faster flow; those with closely
spaced vertices indicate slower flow.

load wind
[sx sy sz] = meshgrid(80,20:1:55,5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.2);
sl = streamline(iverts);
set(sl,'Marker','.')
axis tight; view(2); daspect([1 1 1])

interpstreamspeed

2-427

This example plots stream lines whose vertex spacing indicates the value of the
gradient along the stream line.

z = membrane(6,30);
[u v] = gradient(z);
[verts averts] = streamslice(u,v);
iverts = interpstreamspeed(u,v,verts,15);
sl = streamline(iverts);
set(sl,'Marker','.')
hold on; pcolor(z); shading interp
axis tight; view(2); daspect([1 1 1])

interpstreamspeed

2-428

See Also stream2, stream3, streamline, streamslice, streamparticles

“Volume Visualization” for related functions

intersect

2-429

2intersectPurpose Set intersection of two vectors

Syntax c = intersect(A,B)
c = intersect(A,B,'rows')
[c,ia,ib] = intersect(...)

Description c = intersect(A,B) returns the values common to both A and B. The
resulting vector is sorted in ascending order. In set theoretic terms, this is
A∩ B. A and B can be cell arrays of strings.

c = intersect(A,B,'rows') when A and B are matrices with the same
number of columns returns the rows common to both A and B.

[c,ia,ib] = intersect(a,b) also returns column index vectors ia and ib
such that c = a(ia) and c = b(ib) (or c = a(ia,:) and c = b(ib,:)).

Examples A = [1 2 3 6]; B = [1 2 3 4 6 10 20];
[c,ia,ib] = intersect(A,B);
disp([c;ia;ib])
 1 2 3 6
 1 2 3 4
 1 2 3 5

See Also ismember, issorted, setdiff, setxor, union, unique

inv

2-430

2invPurpose Matrix inverse

Syntax Y = inv(X)

Description Y = inv(X) returns the inverse of the square matrix X. A warning message is
printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a matrix. A
frequent misuse of inv arises when solving the system of linear equations

. One way to solve this is with x = inv(A)*b. A better way, from both
an execution time and numerical accuracy standpoint, is to use the matrix
division operator x = A\b. This produces the solution using Gaussian
elimination, without forming the inverse. See \ and / for further information.

Examples Here is an example demonstrating the difference between solving a linear
system by inverting the matrix with inv(A)*b and solving it directly with A\b.
A random matrix A of order 500 is constructed so that its condition number,
cond(A), is 1.e10, and its norm, norm(A), is 1. The exact solution x is a random
vector of length 500 and the right-hand side is b = A*x. Thus the system of
linear equations is badly conditioned, but consistent.

On a 300 MHz, laptop computer the statements

n = 500;
Q = orth(randn(n,n));
d = logspace(0,-10,n);
A = Q*diag(d)*Q';
x = randn(n,1);
b = A*x;
tic, y = inv(A)*b; toc
err = norm(y-x)
res = norm(A*y-b)

produce

elapsed_time =
 1.4320
err =
 7.3260e-006
res =
 4.7511e-007

Ax b=

inv

2-431

while the statements

tic, z = A\b, toc
err = norm(z-x)
res = norm(A*z-b)

produce

elapsed_time =
 0.6410
err =
 7.1209e-006
res =
 4.4509e-015

It takes almost two and one half times as long to compute the solution with
y = inv(A)*b as with z = A\b. Both produce computed solutions with about
the same error, 1.e-6, reflecting the condition number of the matrix. But the
size of the residuals, obtained by plugging the computed solution back into the
original equations, differs by several orders of magnitude. The direct solution
produces residuals on the order of the machine accuracy, even though the
system is badly conditioned.

The behavior of this example is typical. Using A\b instead of inv(A)*b is two
to three times as fast and produces residuals on the order of machine accuracy,
relative to the magnitude of the data.

Algorithm inv uses LAPACK routines to compute the matrix inverse:

See Also det, lu, rref

The arithmetic operators \, /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide

Matrix Routine

Real DLANGE, DGETRF, DGECON, DGETRI

Complex ZLANGE, ZGETRF, ZGECON, ZGETRI

inv

2-432

(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

invhilb

2-433

2invhilbPurpose Inverse of the Hilbert matrix

Syntax H = invhilb(n)

Description H = invhilb(n) generates the exact inverse of the exact Hilbert matrix for n
less than about 15. For larger n, invhilb(n) generates an approximation to the
inverse Hilbert matrix.

Limitations The exact inverse of the exact Hilbert matrix is a matrix whose elements are
large integers. These integers may be represented as floating-point numbers
without roundoff error as long as the order of the matrix, n, is less than 15.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two or three
sets of roundoff errors:

• The errors caused by representing hilb(n)

• The errors in the matrix inversion process

• The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like
1/3 and 1/5 in floating-point, is the most significant.

Examples invhilb(4) is

 16 -120 240 -140
 -120 1200 -2700 1680
 240 -2700 6480 -4200
 -140 1680 -4200 2800

See Also hilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

invoke (COM)

2-434

2invoke (COM)Purpose Invoke a method on an object or interface

Syntax v = invoke(h, ['methodname' [, arg1, arg2, ...]])

Arguments h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

methodname
A string that is the name of the method to be invoked.

arg1, ..., argn
Arguments, if any, required by the method being invoked.

Description Invoke a method on an object’s interface and retrieve the return value of the
method, if any. The data type of the value is dependent upon the specific
method being invoked and is determined by the specific control or server. If the
method returns a COM interface, then invoke returns a new MATLAB COM
object that represents the interface returned. See “Converting Data” in the
External Interfaces documentation for a description of how MATLAB converts
COM data types.

When you specify only a handle argument with invoke, MATLAB returns a
structure array containing a list of all methods available for the object and
their prototypes.

Examples Create an mwsamp control and invoke its Redraw method:

f = figure ('pos', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);

set(h, 'Radius', 100);
invoke(h, 'Redraw');

Here is a simpler way to invoke. Just call the method directly, passing the
handle, and any arguments:

Redraw(h);

Call invoke with only the handle argument to display a list of all mwsamp
methods:

invoke (COM)

2-435

invoke(h)

ans =
 Beep: 'void Beep(handle)'
 Redraw: 'void Redraw(handle)'
 GetVariantArray: 'Variant GetVariantArray(handle)'
 .
 .
 etc.

See Also methods, ismethod

ipermute

2-436

2ipermutePurpose Inverse permute the dimensions of a multidimensional array

Syntax A = ipermute(B,order)

Description A = ipermute(B,order) is the inverse of permute. ipermute rearranges the
dimensions of B so that permute(A,order) will produce B. B has the same
values as A but the order of the subscripts needed to access any particular
element are rearranged as specified by order. All the elements of order must
be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Consider the 2-by-2-by-3 array a:

a = cat(3,eye(2),2*eye(2),3*eye(2))

a(:,:,1) = a(:,:,2) =
 1 0 2 0
 0 1 0 2

a(:,:,3) =
 3 0
 0 3

Permuting and inverse permuting a in the same fashion restores the array to
its original form:

B = permute(a,[3 2 1]);
C = ipermute(B,[3 2 1]);
isequal(a,C)
ans=

 1

See Also permute

is*

2-437

2is*Purpose Detect state

Description These functions detect the state of MATLAB entities:

isappdata Determine if object has specific
application-defined data

iscell Determine if item is a cell array

iscellstr Determine if item is a cell array of strings

ischar Determine if item is a character array

isempty Determine if item is an empty array

isequal Determine if arrays are numerically equal

isequalwithequalnans Determine if arrays are numerically equal,
treating NaNs as equal

isfield Determine if item is a MATLAB structure array
field

isfinite Detect finite elements of an array

isglobal Determine if item is a global variable

ishandle Detect valid graphics object handles

ishold Determine if graphics hold state is on

isinf Detect infinite elements of an array.

isjava Determine if item is a Java object

iskeyword Determine if item is a MATLAB keyword

isletter Detect array elements that are letters of the
alphabet

islogical Determine if item is a logical array

ismember Detect members of a specific set

is*

2-438

See Also isa

isnan Detect elements of an array that are not a
number (NaN)

isnumeric Determine if item is a numeric array

isobject Determine if item is a MATLAB OOPs object

ispc Determine if PC (Windows) version of MATLAB

isprime Detect prime elements of an array.

isreal Determine if all array elements are real
numbers

isruntime Determine if MATLAB is or emulates the
Runtime Server

issorted Determine if set elements are in sorted order

isspace Detect elements that are ASCII white spaces

issparse Determine if item is a sparse array

isstruct Determine if item is a MATLAB structure array

isstudent Determine if student edition of MATLAB

isunix Determine if UNIX version of MATLAB

isvarname Determine if item is a valid variable name

isa

2-439

2isaPurpose Detect an object of a given MATLAB class or Java class

Syntax K = isa(obj,'class_name')

Description K = isa(obj,'class_name') returns logical true (1) if obj is of class (or a
subclass of) class_name, and logical false (0) otherwise.

The argument obj is a MATLAB object or a Java object. The argument
class_name is the name of a MATLAB (predefined or user-defined) or a Java
class. Predefined MATLAB classes include:

To check for a sparse array, use issparse. To check for a complex array, use
~isreal.

logical Logical array of true and false values

char Characters array

numeric Integer or floating-point array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

single Single-precision floating-point array

double Double-precision floating-point array

cell Cell array

struct Structure array

function_handle Function Handle

'class_name' Custom MATLAB object class or Java class

isa

2-440

Examples isa(rand(3,4),'double')
ans =
 1

The following example creates an instance of the user-defined MATLAB class,
named polynom. The isa function identifies the object as being of the polynom
class.

polynom_obj = polynom([1 0 -2 -5]);
isa(polynom_obj, 'polynom')
ans =
 1

See Also class, is*

isappdata

2-441

2isappdataPurpose True if application-defined data exists

Syntax isappdata(h,name)

Description isappdata(h,name) returns 1 if application-defined data with the specified
name exists on the object specified by handle h, and returns 0 otherwise.

See Also getappdata, rmappdata, setappdata

iscell

2-442

2iscellPurpose Determine if item is a cell array

Syntax tf = iscell(A)

Description tf = iscell(A) returns logical true (1) if A is a cell array and logical false (0)
otherwise.

Examples A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';
A{2,1} = 3+7i;
A{2,2} = -pi:pi/10:pi;

iscell(A)

ans =

 1

See Also cell, iscellstr, isstruct, isnumeric, islogical, isobject, isa, is*

iscellstr

2-443

2iscellstrPurpose Determine if item is a cell array of strings

Syntax tf = iscellstr(A)

Description tf = iscellstr(A) returns logical true (1) if A is a cell array of strings and
logical false (0) otherwise. A cell array of strings is a cell array where every
element is a character array.

Examples A{1,1} = 'Thomas Lee';
A{1,2} = 'Marketing';
A{2,1} = 'Allison Jones';
A{2,2} = 'Development';

iscellstr(A)

ans =

 1

See Also cell, char, iscell, isstruct, isa, is*

ischar

2-444

2ischarPurpose Determine if item is a character array

Syntax tf = ischar(A)

Description tf = ischar(A) returns logical true (1) if A is a character array and logical
false (0) otherwise.

Examples Given the following cell array,

C{1,1} = magic(3);
C{1,2} = 'John Doe';
C{1,3} = 2 + 4i

C =

 [3x3 double] 'John Doe' [2.0000+ 4.0000i]

ischar shows that only C{1,2} is a character array.

for k = 1:3
x(k) = ischar(C{1,k});
end

x

x =

 0 1 0

See Also char, isnumeric, islogical, isobject, isstruct, iscell, isa, is*

isempty

2-445

2isemptyPurpose Test if array is empty

Syntax tf = isempty(A)

Description tf = isempty(A) returns logical true (1) if A is an empty array and logical false
(0) otherwise. An empty array has at least one dimension of size zero, for
example, 0-by-0 or 0-by-5.

Examples B = rand(2,2,2);
B(:,:,:) = [];

isempty(B)

ans =
1

See Also is*

isequal

2-446

2isequalPurpose Determine if arrays are numerically equal

Syntax tf = isequal(A,B,...)

Description tf = isequal(A,B,...) returns logical true (1) if the input arrays are the
same type and size and hold the same contents, and logical false (0) otherwise.

Remarks When comparing structures, the order in which the fields of the structures
were created is not important. As long as the structures contain the same
fields, with corresponding fields set to equal values, isequal considers the
structures to be equal. See Example 2, below.

When comparing numeric values, isequal does not consider the data type used
to store the values in determining whether they are equal. See Example 3,
below.

NaNs (Not a Number), by definition, are not equal. Therefore, arrays that
contain NaN elements are not equal, and isequal returns zero when comparing
such arrays. See Example 4, below. Use the isequalwithequalnans function
when you want to test for equality with NaNs treated as equal.

isequal recursively compares the contents of cell arrays and structures. If all
the elements of a cell array or structure are numerically equal, isequal
returns logical 1.

Examples Example 1
Given,

A = B = C =
 1 0 1 0 1 0
 0 1 0 1 0 0

isequal(A,B,C) returns 0, and isequal(A,B) returns 1.

Example 2
When comparing structures with isequal, the order in which the fields of the
structures were created is not important:

A.f1 = 25; A.f2 = 50
A =
 f1: 25

isequal

2-447

 f2: 50

B.f2 = 50; B.f1 = 25
B =
 f2: 50
 f1: 25

isequal(A, B)
ans =
 1

Example 3
When comparing numeric values, the data types used to store the values are
not important:

A = [25 50]; B = [int8(25) int8(50)];

isequal(A, B)
ans =
 1

Example 4
Arrays that contain NaN (Not a Number) elements cannot be equal, since NaNs,
by definition, are not equal:

A = [32 8 -29 NaN 0 5.7];
B = A;

isequal(A, B)
ans =
 0

See Also isequalwithequalnans, strcmp, isa, is*, relational operators

isequalwithequalnans

2-448

2isequalwithequalnansPurpose Determine if arrays are numerically equal, treating NaNs as equal

Syntax tf = isequalwithequalnans(A,B,...)

Description tf = isequalwithequalnans(A,B,...) returns logical true (1) if the input
arrays are the same type and size and hold the same contents, and logical false
(0) otherwise. NaN (Not a Number) values are considered to be equal to each
other. Numeric data types and structure field order do not have to match.

Remarks isequalwithequalnans is the same as isequal, except isequalwithequalnans
considers NaN (Not a Number) values to be equal, and isequal does not.

isequalwithequalnans recursively compares the contents of cell arrays and
structures. If all the elements of a cell array or structure are numerically
equal, isequalwithequalnans returns logical 1.

Examples Arrays containing NaNs are handled differently by isequal and
isequalwithisequalnans. isequal does not consider NaNs to be equal, while
isequalwithequalnans does.

A = [32 8 -29 NaN 0 5.7];
B = A;
isequal(A, B)
ans =
 0

isequalwithequalnans(A, B)
ans =
 1

The position of NaN elements in the array does matter. If they are not in the
same position in the arrays being compared, then isequalwithequalnans
returns zero.

A = [2 4 6 NaN 8]; B = [2 4 NaN 6 8];
isequalwithequalnans(A, B)
ans =
 0

See Also isequal, strcmp, isa, is*, relational operators

isevent (COM)

2-449

2isevent (COM)Purpose Determine if an item is an event of a COM control

Syntax isevent(h, 'name')

Arguments h
Handle for a MATLAB COM control object.

name
Name of the item to test.

Description Returns a logical 1 (true) if the specified name is an event that can be
recognized and responded to by the control, h. Otherwise, isevent returns
logical 0 (false).

isevent returns the same value regardless of whether the specified event is
registered with the control or not. In order for the control to respond to the
event, you must first register the event using either actxcontrol or
registerevent.

The string specified in the name argument is not case sensitive.

Examples Create an mwsamp control and test to see if DblClick is an event recognized by
the control. isevent returns true:

f = figure ('pos', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

isevent(h, 'DblClick')
ans =
 1

Try the same test on Redraw, which is a method, and isevent returns false:

isevent(h, 'Redraw')
ans =
 0

See Also events, eventlisteners, registerevent, unregisterevent,
unregisterallevents

isfield

2-450

2isfieldPurpose Determine if item is a MATLAB structure array field

Syntax tf = isfield(A,'field')

Description tf = isfield(A,’field’) returns logical true (1) if field is the name of a
field in the structure array A, and logical false (0) otherwise.

Examples Given the following MATLAB structure,

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isfield identifies billing as a field of that structure.

isfield(patient,'billing')

ans =

 1

See Also struct, isstruct, iscell, isa, is*

isfinite

2-451

2isfinitePurpose Detect finite elements of an array

Syntax TF = isfinite(A)

Description TF = isfinite(A) returns an array the same size as A containing logical true
(1) where the elements of the array A are finite and logical false (0) where they
are infinite or NaN.

For any A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2];

isfinite(1./a)
Warning: Divide by zero.

ans =
 1 1 0 1 1

isfinite(0./a)
Warning: Divide by zero.

ans =
 1 1 0 1 1

See Also isinf, isnan, is*

isglobal

2-452

2isglobalPurpose Determine if item is a global variable

Syntax tf = isglobal(A)

Description tf = isglobal(A) returns logical true (1) if A has been declared to be a global
variable, and logical false (0) otherwise.

See Also global, isvarname, isa, is*

ishandle

2-453

2ishandlePurpose Determines if values are valid graphics object handles

Syntax array = ishandle(h)

Description array = ishandle(h) returns an array that contains 1’s where the elements
of h are valid graphics handles and 0’s where they are not.

Examples Determine whether the handles previously returned by fill remain handles
of existing graphical objects:

X = rand(4); Y = rand(4);
h = fill(X,Y,'blue')
.
.
.
delete(h(3))
.
.
.
ishandle(h)
ans =

1
1
0
1

See Also findobj

“Finding and Identifying Graphics Objects” for related functions

ishold

2-454

2isholdPurpose Return hold state

Syntax k = ishold

Description k = ishold returns the hold state of the current axes. If hold is on k = 1, if
hold is off, k = 0.

Examples ishold is useful in graphics M-files where you want to perform a particular
action only if hold is not on. For example, these statements set the view to 3-D
only if hold is off:

if ~ishold
view(3);

end

See Also axes, figure, hold, newplot

“Axes Operations” for related functions

isinf

2-455

2isinfPurpose Detect infinite elements of an array

Syntax TF = isinf(A)

Description TF = isinf(A) returns an array the same size as A containing logical true (1)
where the elements of A are +Inf or -Inf and logical false (0) where they are
not.

For any A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2]

isinf(1./a)
Warning: Divide by zero.

ans =
 0 0 1 0 0

isinf(0./a)
Warning: Divide by zero.

ans =
 0 0 0 0 0

See Also isfinite, isnan, is*

isjava

2-456

2isjavaPurpose Determine if item is a Java object

Syntax tf = isjava(A)

Description tf = isjava(A) returns logical true (1) if A is a Java object, and logical false
(0) otherwise.

Examples Create an instance of the Java Frame class and isjava indicates that it is a
Java object.

frame = java.awt.Frame('Frame A');

isjava(frame)

ans =

 1

Note that, isobject, which tests for MATLAB objects, returns false (0).

isobject(frame)

ans =

 0

See Also isobject, javaArray, javaMethod, javaObject, isa, is*

iskeyword

2-457

2iskeywordPurpose Determine if item is a MATLAB keyword

Syntax tf = iskeyword('str')
iskeyword str
iskeyword

Description tf = iskeyword('str') returns logical true (1) if the string, str, is a keyword
in the MATLAB language and logical false (0) otherwise.

iskeyword str uses the MATLAB command format.

iskeyword returns a list of all MATLAB keywords.

Examples To test if the word while is a MATLAB keyword

iskeyword while
ans =
 1

To obtain a list of all MATLAB keywords

iskeyword
 'break'
 'case'
 'catch'
 'continue'
 'else'
 'elseif'
 'end'
 'for'
 'function'
 'global'
 'if'
 'otherwise'
 'persistent'
 'return'
 'switch'
 'try'
 'while'

iskeyword

2-458

See Also isvarname, is*

isletter

2-459

2isletterPurpose Detect array elements that are letters of the alphabet

Syntax tf = isletter('str')

Description tf = isletter('str') returns an array the same size as str containing
logical true (1) where the elements of str are letters of the alphabet and logical
false (0) where they are not.

Examples s = 'A1,B2,C3';

isletter(s)

ans =

 1 0 0 1 0 0 1 0

See Also char, ischar, isspace, isa, is*

islogical

2-460

2islogicalPurpose Determine if item is a logical array

Syntax tf = islogical(A)

Description tf = islogical(A) returns logical true (1) if A is a logical array and logical
false (0) otherwise.

Examples Given the following cell array,

C{1,1} = pi;
C{1,2} = 1;
C{1,3} = ispc;
C{1,4} = magic(3)

C =

 [3.1416] [1] [1] [3x3 double]

islogical shows that only C{1,3} is a logical array.

for k = 1:4
x(k) = islogical(C{1,k});
end

x

x =

 0 0 1 0

See Also logical, logical operators, isnumeric, ischar, isa, is*

ismember

2-461

2ismemberPurpose Detect members of a specific set

Syntax tf = ismember(A,S)
tf = ismember(A,S,'rows')
[tf, loc] = ismember(A,S,...)

Description tf = ismember(A,S) returns a vector the same length as A containing logical
true (1) where the elements of A are in the set S, and logical false (0) elsewhere.
In set theoretic terms, k is 1 where A ∈ S. A and S can be cell arrays of strings.

tf = ismember(A,S,'rows') when A and S are matrices with the same
number of columns returns a vector containing 1 where the rows of A are also
rows of S and 0 otherwise.

[tf, loc] = ismember(A,S,...) returns index vector loc containing the
highest index in S for each element in A that is a member of S. For those
elements of A that do not occur in S, ismember returns 0.

Examples set = [0 2 4 6 8 10 12 14 16 18 20];
a = reshape(1:5, [5 1])

a =
 1
 2
 3
 4
 5

ismember(a, set)
ans =

0
 1
 0
 1
 0

set = [5 2 4 2 8 10 12 2 16 18 20 3];
[tf, index] = ismember(a, set);

ismember

2-462

index
index =
 0
 8
 12
 3
 1

See Also issorted, intersect, setdiff, setxor, union, unique, is*

ismethod (COM)

2-463

2ismethod (COM)Purpose Determine if an item is a method of a COM object

Syntax ismethod(h, 'name')

Arguments h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

name
Name of the item to test.

Description Returns a logical 1 (true) if the specified name is a method that you can call on
COM object, h. Otherwise, ismethod returns logical 0 (false).

Examples Create an Excel application and test to see if SaveWorkspace is a method of the
object. ismethod returns true:

h = actxserver ('Excel.Application');

ismethod(h, 'SaveWorkspace')
ans =
 1

Try the same test on UsableWidth, which is a property, and isevent returns
false:

ismethod(h, 'UsableWidth')
ans =
 0

See Also methods, invoke

isnan

2-464

2isnanPurpose Detect NaN elements of an array

Syntax TF = isnan(A)

Description TF = isnan(A) returns an array the same size as A containing logical true (1)
where the elements of A are NaNs and logical false (0) where they are not.

For any A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2]

isnan(1./a)
Warning: Divide by zero.

ans =
 0 0 0 0 0

isnan(0./a)
Warning: Divide by zero.

ans =
 0 0 1 0 0

See Also isfinite, isinf, is*

isnumeric

2-465

2isnumericPurpose Determine if item is a numeric array

Syntax tf = isnumeric(A)

Description tf = isnumeric(A) returns logical true (1) if A is a numeric array and logical
false (0) otherwise. For example, sparse arrays, and double-precision arrays
are numeric while strings, cell arrays, and structure arrays are not.

Examples Given the following cell array,

C{1,1} = pi;
C{1,2} = 'John Doe';
C{1,3} = 2 + 4i;
C{1,4} = ispc;
C{1,5} = magic(3)

C =

[3.1416] 'John Doe' [2.0000+ 4.0000i] [1] [3x3 double]

isnumeric shows that all but C{1,2} are numeric arrays.

for k = 1:5
x(k) = isnumeric(C{1,k});
end

x

x =

 1 0 1 0 1

See Also isnan, isreal, isprime, isfinite, isinf, isa, is*

isobject

2-466

2isobjectPurpose Determine if item is a MATLAB OOPs object

Syntax tf = isobject(A)

Description tf = isobject(A) returns logical true (1) if A is a MATLAB object and logical
false (0) otherwise.

Examples Create an instance of the polynom class as defined in the section “Example - A
Polynomial Class” in the MATLAB documentation.

p = polynom([1 0 -2 -5])

p =

 x^3 - 2*x - 5

isobject indicates that p is a MATLAB object.

isobject(p)

ans =

 1

Note that isjava, which tests for Java objects in MATLAB, returns false (0).

isjava(p)

ans =

 0

See Also isjava, isstruct, iscell, ischar, isnumeric, islogical, isa, is*

isocaps

2-467

2isocapsPurpose Compute isosurface end-cap geometry

Syntax fvc = isocaps(X,Y,Z,V,isovalue)
fvc = isocaps(V,isovalue)
fvc = isocaps(...,'enclose')
fvc = isocaps(...,'whichplane')
[f,v,c] = isocaps(...)
isocaps(...)

Description fvc = isocaps(X,Y,Z,V,isovalue) computes isosurface end cap geometry for
the volume data V at isosurface value isovalue. The arrays X, Y, and Z define
the coordinates for the volume V.

The struct fvc contains the face, vertex, and color data for the end caps and can
be passed directly to the patch command.

fvc = isocaps(V,isovalue) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isocaps(...,'enclose') specifies whether the end caps enclose data
values above or below the value specified in isovalue. The string enclose can
be either above (default) or below.

fvc = isocaps(...,'whichplane') specifies on which planes to draw the end
caps. Possible values for whichplane are: all (default), xmin, xmax, ymin, ymax,
zmin, or zmax.

[f,v,c] = isocaps(...) returns the face, vertex, and color data for the end
caps in three arrays instead of the struct fvc.

isocaps(...) without output arguments draws a patch with the computed
faces, vertices, and colors.

Examples This example uses a data set that is a collection of MRI slices of a human skull.
It illustrates the use of isocaps to draw the end caps on this cut-away volume.

The red isosurface shows the outline of the volume (skull) and the end caps
show what is inside of the volume.

The patch created from the end cap data (p2) uses interpolated face coloring,
which means the gray colormap and the light sources determine how it is

isocaps

2-468

colored. The isosurface patch (p1) used a flat red face color, which is affected by
the lights, but does not use the colormap.

load mri
D = squeeze(D);
D(:,1:60,:) = [];
p1 = patch(isosurface(D, 5),'FaceColor','red',...

'EdgeColor','none');
p2 = patch(isocaps(D, 5),'FaceColor','interp',...

'EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight left; camlight; lighting gouraud
isonormals(D,p1)

See Also isosurface, isonormals, smooth3, subvolume, reducevolume, reducepatch

Isocaps Add Context to Visualizations for more illustrations of isocaps

“Volume Visualization” for related functions

isocolors

2-469

2isocolorsPurpose Calculates isosurface and patch colors

Syntax nc = isocolors(X,Y,Z,C,vertices)
nc = isocolors(X,Y,Z,R,G,B,vertices)
nc = isocolors(C,vertices)
nc = isocolors(R,G,B,vertices)
nc = isocolors(...,PatchHandle)
isocolors(...,PatchHandle)

Description nc = isocolors(X,Y,Z,C,vertices) computes the colors of isosurface (patch
object) vertices (vertices) using color values C. Arrays X, Y, Z define the
coordinates for the color data in C and must be monotonic vectors or 3-D plaid
arrays (as if produced by meshgrid). The colors are returned in nc. C must be
3-D (index colors).

nc = isocolors(X,Y,Z,R,G,B,vertices) uses R, G, B as the red, green, and
blue color arrays (truecolor).

nc = isocolors(C,vertices), nc = isocolors(R,G,B,vertices) assumes
X, Y, and Z are determined by the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(C).

nc = isocolors(...,PatchHandle) uses the vertices from the patch
identified by PatchHandle.

isocolors(...,PatchHandle) sets the FaceVertexCData property of the patch
specified by PatchHandle to the computed colors.

Examples Indexed Color Data
This example displays an isosurface and colors it with random data using
indexed color. (See "Interpolating in Indexed Color vs. Truecolor" for
information on how patch objects interpret color data.)

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
cdata = smooth3(rand(size(data)),'box',7);
p = patch(isosurface(x,y,z,data,10));

isocolors

2-470

isonormals(x,y,z,data,p);
isocolors(x,y,z,cdata,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);axis tight
camlight; lighting phong;

Truecolor Data
This example displays an isosurface and colors it with truecolor (RGB) data.

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(x,y,z,data,20));
isonormals(x,y,z,data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
isocolors(x,y,z,r/20,g/20,b/20,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

isocolors

2-471

Modified Truecolor Data
This example uses isocolors to calculate the truecolor data using the
isosurface’s (patch object’s) vertices, but then returns the color data in a
variable (c) in order to modify the values. It then explicitly sets the isosurface’s
FaceVertexCData to the new data (1-c).

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(data,20));
isonormals(data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
c = isocolors(r/20,g/20,b/20,p);
set(p,'FaceVertexCData',1-c)
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

isocolors

2-472

See Also isosurface, isocaps, smooth3, subvolume, reducevolume, reducepatch,
isonormals.

“Volume Visualization” for related functions

isonormals

2-473

2isonormalsPurpose Compute normals of isosurface vertices

Syntax n = isonormals(X,Y,Z,V,vertices)
n = isonormals(V,vertices)
n = isonormals(V,p), n = isonormals(X,Y,Z,V,p)
n = isonormals(...,'negate')
isonormals(V,p), isonormals(X,Y,Z,V,p)

Description n = isonormals(X,Y,Z,V,vertices) computes the normals of the isosurface
vertices from the vertex list, vertices, using the gradient of the data V. The
arrays X, Y, and Z define the coordinates for the volume V. The computed
normals are returned in n.

n = isonormals(V,vertices) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p) compute normals from
the vertices of the patch identified by the handle p.

n = isonormals(...,'negate') negates (reverses the direction of) the
normals.

isonormals(V,p) and isonormals(X,Y,Z,V,p) set the VertexNormals
property of the patch identified by the handle p to the computed normals rather
than returning the values.

Examples This example compares the effect of different surface normals on the visual
appearance of lit isosurfaces. In one case, the triangles used to draw the
isosurface define the normals. In the other, the isonormals function uses the
volume data to calculate the vertex normals based on the gradient of the data
points. The latter approach generally produces a smoother-appearing
isosurface.

Define a 3-D array of volume data (cat, interp3):

data = cat(3, [0 .2 0; 0 .3 0; 0 0 0], ...
 [.1 .2 0; 0 1 0; .2 .7 0],...
 [0 .4 .2; .2 .4 0;.1 .1 0]);
data = interp3(data,3,'cubic');

isonormals

2-474

Draw an isosurface from the volume data and add lights. This isosurface uses
triangle normals (patch, isosurface, view, daspect, axis, camlight,
lighting, title):

subplot(1,2,1)
p1 = patch(isosurface(data,.5),...
'FaceColor','red','EdgeColor','none');
view(3); daspect([1,1,1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Triangle Normals')

Draw the same lit isosurface using normals calculated from the volume data:

subplot(1,2,2)
p2 = patch(isosurface(data,.5),...
 'FaceColor','red','EdgeColor','none');
isonormals(data,p2)
view(3); daspect([1 1 1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Data Normals')

These isosurfaces illustrate the difference between triangle and data normals:

See Also interp3, isosurface, isocaps, smooth3, subvolume, reducevolume,
reducepatch

“Volume Visualization” for related functions

isosurface

2-475

2isosurfacePurpose Extract isosurface data from volume data

Syntax fv = isosurface(X,Y,Z,V,isovalue)
fv = isosurface(V,isovalue)
fv = isosurface(X,Y,Z,V), fv = isosurface(X,Y,Z,V)
fvc = isosurface(...,colors)
fv = isosurface(...,'noshare')
fv = isosurface(...,'verbose')
[f,v] = isosurface(...)
isosurface(...)

Description fv = isosurface(X,Y,Z,V,isovalue) computes isosurface data from the
volume data V at the isosurface value specified in isovalue. The arrays X, Y,
and Z define the coordinates for the volume V. The structure fv contains the
faces and vertices of the isosurface, which you can pass directly to the patch
command.

fv = isosurface(V,isovalue) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isosurface(...,colors) interpolates the array colors onto the scalar
field and returns the interpolated values in the facevertexcdata field of the
fvc structure. The size of the colors array must be the same as V. The colors
argument enables you to control the color mapping of the isosurface with data
different from that used to calculate the isosurface (e.g., temperature data
superimposed on a wind current isosurface.

fv = isosurface(...,'noshare') does not create shared vertices. This is
faster, but produces a larger set of vertices.

fv = isosurface(...,'verbose') prints progress messages to the command
window as the computation progresses.

[f,v] = isosurface(...) returns the faces and vertices in two arrays instead
of a struct.

isosurface(...) with no output arguments creates a patch using the
computed faces and vertices.

isosurface

2-476

Remarks You can pass the fv structure created by isosurface directly to the patch
command, but you cannot pass the individual faces and vertices arrays (f, v) to
patch without specifying property names. For example,

patch(isosurface(X,Y,Z,V,isovalue))

or

[f,v] = isosurface(X,Y,Z,V,isovalue);
patch('Faces',f,'Vertices',v)

Examples This example uses the flow data set, which represents the speed profile of a
submerged jet within an infinite tank (type help flow for more information).
The isosurface is drawn at the data value of -3. The statements that follow the
patch command prepare the isosurface for lighting by:

• Recalculating the isosurface normals based on the volume data (isonormals)

• Setting the face and edge color (set, FaceColor, EdgeColor)

• Specifying the view (daspect, view)

• Adding lights (camlight, lighting)

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
set(p,’FaceColor’,’red’,’EdgeColor’,’none’);
daspect([1 1 1])
view(3); axis tight
camlight
lighting gouraud

isosurface

2-477

See Also isonormals, shrinkfaces, smooth3, subvolume

Connecting Equal Values with Isosurfaces for more examples

“Volume Visualization” for related functions

ispc

2-478

2ispcPurpose Determine if PC (Windows) version of MATLAB

Syntax tf = ispc

Description tf = ispc returns logical true (1) for the PC version of MATLAB and logical
false (0) otherwise.

See Also isunix, isstudent, is*

isprime

2-479

2isprimePurpose Detect prime elements of an array

Syntax TF = isprime(A)

Description TF = isprime(A) returns an array the same size as A containing logical true
(1) for the elements of A which are prime, and logical false (0) otherwise. A must
contain only positive integers.

Examples c = [2 3 0 6 10]

c =
 2 3 0 6 10

isprime(c)

ans =
 1 1 0 0 0

See Also is*

isprop (COM)

2-480

2isprop (COM)Purpose Determine if an item is a property of a COM object

Syntax isprop(h, 'name')

Arguments h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

name
Name of the item to test.

Description Returns a logical 1 (true) if the specified name is a property you can use with
COM object, h. Otherwise, isprop returns logical 0 (false).

Examples Create an Excel application and test to see if UsableWidth is a property of the
object. isprop returns true:

h = actxserver ('Excel.Application');

isprop(h, 'UsableWidth')
ans =
 1

Try the same test on SaveWorkspace, which is a method, and isprop returns
false:

isprop(h, 'SaveWorkspace')
ans =
 0

See Also get, inspect, addproperty, deleteproperty

isreal

2-481

2isrealPurpose Determine if all array elements are real numbers

Syntax tf = isreal(A)

Description tf = isreal(A) returns logical false (0) if any element of array A has an
imaginary component, even if the value of that component is 0. It returns
logical true (1) otherwise.

