MATLAB

The Language of Technical Computing

Computation
—

Visualization
—

Programming
1

External Interfaces Reference -‘\The MathWorks

Version 6

X L8

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB External Interfaces Reference
O COPYRIGHT 1984 - 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996
May 1997
January 1998
January 1999
September 2000
June 2001
July 2002

First printing
Online only
Online only
Online only
Online only
Online only
Online only

Revised for 5.1
Revised for 5.2
Revised for 5.3
Revised for 6.0
Revised for 6.1
Revised for MATLAB 6.5 (Release 13)

C Engine Functions

1]

engClose 4
engEvalString 5
engGetArray (Obsolete) 6
engGetFull (Obsolete), 7
engGetMatrix (Obsolete), 9
engGetVariable 10
engGetVisible 11
eNgOPEN . .. e 12
engOpenSingleUsec. i, 14
engOutputBuffer 15
engPutArray (Obsolete) 16
engPutFull (Obsolete) 17
engPutMatrix (Obsolete) 19
engPutVariable 20
engSetEvalCallback (Obsolete) 21
engSetEvalTimeout (Obsolete) 22
engSetVisible 23
engWinlnit (Obsolete), 24

2

matClose 27
matDeleteArray (Obsolete) 28
matDeleteMatrix (Obsolete) 29
matDeleteVariable 30
matGetArray (Obsolete), 31
matGetArrayHeader (Obsolete) 32
matGetDir 33
matGetFp 34
matGetFull (Obsolete) 35
matGetMatrix (Obsolete) 37
matGetNextArray (Obsolete) 38

Contents

ii

Contents

matGetNextArrayHeader (Obsolete) 39

matGetNextMatrix (Obsolete) 40
matGetNextVariable 41
matGetNextVariableInfo 42
matGetString (Obsolete) 43
matGetVariable 44
matGetVariableInfo 45
matOpPen 46
matPutArray (Obsolete) 47
matPutArrayAsGlobal (Obsolete) 48
matPutFull (Obsolete) 49
matPutMatrix (Obsolete) 51
matPutString (Obsolete) i, 52
matPutVariable 53
matPutVariableAsGlobal 54

3|

mexAddFlops (Obsolete) i, .. 59
mexAtExit 60
mexCallMATLAB 61
mexErrMsgldAndTxt 63
mexErrMsgTxt e 64
mexEvalString 65
mexFunction 66
mexFunctionName i 68
MeXGet ... 69
mexGetArray (Obsolete) i 70
mexGetArrayPtr (Obsolete) 71
mexGetEps (Obsolete) 72
mexGetFull (Obsolete), 73
mexGetGlobal (Obsolete) 74
mexGetInf (Obsolete) 75
mexGetMatrix (Obsolete) 76
mexGetMatrixPtr (Obsolete) 77
mexGetNaN (Obsolete)cooi .. 78
mexGetVariable 79

mexGetVariablePtr 80

mexIsFinite (Obsolete) 81
mexIsGlobal 82
mexIsInf (Obsolete) i 83
mexIsLocked 84
mexIsNaN (Obsolete), 85
mexLock 86
mexMakeArrayPersistent 87
mexMakeMemoryPersistent 88
mexPrintf 89
mexPutArray (Obsolete) 90
mexPutFull (Obsolete) 91
mexPutMatrix (Obsolete) 92
mexPutVariable 93
MEX St . oot 95
mexSetTrapFlag 96
mexUnlock 97
mexWarnMsgldAndTxt 98
mexWarnMsgTxt 99

4

mxAddField 106
mxArrayToString 107
MXASSETt . . oo e 108
MXASSEItS .. e 109
mxCalcSingleSubscript 110
mxCalloc 113
mxChar 115
mxClassID 116
mxClearLogical (Obsolete) 118
mxComplexity e 119
mxCreateCellArray i ... 120
mxCreateCellMatrixo ... 121
mxCreateCharArray 122
mxCreateCharMatrixFromStrings 123
mxCreateDoubleMatrix 124

iii

iv

Contents

mxCreateDoubleScalar 125

mxCreateFull (Obsolete) 126
mxCreatelLogicalArray 127
mxCreateLogicalMatrix 128
mxCreatelogicalScalar 129
mxCreateNumericArrayccciiiiiinnno... 130
mxCreateNumericMatrix 132
mxCreateScalarDouble 133
mxCreateSparset 134
mxCreateSparseLogicalMatrix 136
mxCreateStringt 137
mxCreateStructArray 138
mxCreateStructMatrix 140
mxDestroyArray 141
mxDuplicateArray i 142
MXETEe 143
mxFreeMatrix (Obsolete) 145
mxGetCell 146
mxGetChars 147
mxGetClassID 148
mxGetClassName, 150
mxGetData 151
mxGetDImensionsuuiiiiiit 152
mxGetElementSize 153
mxGetEps 154
mxGetField 155
mxGetFieldByNumber 157
mxGetFieldNameByNumber 159
mxGetFieldNumber 161
mxGetlmagData 163
mxGetInf 164
mxGetlr 165
mxGetde ... 166
mxGetLogicals 167
mxGetM 168
mxGetN 169
mxGetName (Obsolete), 170
mxGetNalN 171
mxGetNumberOfDimensions 172
mxGetNumberOfElements 173

mxGetNumberOfFields 174

mxXGetNzmaxt 175
mxGetPi 176
mxGetPr 177
mxGetScalar 178
mxGetString e 180
mxIsCell 182
mxIsChar 183
mxIsClass 184
mxIsComplex i e 186
mxIsDouble 187
mxIsEmpty e 188
mxIsFinite e 189
mxIsFromGlobalWS 190
mxIsFull (Obsolete) 191
mxIsInf 192
mxIsInt8 e 193
mxISIntl6 194
mxIsInt32 e 195
mxIsLogical 196
mxIsLogicalScalar 197
mxIsLogicalScalarTrue 198
mXISNaN ... 199
MXISNUMETIC e e 200
mxIsSingle 202
mxISSparse e 203
mxIsString (Obsolete) 204
mxISStruct 205
mxIsUInt8 206
mxISUIntl6 207
mxIsUiInt32 e 208
mxMalloc 209
mxRealloc 211
mxRemoveField 212
mxSetAllocFens 213
mxSetCell 215
mxSetClassName 216
mxSetData 217
mxSetDimensions 218

mxSetField e 219

vi

Contents

mxSetFieldByNumber 221

mxSetImagData 223
mxSetlr 224
mMXSetde ... 226
mxSetLogical (Obsolete) 229
MXSetM 230
MXSEtN ... 231
mxSetName (Obsolete) 232
mxSetNzZmax 233
mxSetPl ... 235
mxSetPr ... 236

5

engCloSe ...t e 238
engEvalString 239
engGetArray (Obsolete) 240
engGetFull (Obsolete) 241
engGetMatrix (Obsolete) i .. 242
engGetVariable 243
eNgOPBN ... e 244
engOutputBuffer, 245
engPutArray (Obsolete) i .. 246
engPutFull (Obsolete) 247
engPutMatrix (Obsolete) e, .. 248
engPutVariable 249

6

matClose 252
matDeleteArray (Obsolete) 253
matDeleteMatrix (Obsolete) 254
matDeleteVariable 255
matGetArray (Obsolete) 256
matGetArrayHeader (Obsolete) 257

matGetDir 258

matGetFull (Obsolete) 259
matGetMatrix (Obsolete) 260
matGetNextArray (Obsolete) 261
matGetNextArrayHeader (Obsolete) 262
matGetNextMatrix (Obsolete) 263
matGetNextVariable 264
matGetNextVariableInfo 265
matGetString (Obsolete) 266
matGetVariable 267
matGetVariableInfo 268
matOpen e e 269
matPutArray (Obsolete) 270
matPutArrayAsGlobal (Obsolete) 271
matPutFull (Obsolete) 272
matPutMatrix (Obsolete) 273
matPutString (Obsolete) 274
matPutVariable 275
matPutVariableAsGlobal 276

7|

mexAtEXit 280
mexCallMATLAB 281
mexErrMsgldAndTxt 283
mexErrMsgTxt e 284
mexEvalString 285
mexFunction e 286
mexFunctionName 287
mexGetArray (Obsolete) 288
mexGetArrayPtr (Obsolete) 289
mexGetEps (Obsolete), 290
mexGetFull (Obsolete) 291
mexGetGlobal (Obsolete) 292
mexGetInf (Obsolete) i 293
mexGetMatrix (Obsolete) 294
mexGetMatrixPtr (Obsolete) 295

vii

viil Contents

mexGetNaN (Obsolete) 296

mexGetVariable 297
mexGetVariablePtr 298
mexIsFinite (Obsolete) 299
mexIsGlobal 300
mexIsInf (Obsolete) i 301
mexIsLocked 302
mexIsNalN (Obsolete) i, 303
mexLock 304
mexMakeArrayPersistent 305
mexMakeMemoryPersistent 306
mexPrintf 307
mexPutArray (Obsolete), 308
mexPutFull (Obsolete) 309
mexPutMatrix (Obsolete) 310
mexPutVariable 311
mexSetTrapFlag 313
mexUnlock 314
mexWarnMsgldAndTxt, 315
mexWarnMsgTxt i 316

8

mxAddField 324
mxCalcSingleSubscript 325
mxCalloc 326
mxClassIDFromClassName 327
mxClearLogical (Obsolete) 328
mxCopyCharacterToPtr 329
mxCopyComplex8ToPtr 330
mxCopyComplex16ToPtr 331
mxCopyInteger1ToPtr 332
mxCopyInteger2ToPtr 333
mxCopyIntegerdToPtr 334
mxCopyPtrToCharacter 335
mxCopyPtrToComplex8, 336
mxCopyPtrToComplex16, 337

mxCopyPtrTolntegerl 338

mxCopyPtrTolnteger2 339
mxCopyPtrTolntegerd, 340
mxCopyPtrToPtrArray i, 341
mxCopyPtrToReald 342
mxCopyPtrToReal8 343
mxCopyRealdToPtr 344
mxCopyReal8ToPtr 345
mxCreateCellArray 346
mxCreateCellMatrix 347
mxCreateCharArrayc0iiiiiiinennn.. 348
mxCreateCharMatrixFromStrings 349
mxCreateDoubleMatrix 350
mxCreateFull (Obsolete) 351
mxCreateNumericArrayc.0iiiiiinnno... 352
mxCreateNumericMatrix 355
mxCreateScalarDouble 357
mxCreateSparsettt e 358
mxCreateString 359
mxCreateStructArray, 360
mxCreateStructMatrix 361
mxDestroyArray 362
mxDuplicateArray 363
mxFree e 364
mxFreeMatrix (Obsolete) 365
mxGetCell 366
mxGetClassID 367
mxGetClassName0t .. 368
mxGetData 369
mxGetDimensions 370
mxGetElementSize 371
mxGetEps 372
mxGetField 373
mxGetFieldByNumber 375
mxGetFieldNameByNumber 377
mxGetFieldNumber 378
mxGetlmagData 380
mxGetInf 381
mxGetlr 382
mxGetdc 383