~isreal(x) returns logical true for arrays that have at least one element with
an imaginary component. The value of that component may be 0.

Note If a is real, complex(a) returns a complex number whose imaginary
component is 0, and isreal(complex(a)) returns false. In contrast, the
addition a + 0i returns the real value a, and isreal(a + 0i) returns true.

Because MATLAB supports complex arithmetic, certain of its functions can
introduce significant imaginary components during the course of calculations
that appear to be limited to real numbers. Thus, you should use isreal with
discretion.

Examples Example 1. These examples use isreal to detect presence or absence of
imaginary numbers in an array. Let

x = magic(3);
y = complex(x);

isreal(x) returns true because no element of x has an imaginary component.

isreal(x)

ans =
 1

isreal(y) returns false, because every element of x has an imaginary
component, even though the value of the imaginary components is 0.

isreal(y)

isreal

2-482

ans =
 0

This expression detects strictly real arrays, i.e., elements with 0-valued
imaginary components are treated as real.

~any(imag(y(:)))

ans =
 1

Example 2. Given the following cell array,

C{1,1} = pi;
C{1,2} = 'John Doe';
C{1,3} = 2 + 4i;
C{1,4} = ispc;
C{1,5} = magic(3);
C{1,6} = complex(5,0)

C =
[3.1416] 'John Doe' [2.0000+ 4.0000i] [1] [3x3 double] [5]

isreal shows that all but C{1,3} and C{1,6} are real arrays.

for k = 1:6
x(k) = isreal(C{1,k});
end

x

x =
 1 1 0 1 1 0

See Also complex, isnumeric, isnan, isprime, isfinite, isinf, isa, is*

isruntime

2-483

2isruntimePurpose Determine if MATLAB is or emulates the Runtime Server

Syntax tf = isruntime

Description tf = isruntime returns logical true (1) if MATLAB is either the Runtime
Server variant, or commercial MATLAB currently emulating the Runtime
Server. isruntime returns logical false (0) otherwise.

Examples runtime on
isruntime

ans =

 1

runtime off
isruntime

ans =

 0

See Also runtime, is*

issorted

2-484

2issortedPurpose Determine if set elements are in sorted order

Syntax tf = issorted(A)
tf = issorted(A, 'rows')

Description tf = issorted(A) returns logical true (1) if the elements of vector A are in
sorted order, and logical false (0) otherwise. Vector A is considered to be sorted
if A and the output of sort(A) are equal.

tf = issorted(A, 'rows') returns logical true (1) if the rows of
two-dimensional matrix A are in sorted order, and logical false (0) otherwise.
Matrix A is considered to be sorted if A and the output of sortrows(A) are equal.

Remarks For character arrays, issorted uses ASCII, rather than alphabetical, order.

You cannot use issorted on arrays of greater than two dimensions.

Examples Using issorted on a vector:

A = [5 12 33 39 78 90 95 107 128 131];

issorted(A)
ans =
 1

Using issorted on a matrix:

A = magic(5)
A =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

issorted(A, 'rows')
ans =
 0

issorted

2-485

B = sortrows(A)
B =
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9
 17 24 1 8 15
 23 5 7 14 16

issorted(B)
ans =
 1

See Also sort, sortrows, ismember, unique, intersect, union, setdiff, setxor, is*

isspace

2-486

2isspacePurpose Detect elements that are ASCII white spaces

Syntax tf = isspace('str')

Description tf = isspace('str') returns an array the same size as 'str' containing
logical true (1) where the elements of str are ASCII white spaces and logical
false (0) where they are not. White spaces in ASCII are space, newline, carriage
return, tab, vertical tab, or formfeed characters.

Examples isspace(' Find spa ces ')

ans =

 Columns 1 through 13

1 1 0 0 0 0 1 0 0 0 1 0 0

 Columns 14 through 15

 0 1

See Also isletter, ischar, char, isa, is*

issparse

2-487

2issparsePurpose Test if matrix is sparse

Syntax tf = issparse(S)

Description tf = issparse(S) returns logical true (1) if the storage class of S is sparse and
logical false (0) otherwise.

See Also is*

isstr

2-488

2isstrPurpose Determine if item is a character array

Description This MATLAB 4 function has been renamed ischar in MATLAB 5.

See Also ischar, isa, is*

isstruct

2-489

2isstructPurpose Determine if item is a MATLAB structure array

Syntax tf = isstruct(A)

Description tf = isstruct(A) returns logical true (1) if A is a MATLAB structure and
logical false (0) otherwise.

Examples patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isstruct(patient)

ans =

 1

See Also struct, isfield, iscell, ischar, isobject, isnumeric, islogical, isa, is*

isstudent

2-490

2isstudentPurpose Determine if student edition of MATLAB

Syntax tf = isstudent

Description tf = isstudent returns logical true (1) for the student edition of MATLAB
and logical false (0) for commercial editions.

See Also ispc, isunix, is*

isunix

2-491

2isunixPurpose Determine if UNIX version of MATLAB

Syntax tf = isunix

Description tf = isunix returns logical true (1) for the UNIX version of MATLAB and
logical false (0) otherwise.

See Also ispc, isstudent, is*

isvalid

2-492

2isvalidPurpose Determine if serial port objects are valid

Syntax out = isvalid(obj)

Arguments

Description out = isvalid(obj) returns the logical array out, which contains a 0 where
the elements of obj are invalid serial port objects and a 1 where the elements
of obj are valid serial port objects.

Remarks obj becomes invalid after it is removed from memory with the delete function.
Because you cannot connect an invalid serial port object to the device, you
should remove it from the workspace with the clear command.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM1');

s2 becomes invalid after it is deleted.

delete(s2)

isvalid verifies that s1 is valid and s2 is invalid.

sarray = [s1 s2];
isvalid(sarray)
ans =
 1 0

See Also Functions
clear, delete

obj A serial port object or array of serial port objects.

out A logical array.

isvalid (timer)

2-493

2isvalid (timer)Purpose Determine if timer object is valid

Syntax out = isvalid(obj)

Description out=isvalid(obj) returns a logical array, out, that contains a 0 where the
elements of obj are invalid timer objects and a 1 where the elements of obj are
valid timer objects.

An invalid timer object is an object that has been deleted and cannot be reused.
Use the clear command to remove an invalid timer object from the workspace.

Example Create a valid timer object.

t = timer;
out = isvalid(t)
out =

1

Delete the timer object, hence making it invalid.

delete(t)
out1 = isvalid(t)
out1 =

0

See Also timer, delete

isvarname

2-494

2isvarnamePurpose Determine if item is a valid variable name

Syntax tf = isvarname('str')
isvarname str

Description tf = isvarname 'str' returns logical true (1) if the string, str, is a valid
MATLAB variable name and logical false (0) otherwise. A valid variable name
is a character string of letters, digits, and underscores, totaling not more than
namelengthmax characters and beginning with a letter.

isvarname str uses the MATLAB command format.

Examples This variable name is valid:

isvarname foo
ans =
 1

This one is not because it starts with a number:

isvarname 8th_column
ans =
 0

If you are building strings from various pieces, place the construction in
parentheses.

d = date;

isvarname(['Monday_', d(1:2)])
ans =
 1

See Also isglobal, iskeyword, namelengthmax, is*

j

2-495

2jPurpose Imaginary unit

Syntax j
x+yj
x+j*y

Description Use the character j in place of the character i, if desired, as the imaginary unit.

As the basic imaginary unit sqrt(-1), j is used to enter complex numbers.
Since j is a function, it can be overridden and used as a variable. This permits
you to use j as an index in for loops, etc.

It is possible to use the character j without a multiplication sign as a suffix in
forming a numerical constant.

Examples Z = 2+3j
Z = x+j*y
Z = r*exp(j*theta)

See Also conj, i, imag, real

javaArray

2-496

2javaArrayPurpose Constructs a Java array

Syntax javaArray('package_name.class_name’,x1,...,xn)

Description javaArray('package_name.class_name’,x1,...,xn) constructs an empty
Java array capable of storing objects of Java class, 'class_name'. The
dimensions of the array are x1 by ... by xn. You must include the package
name when specifying the class.

The array that you create with javaArray is equivalent to the array that you
would create with the Java code

A = new class_name[x1]...[xn];

Examples The following example constructs and populates a 4-by-5 array of
java.lang.Double objects.

dblArray = javaArray ('java.lang.Double', 4, 5);

for m = 1:4
 for n = 1:5
 dblArray(m,n) = java.lang.Double((m*10) + n);
 end
end

dblArray

dblArray =
java.lang.Double[][]:
 [11] [12] [13] [14] [15]
 [21] [22] [23] [24] [25]
 [31] [32] [33] [34] [35]
 [41] [42] [43] [44] [45]

See Also javaObject, javaMethod, class, methodsview, isjava

javachk

2-497

2javachkPurpose Generate an error message based on Java feature support

Syntax javachk(feature)
javachk(feature, component)

Description javachk(feature) returns a generic error message if the specified Java
feature is not available in the current MATLAB session. If it is available,
javachk returns an empty matrix. Possible feature arguments are shown in
the following table.

1. Java’s GUI components in the Abstract Window Tookit
2. Java’s lightweight GUI components in the Java Foundation Classes

javachk(feature, component) works the same as the above syntax, except
that the specified component is also named in the error message. (See the
example below.)

Examples The following M-file displays an error with the message "CreateFrame is not
supported on this platform." when run in a MATLAB session in which the
AWT’s GUI components are not available. The second argument to javachk
specifies the name of the M-file, which is then included in the error message
generated by MATLAB.

Feature Description

'awt' Abstract Window Toolkit components1 are available.

'desktop' The MATLAB interactive desktop is running.

'jvm' The Java Virtual Machine is running.

'swing' Swing components2 are available.

javachk

2-498

javamsg = javachk('awt', mfilename);
if isempty(javamsg)
 myFrame = java.awt.Frame;
 myFrame.setVisible(1);
else
 error(javamsg);
end

See Also usejava

javaMethod

2-499

2javaMethodPurpose Invokes a Java method

Syntax X = javaMethod('method_name','class_name’,x1,...,xn)
X = javaMethod('method_name',J,x1,...,xn)

Description javaMethod('method_name','class_name’,x1,...,xn) invokes the static
method method_name in the class class_name, with the argument list that
matches x1,...,xn.

javaMethod('method_name',J,x1,...,xn) invokes the nonstatic method
method_name on the object J, with the argument list that matches x1,...,xn.

Remarks Using the javaMethod function enables you to

• Use methods having names longer than 31 characters

• Specify the method you want to invoke at run-time, for example, as input
from an application user

The javaMethod function enables you to use methods having names longer
than 31 characters. This is the only way you can invoke such a method in
MATLAB. For example:

javaMethod('DataDefinitionAndDataManipulationTransactions', T);

With javaMethod, you can also specify the method to be invoked at run-time.
In this situation, your code calls javaMethod with a string variable in place of
the method name argument. When you use javaMethod to invoke a static
method, you can also use a string variable in place of the class name argument.

Note Typically, you do not need to use javaMethod. The default MATLAB
syntax for invoking a Java method is somewhat simpler and is preferable for
most applications. Use javaMethod primarily for the two cases described
above.

Examples To invoke the static Java method isNaN on class, java.lang.Double, use

javaMethod('isNaN','java.lang.Double',2.2)

javaMethod

2-500

The following example invokes the nonstatic method setTitle, where
frameObj is a java.awt.Frame object.

frameObj = java.awt.Frame;
javaMethod('setTitle', frameObj, 'New Title');

See Also javaArray, javaObject, import, methods, isjava

javaObject

2-501

2javaObjectPurpose Constructs a Java object

Syntax J = javaObject('class_name’,x1,...,xn)

Description javaObject('class_name’,x1,...,xn) invokes the Java constructor for class
'class_name’ with the argument list that matches x1,...,xn, to return a new
object.

If there is no constructor that matches the class name and argument list
passed to javaObject, an error occurs.

Remarks Using the javaObject function enables you to

• Use classes having names with more than 31 consecutive characters

• Specify the class for an object at run-time, for example, as input from an
application user

The default MATLAB constructor syntax requires that no segment of the input
class name be longer than 31 characters. (A name segment, is any portion of the
class name before, between, or after a period. For example, there are three
segments in class, java.lang.String.) Any class name segment that exceeds
31 characters is truncated by MATLAB. In the rare case where you need to use
a class name of this length, you must use javaObject to instantiate the class.

The javaObject function also allows you to specify the Java class for the object
being constructed at run-time. In this situation, you call javaObject with a
string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObject(class, text);

In the usual case, when the class to instantiate is known at development time,
it is more convenient to use the MATLAB constructor syntax. For example, to
create a java.lang.String object, you would use

strObj = java.lang.String('hello');

Note Typically, you will not need to use javaObject. The default MATLAB
syntax for instantiating a Java class is somewhat simpler and is preferable for

javaObject

2-502

most applications. Use javaObject primarily for the two cases described
above.

Examples The following example constructs and returns a Java object of class
java.lang.String:

strObj = javaObject('java.lang.String','hello')

See Also javaArray, javaMethod, import, methods, fieldnames, isjava

keyboard

2-503

2keyboardPurpose Invoke the keyboard in an M-file

Syntax keyboard

Description keyboard , when placed in an M-file, stops execution of the file and gives
control to the keyboard. The special status is indicated by a K appearing before
the prompt. You can examine or change variables; all MATLAB commands are
valid. This keyboard mode is useful for debugging your M-files.

To terminate the keyboard mode, type the command:

return

then press the Return key.

See Also dbstop, input, quit, return

kron

2-504

2kronPurpose Kronecker tensor product

Syntax K = kron(X,Y)

Description K = kron(X,Y) returns the Kronecker tensor product of X and Y. The result is
a large array formed by taking all possible products between the elements of X
and those of Y. If X is m-by-n and Y is p-by-q, then kron(X,Y) is m*p-by-n*q.

Examples If X is 2-by-3, then kron(X,Y) is

[X(1,1)*Y X(1,2)*Y X(1,3)*Y
 X(2,1)*Y X(2,2)*Y X(2,3)*Y]

The matrix representation of the discrete Laplacian operator on a
two-dimensional, n-by-n grid is a n^2-by-n^2 sparse matrix. There are at most
five nonzero elements in each row or column. The matrix can be generated as
the Kronecker product of one-dimensional difference operators with these
statements:

 I = speye(n,n);
 E = sparse(2:n,1:n-1,1,n,n);
 D = E+E'-2*I;
 A = kron(D,I)+kron(I,D);

Plotting this with the spy function for n = 5 yields:

kron

2-505

0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

lasterr

2-506

2lasterrPurpose Return last error message

Syntax msgstr = lasterr
[msgstr, msgid] = lasterr
lasterr('new_msgstr')
lasterr('new_msgstr','new_msgid')
[msgstr,msgid] = lasterr('new_msgstr','new_msgid')

Description msgstr = lasterr returns the last error message generated by MATLAB.

[msgstr, msgid] = lasterr returns the last error in msgstr and its message
identifier in msgid. If the error was not defined with an identifier, lasterr
returns an empty string for msgid. See “Message Identifiers” and “Using
Message Identifiers with lasterr” in the MATLAB documentation for more
information on the msgid argument and how to use it.

lasterr('new_msgstr') sets the last error message to a new string,
new_msgstr, so that subsequent invocations of lasterr return the new error
message string. You can also set the last error to an empty string with
lasterr('').

lasterr('new_msgstr','new_msgid') sets the last error message and its
identifier to new strings, new_msgstr and new_msgid, respectively. Subsequent
invocations of lasterr return the new error message and message identifier.

[msgstr,msgid] = lasterr('new_msgstr','new_msgid') returns the last
error message and its identifier, also changing these values so that subsequent
invocations of lasterr return the message and identifier strings specified by
new_msgstr and new_msgid respectively.

Examples Example 1
Here is a function that examines the lasterr string and displays its own
message based on the error that last occurred. This example deals with two
cases, each of which is an error that can result from a matrix multiply:

function matrix_multiply(A, B)
try
 A * B
catch

lasterr

2-507

 errmsg = lasterr;
 if(strfind(errmsg, 'Inner matrix dimensions'))
 disp('** Wrong dimensions for matrix multiply')
 else
 if(strfind(errmsg, 'not defined for variables of class'))
 disp('** Both arguments must be double matrices')
 end
 end
end

If you call this function with matrices that are incompatible for matrix
multiplication (e.g., the column dimension of A is not equal to the row
dimension of B), MATLAB catches the error and uses lasterr to determine its
source:

A = [1 2 3; 6 7 2; 0 -1 5];
B = [9 5 6; 0 4 9];

matrix_multiply(A, B)
** Wrong dimensions for matrix multiply

Example 2
Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
 'The angle specified must be less than 90 degrees.');

In your error handling code, use lasterr to determine the message identifier
and error message string for the failing operation:

[errmsg, msgid] = lasterr
errmsg =
 The angle specified must be less than 90 degrees.
msgid =
 MyToolbox:angleTooLarge

See Also error, lasterror, warning, lastwarn

lasterror

2-508

2lasterrorPurpose Return last error message and related information

Syntax s = lasterror
s = lasterror(err)

Description s = lasterror returns a structure, s, containing information about the last
error issued by MATLAB. The return structure contains the following
character array fields.

Note The lasterror return structure may contain additional fields in future
versions of MATLAB.

If the last error issued by MATLAB had no message identifier, then the
message_id field is an empty character array.

See “Message Identifiers” in the MATLAB documentation for more information
on the syntax and usage of message identifiers.

s = lasterror(err) sets the last error information to the error message and
identifier specified in the structure, err. Subsequent invocations of lasterror
or lasterr return this new error information. The optional return structure, s,
contains information on the previous error.

The fields of the structure, err, are shown in the table above. If either of these
fields is undefined, MATLAB uses an empty character array instead.

Example lasterror is usually used in conjunction with the rethrow function in
try-catch statements. For example:

try
 do_something

Fieldname Description

message Text of the error message

identifier Message identifier of the error message

lasterror

2-509

catch
 do_cleanup
 rethrow(lasterror)
end

See Also error, rethrow, try, catch, lasterr, lastwarn

lastwarn

2-510

2lastwarnPurpose Return last warning message

Syntax msgstr = lastwarn
[msgstr,msgid] = lastwarn
lastwarn('new_msgstr')
lastwarn('new_msgstr','new_msgid')
[msgstr,msgid] = lastwarn('new_msgstr','new_msgid')

Description msgstr = lastwarn returns the last warning message generated by MATLAB.

[msgstr,msgid] = lastwarn returns the last warning in msgstr and its
message identifier in msgid. If the warning was not defined with an identifier,
lastwarn returns an empty string for msgid. See “Message Identifiers” and
“Warning Control” in the MATLAB documentation for more information on the
msgid argument and how to use it.

lastwarn('new_msgstr') sets the last warning message to a new string,
new_msgstr, so that subsequent invocations of lastwarn return the new
warning message string. You can also set the last warning to an empty string
with lastwarn('').

lastwarn('new_msgstr','new_msgid') sets the last warning message and its
identifier to new strings, new_msgstr and new_msgid, respectively. Subsequent
invocations of lastwarn return the new warning message and message
identifier.

[msgstr,msgid] = lastwarn('new_msgstr','new_msgid') returns the last
warning message and its identifier, also changing these values so that
subsequent invocations of lastwarn return the message and identifier strings
specified by new_msgstr and new_msgid, respectively.

Examples Specify a message identifier and warning message string with warning:

warning('MATLAB:divideByZero', 'Divide by zero');

Use lastwarn to determine the message identifier and error message string for
the operation:

[warnmsg, msgid] = lastwarn
warnmsg =

lastwarn

2-511

 Divide by zero
msgid =
 MATLAB:divideByZero

See Also warning, error, lasterr, lasterror

lcm

2-512

2lcmPurpose Least common multiple

Syntax L = lcm(A,B)

Description L = lcm(A,B) returns the least common multiple of corresponding elements of
arrays A and B. Inputs A and B must contain positive integer elements and must
be the same size (or either can be scalar).

Examples lcm(8,40)

ans =

40

lcm(pascal(3),magic(3))

ans =
 8 1 6
 3 10 21
 4 9 6

See Also gcd

legend

2-513

2legendPurpose Display a legend on graphs

Syntax legend('string1','string2',...)
legend(h,'string1','string2',...)
legend(string_matrix)
legend(h,string_matrix)
legend(axes_handle,...)
legend('off')
legend('hide')
legend('show')
legend('boxoff')
legend('boxon')
legend(h,...)
legend(...,pos)
h = legend(...)
[legend_h,object_h,plot_h,text_strings] = legend(...)

Description legend places a legend on various types of graphs (line plots, bar graphs, pie
charts, etc.). For each line plotted, the legend shows a sample of the line type,
marker symbol, and color beside the text label you specify. When plotting filled
areas (patch or surface objects), the legend contains a sample of the face color
next to the text label.

legend('string1','string2',...) displays a legend in the current axes
using the specified strings to label each set of data.

legend(h,'string1','string2',...) displays a legend on the plot
containing the handles in the vector h, using the specified strings to label the
corresponding graphics object (line, bar, etc.).

legend(string_matrix) adds a legend containing the rows of the matrix
string_matrix as labels. This is the same as
legend(string_matrix(1,:),string_matrix(2,:),...).

legend(h,string_matrix) associates each row of the matrix string_matrix
with the corresponding graphics object in the vector h.

legend

2-514

legend(axes_handle,...) displays the legend for the axes specified by
axes_handle.

legend('off'),legend(axes_handle,'off') removes the legend in the
current axes or the axes specified by axes_handle.

legend('hide'), legend(axes_handle,'hide') makes the legend in the
current axes or the axes specified by axes_handle invisible.

legend('show'), legend(axes_handle,'show') makes the legend in the
current axes or the axes specified by axes_handle visible.

legend('boxoff'), legend(axes_handle,'boxoff') removes the box from
the legend in the current axes or the axes specified by axes_handle.

legend('boxon'), legend(axes_handle,'boxon') adds a box to the legend
in the current axes or the axes specified by axes_handle.

legend_handle = legend returns the handle to the legend on the current axes
or an empty vector if no legend exists.

legend with no arguments refreshes all the legends in the current figure.

legend(legend_handle) refreshes the specified legend.

legend(...,pos) uses pos to determine where to place the legend.

• pos = –1 places the legend outside the axes boundary on the right side.

• pos = 0 places the legend inside the axes boundary, obscuring as few points
as possible.

• pos = 1 places the legend in the upper-right corner of the axes (default).

• pos = 2 places the legend in the upper-left corner of the axes.

• pos = 3 places the legend in the lower-left corner of the axes.

• pos = 4 places the legend in the lower-right corner of the axes.

[legend_h,object_h,plot_h,text_strings] = legend(...) returns:

• legend_h – handle of the legend axes

legend

2-515

• object_h – handles of the line, patch and text graphics objects used in the
legend

• plot_h – handles of the lines and patches used in the plot

• text_strings – cell array of the text strings used in the legend.

These handles enable you to modify the properties of the respective objects.

Remarks legend associates strings with the objects in the axes in the same order that
they are listed in the axes Children property. By default, the legend annotates
the current axes.

MATLAB displays only one legend per axes. legend positions the legend based
on a variety of factors, such as what objects the legend obscures.

legend installs a figure ResizeFcn, if there is not already a user-defined
ResizeFcn assigned to the figure. This ResizeFcn attempts to keep the legend
the same size.

Moving the Legend
You can move the legend by pressing the left mouse button while the cursor is
over the legend and dragging the legend to a new location. Double clicking on
a label allows you to edit the label.

Examples Add a legend to a graph showing a sine and cosine function:

x = –pi:pi/20:pi;
plot(x,cos(x),'−ro',x,sin(x),'−.b')

legend

2-516

h = legend('cos','sin',2);

In this example, the plot command specifies a solid, red line ('−r') for the
cosine function and a dash-dot, blue line ('−.b') for the sine function.

See Also LineSpec, plot

Adding a Legend to a Graph for more information on using legends

“Annotating Plots” for related functions

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cos
sin

legendre

2-517

2legendrePurpose Associated Legendre functions

Syntax P = legendre(n,X)
S = legendre(n,X,'sch')
N = legendre(n,X,'norm')

Definitions Associated Legendre Functions. The Legendre functions are defined by

where

is the Legendre polynomial of degree .

Schmidt Seminormalized Associated Legendre Functions. The Schmidt seminormalized
associated Legendre functions are related to the nonnormalized associated
Legendre functions by

for

 for .

Fully Normalized Associated Legendre Functions. The fully normalized associated
Legendre functions are normalized such that

and are related to the unnormalized associated Legendre functions by

Pn
m x() 1–()m 1 x2–()m 2/

xm

m

d

d Pn x()=

Pn x()

n

Pn x() 1

2nn!
------------ dn

dxn
---------- x2 1–()

n
=

Pn
m x()

Pn x() m 0=

Sn
m x() 1–()m 2 n m–()!

n m+()!
------------------------- Pn

m x()= m 0>

Nn
m x()()

2

1–

1

∫ dx 1=

Pn
m x()

Nn
m x() 1–()m n +() n m–()!

n m+()!
------------------------------------- Pn

m x()=

legendre

2-518

Description P = legendre(n,X) computes the associated Legendre functions of
degree n and order m = 0,1,...,n, evaluated for each element of X. Argument
n must be a scalar integer, and X must contain real values in the domain

.

If X is a vector, then P is an (n+1)-by-q matrix, where q = length(X). Each
element P(m+1,i) corresponds to the associated Legendre function of degree n
and order m evaluated at X(i).

In general, the returned array P has one more dimension than X, and each
element P(m+1,i,j,k,...) contains the associated Legendre function of
degree n and order m evaluated at X(i,j,k,...). Note that the first row of P is
the Legendre polynomial evaluated at X, i.e., the case where m = 0.

S = legendre(n,X,'sch') computes the Schmidt seminormalized associated
Legendre functions .

N = legendre(n,X,'norm') computes the fully normalized associated
Legendre functions .

Examples Example 1. The statement legendre(2,0:0.1:0.2) returns the matrix

Example 2. Given,

X = rand(2,4,5);
n = 2;
P = legendre(n,X)

then

size(P)
ans =
 3 2 4 5

Pn
m x()

1– x 1≤ ≤

Sn
m x()

Nn
m x()

x = 0 x = 0.1 x = 0.2

m = 0 -0.5000 -0.4850 -0.4400

m = 1 0 -0.2985 -0.5879

m = 2 3.0000 2.9700 2.8800

legendre

2-519

and

P(:,1,2,3)
ans =
 -0.2475
 -1.1225
 2.4950

is the same as

legendre(n,X(1,2,3))
ans =
 -0.2475
 -1.1225
 2.4950

Algorithm legendre uses a three-term backward recursion relationship in m. This
recursion is on a version of the Schmidt seminormalized associated Legendre
functions , which are complex spherical harmonics. These functions are
related to the standard Abramowitz and Stegun [1] functions by

 They are related to the Schmidt form given previously by

 for

for .

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions,
Dover Publlications, 1965, Ch.8.

[2] Jacobs, J. A., Geomagnetism, Academic Press, 1987, Ch.4.

Qn
m x()

Pn
m x()

Pn
m x() n m+()!

n m–()!
---------------------- Qn

m x()=

Sn
m x() Qn

0 x()= m 0=

Sn
m x() 1–()m 2 Qn

m x()= m 0>

length

2-520

2lengthPurpose Length of vector

Syntax n = length(X)

Description The statement length(X) is equivalent to max(size(X)) for nonempty arrays
and 0 for empty arrays.

n = length(X) returns the size of the longest dimension of X. If X is a vector,
this is the same as its length.

Examples x = ones(1,8);
n = length(x)

n =
 8

x = rand(2,10,3);
n = length(x)

n =
 10

See Also ndims, size

length (serial)

2-521

2length (serial)Purpose Length of serial port object array

Syntax length(obj)

Arguments

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

See Also Functions
size

obj A serial port object or an array of serial port objects.

license

2-522

2licensePurpose Display license number for MATLAB or list of licenses checked out

Syntax license
license('inuse')
result = license('inuse')
result = license('test',feature)
license('test',feature,toggle)

Description license displays the license number for MATLAB, as a string. It returns demo
for demonstration versions, student for student edition, and unknown if the
license number cannot be determined.

license('inuse') displays the list of licenses checked out in the current
MATLAB session.

result = license('inuse') returns a structure that contains the list of
licenses checked out in the current MATLAB session and the username of the
person who checked out the license.

When used with the MATLAB Runtime Server, the 'inuse' option displays
nothing or returns an empty structure.

result = license('test',feature) tests if a license exists for the product
identified by the text string feature. The license function returns 1 if the
license exists and 0 if the license does not exist. You must specify the product
name exactly as it appears in the INCREMENT lines in a License File
(license.dat). The feature is case sensitive and must not exceed 27
characters in length. For example, 'Identification_Toolbox' is the feature
name for the System Identification Toolbox.

Note Testing for a license only confirms that the license exists. It does not
confirm that the license can be checked out. If the license has expired or if a
system administrator has excluded you from using the product in an options
file, license will still return 1, if the license exists.

license

2-523

license('test',feature,toggle) enables or disables license testing for the
specified product, feature, depending on the value of toggle. The parameter
toggle can have either of two values:

Note Disabling a test for a particular product can impact all other tests for
the existence of the license, not just tests performed using the license
command.

'enable' Tests for the specified license return either 1 (license
exists) or 0 (license does not exist).

'disable' Tests for the specified license always return 0 (license does
not exist)

light

2-524

2lightPurpose Create a light object

Syntax light('PropertyName',PropertyValue,...)
handle = light(...)

Description light creates a light object in the current axes. lights affect only patch and
surface object.

light('PropertyName',PropertyValue,...) creates a light object using the
specified values for the named properties. MATLAB parents the light to the
current axes unless you specify another axes with the Parent property.

handle = light(...) returns the handle of the light object created.

Remarks You cannot see a light object per se, but you can see the effects of the light
source on patch and surface objects. You can also specify an axes-wide ambient
light color that illuminates these objects. However, ambient light is visible only
when at least one light object is present and visible in the axes.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see set and get for examples of how to specify these
data types).

See also the patch and surface AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, SpecularColorReflectance, and
VertexNormals properties. Also see the lighting and material commands.

Examples Light the peaks surface plot with a light source located at infinity and oriented
along the direction defined by the vector [1 0 0], that is, along the x-axis.

h = surf(peaks);
set(h,’FaceLighting’,’phong’,'FaceColor',’interp’,...

'AmbientStrength',0.5)
light('Position’,[1 0 0],’Style’,’infinite’);

See Also lighting, material, patch, surface

Lighting as a Visualization Tool for more information about lighting

“Lighting” for related functions

light

2-525

Object
Hierarchy

Setting Default Properties
You can set default light properties on the axes, figure, and root levels:

set(0,'DefaultLightProperty',PropertyValue...)
set(gcf,'DefaultLightProperty',PropertyValue...)
set(gca,'DefaultLightProperty',PropertyValue...)

Where Property is the name of the light property and PropertyValue is the
value you are specifying. Use set and get to access light properties.

The following table lists all light properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Defining the Light

Color Color of the light produced by the
light object

Values: ColorSpec

Position Location of light in the axes Values: x-, y-, z-coordinates
in axes units
Default: [1 0 1]

light

2-526

Style Parallel or divergent light source Values: infinite, local

Controlling the Appearance

SelectionHighlight This property is not used by light
objects

Values: on, off
Default: on

Visible Make the effects of the light visible
or invisible

Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the the
light’s handle is visible to other
functions

Values: on, callback, off
Default: on

HitTest This property is not used by light
objects

Values: on, off
Default: on

General Information About the Light

Children Light objects have no children Values: [] (empty matrix)

Parent The parent of a light object is always
an axes object

Value: axes handle

Selected This property is not used by light
objects

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'light'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback
routine interruption

Values: cancel, queue
Default: queue

Property Name Property Description Property Value

light

2-527

ButtonDownFcn This property is not used by light
objects

Values: string or function
handle
Default: empty string

CreateFcn Define a callback routine that
executes when a light is created

Values: string or function
handle
Default: empty string

DeleteFcn Define a callback routine that
executes when the light is deleted
(via close or delete)

Values: string or function
handle
Default: empty string

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu This property is not used by light
objects

Values: handle of a
Uicontrextmenu

Property Name Property Description Property Value

Light Properties

2-528

2Light PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Light Property
Descriptions

This section lists property names along with the type of values each accepts.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

This property is not useful on lights.

Children handles

The empty matrix; light objects have no children.

Clipping on | off

Clipping has no effect on light objects.

Color ColorSpec

Color of light. This property defines the color of the light emanating from the
light object. Define it as three-element RGB vector or one of the MATLAB
predefined names. See the ColorSpec reference page for more information.

Light Properties

2-529

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a light object. You must
define this property as a default value for lights. For example, the statement,

set(0,'DefaultLightCreateFcn','set(gcf,''Colormap'',hsv)')

sets the current figure colormap to hsv whenever you create a light object.
MATLAB executes this routine after setting all light properties. Setting this
property on an existing light object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Delete light callback routine. A callback routine that executes when you delete
the light object (i.e., when you issue a delete command or clear the axes or
figure containing the light). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to

Light Properties

2-530

protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaling a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

This property is not used by light objects.

Interruptible {on} | off

Callback routine interruption mode. Light object callback routines defined for
the DeleteFcn property are not affected by the Interruptible property.

Parent handle of parent axes

Light objects parent. The handle of the light object’s parent axes. You can move
a light object to another axes by changing this property to the new axes handle.

Position [x,y,z] in axes data units

Location of light object. This property specifies a vector defining the location of
the light object. The vector is defined from the origin to the specified x, y, and

Light Properties

2-531

z coordinates. The placement of the light depends on the setting of the Style
property:

• If the Style property is set to local, Position specifies the actual location
of the light (which is then a point source that radiates from the location in
all directions).

• If the Style property is set to infinite, Position specifies the direction
from which the light shines in parallel rays.

Selected on | off

This property is not used by light objects.

SelectionHighlight {on} | off

This property is not used by light objects.

Style {infinite} | local

Parallel or divergent light source. This property determines whether MATLAB
places the light object at infinity, in which case the light rays are parallel, or at
the location specified by the Position property, in which case the light rays
diverge in all directions. See the Position property.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For light objects, Type is always 'light'.

UIContextMenu handle of a uicontextmenu object

This property is not used by light objects.

UserData matrix

User specified data. This property can be any data you want to associate with
the light object. The light does not use this property, but you can access it using
set and get.

Light Properties

2-532

Visible {on} | off

Light visibility. While light objects themselves are not visible, you can see the
light on patch and surface objects. When you set Visible to off, the light
emanating from the source is not visible. There must be at least one light object
in the axes whose Visible property is on for any lighting features to be enabled
(including the axes AmbientLightColor and patch and surface
AmbientStrength).

lightangle

2-533

2lightanglePurpose Create or position a light object in spherical coordinates

Syntax lightangle(az,el)
light_handle = lightangle(az,el)
lightangle(light_handle,az,el)
[ax el] = lightangle(light_handle)

Description lightangle(az,el) creates a light at the position specified by azimuth and
elevation. az is the azimuthal (horizontal) rotation and el is the vertical
elevation (both in degrees). The interpretation of azimuth and elevation is the
same as that of the view command.

light_handle = lightangle(az,el) creates a light and returns the handle of
the light in light_handle.

lightangle(light_handle,az,el) sets the position of the light specified by
light_handle.