ix

Contents

mxGetM ... 384

MXGetN 385
mxGetName (Obsolete) 386
mxGetNalN 387
mxGetNumberOfDimensions 388
mxGetNumberOfElements 389
mxGetNumberOfFields 390
mMXGetNzmaxt 391
mxGetPi 392
mxGetPr 393
mxGetScalar 394
mxGetString e 395
mxIsCell 396
mxISChar 397
mxIsClass 398
mxIsComplex e 399
mxIsDouble 400
mxIsEmpty e 401
mxIsFinite e 402
mxIsFromGlobalWS 403
mxIsFull (Obsolete) 404
mxIsInf 405
mxIsInt8 406
mxIsIntl6 407
mxIsInt32 e 408
mxIsLogical 409
mxIsNaN e 410
MXISNUMETIC e 411
mxIsSingle e 412
MXISSParset e e 413
mxIsString (Obsolete) 414
mxISStruct 415
mxIsUint8 e 416
mxISUINt16 417
mxIsUInt32 418
mxMalloc 419
mxRealloc 420
mxRemoveField 421
mxSetCell 422
mxSetData 423

mxSetDImensionsii it 424

mxSetField 425
mxSetFieldByNumber 427
mxSetImagData 429
mxSetlr 430
mMXSetdC ... 431
mxSetLogical (Obsolete) 432
mxSetM 433
mMXSEtN .. 434
mxSetName (Obsolete) 435
MXSetNzZMAX e 436
mxSetPi ... 437
mxSetPr 438

9

10 |

ClasS . . 441
IMPOTE ..o e e 443
1T T 445
TS P 2 447
JAVAATTAY . vt e 448
javachk e 449
javaMethod 451
javaObject e 453
methods 455
methodsview i i 457
USEJAVA . o vttt ittt ettt e e 459

COM Functions
actxcontrol 462
ACERSEIVET . . it e 466
addproperty (COM) 468
delete (COM)ttt e e e 469
deleteproperty (COM), 471

xi

xii

Contents

eventlisteners (COM) 472

11

events (COM) i 474
fieldnames 475
get (COM) ... e 477
INSPECE . . o e e 479
invoke (COM) i e 481
isevent (COM) ... i e 483
ismethod (COM) i 484
1sprop (COM) ... e e 485
load (COM) ... e 486
methods 487
methodsview 489
move (COM) i e 491
propedit (COM) e 493
registerevent (COM) 494
release (COM) it e 497
save (COM) e 499
send (COM) e 500
SEt (COM) ..ot 501
unregisterallevents (COM) 502
unregisterevent (COM), 504

DDE Functions
ddeadv 507
ddeexec 509
ddeinit e 510
ddepoke 511
ddereqt 513
ddeterm 515
ddeunadv 516

Serial Port I/0 Functions

12 |

clear (serial) 520
delete (serial) i 522
disp(serial) i e 524
fclose (serial)o it 525
fgetl (serial) i 527
fgets (serial) 530
fopen (serial) e 533
fprintf (serial) 535
fread (serial) 538
freeserial 542
fscanf (serial) 543
fwrite (serial) 546
get (serial) 550
instrcallback 552
instrfind 553
isvalid 555
length (serial) 556
load (serial) i 557
TEAdASYINIC . . vt ittt e 559
TECOTd . . oo 562
save (serial) 564
Serial 566
serialbreak 568
set(serial) 569
size (serial) 572
SEOPASYINC . . e 573

xiii

External Interfaces/API
Reference

This section contains the MATLAB External Interfaces function reference
pages. This includes reference pages for what was formerly called the MATLAB
Application Program Interface, or API.

Category Description

C Engine Functions that allow you to call MATLAB from your
Functions own C programs.

C MAT-File Functions that allow you to incorporate and use
Functions MATLAB data in your own C programs.

C MEX-Functions

C MX-Functions

Fortran Engine
Functions

Fortran MAT-File
Functions

Fortran
MEX-Functions

Fortran
MX-Functions

Java Interface
Functions

Functions that you use in your C MEX-files to
perform operations back in the MATLAB
environment.

Array access and creation functions that you use in
your C MEX-files to manipulate MATLAB arrays.

Functions that allow you to call MATLAB from your
own Fortran programs.

Functions that allow you to incorporate and use
MATLAB data in your own Fortran programs.

Functions that you use in your Fortran MEX-files to
perform operations back in the MATLAB
environment.

Array access and creation functions that you use in
your Fortran MEX-files to manipulate MATLAB
arrays.

Functions that enable you to create and interact with
Java classes and objects from MATLAB.

Category

Description

COM Functions

DDE Functions

Serial Port I/O
Functions

Functions that create COM objects and manipulate
their interfaces.

Dynamic Data Exchange functions that enable
MATLAB to access other Windows applications and
vice versa.

Functions that enable you to interact with devices
connected to your computer’s serial port.

C Engine Functions

engClose
engEvalString
engGetArray (Obsolete)
engGetFull (Obsolete)

engGetMatrix (Obsolete)
engGetVariable
engGetVisible

engOpen
engOpenSingleUse

engOutputBuffer
engPutArray (Obsolete)
engPutFull (Obsolete)

engPutMatrix (Obsolete)
engPutVariable

engSetEvalCallback (Obsolete)
engSetEvalTimeout (Obsolete)

engSetVisible
engWinInit (Obsolete)

Quit MATLAB engine session
Evaluate expression in string
Use engGetVariable

Use engGetVariable followed by
appropriate mxGet routines

Use engGetVariable

Copy variable from engine workspace
Determine visibility of engine session
Start MATLAB engine session

Start MATLAB engine session for
single, nonshared use

Specify buffer for MATLAB output
Use engPutVariable

Use mxCreateDoubleMatrix and
engPutVariable

Use engPutVariable

Put variables into engine workspace
Function is obsolete

Function is obsolete

Show or hide engine session

Function is obsolete

engClose

Purpose

C Syntax

Arguments

Description

Examples

Quit a MATLAB engine session

#include "engine.h"
int engClose(Engine *ep);

ep
Engine pointer.

This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engEvalString

Purpose

C Syntax

Arguments

Description

Examples

Evaluate expression in string

#include "engine.h"
int engEvalString(Engine *ep, const char *string);

ep
Engine pointer.

string
String to execute.

engEvalString evaluates the expression contained in string for the MATLAB
engine session, ep, previously started by engOpen. It returns a nonzero value if
the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing

down a pipe connected to the MATLAB stdin. Any output resulting from the

command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer. To turn off output buffering, use

engOutputBuffer(ep, NULL, 0);

Under Windows on a PC, engEvalString communicates with MATLAB using
a Component Object Model (COM) interface.

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engGetArray (Obsolete)

V5 Compqtible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use
engGetVariable

instead of

engGetArray

See Also engGetVariable, engPutVariable, and examples in the eng_mat subdirectory
of the examples directory

engGetFull (Obsolete)

V4 Compatible

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

engGetVariable followed by appropriate mxGet routines (mxGetM, mxGetN,
mxGetPr, mxGetPi)

instead of
engGetFull
For example,

int engGetFull(

Engine *ep, /* engine pointer */
char *name, /* full array name */
int *m, /* returned number of rows */
int *n, /* returned number of columns */
double **pr, /* returned pointer to real part */
double **pi /* returned pointer to imaginary part */
)
{
mxArray *pmat;

pmat = engGetVariable(ep, name);

if (!pmat)
return(1);

if (!mxIsDouble(pmat)) {
mxDestroyArray (pmat) ;
return(1);

H

*m = mxGetM(pmat)

*n = mxGetN(pmat);
*pr = mxGetPr(pmat);
*pi = mxGetPi(pmat)

H

engGetFull (Obsolete)

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);
mxSetPi(pmat, NULL);

mxDestroyArray(pmat) ;
return(0);
}
See Also engGetVariable and examples in the eng_mat subdirectory of the examples

directory

engGetMatrix (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use
engGetVariable

instead of

engGetMatrix

See Also engGetVariable, engPutVariable, and examples in the eng_mat subdirectory
of the examples directory

engGetVariable

Purpose

C Syntax

Arguments

Description

Examples

See Also

Copy a variable from a MATLAB engine’s workspace

#include "engine.h"
mxArray *engGetVariable(Engine *ep, const char *name);

ep
Engine pointer.

name
Name of mxArray to get from MATLAB.

engGetVariable reads the named mxArray from the MATLAB engine session
associated with ep and returns a pointer to a newly allocated mxArray
structure, or NULL if the attempt fails. engGetVariable fails if the named
variable does not exist.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engPutVariable

10

engGetVisible

Purpose

C Syntax

Arguments

Description

Examples

See Also

11

Determine visibility of MATLAB engine session

#include "engine.h"
int engGetVisible(Engine *ep, bool *value);

ep
Engine pointer.

value
Pointer to value returned from engGetVisible.

Windows Only

engGetVisible returns the current visibility setting for MATLAB engine
session, ep. A visible engine session runs in a window on the Windows desktop,
thus making the engine available for user interaction. An invisible session is
hidden from the user by removing it from the desktop.

engGetVisible returns 0 on success, and 1 otherwise.

The following code opens engine session ep and disables its visibility.
Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

engSetVisible

engOpen

Purpose

C Syntax

Arguments

Returns

Description

Start a MATLAB engine session

#include "engine.h"
Engine *engOpen(const char *startcmd);

startcmd
String to start MATLAB process. On Windows, the startcmd string must be
NULL.

A pointer to an engine handle.
This routine allows you to start a MATLAB process for the purpose of using

MATLAB as a computational engine.

engOpen (startcmd) starts a MATLAB process using the command specified in
the string startcmd, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails.

On UNIX systems, if startcmd is NULL or the empty string, engOpen starts
MATLAB on the current host using the command matlab. If startcmd is a
hostname, engOpen starts MATLAB on the designated host by embedding the
specified hostname string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is any other string (has white space in it, or nonalphanumeric
characters), the string is executed literally to start MATLAB.

On UNIX systems, engOpen performs the following steps:
1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from
MATLAB (parent) to two file descriptors in the engine program (child).

3 Executes a command to run MATLAB (rsh for remote execution).

Under Windows on a PC, engOpen opens a COM channel to MATLAB. This
starts the MATLAB that was registered during installation. If you did not
register during installation, on the command line you can enter the command:

12

engOpen

Examples

13

matlab /regserver

See “Introducing MATLAB COM Integration” for additional details.

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engOpenSingleUse

Purpose

C Syntax

Arguments

Description

Start a MATLAB engine session for single, nonshared use

#include "engine.h"
Engine *engOpenSingleUse(const char *startcmd, void *dcom,
int *retstatus);

startcmd
String to start MATLAB process. On Windows, the startcmd string must be
NULL.

dcom
Reserved for future use; must be NULL.

retstatus
Return status; possible cause of failure.