[az,el] = lightangle(light_handle) returns the azimuth and elevation of
the light specified by light_handle.

Remarks By default, when a light is created, its style is infinite. If the light handle
passed into lightangle refers to a local light, the distance between the light
and the camera target is preserved as the position is changed.

Examples surf(peaks)
axis vis3d
h = light;
for az = −50:10:50

lightangle(h,az,30)
drawnow

end

See Also light, camlight, view

Lighting as a Visualization Tool for more information about lighting

“Lighting” for related functions

lighting

2-534

2lightingPurpose Select the lighting algorithm

Syntax lighting flat
lighting gouraud
lighting phong
lighting none

Description lighting selects the algorithm used to calculate the effects of light objects on
all surface and patch objects in the current axes.

lighting flat selects flat lighting.

lighting gouraud selects gouraud lighting.

lighting phong selects phong lighting.

lighting none turns off lighting.

Remarks The surf, mesh, pcolor, fill, fill3, surface, and patch functions create
graphics objects that are affected by light sources. The lighting command sets
the FaceLighting and EdgeLighting properties of surfaces and patches
appropriately for the graphics object.

See Also light, material, patch, surface

Lighting as a Visualization Tool for more information about lighting

“Lighting” for related functions

lin2mu

2-535

2lin2muPurpose Convert linear audio signal to mu-law

Syntax mu = lin2mu(y)

Description mu = lin2mu(y) converts linear audio signal amplitudes in the range
-1 ≤ Y ≤ 1 to mu-law encoded “flints” in the range 0 ≤ u ≤ 255.

See Also auwrite, mu2lin

line

2-536

2linePurpose Create line object

Syntax line(X,Y)
line(X,Y,Z)
line(X,Y,Z,'PropertyName',PropertyValue,...)
line('PropertyName',PropertyValue,...) low-level–PN/PV pairs only
h = line(...)

Description line creates a line object in the current axes. You can specify the color, width,
line style, and marker type, as well as other characteristics.

The line function has two forms:

• Automatic color and line style cycling. When you specify matrix coordinate
data using the informal syntax (i.e., the first three arguments are
interpreted as the coordinates),
line(X,Y,Z)

MATLAB cycles through the axes ColorOrder and LineStyleOrder property
values the way the plot function does. However, unlike plot, line does not
call the newplot function.

• Purely low-level behavior. When you call line with only property
name/property value pairs,
line('XData',x,'YData',y,'ZData',z)

MATLAB draws a line object in the current axes using the default line color
(see the colordef function for information on color defaults). Note that you
cannot specify matrix coordinate data with the low-level form of the line
function.

line(X,Y) adds the line defined in vectors X and Y to the current axes. If X and
Y are matrices of the same size, line draws one line per column.

line(X,Y,Z) creates lines in three-dimensional coordinates.

line(X,Y,Z,'PropertyName',PropertyValue,...) creates a line using the
values for the property name/property value pairs specified and default values
for all other properties.

See the LineStyle and Marker properties for a list of supported values.

line

2-537

line('XData',x,'YData',y,'ZData',z,'PropertyName',PropertyValue,..
.) creates a line in the current axes using the property values defined as
arguments. This is the low-level form of the line function, which does not
accept matrix coordinate data as the other informal forms described above.

h = line(...) returns a column vector of handles corresponding to each line
object the function creates.

Remarks In its informal form, the line function interprets the first three arguments
(two for 2-D) as the X, Y, and Z coordinate data, allowing you to omit the
property names. You must specify all other properties as name/value pairs. For
example,

line(X,Y,Z,'Color','r','LineWidth',4)

The low-level form of the line function can have arguments that are only
property name/property value paris. For example,

line('XData',x,'YData',y,'ZData',z,'Color','r','LineWidth',4)

Line properties control various aspects of the line object and are described in
the “Line Properties” section. You can also set and query property values after
creating the line using set and get.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Unlike high-level functions such as plot, line does not respect the setting of
the figure and axes NextPlot properties. It simply adds line objects to the
current axes. However, axes properties that are under automatic control such
as the axis limits can change to accommodate the line within the current axes.

Examples This example uses the line function to add a shadow to plotted data. First, plot
some data and save the line’s handle:

t = 0:pi/20:2*pi;
hline1 = plot(t,sin(t),’k’);

Next, add a shadow by offsetting the x coordinates. Make the shadow line light
gray and wider than the default LineWidth:

hline2 = line(t+.06,sin(t),'LineWidth',4,'Color',[.8 .8 .8]);

line

2-538

Finally, pop the first line to the front:

set(gca,'Children',[hline1 hline2])

Input Argument Dimensions – Informal Form
This statement reuses the one column matrix specified for ZData to produce
two lines, each having four points.

line(rand(4,2),rand(4,2),rand(4,1))

If all the data has the same number of columns and one row each, MATLAB
transposes the matrices to produce data for plotting. For example,

line(rand(1,4),rand(1,4),rand(1,4))

is changed to:

line(rand(4,1),rand(4,1),rand(4,1))

This also applies to the case when just one or two matrices have one row. For
example, the statement,

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

line

2-539

line(rand(2,4),rand(2,4),rand(1,4))

is equivalent to:

line(rand(4,2),rand(4,2),rand(4,1))

See Also axes,newplot, plot, plot3

“Object Creation Functions” for related functions

Object
Hierarchy

Setting Default Properties
You can set default line properties on the axes, figure, and root levels.

set(0,'DefaultLinePropertyName',PropertyValue,...)
set(gcf,'DefaultLinePropertyName',PropertyValue,...)
set(gca,'DefaultLinePropertyName',PropertyValue,...)

Where PropertyName is the name of the line property and PropertyValue is the
value you are specifying. Use set and get to access line properties.

The following table lists all light properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

line

2-540

Property Name Property Description Property Value

Data Defining the Object

XData The x-coordinates defining the line Values: vector or matrix
Default: [0 1]

YData The y-coordinates defining the line Values: vector or matrix
Default: [0 1]

ZData The z-coordinates defining the line Values: vector or matrix
Default: [] empty matrix

Defining Line Styles and Markers

LineStyle Select from five line styles. Values: −, −−, :, −., none
Default: −

LineWidth The width of the line in points Values: scalar
Default: 0.5 points

Marker Marker symbol to plot at data points Values: see Marker property
Default: none

MarkerEdgeColor Color of marker or the edge color for
filled markers

Values: ColorSpec, none, auto
Default: auto

MarkerFaceColor Fill color for markers that are closed
shapes

Values: ColorSpec, none, auto
Default: none

MarkerSize Size of marker in points Values: size in points
Default: 6

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
line (useful for animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Highlight line when selected (Selected
property set to on)

Values: on, off
Default: on

line

2-541

Visible Make the line visible or invisible Values: on, off
Default: on

Color Color of the line ColorSpec

Controlling Access to Objects

HandleVisibility Determines if and when the the line’s
handle is visible to other functions

Values: on, callback, off
Default: on

HitTest Determines if the line can become the
current object (see the figure
CurrentObject property)

Values: on, off
Default: on

General Information About the Line

Children Line objects have no children Values: [] (empty matrix)

Parent The parent of a line object is always an
axes object

Value: axes handle

Selected Indicate whether the line is in a
“selected” state.

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read only) Value: the string 'line'

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BusyAction Specify how to handle callback routine
interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that executes
when a mouse button is pressed on
over the line

Values: string or function handle
Default: '' (empty string)

Property Name Property Description Property Value

line

2-542

CreateFcn Define a callback routine that executes
when a line is created

Values: string or function handle
Default: '' (empty string)

DeleteFcn Define a callback routine that executes
when the line is deleted (via close or
delete)

Values: string or function handle
Default: '' (empty string)

Interruptible Determine if callback routine can be
interrupted

Values: on, off
Default: on (can be interrupted)

UIContextMenu Associate a context menu with the line Values: handle of a
Uicontextmenu

Property Name Property Description Property Value

Line Properties

2-543

2Line PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Line Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routes always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the line object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Children vector of handles

The empty matrix; line objects have no children.

Line Properties

2-544

Clipping {on} | off

Clipping mode. MATLAB clips lines to the axes plot box by default. If you set
Clipping to off, lines display outside the axes plot box. This can occur if you
create a line, set hold to on, freeze axis scaling (axis manual), and then create
a longer line.

Color ColorSpec

Line color. A three-element RGB vector or one of the MATLAB predefined
names, specifying the line color. See the ColorSpec reference page for more
information on specifying color.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a line object. You must
define this property as a default value for lines. For example, the statement,

set(0,'DefaultLineCreateFcn','set(gca,''LineStyleOrder'',''-.|--'')')

defines a default value on the root level that sets the axes LineStyleOrder
whenever you create a line object. MATLAB executes this routine after setting
all line properties. Setting this property on an existing line object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Delete line callback routine. A callback routine that executes when you delete
the line object (e.g., when you issue a delete command or clear the axes or
figure). MATLAB executes the routine before deleting the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Line Properties

2-545

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase line objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none – Do not erase the line when it is moved or destroyed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

• xor – Draw and erase the line by performing an exclusive OR (XOR) with the
color of the screen beneath it. This mode does not damage the color of the
objects beneath the line. However, the line’s color depends on the color of
whatever is beneath it on the display.

• background – Erase the line by drawing it in the axes’ background Color, or
the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased line, but lines are always properly colored.

Printing with Non-normal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (e.g., XORing a pixel color with that of
the pixel behind it) and ignore three-dimensional sorting to obtain greater
rendering speed. However, these techniques are not applied to the printed
output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing non-normal mode objects.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the line can become the
current object (as returned by the gco command and the figure CurrentObject

Line Properties

2-546

property) as a result of a mouse click on the line. If HitTest is off, clicking on
the line selects the object below it (which may be the axes containing it).

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaling a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle propertes. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

Line Properties

2-547

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a line callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style. Available line styles are shown
in the table.

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

The width of the line object. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

Symbol Line Style

− solid line (default)

−− dashed line

: dotted line

−. dash-dot line

none no line

Line Properties

2-548

Marker character (see table)

Marker symbol. The Marker property specifies marks that display at data
points. You can set values for the Marker property independently from the
LineStyle property. Supported markers include those shown in the table.

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the line’s Color property.

Marker Specifier Description

+ plus sign

o circle

* asterisk

. point

x cross

s square

d diamond

^ upward pointing triangle

v downward pointing triangle

> right pointing triangle

< left pointing triangle

p five-pointed star (pentagram)

h six-pointed star (hexagram)

none no marker (default)

Line Properties

2-549

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or the figure color, if the axes Color property is set to none (which is the
factory default for axes).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB
draws the point marker (specified by the '.' symbol) at one-third the specified
size.

Parent handle

Line’s parent. The handle of the line object’s parent axes. You can move a line
object to another axes by changing this property to the new axes handle.

Selected on | off

Is object selected. When this property is on. MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing handles at each vertex. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For line objects, Type is always the string 'line'.

Line Properties

2-550

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the line. Assign this property the handle of a
uicontextmenu object created in same figure as the line. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the line.

UserData matrix

User-specified data. Any data you want to associate with the line object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Line visibility. By default, all lines are visible. When set to off, the line is not
visible, but still exists and you can get and set its properties.

XData vector of coordinates

X-coordinates. A vector of x-coordinates defining the line. YData and ZData
must have the same number of rows. (See Examples).

YData vector or matrix of coordinates

Y-coordinates. A vector of y-coordinates defining the line. XData and ZData
must have the same number of rows.

ZData vector of coordinates

Z-coordinates. A vector of z-coordinates defining the line. XData and YData
must have the same number of rows.

LineSpec

2-551

2LineSpecPurpose Line specification syntax

Description This page describes how to specify the properties of lines used for plotting.
MATLAB enables you to define many characteristics including:

• Line style

• Line width

• Color

• Marker type

• Marker size

• Marker face and edge coloring (for filled markers)

MATLAB defines string specifiers for line styles, marker types, and colors. The
following tables list these specifiers.

LineSpec

2-552

Line Style Specifiers

Marker Specifiers

Specifier Line Style

− solid line (default)

−− dashed line

: dotted line

−. dash-dot line

Specifier Marker Type

+ plus sign

o circle

* asterisk

. point

x cross

s square

d diamond

^ upward pointing triangle

v downward pointing triangle

> right pointing triangle

< left pointing triangle

p five-pointed star (pentagram)

h six-pointed star (hexagram)

LineSpec

2-553

Color Specifiers

Many plotting commands accept a LineSpec argument that defines three
components used to specify lines:

• Line style

• Marker symbol

• Color

For example,

plot(x,y,'−.or')

plots y versus x using a dash-dot line (−.), places circular markers (o) at the
data points, and colors both line and marker red (r). Specify the components (in
any order) as a quoted string after the data arguments.

If you specify a marker, but not a line style, MATLAB plots only the markers.
For example,

plot(x,y,'d')

Related
Properties

When using the plot and plot3 functions, you can also specify other
characteristics of lines using graphics properties:

Specifier Color

r red

g green

b blue

c cyan

m magenta

y yellow

k black

w white

LineSpec

2-554

• LineWidth – specifies the width (in points) of the line

• MarkerEdgeColor – specifies the color of the marker or the edge color forfilled
markers (circle, square, diamond, pentagram, hexagram, and the four
triangles).

• MarkerFaceColor – specifies the color of the face of filled markers.

• MarkerSize – specifies the size of the marker in points.

In addition, you can specify the LineStyle, Color, and Marker properties
instead of using the symbol string. This is useful if you want to specify a color
that is not in the list by using RGB values. See ColorSpec for more information
on color.

Examples Plot the sine function over three different ranges using different line styles,
colors, and markers.

t = 0:pi/20:2*pi;
plot(t,sin(t),'−.r*')
hold on
plot(sin(t−pi/2),’−−mo’)
plot(sin(t−pi),’:bs’)

LineSpec

2-555

hold off

Create a plot illustrating how to set line properties.

plot(t,sin(2*t),’−mo’,...
’LineWidth’,2,...
’MarkerEdgeColor’,’k’,...
’MarkerFaceColor’,[.49 1 .63],...
’MarkerSize’,12)

0 5 10 15 20 25 30 35 40 45
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

LineSpec

2-556

See Also line, plot, patch, set, surface, axes LineStyleOrder property

“Basic Plots and Graphs” for related functions

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

linspace

2-557

2linspacePurpose Generate linearly spaced vectors

Syntax y = linspace(a,b)
y = linspace(a,b,n)

Description The linspace function generates linearly spaced vectors. It is similar to the
colon operator “:”, but gives direct control over the number of points.

y = linspace(a,b) generates a row vector y of 100 points linearly spaced
between and including a and b.

y = linspace(a,b,n) generates a row vector y of n points linearly spaced
between and including a and b.

See Also logspace

The colon operator :

listdlg

2-558

2listdlgPurpose Create list selection dialog box

Syntax [Selection,ok] = listdlg('ListString',S,...)

Description [Selection,ok] = listdlg('ListString',S) creates a modal dialog box
that enables you to select one or more items from a list. Selection is a vector
of indices of the selected strings (in single selection mode, its length is 1).
Selection is [] when ok is 0. ok is 1 if you click the OK button, or 0 if you click
the Cancel button or close the dialog box. Double-clicking on an item or
pressing Return when multiple items are selected has the same effect as
clicking the OK button. The dialog box has a Select all button (when in
multiple selection mode) that enables you to select all list items.

Inputs are in parameter/value pairs:

Parameter Description

'ListString' Cell array of strings that specify the list box items.

'SelectionMode' String indicating whether one or many items can be
selected:'single' or 'multiple' (the default).

'ListSize' List box size in pixels, specified as a two element
vector, [width height]. Default is [160 300].

'InitialValue' Vector of indices of the list box items that are
initially selected. Default is 1, the first item.

'Name' String for the dialog box’s title. Default is ''.

'PromptString' String matrix or cell array of strings that appears
as text above the list box. Default is {}.

'OKString' String for the OK button. Default is 'OK'.

'CancelString' String for the Cancel button. Default is 'Cancel'.

'uh' Uicontrol button height, in pixels. Default is 18.

'fus' Frame/uicontrol spacing, in pixels. Default is 8.

'ffs' Frame/figure spacing, in pixels. Default is 8.

listdlg

2-559

Example This example displays a dialog box that enables the user to select a file from
the current directory. The function returns a vector. Its first element is the
index to the selected file; its second element is 0 if no selection is made, or 1 if
a selection is made.

d = dir;
str = {d.name};
[s,v] = listdlg('PromptString','Select a file:',...

'SelectionMode','single',...
'ListString',str)

See Also dir

“Predefined Dialog Boxes” for related functions

load

2-560

2loadPurpose Load workspace variables from disk

Syntax load
load filename
load filename X Y Z
load filename –ascii
load filename –mat
S = load(...)

Description load loads all the variables from the MAT-file matlab.mat, if it exists, and
returns an error if it doesn’t exist.

load filename loads all the variables from filename given a full pathname or
a MATLABPATH relative partial pathname. If filename has no extension, load
looks for file named filename or filename.mat and treats it as a binary
MAT-file. If filename has an extension other than .mat, load treats the file as
ASCII data.

load filename X Y Z ... loads just the specified variables from the
MAT-file. The wildcard '*' loads variables that match a pattern (MAT-file only).

load –ascii filename or load –mat filename forces load to treat the file as
either an ASCII file or a MAT-file, regardless of file extension. With -ascii,
load returns an error if the file is not numeric text. With -mat, load returns an
error if the file is not a MAT-file.

load –ascii filename returns all the data in the file as a single two
dimensional double array with its name taken from the filename (minus any
extension). The number of rows is equal to the number of lines in the file and
the number of columns is equal to the number of values on a line. An error
occurs if the number of values differs between any two rows.

load filename.ext reads ASCII files that contain rows of space-separated
values. The resulting data is placed into a variable with the same name as the
file (without the extension). ASCII files may contain MATLAB comments (lines
that begin with %).

If filename is a MAT-file, load creates the requested variables from filename
in the workspace. If filename is not a MAT-file, load creates a double precision
array with a name based on filename. load replaces leading underscores or

load

2-561

digits in filename with an X and replaces other non-alphabetic character with
underscores. The text file must be organized as a rectangular table of numbers,
separated by blanks, with one row per line, and an equal number of elements
in each row.

S = load(...) returns the contents of a MAT-file in the variable S. If the file
is a MAT-file, S is a struct containing fields that match the variables in
retrieved. When the file contains ASCII data, S is a double-precision array.

Use the functional form of load, such as load('filename'), when the file
name is stored in a string, when an output argument is requested, or if
filename contains spaces. To specify a command line option with this
functional form, specify the option as a string argument, including the hyphen.
For example,

load('myfile.dat','-mat')

Remarks MAT-files are double-precision binary MATLAB format files created by the
save command and readable by the load command. They can be created on one
machine and later read by MATLAB on another machine with a different
floating-point format, retaining as much accuracy and range as the disparate
formats allow. They can also be manipulated by other programs, external to
MATLAB.

The Application Program Interface Libraries contain C- and Fortran-callable
routines to read and write MAT-files from external programs.

See Also fprintf, fscanf, partialpath, save, spconvert

load (COM)

2-562

2load (COM)Purpose Initialize a COM object from a file

Syntax load(h, 'filename')

Arguments h
Handle for a MATLAB COM control object.

filename
The full path and filename of the serialized data.

Description Initializes the COM object associated with the interface represented by the
MATLAB COM object h from a file. The file must have been created previously
by serializing an instance of the same control.

The COM load function is only supported for controls at this time.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
save(h, 'mwsample')

Now, alter the figure by changing its label and the radius of the circle:

set(h, 'Label', 'Circle');
set(h, 'Radius', 50);
Redraw(h);

Using the load function, you can restore the control to its original state:

load(h, 'mwsample');
get(h)
ans =
 Label: 'Label'
 Radius: 20

See Also save, actxcontrol, actxserver, release, delete

load (serial)

2-563

2load (serial)Purpose Load serial port objects and variables into the MATLAB workspace

Syntax load filename
load filename obj1 obj2...
out = load('filename','obj1','obj2',...)

Arguments

Description load filename returns all variables from the MAT-file specified by filename
into the MATLAB workspace.

load filename obj1 obj2... returns the serial port objects specified by obj1
obj2 ... from the MAT-file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified serial port
objects from the MAT-file filename as a structure to out instead of directly
loading them into the workspace. The field names in out match the names of
the loaded serial port objects.

Remarks Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To determine
if a property is read-only, examine its reference pages.

If you use the help command to display help for load, then you need to supply
the pathname shown below.

help serial/private/load

Example Suppose you create the serial port objects s1 and s2, configure a few properties
for s1, and connect both objects to their instruments.

s1 = serial('COM1');
s2 = serial('COM2');
set(s1,'Parity','mark','DataBits',7)
fopen(s1)
fopen(s2)

filename The MAT-file name.

obj1 obj2... Serial port objects or arrays of serial port objects.

out A structure containing the specified serial port objects.

load (serial)

2-564

Save s1 and s2 to the file MyObject.mat, and then load the objects into the
workspace using new variables.

save MyObject s1 s2
news1 = load MyObject s1
news2 = load('MyObject','s2')

Values for read-only properties are restored to their default values upon
loading, while all other properties values are honored.

get(news1,{'Parity','DataBits','Status'})
ans =
 'mark' [7] 'closed'
get(news2,{'Parity','DataBits','Status'})
ans =
 'none' [8] 'closed'

See Also Functions
save

Properties
Status

loadobj

2-565

2loadobjPurpose User-defined extension of the load function for user objects

Syntax b = loadobj(a)

Description b = loadobj(a) extends the load function for user objects. When an object is
loaded from a MAT file, the load function calls the loadobj method for the
object’s class if it is defined. The loadobj method must have the calling
sequence shown; the input argument a is the object as loaded from the MAT file
and the output argument b is the object that the load function will load into
the workspace.

These steps describe how an object is loaded from a MAT file into the
workspace:

1 The load function detects the object a in the MAT file.

2 The load function looks in the current workspace for an object of the same
class as the object a. If there isn’t an object of the same class in the
workspace, load calls the default constructor, registering an object of that
class in the workspace. The default constructor is the constructor function
called with no input arguments.

3 The load function checks to see if the structure of the object a matches the
structure of the object registered in the workspace. If the objects match, a is
loaded. If the objects don’t match, load converts a to a structure variable.

4 The load function calls the loadobj method for the object’s class if it is
defined. load passes the object a to the loadobj method as an input
argument. Note, the format of the object a is dependent on the results of step
3 (object or structure). The output argument of loadobj, b, is loaded into the
workspace in place of the object a.

Remarks loadobj can be overloaded only for user objects. load will not call loadobj for
built-in datatypes (such as double).

loadobj is invoked separately for each object in the MAT file. The load
function recursively descends cell arrays and structures applying the loadobj
method to each object encountered.

A child object does not inherit the loadobj method of its parent class. To
implement loadobj for any class, including a class that inherits from a parent,
you must define a loadobj method within that class directory.

loadobj

2-566

See Also load, save, saveobj

log

2-567

2logPurpose Natural logarithm

Syntax Y = log(X)

Description The log function operates element-wise on arrays. Its domain includes
complex and negative numbers, which may lead to unexpected results if used
unintentionally.

Y = log(X) returns the natural logarithm of the elements of X. For complex or
negative , where , the complex logarithm is returned.

log(z) = log(abs(z)) + i*atan2(y,x)

Examples The statement abs(log(-1)) is a clever way to generate .

ans =

3.1416

See Also exp, log10, log2, logm

z z x y*i+=

π

log10

2-568

2log10Purpose Common (base 10) logarithm

Syntax Y = log10(X)

Description The log10 function operates element-by-element on arrays. Its domain
includes complex numbers, which may lead to unexpected results if used
unintentionally.

Y = log10(X) returns the base 10 logarithm of the elements of X.

Examples log10(realmax) is 308.2547

and

log10(eps) is -15.6536

See Also exp, log, log2, logm

log2

2-569

2log2Purpose Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

Syntax Y = log2(X)
[F,E] = log2(X)

Description Y = log2(X) computes the base 2 logarithm of the elements of X.

[F,E] = log2(X) returns arrays F and E. Argument F is an array of real
values, usually in the range 0.5 <= abs(F) < 1. For real X, F satisfies the
equation: X = F.*2.^E. Argument E is an array of integers that, for real X,
satisfy the equation: X = F.*2.^E.

Remarks This function corresponds to the ANSI C function frexp() and the IEEE
floating-point standard function logb(). Any zeros in X produce F = 0 and
E = 0.

Examples For IEEE arithmetic, the statement [F,E] = log2(X) yields the values:

See Also log, pow2

X F E

1 1/2 1

pi pi/4 2

-3 -3/4 2

eps 1/2 -51

realmax 1-eps/2 1024

realmin 1/2 -1021

logical

2-570

2logicalPurpose Convert numeric values to logical

Syntax K = logical(A)

Description K = logical(A) returns an array that can be used for logical indexing or
logical tests.

A(B), where B is a logical array, returns the values of A at the indices where the
real part of B is nonzero. B must be the same size as A.

Remarks Most arithmetic operations remove the logicalness from an array. For example,
adding zero to a logical array removes its logical characteristic. A = +A is the
easiest way to convert a logical array, A, to a numeric double array.

Logical arrays are also created by the relational operators (==,<,>,~, etc.) and
functions like any, all, isnan, isinf, and isfinite.

Examples Given A = [1 2 3; 4 5 6; 7 8 9], the statement B = logical(eye(3))
returns a logical array

B =
 1 0 0
 0 1 0
 0 0 1

which can be used in logical indexing that returns A’s diagonal elements:

A(B)

ans =
 1
 5
 9

However, attempting to index into A using the numeric array eye(3) results in:

A(eye(3))
??? Subscript indices must either be real positive integers or
logicals.

See Also islogical, logical operators

loglog

2-571

2loglogPurpose Log-log scale plot

Syntax loglog(Y)
loglog(X1,Y1,...)
loglog(X1,Y1,LineSpec,...)
loglog(...,'PropertyName',PropertyValue,...)
h = loglog(...)

Description loglog(Y) plots the columns of Y versus their index if Y contains real numbers.
If Y contains complex numbers, loglog(Y) and loglog(real(Y),imag(Y)) are
equivalent. loglog ignores the imaginary component in all other uses of this
function.

loglog(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn is a matrix,
loglog plots the vector argument versus the rows or columns of the matrix,
depending on whether the vector’s row or column dimension matches the
matrix.

loglog(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples, where LineSpec determines line type, marker symbol, and color of the
plotted lines. You can mix Xn,Yn,LineSpec triples with Xn,Yn pairs, for
example,

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)

loglog(...,'PropertyName',PropertyValue,...) sets property values for
all line graphics objects created by loglog. See the line reference page for
more information.

h = loglog(...) returns a column vector of handles to line graphics objects,
one handle per line.

Remarks If you do not specify a color when plotting more than one line, loglog
automatically cycles through the colors and line styles in the order specified by
the current axes.

Examples Create a simple loglog plot with square markers.

x = logspace(−1,2);
loglog(x,exp(x),'−s')

loglog

2-572

grid on

See Also LineSpec, plot, semilogx, semilogy

“Basic Plots and Graphs” for related functions

10
−1

10
0

10
1

10
2

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

logm

2-573

2logmPurpose Matrix logarithm

Syntax Y = logm(X)
[Y,esterr] = logm(X)

Description Y = logm(X) returns the matrix logarithm: the inverse function of expm(X).
Complex results are produced if X has negative eigenvalues. A warning
message is printed if the computed expm(Y) is not close to X.

[Y,esterr] = logm(X) does not print any warning message, but returns an
estimate of the relative residual, norm(expm(Y)-X)/norm(X).

Remarks If X is real symmetric or complex Hermitian, then so is logm(X).

Some matrices, like X = [0 1; 0 0], do not have any logarithms, real or
complex, and logm cannot be expected to produce one.

Limitations For most matrices:

logm(expm(X)) = X = expm(logm(X))

These identities may fail for some X. For example, if the computed eigenvalues
of X include an exact zero, then logm(X) generates infinity. Or, if the elements
of X are too large, expm(X) may overflow.

Examples Suppose A is the 3-by-3 matrix

 1 1 0
 0 0 2
 0 0 -1

and X = expm(A) is

X =

 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679

Then A = logm(X) produces the original matrix A.

A =

logm

2-574

 1.0000 1.0000 0.0000
 0 0 2.0000
 0 0 -1.0000

But log(X) involves taking the logarithm of zero, and so produces

ans =

 1.0000 0.5413 0.0826
 -Inf 0 0.2345
 -Inf -Inf -1.0000

Algorithm The matrix functions are evaluated using an algorithm due to Parlett, which is
described in [1]. The algorithm uses the Schur factorization of the matrix and
may give poor results or break down completely when the matrix has repeated
eigenvalues. A warning message is printed when the results may be
inaccurate.

See Also expm, funm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979,pp. 801-836.

logspace

2-575

2logspacePurpose Generate logarithmically spaced vectors

Syntax y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description The logspace function generates logarithmically spaced vectors. Especially
useful for creating frequency vectors, it is a logarithmic equivalent of linspace
and the “:” or colon operator.

y = logspace(a,b) generates a row vector y of 50 logarithmically spaced
points between decades 10^a and 10^b.

y = logspace(a,b,n) generates n points between decades 10^a and 10^b.

y = logspace(a,pi) generates the points between 10^a and pi, which is
useful for digital signal processing where frequencies over this interval go
around the unit circle.

Remarks All the arguments to logspace must be scalars.

See Also linspace

The colon operator :

lookfor

2-576

2lookforPurpose Search for specified keyword in all help entries

Syntax lookfor topic
lookfor topic -all

Description lookfor topic searches for the string topic in the first comment line (the H1
line) of the help text in all M-files found on the MATLAB search path. For all
files in which a match occurs, lookfor displays the H1 line.

lookfor topic -all searches the entire first comment block of an M-file
looking for topic.

Examples For example

lookfor inverse

finds at least a dozen matches, including H1 lines containing “inverse
hyperbolic cosine,” “two-dimensional inverse FFT,” and “pseudoinverse.”
Contrast this with

which inverse

or

what inverse

These functions run more quickly, but probably fail to find anything because
MATLAB does not have a function inverse.

In summary, what lists the functions in a given directory, which finds the
directory containing a given function or file, and lookfor finds all functions in
all directories that might have something to do with a given keyword.

Even more extensive than the lookfor function is the find feature in the
Current Directory browser. It looks for all occurrences of a specified word in all
the M-files in the current directory. For instructions, see “Finding and
Replacing Content Within Files”.

See Also dir, doc, filebrowser, findstr, help, helpdesk, helpwin, regexp, what,
which, who

lower

2-577

2lowerPurpose Convert string to lower case

Syntax t = lower('str')
B = lower(A)

Description t = lower('str') returns the string formed by converting any upper-case
characters in str to the corresponding lower-case characters and leaving all
other characters unchanged.

B = lower(A) when A is a cell array of strings, returns a cell array the same
size as A containing the result of applying lower to each string within A.

Examples lower('MathWorks') is mathworks.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also upper

ls

2-578

2lsPurpose List directory on UNIX

Syntax ls

Description ls displays the results of the ls command on UNIX. You can pass any flags to
ls that your operating system supports. On UNIX, ls returns a \n delimited
string of filenames. On all other platforms, ls executes dir.

See Also dir

lscov

2-579

2lscovPurpose Least squares solution in the presence of known covariance

Syntax x = lscov(A,b,V)
[x,dx] = lscov(A,b,V)

Description x = lscov(A,b,V) returns the vector x that solves A*x = b + e where e is
normally distributed with zero mean and covariance V. Matrix A must be m-by-n
where m > n. This is the over-determined least squares problem with
covariance V. The solution is found without inverting V.

[x,dx] = lscov(A,b,V) returns the standard errors of x in dx. The standard
statistical formula for the standard error of the coefficients is:

mse = B'*(inv(V)-inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B./(m-n)
dx = sqrt(diag(inv(A'*inv(V)*A)*mse))

Algorithm The vector x minimizes the quantity (A*x-b)'*inv(V)*(A*x-b). The classical
linear algebra solution to this problem is

 x = inv(A'*inv(V)*A)*A'*inv(V)*b

but the lscov function instead computes the QR decomposition of A and then
modifies Q by V.

See Also lsqnonneg, qr

The arithmetic operator \

Reference [1] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge,
1986, p. 398.

lsqnonneg

2-580

2lsqnonnegPurpose Linear least squares with nonnegativity constraints

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d) subject
to x >= 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0; otherwise,
the default is used. The default start point is the origin (the default is used
when x0==[] or when only two input arguments are provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. lsqnonneg uses these options
structure fields:

[x,resnorm] = lsqnonneg(...) returns the value of the squared 2-norm of
the residual: norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual, C*x-d.

Display Level of display. 'off' displays no output; 'final' displays
just the final output; 'notify' (default) dislays output only if
the function does not converge.

TolX Termination tolerance on x.

lsqnonneg

2-581

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg:

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a
structure output that contains information about the operation:

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
returns the dual vector (Lagrange multipliers) lambda, where lambda(i)<=0
when x(i) is (approximately) 0, and lambda(i) is (approximately) 0 when
x(i)>0.

Examples Compare the unconstrained least squares solution to the lsqnonneg solution
for a 4-by-2 problem:

C = [
 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [
 0.8587
 0.1781
 0.0747
 0.8405];

[C\d lsqnonneg(C,d)] =
-2.5627 0

 3.1108 0.6929

[norm(C*(C\d)-d) norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

>0 Indicates that the function converged to a solution x.

 0 Indicates that the iteration count was exceeded.
Increasing the tolerance (TolX parameter in options)
may lead to a solution.

output.algorithm The algorithm used

output.iterations The number of iterations taken

lsqnonneg

2-582

The solution from lsqnonneg does not fit as well (has a larger residual), as the
least squares solution. However, the nonnegative least squares solution has no
negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set
of possible basis vectors and computes the associated dual vector lambda. It
then selects the basis vector corresponding to the maximum value in lambda in
order to swap out of the basis in exchange for another possible candidate. This
continues until lambda <= 0.

See Also The arithmetic operator \, optimset

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23, p. 161.

lsqr

2-583

2lsqrPurpose LSQR implementation of Conjugate Gradients on the Normal Equations

Syntax x = lsqr(A,b)
lsqr(A,b,tol)
lsqr(A,b,tol,maxit)
lsqr(A,b,tol,maxit,M)
lsqr(A,b,tol,maxit,M1,M2)
lsqr(A,b,tol,maxit,M1,M2,x0)
lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = lsqr(A,b,...)
[x,flag,relres] = lsqr(A,b,...)
[x,flag,relres,iter] = lsqr(A,b,...)
[x,flag,relres,iter,resvec] = lsqr(A,b,...)
[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,...)

Description x = lsqr(A,b) attempts to solve the system of linear equations A*x=b for x if
A is consistent, otherwise it attempts to solve the least squares solution x that
minimizes norm(b-A*x). The m-by-n coefficient matrix A need not be square but
it should be large and sparse. The column vector b must have length m. A can
be a function afun such that afun(x) returns A*x and afun(x,'transp')
returns A'*x.