Windows

This routine allows you to start multiple MATLAB processes for the purpose of
using MATLAB as a computational engine. engOpenSingleUse starts a
MATLAB process, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails. engOpenSingleUse starts a new MATLAB
process each time it is called.

engOpenSingleUse opens a COM channel to MATLAB. This starts the
MATLAB that was registered during installation. If you did not register during
installation, on the command line you can enter the command:

matlab /regserver

engOpenSingleUse allows single-use instances of a MATLAB engine server.
engOpenSingleUse differs from engOpen, which allows multiple users to use the
same MATLAB engine server.

See Introducing MATLAB COM Integration for additional details.

UNIX

This routine is not supported and simply returns.

14

engOutputBuffer

Purpose

C Syntax

Arguments

Description

Examples

15

Specify buffer for MATLAB output

#include "engine.h"
int engOutputBuffer(Engine *ep, char *p, int n);

ep
Engine pointer.

n
Length of buffer p.

p
Pointer to character buffer of length n.

engOutputBuffer defines a character buffer for engEvalString to return any
output that ordinarily appears on the screen.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer (ep,p,n) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer pointed to by p.

To turn off output buffering, use engOutputBuffer(ep,NULL,0);

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

engPutArray (Obsolete)

V5 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

engPutVariable

instead of

engPutArray

engPutvVariable, engGetVariable, and examples in the eng_mat subdirectory
of the examples directory

16

engPutFull (Obsolete)

V4 Compatible

17

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use
mxCreateDoubleMatrix and engPutVariable
instead of
engPutFull
For example,

int engPutFull(

Engine *ep, /* engine pointer */
char *name, /* full array name */
int m, /* number of rows */
int n, /* number of columns */
double *pr, /* pointer to real part */
double *pi /* pointer to imaginary part */
)
{
mxArray *pmat;
int retval;

pmat = mxCreateDoubleMatrix(0, 0, mxCOMPLEX);

mxSetM(pmat, m);
mxSetN(pmat, n);
mxSetPr(pmat, pr);
mxSetPi(pmat, pi);

retval = engPutVariable(ep, name, pmat);

/* Set pr & pi in array struct to NULL so it can be cleared. */
mxSetPr(pmat, NULL);

mxSetPi(pmat, NULL);

mxDestroyArray (pmat) ;

engPutFull (Obsolete)

See Also

return(retval);

}

engGetVariable, mxCreateDoubleMatrix

18

engPutMatrix (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

engPutVariable

instead of

engPutMatrix

See Also engPutVariable

19

engPutVariable

Purpose

C Syntax

Arguments

Description

Examples

Put variables into a MATLAB engine’s workspace

#include "engine.h"
int engPutVariable(Engine *ep, const char *name, const mxArray *mp);

ep
Engine pointer.

name
Name given to the mxArray in the engine’s workspace.

mp
mxArray pointer.

engPutVariable writes mxArray mp to the engine ep, giving it the variable
name, name. If the mxArray does not exist in the workspace, it is created. If an
mxArray with the same name already exists in the workspace, the existing
mxArray is replaced with the new mxArray.

engPutVariable returns 0 if successful and 1 if an error occurs.

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a C program for Windows.

20

engSetEvalCallback (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

21

engSetEvalTimeout (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later.

22

engSetVisible

Purpose

C Syntax

Arguments

Description

Examples

See Also

23

Show or hide MATLAB engine session

#include "engine.h"
int engSetVisible(Engine *ep, bool value);

ep
Engine pointer.

value
Value to set the Visible property to. Set value to 1 to make the engine window
visible, or to 0 to make it invisible.

Windows Only

engSetVisible makes the window for the MATLAB engine session, ep, either
visible or invisible on the Windows desktop. You can use this function to enable
or disable user interaction with the MATLAB engine session.

engSetVisible returns 0 on success, and 1 otherwise.

The following code opens engine session ep and disables its visibility.
Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

engGetVisible

engWinlinit (Obsolete)
|

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function is not necessary in MATLAB
5 or later engine programs.

24

C MAT-File Functions

matClose

matDeleteArray (Obsolete)
matDeleteMatrix (Obsolete)
matDeleteVariable
matGetArray (Obsolete)
matGetArrayHeader (Obsolete)
matGetDir

matGetFp

matGetFull (Obsolete)

matGetMatrix (Obsolete)
matGetNextArray (Obsolete)
matGetNextArrayHeader (Obsolete)
matGetNextMatrix (Obsolete)
matGetNextVariable
matGetNextVariableInfo
matGetString (Obsolete)
matGetVariable
matGetVariableInfo

matOpen

Close MAT-file

Use matDeleteVariable

Use matDeleteVariable

Delete named mxArray from MAT-file
Use matGetVariable

Use matGetVariableInfo

Get directory of mxArrays in MAT-file
Get file pointer to MAT-file

Use matGetVariable followed by the
appropriate mxGet routines

Use matGetVariable

Use matGetNextVariable

Use mat GetNextArrayHeaderFromMATfile
Use matGetNextVariable

Read next mxArray from MAT-file

Load array header information only

Use matGetVariable and mxGetString
Read mxArray from MAT-file

Load header array information only

Open MAT-file

matPutArray (Obsolete) Use matPutVariable
matPutArrayAsGlobal (Obsolete) Use matPutVariableAsGlobal

matPutFull (Obsolete) Use mxCreateDoubleMatrix and
matPutVariable

matPutMatrix (Obsolete) Use matPutVariable

matPutString (Obsolete) Use mxCreateString and matPutVariable

matPutVariable Write mxArrays into MAT-files

matPutVariableAsGlobal Put mxArrays into MAT-files

26

matClose

Purpose

C Syntax

Arguments

Description

Examples

27

Closes a MAT-file

#include "mat.h"
int matClose(MATFile *mfp);

mfp
Pointer to MAT-file information.

matClose closes the MAT-file associated with mfp. It returns EOF for a write
error, and zero if successful.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matDeleteArray (Obsolete)

V5 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matDeleteVariable

instead of

matDeleteArray

matDeleteVariable

28

matDeleteMatrix (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

matDeleteVariable

instead of

matDeleteMatrix

See Also matDeleteVariable

29

matDeleteVariable

Purpose

C Syntax

Arguments

Description

Examples

Delete named mxArray from MAT-file

#include "mat.h"
int matDeleteVariable (MATFile *mfp, const char *name);

mfp
Pointer to MAT-file information.
name

Name of mxArray to delete.

matDeleteVariable deletes the named mxArray from the MAT-file pointed to
by mfp. matDeleteVariable returns 0 if successful, and nonzero otherwise.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

30

matGetArray (Obsolete)

V5 Computible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matGetVariable

instead of

matGetArray

See Also matGetVariable

31

matGetArrayHeader (Obsolete)

V5 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matGetVariableInfo

instead of

matGetArrayHeader

matGetVariableInfo

32

matGetDir

Purpose

C Syntax

Arguments

Description

Examples

33

Get directory of mxArrays in a MAT-file

#include "mat.h"
char **matGetDir (MATFile *mfp, int *num);

mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

This routine allows you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
NULL-terminated names of the mxArrays in the MAT-file pointed to by mfp. The
length of the internal array (number of mxArrays in the MAT-file) is placed into
num. The internal array is allocated using a single mxCalloc and must be freed
using mxFree when you are finished with it.

matGetDir returns NULL and sets num to a negative number if it fails. If num is
zero, mfp contains no arrays.

MATLAB variable names can be up to length mxMAXNAM, where mxMAXNAM is
defined in the file matrix.h.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetFp

Purpose

C Syntax

Arguments

Description

Examples

Get file pointer to a MAT-file

#include "mat.h"
FILE *matGetFp(MATFile *mfp);

mfp
Pointer to MAT-file information.

matGetFp returns the C file handle to the MAT-file with handle mfp. This can
be useful for using standard C library routines like ferror() and feof () to
investigate error situations.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

34

matGetFull (Obsolete)

V4 Compatible

35

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

matGetVariable followed by the appropriate mxGet routines

instead of

matGetFull

For example,

int matGetFull(MATFile *fp, char *name, int *m, int *n,

{

double **pr, double **pi)

mxArray *parr;
/* Get the matrix. */
parr = matGetVariable(fp, name);

if (parr == NULL)
return(1);

if (!mxIsDouble(parr)) {
mxDestroyArray (parr);
return(1);

}

/* Set up return args. */

*m = mxGetM(parr);

*n mxGetN(parr);

*pr mxGetPr(parr);

*pi = mxGetPi(parr);

/* Zero out pr & pi in array struct so the mxArray can be

destroyed. */
mxSetPr(parr, (void *)0);
mxSetPi(parr, (void *)0);

mxDestroyArray(parr);

matGetFull (Obsolete)

See Also

return(0);

}

matGetVariable

36

matGetMatrix (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

matGetVariable

instead of

matGetMatrix

See Also matGetVariable

37

matGetNextArray (Obsolete)

V5 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matGetNextVariable

instead of

matGetNextArray

matGetNextVariable

38

matGetNextArrayHeader (Obsolete)

V5 Computible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use
matGetNextVariableInfo

instead of

matGetNextArrayHeader

See Also matGetNextVariableInfo

39

matGetNextMatrix (Obsolete)

V4 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

matGetNextVariable

instead of

matGetNextMatrix

matGetNextVariable

40

matGetNextVariable

Purpose

C Syntax

Arguments

Description

Examples

41

Read next mxArray from MAT-file

#include "mat.h"
mxArray *matGetNextVariable(MATFile *mfp, const char *name);

mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

matGetNextVariable allows you to step sequentially through a MAT-file and
read all the mxArrays in a single pass. The function reads the next mxArray
from the MAT-file pointed to by mfp and returns a pointer to a newly allocated
mxArray structure. MATLAB returns the name of the mxArray in name.

Use matGetNextVariable immediately after opening the MAT-file with
matOpen and not in conjunction with other MAT-file routines. Otherwise, the
concept of the next mxArray is undefined.

matGetNextVariable returns NULL when the end-of-file is reached or if there is
an error condition. Use feof and ferror from the Standard C Library to
determine status.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetNextVariablelnfo

Purpose

C Syntax

Arguments

Description

Examples

See Also

Load array header information only

#include "mat.h"
mxArray *matGetNextVariableInfo(MATFile *mfp, const char *name);

mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

matGetNextVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc, from the file’s current file offset. MATLAB
returns the name of the mxArray in name.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back to

MATLAB or saved to MAT-files.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matGetNextVariable, matGetVariableInfo

42

matGetString (Obsolete)

V4 Compatible

See Also

43

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

#include "mat.h"

#include "matrix.h"

mxArray *matGetVariable(MATFile *mfp, const char *name);

int mxGetString(const mxArray *array_ptr, char *buf, int buflen)

instead of

matGetString

matGetVariable, mxGetString

matGetVariable

Purpose

C Syntax

Arguments

Description

Examples

Read mxArrays from MAT-files

#include "mat.h"
mxArray *matGetVariable(MATFile *mfp, const char *name);

mfp

Pointer to MAT-file information.

name

Name of mxArray to get from MAT-file.

This routine allows you to copy an mxArray out of a MAT-file.

matGetVariable reads the named mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure, or NULL if the
attempt fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

44

matGetVariablelnfo

Purpose

C Syntax

Arguments

Description

Examples

45

Load array header information only

#include "mat.h"
mxArray *matGetVariableInfo(MATFile *mfp, const char *name);

mfp
Pointer to MAT-file information.

name
Name of mxArray.

matGetVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc. It recursively creates the cells and
structures through their leaf elements, but does not include pr, pi, ir, and jc.

Ifpr, pi, ir, and jc are set to nonNULL when loaded with matGetVvariable, then
matGetVariableInfo sets them to -1 instead. These headers are for
informational use only and should never be passed back to MATLAB or saved
to MAT-files.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matOpen

Purpose

C Syntax

Arguments

Description

Examples

Opens a MAT-file

#include "mat.h"
MATFile *matOpen(const char *filename, const char *mode);

filename
Name of file to open.

mfp
Pointer to MAT-file information.

mode
File opening mode. Legal values for mode are:

Table 1-1:

r Opens file for reading only; determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Opens file for update, both reading and writing, but does not

create the file if the file does not exist (equivalent to the r+
mode of fopen); determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Opens file for writing only; deletes previous contents, if any.

w4 Creates a MATLAB 4 MAT-file.

This routine allows you to open MAT-files for reading and writing.
matOpen opens the named file and returns a file handle, or NULL if the open
fails.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

46

matPutArray (Obsolete)

V5 Computible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

matPutVariable

instead of

matPutArray

See Also matPutVariable

47

matPutArrayAsGlobal (Obsolete)

V5 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use
matPutVariableAsGlobal

instead of

matPutArrayAsGlobal

matPutVariableAsGlobal

48

matPutFull (Obsolete)

V4 Compatible

49

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

mxCreateDoubleMatrix and matPutVariable

instead of

matPutFull

For example,

int matPutFull(MATFile*ph, char *name, int m, int n, double *pr,

{

double *pi)

int retval;
mxArray *parr;

/* Get empty array struct to place inputs into. */
parr = mxCreateDoubleMatrix(0, 0, 0);
if (parr == NULL)

return(1);

/* Place inputs into array struct. */
mxSetM(parr, m);

mxSetN(parr, n);

mxSetPr(parr, pr);

mxSetPi(parr, pi);

/* Use put to place array on file. */
retval = matPutVariable(ph, name, parr);

/* Zero out pr & pi in array struct so the mxArray can be
destroyed. */

mxSetPr(parr, (void *)0);

mxSetPi(parr, (void *)0);

mxDestroyArray (parr);

matPutFull (Obsolete)

See Also

return(retval);

}

mxCreateDoubleMatrix, matPutVariable

50

matPutMatrix (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

matPutVariable

instead of

matPutMatrix

See Also matPutVariable

51

matPutString (Obsolete)

V4 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

#include "matrix.h"

#include "mat.h"

mp = mxCreateString(str);
matPutVariable (mfp, name, mp);
mxDestroyArray(mp);

instead of

matPutString(mfp, name, str);

matPutVariable

52

matPutVariable

Purpose

C Syntax

Arguments

Description

Examples

53

Write mxArrays into MAT-files

#include "mat.h"
int matPutVariable (MATFile *mfp, const char *name, const mxArray
*mp) ;

mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

mp
mxArray pointer.

This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray mp to the MAT-file mfp. If the mxArray does
not exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutVariable returns 0 if successful and nonzero if an error occurs. Use
feof and ferror from the Standard C Library along with matGetFp to
determine status.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples
directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

matPutVariableAsGlobal

Purpose

C Syntax

Arguments

Description

Examples

Put mxArrays into MAT-files as originating from the global workspace

#include "mat.h"
int matPutVariableAsGlobal (MATFile *mfp, const char *name, const
mxArray *mp);

mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

mp
mxArray pointer.

This routine allows you to put an mxArray into a MAT-file.
matPutVariableAsGlobal is similar to matPutVariable, except the array,
when loaded by MATLAB, is placed into the global workspace and a reference
to it is set in the local workspace. If you write to a MATLAB 4 format file,
matPutVariableAsGlobal will not load it as global, and will act the same as
matPutVariable.

matPutVariableAsGlobal writes mxArray mp to the MAT-file mfp. If the
mxArray does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is replaced
with the new mxArray by rewriting the file. The size of the new mxArray can be
different than the existing mxArray.

matPutVariableAsGlobal returns 0 if successful and nonzero if an error occurs.
Use feof and ferror from the Standard C Library with matGetFp to determine
status.

See matcreat.c and matdgns.c in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a C program.

54

matPutVariableAsGlobal

55

C MEX-Functions

mexAddFlops (Obsolete)

mexAtExit

mexCallMATLAB

mexXErrMsgIdAndTxt

mexErrMsgTxt

mexEvalString

mexFunction
mexFunctionName

mexGet

mexGetArray (Obsolete)
mexGetArrayPtr (Obsolete)
mexGetEps (Obsolete)
mexGetFull (Obsolete)

mexGetGlobal (Obsolete)
mexGetInf (Obsolete)

Update the MATLAB internal
floating-point operations counter

Register function to be called when
MATLARB is cleared or terminates

Call MATLAB function or
user-defined M-file or MEX-file

Issue error message with identifier
and return to MATLAB

Issue error message and return to
MATLAB

Execute MATLAB command in
caller’s workspace

Entry point to C MEX-file
Name of current MEX-function

Get value of Handle Graphics
property

Use mexGetVariable

Use mexGetVariablePtr

Use mxGetEps

Use mexGetVariable, mxGetM,
mxGetN, mxGetPr, mxGetPi

Use mexGetVariablePtr
Use mxGetInf

mexGetMatrix (Obsolete)

mexGetMatrixPtr (Obsolete)

mexGetNaN (Obsolete)

mexGetVariable

mexGetVariablePtr

mexIsFinite (Obsolete)
mexIsGlobal

mexIsInf (Obsolete)
mexIsLocked

mexIsNaN (Obsolete)

mexLock

mexMakeArrayPersistent

mexMakeMemoryPersistent

mexPrintf

mexPutArray (Obsolete)
mexPutFull (Obsolete)

mexPutMatrix (Obsolete)

mexPutVariable

mexSet

57

Use mexGetVariable
Use mexGetVariablePtr
Use mxGetNaN

Get copy of variable from another
workspace

Get read-only pointer to variable from
another workspace

Use mxIsFinite

True if mxArray has global scope
Use mxIsInf

True if MEX-file is locked

Use mxIsNaN

Lock MEX-file so it cannot be cleared
from memory

Make mxArray persist after MEX-file
completes

Make memory allocated by MATLAB
memory allocation routines persist
after MEX-file completes

ANSI C printf-style output routine
Use mexPutVariable

Use mxCreateDoubleMatrix, mxSetPr,
mxSetPi, mexPutVariable

Use mexPutVariable

Copy mxArray from your MEX-file
into another workspace

Set value of Handle Graphics
property

mexSetTrapFlag

mexUnlock

mexWarnMsgIdAndTxt

mexWarnMsgTxt

Control response of mexCallMATLAB to
errors

Unlock MEX-file so it can be cleared
from memory

Issue warning message with
identifier

Issue warning message

58

mexAddFlops (Obsolete)

Com pal‘ibilify This API function is obsolete and should not be used in any MATLAB program.
This function will not be available in a future version of MATLAB.

59

mexAtExit

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Register a function to be called when the MEX-function is cleared or when
MATLAB terminates

#include "mex.h"
int mexAtExit(void (*ExitFcn)(void));

ExitFcn
Pointer to function you want to run on exit.

Always returns 0.

Use mexAtExit to register a C function to be called just before the
MEX-function is cleared or MATLAB is terminated. mexAtExit gives your
MEX-function a chance to perform tasks such as freeing persistent memory
and closing files. Typically, the named ExitFcn performs tasks like closing
streams or sockets.

Each MEX-function can register only one active exit function at a time. If you
call mexAtExit more than once, MATLAB uses the ExitFcn from the more
recent mexAtExit call as the exit function.

If a MEX-function is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB does not
call the ExitFcn.

See mexatexit.c in the mex subdirectory of the examples directory.

mexLock, mexUnlock

60

mexCallMATLAB

Purpose

C Syntax

Arguments

Returns

Description

61

Call a MATLAB function, or a user-defined M-file or MEX-file

#include "mex.h"
int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,
mxArray *prhs[], const char *command_name);

nlhs
Number of desired output arguments. This value must be less than or equal to
50.

plhs

Pointer to an array of mxArrays. The called command puts pointers to the
resultant mxArrays into plhs. Note that the called command allocates dynamic
memory to store the resultant mxArrays. By default, MATLAB automatically
deallocates this dynamic memory when you clear the MEX-file. However, if
heap space is at a premium, you may want to call mxDestroyArray as soon as
you are finished with the mxArrays that plhs points to.

nrhs
Number of input arguments. This value must be less than or equal to 50.

prhs
Pointer to an array of input arguments.

command_name

Character string containing the name of the MATLAB built-in, operator,
M-file, or MEX-file that you are calling. If command_name is an operator, just
place the operator inside a pair of single quotes; for example, '+'.

0 if successful, and a nonzero value if unsuccessful.

Call mexCallMATLAB to invoke internal MATLAB numeric functions, MATLAB
operators, M-files, or other MEX-files. See mexFunction for a complete
description of the arguments.

By default, if command_name detects an error, MATLAB terminates the
MEX-file and returns control to the MATLAB prompt. If you want a different
error behavior, turn on the trap flag by calling mexSetTrapFlag.

Note that it is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. For example, if you create an M-file that returns two variables
but only assigns one of them a value,

mexCallMATLAB

Examples

See Also

function [a,b]=foo(cC)
a=2*c;
you get this warning message in MATLAB:
Warning: One or more output arguments not assigned during call to
‘foo'.

MATLAB assigns output b to an empty matrix. If you then call foo using
mexCallMATLAB, the unassigned output variable is given type
mXUNKNOWN_ CLASS.

See mexcallmatlab.c in the mex subdirectory of the examples directory.