If lsqr converges, a message to that effect is displayed. If lsqr fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

lsqr(A,b,tol) specifies the tolerance of the method. If tol is [], then lsqr
uses the default, 1e-6.

lsqr(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then lsqr uses the default, min([m,n,20]).

lsqr(A,b,tol,maxit,M1) and lsqr(A,b,tol,maxit,M1,M2) use n-by-n
preconditioner M or M = M1*M2 and effectively solve the system A*inv(M)*y = b
for y, where x = M*y. If M is [] then lsqr applies no preconditioner. M can be
a function mfun such that mfun(x) returns M\x and mfun(x,'transp') returns
M'\x.

lsqr

2-584

lsqr(A,b,tol,maxit,M1,M2,x0) specifies the n-by-1 initial guess. If x0 is [],
then lsqr uses the default, an all zero vector.

lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,...,'transp') and similarly to the preconditioner functions
m1fun and m2fun.

[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns an
estimate of the relative residual norm(b-A*x)/norm(b). If flag is 0,
relres <= tol.

[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norm estimates at each iteration, including
norm(b-A*x0).

Flag Convergence

0 lsqr converged to the desired tolerance tol within maxit
iterations.

1 lsqr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 lsqr stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during lsqr became
too small or too large to continue computing.

lsqr

2-585

[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns a vector of estimates of the scaled normal equations residual at
each iteration: norm((A*inv(M))'*(B-A*X))/norm(A*inv(M),'fro'). Note
that the estimate of norm(A*inv(M),'fro') changes, and hopefully improves,
at each iteration.

Examples n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = lsqr(A,b,tol,maxit,M1,M2,[]);
lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)
if (nargin > 2) & strcmp(transp_flag,'transp')
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
else
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
end

as input to lsqr

x1 = lsqr(@afun,b,tol,maxit,M1,M2,[],n);

See Also bicg, bicgstab, cgs, gmres, minres, norm, pcg, qmr, symmlq

@ (function handle)

lsqr

2-586

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear
Equations And Sparse Least Squares,” ACM Trans. Math. Soft., Vol.8, 1982,
pp. 43-71.

lu

2-587

2luPurpose LU matrix factorization

Syntax [L,U] = lu(X)
[L,U,P] = lu(X)
Y = lu(X)
[L,U,P,Q] = lu(X)
[L,U,P] = lu(X,thresh)
[L,U,P,Q] = lu(X,thresh)

Description The lu function expresses a matrix X as the product of two essentially
triangular matrices, one of them a permutation of a lower triangular matrix
and the other an upper triangular matrix. The factorization is often called the
LU, or sometimes the LR, factorization. X can be rectangular.

[L,U] = lu(X) returns an upper triangular matrix in U and a “psychologically
lower triangular” matrix (i.e., a product of lower triangular and permutation
matrices) in L, so that X = L*U.

[L,U,P] = lu(X) returns an upper triangular matrix in U, a lower triangular
matrix with a unit diagonal in L, and a permutation matrix in P, so that
L*U = P*X.

Y = lu(X) for full X, returns the output from the LAPACK routine DGETRF or
ZGETRF. For sparse X, lu returns the strict lower triangular L, i.e., without its
unit diagonal, and the upper triangular U embedded in the same matrix Y, so
that if [L,U,P] = lu(X), then Y = U+L-speye(size(X)). The permutation
matrix P is lost.

[L,U,P,Q] = lu(X) for sparse non-empty X, returns a unit lower triangular
matrix L, an upper triangular matrix U, a row permutation matrix P, and a
column reordering matrix Q, so that P*X*Q = L*U. This syntax uses
UMFPACK and is significantly more time and memory efficient than the other
syntaxes, even when used with colamd. If X is empty or not sparse, lu displays
an error message.

[L,U,P] = lu(X,thresh) controls pivoting in sparse matrices, where thresh
is a pivot threshold in the interval [0.0,1.0]. Pivoting occurs when the
diagonal entry in a column has magnitude less than thresh times the

lu

2-588

magnitude of any sub-diagonal entry in that column. thresh = 0.0 forces
diagonal pivoting. thresh = 1.0 (conventional partial pivoting) is the default.

[L,U,P,Q] = lu(X,thresh) controls pivoting in UMFPACK, where thresh is
a pivot threshold in the interval [0.0,1.0]. A value of 1.0 or 0.0 results in
conventional partial pivoting. The default value is 0.1. Smaller values tend to
lead to sparser LU factors, but the solution can become inaccurate. Larger
values can lead to a more accurate solution (but not always), and usually an
increase in the total work. Given a pivot column j, UMFPACK selects the
sparsest candidate pivot row i such that the absolute value of the pivot entry
is greater than or equal to thresh times the absolute value of the largest entry
in the column j. The magnitude of entries in L is limited to 1/thresh. For
complex matrices, absolute values are computed as
abs(real(a)) + abs(imag(a)).

Note In rare instances, incorrect factorization results in P*X*Q ≠ L*U.
Increase thresh, to a maximum of 1.0 (regular partial pivoting), and try
again.

Remarks Most of the algorithms for computing LU factorization are variants of Gaussian
elimination. The factorization is a key step in obtaining the inverse with inv
and the determinant with det. It is also the basis for the linear equation
solution or matrix division obtained with \ and /.

Arguments X Rectangular matrix to be factored.

thresh Pivot threshold for sparse matrices. Valid values are in the interval
[0,1]. If you specify the fourth output Q, the default is 0.1.
Otherwise the default is 1.0.

L Factor of X. Depending on the form of the function, L is either a unit
lower triangular matrix, or else the product of a unit lower
triangular matrix with P'.

U Upper triangular matrix that is a factor of X.

lu

2-589

Examples Example 1. Start with

A = [1 2 3
 4 5 6
 7 8 0];

To see the LU factorization, call lu with two output arguments.

[L,U] = lu(A)

L =
 0.1429 1.0000 0
 0.5714 0.5000 1.0000
 1.0000 0 0

U =
 7.0000 8.0000 0
 0 0.8571 3.0000
 0 0 4.5000

Notice that L is a permutation of a lower triangular matrix that has 1s on the
permuted diagonal, and that U is upper triangular. To check that the
factorization does its job, compute the product

L*U

which returns the original A. The inverse of the example matrix, X = inv(A),
is actually computed from the inverses of the triangular factors

X = inv(U)*inv(L)

Using three arguments on the left side to get the permutation matrix as well

[L,U,P] = lu(A)

returns the same value of U, but L is reordered.

P Row permutation matrix satisfying the equation L*U = P*X, or
L*U = P*X*Q. Used for numerical stability.

Q Column permutation matrix satisfying the equation P*X*Q = L*U.
Used to reduce fill-in in the sparse case.

lu

2-590

L =

 1.0000 0 0
 0.1429 1.0000 0
 0.5714 0.5000 1.0000

U =
 7.0000 8.0000 0
 0 0.8571 3.0000
 0 0 4.5000

P =
 0 0 1
 1 0 0
 0 1 0

To verify that L*U is a permuted version of A, compute L*U and subtract it from
P*A:

P*A - L*U

ans =
 0 0 0
 0 0 0
 0 0 0

In this case, inv(U)*inv(L) results in the permutation of inv(A) given by
inv(P)*inv(A).

The determinant of the example matrix is

d = det(A)

d =
 27

It is computed from the determinants of the triangular factors

d = det(L)*det(U)

The solution to is obtained with matrix division

x = A\b

Ax b=

lu

2-591

The solution is actually computed by solving two triangular systems

y = L\b
x = U\y

Example 2. Generate a 60-by-60 sparse adjacency matrix of the connectivity
graph of the Buckminster-Fuller geodesic dome.

B = bucky;

Use the sparse matrix syntax with four outputs to get the row and column
permutation matrices.

[L,U,P,Q] = lu(B);

Apply the permutation matrices to B, and subtract the product of the lower and
upper triangular matrices.

Z = P*B*Q - L*U;
norm(Z,1)

ans =
 7.9936e-015

The 1-norm of their difference is within roundoff error, indicating that
L*U = P*B*Q.

Algorithm For full matrices X, lu uses the subroutines DGETRF (real) and ZGETRF (complex)
from LAPACK.

For sparse X, with four outputs, lu uses UMFPACK. With three or fewer
outputs, lu uses code introduced in MATLAB 4.

See Also cond, det, inv, luinc, qr, rref

The arithmetic operators \ and /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide (http://www.netlib.org/lapack/lug/lapack_lug.html),
Third Edition, SIAM, Philadelphia, 1999.

lu

2-592

[2] Davis, T. A., UMFPACK Version 4.0 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf),
Dept. of Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2002.

luinc

2-593

2luincPurpose Incomplete LU matrix factorizations

Syntax luinc(X,'0')
[L,U] = luinc(X,'0')
[L,U,P] = luinc(X,'0')
luinc(X,droptol)
luinc(X,options)
[L,U] = luinc(X,options)
[L,U] = luinc(X,droptol)
[L,U,P] = luinc(X,options)
[L,U,P] = luinc(X,droptol)

Description luinc produces a unit lower triangular matrix, an upper triangular matrix,
and a permutation matrix.

luinc(X,'0') computes the incomplete LU factorization of level 0 of a square
sparse matrix. The triangular factors have the same sparsity pattern as the
permutation of the original sparse matrix X, and their product agrees with the
permuted X over its sparsity pattern. luinc(X,'0') returns the strict lower
triangular part of the factor and the upper triangular factor embedded within
the same matrix. The permutation information is lost, but
nnz(luinc(X,'0')) = nnz(X), with the possible exception of some zeros due
to cancellation.

[L,U] = luinc(X,'0') returns the product of permutation matrices and a
unit lower triangular matrix in L and an upper triangular matrix in U. The
exact sparsity patterns of L, U, and X are not comparable but the number of
nonzeros is maintained with the possible exception of some zeros in L and U due
to cancellation:

 nnz(L)+nnz(U) = nnz(X)+n, where X is n-by-n.

The product L*U agrees with X over its sparsity pattern. (L*U).*spones(X)-X
has entries of the order of eps.

[L,U,P] = luinc(X,'0') returns a unit lower triangular matrix in L, an
upper triangular matrix in U and a permutation matrix in P. L has the same
sparsity pattern as the lower triangle of the permuted X

 spones(L) = spones(tril(P*X))

luinc

2-594

with the possible exceptions of 1s on the diagonal of L where P*X may be zero,
and zeros in L due to cancellation where P*X may be nonzero. U has the same
sparsity pattern as the upper triangle of P*X

 spones(U) = spones(triu(P*X))

with the possible exceptions of zeros in U due to cancellation where P*X may be
nonzero. The product L*U agrees within rounding error with the permuted
matrix P*X over its sparsity pattern. (L*U).*spones(P*X)-P*X has entries of
the order of eps.

luinc(X,droptol) computes the incomplete LU factorization of any sparse
matrix using a drop tolerance. droptol must be a non-negative scalar.
luinc(X,droptol) produces an approximation to the complete LU factors
returned by lu(X). For increasingly smaller values of the drop tolerance, this
approximation improves, until the drop tolerance is 0, at which time the
complete LU factorization is produced, as in lu(X).

As each column j of the triangular incomplete factors is being computed, the
entries smaller in magnitude than the local drop tolerance (the product of the
drop tolerance and the norm of the corresponding column of X)

 droptol*norm(X(:,j))

are dropped from the appropriate factor.

The only exceptions to this dropping rule are the diagonal entries of the upper
triangular factor, which are preserved to avoid a singular factor.

luinc(X,options) specifies a structure with up to four fields that may be used
in any combination: droptol, milu, udiag, thresh. Additional fields of options
are ignored.

droptol is the drop tolerance of the incomplete factorization.

If milu is 1, luinc produces the modified incomplete LU factorization that
subtracts the dropped elements in any column from the diagonal element of the
upper triangular factor. The default value is 0.

If udiag is 1, any zeros on the diagonal of the upper triangular factor are
replaced by the local drop tolerance. The default is 0.

luinc

2-595

thresh is the pivot threshold between 0 (forces diagonal pivoting) and 1, the
default, which always chooses the maximum magnitude entry in the column to
be the pivot. thresh is desribed in greater detail in lu.

luinc(X,options) is the same as luinc(X,droptol) if options has droptol as
its only field.

[L,U] = luinc(X,options) returns a permutation of a unit lower triangular
matrix in L and an upper trianglar matrix in U. The product L*U is an
approximation to X. luinc(X,options) returns the strict lower triangular part
of the factor and the upper triangular factor embedded within the same matrix.
The permutation information is lost.

[L,U] = luinc(X,options) is the same as luinc(X,droptol) if options has
droptol as its only field.

[L,U,P] = luinc(X,options) returns a unit lower triangular matrix in L, an
upper triangular matrix in U, and a permutation matrix in P. The nonzero
entries of U satisfy

 abs(U(i,j)) >= droptol*norm((X:,j)),

with the possible exception of the diagonal entries which were retained despite
not satisfying the criterion. The entries of L were tested against the local drop
tolerance before being scaled by the pivot, so for nonzeros in L

abs(L(i,j)) >= droptol*norm(X(:,j))/U(j,j).

The product L*U is an approximation to the permuted P*X.

[L,U,P] = luinc(X,options) is the same as [L,U,P] = luinc(X,droptol) if
options has droptol as its only field.

Remarks These incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. The lower triangular factors all have
1s along the main diagonal but a single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the udiag option to replace a zero diagonal only
gets rid of the symptoms of the problem but does not solve it. The
preconditioner may not be singular, but it probably is not useful and a warning
message is printed.

luinc

2-596

Limitations luinc(X,'0') works on square matrices only.

Examples Start with a sparse matrix and compute its LU factorization.

load west0479;
S = west0479;
LU = lu(S);

Compute the incomplete LU factorization of level 0.

[L,U,P] = luinc(S,'0');
D = (L*U).*spones(P*S)-P*S;

spones(U) and spones(triu(P*S)) are identical.

spones(L) and spones(tril(P*S)) disagree at 73 places on the diagonal,
where L is 1 and P*S is 0, and also at position (206,113), where L is 0 due to
cancellation, and P*S is -1. D has entries of the order of eps.

0 100 200 300 400

0

100

200

300

400

nz = 1887

S = west0479

0 100 200 300 400

0

100

200

300

400

nz = 16777

lu(S)

luinc

2-597

[IL0,IU0,IP0] = luinc(S,0);
[IL1,IU1,IP1] = luinc(S,1e-10);
 .
 .
 .

A drop tolerance of 0 produces the complete LU factorization. Increasing the
drop tolerance increases the sparsity of the factors (decreases the number of
nonzeros) but also increases the error in the factors, as seen in the plot of drop
tolerance versus norm(L*U-P*S,1)/norm(S,1) in the second figure below.

0 100 200 300 400

0

100

200

300

400

nz = 1244

L: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1121

U: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1887

P*S

0 100 200 300 400

0

100

200

300

400

nz = 3097

L*U

luinc

2-598

0 100 200 300 400

0

100

200

300

400

nz = 11679

luinc(S,1e−8)

0 100 200 300 400

0

100

200

300

400

nz = 8004

luinc(S,1e−4)

0 100 200 300 400

0

100

200

300

400

nz = 4229

luinc(S,1e−2)

0 100 200 300 400

0

100

200

300

400

nz = 397

luinc(S,1)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

5000

10000

15000
Drop tolerance vs nnz(luinc(S,droptol))

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

Drop tolerance vs norm(L*U−P*S)/norm(S)

luinc

2-599

Algorithm luinc(X,'0') is based on the “KJI” variant of the LU factorization with partial
pivoting. Updates are made only to positions which are nonzero in X.

luinc(X,droptol) and luinc(X,options) are based on the column-oriented lu
for sparse matrices.

See Also lu, cholinc, bicg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996, Chapter 10 - Preconditioning Techniques.

magic

2-600

2magicPurpose Magic square

Syntax M = magic(n)

Description M = magic(n) returns an n-by-n matrix constructed from the integers 1
through n^2 with equal row and column sums. The order n must be a scalar
greater than or equal to 3.

Remarks A magic square, scaled by its magic sum, is doubly stochastic.

Examples The magic square of order 3 is

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

This is called a magic square because the sum of the elements in each column
is the same.

 sum(M) =

 15 15 15

And the sum of the elements in each row, obtained by transposing twice, is the
same.

 sum(M')' =

 15
 15
 15

This is also a special magic square because the diagonal elements have the
same sum.

sum(diag(M)) =

 15

magic

2-601

The value of the characteristic sum for a magic square of order n is

sum(1:n^2)/n

which, when n = 3, is 15.

Algorithm There are three different algorithms:

• n odd

• n even but not divisible by four

• n divisible by four

To make this apparent, type

for n = 3:20
 A = magic(n);
 r(n) = rank(A);
end

For n odd, the rank of the magic square is n. For n divisible by 4, the rank is 3.
For n even but not divisible by 4, the rank is n/2 + 2.

[(3:20)',r(3:20)']
ans =
 3 3
 4 3
 5 5
 6 5
 7 7
 8 3
 9 9
 10 7
 11 11
 12 3
 13 13
 14 9
 15 15
 16 3
 17 17
 18 11
 19 19
 20 3

magic

2-602

Plotting A for n = 18, 19, 20 shows the characteristic plot for each category.

Limitations If you supply n less than 3, magic returns either a nonmagic square, or else the
degenerate magic squares 1 and [].

See Also ones, rand

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

350
n = 18

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400
n = 19

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400
n = 20

mat2cell

2-603

2mat2cellPurpose Divide matrix into cell array of matrices

Syntax c = mat2cell(x,m,n)
c = mat2cell(x,d1,d2,d3,...,dn)
c = mat2cell(x,r)

Description c = mat2cell(x,m,n) divides up the two-dimensional matrix x into adjacent
submatrices, each contained in a cell of the returned cell array, c. Vectors m and
n specify the number of rows and columns, respectively, to be assigned to the
submatrices in c.

The example shown below divides a 60-by-50 matrix into six smaller matrices.
MATLAB returns the new matrices in a 3-by-2 cell array:

mat2cell(x, [10 20 30], [25 25])

The sum of the element values in m must equal the total number of rows in x.
And the sum of the element values in n must equal the number of columns in x.

The elements of m and n determine the size of each cell in c by satisfying the
following formula for i = 1:length(m) and j = 1:length(n):

size(c{i,j}) == [m(i) n(j)]

c = mat2cell(x,d1,d2,d3,...,dn) divides up the multidimensional array x
and returns a multidimensional cell array of adjacent submatrices of x. Each
of the vector arguments, d1 through dn, should sum to the respective dimension
sizes of x, such that, for p = 1:n,

size(x,p) == sum(dp)

mat2cell

10x25

20x25

30x25

10x25

20x25

30x25

60x50

mat2cell

2-604

The elements of d1 through dn determine the size of each cell in c by satisfying
the following formula for ip = 1:length(dp):

size(c{i1,i2,i3,...,in}) == [d1(i1) d2(i2) d3(i3) ... dn(in)]

If x is an empty array, mat2cell returns an empty cell array. This requires that
all dn inputs that correspond to the zero dimensions of x be equal to [].

For example,

a = rand(3,0,4);
c = mat2cell(a, [1 2], [], [2 1 1]);

c = mat2cell(x,r) divides up an array x by returning a single column cell
array containing full rows of x. The sum of the element values in vector r must
equal the number of rows of x.

The elements of r determine the size of each cell in c, subject to the following
formula for i = 1:length(r):

size(c{i},1) == r(i)

Remarks mat2cell supports all array types.

Examples Divide matrix X up into 2-by-3 and 2-by-2 matrices contained in a cell array:

X = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15; 16 17 18 19 20]
X =
 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

C = mat2cell(X, [2 2], [3 2])
C =
 [2x3 double] [2x2 double]
 [2x3 double] [2x2 double]

C{1,1} C{1,2}
ans = ans =
 1 2 3 4 5
 6 7 8 9 10

mat2cell

2-605

C{2,1} C{2,2}
ans = ans =
 11 12 13 14 15
 16 17 18 19 20

See Also cell2mat, num2cell

mat2str

2-606

2mat2strPurpose Convert a matrix into a string

Syntax str = mat2str(A)
str = mat2str(A,n)

Description str = mat2str(A) converts matrix A into a string, suitable for input to the
eval function, using full precision.

str = mat2str(A,n) converts matrix A using n digits of precision.

Limitations The mat2str function is intended to operate on scalar, vector, or rectangular
array inputs only. An error will result if A is a multidimensional array.

Examples Consider the matrix:

A =
 1 2
 3 4

The statement

b = mat2str(A)

produces:

b =
[1 2 ;3 4]

where b is a string of 11 characters, including the square brackets, spaces, and
a semicolon.

eval(mat2str(A)) reproduces A.

See Also int2str, sprintf, str2num

material

2-607

2materialPurpose Controls the reflectance properties of surfaces and patches

Syntax material shiny
material dull
material metal
material([ka kd ks])
material([ka kd ks n])
material([ka kd ks n sc])
material default

Description material sets the lighting characteristics of surface and patch objects.

material shiny sets the reflectance properties so that the object has a high
specular reflectance relative the diffuse and ambient light and the color of the
specular light depends only on the color of the light source.

material dull sets the reflectance properties so that the object reflects more
diffuse light, has no specular highlights, but the color of the reflected light
depends only on the light source.

material metal sets the reflectance properties so that the object has a very
high specular reflectance, very low ambient and diffuse reflectance, and the
color of the reflected light depends on both the color of the light source and the
color of the object.

material([ka kd ks]) sets the ambient/diffuse/specular strength of the
objects.

material([ka kd ks n]) sets the ambient/diffuse/specular strength and
specular exponent of the objects.

material([ka kd ks n sc]) sets the ambient/diffuse/specular strength,
specular exponent, and specular color reflectance of the objects.

material default sets the ambient/diffuse/specular strength, specular
exponent, and specular color reflectance of the objects to their defaults.

Remarks The material command sets the AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, and SpecularColorReflectance

material

2-608

properties of all surface and patch objects in the axes. There must be visible
light objects in the axes for lighting to be enabled. Look at the materal.m M-file
to see the actual values set (enter the command: type material).

See Also light, lighting, patch, surface

Lighting as a Visualization Tool for more information on lighting

“Lighting” for related functions

matlab

2-609

2matlabPurpose Start MATLAB (UNIX systems only)

Syntax matlab [-h|-help] | [-n] [-arch | -ext | -arch/ext]
[-c licensefile] [-display Xdisplay | -nodisplay]
[-logfile log] [-nosplash] [-mwvisual visualid] [-debug]
[-nodesktop | -nojvm] [-runtime] [-check_malloc]
[-r MATLAB_command] [-Ddebugger [options]]

Description matlab is a Bourne shell script that starts the MATLAB executable. (In this
document, matlab refers to this script; MATLAB refers to the application
program). Before actually initiating the execution of MATLAB, this script
configures the runtime environment by

• Determining the MATLAB root directory

• Determining the host machine architecture

• Processing any command line options

• Reading the MATLAB startup file, .matlab6rc.sh

• Setting MATLAB environment variables

There are two ways in which you can control the way the matlab script works:

• By specifying command line options

• By assigning values in the MATLAB startup file, .matlab6rc.sh

The .matlab6rc.sh shell script contains definitions for a number of variables
that the matlab script uses. These variables are defined within the matlab
script, but can be redefined in .matlab6rc.sh. When invoked, matlab looks for
the first occurrence of .matlab6rc.sh in the current directory, in the home
directory ($HOME), and in the $MATLAB/bin directory, where the template
version of .matlab6rc.sh is located.

You can edit the template file to redefine information used by the matlab
script. If you do not want your changes applied systemwide, copy the edited
version of the script to your current or home directory. Ensure that you edit the
section that applies to your machine architecture.

matlab

2-610

The following table lists the variables defined in the.matlab6rc.sh file. See
the comments in the .matlab6rc.sh file for more information about these
variables.

Variable Definition and Standard Assignment
Behavior

ARCH The machine architecture.

The value ARCH passed with the -arch or
-arch/ext argument to the script is tried first,
then the value of the environment variable
MATLAB_ARCH is tried next, and finally it is
computed. The first one that gives a valid
architecture is used.

AUTOMOUNT_MAP Path prefix map for automounting.

The value set in .matlab6rc.sh (initially by
the installer) is used unless the value differs
from that determined by the script, in which
case the value in the environment is used.

DISPLAY The hostname of the X Window display
MATLAB uses for output.

The value of Xdisplay passed with the
-display argument to the script is used;
otherwise, the value in the environment is
used. DISPLAY is ignored by MATLAB if the
-nodisplay argument is passed.

matlab

2-611

LD_LIBRARY_PATH Final Load library path. The name
LD_LIBRARY_PATH is platform dependent.

The final value is normally a colon-separated
list of four sublists, each of which could be
empty. The first sublist is defined in
.matlab6rc.sh as LDPATH_PREFIX. The second
sublist is computed in the script and includes
directories inside the MATLAB root directory
and relevant Java directories. The third
sublist contains any nonempty value of
LD_LIBRARY_PATH from the environment
possibly augmented in .matlab6rc.sh. The
final sublist is defined in .matlab6rc.sh as
LDPATH_SUFFIX.

LM_LICENSE_FILE The FLEX lm license variable.

The license file value passed with the -c
argument to the script is used; otherwise it is
the value set in .matlab6rc.sh. In general,
the final value is a colon-separated list of
license files and/or port@host entries. The
shipping .matlab6rc.sh file starts out the
value by prepending LM_LICENSE_FILE in the
environment to a default license.file.

Later in the MATLAB script if the -c option is
not used, the $MATLAB/etc directory is
searched for the files that start with
license.dat.DEMO. These files are assumed to
contain demo licenses and are added
automatically to the end of the current list.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab

2-612

MATLAB The MATLAB root directory.

The default computed by the script is used
unless MATLABdefault is reset in
.matlab6rc.sh.

Currently MATLABdefault is not reset in the
shipping .matlab6rc.sh.

MATLAB_DEBUG Normally set to the name of the debugger.

The -Ddebugger argument passed to the script
sets this variable. Otherwise, a nonempty
value in the environment is used.

MATLAB_JAVA The path to the root of the Java Runtime
Environment.

The default set in the script is used unless
MATLAB_JAVA is already set. Any nonempty
value from .matlab6rc.sh is used first, then
any nonempty value from the environment.
Currently there is no value set in the shipping
.matlab6rc.sh, so that environment alone is
used.

MATLAB_MEM_MGR Turns on MATLAB memory integrity
checking.

The -check_malloc argument passed to the
script sets this variable to 'debug'. Otherwise,
a nonempty value set in .matlab6rc.sh is
used, or a nonempty value in the environment
is used. If a nonempty value is not found, the
variable is not exported to the environment.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab

2-613

MATLABPATH The MATLAB search path.

The final value is a colon-separated list with
the MATLABPATH from the environment
prepended to a list of computed defaults.

SHELL The shell to use when the "!" or unix command
is issued in MATLAB.

This is taken from the environment unless
SHELL is reset in .matlab6rc.sh. Currently
SHELL is not reset in the shipping
.matlab6rc.sh. If SHELL is empty or not
defined, MATLAB uses /bin/sh internally.

TOOLBOX Path of the toolbox directory.

A nonempty value in the environment is used
first. Otherwise, $MATLAB/toolbox, computed
by the script, is used unless TOOLBOX is reset in
.matlab6rc.sh. Currently TOOLBOX is not reset
in the shipping .matlab6rc.sh.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab

2-614

The matlab script determines the path of the MATLAB root directory by
looking up the directory tree from the $MATLAB/bin directory (where the
matlab script is located). The MATLAB variable is then used to locate all files
within the MATLAB directory tree.

You can change the definition of MATLAB if, for example, you want to run a
different version of MATLAB or if, for some reason, the path determined by the
matlab script is not correct. (This can happen when certain types of
automounting schemes are used by your system.)

XAPPLRESDIR The X application resource directory.

A nonempty value in the environment is used
first unless XAPPLRESDIR is reset in
.matlab6rc.sh. Otherwise,
$MATLAB/X11/app-defaults, computed by the
script, is used.

XKEYSYMDB The X keysym database file.

A nonempty value in the environment is used
first unless XKEYSYMDB is reset in
.matlab6rc.sh. Otherwise,
$MATLAB/X11/app-defaults/XKeysymDB,
computed by the script, is used. The matlab
script determines the path of the MATLAB
root directory as one level up the directory tree
from the location of the script. Information in
the AUTOMOUNT_MAP variable is used to fix the
path so that it is correct to force a mount. This
can involve deleting part of the pathname from
the front of the MATLAB root path. The
MATLAB variable is then used to locate all
files within the MATLAB directory tree.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab

2-615

AUTOMOUNT_MAP is used to modify the MATLAB root directory path. The
pathname that is assigned to AUTOMOUNT_MAP is deleted from the front of the
MATLAB root path. (It is unlikely that you will need to use this option.)

Options The following table describes matlab command line options.

Option Function

-h |-help Display matlab command usage. MATLAB is
not started when you specify this option.

-n Display all the final values of the environment
variables and arguments passed to the
MATLAB executable as well as other
diagnostic information.

MATLAB is not started when you specify this
option.

-arch Run MATLAB assuming architecture arch.

-ext Run the version of MATLAB with extension
ext, if it exists.

-arch/ext Run the version of MATLAB with the
extension ext, if it exists, assuming
architecture arch.

-c licensefile Set the value of the LM_LICENSE_FILE
environment variable to licensefile.
licensefile can be a colon-separated list of
files or port@host entries, or both. For more
information, see LM_LICENSE_FILE in the
variable table.

-check_malloc Set the value of the MATLAB_MEM_MGR
environment variable to 'debug'. This starts
MATLAB memory integrity checking. For
more information, see MATLAB_MEM_MGR in the
variable table.

matlab

2-616

-display Xserver Define the X display used for MATLAB output.
Xserver has the form hostname:display. For
example, matlab -display falstaff:0
causes MATLAB output to be displayed on the
host named falstaff. This setting supersedes
the value of the DISPLAY environment variable
and the value of the DISPLAY variable defined
in .matlab6rc.sh.

-debug Provide debugging information, especially for
X-based problems. Note that you should use
this option only when working with a
Technical Support Representative from The
MathWorks, Inc.

-logfile log Make a copy of any output to the Command
Window in file log. This includes all crash
reports.

-nosplash Do not display the splash screen during
startup.

-nodesktop Do not start the MATLAB desktop. Use the
current window for commands. The Java
Virtual Machine (JVM) is started.

-nojvm Shut off all Java support by not starting the
Java Virtual Machine (JVM). In particular,
the MATLAB desktop is not started.

Option Function (Continued)

matlab

2-617

See Also mex

-mwvisual visualid The default X visual to use for figure windows.

-Ddebugger [options] Start MATLAB with the specified debugger
(e.g. dbx, gdb, dde, xdb, cvd). A full path can be
specified for debugger. The options cover only
those that go after the executable to be
debugged in the syntax of the actual debug
command, and for most debuggers those are
very limited. To customize your debugging
session use a startup file. See your debugger
documentation for details. The MATLAB_DEBUG
environment variable is set to the filename
part of the debugger argument. For more
information, see MATLAB_DEBUG in the variable
table above.

Option Function (Continued)

matlabrc

2-618

2matlabrcPurpose MATLAB startup M-file for single-user systems or system administrators

Description At startup time, MATLAB automatically executes the master M-file
matlabrc.m and, if it exists, startup.m. On multiuser or networked systems,
matlabrc.m is reserved for use by the system manager. The file matlabrc.m
invokes the file startup.m if it exists on the MATLAB search path.

As an individual user, you can create a startup file in your own MATLAB
directory. Use the startup file to define physical constants, engineering
conversion factors, graphics defaults, or anything else you want predefined in
your workspace.

Algorithm Only matlabrc is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements

if exist('startup') == 2
 startup
end

that invoke startup.m. Extend this process to create additional startup
M-files, if required.

Remarks You can also start MATLAB using options you define at the Command Window
prompt or in your Windows shortcut for MATLAB.

Examples Turning Off the Figure Window Toolbar
If you do not want the toolbar to appear in the figure window, remove the
comment marks from the following line in the matlabrc.m file, or create a
similar line in your own startup.m file.

% set(0,'defaultfiguretoolbar','none')

See Also matlabroot, quit, startup
“Startup Options” in “Starting and Quitting MATLAB”

matlabroot

2-619

2matlabrootPurpose Return root directory of MATLAB installation

Syntax matlabroot
rd = matlabroot

Description matlabroot returns the name of the directory in which the MATLAB software
is installed. In compiled M-code, it returns the path to the executable. Use
matlabroot to create a path to MATLAB and toolbox directories that does not
depend on a specific platform or MATLAB version.

rd = matlabroot returns the name of the directory in which the MATLAB
software is installed and assigns it to rd.

Examples fullfile(matlabroot,'toolbox','matlab','general')

produces a full path to the toolbox/matlab/general directory that is correct
for the platform it is executed on.

See Also fullfile, partialpath, path

max

2-620

2maxPurpose Maximum elements of an array

Syntax C = max(A)
C = max(A,B)
C = max(A,[],dim)
[C,I] = max(...)

Description C = max(A) returns the largest elements along different dimensions of an
array.

If A is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a row
vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the first
non-singleton dimension as vectors, returning the maximum value of each
vector.

C = max(A,B) returns an array the same size as A and B with the largest
elements taken from A or B.

C = max(A,[],dim) returns the largest elements along the dimension of A
specified by scalar dim. For example, max(A,[],1) produces the maximum
values along the first dimension (the rows) of A.

[C,I] = max(...) finds the indices of the maximum values of A, and returns
them in output vector I. If there are several identical maximum values, the
index of the first one found is returned.

Remarks For complex input A, max returns the complex number with the largest complex
modulus (magnitude), computed with max(abs(A)), and ignores the phase
angle, angle(A). The max function ignores NaNs.

See Also isnan, mean, median, min, sort

mean

2-621

2meanPurpose Average or mean value of arrays

Syntax M = mean(A)
M = mean(A,dim)

Description M = mean(A) returns the mean values of the elements along different
dimensions of an array.

If A is a vector, mean(A) returns the mean value of A.

If A is a matrix, mean(A) treats the columns of A as vectors, returning a row
vector of mean values.

If A is a multidimensional array, mean(A) treats the values along the first
non-singleton dimension as vectors, returning an array of mean values.

M = mean(A,dim) returns the mean values for elements along the dimension of
A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
mean(A)
ans =
 3.5000 4.5000 6.5000 6.5000

mean(A,2)
ans =
 2.7500
 4.7500
 6.7500
 6.7500

See Also corrcoef, cov, max, median, min, std

median

2-622

2medianPurpose Median value of arrays

Syntax M = median(A)
M = median(A,dim)

Description M = median(A) returns the median values of the elements along different
dimensions of an array.

If A is a vector, median(A) returns the median value of A.

If A is a matrix, median(A) treats the columns of A as vectors, returning a row
vector of median values.

If A is a multidimensional array, median(A) treats the values along the first
nonsingleton dimension as vectors, returning an array of median values.

M = median(A,dim) returns the median values for elements along the
dimension of A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
median(A)

ans =

 4 5 7 7

median(A,2)

ans =

 3
 5
 7
 7

See Also corrcoef, cov, max, mean, min, std

memory

2-623

2memoryPurpose Help for memory limitations

Description If the out of memory error message is encountered, there is no more room in
memory for new variables. You must free up some space before you may
proceed. One way to free up space is to use the clear function to remove some
of the variables residing in memory. Another is to issue the pack command to
compress data in memory. This opens up larger contiguous blocks of memory
for you to use.

Here are some additional system specific tips:

 Windows: Increase virtual memory by using System in the Control Panel.

 UNIX: Ask your system manager to increase your swap space.

See Also clear, pack

The Technical Support Guide to Memory Management at
http://www.mathworks.com/support/tech-notes/1100/1106.shtml.

menu

2-624

2menuPurpose Generate a menu of choices for user input

Syntax k = menu('mtitle','opt1','opt2',...,'optn')

Description k = menu('mtitle','opt1','opt2',...,'optn') displays the menu whose
title is in the string variable 'mtitle' and whose choices are string variables
'opt1', 'opt2', and so on. menu returns the value you entered.