For additional examples, see sincall.c in the refbook subdirectory of the
examples directory; see mexevalstring.c and mexsettrapflag.c in the mex
subdirectory of the examples directory; see mxcreatecellmatrix.c and
mxisclass.c in the mx subdirectory of the examples directory.

mexFunction, mexSetTrapFlag

62

mexErrMsgldAndTxt

Purpose

C Syntax

Arguments

Description

See Also

63

Issue error message with identifier and return to the MATLAB prompt

#include "mex.h"
void mexErrMsgIdAndTxt(const char *identifier,
const char *error_msg, ...);

identifier
String containing a MATLAB message identifier. See “Message Identifiers” in
the MATLAB documentation for information on this topic.

error_msg
String containing the error message to be displayed. The string may include
formatting conversion characters, such as those used with the ANSI C sprintf
function.

Any additional arguments needed to translate formatting conversion
characters used in error_msg. Each conversion character in error_msg is
converted to one of these values.

Call mexErrMsgIdAndTxt to write an error message and its corresponding
identifier to the MATLAB window. After the error message prints, MATLAB
terminates the MEX-file and returns control to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke the function registered
through mexAtExit.

If your application called mxCalloc or one of the mxCreate routines to allocate
memory, mexErrMsgIdAndTxt automatically frees the allocated memory.

Note Ifyou get warnings when using mexErrMsgIdAndTxt, you may have a
memory management compatibility problem. For more information, see
“Memory Management Compatibility Issues” in the External Interfaces
documentation.

mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

mexErrMsgTxt

Purpose

C Syntax

Arguments

Description

Examples

See Also

Issue error message and return to the MATLAB prompt

#include "mex.h"
void mexErrMsgTxt(const char *error_msg);

error_msg
String containing the error message to be displayed.

Call mexErrMsgTxt to write an error message to the MATLAB window. After
the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. Consequently,
mexErrMsgTxt does not invoke the function registered through mexAtExit.

If your application called mxCalloc or one of the mxCreate routines to allocate
memory, mexErrMsgTxt automatically frees the allocated memory.

Note If you get warnings when using mexErrMsgTxt, you may have a memory
management compatibility problem. For more information, see Memory
Management Compatibility Issues.

See xtimesy.c in the refbook subdirectory of the examples directory.

For additional examples, see convec.c, findnz.c, fulltosparse.c,
phonebook.c, revord.c, and timestwo.c in the refbook subdirectory of the
examples directory.

mexXErrMsgIdAndTxt, mexWarnMsgTxt, mexWarnMsgIdAndTxt

64

mexEvalString

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

65

Execute a MATLAB command in the workspace of the caller

#include "mex.h"
int mexEvalString(const char *command);

command
A string containing the MATLAB command to execute.

0 if successful, and a nonzero value if unsuccessful.
Call mexEvalString to invoke a MATLAB command in the workspace of the

caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString provides no
way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command string
must already be current variables of the caller’s workspace.

See mexevalstring.c in the mex subdirectory of the examples directory.

mexCallMATLAB

mexFunction

Purpose

C Syntax

Arguments

Description

Entry point to a C MEX-file

#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[]);

nlhs
MATLAB sets nlhs with the number of expected mxArrays.

plhs
MATLAB sets plhs to a pointer to an array of NULL pointers.

nrhs
MATLAB sets nrhs to the number of input mxArrays.

prhs

MATLAB sets prhs to a pointer to an array of input mxArrays. These mxArrays
are declared as constant; they are read only and should not be modified by
your MEX-file. Changing the data in these mxArrays may produce undesired
side effects.

mexFunction is not a routine you call. Rather, mexFunction is the generic name
of the function entry point that must exist in every C source MEX-file. When
you invoke a MEX-function, MATLAB finds and loads the corresponding
MEX-file of the same name. MATLAB then searches for a symbol named
mexFunction within the MEX-file. If it finds one, it calls the MEX-function
using the address of the mexFunction symbol. f MATLAB cannot find a routine
named mexFunction inside the MEX-file, it issues an error message.

When you invoke a MEX-file, MATLAB automatically seeds nlhs, plhs, nrhs,
and prhs with the caller’s information. In the syntax of the MATLAB language,
functions have the general form

[a,b,c,...] = fun(d,e,f,...)

where the denotes more items of the same format. The a,b,c. .. areleft-hand
side arguments and the d, e, f... are right-hand side arguments. The
arguments nlhs and nrhs contain the number of left-hand side and right-hand
side arguments, respectively, with which the MEX-function is called. prhs is a
pointer to a length nrhs array of pointers to the right-hand side mxArrays. plhs
is a pointer to a length nlhs array where your C function must put pointers for
the returned left-hand side mxArrays.

66

mexFunction

Examples See mexfunction.c in the mex subdirectory of the examples directory.

67

mexFunctionName

Purpose

C Syntax

Arguments
Returns
Description

Examples

Gives the name of the current MEX-function

#include "mex.h"
const char *mexFunctionName(void);

none
The name of the current MEX-function.
mexFunctionName returns the name of the current MEX-function.

See mexgetarray.c in the mex subdirectory of the examples directory.

68

mexGet

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

69

Get the value of the specified Handle Graphics® property

#include "mex.h"
const mxArray *mexGet(double handle, const char *property);

handle
Handle to a particular graphics object.

property
A Handle Graphics property.

The value of the specified property in the specified graphics object on success.
Returns NULL on failure. The return argument from mexGet is declared as
constant, meaning that it is read only and should not be modified. Changing
the data in these mxArrays may produce undesired side effects.

Call mexGet to get the value of the property of a certain graphics object. mexGet
is the API equivalent of the MATLAB get function. To set a graphics property
value, call mexSet.

See mexget.c in the mex subdirectory of the examples directory.

mexSet

mexGetArray (Obsolete)

V5 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexGetVariable (workspace, var_name);

instead of

mexGetArray(var_name, workspace);

mexGetVariable

70

mexGetArrayPtr (Obsolete)

V5 Compatible

See Also

71

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexGetVariablePtr(var_name, workspace);

instead of

mexGetArrayPtr(var_name, workspace);

mexGetVariable

mexGetEps (Obsolete)

V4 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use
eps = mxGetEps();
instead of

eps = mexGetEps();

mxGetEps

72

mexGetFull (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

array_ptr = mexGetVariable("caller", name);
m = mxGetM(array_ptr);

n = mxGetN(array_ptr);

pr mxGetPr(array_ptr);

pi = mxGetPi(array_ptr);

instead of

mexGetFull (name, m, n, pr, pi);

See Also mexGetVariable, mxGetPr, mxGetPi

73

mexGetGlobal (Obsolete)

V4 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

mexGetVariablePtr(name, "global");

instead of

mexGetGlobal (name) ;

mexGetVariable, mxGetName (Obsolete), mxGetPr, mxGetPi

74

mexGetinf (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use
inf = mxGetInf();

instead of

inf = mexGetInf();

See Also mxGetInf

75

mexGetMatrix (Obsolete)

V4 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

mexGetVariable("caller", name);

instead of

mexGetMatrix(name);

mexGetVariable

76

mexGetMatrixPtr (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

mexGetVariablePtr(name, "caller");

instead of

mexGetMatrixPtr(name) ;

See Also mexGetVariablePtr

77

mexGetNaN (Obsolete)

V4 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use
NaN = mxGetNaN();

instead of

NaN = mexGetNaN();

mxGetNaN

78

mexGetVariable

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

79

Get a copy of a variable from the specified workspace

#include "mex.h"
mxArray *mexGetVariable(const char *workspace, const char
*var_name) ;

workspace
Specifies where mexGetVariable should search in order to find array,
var_name. The possible values are

base Search for the variable in the base workspace
caller Search for the variable in the caller’s workspace
global Search for the variable in the global workspace
var_name

Name of the variable to copy.

A copy of the variable on success. Returns NULL on failure. A common cause of
failure is specifying a variable that is not currently in the workspace. Perhaps
the variable was in the workspace at one time but has since been cleared.

Call mexGetVariable to get a copy of the specified variable. The returned
mxArray contains a copy of all the data and characteristics that the variable
had in the other workspace. Modifications to the returned mxArray do not affect
the variable in the workspace unless you write the copy back to the workspace

with mexPutVariable.
See mexgetarray.c in the mex subdirectory of the examples directory.

mexGetVariablePtr, mexPutVariable

mexGetVariablePir

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get a read-only pointer to a variable from another workspace

#include "mex.h"
const mxArray *mexGetVariablePtr(const char *var_name,
const char *workspace);

var_name
Name of a variable in another workspace. (Note that this is a variable name,
not an mxArray pointer.)

workspace
Specifies which workspace you want mexGetVariablePtr to search. The
possible values are:

base Search for the variable in the base workspace
caller Search for the variable in the caller’s workspace
global Search for the variable in the global workspace

A read-only pointer to the mxArray on success. Returns NULL on failure.

Call mexGetVariablePtr to get a read-only pointer to the specified variable,
var_name, into your MEX-file’s workspace. This command is useful for
examining an mxArray s data and characteristics. If you need to change data
or characteristics, use mexGetVariable (along with mexPutVariable)instead of
mexGetVariablePtr.

If you simply need to examine data or characteristics, mexGetVariablePtr
offers superior performance as the caller need pass only a pointer to the array.

See mxislogical.c in the mx subdirectory of the examples directory.

mexGetVariable

80

mexIsFinite (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

answer mxIsFinite(value);

instead of

answer = mexIsFinite(value);

See Also mxIsFinite

81

mexIsGlobal

Purpose

C Syntax

Arguments

Returns
Description
Examples

See Also

True if mxArray has global scope

#include "matrix.h"
bool mexIsGlobal(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

True if the mxArray has global scope, and false otherwise.
Use mexIsGlobal to determine if the specified mxArray has global scope.
See mxislogical.c in the mx subdirectory of the examples directory.

mexGetVariable, mexGetVariablePtr, mexPutVariable, global

82

mexlsinf (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

answer mxIsInf(value);

instead of

answer = mexIsInf(value);

See Also mxIsInf

83

mexlIsLocked

Purpose

C Syntax

Returns

Description

Examples

See Also

Determine if this MEX-file is locked

#include "mex.h"
bool mexIsLocked(void);

True if the MEX-file is locked; False if the file is unlocked.

Call mexIsLocked to determine if the MEX-file is locked. By default, MEX-files
are unlocked, meaning that users can clear the MEX-file at any time.

To unlock a MEX-file, call mexUnlock.
See mexlock.c in the mex subdirectory of the examples directory.

mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent, mexUnlock

84

mexIsNaN (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

answer mxIsNaN(value);

instead of

answer = mexIsNaN(value);

See Also mxIsInf

85

mexLock

Purpose

C Syntax

Description

Examples

See Also

Lock a MEX-file so that it cannot be cleared from memory

#include "mex.h"
void mexLock(void);

By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, call mexUnlock.

mexLock increments a lock count. If you call mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

See mexlock.c in the mex subdirectory of the examples directory.

mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

86

mexMakeArrayPersistent

Purpose

C Syntax

Arguments

Description

See Also

87

Make an mxArray persist after the MEX-file completes

#include "mex.h"
void mexMakeArrayPersistent(mxArray *array_ptr);

array_ptr
Pointer to an mxArray created by an mxCreate* routine.

By default, mxArrays allocated by mxCreate* routines are not persistent. The
MATLAB memory management facility automatically frees nonpersistent
mxArrays when the MEX-function finishes. If you want the mxArray to persist
through multiple invocations of the MEX-function, you must call
mexMakeArrayPersistent.

Note If you create a persistent mxArray, you are responsible for destroying it
when the MEX-file is cleared. If you do not destroy a persistent mxArray,
MATLAB will leak memory. See mexAtExit to see how to register a function
that gets called when the MEX-file is cleared. See mexLock to see how to lock
your MEX-file so that it is never cleared.

mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate functions.

mexMakeMemoryPersistent

Purpose

C Syntax

Arguments

Description

See Also

Make memory allocated by MATLAB memory allocation routines (mxCalloc,
mxMalloc, mxRealloc) persist after the MEX-function completes

#include "mex.h"
void mexMakeMemoryPersistent(void *ptr);

ptr
Pointer to the beginning of memory allocated by one of the MATLAB memory
allocation routines.

By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-file finishes. If you want the memory to persist,
you must call mexMakeMemoryPersistent.

Note Ifyou create persistent memory, you are responsible for freeing it when
the MEX-function is cleared. If you do not free the memory, MATLAB will leak
memory. To free memory, use mxFree. See mexAtExit to see how to register a
function that gets called when the MEX-function is cleared. See mexLock to
see how to lock your MEX-function so that it is never cleared.

mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree, mxMalloc,
mxRealloc

88

mexPrintf

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

89

ANSI C printf-style output routine

#include "mex.h"
int mexPrintf(const char *format, ...);

format,
ANSI C printf-style format string and optional arguments.

The number of characters printed. This includes characters specified with
backslash codes, such as \n and \b.

This routine prints a string on the screen and in the diary (if the diary is in
use). It provides a callback to the standard C printf routine already linked
inside MATLAB, and avoids linking the entire stdio library into your
MEX-file.

In a MEX-file, you must call mexPrintf instead of printf.
See mexfunction.c in the mex subdirectory of the examples directory. For an
additional example, see phonebook.c in the refbook subdirectory of the

examples directory.

mexErrMsgTxt, mexWarnMsgTxt

mexPutArray (Obsolete)

V5 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 6.5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V5 option of the mex script.

Use

mexPutVariable (workspace, var_name, array_ptr);

instead of

mexPutArray (array_ptr, workspace);

mexPutVariable

90

mexPutFull (Obsolete)

v4 Compatible This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

array_ptr = mxCreateDoubleMatrix(m, n, mxREAL/mxCOMPLEX) ;
mxSetPr(array_ptr, pr);

mxSetPi(array_ptr, pi);

mexPutVariable("caller", name, array_ptr);

instead of

mexPutFull(name, m, n, pr, pi);

See Also mxSetM, mxSetN, mxSetPr, mxSetPi, mexPutVariable

91

mexPutMatrix (Obsolete)

V4 Compatible

See Also

This API function is obsolete and should not be used in a program that
interfaces with MATLAB 5 or later. This function may not be available in a
future version of MATLAB. If you need to use this function in existing code, use
the -V4 option of the mex script.

Use

mexPutVariable("caller", var_name, array_ptr);

instead of

mexPutMatrix (matrix_ptr);

mexPutVariable

92

mexPutVariable

Purpose

C Syntax

Arguments

Returns

Description

93

Copy an mxArray from your MEX-function into the specified workspace

#include "mex.h"
int mexPutVariable(const char *workspace, const char *var_name,
mxArray *array_ptr);

workspace
Specifies the scope of the array that you are copying. The possible values are

base Copy mxArray to the base workspace
caller Copy mxArray to the caller’s workspace
global Copy mxArray to the list of global variables
var_name

Name given to the mxArray in the workspace.
array_ptr
Pointer to the mxArray.

0 on success; 1 on failure. A possible cause of failure is that array_ptris NULL.

Call mexPutVariable to copy the mxArray, at pointer array_ptr, from your
MEX-function into the specified workspace. MATLAB gives the name,
var_name, to the copied mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files or other MEX-functions.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with the
contents of the new mxArray. For example, suppose the MATLAB workspace
defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the same workspace:

mexPutVariable("base", "Peaches", array_ptr)

mexPutVariable

Then the old value of Peaches disappears and is replaced by the value passed
in by mexPutVariable.

Exumples See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariable

94

mexSet

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

95

Set the value of the specified Handle Graphics property

#include "mex.h"
int mexSet(double handle, const char *property,
mxArray *value);

handle
Handle to a particular graphics object.

property
String naming a Handle Graphics property.

value
Pointer to an mxArray holding the new value to assign to the property.

0 on success; 1 on failure. Possible causes of failure include:

® Specifying a nonexistent property.

® Specifying an illegal value for that property. For example, specifying a string
value for a numerical property.

Call mexSet to set the value of the property of a certain graphics object. mexSet
is the API equivalent of the MATLAB set function. To get the value of a
graphics property, call mexGet.

See mexget.c in the mex subdirectory of the examples directory.

mexGet

mexSetTrapFlag

Purpose

C Syntax

Arguments

Description

Examples

See Also

Control response of mexCallMATLAB to errors

#include "mex.h"
void mexSetTrapFlag(int trap_flag);

trap_flag
Control flag. Currently, the only legal values are:

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in
a call to mexCallMATLAB, MATLAB automatically terminates the MEX-file and
returns control to the MATLAB prompt. Calling mexSetTrapFlag with
trap_flag set to 0 is equivalent to not calling mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trap_flag to 1, then whenever
MATLAB detects an error in a call to mexCallMATLAB, MATLAB does not
automatically terminate the MEX-file. Rather, MATLAB returns control to the
line in the MEX-file immediately following the call to mexCallMATLAB. The
MEX-file is then responsible for taking an appropriate response to the error.

See mexsettrapflag.c in the mex subdirectory of the examples directory.

mexAtExit, mexErrMsgTxt

96

mexUnlock

Purpose

C Syntax

Description

Examples

See Also

97

Unlock this MEX-file so that it can be cleared from memory

#include "mex.h"
void mexUnlock(void);

By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Calling mexLock locks a MEX-file so that it cannot be cleared. Calling
mexUnlock removes the lock so that the MEX-file can be cleared.

mexLock increments a lock count. If you called mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

See mexlock.c in the mex subdirectory of the examples directory.

mexIsLocked, mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent

mexWarnMsgldAndTxt

Purpose

C Syntax

Arguments

Description

See Also

Issue warning message with identifier

#include "mex.h"
void mexWarnMsgIdAndTxt(const char *identifier,
const char *warning_msg, ...);

identifier
String containing a MATLAB message identifier. See “Message Identifiers” in
the MATLAB documentation for information on this topic.

warning_msg

String containing the warning message to be displayed. The string may include
formatting conversion characters, such as those used with the ANSI C sprintf
function.

Any additional arguments needed to translate formatting conversion
characters used in warning_msg. Each conversion character in warning_msg is
converted to one of these values.

Call mexwWarnMsgIdAndTxt to write a warning message and its corresponding
identifier to the MATLAB window.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the MEX-file
to terminate.

mexWarnMsgTxt, mexErrMsgIdAndTxt, mexErrMsgTxt

98

mexWarnMsgTxt

Purpose

C Syntax

Arguments

Description

Examples

See Also

99

Issue warning message

#include "mex.h"
void mexWarnMsgTxt(const char *warning_msg);

warning_msg

String containing the warning message to be displayed.

mexWarnMsgTxt causes MATLAB to display the contents of warning_msg.
Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

See yprime.c in the mex subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see fulltosparse.c and revord.c in the refbook
subdirectory of the examples directory; see mxisfinite.c and mxsetnzmax.cin
the mx subdirectory of the examples directory.

mexWarnMsgIdAndTxt, mexErrMsgTxt, mexErrMsgIdAndTxt

C MX-Functions

mxAddField
mxArrayToString
mxAssert

mxAssertS

mxCalcSingleSubscript

mxCalloc
mxChar

mxClassID

mxClearLogical (Obsolete)

mxComplexity

mxCreateCellArray

mxCreateCellMatrix

mxCreateCharArray

mxCreateCharMatrixFromStrings

Add field to structure array
Convert arrays to strings
Check assertion value

Check assertion value; doesn’t print
assertion’s text

Return offset from first element to
desired element

Allocate dynamic memory
String mxArrays data type

Enumerated data type that identifies
mxArray s class

Clear logical flag

Specifies if mxArray has imaginary
components

Create unpopulated N-dimensional
cell mxArray

Create unpopulated two-dimensional
cell mxArray

Create unpopulated N-dimensional
string mxArray

Create populated two-dimensional
string mxArray

mxCreateDoubleMatrix

mxCreateDoubleScalar

mxCreateLogicalArray

mxCreateLogicalMatrix

mxCreateLogicalScalar

mxCreateFull (Obsolete)

mxCreateNumericArray

mxCreateNumericMatrix

mxCreateScalarDouble

mxCreateSparse

mxCreateSparselLogicalMatrix

mxCreateString

mxCreateStructArray

mxCreateStructMatrix

mxDestroyArray

101

Create unpopulated two-dimensional,
double-precision, floating-point
mxArray

Create scalar, double-precision array
initialized to the specified value

Create N-dimensional, logical
mxArray initialized to false

Create two-dimensional, logical
mxArray initialized to false

Create scalar, logical mxArray
initialized to false

Use mxCreateDoubleMatrix

Create unpopulated N-dimensional
numeric mxArray

Create numeric matrix and initialize
data elements to 0

Create scalar, double-precision array
initialized to specified value

Create two-dimensional unpopulated
sparse mxArray

Create unpopulated,
two-dimensional, sparse, logical
mxArray

Create 1-by-n string mxArray
initialized to specified string

Create unpopulated N-dimensional
structure mxArray

Create unpopulated two-dimensional
structure mxArray

Free dynamic memory allocated by an
mxCreate routine

mxDuplicateArray

mxFree

mxFreeMatrix (Obsolete)
mxGetCell

mxGetChars
mxGetClassID
mxGetClassName
mxGetData
mxGetDimensions

mxGetElementSize

mxGetEps
mxGetField

mxGetFieldByNumber

mxGetFieldNameByNumber

mxGetFieldNumber

mxGetImagData

mxGetInf
mxGetIr
mxGetdc
mxGetLogicals

mxGetM

Make deep copy of array

Free dynamic memory allocated by
mxCalloc

Use mxDestroyArray

Get cell’s contents

Get pointer to character array data
Get mxArray s class

Get mxArray s class

Get pointer to data

Get pointer to dimensions array

Get number of bytes required to store
each data element

Get value of eps

Get field value, given field name and
index in structure array

Get field value, given field number
and index in structure array

Get field name, given field number in
structure array

Get field number, given field name in
structure array

Get pointer to imaginary data of
mxArray

Get value of infinity

Get ir array of sparse matrix
Get jc array of sparse matrix
Get pointer to logical array data