Remarks To call menu from another ui-object, set that object’s Interruptible property to
'yes'. For more information, see the MATLAB Graphics Guide.

Examples k = menu('Choose a color','Red','Green','Blue') displays

After input is accepted, use k to control the color of a graph.

color = ['r','g','b']
plot(t,s,color(k))

See Also input, uicontrol

mesh, meshc, meshz

2-625

2mesh, meshc, meshzPurpose Mesh plots

Syntax mesh(X,Y,Z)
mesh(Z)
mesh(...,C)
mesh(...,'PropertyName',PropertyValue,...)
meshc(...)
meshz(...)
h = mesh(...)
h = meshc(...)
h = meshz(...)

Description mesh, meshc, and meshz create wireframe parametric surfaces specified by X, Y,
and Z, with color specified by C.

mesh(X,Y,Z) draws a wireframe mesh with color determined by Z, so color is
proportional to surface height. If X and Y are vectors, length(X) = n and
length(Y) = m, where [m,n] = size(Z). In this case,
are the intersections of the wireframe grid lines; X and Y correspond to the
columns and rows of Z, respectively. If X and Y are matrices,

 are the intersections of the wireframe grid lines.

mesh(Z) draws a wireframe mesh using X = 1:n and Y = 1:m, where [m,n] =
size(Z). The height, Z, is a single-valued function defined over a rectangular
grid. Color is proportional to surface height.

mesh(...,C) draws a wireframe mesh with color determined by matrix C.
MATLAB performs a linear transformation on the data in C to obtain colors
from the current colormap. If X, Y, and Z are matrices, they must be the same
size as C.

mesh(...,'PropertyName',PropertyValue,...) sets the value of the
specified surface property. Multiple property values can be set with a single
statement.

meshc(...) draws a contour plot beneath the mesh.

meshz(...) draws a curtain plot (i.e., a reference plane) around the mesh.

X j() Y i() Z i j,(), ,()

X i j,() Y i j,() Z i j,(), ,()

mesh, meshc, meshz

2-626

h = mesh(...), h = meshc(...), and h = meshz(...) return a handle to a
surface graphics object.

Remarks A mesh is drawn as a surface graphics object with the viewpoint specified by
view(3). The face color is the same as the background color (to simulate a
wireframe with hidden-surface elimination), or none when drawing a standard
see-through wireframe. The current colormap determines the edge color. The
hidden command controls the simulation of hidden-surface elimination in the
mesh, and the shading command controls the shading model.

Examples Produce a combination mesh and contour plot of the peaks surface:

[X,Y] = meshgrid(–3:.125:3);
Z = peaks(X,Y);
meshc(X,Y,Z);
axis([–3 3 –3 3 –10 5])

Generate the curtain plot for the peaks function:

[X,Y] = meshgrid(–3:.125:3);
Z = peaks(X,Y);

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−10

−5

0

5

mesh, meshc, meshz

2-627

meshz(X,Y,Z)

Algorithm The range of X, Y, and Z, or the current setting of the axes XLimMode, YLimMode,
and ZLimMode properties determine the axis limits. axis sets these properties.

The range of C, or the current setting of the axes CLim and CLimMode properties
(also set by the caxis function), determine the color scaling. The scaled color
values are used as indices into the current colormap.

The mesh rendering functions produce color values by mapping the z data
values (or an explicit color array) onto the current colormap. The MATLAB
default behavior is to compute the color limits automatically using the
minimum and maximum data values (also set using caxis auto). The
minimum data value maps to the first color value in the colormap and the
maximum data value maps to the last color value in the colormap. MATLAB
performs a linear transformation on the intermediate values to map them to
the current colormap.

meshc calls mesh, turns hold on, and then calls contour and positions the
contour on the x-y plane. For additional control over the appearance of the

−3
−2

−1
0

1
2

3

−4

−2

0

2

4
−10

−5

0

5

10

mesh, meshc, meshz

2-628

contours, you can issue these commands directly. You can combine other types
of graphs in this manner, for example surf and pcolor plots.

meshc assumes that X and Y are monotonically increasing. If X or Y is irregularly
spaced, contour3 calculates contours using a regularly spaced contour grid,
then transforms the data to X or Y.

See Also contour, hidden, meshgrid, sruface, surf, surfc, surfl, waterfall

“Creating Surfaces and Meshes” for related functions

The functions axis, caxis, colormap, hold, shading, and view all set graphics
object properties that affect mesh, meshc, and meshz.

For a discussion of parametric surfaces plots, refer to surf.

meshgrid

2-629

2meshgridPurpose Generate X and Y matrices for three-dimensional plots

Syntax [X,Y] = meshgrid(x,y)
[X,Y] = meshgrid(x)
[X,Y,Z] = meshgrid(x,y,z)

Description [X,Y] = meshgrid(x,y) transforms the domain specified by vectors x and y
into arrays X and Y, which can be used to evaluate functions of two variables
and three-dimensional mesh/surface plots. The rows of the output array X are
copies of the vector x; columns of the output array Y are copies of the vector y.

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x).

[X,Y,Z] = meshgrid(x,y,z) produces three-dimensional arrays used to
evaluate functions of three variables and three-dimensional volumetric plots.

Remarks The meshgrid function is similar to ndgrid except that the order of the first two
input and output arguments is switched. That is, the statement

[X,Y,Z] = meshgrid(x,y,z)

produces the same result as

[Y,X,Z] = ndgrid(y,x,z)

Because of this, meshgrid is better suited to problems in two- or
three-dimensional Cartesian space, while ndgrid is better suited to
multidimensional problems that aren’t spatially based.

meshgrid is limited to two- or three-dimensional Cartesian space.

Examples [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3
 1 2 3
 1 2 3
 1 2 3
 1 2 3

meshgrid

2-630

Y =

10 10 10
 11 11 11
 12 12 12
 13 13 13
 14 14 14

See Also griddata, mesh, ndgrid, slice, surf

methods

2-631

2methodsPurpose Display method names

Syntax m = methods('classname')
m = methods('object')
m = methods(..., '-full')

Description m = methods('classname') returns, in a cell array of strings, the names of all
methods for the MATLAB, COM, or Java class, classname.

m = methods('object') returns the names of all methods for the MATLAB,
COM, or Java class of which object is an instance.

m = methods(..., '-full') returns the full description of the methods
defined for the class, including inheritance information and, for COM and Java
methods, attributes and signatures. For any overloaded method, the returned
array includes a description of each of its signatures.

For MATLAB classes, inheritance information is returned only if that class has
been instantiated.

Examples List the methods of MATLAB class, stock:

m = methods('stock')
m =
 'display'
 'get'
 'set'
 'stock'
 'subsasgn'
 'subsref'

Create a MathWorks sample COM control and list its methods:

h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
methods(h)

Methods for class com.mwsamp.mwsampctrl.1:

AboutBox GetR8Array SetR8 move
Beep GetR8Vector SetR8Array propedit
FireClickEvent GetVariantArray SetR8Vector release

methods

2-632

GetBSTR GetVariantVector addproperty save
GetBSTRArray Redraw delete send
GetI4 SetBSTR deleteproperty set
GetI4Array SetBSTRArray events
GetI4Vector SetI4 get
GetIDispatch SetI4Array invoke
GetR8 SetI4Vector load

Display a full description of all methods on Java object, java.awt.Dimension:

methods java.awt.Dimension -full

Dimension(java.awt.Dimension)
Dimension(int,int)
Dimension()
void wait() throws java.lang.InterruptedException
 % Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException
 % Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException
 % Inherited from java.lang.Object
java.lang.Class getClass() % Inherited from java.lang.Object
 .
 .

See Also methodsview, invoke, ismethod, help, what, which

methodsview

2-633

2methodsviewPurpose Displays information on all methods implemented by a class.

Syntax methodsview packagename.classname
methodsview classname
methodsview(object)

Description methodsview packagename.classname displays information describing the
Java class, classname, that is available from the package of Java classes,
packagename.

methodsview classname displays information describing the MATLAB, COM,
or imported Java class, classname.

methodsview(object) displays information describing the object
instantiated from a COM or Java class.

MATLAB creates a new window in response to the methodsview command.
This window displays all of the methods defined in the specified class. For each
of these methods, the following additional information is supplied:

• Name of the method

• Method type qualifiers (for example, abstract or synchronized)

• Data type returned by the method

• Arguments passed to the method

• Possible exceptions thrown

• Parent of the specified class

Examples The following command lists information on all methods in the
java.awt.MenuItem class.

methodsview java.awt.MenuItem

methodsview

2-634

MATLAB displays this information in a new window, as shown below

See Also methods, import, class, javaArray

mex

2-635

2mexPurpose Compile MEX-function from C or Fortran source code

Syntax mex options filenames

Description mex options filenames compiles a MEX-function from the C or Fortran
source code files specified in filenames. All nonsource code filenames passed
as arguments are passed to the linker without being compiled.

All valid options are shown in the MEX Script Switches table. These options
are available on all platforms except where noted.

MEX’s execution is affected both by command-line options and by an options
file. The options file contains all compiler-specific information necessary to
create a MEX-function. The default name for this options file, if none is
specified with the -f option, is mexopts.bat (Windows) and mexopts.sh
(UNIX).

Note The MathWorks provides an option, setup, for the mex script that lets
you set up a default options file on your system.

On UNIX, the options file is written in the Bourne shell script language. The
mex script searches for the first occurrence of the options file called mexopts.sh
in the following list:

• The current directory
• $HOME/matlab
• <MATLAB>/bin

mex uses the first occurrence of the options file it finds. If no options file is
found, mex displays an error message. You can directly specify the name of the
options file using the -f switch.

Any variable specified in the options file can be overridden at the command line
by use of the <name>=<def> command-line argument. If <def> has spaces in it,
then it should be wrapped in single quotes (e.g., OPTFLAGS='opt1 opt2'). The
definition can rely on other variables defined in the options file; in this case the
variable referenced should have a prepended $ (e.g., OPTFLAGS='$OPTFLAGS
opt2').

mex

2-636

On Windows, the options file is written in the Perl script language. The default
options file is placed in your user profile directory after you configure your
system by running mex -setup. The mex script searches for the first occurrence
of the options file called mexopts.bat in the following list:

• The current directory
• The user profile directory
• <MATLAB>\bin\win32\mexopts

mex uses the first occurrence of the options file it finds. If no options file is
found, mex searches your machine for a supported C compiler and uses the
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

No arguments can have an embedded equal sign (=); thus, -DFOO is valid, but
-DFOO=BAR is not.

See Also dbmex, mexext, inmem

mexext

2-637

2mexextPurpose Return the MEX-filename extension

Syntax ext = mexext

Description ext = mexext returns the filename extension for the current platform.

Examples ext = mexext

ext =
dll

See Also mex

mfilename

2-638

2mfilenamePurpose The name of the currently running M-file

Syntax mfilename
p = mfilename('fullpath')
c = mfilename('class')

Description mfilename returns a string containing the name of the most recently invoked
M-file. When called from within an M-file, it returns the name of that M-file,
allowing an M-file to determine its name, even if the filename has been
changed.

p = mfilename('fullpath') returns the full path and name of the M-file in
which the call occurs, not including the filename extension.

c = mfilename('class') in a method, returns the class of the method, not
including the leading @ sign. If called from a non-method, it yields the empty
string.

Remarks If mfilename is called with any argument other than the above two, it behaves
as if it were called with no argument.

When called from the command line, mfilename returns an empty string.

To get the names of the callers of an M-file, use dbstack with an output
argument.

See Also dbstack, function, nargin, nargout, inputname

min

2-639

2minPurpose Minimum elements of an array

Syntax C = min(A)
C = min(A,B)
C = min(A,[],dim)
[C,I] = min(...)

Description C = min(A) returns the smallest elements along different dimensions of an
array.

If A is a vector, min(A) returns the smallest element in A.

If A is a matrix, min(A) treats the columns of A as vectors, returning a row
vector containing the minimum element from each column.

If A is a multidimensional array, min operates along the first nonsingleton
dimension.

C = min(A,B) returns an array the same size as A and B with the smallest
elements taken from A or B.

C = min(A,[],dim) returns the smallest elements along the dimension of A
specified by scalar dim. For example, min(A,[],1) produces the minimum
values along the first dimension (the rows) of A.

[C,I] = min(...) finds the indices of the minimum values of A, and returns
them in output vector I. If there are several identical minimum values, the
index of the first one found is returned.

Remarks For complex input A, min returns the complex number with the largest complex
modulus (magnitude), computed with min(abs(A)), and ignores the phase
angle, angle(A). The min function ignores NaNs.

See Also max, mean, median, sort

minres

2-640

2minresPurpose Minimum Residual method

Syntax x = minres(A,b)
minres(A,b,tol)
minres(A,b,tol,maxit)
minres(A,b,tol.maxit,M)
minres(A,b,tol,maxit,M1,M2)
minres(A,b,tol,maxit,M1,M2,x0)
minres(afun,b,tol,maxit,mifun,m2fun,x0,p1,p2,...)
[x,flag] = minres(A,b,...)
[x,flag,relres] = minres(A,b,...)
[x,flag,relres,iter] = minres(A,b,...)
[x,flag,relres,iter,resvec] = minres(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)

Description x = minres(A,b) attempts to find a minimum norm residual solution x to the
system of linear equations A*x=b. The n-by-n coefficient matrix A must be
symmetric but need not be positive definite. It should be large and sparse. The
column vector b must have length n. A can be a function afun such that afun(x)
returns A*x.

If minres converges, a message to that effect is displayed. If minres fails to
converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

minres(A,b,tol) specifies the tolerance of the method. If tol is [], then
minres uses the default, 1e-6.

minres(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then minres uses the default, min(n,20).

minres(A,b,tol,maxit,M) and minres(A,b,tol,maxit,M1,M2) use
symmetric positive definite preconditioner M or M = M1*M2 and effectively solve
the system inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b for y and
then return x = inv(sqrt(M))*y. If M is [] then minres applies no
preconditioner. M can be a function that returns M\x.

minres

2-641

minres(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
minres uses the default, an all-zero vector.

minres(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = minres(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = minres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = minres(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = minres(A,b,...) also returns a vector of
estimates of the minres residual norms at each iteration, including
norm(b-A*x0).

[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...) also returns a
vector of estimates of the Conjugate Gradients residual norms at each
iteration.

Flag Convergence

0 minres converged to the desired tolerance tol within maxit
iterations.

1 minres iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 minres stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during minres became
too small or too large to continue computing.

minres

2-642

Examples Example 1.

n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M1 = spdiags(4*on,0,n,n);

x = minres(A,b,tol,maxit,M1,[],[]);
minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - 2 * x(2:n);

as input to minres.

x1 = minres(@afun,b,tol,maxit,M1,[],n);

Example 2.

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1, -1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, minres can handle the indefinite matrix A.

x = minres(A,b,1e-6,40);
minres converged at iteration 39 to a solution with relative
residual 1.3e-007

minres

2-643

See Also bicg, bicgstab, cgs, cholinc, gmres, lsqr, pcg, qmr, symmlq

@ (function handle), / (slash),

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “Solution of Sparse Indefinite Systems of
Linear Equations.” SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.

mislocked

2-644

2mislockedPurpose True if M-file cannot be cleared

Syntax mislocked
mislocked(fun)

Description mislocked by itself is 1 if the currently running M-file is locked and 0
otherwise.

mislocked(fun) is 1 if the function named fun is locked in memory and 0
otherwise. Locked M-files cannot be removed with the clear function.

See Also mlock, munlock

mkdir

2-645

2mkdirPurpose Make new directory

Graphical
Interface

As an alternative to the mkdir function, you can click the icon in the Current
Directory browser to add a directory.

Syntax mkdir('dirname')
mkdir('parentdir','dirname')
[status,message,messageid] = mkdir(...,'dirname')

Description mkdir('dirname') creates the directory dirname in the current directory.

mkdir('parentdir','dirname') creates the directory dirname in the existing
directory parentdir, where parentdir is an absolute or relative pathname.

[status,message,messageid] = mkdir(...,'dirname') creates the
directory dirname in the existing directory parentdir, returning the status, a
message, and the MATLAB error message ID (see error and lasterr). Here,
status is 1 for success and is 0 for no error. Only one output argument is
required.

Examples Create a Subdirectory in Current Directory
To create a subdirectory in the current directory called newdir, type

mkdir('newdir')

Create a Subdirectory in Specified Parent Directory
To create a subdirectory called newdir in the directory testdata, which is at
the same level as the current directory, type

mkdir('../testdata','newdir')

mkdir

2-646

Return Status When Creating Directory
In this example, an attempt to create newdir fails because the directory
already exists, and the error information is returned:

[s,mess,messid] = mkdir('../testdata','newdir')

s =
 0

mess =

Directory "newdir" already exists

messid =

MATLAB:MKDIR:DirectoryExists

See Also copyfile, cd, dir, fileattrib, filebrowser, ls, movefile, rmdir

mkpp

2-647

2mkppPurpose Make a piecewise polynomial

Syntax pp = mkpp(breaks,coefs)
pp = mkpp(breaks,coefs,d)

Description pp = mkpp(breaks,coefs) builds a piecewise polynomial pp from its breaks
and coefficients. breaks is a vector of length L+1 with strictly increasing
elements which represent the start and end of each of L intervals. coefs is an
L-by-k matrix with each row coefs(i,:) containing the coefficients of the
terms, from highest to lowest exponent, of the order k polynomial on the
interval [breaks(i),breaks(i+1)].

pp = mkpp(breaks,coefs,d) indicates that the piecewise polynomial pp is
d-vector valued, i.e., the value of each of its coefficients is a vector of length d.
breaks is an increasing vector of length L+1. coefs is a d-by-L-by-k array with
coefs(r,i,:) containing the k coefficients of the ith polynomial piece of the
rth component of the piecewise polynomial.

Use ppval to evaluate the piecwise polynomial at specific points. Use unmkpp to
extract details of the piecewise polynomial.

Note. The order of a polynomial tells you the number of coefficients used in its
description. A kth order polynomial has the form

It has k coefficients, some of which can be 0, and maximum exponent k-1. So
the order of a polynomial is usually one greater than its degree. For example,
a cubic polynomial is of order 4.

Examples The first plot shows the quadratic polynomial

shifted to the interval [-8,-4]. The second plot shows its negative

c1xk 1– c2xk 2– … ck 1– x ck+ + + +

1 x
2
--- 1–

 2
– x–

2

4
--------- x+=

x
2
--- 1–

 2
1– x2

4
------ x–=

mkpp

2-648

but shifted to the interval [-4,0].

The last plot shows a piecewise polynomial constructed by alternating these
two quadratic pieces over four intervals. It also shows its first derivative, which
was constructed after breaking the piecewise polynomial apart using unmkpp.

subplot(2,2,1)
cc = [-1/4 1 0];
pp1 = mkpp([-8 -4],cc);
xx1 = -8:0.1:-4;
plot(xx1,ppval(pp1,xx1),'k-')

subplot(2,2,2)
pp2 = mkpp([-4 0],-cc);
xx2 = -4:0.1:0;
plot(xx2,ppval(pp2,xx2),'k-')

subplot(2,1,2)
pp = mkpp([-8 -4 0 4 8],[cc;-cc;cc;-cc]);
xx = -8:0.1:8;
plot(xx,ppval(pp,xx),'k-')
[breaks,coefs,l,k,d] = unmkpp(pp);
dpp = mkpp(breaks,repmat(k-1:-1:1,d*l,1).*coefs(:,1:k-1),d);
hold on, plot(xx,ppval(dpp,xx),'r-'), hold off

−8 −7 −6 −5 −4
0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0
−1

−0.8

−0.6

−0.4

−0.2

0

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

mkpp

2-649

See Also ppval, spline, unmkpp

mlock

2-650

2mlockPurpose Prevent M-file clearing

Syntax mlock

Description mlock locks the currently running M-file in memory so that subsequent clear
functions do not remove it.

Use the munlock function to return the M-file to its normal, clearable state.

Locking an M-file in memory also prevents any persistent variables defined
in the file from getting reinitialized.

 Examples The function testfun begins with an mlock statement.

function testfun
mlock
 .
 .

When you execute this function, it becomes locked in memory. This can be
checked using the mislocked function.

testfun

mislocked('testfun')
ans =
 1

Using munlock, you unlock the testfun function in memory. Checking its
status with mislocked shows that it is indeed unlocked at this point.

munlock('testfun')

mislocked('testfun')
ans =
 0

See Also mislocked, munlock, persistent

mod

2-651

2modPurpose Modulus after division

Syntax M = mod(X,Y)

Definition mod(x,y) is mod .

Description M = mod(X,Y) if Y ~= 0, returns X - n.*Y where n = floor(X./Y) . If Y is not
an integer and the quotient X./Y is within roundoff error of an integer, then n
is that integer. By convention, mod(X,0) is X. The inputs X and Y must be real
arrays of the same size, or real scalars.

Remarks So long as operands X and Y are of the same sign, the function mod(X,Y) returns
the same result as does rem(X,Y). However, for positive X and Y,

mod(-X,Y) = rem(-X,Y)+Y

The mod function is useful for congruence relationships:
x and y are congruent (mod m) if and only if mod(x,m) == mod(y,m).

Examples mod(13,5)
ans =
 3

mod([1:5],3)
ans =
 1 2 0 1 2

mod(magic(3),3)
ans =
 2 1 0
 0 2 1
 1 0 2

See Also rem

x y

more

2-652

2morePurpose Display Command Window output one screenful at a time

Syntax more on
more off
more(n)

Description more on enables paging of the output in the MATLAB Command Window.
MATLAB displays output one screenful at a time.

more off disables paging of the output in the MATLAB Command Window.

more(n) displays n lines per page.

To see the status of more, type get(0,'More'). MATLAB returns either on or
off indicating the more status. You can also set status for more by using
get(0,'More', 'status'), where 'status' is either 'on' or 'off'.

When you have enabled more and are examining output, you can do the
following.

By default, more is disabled. When enabled, more defaults to displaying 23 lines
per page.

See Also diary

Press the... To...

Return key Advance to the next line of output.

Space bar Advance to the next page of output.

Q (for quit) key Terminate display of the text.

move (COM)

2-653

2move (COM)Purpose Move and/or resize a COM control in its parent window

Syntax move(h, position)

Arguments h
Handle for a MATLAB COM control object.

position
A four-element vector specifying the position of the control in the parent
window. The elements of the vector are

[left, bottom, width, height]

Description Moves the control to the position specified by the position argument. When
you use move with only the handle argument, h, it returns a four-element
vector indicating the current position of the control.

Examples This example moves the control:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
pos = move(h, [50 50 200 200])
pos =
 50 50 200 200

The next example resizes the control to always be centered in the figure as you
resize the figure window. Start by creating the script resizectrl.m that
contains

% Get the new position and size of the figure window
 fpos = get(gcbo, 'position');

% Resize the control accordingly
 move(h, [0 0 fpos(3) fpos(4)]);

Now execute the following in MATLAB or in an M-file:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
set(f, 'ResizeFcn', 'resizectrl');

move (COM)

2-654

As you resize the figure window, notice that the circle moves so that it is always
positioned in the center of the window.

See Also set, get

movefile

2-655

2movefilePurpose Move file or directory

Graphical
Interface

As an alternative to the movefile function, you can use the Current Directory
browser to move files and directories.

Syntax movefile('source')
movefile('source','destination')
movefile('source','destination','f')
[status,message,messageid] = movefile('source','destination','f')

Description movefile('source') moves the file or directory named source to the current
directory, where source is the absolute or relative pathname for the directory
or file. Use the wildcard * at the end of source to move all matching files. Note
that the archive attribute of source is not preserved.

movefile('source','destination') moves the file or directory named
source to the location destination, where source and destination are the
absolute or relative pathnames for the directory or files. To rename a file or
directory when moving it, make destination a different name than source.
Use the wildcard * at the end of source to move all matching files.

movefile('source','destination','f') moves the file or directory named
source to the location destination, regardless of the read-only attribute of
destination.

[status,message,messageid]=movefile('source','destination','f')
moves the file or directory named source to the location destination,
returning the status, a message, and the MATLAB error message ID (see error
and lasterr). Here, status is 1 for success and is 0 for no error. Only one
output argument is required and the f input argument is optional.

Examples Move Source To Current Directory
To move the file myfiles/myfunction.m to the current directory, type

movefile('myfiles/myfunction.m')

If the current directory is projects/testcases and you want to move
projects/myfiles and its contents to the current directory, use ../ in the
source pathname to navigate up one level to get to the directory.

movefile

2-656

movefile('../myfiles')

Move All Matching Files By Using a Wildcard
To move all files in the directory myfiles whose names begin with my to the
current directory, type

movefile('myfiles/my*')

Move Source to Destination
To move the file myfunction.m from the current directory to the directory
projects, where projects and the current directory are at the same level, type

movefile('myfunction.m','../projects')

Move Directory Down One Level
This example moves the a directory down a level. For example to move the
directory projects/testcases and all its contents down a level in projects to
projects/myfiles, type

movefile('projects/testcases','projects/myfiles/')

The directory testcases and its contents now appear in the directory myfiles.

Rename When Moving File to Read-Only Directory
Move the file myfile.m from the current directory to d:/work/restricted,
assigning it the name test1.m, where restricted is a read-only directory.

movefile('myfile.m','d:/work/restricted/test1.m','f')

The read-only file myfile.m is no longer in the current directory. The file
test1.m is in d:/work/restricted and is read only.

movefile

2-657

Return Status When Moving Files
In this example, all files in the directory myfiles whose names start with new
are to be moved to the current directory. However, if new* is accidentally
written as nex*. As a result, the move is unsuccessful, as seen in the status and
messages returned:

[s,mess,messid]=movefile('myfiles/nex*')

s =
 0

mess =

A duplicate filename exists, or the file cannot be found.

messid =

MATLAB:MOVEFILE:OSError

See Also cd, copyfile, delete, dir, fileattrib, filebrowser, ls, mkdir, rmdir

movegui

2-658

2moveguiPurpose Move GUI figure to specified location on screen

Syntax movegui(h,'position')
movegui('position')
movegui(h)
movegui

Description movegui(h,'position') moves the figure identified by handle h to the
specified screen location, preserving the figure’s size. The position argument
can be any of the following strings:

• north – top center edge of screen

• south – bottom center edge of screen

• east – right center edge of screen

• west – left center edge of screen

• northeast – top right corner of screen

• northwest – top left corner of screen

• southeast – bottom right corner of screen

• southwest – bottom left corner

• center – center of screen

• onscreen – nearest location with respect to current location that is on screen

The position argument can also be a two-element vector [h,v], where
depending on sign, h specifies the figure's offset from the left or right edge of
the screen, and v specifies the figure's offset from the top or bottom of the
screen, in pixels. The following table summarizes the possible values.

movegui('position') move the callback figure (gcbf) or the current figure
(gcf) to the specified position.

h (for h >= 0) offset of left side from left edge of screen

h (for h < 0) offset of right side from right edge of screen

v (for v >= 0) offset of bottom edge from bottom of screen

v (for v < 0) offset of top edge from top of screen

movegui

2-659

movegui(h) moves the figure identified by the handle h to the onscreen
position.

movegui moves the callback figure (gcbf) or the current figure (gcf) to the
onscreen position. This is useful as a string-based CreateFcn callback for a
saved figure. It ensures the figure appears on screen when reloaded, regardless
of its saved position.

Examples This example demonstrates the usefulness of movegui to ensure that saved
GUIs appear on screen when reloaded, regardless of the target computer’s
screen sizes and resolution. It creates a figure off the screen, assigns movegui
as its CreateFcn callback, then saves and reloads the figure.

f = figure('Position',[10000,10000,400,300]);
set(f,'CreateFcn','movegui')
hgsave(f,'onscreenfig')
close(f)
f2 = hgload('onscreenfig');

See Also guide

Creating GUIs

movie

2-660

2moviePurpose Play recorded movie frames

Syntax movie(M)
movie(M,n)
movie(M,n,fps)
movie(h,...)
movie(h,M,n,fps,loc)

Description movie plays the movie defined by a matrix whose columns are movie frames
(usually produced by getframe).

movie(M) plays the movie in matrix M once.

movie(M,n) plays the movie n times. If n is negative, each cycle is shown
forward then backward. If n is a vector, the first element is the number of times
to play the movie, and the remaining elements comprise a list of frames to play
in the movie. For example, if M has four frames then n = [10 4 4 2 1] plays
the movie ten times, and the movie consists of frame 4 followed by frame 4
again, followed by frame 2 and finally frame 1.

movie(M,n,fps) plays the movie at fps frames per second. The default is 12
frames per second. Computers that cannot achieve the specified speed play as
fast as possible.

movie(h,...) plays the movie in the figure or axes identified by the handle h.

movie(h,M,n,fps,loc) specifies a four-element location vector, [x y 0 0],
where the lower-left corner of the movie frame is anchored (only the first two
elements in the vector are used). The location is relative to the lower-left corner
of the figure or axes specified by handle and in units of pixels, regardless of the
object’s Units property.

Remarks The movie function displays each frame as it loads the data into memory, and
then plays the movie. This eliminates long delays with a blank screen when you
load a memory-intensive movie. The movie’s load cycle is not considered one of
the movie repetitions.

Examples Animate the peaks function as you scale the values of Z:

movie

2-661

Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');

% Record the movie
for j = 1:20

surf(sin(2∗ pi∗ j/20)∗ Z,Z)
F(j) = getframe;

end

% Play the movie twenty times
movie(F,20)

See Also getframe, frame2im, im2frame

“Animation” for related functions

See “Example – Visualizing an FFT as a Movie” for another example

movie2avi

2-662

2movie2avi

Purpose Create an Audio Video Interleaved (AVI) movie from MATLAB movie

Syntax movie2avi(mov,filename)
movie2avi(mov,filename,param,value,param,value...)

Description movie2avi(mov,filename) creates the AVI movie filename from the MATLAB
movie mov.

movie2avi(mov,filename,param,value,param,value...) creates the AVI
movie filename from the MATLAB movie MOV using the specified parameter
settings.

Parameter Value Default

'colormap' An m-by-3 matrix defining the colormap
to be used for indexed AVI movies,
where m must be no greater than 256
(236 if using Indeo compression).

There is no
default
colormap.

'compression' A text string specifying which
compression codec to use.

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'RLE'
'None'

On Unix:
'None'

'Indeo3',
on
Windows.
'None' on
Unix.

To use a custom compression codec,
specify the four-character code that
identifies the codec (typically included
in the codec documentation). The
addframe function reports an error if it
can not find the specified custom
compressor.

movie2avi

2-663

See Also avifile, aviread, aviinfo, movie

'fps' A scalar value specifying the speed of
the AVI movie in frames per second
(fps).

15 fps

'keyframe' For compressors that support temporal
compression, this is the number of key
frames per second.

2 key
frames per
second.

'name' A descriptive name for the video
stream. This parameter must be no
greater than 64 characters long.

The default
is the
filename.

'quality' A number between 0 and 100. This
parameter has no effect on
uncompressed movies. Higher quality
numbers result in higher video quality
and larger file sizes. Lower quality
numbers result in lower video quality
and smaller file sizes.

75

Parameter Value Default

moviein

2-664

2movieinPurpose Allocate matrix for movie frames

Syntax M = moviein(n)
M = moviein(n,h)
M = moviein(n,h,rect)

Note moviein is no longer needed as of MATLAB Release 11 (5.3). In
previous revisions, pre-allocating a movie increased performance, but there is
no longer a need to pre-allocate movies. See getframe.

Description moviein allocates an appropriately sized matrix for the getframe function.

M = moviein(n) creates matrix M having n columns to store n frames of a movie
based on the size of the current axes.

M = moviein(n,h) specifies a handle for a valid figure or axes graphics object
on which to base the memory requirement. You must use the same handle with
getframe. If you want to capture the axis in the frames, specify h as the handle
of the figure.

M = moviein(n,h,rect) specifies the rectangular area from which to copy the
bitmap, relative to the lower-left corner of the figure or axes graphics object
identified by h. rect = [left bottom width height], where left and bottom
specify the lower-left corner of the rectangle, and width and height specify the
dimensions of the rectangle. Components of rect are in pixel units. You must
use the same handle and rectangle with getframe.

Remarks moviein is no longer meeded as of MATLAB Release 11 (5.3). In earlier
versions, pre-allocating a movie increased performance, but there is no longer
a need to do this.

See Also getframe, movie

msgbox

2-665

2msgboxPurpose Display message box

Syntax msgbox(message)
msgbox(message,title)
msgbox(message,title,'icon')
msgbox(message,title,'custom',iconData,iconCmap)
msgbox(...,'createMode')
h = msgbox(...)

Description msgbox(message) creates a message box that automatically wraps message to
fit an appropriately sized figure. message is a string vector, string matrix, or
cell array.

msgbox(message,title) specifies the title of the message box.

msgbox(message,title,'icon') specifies which icon to display in the
message box. 'icon’ is 'none', 'error', 'help', 'warn', or 'custom'. The
default is 'none'.

msgbox(message,title,'custom',iconData,iconCmap) defines a customized
icon. iconData contains image data defining the icon; iconCmap is the colormap
used for the image.

msgbox(...,'createMode') specifies whether the message box is modal or
nonmodal, and if it is nonmodal, whether to replace another message box with
the same title. Valid values for 'createMode' are 'modal', 'non-modal', and
'replace'.

h = msgbox(...) returns the handle of the box in h, which is a handle to a
Figure graphics object.

See Also dialog, errordlg, inputdlg, helpdlg, questdlg, textwrap, warndlg

Error Icon Help Icon Warning Icon

msgbox

2-666

“Predefined Dialog Boxes” for related functions

mu2lin

2-667

2mu2linPurpose Convert mu-law audio signal to linear

Syntax y = mu2lin(mu)

Description y = mu2lin(mu) converts mu-law encoded 8-bit audio signals, stored as
“flints” in the range 0 ≤ mu ≤ 255, to linear signal amplitude in the range
-s < Y < s where s = 32124/32768 ~= .9803. The input mu is often obtained
using fread(...,'uchar') to read byte-encoded audio files. “Flints” are
MATLAB integers - floating-point numbers whose values are integers.

See Also auread, lin2mu

multibandread

2-668

2multibandreadPurpose Read band interleaved data from a binary file

Syntax X = multibandread(filename, size, precision, offset, interleave,
byteorder)

X = multibandread(...,subset1,subset2,subset3)

Description X = multibandread(filename, size, precision, offset, interleave,
byteorder) reads multiband data from the binary file, filename. This function
defines band as the third dimension in a 3-D array, as shown in this figure.

You can use the parameters to multibandread to specify many aspects of the
read operation, such as which bands to read. See “Parameters” on page 2-669
for more information.

If you only read one band, the return value, X, is a 2-D array. If you read
multiple bands, X is 3-D. By default, X is an array of type double; however, you
can use the precision parameter to specify any other data type.

X = multibandread(...,subset1,subset2,subset3) reads a subset of the
data in the file. You can use up to three subsetting parameters to specify the
data subset along row, column, and band dimensions. See “Subsetting
Parameters” on page 2-670 for more information.

Row

Band n
Band

Band 1

Band 2

Column
...

multibandread

2-669

Parameters This table describes the arguments accepted by multibandread.

filename A string containing the name of the file to be read.

size A three-element vector of integers consisting of
[height, width, N], where:

• height is the total number of rows

• width is the total number of elements in each row

• N is the total number of bands.