Get number of rows

102

mxGetN

mxGetName (Obsolete)

mxGetNaN

mxGetNumberOfDimensions
mxGetNumberOfElements
mxGetNumberOfFields

mxGetNzmax

mxGetPi

mxGetPr

mxGetScalar

mxGetString

mxIsCell
mxIsChar

mxIsClass
mxIsComplex

mxIsDouble

mxISEmpty

mxIsFinite

mxIsFromGlobalWs

103

Get number of columns or number of
elements

Get name of specified mxArray
Get the value of NaN

Get number of dimensions

Get number of elements in array

Get number of fields in structure
mxArray

Get number of elements in ir, pr, and
pi arrays

Get mxArray’s imaginary data
elements

Get mxArray’s real data elements

Get real component of mxArray s first
data element

Copy string mxArray s data into
C-style string

True if cell mxArray
True if string mxArray

True if mxArray is member of
specified class

True if data is complex

True if mxArray represents its data as
double-precision, floating-point
numbers

True if mxArray is empty
True if value is finite

True if mxArray was copied from the
MATLAB global workspace

mxIsFull (Obsolete)
mxIsInf

mxIsInt8

mxIsInt16

mxIsInt32

mxIsLogical

mxIsLogicalScalar

mxIsLogicalScalarTrue

mxIsNaN
mxIsNumeric

mxIsSingle

mxIsSparse
mxIsString (Obsolete)
mxIsStruct

mxIsUint8

mxIsUint16

mxIsUint32

mxMalloc

mxRealloc

Use mxIsSparse
True if value is infinite

True if mxArray represents its data as
signed 8-bit integers

True if mxArray represents its data as
signed 16-bit integers

True if mxArray represents its data as
signed 32-bit integers

True if mxArray is Boolean

True if scalar mxArray of class
mxLOGICAL

True if scalar mxArray of class
mxLOGICAL is true

True if value is NaN
True if mxArray is numeric

True if mxArray represents its data as
single-precision, floating-point
numbers

True if sparse mxArray
Use mxIsChar
True if structure mxArray

True if mxArray represents its data as
unsigned 8-bit integers

True if mxArray represents its data as
unsigned 16-bit integers

True if mxArray represents its data as
unsigned 32-bit integers

Allocate dynamic memory using the
MATLAB memory manager

Reallocate memory

104

mxRemoveField

mxSetAllocFcns

mxSetCell

mxSetClassName

mxSetData
mxSetDimensions

mxSetField

mxSetFieldByNumber

mxSetImagData

mxSetIr

mxSetdJc

mxSetLogical (Obsolete)
mxSetM

mxSetN

mxSetName (Obsolete)

mxSetNzmax

mxSetPi

mxSetPr

105

Remove field from structure array

Register memory allocation/
deallocation functions in stand-alone
engine or MAT application

Set value of one cell

Convert MATLAB structure array to
MATLAB object array

Set pointer to data
Modify number/size of dimensions

Set field value of structure array,
given field name/index

Set field value in structure array,
given field number/index

Set imaginary data pointer for
mxArray

Set ir array of sparse mxArray
Set jc array of sparse mxArray
Set logical flag

Set number of rows

Set number of columns

Set name of mxArray

Set storage space for nonzero
elements

Set new imaginary data for mxArray

Set new real data for mxArray

mxAddField

Purpose

C Syntax

Arguments

Returns

Description

See Also

Add a field to a structure array

#include "matrix.h"
extern int mxAddField(mxArray array_ptr, const char *field_name);

array_ptr

Pointer to a structure mxArray.
field_name

The name of the field you want to add.

Field number on success or -1 if inputs are invalid or an out of memory
condition occurs.

Call mxAddField to add a field to a structure array. You must then create the
values with the mxCreate* functions and use mxSetFieldByNumber to set the

individual values for the field.

mxRemoveField, mxSetFieldByNumber

106

mxArrayToString

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

107

Convert arrays to strings

#include "matrix.h"
char *mxArrayToString(const mxArray *array_ptr);

array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

A C-style string. Returns NULL on out of memory.
Call mxArrayToString to copy the character data of a string mxArray into a

C-style string. The C-style string is always terminated with a NULL character.

Ifthe string array contains several rows, they are copied, one column at a time,
into one long string array. This function is similar to mxGetString, except that:

¢ Tt does not require the length of the string as an input.

¢ [t supports multibyte character sets.

mxArrayToString does not free the dynamic memory that the char pointer
points to. Consequently, you should typically free the string (using mxFree)
immediately after you have finished using it.

See mexatexit.c in the mex subdirectory of the examples directory.
For additional examples, see mxcreatecharmatrixfromstr.c and
mxislogical.c in the mx subdirectory of the examples directory.

mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString,
mxGetString

mxAssert

Purpose

C Syntax

Arguments

Description

Check assertion value for debugging purposes

#include "matrix.h"
void mxAssert(int expr, char *error_message);

expr
Value of assertion.

error_message
Description of why assertion failed.

Similar to the ANSI C assert () macro, mxAssert checks the value of an
assertion, and continues execution only if the assertion holds. If expr evaluates
to true, mxAssert does nothing. If expr is false, mxAssert prints an error to
the MATLAB command window consisting of the failed assertion’s expression,
the filename and line number where the failed assertion occurred, and the
error_message string. The error_message string allows you to specify a better
description of why the assertion failed. Use an empty string if you don’t want
a description to follow the failed assertion message.

After a failed assertion, control returns to the MATLAB command line.

Note that the MEX script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only. Build the
mex file using the syntax, mex -g filename, in order to use mxAssert.

Assertions are a way of maintaining internal consistency of logic. Use them to
keep yourself from misusing your own code and to prevent logical errors from
propagating before they are caught; do not use assertions to prevent users of
your code from misusing it.

Assertions can be taken out of your code by the C preprocessor. You can use
these checks during development and then remove them when the code works
properly, letting you use them for troubleshooting during development without
slowing down the final product.

108

mxAssertS

Purpose

C Syntax

Arguments

Description

109

Check assertion value for debugging purposes; doesn’t print assertion’s text

#include "matrix.h"
void mxAssertS(int expr, char *error_message);

expr
Value of assertion.

error_message
Description of why assertion failed.

Similar to mxAssert, except mxAssertS does not print the text of the failed
assertion. mxAssertS checks the value of an assertion, and continues execution
only if the assertion holds. If expr evaluates to true, mxAssertS does nothing.
If expris false, mxAssertS prints an error to the MATLAB command window
consisting of the filename and line number where the assertion failed and the
error_message string. The error_message string allows you to specify a better
description of why the assertion failed. Use an empty string if you don’t want
a description to follow the failed assertion message.

After a failed assertion, control returns to the MATLAB command line.

Note that the mex script turns off these assertions when building optimized
MEX-functions, so you should use this for debugging purposes only. Build the
mex file using the syntax, mex -g filename, in order to use mxAssert.

mxCalcSingleSubscript

Purpose

C Syntax

Arguments

Returns

Description

Return the offset (index) from the first element to the desired element

#include <matrix.h>
int mxCalcSingleSubscript(const mxArray *array_ptr, int nsubs,
int *subs);

array_ptr
Pointer to an mxArray.

nsubs
The number of elements in the subs array. Typically, you set nsubs equal to the
number of dimensions in the mxArray that array_ptr points to.

subs

An array of integers. Each value in the array should specify that dimension’s
subscript. The value in subs[0] specifies the row subscript, and the value in
subs[1] specifies the column subscript. Note that mxCalcSingleSubscript
views 0 as the first element of an mxArray, but MATLAB sees 1 as the first
element of an mxArray. For example, in MATLAB, (1,1) denotes the starting
element of a two-dimensional mxArray; however, to express the starting
element of a two-dimensional mxArray in subs, you must set subs[0] to 0 and
subs[1] to 0.

The number of elements between the start of the mxArray and the specified
subscript. This returned number is called an “index”; many mx routines (for
example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, then

mxCalcSingleSubscript returns N-1 (where N is the total number of elements).

Call mxCalcSingleSubscript to determine how many elements there are
between the beginning of the mxArray and a given element of that mxArray. For
example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the (0,0) element of the array to the (5,7) element. Remember
that the mxArray data type internally represents all data elements in a
one-dimensional array no matter how many dimensions the MATLAB mxArray
appears to have.

MATLAB uses a column-major numbering scheme to represent data elements
internally. That means that MATLAB internally stores data elements from the

110

mxCalcSingleSubscript

first column first, then data elements from the second column second, and so
on through the last column. For example, suppose you create a 4-by-2 variable.
It is helpful to visualize the data as shown below.

g|la|w| =
== R O N NG!

Although in fact, MATLAB internally represents the data as the following:

A B C D E F G H

Index Index Index Index Index Index Index Index

If an mxArray is N-dimensional, then MATLAB represents the data in N-major
order. For example, consider a three-dimensional array having dimensions
4-by-2-by-3. Although you can visualize the data as

111

mxCalcSingleSubscript

Examples

.
.
::\
\

Hlw| w90

M| =] <

gl Q| w| »

T e H "

Page 1

Page 3

MATLAB internally represents the data for this three-dimensional array in
the order shown below:

Al B| C| D E G HI K M N O Q T| U V| WX
0] 1 3 6| 7| 8 1 1/ 1] 1 1 1| 2| 2| 2| 2
0 2| 3| 4 6 91 0] 1| 2| 3

Avoid using mxCalcSingleSubscript to traverse the elements of an array. It is
more efficient to do this by finding the array’s starting address and then using
pointer auto-incrementing to access successive elements. For example, to find
the starting address of a numerical array, call mxGetPr or mxGetPi.

See mxcalcsinglesubscript.c in the mx subdirectory of the examples

directory.

112

mxCalloc

Purpose

C Syntax

Arguments

Returns

Description

113

Allocate dynamic memory using the MATLAB memory manager

#include "matrix.h"
#include <stdlib.h>
void *mxCalloc(size_t n, size_t size);

n
Number of elements to allocate. This must be a nonnegative number.

size
Number of bytes per element. (The C sizeof operator calculates the number of
bytes per element.)

A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

MATLAB applications should always call mxCalloc rather than calloc to
allocate memory. Note that mxCalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxCalloc automatically

¢ Allocates enough contiguous heap space to hold n elements.
¢ Initializes all n elements to 0.

® Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file’s parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxCalloc defaults to calling the ANSI C
calloc function. If this default behavior is unacceptable, you can write your
own memory allocation routine, and then register this routine with
mxSetAllocFcns. Then, whenever mxCalloc is called, mxCalloc calls your
memory allocation routine instead of calloc.

mxCalloc

Examples

See Also

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. If you want the memory to persist after
the MEX-file completes, call nexMakeMemoryPersistent after calling mxCalloc.
Ifyou write a MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxCalloc, call mxFree.
mxFree deallocates the memory.