This will be the dimensions of the data if it is read in its
entirety.

precision A string specifying the format of the data to be read, such as
'uint8', 'double', 'integer*4', or any of the other
precisions supported by the fread function.
Note: You can also use the precision parameter to specify
the format of the output data. For example, to read uint8
data and output a uint8 array, specify a precision of
'uint8=>uint8' (or '*uint8'). To read uint8 data and
output it in MATLAB in single precision, specify
'uint8=>single'. See fread for more information.

offset A scalar specifying the zero-based location of the first data
element in the file. This value represents the number of
bytes from the beginning of the file to where the data begins.

multibandread

2-670

Subsetting
Parameters

You can specify up to three subsetting parameters. Each subsetting parameter
is a three-element cell array, {dim, method, index}, where

interleave A string specifying the format in which the data is stored

• 'bsq' — Band-Sequential

• 'bil'— Band-Interleaved-by-Line

• 'bip'— Band-Interleaved-by-Pixel

For more information about these interleave methods, see the
multibandwrite reference page.

byteorder A string specifying the byte ordering (machine format) in
which the data is stored, such as,

• 'ieee-le' — Little-endian

• 'ieee-be' — Big-endian

See fopen for a complete list of supported formats.

dim A text string specifying the dimension to subset along. It can
have any of these values:

• 'Column'
• 'Row'
• 'Band'

multibandread

2-671

Examples Read data from a multiband file into an 864-by-702-by-3 uint8 matrix, im.

im = multibandread('bipdata.img',...
[864,702,3],'uint8=>uint8',0,'bip','ieee-le');

Read all rows and columns, but only bands 3, 4, and 6.

im = multibandread('bsqdata.img',...
[512,512,6],'uint8',0,'bsq','ieee-le',...
{'Band','Direct',[3 4 6]});

Read all bands and subset along the rows and columns.

im = multibandread('bildata.int',...
[350,400,50],'uint16',0,'bil','ieee-le',...
{'Row','Range',[2 2 350]},...
{'Column','Range',[1 4 350]});

See Also fread, fopen, multibandwrite

method A text string specifying the subsetting method. It can have either
of these values:

• 'Direct'
• 'Range'

If you leave out this element of the subset cell array,
multibandread uses 'Direct' as the default.

index If method is 'Direct', index is a vector specifying the indices to
read along the Band dimension.
If method is 'Range', index is a three-element vector of [start,
increment, stop] specifying the range and step-size to read
along the dimension specified in dim. If index is a two element
vector, multibandread assumes that the value of increment is 1.

multibandwrite

2-672

2multibandwritePurpose Write multiband data to a file

Syntax multibandwrite(data,filename,interleave)
multibandwrite(data,filename,interleave,start,totalsize)
multibandwrite(...,param,value,...)

Description multibandwrite(data,filename,interleave) writes data, a two- or
three-dimensional numeric or logical array, to the binary file specified by
filename. The length of the third dimension of data determines the number of
bands written to the file. The bands are written to the file in the form specified
by interleave. See “Interleave Methods” on page 2-673 for more information
about this argument.

If filename already exists, multibandwrite overwrites it unless you specify
the optional offset parameter. See the last alternate syntax for
multibandwrite for information about other optional parameters.

multibandwrite(data,filename,interleave,start,totalsize) writesdata
to the binary file, filename, in chunks. In this syntax, data is a subset of the
complete data set.

start is a 1-by-3 array [firstrow firstcolumn firstband] that specifies the
location to start writing data. firstrow and firstcolumn specify the location
of the upper left image pixel. firstband gives the index of the first band to
write. For example, data(I,J,K) contains the data for the pixel at
[firstrow+I-1, firstcolumn+J-1] in the (firstband+K-1)-th band.

totalsize is a 1-by-3 array, [totalrows,totalcolumns,totalbands], which
specifies the full, three-dimensional size of the data to be written to the file.

Note In this syntax, you must call multibandwrite multiple times to write
all the data to the file. The first time it is called, multibandwrite writes the
complete file, using the fill value for all values outside the data subset. In each
subsequent call, multibandwrite overwrites these fill values with the data
subset in data. The parameters filename, interleave, offset and totalsize
must remain constant throughout the writing of the file.

multibandwrite

2-673

multibandwrite(...,param,value...) writes the multiband data to a file,
specifying any of these optional parameter/value pairs.

Interleave
Methods

interleave is a string that specifies how multibandwrite interleaves the
bands as it writes data to the file. If data is two-dimensional, multibandwrite
ignores the interleave argument. The following table lists the supported
methods and uses this example multiband file to illustrate each method.

Parameter Description

'precision' A string specifying the form and size of each element
written to the file. See the help for fwrite for a list of
valid values. The default precision is the class of the
data.

'offset' The number of bytes to skip before the first data
element. If the file does not already exist,
multibandwrite writes ASCII null values to fill the
space. To specify a different fill value, use the
parameter 'fillvalue'.
This option is useful when writing a header to the file
before or after writing the data. When writing the
header to the file after the data is written, open the file
with fopen using 'r+' permission.

machfmt A string to control the format in which the data is
written to the file. Typical values are 'ieee-le' for
little endian and 'ieee-be' for big endian. See the help
for fopen for a complete list of available formats. The
default machine format is the local machine format.

fillvalue A number specifying the value to use in place of missing
data. 'fillvalue' may be a single number, specifying
the fill value for all missing data, or a
1-by-Number-of-bands vector of numbers specifying the
fill value for each band. This value is used to fill space
when data is written in chunks.

multibandwrite

2-674

Supported methods of interleaving bands include those listed below.

Examples In this example, all the data is written to the file with one function call. The
bands are interleaved by line.

multibandwrite(data,'data.img','bil');

This example uses multibandwrite in a loop to write each band to a file
separately.

for i=1:totalBands

Row Band 3

Band

Band 1

Band 2

Column

C C C C C
C C C C C
C C C C C

B B B B B
B B B B B

A A A A A
A A A A A
A A A A A

Column

Method String Description Example

Band-Interleaved-by-
Line

'bil' Write an entire row from
each band

AAAAABBBBBCCCCC
AAAAABBBBBCCCCC
AAAAABBBBBCCCCC

Band-Interleaved-by-
Pixel

'bip' Write a pixel from each
band

ABCABCABCABCABC...

Band-Sequential 'bsq' Write each band in its
entirety

AAAAA
AAAAA
AAAAA
BBBBB
BBBBB
BBBBB
CCCCC
CCCCC
CCCCC

multibandwrite

2-675

 multibandwrite(bandData,'data.img','bip',[1 1 i],...
 [totalColumns, totalRows, totalBands]);
end

In this example, only a subset of each band is available for each call to
multibandwrite. For example, an entire data set may have three bands with
1024-by-1024 pixels each (a 1024-by-1024-by-3 matrix). Only 128-by-128
chunks are available to be written to the file with each call to multibandwrite.

numBands = 3;
totalDataSize = [1024 1024 numBands];
for i=1:numBands
 for k=1:8
 for j=1:8
 upperLeft = [(k-1)*128 (j-1)*128 i];
 multibandwrite(data,'banddata.img','bsq',...
 upperLeft,totalDataSize);
 end
 end
end

See Also multibandread, fwrite, fread

munlock

2-676

2munlockPurpose Allow M-file clearing

Syntax munlock
munlock fun
munlock('fun')

Description munlock unlocks the currently running M-file in memory so that subsequent
clear functions can remove it.

munlock fun unlocks the M-file named fun from memory. By default, M-files
are unlocked so that changes to the M-file are picked up. Calls to munlock are
needed only to unlock M-files that have been locked with mlock.

munlock('fun') is the function form of munlock.

Examples The function testfun begins with an mlock statement.

function testfun
mlock
 .
 .

When you execute this function, it becomes locked in memory. This can be
checked using the mislocked function.

testfun

mislocked testfun
ans =
 1

Using munlock, you unlock the testfun function in memory. Checking its
status with mislocked shows that it is indeed unlocked at this point.

munlock testfun

mislocked testfun
ans =
 0

See Also mlock, mislocked, persistent

namelengthmax

2-677

2namelengthmaxPurpose Return maximum identifier length

Syntax len = namelengthmax

Description len = namelengthmax returns the maximum length allowed for MATLAB
identifiers. MATLAB identifiers are

• Variable names

• Function and subfunction names

• Structure fieldnames

• M-file names

• MEX-file names

• MDL-file names

Rather than hard-coding a specific maximum name length into your programs,
use the namelengthmax function. This saves you the trouble of having to update
these limits should the identifier length change in some future MATLAB
release.

Examples Call namelengthmax to get the maximum identifier length:

maxid = namelengthmax
maxid =
 63

See Also isvarname

NaN

2-678

2NaNPurpose Not-a-Number

Syntax NaN

Description NaN returns the IEEE arithmetic representation for Not-a-Number (NaN).
These result from operations which have undefined numerical results.

Examples These operations produce NaN:

• Any arithmetic operation on a NaN, such as sqrt(NaN)

• Addition or subtraction, such as magnitude subtraction of infinities as
(+Inf)+(-Inf)

• Multiplication, such as 0*Inf

• Division, such as 0/0 and Inf/Inf

• Remainder, such as rem(x,y) where y is zero or x is infinity

Remarks Because two NaNs are not equal to each other, logical operations involving NaNs
always return false, except ~= (not equal). Consequently,

NaN ~= NaN
ans =
 1

NaN == NaN
ans =
 0

and the NaNs in a vector are treated as different unique elements.

unique([1 1 NaN NaN])
ans =
 1 NaN NaN

Use the isnan function to detect NaNs in an array.

isnan([1 1 NaN NaN])
ans =
 0 0 1 1

See Also Inf, isnan

nargchk

2-679

2nargchkPurpose Check number of input arguments

Syntax msg = nargchk(low,high,number)

Description The nargchk function often is used inside an M-file to check that the correct
number of arguments have been passed.

msg = nargchk(low,high,number) returns an error message if number is less
than low or greater than high. If number is between low and high (inclusive),
nargchk returns an empty matrix.

Arguments Input arguments to nargchk are

Examples Given the function foo:

function f = foo(x,y,z)
error(nargchk(2,3,nargin))

Then typing foo(1) produces:

Not enough input arguments.

See Also nargoutchk, nargin, nargout, varargin, varargout

low, high The minimum and maximum number of input arguments that
should be passed.

number The number of arguments actually passed, as determined by the
nargin function.

nargin, nargout

2-680

2nargin, nargoutPurpose Number of function arguments

Syntax n = nargin
n = nargin('fun')
n = nargout
n = nargout('fun')

Description In the body of a function M-file, nargin and nargout indicate how many input
or output arguments, respectively, a user has supplied. Outside the body of a
function M-file, nargin and nargout indicate the number of input or output
arguments, respectively, for a given function. The number of arguments is
negative if the function has a variable number of arguments.

nargin returns the number of input arguments specified for a function.

nargin('fun') returns the number of declared inputs for the M-file function
fun or -1 if the function has a variable of input arguments.

nargout returns the number of output arguments specified for a function.

nargout('fun') returns the number of declared outputs for the M-file function
fun.

Examples This example shows portions of the code for a function called myplot, which
accepts an optional number of input and output arguments:

function [x0,y0] = myplot(fname,lims,npts,angl,subdiv)
% MYPLOT Plot a function.
% MYPLOT(fname,lims,npts,angl,subdiv)
% The first two input arguments are
% required; the other three have default values.
 ...
if nargin < 5, subdiv = 20; end
if nargin < 4, angl = 10; end
if nargin < 3, npts = 25; end
 ...
if nargout == 0
 plot(x,y)
else
 x0 = x;

nargin, nargout

2-681

 y0 = y;
end

See Also inputname, varargin, varargout, nargchk, nargoutchk

nargoutchk

2-682

2nargoutchkPurpose Validate number of output arguments

Syntax msg = nargoutchk(low,high,n)

Description msg = nargoutchk(low,high,n) returns an appropriate error message if n is
not between low and high. If the number of output arguments is within the
specified range, nargoutchk returns an empty matrix.

Examples You can use nargoutchk to determine if an M-file has been called with the
correct number of output arguments. This example uses nargout to return the
number of output arguments specified when the function was called. The
function is designed to be called with one, two, or three output arguments. If
called with no arguments or more than three arguments, nargoutchk returns
an error message.

function [s,varargout] = mysize(x)
msg = nargoutchk(1,3,nargout);
if isempty(msg)
 nout = max(nargout,1)-1;
 s = size(x);
 for k=1:nout, varargout(k) = {s(k)}; end
else
 disp(msg)
end

See Also nargchk, nargout, nargin, varargout, varargin

nchoosek

2-683

2nchoosekPurpose Binomial coefficient or all combinations

Syntax C = nchoosek(n,k)
C = nchoosek(v,k)

Description C = nchoosek(n,k) where n and k are nonnegative integers, returns
. This is the number of combinations of things taken at a

time.

C = nchoosek(v,k), where v is a row vector of length n, creates a matrix whose
rows consist of all possible combinations of the elements of v taken at a
time. Matrix C contains rows and columns.

Examples The command nchoosek(2:2:10,4) returns the even numbers from two to ten,
taken four at a time:

 2 4 6 8
 2 4 6 10
 2 4 8 10
 2 6 8 10
 4 6 8 10

Limitations This function is only practical for situations where n is less than about 15.

See Also perms

n! n k–()! k!()⁄ n k

n k
n! n k–()! k!()⁄ k

ndgrid

2-684

2ndgridPurpose Generate arrays for multidimensional functions and interpolation

Syntax [X1,X2,X3,...] = ndgrid(x1,x2,x3,...)
[X1,X2,...] = ndgrid(x)

Description [X1,X2,X3,...] = ndgrid(x1,x2,x3,...) transforms the domain specified
by vectors x1,x2,x3... into arrays X1,X2,X3... that can be used for the
evaluation of functions of multiple variables and multidimensional
interpolation. The ith dimension of the output array Xi are copies of elements
of the vector xi.

[X1,X2,...] = ndgrid(x) is the same as [X1,X2,...] = ndgrid(x,x,...).

Examples Evaluate the function over the range .

[X1,X2] = ndgrid(-2:.2:2, -2:.2:2);
Z = X1 .* exp(-X1.^2 - X2.^2);
mesh(Z)

x1e
x1

2– x2
2–

2– x1 2< < 2– x2 2< <,

0
5

10
15

20
25

0

5

10

15

20

25
−0.5

0

0.5

ndgrid

2-685

Remarks The ndgrid function is like meshgrid except that the order of the first two input
arguments are switched. That is, the statement

[X1,X2,X3] = ndgrid(x1,x2,x3)

produces the same result as

[X2,X1,X3] = meshgrid(x2,x1,x3)

Because of this, ndgrid is better suited to multidimensional problems that
aren’t spatially based, while meshgrid is better suited to problems in two- or
three-dimensional Cartesian space.

See Also meshgrid, interpn

ndims

2-686

2ndimsPurpose Number of array dimensions

Syntax n = ndims(A)

Description n = ndims(A) returns the number of dimensions in the array A. The number of
dimensions in an array is always greater than or equal to 2. Trailing singleton
dimensions are ignored. A singleton dimension is any dimension for which
size(A,dim) = 1.

Algorithm ndims(x) is length(size(x)).

See Also size

newplot

2-687

2newplotPurpose Determine where to draw graphics objects

Syntax newplot
h = newplot

Description newplot prepares a figure and axes for subsequent graphics commands.

h = newplot prepares a figure and axes for subsequent graphics commands
and returns a handle to the current axes.

Remarks Use newplot at the beginning of high-level graphics M-files to determine which
figure and axes to target for graphics output. Calling newplot can change the
current figure and current axes. Basically, there are three options when
drawing graphics in existing figures and axes:

• Add the new graphics without changing any properties or deleting any
objects.

• Delete all existing objects whose handles are not hidden before drawing the
new objects.

• Delete all existing objects regardless of whether or not their handles are
hidden and reset most properties to their defaults before drawing the new
objects (refer to the following table for specific information).

The figure and axes NextPlot properties determine how nextplot behaves.
The following two tables describe this behavior with various property values.

First, newplot reads the current figure’s NextPlot property and acts
accordingly.

NextPlot What Happens

add Draw to the current figure without clearing any
graphics objects already present.

replacechildren Remove all child objects whose HandleVisibility
property is set to on and reset figure NextPlot
property to add.
This clears the current figure and is equivalent to
issuing the clf command.

newplot

2-688

After newplot establishes which figure to draw in, it reads the current axes’
NextPlot property and acts accordingly.

See Also axes, cla, clf, figure, hold, ishold, reset

The NextPlot property for figure and axes graphics objects.

“Figure Windows” for related functions

replace Remove all child objects (regardless of the setting of
the HandleVisibility property) and reset figure
properties to their defaults, except:

• NextPlot is reset to add regardless of user-defined
defaults)

• Position, Units, PaperPosition, and PaperUnits
are not reset

This clears and resets the current figure and is
equivalent to issuing the clf reset command.

NextPlot Description

add Draw into the current axes, retaining all graphics
objects already present.

replacechildren Remove all child objects whose HandleVisibility
property is set to on, but do not reset axes properties.
This clears the current axes like the cla command.

replace Removes all child objects (regardless of the setting of
the HandleVisibility property) and resets axes
properties to their defaults, except Position and
Units
This clears and resets the current axes like the cla
reset command.

NextPlot What Happens

nextpow2

2-689

2nextpow2Purpose Next power of two

Syntax p = nextpow2(A)

Description p = nextpow2(A) returns the smallest power of two that is greater than or
equal to the absolute value of A. (That is, p that satisfies 2^p >= abs(A)).

This function is useful for optimizing FFT operations, which are most efficient
when sequence length is an exact power of two.

If A is non-scalar, nextpow2 returns the smallest power of two greater than or
equal to length(A).

Examples For any integer n in the range from 513 to 1024, nextpow2(n) is 10.

For a 1-by-30 vector A, length(A) is 30 and nextpow2(A) is 5.

See Also fft, log2, pow2

nnls

2-690

2nnlsPurpose Nonnegative least squares

Note The nnls function was replaced by lsqnonneg in Release 11 (MATLAB
5.3). In Release 12 (MATLAB 6.0), nnls displays a warning message and calls
lsqnonneg.

Syntax x = nnls(A,b)
x = nnls(A,b,tol)
[x,w] = nnls(A,b)
[x,w] = nnls(A,b,tol)

Description x = nnls(A,b) solves the system of equations in a least squares
sense, subject to the constraint that the solution vector x has nonnegative
elements . The solution x minimizes subject to
x >= 0.

x = nnls(A,b,tol) solves the system of equations, and specifies a tolerance
tol. By default, tol is: max(size(A))*norm(A,1)*eps.

[x,w] = nnls(A,b) also returns the dual vector w, where when
and when .

[x,w] = nnls(A,b,tol) solves the system of equations, returns the dual
vector w, and specifies a tolerance tol.

Examples Compare the unconstrained least squares solution to the nnls solution for a
4-by-2 problem:

A =
 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170

b =

 0.8587
 0.1781

Ax b=

x j 0> j 1 2 … n, , ,=, Ax b=()

wi 0≤ xi 0=
wi 0≅ xi 0>

nnls

2-691

 0.0747
 0.8405

[A\b nnls(A,b)] =

-2.5627 0
 3.1108 0.6929

[norm(A*(a\b)-b) norm(A*nnls(a,b)-b)] =

0.6674 0.9118

The solution from nnls does not fit as well, but has no negative components.

Algorithm The nnls function uses the algorithm described in [1], Chapter 23. The
algorithm starts with a set of possible basis vectors, computes the associated
dual vector w, and selects the basis vector corresponding to the maximum value
in w to swap out of the basis in exchange for another possible candidate, until
w <= 0.

See Also \ Matrix left division (backslash)

References [1] Lawson, C. L. and R. J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23.

nnz

2-692

2nnzPurpose Number of nonzero matrix elements

Syntax n = nnz(X)

Description n = nnz(X) returns the number of nonzero elements in matrix X.

The density of a sparse matrix is nnz(X)/prod(size(X)).

Examples The matrix

 w = sparse(wilkinson(21));

is a tridiagonal matrix with 20 nonzeros on each of three diagonals, so
nnz(w) = 60.

See Also find, isa, nonzeros, nzmax, size, whos

noanimate

2-693

2noanimatePurpose Change EraseMode of all objects to normal

Syntax noanimate(state,fig_handle)
noanimate(state)

Description noanimate(state,fig_handle) sets the EraseMode of all image, line, patch
surface, and text graphics object in the specified figure to normal. state can be
the following strings:

• 'save' – set the values of the EraseMode properties to normal for all the
appropriate objects in the designated figure.

• 'restore' – restore the EraseMode properties to the previous values (i.e., the
values before calling noanimate with the 'save' argument).

noanimate(state) operates on the current figure.

noanimate is useful if you want to print the figure to a Tiff or JPEG format.

See Also print

“Animation” for related functions

nonzeros

2-694

2nonzerosPurpose Nonzero matrix elements

Syntax s = nonzeros(A)

Description s = nonzeros(A) returns a full column vector of the nonzero elements in A,
ordered by columns.

This gives the s, but not the i and j, from [i,j,s] = find(A). Generally,

length(s) = nnz(A) <= nzmax(A) <= prod(size(A))

See Also find, isa, nnz, nzmax, size, whos

norm

2-695

2normPurpose Vector and matrix norms

Syntax n = norm(A)
n = norm(A,p)

Description The norm of a matrix is a scalar that gives some measure of the magnitude of
the elements of the matrix. The norm function calculates several different types
of matrix norms:

n = norm(A) returns the largest singular value of A, max(svd(A)).

n = norm(A,p) returns a different kind of norm, depending on the value of p.

When A is a vector:

Remarks Note that norm(x) is the Euclidean length of a vector x. On the other hand,
MATLAB uses "length" to denote the number of elements n in a vector. This
example uses norm(x)/sqrt(n) to obtain the root-mean-square (RMS) value of
an n-element vector x.

If p is... Then norm returns...

1 The 1-norm, or largest column sum of A, max(sum(abs(A)).

2 The largest singular value (same as norm(A)).

inf The infinity norm, or largest row sum of A,
max(sum(abs(A'))).

'fro' The Frobenius-norm of matrix A, sqrt(sum(diag(A'∗ A))).

norm(A,p) Returns sum(abs(A).^p)^(1/p), for any 1 <= p <= ∞.

norm(A) Returns norm(A,2).

norm(A,inf) Returns max(abs(A)).

norm(A,-inf) Returns min(abs(A)).

norm

2-696

x = [0 1 2 3]
x =
 0 1 2 3

sqrt(0+1+4+9) % Euclidean length
ans =
 3.7417

norm(x)
ans =
 3.7417

n = length(x) % Number of elements
n =
 4

rms = 3.7417/2 % rms = norm(x)/sqrt(n)
rms =
 1.8708

See Also cond, condest, normest, rcond, svd

normest

2-697

2normestPurpose 2-norm estimate

Syntax nrm = normest(S)
nrm = normest(S,tol)
[nrm,count] = normest(...)

Description This function is intended primarily for sparse matrices, although it works
correctly and may be useful for large, full matrices as well.

nrm = normest(S) returns an estimate of the 2-norm of the matrix S.

nrm = normest(S,tol) uses relative error tol instead of the default tolerance
1.e-6. The value of tol determines when the estimate is considered
acceptable.

[nrm,count] = normest(...) returns an estimate of the 2-norm and also
gives the number of power iterations used.

Examples The matrix W = gallery('wilkinson',101) is a tridiagonal matrix. Its order,
101, is small enough that norm(full(W)), which involves svd(full(W)), is
feasible. The computation takes 4.13 seconds (on one computer) and produces
the exact norm, 50.7462. On the other hand, normest(sparse(W)) requires
only 1.56 seconds and produces the estimated norm, 50.7458.

Algorithm The power iteration involves repeated multiplication by the matrix S and its
transpose, S'. The iteration is carried out until two successive estimates agree
to within the specified relative tolerance.

See Also cond, condest, norm, rcond, svd

notebook

2-698

2notebookPurpose Open M-book in Microsoft Word (Windows only)

Syntax notebook
notebook('filename')
notebook('-setup')
notebook('-setup', wordver, wordloc, templateloc)

Description notebook by itself, launches Microsoft Word and creates a new M-book called
Document 1.

notebook('filename') launches Microsoft Word and opens the M-book
filename.

notebook('-setup') runs an interactive setup function for the Notebook. You
are prompted for the version of Microsoft Word, and if necessary, for the
locations of several files.

notebook('-setup', wordver, wordloc, templateloc) sets up the
Notebook using the specified information.

See Also “Using Notebook” in the MATLAB documentation

wordver Version of Microsoft Word, either 97, 2000, or 2002 (for XP)

wordloc Directory containing winword.exe

templateloc Directory containing Microsoft Word template directory

now

2-699

2nowPurpose Current date and time

Syntax t = now

Description t = now returns the current date and time as a serial date number. To return
the time only, use rem(now,1). To return the date only, use floor(now).

Examples t1 = now, t2 = rem(now,1)

t1 =

 7.2908e+05

t2 =

 0.4013

See Also clock, date, datenum

null

2-700

2nullPurpose Null space of a matrix

Syntax Z = null(A)
Z = null(A,'r')

Description Z = null(A) is an orthonormal basis for the null space of A obtained from the
singular value decomposition. That is, A*Z has negligible elements, size(Z,2)
is the nullity of A, and Z'*Z = I.

Z = null(A,'r') is a "rational" basis for the null space obtained from the
reduced row echelon form. A*Z is zero, size(Z,2) is an estimate for the nullity
of A, and, if A is a small matrix with integer elements, the elements of the
reduced row echelon form (as computed using rref) are ratios of small integers.

The orthonormal basis is preferable numerically, while the rational basis may
be preferable pedagogically.

Example Example 1. Compute the orthonormal basis for the null space of a matrix A.

A = [1 2 3
 1 2 3
 1 2 3];

Z = null(A)

Z =
 0.9636 0
 -0.1482 -0.8321
 -0.2224 0.5547

A*Z

ans =
 1.0e-015 *
 0.2220 0.2220
 0.2220 0.2220
 0.2220 0.2220

Z'*Z

null

2-701

ans =
 1.0000 -0.0000
 -0.0000 1.0000

Example 2. Compute the rational basis for the null space of the same matrix A.

ZR = null(A,'r')

ZR =
 -2 -3
 1 0
 0 1

A*ZR

ans =

 0 0
 0 0
 0 0

See Also orth, rank, rref, svd

num2cell

2-702

2num2cellPurpose Convert a numeric array into a cell array

Syntax c = num2cell(A)
c = num2cell(A,dims)

Description c = num2cell(A) converts the matrix A into a cell array by placing each
element of A into a separate cell. Cell array c will be the same size as matrix A.

c = num2cell(A,dims) converts the matrix A into a cell array by placing the
dimensions specified by dims into separate cells. C will be the same size as A
except that the dimensions matching dims will be 1.

Examples The statement

num2cell(A,2)

places the rows of A into separate cells. Similarly

num2cell(A,[1 3])

places the column-depth pages of A into separate cells.

See Also cat

num2str

2-703

2num2strPurpose Number to string conversion

Syntax str = num2str(A)
str = num2str(A,precision)
str = num2str(A,format)

Description The num2str function converts numbers to their string representations. This
function is useful for labeling and titling plots with numeric values.

str = num2str(a) converts array A into a string representation str with
roughly four digits of precision and an exponent if required.

str = num2str(a,precision) converts the array A into a string
representation str with maximum precision specified by precision.
Argument precision specifies the number of digits the output string is to
contain. The default is four.

str = num2str(A,format) converts array A using the supplied format. By
default, this is '%11.4g', which signifies four significant digits in exponential
or fixed-point notation, whichever is shorter. (See fprintf for format string
details).

Examples num2str(pi) is 3.142.

num2str(eps) is 2.22e-16.

num2str(magic(2)) produces the string matrix

1 3
4 2

See Also fprintf, int2str, sprintf

numel

2-704

2numelPurpose Number of elements in array or subscripted array expression

Syntax n = numel(A)
n = numel(A,varargin)

Description n = numel(A) returns the the number of elements, n, in array A.

n = numel(A,varargin) returns the number of subscripted elements, n, in
A(index1,index2,...,indexn), where varargin is a cell array whose
elements are index1, index2, ..., indexn.

MATLAB implicitly calls the numel builtin function whenever an expression
such as A{index1,index2,...,indexN} or A.fieldname generates a
comma-separated list.

numel works with the overloaded subsref and subsasgn functions. It computes
the number of expected outputs (nargout) returned from subsref. It also
computes the number of expected inputs (nargin) to be assigned using
subsasgn. The nargin value for the overloaded subsasgn function consists of
the variable being assigned to, the structure array of subscripts, and the value
returned by numel.

As a class designer, you must ensure that the value of n returned by the builtin
numel function is consistent with the class design for that object. If n is different
from either the nargout for the overloaded subsref function or the nargin for
the overloaded subsasgn function, then you need to overload numel to return a
value of n that is consistent with the class' subsref and subsasgn functions.
Otherwise, MATLAB produces errors when calling these functions.

Examples Create a 4-by-4-by-2 matrix. numel counts 32 elments in the matrix.

a = magic(4);
a(:,:,2) = a'

a(:,:,1) =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

a(:,:,2) =

numel

2-705

 16 5 9 4
 2 11 7 14
 3 10 6 15
 13 8 12 1

numel(a)
ans =
 32

See Also nargin, nargout, prod, size, subsasgn, subsref

nzmax

2-706

2nzmaxPurpose Amount of storage allocated for nonzero matrix elements

Syntax n = nzmax(S)

Description n = nzmax(S) returns the amount of storage allocated for nonzero elements.

Often, nnz(S) and nzmax(S) are the same. But if S is created by an operation
which produces fill-in matrix elements, such as sparse matrix multiplication or
sparse LU factorization, more storage may be allocated than is actually
required, and nzmax(S) reflects this. Alternatively, sparse(i,j,s,m,n,nzmax)
or its simpler form, spalloc(m,n,nzmax), can set nzmax in anticipation of later
fill-in.

See Also find, isa, nnz, nonzeros, size, whos

If S is a sparse matrix... nzmax(S) is the number of storage locations
allocated for the nonzero elements in S.

If S is a full matrix... nzmax(S) = prod(size(S)).

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-707

2ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tbPurpose Solve initial value problems for ordinary differential equations (ODEs)

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y] = solver(odefun,tspan,y0,options,p1,p2...)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or
ode23tb.

Arguments

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates the
system of differential equations from time t0 to tf with initial
conditions y0. Function f = odefun(t,y), for a scalar t and a column vector y,
must return a column vector f corresponding to . Each row in the solution
array Y corresponds to a time returned in column vector T. To obtain solutions
at the specific times t0, t1,...,tf (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

odefun A function that evaluates the right-hand side of the differential
equations. All solvers solve systems of equations in the form

 or problems that involve a mass matrix,
. The ode23s solver can solve only equations

with constant mass matrices. ode15s and ode23t can solve
problems with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration, [t0,tf]. To obtain
solutions at specific times (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

y0 A vector of initial conditions.

options Optional integration argument created using the odeset function.
See odeset for details.

p1,p2... Optional parameters that the solver passes to odefun and all the
functions specified in options..

y ′ f t y,()=
M t y,() y ′ f t y,()=

y ′ f t y,()=

f t y,()

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-708

[T,Y] = solver(odefun,tspan,y0,options) solves as above with default
integration parameters replaced by property values specified in options, an
argument created with the odeset function. Commonly used properties include
a scalar relative error tolerance RelTol (1e-3 by default) and a vector of
absolute error tolerances AbsTol (all components are 1e-6 by default). See
odeset for details.

[T,Y] = solver(odefun,tspan,y0,options,p1,p2...) solves as above,
passing the additional parameters p1,p2... to the function odefun, whenever
it is called. Use options = [] as a place holder if no options are set.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves as above while
also finding where functions of , called event functions, are zero. For each
event function, you specify whether the integration is to terminate at a zero
and whether the direction of the zero crossing matters. Do this by setting the
'Events' property to a function, e.g., events or @events, and creating a
function [value,isterminal,direction] = events(t,y). For the ith event
function in events:

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this event
function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1 if only the
zeros where the event function increases, and -1 if only the zeros where the
event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time at which
an event occurs, the solution at the time of the event, and the index i of the
event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you can use
with deval to evaluate the solution at any point on the interval [t0,tf]. You
must pass odefun as a function handle. The structure sol always includes
these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution at sol.x(i).

sol.solver Solver name.

t y(,)

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-709

If you specify the Events option and events are detected, sol also includes
these fields:

If you specify an output function as the value of the OutputFcn property, the
solver calls it with the computed solution after each time step. Four output
functions are provided: odeplot, odephas2, odephas3, odeprint. When you call
the solver with no output arguments, it calls the default odeplot to plot the
solution as it is computed. odephas2 and odephas3 produce two- and
three-dimnesional phase plane plots, respectively. odeprint displays the
solution components on the screen. By default, the ODE solver passes all
components of the solution to the output function. You can pass only specific
components by providing a vector of indices as the value of the OutputSel
property. For example, if you call the solver with no output arguments and set
the value of OutputSel to [1,3], the solver plots solution components 1 and 3
as they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian matrix
 is critical to reliability and efficiency. Use odeset to set Jacobian to

@FJAC if FJAC(T,Y) returns the Jacobian or to the matrix if the
Jacobian is constant. If the Jacobian property is not set (the default), is
approximated by finite differences. Set the Vectorized property 'on' if the ODE
function is coded so that odefun(T,[Y1,Y2 ...]) returns
[odefun(T,Y1),odefun(T,Y2) ...]. If is a sparse matrix, set the JPattern
property to the sparsity pattern of , i.e., a sparse matrix S with S(i,j) =
1 if the ith component of depends on the jth component of , and 0
otherwise.

The solvers of the ODE suite can solve problems of the form
, with time- and state-dependent mass matrix . (The

ode23s solver can solve only equations with constant mass matrices.) If a
problem has a mass matrix, create a function M = MASS(t,y) that returns the

sol.xe Points at which events, if any, occurred. sol.xe(end)
contains the exact point of a terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function specified in
the Events option. The values indicate which event the solver
detected.

∂f ∂y⁄
∂f ∂y⁄ ∂f ∂y⁄

∂f ∂y⁄

∂f ∂y⁄
∂f ∂y⁄

f t y,() y

M t y,() y ′ f t y,()= M

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-710

value of the mass matrix, and use odeset to set the Mass property to @MASS. If
the mass matrix is constant, the matrix should be used as the value of the Mass
property. Problems with state-dependent mass matrices are more difficult:

• If the mass matrix does not depend on the state variable and the function
MASS is to be called with one input argument, t, set the MStateDependence
property to 'none'.

• If the mass matrix depends weakly on , set MStateDependence to 'weak' (the
default) and otherwise, to 'strong'. In either case, the function MASS is called
with the two arguments (t,y).

If there are many differential equations, it is important to exploit sparsity:

• Return a sparse .

• Supply the sparsity pattern of using the JPattern property or a
sparse using the Jacobian property.

• For strongly state-dependent , set MvPattern to a sparse matrix S
with S(i,j) = 1 if for any k, the (i,k) component of depends on
component j of , and 0 otherwise.

If the mass matrix is singular, then is a differential
algebraic equation. DAEs have solutions only when is consistent, that is, if
there is a vector such that . The ode15s and
ode23t solvers can solve DAEs of index 1 provided that y0 is sufficiently close
to being consistent. If there is a mass matrix, you can use odeset to set the
MassSingular property to 'yes', 'no', or 'maybe'. The default value of
'maybe' causes the solver to test whether the problem is a DAE. You can
provide yp0 as the value of the InitialSlope property. The default is the zero
vector. If a problem is a DAE, and y0 and yp0 are not consistent, the solver
treats them as guesses, attempts to compute consistent values that are close to
the guesses, and continues to solve the problem. When solving DAEs, it is very
advantageous to formulate the problem so that is a diagonal matrix (a
semi-explicit DAE).

y

y

M t y,()

∂f ∂y⁄
∂f ∂y⁄

M t y,()
M t y,()

y

M M t y,() y ′ f t y,()=
y0

y p0 M t0 y0,() y p0 f t0 y0,()=

M

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-711

The algorithms used in the ODE solvers vary according to order of accuracy [6]
and the type of systems (stiff or nonstiff) they are designed to solve. See
“Algorithms” on page 2-714 for more details.

Options Different solvers accept different parameters in the options list. For more
information, see odeset and “Improving ODE Solver Performance” in the
“Mathematics” section of the MATLAB documentation.

Solver Problem
Type

Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you
try.

ode23 Nonstiff Low If using crude error tolerances or solving moderately
stiff problems.

ode113 Nonstiff Low to high If using stringent error tolerances or solving a
computationally intensive ODE file.

ode15s Stiff Low to
medium

If ode45 is slow because the problem is stiff.

ode23s Stiff Low If using crude error tolerances to solve stiff systems
and the mass matrix is constant.

ode23t Moderately
Stiff

Low If the problem is only moderately stiff and you need
a solution without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems.

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-712

Examples Example 1. An example of a nonstiff system is the system of equations
describing the motion of a rigid body without external forces.

To simulate this system, create a function rigid containing the equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset command and
solve on a time interval [0 12] with an initial condition vector [0 1 1] at time
0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

y ′1 y2 y3=

y ′2 y1 y3–=

y ′3 0.51 y1 y2–=

y1 0() 0=

y2 0() 1=

y3 0() 1=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-713

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

Example 2. An example of a stiff system is provided by the van der Pol
equations in relaxation oscillation. The limit cycle has portions where the
solution components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

To simulate this system, create a function vdp1000 containing the equations

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

y ′1 y2=

y ′2 1000 1 y1
2

–() y2 y1–=

y1 0() 0=

y2 0() 1=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-714

For this problem, we will use the default relative and absolute tolerances (1e-3
and 1e-6, respectively) and solve on a time interval of [0 3000] with initial
condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution

plot(T,Y(:,1),'-o')

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince
pair. It is a one-step solver – in computing y(tn), it needs only the solution at
the immediately preceding time point, y(tn-1). In general, ode45 is the best
function to apply as a “first try” for most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine. It may be more efficient than ode45 at crude tolerances and in
the presence of moderate stiffness. Like ode45, ode23 is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the ODE file
function is particularly expensive to evaluate. ode113 is a multistep solver – it

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-715

normally needs the solutions at several preceding time points to compute the
current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they appear to
be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation formulas
(BDFs, also known as Gear’s method) that are usually less efficient. Like
ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very
inefficient, and you suspect that the problem is stiff, or when solving a
differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It can
solve some kinds of stiff problems for which ode15s is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free” interpolant.
Use this solver if the problem is only moderately stiff and you need a solution
without numerical damping. ode23t can solve DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver may
be more efficient than ode15s at crude tolerances. [8], [1]

See Also deval, odeset, odeget, @ (function handle)

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and
R. Smith, “Transient Simulation of Silicon Devices and Circuits,” IEEE Trans.
CAD, 4 (1985), pp 436-451.

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,”
Appl. Math. Letters, Vol. 2, 1989, pp 1-9.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp 19-26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-716

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software,
Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM
Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving Index-1
DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41, 1999, pp 538-552.

odefile

2-717

2odefilePurpose Define a differential equation problem for ordinary differential equation (ODE)
solvers

Note This reference page describes the odefile and the syntax of the ODE
solvers used in MATLAB, Version 5. MATLAB, Version 6, supports the
odefile for backward compatibility, however the new solver syntax does not
use an ODE file. New functionality is available only with the new syntax. For
information about the new syntax, see odeset or any of the ODE solvers.

Description odefile is not a command or function. It is a help entry that describes how to
create an M-file defining the system of equations to be solved. This definition
is the first step in using any of the MATLAB ODE solvers. In MATLAB
documentation, this M-file is referred to as an odefile, although you can give
your M-file any name you like.

You can use the odefile M-file to define a system of differential equations in
one of these forms

or

where:

• is a scalar independent variable, typically representing time.

• is a vector of dependent variables.

• is a function of and returning a column vector the same length as .

• is a time-and-state-dependent mass matrix.

The ODE file must accept the arguments t and y, although it does not have to
use them. By default, the ODE file must return a column vector the same
length as y.

All of the solvers of the ODE suite can solve , except ode23s,
which can only solve problems with constant mass matrices. The ode15s and

y ′ f t y,()=

M t y,() y ′ f t y,()v=

t

y

f t y y

M t y,()

M t y,() y ′ f t y,()=

odefile

2-718

ode23t solvers can solve some differential-algebraic equations (DAEs) of the
form .

Beyond defining a system of differential equations, you can specify an entire
initial value problem (IVP) within the ODE M-file, eliminating the need to
supply time and initial value vectors at the command line (see Examples on
page 2-720).

To Use the ODE File Template

• Enter the command help odefile to display the help entry.

• Cut and paste the ODE file text into a separate file.

• Edit the file to eliminate any cases not applicable to your IVP.

• Insert the appropriate information where indicated. The definition of the
ODE system is required information.

switch flag
 case '' % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,p1,p2);
 case 'init' % Return default [tspan,y0,options].
 [varargout{1:3}] = init(p1,p2);
 case 'jacobian' % Return Jacobian matrix df/dy.
 varargout{1} = jacobian(t,y,p1,p2);
 case 'jpattern' % Return sparsity pattern matrix S.
 varargout{1} = jpattern(t,y,p1,p2);
 case 'mass' % Return mass matrix.
 varargout{1} = mass(t,y,p1,p2);
case 'events' % Return [value,isterminal,direction].
 [varargout{1:3}] = events(t,y,p1,p2);
 otherwise
 error(['Unknown flag ''' flag '''.']);
 end
% ---
function dydt = f(t,y,p1,p2)
 dydt = < Insert a function of t and/or y, p1, and p2 here. >
% ---
function [tspan,y0,options] = init(p1,p2)
 tspan = < Insert tspan here. >;
 y0 = < Insert y0 here. >;

M t() y ′ f t y,()=

odefile

2-719

 options = < Insert options = odeset(...) or [] here. >;
% --
function dfdy = jacobian(t,y,p1,p2)
 dfdy = < Insert Jacobian matrix here. >;
% --
function S = jpattern(t,y,p1,p2)
 S = < Insert Jacobian matrix sparsity pattern here. >;
% --
function M = mass(t,y,p1,p2)
 M = < Insert mass matrix here. >;
% --
function [value,isterminal,direction] = events(t,y,p1,p2)
 value = < Insert event function vector here. >
 isterminal = < Insert logical ISTERMINAL vector here.>;
 direction = < Insert DIRECTION vector here.>;

Notes

1 The ODE file must accept t and y vectors from the ODE solvers and must
return a column vector the same length as y. The optional input argument
flag determines the type of output (mass matrix, Jacobian, etc.) returned
by the ODE file.

2 The solvers repeatedly call the ODE file to evaluate the system of
differential equations at various times. This is required information – you
must define the ODE system to be solved.

3 The switch statement determines the type of output required, so that the
ODE file can pass the appropriate information to the solver. (See notes 4 - 9.)

4 In the default initial conditions ('init') case, the ODE file returns basic
information (time span, initial conditions, options) to the solver. If you omit
this case, you must supply all the basic information on the command line.

5 In the 'jacobian' case, the ODE file returns a Jacobian matrix to the
solver. You need only provide this case when you want to improve the
performance of the stiff solvers ode15s, ode23s, ode23t, and ode23tb.

6 In the 'jpattern' case, the ODE file returns the Jacobian sparsity pattern
matrix to the solver. You need to provide this case only when you want to
generate sparse Jacobian matrices numerically for a stiff solver.

odefile

2-720

7 In the 'mass' case, the ODE file returns a mass matrix to the solver. You
need to provide this case only when you want to solve a system in the form

.

8 In the 'events' case, the ODE file returns to the solver the values that it
needs to perform event location. When the Events property is set to on, the
ODE solvers examine any elements of the event vector for transitions to,
from, or through zero. If the corresponding element of the logical
isterminal vector is set to 1, integration will halt when a zero-crossing is
detected. The elements of the direction vector are -1, 1, or 0, specifying
that the corresponding event must be decreasing, increasing, or that any
crossing is to be detected.

9 An unrecognized flag generates an error.

Examples The van der Pol equation, , is equivalent to a system
of coupled first-order differential equations.

The M-file

function out1 = vdp1(t,y)
out1 = [y(2); (1-y(1)^2)*y(2) - y(1)];

defines this system of equations (with).

To solve the van der Pol system on the time interval [0 20] with initial values
(at time 0) of y(1) = 2 and y(2) = 0, use

[t,y] = ode45('vdp1',[0 20],[2; 0]);
plot(t,y(:,1),'-',t,y(:,2),'-.')

M t y,() y ′ f t y,()=

y ′ ′ 1 µ 1 y1
2

–() y ′– y1+ 0=

y ′1 y2=

y ′2 µ 1 y1
2

–() y2 y1–=

µ 1=

odefile

2-721

To specify the entire initial value problem (IVP) within the M-file, rewrite vdp1
as follows.

function [out1,out2,out3] = vdp1(t,y,flag)
if nargin < 3 | isempty(flag)
 out1 = [y(1).*(1-y(2).^2)-y(2); y(1)];
else
 switch(flag)
 case 'init' % Return tspan, y0, and options.
 out1 = [0 20];
 out2 = [2; 0];
 out3 = [];
 otherwise
 error(['Unknown request ''' flag '''.']);
 end
end

You can now solve the IVP without entering any arguments from the command
line.

[T,Y] = ode23('vdp1')

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

odefile

2-722

In this example the ode23 function looks to the vdp1 M-file to supply the
missing arguments. Note that, once you’ve called odeset to define options, the
calling syntax

[T,Y] = ode23('vdp1',[],[],options)

also works, and that any options supplied via the command line override
corresponding options specified in the M-file (see odeset).

See Also The MATLAB Version 5 help entries for the ODE solvers and their associated
functions: ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb, odeget,
odeset

Type at the MATLAB command line: more on, type function, more off.
The Version 5 help follows the Version 6 help.

odeget

2-723

2odegetPurpose Extract properties from options structure created with odeset

Syntax o = odeget(options,'name')
o = odeget(options,'name',default)

Description o = odeget(options,'name') extracts the value of the property specified by
string 'name' from integrator options structure options, returning an empty
matrix if the property value is not specified in options. It is only necessary to
type the leading characters that uniquely identify the property name. Case is
ignored for property names. The empty matrix [] is a valid options argument.

o = odeget(options,'name',default) returns o = default if the named
property is not specified in options.

Example Having constructed an ODE options structure,

options = odeset('RelTol',1e-4,'AbsTol',[1e-3 2e-3 3e-3]);

you can view these property settings with odeget.

odeget(options,'RelTol')
ans =

1.0000e-04

odeget(options,'AbsTol')
ans =

0.0010 0.0020 0.0030

See Also odeset

odeset

2-724

2odesetPurpose Create or alter options structure for input to ordinary differential equation
(ODE) solvers

Syntax options = odeset('name1',value1,'name2',value2,...)
options = odeset(oldopts,'name1',value1,...)
options = odeset(oldopts,newopts)
odeset

Description The odeset function lets you adjust the integration parameters of the ODE
solvers. The ODE solvers can integrate systems of differential equations of one
of these forms

or

See below for information about the integration parameters.

options = odeset('name1',value1,'name2',value2,...) creates an
integrator options structure in which the named properties have the specified
values. Any unspecified properties have default values. It is sufficient to type
only the leading characters that uniquely identify a property name. Case is
ignored for property names.

options = odeset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = odeset(oldopts,newopts) alters an existing options structure
oldopts by combining it with a new options structure newopts. Any new
options not equal to the empty matrix overwrite corresponding options in
oldopts.

odeset with no input arguments displays all property names as well as their
possible and default values.

ODE Properties The available properties depend on the ODE solver used. There are several
categories of properties:

• Error tolerance

y ′ f t y,()=

M t y,() y ′ f t y,()=

odeset

2-725

• Solver output

• Jacobian matrix

• Event location

• Mass matrix and differential-algebraic equations (DAEs)

• Step size
• ode15s

Note This reference page describes the ODE properties for MATLAB,
Version 6. The Version 5 properties are supported only for backward
compatibility. For information on the Version 5 properties, type at the
MATLAB command line: more on, type odeset, more off.

Error Tolerance Properties

Property Value Description

RelTol Positive scalar
{1e-3}

A relative error tolerance that applies to all
components of the solution vector. The
estimated error in each integration step
satisfies
|e(i)|<=max(RelTol*abs(y(i)),AbsTol(i)

AbsTol Positive
scalar or
vector {1e-6}

The absolute error tolerance. If scalar, the
tolerance applies to all components of the
solution vector. Otherwise the tolerances
apply to corresponding components.

NormControl on | {off} Control error relative to norm of solution.
Set this property on to request that the
solvers control the error in each integration
step with
norm(e) <= max(RelTol*norm(y),AbsTol).
By default the solvers use a more stringent
component-wise error control.

odeset

2-726

Solver Output Properties

Property Value Description

OutputFcn Function Installable output function. The ODE solvers
provide sample functions that you can use or
modify:

odeplot Time series plotting (default)

odephas2 Two-dimensional phase plane
plotting

odephas3 Three-dimensional phase plane
plotting

odeprint Print solution as it is computed

To create or modify an output function, see
ODE Solver Output Properties in the
“Differential Equations” section of the
MATLAB documentation.

OutputSel Vector of
integers

Output selection indices. Specifies the
components of the solution vector that the
solver passes to the output function. OutputSel
defaults to all components.

Refine Positive
integer

Produces smoother output, increasing the
number of output points by the specified factor.
The default value is 1 in all solvers except
ode45, where it is 4. Refine doesn’t apply if
length(tspan) > 2.

Stats on | {off} Specifies whether the solver should display
statistics about the computational cost of the
integration.

odeset

2-727

Jacobian Matrix Properties (for ode15s, ode23s, ode23t, and ode23tb)

Property Value Description

Jacobian Function |
constant
matrix

Jacobian function. Set this property to @FJac
(if a function FJac(t,y) returns) or to
the constant value of .

JPattern Sparse
matrix of
{0,1}

Sparsity pattern. Set this property to a sparse
matrix with if component of

 depends on component of , and 0
otherwise.

Vectorized on | {off} Vectorized ODE function. Set this property on
to inform the stiff solver that the ODE
function F is coded so that F(t,[y1 y2 ...])
returns the vector [F(t,y1) F(t,y2) ...].
That is, your ODE function can pass to the
solver a whole array of column vectors at
once. A stiff function calls your ODE function
in a vectorized manner only if it is generating
Jacobians numerically (the default behavior)
and you have used odeset to set Vectorized
to on.

Event Location Property

Property Value Description

Events Function Locate events. Set this property to @Events,
where Events is the name of the events
function. See the ODE solvers for details.

∂f ∂y⁄
∂f ∂y⁄

S S i j,() 1= i
f t y,() j y

odeset

2-728

Mass Matrix and DAE-Related Properties

Property Value Description

Mass Constant
matrix |
function

For problems set this
property to the value of the constant
mass matrix . For problems

, set this property to
@Mfun, where Mfun is a function that
evaluates the mass matrix .

MStateDependence none |
{weak} |
strong

Dependence of the mass matrix on .
Set this property to none for problems

. Both weak and strong
indicate , but weak results in
implicit solvers using approximations
when solving algebraic equations. For
use with all solvers except ode23s.

MvPattern Sparse
matrix

 sparsity pattern. Set
this property to a sparse matrix with

 if for any , the
component of depends on
component of , and 0 otherwise. For
use with the ode15s, ode23t, and
ode23tb solvers when
MStateDependence is strong.

MassSingular yes | no |
{maybe}

Indicates whether the mass matrix is
singular. The default value of 'maybe'
causes the solver to test whether the
problem is a DAE. For use with the
ode15s and ode23t solvers.

InitialSlope Vector Consistent initial slope , where
satisfies . For
use with the ode15s and ode23t solvers
when solving DAEs.

My ′ f t y,()=

m
M t y,() y ′ f t y,()=

M t y,()

y

M t() y ′ f t y,()=
M t y,()

M t y,()v()∂ ∂y⁄
S

S i j,() 1= k i k,()
M t y,()

j y

y p0 y p0
M t0 y0,() y p0 f t0 y0,()=

odeset

2-729

In addition there are two options that apply only to the ode15s solver.

See Also deval, odeget, ode45, ode23, ode23t, ode23tb, ode113, ode15s, ode23s,
@ (function handle)

Step Size Properties

Property Value Description

MaxStep Positive
scalar

An upper bound on the magnitude of the
step size that the solver uses. The default is
one-tenth of the tspan interval.

InitialStep Positive
scalar

Suggested initial step size. The solver tries
this first, but if too large an error results,
the solver uses a smaller step size. By
default the solver determines an initial step
size automatically.

ode15s Properties

Property Value Description

MaxOrder 1 | 2 | 3 | 4 | {5} The maximum order formula used.

BDF on | {off} Set on to specify that ode15s should use
the backward differentiation formulas
(BDFs) instead of the default numerical
differentiation formulas (NDFs).

ones

2-730

2onesPurpose Create an array of all ones

Syntax Y = ones(n)
Y = ones(m,n)
Y = ones([m n])
Y = ones(d1,d2,d3...)
Y = ones([d1 d2 d3...])
Y = ones(size(A))

Description Y = ones(n) returns an n-by-n matrix of 1s. An error message appears if n is
not a scalar.

Y = ones(m,n) or Y = ones([m n]) returns an m-by-n matrix of ones.

Y = ones(d1,d2,d3...) or Y = ones([d1 d2 d3...]) returns an array of 1s
with dimensions d1-by-d2-by-d3-by-....

Y = ones(size(A)) returns an array of 1s that is the same size as A.

See Also eye, rand, randn, zeros

open

2-731

2openPurpose Open files based on extension

Syntax open('name')

Description open('name') opens the object specified by the string, name. The specific action
taken upon opening depends on the type of object specified by name.

If more than one file with the specified filename, name, exists on the MATLAB
path, then open opens the file returned by which('name').

If no such file name exists, then open displays an error message.

name Action

Variable Open array name in the Array Editor (the array
must be numeric)

M-file (name.m) Open M-file name in M-file Editor

Model (name.mdl) Open model name in Simulink

MAT-file (name.mat) Open MAT-file and store variables in a structure
in the workspace

Figure file (*.fig) Open figure in a figure window

P-file (name.p) Open the corresponding M-file, name.m, if it exists,
in the M-file Editor

HTML file (*.html) Open HTML document in Help browser

PDF file (*.pdf) Open PDF document in Adobe Acrobat

Other extensions
(name.xxx)

Open name.xxx by calling the helper function
openxxx, where openxxx is a user-defined function

No extension (name) Opens name in the default editor. If name does not
exist, then open checks to see if name.mdl or
name.m are on the path or in the current directory
and, if so, opens the file returned by
which('name').

open

2-732

You can create your own openxxx functions to set up handlers for new file
types. open('filename.xxx') calls the openxxx function it finds on the path.
For example, create a function, openlog, if you want a handler for opening files
with file extension, .log.

Examples Example 1 - Opening a File on the Path
To open the M-file, copyfile.m, type

open copyfile.m

MATLAB opens the copyfile.m file that resides in toolbox\matlab\general.
If you have a copyfile.m file in a directory that is before
toolbox\matlab\general on the MATLAB path, then open opens that file
instead.

Example 2 - Opening a File Not on the Path
To open a file that is not on the MATLAB path, enter the complete file
specification. If no such file is found, then MATLAB displays an error message.

open('D:\temp\data.mat')

Example 3 - Specifying a File Without a File Extension
When you specify a file without including its file extension, MATLAB
determines which file to open for you. It does this by calling
which('filename').

In this example, open matrixdemos could open either an M-file or a Simulink
model of the same name, since both exist on the path.

dir matrixdemos.*

 matrixdemos.m matrixdemos.mdl

As the call, which('matrixdemos'), returns the name of the Simulink model,
open opens the matrixdemos model rather than the M-file of that name.

open matrixdemos % Opens model matrixdemos.mdl

open

2-733

Example 4 - Opening a MAT File
This example opens a MAT-file containing MATLAB data and then keeps just
one of the variables from that file. The others are overwritten when ans is
reused by MATLAB.

% Open a MAT-file containing miscellaneous data.
open D:\temp\data.mat

ans =

 x: [3x2x2 double]
 y: {4x5 cell}
 k: 8
 spArray: [5x5 double]
 dblArray: [4x1 java.lang.Double[][]]
 strArray: {2x5 cell}

% Keep the dblArray value by assigning it to a variable.
dbl = ans.dblArray

dbl =

java.lang.Double[][]:
 [5.7200] [6.7200] [7.7200]
 [10.4400] [11.4400] [12.4400]
 [15.1600] [16.1600] [17.1600]
 [19.8800] [20.8800] [21.8800]

Example 5 - Using a User-Defined Handler Function
If you create an M-file function called opencht to handle files with extension
.cht, and then issue the command

open myfigure.cht

open will call your handler function with the following syntax.

opencht('myfigure.cht')

See Also load, save, saveas, which, file_formats, path

openfig

2-734

2openfigPurpose Open new copy or raise existing copy of saved figure

Syntax openfig('filename.fig','new')
openfig('filename.fig','reuse')
openfig('filename.fig')
openfig('filename.fig','new','invisible')
openfig('filename.fig','new','visible')
figure_handle = openfig(...)

Description openfig is designed for use with GUI figures. Use this function to:

• Open the FIG-file creating the GUI and ensure it is displayed on screen. This
provides compatibility with different screen sizes and resolutions.

• Control whether MATLAB displays one or multiple instances of the GUI at
any given time.

• Return the handle of the figure created, which is typically hidden for GUIs
figures.

openfig('filename.fig','new') opens the figure contained in the FIG-file,
filename.fig, and ensures it is visible and positioned completely on screen.
You do not have to specify the full path to the FIG-file as long as it is on your
MATLAB path. The .fig extension is optional.

openfig('filename.fig','new','invisible') or
openfig('filename.fig','reuse','invisible') opens the figure as in the
preceding example, while forcing the figure to be invisible.

openfig('filename.fig','new','visible') or
openfig('filename.fig','new','visible') opens the figure, while forcing
the figure to be visible.

openfig('filename.fig','reuse') opens the figure contained in the FIG-file
only if a copy is not currently open; otherwise openfig brings the existing copy
forward, making sure it is still visible and completely on screen.

openfig('filename.fig') is the same as openfig('filename.fig','new').

openfig(...,'PropertyName',PropertyValue,...) opens the FIG-file
setting the specified figure properties before displaying the figure.

openfig

2-735

figure_handle = openfig(...) returns the handle to the figure.

Remarks If the FIG-file contains an invisible figure, openfig returns its handle and
leaves it invisible. The caller should make the figure visible when appropriate.

See Also guide, guihandles, movegui, open, hgload, save

See Deploying User Interfaces for related functions

See Understanding the Application M-File for information on how to use
openfig.

opengl

2-736

2openglPurpose Change automatic selection mode of OpenGL rendering

Syntax opengl selection_mode

Description The OpenGL autoselection mode applies when the RendererMode of the figure
is auto. Possible values for selection_mode are:

• autoselect allows OpenGL to be automatically selected if OpenGL is
available and if there is graphics hardware on the host machine.

• neverselect disables auto selection of OpenGL.

• advise prints a message to the command window if OpenGL rendering is
advised, but RenderMode is set to manual.

opengl, by itself, returns the current auto selection state.

opengl info prints information with the version and vendor of the OpenGL on
your system.

Note that the auto selection state only specifies that OpenGL should or not be
considered for rendering, it does not explicitly set the rendering to OpenGL.
This can be done by setting the Renderer property of figure to OpenGL. For
example,

set(gcf,'Renderer','OpenGL')

See Also Figure Renderer property

openvar

2-737

2openvarPurpose Open workspace variable in the Array Editor or other tool for graphical editing

Graphical
Interface

As an alternative to the openvar function, double-click on a variable in the
Workspace browser.

Syntax openvar('name')

Description openvar('name') opens the workspace variable name in the Array Editor for
graphical editing, where name is a numeric array, string, or cell array of strings.
For some toolboxes, openvar instead opens a tool appropriate for viewing or
editing that type of object.

See Also load, save, workspace

Change values of array elements.
Change the display format.

Use the tabs to view different variables you have
open in the Array Editor.

optimget

2-738

2optimgetPurpose Get optimization options structure parameter values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
parameter in the optimization options structure options. You need to type only
enough leading characters to define the parameter name uniquely. Case is
ignored for parameter names.

val = optimget(options,'param',default) returns default if the specified
parameter is not defined in the optimization options structure options. Note
that this form of the function is used primarily by other optimization functions.

Examples This statement returns the value of the Display optimization options
parameter in the structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options
parameter in the structure called my_options (as in the previous example)
except that if the Display parameter is not defined, it returns the value
'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset, fminbnd, fminsearch, fzero, lsqnonneg

optimset

2-739

2optimsetPurpose Create or edit optimization options parameter structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description options = optimset('param1',value1,'param2',value2,...) creates an
optimization options structure called options, in which the specified
parameters (param) have specified values. Any unspecified parameters are set
to [] (parameters with value [] indicate to use the default value for that
parameter when options is passed to the optimization function). It is sufficient
to type only enough leading characters to define the parameter name uniquely.
Case is ignored for parameter names.

optimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = optimset (with no input arguments) creates an options structure
options where all fields are set to [].

options = optimset(optimfun) creates an options structure optionswith all
parameter names and default values relevant to the optimization function
optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = optimset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any parameters in
newopts with nonempty values overwrite the corresponding old parameters in
oldopts.

optimset

2-740

Parameters Optimization parameters used by MATLAB functions and Optimization
Toolbox functions:

Optimization parameters used by Optimization Toolbox functions (for more
information about individual parameters, see “Optimization Options
Parameters” in the Optimization Toolbox User’s Guide, and the optimization
functions that use these parameters).

Parameter Value Description

Display 'off' | 'iter' |
'final' | 'notify'

Level of display. 'off' displays
no output; 'iter' displays output
at each iteration; 'final'
displays just the final output;
'notify' dislays output only if
the function does not converge.

MaxFunEvals positive integer Maximum number of function
evaluations allowed.

MaxIter positive integer Maximum number of iterations
allowed.

TolFun positive scalar Termination tolerance on the
function value.

TolX positive scalar Termination tolerance on .x

Property Value Description

DerivativeCheck 'on' | {'off'} Compare user-supplied analytic derivatives
(gradients or Jacobian) to finite differencing
derivatives.

Diagnostics 'on' | {'off'} Print diagnostic information about the
function to be minimized or solved.

DiffMaxChange positive scalar | {1e-1} Maximum change in variables for finite
difference derivatives.

optimset

2-741

DiffMinChange positive scalar | {1e-8} Minimum change in variables for finite
difference derivatives.

GoalsExactAchieve positive scalar integer |
{0}

Number of goals to achieve exactly (do not
over- or underachieve).

GradConstr 'on' | {'off'} Gradients for nonlinear constraints defined
by the user.

GradObj 'on' | {'off'} Gradient(s) for objective function(s) defined
by the user.

Hessian 'on' | {'off'} Hessian for the objective function defined by
the user.

HessMult function | {[]} Hessian multiply function defined by the
user.

HessPattern sparse matrix |{sparse
matrix of all ones}

Sparsity pattern of the Hessian for finite
differencing. The size of the matrix is n-by-n,
where n is the number of elements in x0, the
starting point.

HessUpdate {'bfgs'} | 'dfp' |
'gillmurray' |
'steepdesc'

Quasi-Newton updating scheme.

Jacobian 'on' | {'off'} Jacobian for the objective function defined
by the user.

JacobMult function | {[]} Jacobian multiply function defined by the
user.

JacobPattern sparse matrix |{sparse
matrix of all ones}

Sparsity pattern of the Jacobian for finite
differencing. The size of the matrix is
m-by-n, where m is the number of values in
the first argument returned by the
user-specified function fun, and n is the
number of elements in x0, the starting point.

Property Value Description

optimset

2-742

Examples This statement creates an optimization options structure called options in
which the Display parameter is set to 'iter' and the TolFun parameter is set
to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

LargeScale {'on'} | 'off' Use large-scale algorithm if possible.
Exception: default for fsolve is 'off'.

LevenbergMarquardt 'on' | {'off'} Chooses Levenberg-Marquardt over
Gauss-Newton algorithm.

LineSearchType 'cubicpoly' |
{'quadcubic'}

Line search algorithm choice.

MaxPCGIter positive integer Maximum number of PCG iterations
allowed. The default is the greater of 1 and
floor(n/2)) where n is the number of
elements in x0, the starting point.

MeritFunction 'singleobj' |
{'multiobj'}

Use goal attainment/minimax merit function
(multiobjective) vs. fmincon (single
objective).

MinAbsMax positive scalar integer |
{0}

Number of to minimize the worst case
absolute values

PrecondBandWidth positive integer | {0} |
Inf

Upper bandwidth of preconditioner for PCG.

TolCon positive scalar Termination tolerance on the constraint
violation.

TolPCG positive scalar | {0.1} Termination tolerance on the PCG iteration.

TypicalX vector of all ones Typical x values. The length of the vector is
equal to the number of elements in x0, the
starting point.

Property Value Description

F x()

optimset

2-743

This statement makes a copy of the options structure called options, changing
the value of the TolX parameter and storing new values in optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure that contains all the
parameter names and default values relevant to the function fminbnd.

optimset('fminbnd')

See Also optimget, fminbnd, fminsearch, fzero, lsqnonneg

orderfields

2-744

2orderfieldsPurpose Order fields of a structure array

Syntax s = orderfields(s1)
s = orderfields(s1, s2)
s = orderfields(s1, c)
s = orderfields(s1, perm)
[s, perm] = orderfields(...)

Description s = orderfields(s1) orders the fields in s1 so that the new structure array s
has field names in ASCII dictionary order.

s = orderfields(s1, s2) orders the fields in s1 so that the new structure
array, s, has field names in the same order as those in s2. Structures sl and s2
must have the same fields.

s = orderfields(s1, c) orders the fields in s1 so that the new structure
array, s, has field names in the same order as those in the cell array of field
name strings, c. Structure s1 and cell array c must contain the same field
names.

s = orderfields(s1, perm) orders the fields in s1 so that the new structure
array, s, has fieldnames in the order specified by the indices in permutation
vector, perm.

If s1 has N fieldnames, the elements of perm must be an arrangement of the
numbers from 1 to N. This is particularly useful if you have more than one
structure array that you would like to reorder in the same way.

[s, perm] = orderfields(...) returns a permutation vector representing
the change in order performed on the fields of the structure array that results
in s.

Remarks orderfields only orders top-level fields. It is not recursive.

Examples Create a structure s. Then create a new structure from s, but with the fields
ordered alphabetically:

s = struct('b', 2, 'c', 3, 'a', 1)
s =
 b: 2

orderfields

2-745

 c: 3
 a: 1

snew = orderfields(s)
snew =
 a: 1
 b: 2
 c: 3

Arrange the fields of s in the order specified by the second, (cell array),
argument of orderfields. Return the new structure in snew and the
permutation vector used to create it in perm:

[snew, perm] = orderfields(s, {'b', 'a', 'c'})
snew =
 b: 2
 a: 1
 c: 3
perm =
 1
 3
 2

Now create a new structure, s2, having the same fieldnames as s. Reorder the
fields using the permutation vector returned in the previous operation:

s2 = struct('b', 3, 'c', 7, 'a', 4)
s2 =
 b: 3
 c: 7
 a: 4

snew = orderfields(s2, perm)
snew =
 b: 3
 a: 4
 c: 7

See Also struct, fieldnames, isfield, rmfield

orient

2-746

2orientPurpose Set paper orientation for printed output

Syntax orient
orient landscape
orient portrait
orient tall
orient(fig_handle), orient(simulink_model)
orient(fig_handle,orientation), orient(simulink_model,orientation)

Description orient returns a string with the current paper orientation, either portrait,
landscape, or tall.

orient landscape sets the paper orientation of the current figure to full-page
landscape, orienting the longest page dimension horizontally. The figure is
centered on the page and scaled to fit the page with a 0.25 inch border.

orient portrait sets the paper orientation of the current figure to portrait,
orienting the longest page dimension vertically. The portrait option returns
the page orientation to the MATLAB default. (Note that the result of using the
portrait option is affected by changes you make to figure properties. See the
“Algorithm” section for more specific information.)

orient tall maps the current figure to the entire page in portrait orientation,
leaving a 0.25 inch border.

orient(fig_handle), orient(simulink_model) returns the current
orientation of the specified figure or Simulink model.

orient(fig_handle,orientation), orient(simulink_model,orientation)

sets the orientation for the specified figure or Simulink model to the specified
orientation (landscape, portrait, or tall).

Algorithm orient sets the PaperOrientation, PaperPosition, and PaperUnits
properties of the current figure. Subsequent print operations use these
properties. The result of using the portrait option can be affected by default
property values as follows:

• If the current figure PaperType is the same as the default figure PaperType
and the default figure PaperOrientation has been set to landscape, then

orient

2-747

the orient portrait command uses the current values of PaperOrientation
and PaperPosition to place the figure on the page.

• If the current figure PaperType is the same as the default figure PaperType
and the default figure PaperOrientation has been set to landscape, then
the orient portrait command uses the default figure PaperPosition with
the x, y and width, height values reversed (i.e., [y,x,height,width]) to position
the figure on the page.

• If the current figure PaperType is different from the default figure
PaperType, then the orient portrait command uses the current figure
PaperPosition with the x, y and width, height values reversed (i.e.,
[y,x,height,width]) to position the figure on the page.

See Also print, set

PaperOrientation, PaperPosition, PaperSize, PaperType, and PaperUnits
properties of figure graphics objects.

“Printing” for related functions

orth

2-748

2orthPurpose Range space of a matrix

Syntax B = orth(A)

Description B = orth(A) returns an orthonormal basis for the range of A. The columns of B
span the same space as the columns of A, and the columns of B are orthogonal,
so that B'*B = eye(rank(A)). The number of columns of B is the rank of A.

See Also null, svd, rank

otherwise

2-749

2otherwisePurpose Default part of switch statement

Description otherwise is part of the switch statement syntax, which allows for conditional
execution. The statements following otherwise are executed only if none of the
preceding case expressions (case_expr) match the switch expression
(sw_expr).

Examples The general form of the switch statement is:

switch sw_expr
 case case_expr
 statement
 statement
 case {case_expr1,case_expr2,case_expr3}
 statement
 statement
 otherwise
 statement
 statement
end

See switch for more details.

See Also switch

otherwise

2-750

I-1

Index

Numerics
1-norm 2-695
2-norm (estimate of) 2-697

A
Adams-Bashforth-Moulton ODE solver 2-714
aligning scattered data

multi-dimensional 2-684
two-dimensional 2-266

alpha channel 2-374
AlphaData

image property 2-350
AlphaDataMapping

image property 2-350
anti-diagonal 2-283
arguments, M-file

checking number of input 2-679
number of input 2-680
number of output 2-680

array
finding indices of 2-96
maximum elements of 2-620
mean elements of 2-621
median elements of 2-622
minimum elements of 2-639
of all ones 2-730
structure 2-36, 2-246
swapping dimensions of 2-436

arrays
detecting empty 2-445
opening 2-731

ASCII data
reading from disk 2-560

audio
signal conversion 2-535, 2-667

autoselection of OpenGL 2-66

average of array elements 2-621
average,running 2-92
axis crossing See zero of a function

B
BackingStore, Figure property 2-49
base two operations

logarithm 2-569
next power of two 2-689

big endian formats 2-136
binary

data
writing to file 2-193

files
reading 2-162

mode for opened files 2-136
binary data

reading from disk 2-560
bisection search 2-200
bit depth 2-375

querying 2-363
support

See also index entries for individual file
formats

supported bit depths 2-375
BMP 2-362, 2-371, 2-379
browser

for help 2-308
BusyAction

Figure property 2-50
Image property 2-351
Light property 2-528
Line property 2-543

ButtonDownFcn

Figure property 2-50

Index

I-2

Image property 2-351
Light property 2-528
Line property 2-543

C
case

upper to lower 2-577
CData

Image property 2-351
CDataMapping

Image property 2-353
cell array

conversion to from numeric array 2-702
characters

conversion, in format specification string
2-150

escape, in format specification string 2-151
Children

Figure property 2-50
Image property 2-353
Light property 2-528
Line property 2-543

class, object See object classes
classes

field names 2-36
loaded 2-398

Clipping

Figure property 2-50
Image property 2-353
Light property 2-528
Line property 2-544

CloseRequestFcn, Figure property 2-50
closing

files 2-15
Color

Figure property 2-52

Light property 2-528
Line property 2-544

Colormap, Figure property 2-52
COM

object methods
get 2-238
inspect 2-404
invoke 2-434
isevent 2-449
ismethod 2-463
isprop 2-480
load 2-562
move 2-653

combinations of n elements 2-683
combs 2-683
command syntax 2-305
Command Window

cursor position 2-327
commands

help for 2-305, 2-313
common elements See set operations, intersection
complex

logarithm 2-567, 2-568
numbers 2-331
See also imaginary

contents.m file 2-305
conversion

hexadecimal to decimal 2-316
hexadecimal to double precision 2-317
integer to string 2-409
matrix to string 2-606
numeric array to cell array 2-702
numeric array to logical array 2-570
numeric array to string 2-703
uppercase to lowercase 2-577

conversion characters in format specification string
2-150

Index

I-3

covariance
least squares solution and 2-579

CreateFcn

Figure property 2-53
Image property 2-354
Light property 2-529
Line property 2-544

creating your own MATLAB functions 2-186
cubic interpolation 2-417

piecewise Hermite 2-412
cubic spline interpolation

multidimensional 2-423
one-dimensional 2-412
three-dimensional 2-420
two-dimensional 2-417

CurrentAxes 2-53
CurrentAxes, Figure property 2-53
CurrentCharacter, Figure property 2-53
CurrentMenu, Figure property (obsolete) 2-54
CurrentObject, Figure property 2-54
CurrentPoint

Figure property 2-54
cursor images 2-372
cursor position 2-327

D
data

ASCII
reading from disk 2-560

binary
writing to file 2-193

formatted
reading from files 2-174
writing to file 2-149

formatting 2-149
isosurface from volume data 2-475

reading binary from disk 2-560
data, aligning scattered

multi-dimensional 2-684
two-dimensional 2-266

debugging
M-files 2-503

DeleteFcn

Figure property 2-55
Image property 2-354
Light property 2-529

DeleteFcn, line property 2-544
density

of sparse matrix 2-692
Detect 2-437
detecting

alphabetic characters 2-459
empty arrays 2-445
finite numbers 2-451
global variables 2-452
infinite elements 2-455
logical arrays 2-460
members of a set 2-461
NaNs 2-464
objects of a given class 2-439
prime numbers 2-479
real numbers 2-481
sparse matrix 2-487

diagonal
anti- 2-283

dialog box
help 2-311
input 2-401
list 2-558
message 2-665

differential equation solvers
defining an ODE problem 2-717
ODE initial value problems 2-707

Index

I-4

adjusting parameters of 2-724
extracting properties of 2-723

Diophantine equations 2-228
directories

creating 2-645
listing, on UNIX 2-578

directory
root 2-619

discontinuous problems 2-134
display format 2-142
displaying output in Command Window 2-652
Dithermap 2-55
Dithermap, Figure property 2-55
DithermapMode, Figure property 2-56
division

by zero 2-392
modulo 2-651

divisor
greatest common 2-228

documentation
displaying online 2-308

double click, detecting 2-68
DoubleBuffer, Figure property 2-56
dual vector 2-690

E
eigenvalue

matrix logarithm and 2-573
multiple 2-191

end caps for isosurfaces 2-467
end-of-file indicator 2-19
equal arrays

detecting 2-446, 2-448
EraseMode

Image property 2-354
Line property 2-545

error
roundoff See roundoff error

error message
Index into matrix is negative or zero

2-570
retrieving last generated 2-506, 2-510

errors
in file input/output 2-20

escape characters in format specification string
2-151

examples
calculating isosurface normals 2-473
isosurface end caps 2-467
isosurfaces 2-476

executing statements repeatedly 2-140
extension, filename

.m 2-186

F
factor 2-12
factorial 2-13
factorization

LU 2-587
factors, prime 2-12
false 2-14
fclose 2-15
fclose

serial port I/O 2-16
feather 2-17
feof 2-19
ferror 2-20
feval 2-21
fft 2-23
FFT See Fourier transform
fft2 2-27
fftn 2-28

Index

I-5

fftshift 2-29
FFTW 2-25
fgetl 2-30
fgetl

serial port I/O 2-31
fgets 2-33
fgets

serial port I/O 2-34
field names of a structure, obtaining 2-36
fields, noncontiguous, inserting data into 2-193
fig files 2-159
figflag 2-38
Figure

creating 2-40
defining default properties 2-41
properties 2-49

figure 2-40
figure windows, displaying 2-99
figures

opening 2-731
file

extension, getting 2-84
position indicator

finding 2-182
setting 2-180
setting to start of file 2-173

file formats 2-371, 2-379
file size

querying 2-363
fileattrib 2-77
filebrowser 2-83
filename

building from parts 2-184
parts 2-84

filename extension
.m 2-186

fileparts 2-84

files
beginning of, rewinding to 2-173, 2-370
closing 2-15
end of, testing for 2-19
errors in input or output 2-20
fig 2-159
finding position within 2-182
getting next line 2-30
getting next line (with line terminator) 2-33
MAT 2-561
mode when opened 2-136
opening 2-136, 2-731
path, getting 2-84
reading

binary 2-162
formatted 2-174

reading image data from 2-371
rewinding to beginning of 2-173, 2-370
setting position within 2-180
startup 2-618
version, getting 2-84
writing binary data to 2-193
writing formatted data to 2-149
writing image data to 2-379
See also file

filesep 2-85
fill 2-86
fill3 2-89
filter

digital 2-92
finite impulse response (FIR) 2-92
infinite impulse response (IIR) 2-92

filter 2-92
filter2 2-95
find 2-96
findfigs 2-99
finding

Index

I-6

indices of arrays 2-96
zero of a function 2-198
See also detecting

findobj 2-100
finish 2-103
finite numbers

detecting 2-451
FIR filter 2-92
fitsinfo 2-104
fitsread 2-112
fix 2-114
FixedColors, Figure property 2-56
flints 2-667
flipdim 2-115
fliplr 2-116
flipud 2-117
floor 2-119
flops 2-120
flow control

for 2-140
keyboard 2-503
otherwise 2-749

fmin 2-122
fminbnd 2-125
fmins 2-128
fminsearch 2-131
F-norm 2-695
fopen 2-135
fopen

serial port I/O 2-138
for 2-140
format

precision when writing 2-162
reading files 2-174

format 2-142
formats

big endian 2-136

little endian 2-136
formatted data

reading from file 2-174
writing to file 2-149

Fourier transform
algorithm, optimal performance of 2-25, 2-335,

2-336, 2-689
discrete, n-dimensional 2-28
discrete, one-dimensional 2-23
discrete, two-dimensional 2-27
fast 2-23
as method of interpolation 2-422
inverse, n-dimensional 2-337
inverse, one-dimensional 2-335
inverse, two-dimensional 2-336
shifting the zero-frequency component of 2-29

fplot 2-145
fprintf 2-149
fprintf

serial port I/O 2-155
frame2im 2-158
frames for printing 2-159
fread 2-162
fread

serial port I/O 2-167
free serial port from MATLAB 2-171
freeserial 2-171
freqspace 2-172
freqspace 2-172
frequency response

desired response matrix
frequency spacing 2-172

frequency vector 2-575
frewind 2-173
fscanf 2-174
fscanf

serial port I/O 2-177

Index

I-7

fseek 2-180
ftell 2-182
full 2-183
fullfile 2-184
function

minimizing (single variable) 2-122
function 2-186, 2-190
function syntax 2-305
functions

finding using keywords 2-576
help for 2-305, 2-313
in memory 2-398

funm 2-191
fwrite 2-193
fwrite

serial port I/O 2-194
fzero 2-198

G
gallery 2-202
gamma 2-223
gamma function

(defined) 2-223
incomplete 2-223
logarithm of 2-223

gammainc 2-223
gammaln 2-223
Gaussian elimination

(as algorithm for solving linear equations)
2-430

LU factorization 2-587
gca 2-225
gcbo 2-227
gcd 2-228
gcf 2-230
gco 2-231

genpath 2-232
get 2-235, 2-238
get

serial port I/O 2-240
timer object 2-242

getenv 2-245
getfield 2-246
getframe 2-248
ginput 2-251
global 2-252
global variable

defining 2-252
gmres 2-254
gplot 2-259
gradient 2-261
gradient, numerical 2-261
graphics objects

Figure 2-40
getting properties 2-235
Image 2-343
Light 2-524
Line 2-536

graymon 2-264
greatest common divisor 2-228
grid

aligning data to a 2-266
grid 2-265
grid arrays

for volumetric plots 2-629
multi-dimensional 2-684

griddata 2-266
griddata3 2-269
griddatan 2-270
gsvd 2-272
gtext 2-277

Index

I-8

H
H1 line 2-306
hadamard 2-282
Hadamard matrix 2-282
HandleVisibility

Figure property 2-57
Image property 2-355
Light property 2-529
Line property 2-546

hankel 2-283
Hankel matrix 2-283
HDF 2-362, 2-371, 2-379

appending to when saving (WriteMode) 2-381
compression 2-381
reading with special imread syntax 2-373
setting JPEG quality when writing 2-381

hdf 2-284
hdfinfo 2-286
hdfread 2-293
hdftool 2-304
help

contents file 2-305
creating for M-files 2-306
keyword search in functions 2-576
online 2-305

help 2-305
Help browser 2-308
Help Window 2-313
helpbrowser 2-308
helpdesk 2-310
helpdlg 2-311
helpwin 2-313
Hermite transformations, elementary 2-228
hess 2-314
Hessenberg form of a matrix 2-314
hex2dec 2-316
hex2num 2-317

hidden 2-320
hilb 2-321
Hilbert matrix 2-321

inverse 2-433
hist 2-322
histc 2-325
HitTest

Figure property 2-58
Image property 2-356
Light property 2-530
Line property 2-545

hold 2-326
home 2-327
horzcat 2-328
hsv2rgb 2-330
HTML browser

in MATLAB 2-308

I
i 2-331
icon images 2-372
if 2-332
ifft 2-335
ifft2 2-336
ifftn 2-337
ifftshift 2-338
IIR filter 2-92
im2java 2-340
imag 2-342
Image

creating 2-343
properties 2-350

image 2-343
image types

querying 2-363
Images

Index

I-9

converting MATLAB image to Java Image
2-340

images
file formats 2-371, 2-379
reading data from files 2-371
returning information about 2-362
writing to files 2-379

imagesc 2-359
imaginary

part of complex number 2-342
parts of inverse FFT 2-335, 2-336
unit (sqrt(–1)) 2-331, 2-495
See also complex

imfinfo

returning file information 2-362
imformats 2-366
import 2-368
import 2-368
importdata 2-370
importing

Java class and package names 2-368
imread 2-371
imwrite 2-379, 2-379
incomplete gamma function

(defined) 2-223
ind2sub 2-389
Index into matrix is negative or zero (error

message) 2-570
indexing

logical 2-570
indicator of file position 2-173
indices, array

finding 2-96
Inf 2-392
inferiorto 2-393
infinite elements

detecting 2-455

infinity 2-392
norm 2-695

info 2-394
information

returning file information 2-362
inline 2-395
inmem 2-398
inpolygon 2-399
input

checking number of M-file arguments 2-679
name of array passed as 2-403
number of M-file arguments 2-680
prompting users for 2-400, 2-624

input 2-400
inputdlg 2-401
inputname 2-403
inspect 2-404
installation, root directory of 2-619
instrcallback 2-406
instrfind 2-407
int2str 2-409
int8, int16, int32, int64 2-410
interp1 2-412
interp2 2-417
interp3 2-420
interpft 2-422
interpn 2-423
interpolation

one-dimensional 2-412
two-dimensional 2-417
three-dimensional 2-420
multidimensional 2-423
cubic method 2-266, 2-412, 2-417, 2-420, 2-423
cubic spline method 2-412
FFT method 2-422
linear method 2-412, 2-417

Index

I-10

nearest neighbor method 2-266, 2-412, 2-417,
2-420, 2-423

trilinear method 2-266, 2-420, 2-423
interpreter, MATLAB

search algorithm of 2-187
interpstreamspeed 2-425
Interruptible

Figure property 2-58
Image property 2-356
Light property 2-530
Line property 2-547

intersect 2-429
inv 2-430
inverse

Fourier transform 2-335, 2-336, 2-337
Hilbert matrix 2-433
of a matrix 2-430

InvertHardCopy, Figure property 2-58
invhilb 2-433
invoke 2-434
ipermute 2-436
is* 2-437
isa 2-439
iscell 2-442
iscellstr 2-443
ischar 2-444
isempty 2-445
isequal 2-446
isequalwithequalnans 2-448
isevent 2-449
isfield 2-450
isfinite 2-451
isglobal 2-452
ishandle 2-453
ishold 2-454
isinf 2-455
isjava 2-456

iskeyword 2-457
isletter 2-459
islogical 2-460
ismember 2-461
ismethod 2-463
isnan 2-464
isnumeric 2-465
isobject 2-466
isocap 2-467
isonormals 2-473
isosurface

calculate data from volume 2-475
end caps 2-467
vertex normals 2-473

isosurface 2-475
ispc 2-478
isprime 2-479
isprop 2-480
isreal 2-481
isruntime 2-483
issorted 2-484
isspace 2-486
issparse 2-487
isstr 2-488
isstruct 2-489
isstudent 2-490
isunix 2-491
isvalid 2-492

timer object 2-493
isvarname 2-494
isvarname 2-494

J
j 2-495
Java

class names 2-368

Index

I-11

objects 2-456, 2-478
Java Image class

creating instance of 2-340
Java import list

adding to 2-368
java_method 2-185, 2-496, 2-499, 2-633
java_object 2-501
javachk 2-497
JPEG comment

setting when writing a JPEG image 2-382
JPEG files 2-362, 2-371, 2-379

parameters that can be set when writing
2-382

JPEG quality
setting when writing a JPEG image 2-382
setting when writing an HDF image 2-381

K
K>> prompt 2-503
keyboard 2-503
keyboard mode 2-503
KeyPressFcn, Figure property 2-59
keyword search in functions 2-576
kron 2-504
Kronecker tensor product 2-504

L
labeling

plots (with numeric values) 2-703
largest array elements 2-620
lasterr 2-506
lasterror 2-508
lastwarn 2-510
Layout Editor

starting 2-280

lcm 2-512
least common multiple 2-512
least squares

problem 2-579
problem, nonnegative 2-690

legend 2-513
legendre 2-517
Legendre functions

(defined) 2-517
Schmidt semi-normalized 2-517

length 2-520
length

serial port I/O 2-521
license 2-522
Light

creating 2-524
defining default properties 2-525
properties 2-528

light 2-524
Light object

positioning in spherical coordinates 2-533
lightangle 2-533
lighting 2-534
Line

creating 2-536
defining default properties 2-539
properties 2-543

line 2-536
linear audio signal 2-535, 2-667
linear equation systems, methods for solving

least squares 2-690
matrix inversion (inaccuracy of) 2-430

linear interpolation 2-412, 2-417
linearly spaced vectors, creating 2-557
LineSpec 2-551
LineStyle

Line property 2-547

Index

I-12

LineWidth

Line property 2-547
linspace 2-557
listdlg 2-558
little endian formats 2-136
load 2-560, 2-562
load

serial port I/O 2-563
loadobj 2-565
local variables 2-186, 2-252
locking M-files 2-650
log 2-567
log10 [log010] 2-568
log2 2-569
logarithm

base ten 2-568
base two 2-569
complex 2-567, 2-568
matrix (natural) 2-573
natural 2-567
of gamma function (natural) 2-223
plotting 2-571

logarithmically spaced vectors, creating 2-575
logical 2-570
logical array

converting numeric array to 2-570
detecting 2-460

logical indexing 2-570
logical tests

See also detecting
loglog 2-571
logm 2-573
logspace 2-575
lookfor 2-576
lower 2-577
ls 2-578
lscov 2-579

lsqnonneg 2-580
lsqr 2-583
lu 2-587
LU factorization 2-587

storage requirements of (sparse) 2-706
luinc 2-593

M
magic 2-600
magic squares 2-600
Marker

Line property 2-548
MarkerEdgeColor

Line property 2-548
MarkerFaceColor

Line property 2-549
MarkerSize

Line property 2-549
mat2cell 2-603
mat2str 2-606
material 2-607
MAT-files 2-560
MATLAB

installation directory 2-619
startup 2-618

matlab (UNIX command) 2-609
MATLAB interpreter

search algorithm of 2-187
matlab.mat 2-560
matlabrc 2-618
matlabroot 2-619
matrix

converting to formatted data file 2-149
detecting sparse 2-487
evaluating functions of 2-191
flipping left-right 2-116

Index

I-13

flipping up-down 2-117
Hadamard 2-282
Hankel 2-283
Hessenberg form of 2-314
Hilbert 2-321
inverse 2-430
inverse Hilbert 2-433
magic squares 2-600
permutation 2-587
poorly conditioned 2-321
specialized 2-202
test 2-202
unimodular 2-228
writing as binary data 2-193
writing formatted data to 2-174

matrix functions
evaluating 2-191

max 2-620
mean 2-621
median 2-622
median value of array elements 2-622
memory 2-623
menu 2-624
menu (of user input choices) 2-624
MenuBar, Figure property 2-59
mesh 2-625
meshc 2-625
meshgrid 2-629
meshz 2-625
M-file

debugging 2-503
function 2-186
naming conventions 2-186
programming 2-186
script 2-186

M-files
locking (preventing clearing) 2-650

opening 2-731
unlocking (allowing clearing) 2-676

min 2-639
MinColormap, Figure property 2-59
minimizing, function

of one variable 2-122
minres 2-640
mislocked 2-644
mkdir 2-645
mkpp 2-647
mlock 2-650
mod 2-651
models

opening 2-731
modulo arithmetic 2-651
more 2-652, 2-667
move 2-653
movefile 2-655
movie 2-660
movie2avi 2-662
moviein 2-664
msgbox 2-665
mu-law encoded audio signals 2-535, 2-667
multibandread 2-668
multibandwrite 2-672
multidimensional arrays

interpolation of 2-423
longest dimension of 2-520
number of dimensions of 2-686
rearranging dimensions of 2-436
See also array

multiple
least common 2-512

multistep ODE solver 2-714
munlock 2-676

Index

I-14

N
Name, Figure property 2-60
namelengthmax 2-677
naming conventions

M-file 2-186
NaN 2-678
NaN

detecting 2-464
NaN (Not-a-Number) 2-678
nargchk 2-679
nargin 2-680
nargout 2-680
ndgrid 2-684
ndims 2-686
nearest neighbor interpolation 2-266, 2-412,

2-417
newplot 2-687
NextPlot

Figure property 2-60
nextpow2 2-689
nnls 2-690
nnz 2-692
no derivative method 2-133
noncontiguous fields, inserting data into 2-193
nonzero entries (in sparse matrix)

allocated storage for 2-706
number of 2-692
vector of 2-694

nonzeros 2-694
norm

1-norm 2-695
2-norm (estimate of) 2-697
F-norm 2-695
infinity 2-695
matrix 2-695
vector 2-695

norm 2-695

normal vectors, computing for volumes 2-473
normest 2-697
notebook 2-698
now 2-699
null 2-700
null space 2-700
num2cell 2-702
num2str 2-703
number

of array dimensions 2-686
numbers

detecting finite 2-451
detecting infinity 2-455
detecting NaN 2-464
detecting prime 2-479
imaginary 2-342
NaN 2-678
plus infinity 2-392

NumberTitle, Figure property 2-60
numel 2-704
numeric format 2-142
numeric precision

format reading binary data 2-162
numerical differentiation formula ODE solvers

2-715
nzmax 2-706

O
object

determining class of 2-439
object classes, list of predefined 2-439
objects

Java 2-456, 2-478
ODE file template 2-718
ode113 2-707
ode15s 2-707

Index

I-15

ode23 2-707
ode23s 2-707
ode23t 2-707
ode23tb 2-707
ode45 2-707
odefile 2-717
odeget 2-723
odeset 2-724
off-screen figures, displaying 2-99
ones 2-730
one-step ODE solver 2-714
online documentation, displaying 2-308
online help 2-305
open 2-731
OpenGL 2-64

autoselection criteria 2-66
opening files 2-136
openvar 2-737
operators

relational 2-570
symbols 2-305

optimget 2-738
optimization parameters structure 2-738, 2-739
Optimization Toolbox 2-123
optimset 2-739
orderfields 2-744
orient 2-746
orth 2-748
otherwise 2-749
output

controlling display format 2-142
in Command Window 2-652
number of M-file arguments 2-680

overflow 2-392

P
paging

of screen 2-307
paging in the Command Window 2-652
PaperOrientation, Figure property 2-60
PaperPosition, Figure property 2-61
PaperPositionMode, Figure property 2-61
PaperSize, Figure property 2-61
PaperType, Figure property 2-61
PaperUnits, Figure property 2-63
Parent

Figure property 2-63
Image property 2-356
Light property 2-530
Line property 2-549

Parlett’s method (of evaluating matrix functions)
2-192

path
building from parts 2-184

PBM
parameters that can be set when writing

2-386
PCX 2-362, 2-371, 2-379
permutation

matrix 2-587
PGM

parameters that can be set when writing
2-386

plot, volumetric
generating grid arrays for 2-629

plotting
feather plots 2-17
function plots 2-145
histogram plots 2-322
isosurfaces 2-475
loglog plot 2-571
mesh plot 2-625

Index

I-16

PNG
reading with special imread syntax 2-374
writing options for 2-383

alpha 2-385
background color 2-385
chromaticities 2-385
gamma 2-385
interlace type 2-384
resolution 2-385
significant bits 2-385
transparency 2-384

PNG,PNM,PBM,PPM,RAS,TIFF 2-379
Pointer, Figure property 2-63
PointerShapeCData, Figure property 2-63
PointerShapeHotSpot, Figure property 2-64
polygon

detecting points inside 2-399
polynomial

make piecewise 2-647
poorly conditioned

matrix 2-321
Position

Figure property 2-64
Light property 2-530

position indicator in file 2-182
power

of two, next 2-689
PPM

parameters that can be set when writing
2-386

precision 2-142
reading binary data writing 2-162

prime factors 2-12
dependence of Fourier transform on 2-26, 2-27,

2-28
prime numbers

detecting 2-479

print frames 2-159
printframe 2-159
PrintFrame Editor 2-159
printing

borders 2-159
with non-normal EraseMode 2-355, 2-545
with print frames 2-161

product
Kronecker tensor 2-504

K>> prompt 2-503
prompting users for input 2-400, 2-624

Q
quotation mark

inserting in a string 2-154

R
range space 2-748
RAS files

parameters that can be set when writing 2-382
reading

binary files 2-162
formatted data from file 2-174

readme files, displaying 2-394
rearranging arrays

swapping dimensions 2-436
rearranging matrices

flipping left-right 2-116
flipping up-down 2-117

regularly spaced vectors, creating 2-557
relational operators 2-570
release serial port from MATLAB 2-171
renderer

OpenGL 2-64
painters 2-64

Index

I-17

zbuffer 2-64
Renderer, Figure property 2-64
RendererMode, Figure property 2-66
repeatedly executing statements 2-140
Resize, Figure property 2-67
ResizeFcn, Figure property 2-67
rewinding files to beginning of 2-173, 2-370
RMS See root-mean-square
root directory 2-619
root-mean-square

of vector 2-695
Rosenbrock

banana function 2-132
ODE solver 2-715

round
towards minus infinity 2-119
towards zero 2-114

roundoff error
evaluating matrix functions 2-191
in inverse Hilbert matrix 2-433

Runge-Kutta ODE solvers 2-714
running average 2-92

S
scattered data, aligning

multi-dimensional 2-684
two-dimensional 2-266

Schmidt semi-normalized Legendre functions
2-517

screen, paging 2-307
scrolling screen 2-307
search, string 2-102
Selected

Figure property 2-68
Image property 2-357
Light property 2-531

Line property 2-549
SelectionHighlight

Figure property 2-68
Image property 2-357
Light property 2-531
Line property 2-549

SelectionType, Figure property 2-68
serial port

release from MATLAB 2-171
set operations

intersection 2-429
membership 2-461

ShareColors, Figure property 2-69
simplex search 2-133
Simulink

printing diagram with frames 2-159
singular value

largest 2-695
skipping bytes (during file I/O) 2-193
smallest array elements 2-639
sparse matrix

density of 2-692
detecting 2-487
finding indices of nonzero elements of 2-96
number of nonzero elements in 2-692
vector of nonzero elements 2-694

sparse storage
criterion for using 2-183

special characters
descriptions 2-305

sphereical coordinates
defining a Light position in 2-533

spline interpolation (cubic)
multidimensional 2-423
one-dimensional 2-412
three dimensional 2-420
two-dimensional 2-417

Index

I-18

Spline Toolbox 2-416
startup files 2-618
Stateflow

printing diagram with frames 2-159
storage

allocated for nonzero entries (sparse) 2-706
string

converting matrix into 2-606, 2-703
converting to lowercase 2-577
searching for 2-102

strings
inserting a quotation mark in 2-154

structure array
field names of 2-36
getting contents of field of 2-246

Style

Light property 2-531
subfunction 2-186
surface normals, computing for volumes 2-473
symbols

operators 2-305
syntax 2-305
syntaxes

of M-file functions, defining 2-186

T
table lookup See interpolation
Tag

Figure property 2-70
Image property 2-357
Light property 2-531
Line property 2-549

tensor, Kronecker product 2-504
test matrices 2-202
text mode for opened files 2-136
TIFF 2-362, 2-371

compression 2-383
encoding 2-386
ImageDescription field 2-383
maxvalue 2-386
parameters that can be set when writing 2-383
reading with special imread syntax 2-375
resolution 2-383
writemode 2-383

Toolbox
Optimization 2-123
Spline 2-416

transform, Fourier
discrete, n-dimensional 2-28
discrete, one-dimensional 2-23
discrete, two-dimensional 2-27
inverse, n-dimensional 2-337
inverse, one-dimensional 2-335
inverse, two-dimensional 2-336
shifting the zero-frequency component of 2-29

transformations
elementary Hermite 2-228

transparency 2-374
transparency chunk 2-374
tricubic interpolation 2-266
trilinear interpolation 2-266, 2-420, 2-423
Type

Figure property 2-70
Image property 2-357
Light property 2-531
Line property 2-549

U
UIContextMenu

Figure property 2-70
Image property 2-357
Light property 2-531

Index

I-19

Line property 2-550
uint8 2-410
unconstrained minimization 2-131
undefined numerical results 2-678
unimodular matrix 2-228
Units

Figure property 2-70
unlocking M-files 2-676
uppercase to lowercase 2-577
UserData

Figure property 2-71
Image property 2-357
Light property 2-531
Line property 2-550

V
variables

global 2-252
local 2-186, 2-252
name of passed 2-403
opening 2-731, 2-737

vector
dual 2-690
frequency 2-575
length of 2-520

vectors, creating
logarithmically spaced 2-575
regularly spaced 2-557

Visible

Figure property 2-71
Image property 2-357
Light property 2-532
Line property 2-550

volumes
calculating isosurface data 2-475
computing isosurface normals 2-473

end caps 2-467

W
Web browser

displaying help in 2-308
white space characters, ASCII 2-486
WindowButtonDownFcn, Figure property 2-71
WindowButtonMotionFcn, Figure property 2-71
WindowButtonUpFcn, Figure property 2-72
WindowStyle, Figure property 2-72
workspace variables

reading from disk 2-560
writing

binary data to file 2-193
formatted data to file 2-149

X
XData

Image property 2-358
Line property 2-550

XDisplay, Figure property 2-73
XOR, printing 2-355, 2-545
XVisual, Figure property 2-73
XVisualMode, Figure property 2-73
XWD 2-362, 2-371, 2-379

Y
YData

Image property 2-358
Line property 2-550

Z
ZData

Index

I-20

Line property 2-550
zero of a function, finding 2-198
zero-padding

while converting hexadecimal numbers 2-317

	Functions – By Category
	Development Environment
	Starting and Quitting
	Command Window
	Getting Help
	Workspace, File, and Search Path
	Workspace
	File
	Search Path

	Programming Tools
	Editing and Debugging
	Source Control
	Notebook

	System
	Performance Improvement Tools and Techniques

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Operations and Manipulation
	Elementary Matrices and Arrays
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Data Analysis and Fourier Transforms
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Coordinate System Conversion
	Cartesian

	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Programming and Data Types
	Data Types
	Numeric
	Characters and Strings
	Structures
	Cell Arrays
	Data Type Conversion
	Determine Data Type

	Arrays
	Array Operations
	Basic Array Information
	Array Manipulation
	Elementary Arrays

	Operators and Operations
	Special Characters
	Arithmetic Operations
	Bit-wise Operations
	Relational Operations
	Logical Operations
	Set Operations
	Date and Time Operations

	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Function Handles
	Object-Oriented Programming
	Error Handling
	MEX Programming

	File I/O
	Filename Construction
	Opening, Loading, Saving Files
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus123 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio Video Interleaved (AVI) Functions

	Images

	Graphics
	Basic Plots and Graphs
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Figure Windows
	Axes Operations

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	Working with Application Data
	Interactive User Input

	User Interface Objects
	Finding Objects from Callbacks
	GUI Utility Functions
	Controlling Program Execution

	Functions – Alphabetical List
	factor
	factorial
	false
	fclose
	fclose (serial)
	feather
	feof
	ferror
	feval
	fft
	fft2
	fftn
	fftshift
	fgetl
	fgetl (serial)
	fgets
	fgets (serial)
	fieldnames
	figflag
	figure
	Figure Properties
	file formats
	fileattrib
	filebrowser
	fileparts
	filesep
	fill
	fill3
	filter
	filter2
	find
	findall
	findfigs
	findobj
	findstr
	finish
	fitsinfo
	fitsread
	fix
	flipdim
	fliplr
	flipud
	floor
	flops
	flow
	fmin
	fminbnd
	fmins
	fminsearch
	fopen
	fopen (serial)
	for
	format
	fplot
	fprintf
	fprintf (serial)
	frame2im
	frameedit
	fread
	fread (serial)
	freeserial
	freqspace
	frewind
	fscanf
	fscanf (serial)
	fseek
	ftell
	full
	fullfile
	func2str
	function
	function_handle (@)
	functions
	funm
	fwrite
	fwrite (serial)
	fzero
	gallery
	gamma, gammainc, gammaln
	gca
	gcbf
	gcbo
	gcd
	gcf
	gco
	genpath
	get
	get (COM)
	get (serial)
	get (timer)
	getappdata
	getenv
	getfield
	getframe
	ginput
	global
	gmres
	gplot
	gradient
	graymon
	grid
	griddata
	griddata3
	griddatan
	gsvd
	gtext
	guidata
	guide
	guihandles
	hadamard
	hankel
	hdf
	hdfinfo
	hdfread
	hdftool
	help
	helpbrowser
	helpdesk
	helpdlg
	helpwin
	hess
	hex2dec
	hex2num
	hgload
	hgsave
	hidden
	hilb
	hist
	histc
	hold
	home
	horzcat
	hsv2rgb
	i
	if
	ifft
	ifft2
	ifftn
	ifftshift
	im2frame
	im2java
	imag
	image
	Image Properties
	imagesc
	imfinfo
	imformats
	import
	importdata
	imread
	imwrite
	ind2rgb
	ind2sub
	Inf
	inferiorto
	info
	inline
	inmem
	inpolygon
	input
	inputdlg
	inputname
	inspect
	instrcallback
	instrfind
	int2str
	int8, int16, int32, int64
	interp1
	interp2
	interp3
	interpft
	interpn
	interpstreamspeed
	intersect
	inv
	invhilb
	invoke (COM)
	ipermute
	is*
	isa
	isappdata
	iscell
	iscellstr
	ischar
	isempty
	isequal
	isequalwithequalnans
	isevent (COM)
	isfield
	isfinite
	isglobal
	ishandle
	ishold
	isinf
	isjava
	iskeyword
	isletter
	islogical
	ismember
	ismethod (COM)
	isnan
	isnumeric
	isobject
	isocaps
	isocolors
	isonormals
	isosurface
	ispc
	isprime
	isprop (COM)
	isreal
	isruntime
	issorted
	isspace
	issparse
	isstr
	isstruct
	isstudent
	isunix
	isvalid
	isvalid (timer)
	isvarname
	j
	javaArray
	javachk
	javaMethod
	javaObject
	keyboard
	kron
	lasterr
	lasterror
	lastwarn
	lcm
	legend
	legendre
	length
	length (serial)
	license
	light
	Light Properties
	lightangle
	lighting
	lin2mu
	line
	Line Properties
	LineSpec
	linspace
	listdlg
	load
	load (COM)
	load (serial)
	loadobj
	log
	log10
	log2
	logical
	loglog
	logm
	logspace
	lookfor
	lower
	ls
	lscov
	lsqnonneg
	lsqr
	lu
	luinc
	magic
	mat2cell
	mat2str
	material
	matlab
	matlabrc
	matlabroot
	max
	mean
	median
	memory
	menu
	mesh, meshc, meshz
	meshgrid
	methods
	methodsview
	mex
	mexext
	mfilename
	min
	minres
	mislocked
	mkdir
	mkpp
	mlock
	mod
	more
	move (COM)
	movefile
	movegui
	movie
	movie2avi
	moviein
	msgbox
	mu2lin
	multibandread
	multibandwrite
	munlock
	namelengthmax
	NaN
	nargchk
	nargin, nargout
	nargoutchk
	nchoosek
	ndgrid
	ndims
	newplot
	nextpow2
	nnls
	nnz
	noanimate
	nonzeros
	norm
	normest
	notebook
	now
	null
	num2cell
	num2str
	numel
	nzmax
	ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
	odefile
	odeget
	odeset
	ones
	open
	openfig
	opengl
	openvar
	optimget
	optimset
	orderfields
	orient
	orth
	otherwise

	Index