See explore.c in the mex subdirectory of the examples directory, and
phonebook.c and revord.c in the refbook subdirectory of the examples
directory.

For additional examples, see mxcalcsinglesubscript.c, mxsetallocfcns.c,
and mxsetdimensions.c in the mx subdirectory of the examples directory.

mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent, mxMalloc, mxSetAllocFcns

114

mxChar

Purpose
C Syntax

Description

Examples

See Also

115

Data type that string mxArrays use to store their data elements
typedef Uint16 mxChar;

All string mxArrays store their data elements as mxChar rather than as char.
The MATLAB API defines an mxChar as a 16-bit unsigned integer.
See mxmalloc.c in the mx subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory and mxcreatecharmatrixfromstr.c in the mx subdirectory
of the examples directory.

mxCreateCharArray

mxClassID

Purpose

C Syntax

Constants

Enumerated data type that identifies an mxArray s class (category)

typedef enum {
mxUNKNOWN_CLASS = 0,
mxCELL_CLASS,
mxSTRUCT_CLASS,
mxOBJECT _CLASS,
mxCHAR_CLASS,
mxLOGICAL_CLASS,
mxDOUBLE_CLASS,
mxSINGLE_CLASS,
mxINT8_CLASS,
mxUINT8_CLASS,
mxINT16_CLASS,
mxUINT16_CLASS,
mxINT32_CLASS,
mxUINT32_CLASS,
mxINT64 CLASS, /* place holder - future enhancements */
mxUINT64_ CLASS, /* place holder - future enhancements */
mxFUNCTION_CLASS

} mxClassID;

mXUNKNOWN_CLASS

The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxOBJECT CLASS
Identifies a user-defined (nonstandard) mxArray.

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR’s.

116

mxClassiD

Description

Examples

See Also

117

mxLOGICAL_CLASS
Identifies a logical mxArray; that is, an mxArray that stores Boolean elements,
true and false.

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64_CLASS
Reserved for possible future use.

mxUINT64_CLASS
Reserved for possible future use.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

Various mx calls require or return an mxClassID argument. mxClassID
identifies the way in which the mxArray represents its data elements.

See explore.c in the mex subdirectory of the examples directory.

mxCreateNumericArray

mxClearlogical (Obsolete)

Purpose

C Syntax

Arguments

Description

Examples

See Also

Clear the logical flag

Note As of MATLAB version 6.5, mxClearLogical is obsolete. Support for
mxClearLogical may be removed in a future version.

#include "matrix.h"
void mxClearLogical(mxArray *array ptr);

array_ptr
Pointer to an mxArray having a numeric class.

Use mxClearLogical to turn off the mxArray’s logical flag. This flag, when
cleared, tells MATLAB to treat the mxArray’s data as numeric data rather than
as Boolean data. If the logical flag is on, then MATLAB treats a 0 value as
meaning false and a nonzero value as meaning true.

Call mxCreateLogicalScalar, mxCreatelLogicalMatrix,
mxCreateNumericArray, or mxCreateSparseLogicalMatrix to turn on the
mxArray’s logical flag. For additional information on the use of logical variables
in MATLAB, type help logical at the MATLAB prompt.

See mxislogical.c in the mx subdirectory of the examples directory.

mxIsLogical

118

mxComplexity

Purpose
C Syntax

Constants

Description

Examples

See Also

119

Flag that specifies whether an mxArray has imaginary components
typedef enum mxComplexity {mxREAL=0, mxCOMPLEX};

mxREAL
Identifies an mxArray with no imaginary components.

mxCOMPLEX
Identifies an mxArray with imaginary components.

Various mx calls require an mxComplexity argument. You can set an mxComplex
argument to either mxREAL or mxCOMPLEX.

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

mxCreateNumericArray, mxCreateDoubleMatrix, mxCreateSparse

mxCreateCellArray

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Create unpopulated N-dimensional cell mxArray

#include "matrix.h"
mxArray *mxCreateCellArray(int ndim, const int *dims);

ndim
The desired number of dimensions in the created cell. For example, to create a
three-dimensional cell mxArray, set ndim to 3.

dims

The dimensions array. Each element in the dimensions array contains the size
of the mxArray in that dimension. For example, setting dims[0] to 5 and
dims[1] to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. The most common cause of failure is insufficient free heap
space.

Use mxCreateCellArray to create a cell mxArray whose size is defined by ndim
and dims. For example, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;
dims[0] = 4; dims[1] = 8; dims[2] = 7;

The created cell mxArray is unpopulated; that is, mxCreateCellArray
initializes each cell to NULL. To put data into a cell, call mxSetCell.

See phonebook.c in the refbook subdirectory of the examples directory.

mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

120

mxCreateCellMatrix

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

121

Create unpopulated two-dimensional cell mxArray

#include "matrix.h"
mxArray *mxCreateCellMatrix(int m, int n);

m
The desired number of rows.

n
The desired number of columns.

A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCellMatrix to be unsuccessful.

Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray.
The created cell mxArray is unpopulated; that is, mxCreateCellMatrix
initializes each cell to NULL. To put data into cells, call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions
greater than 1.

See mxcreatecellmatrix.c in the mx subdirectory of the examples directory.

mxCreateCellArray

mxCreateCharArray

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Create unpopulated N-dimensional string mxArray

#include "matrix.h"
mxArray *mxCreateCharArray(int ndim, const int *dims);

ndim

The desired number of dimensions in the string mxArray. You must specify a
positive number. If you specify 0, 1, or 2, mxCreateCharArray creates a
two-dimensional mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. The dims array must have at least ndim
elements.

A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCharArray to be unsuccessful.

Call mxCreateCharArray to create an unpopulated N-dimensional string
mxArray.

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

mxCreateCharMatrixFromStrings, mxCreateString

122

mxCreateCharMatrixFromStrings

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

123

Create populated two-dimensional string mxArray

#include "matrix.h"
mxArray *mxCreateCharMatrixFromStrings(int m, const char **str);

m
The desired number of rows in the created string mxArray. The value you
specify for m should equal the number of strings in str.

str
A pointer to a list of strings. The str array must contain at least m strings.

A pointer to the created string mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharMatrixFromStrings
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates and
control returns to the MATLAB prompt. Insufficient free heap space is the
primary reason for mxCreateCharArray to be unsuccessful. Another possible
reason for failure is that str contains fewer than m strings.

Use mxCreateCharMatrixFromStrings to create a two-dimensional string
mxArray, where each row is initialized to a string from str. The created
mxArray has dimensions m-by-max, where max is the length of the longest
string in str.

Note that string mxArrays represent their data elements as mxChar rather than
as char.

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the examples
directory.

mxCreateCharArray, mxCreateString, mxGetString

mxCreateDoubleMatrix

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Create unpopulated two-dimensional, double-precision, floating-point mxArray

#include "matrix.h"
mxArray *mxCreateDoubleMatrix(int m, int n,
mxComplexity ComplexFlag);

m
The desired number of rows.

n
The desired number of columns.

ComplexFlag

Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data has some imaginary
components, specify mxCOMPLEX.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateDoubleMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Use mxCreateDoubleMatrix to create an m-by-n mxArray.
mxCreateDoubleMatrix initializes each element in the pr array to 0. If you set
ComplexFlag to mxCOMPLEX, mxCreateDoubleMatrix also initializes each
element in the pi array to 0.

If you set ComplexFlag to mxREAL, mxCreateDoubleMatrix allocates enough
memory to hold m-by-n real elements. If you set ComplexFlag to mxCOMPLEX,
mxCreateDoubleMatrix allocates enough memory to hold m-by-n real elements
and m-by-n imaginary elements.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

See convec.c, findnz.c, sincall.c, timestwo.c, timestwoalt.c, and
xtimesy.c in the refbook subdirectory of the examples directory.

mxCreateNumericArray, mxComplexity

124

mxCreateDoubleScalar

Purpose

C Syntax

Arguments

Returns

Description

See Also

125

Create scalar, double-precision array initialized to the specified value

Note This function replaces mxCreateScalarDouble in version 6.5 of
MATLAB. mxCreateScalarDouble is still supported in version 6.5, but may be
removed in a future version.

#include "matrix.h"
mxArray *mxCreateDoubleScalar(double value);

value
The desired value to which you want to initialize the array.

A pointer to the created mxArray, if successful. mxCreateDoubleScalar is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateDoubleScalar is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateDoubleScalar is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleScalar returns NULL.

Call mxCreateDoubleScalar to create a scalar double mxArray.
mxCreateDoubleScalar is a convenience function that can be used in place of
the following code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

mxGetPr, mxCreateDoubleMatrix

mxCreateFull (Obsolete)

V4 Com patible This API function is obsolete and is not supported in MATLAB 5 or later. If you
need to use this function in existing code, use the -V4 option of the mex script.

Use

mxCreateDoubleMatrix

instead of

mxCreateFull

See Also mxCreateDoubleMatrix

126

mxCreatelogicalArray

Purpose

C Syntax

Arguments

Returns

Description

See Also

127

Create N-dimensional logical mxArray initialized to false

#include "matrix.h"
mxArray *mxCreateLogicalArray(int ndim, const int *dims);

ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateLogicalArray automatically sets the number of dimensions to 2.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. There should be ndim elements in the dims

array.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateLogicalArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateLogicalArray is unsuccessful when there is not
enough free heap space to create the mxArray.

Call mxCreateLogicalArray to create an N-dimensional mxArray of logical
(true and false) elements. After creating the mxArray, mxCreateLogicalArray
initializes all its elements to false. mxCreateLogicalArray differs from
mxCreateLogicalMatrix in that the latter can create two-dimensional arrays
only.

mxCreateLogicalArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

mxCreateLogicalMatrix, mxCreateSparseLogicalMatrix,
mxCreatelLogicalScalar

mxCreatelogicalMatrix

Purpose

C Syntax

Arguments

Returns

Description

See Also

Create two-dimensional, logical mxArray initialized to false

#include "matrix.h"
mxArray *mxCreatelLogicalMatrix(int m, int n);

m
The desired number of rows.

n
The desired number of columns.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateLogicalMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateLogicalMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Use mxCreateLogicalMatrix to create an m-by-n mxArray of logical (true and
false)elements. mxCreateLogicalMatrix initializes each element in the array
to false.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray.

mxCreatelLogicalArray, mxCreateSparseLogicalMatrix,
mxCreatelLogicalScalar

128

mxCreatelogicalScalar

Purpose

C Syntax

Arguments

Returns

Description

See Also

129

Create scalar, logical mxArray initialized to false

#include "matrix.h"
mxArray *mxCreatelLogicalScalar(mxLOGICAL value);

value
The desired logical value (true or false) to which you want to initialize the
array.

A pointer to the created mxArray, if successful. mxCreatelLogicalScalar is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateLogicalScalar is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateLogicalScalar is unsuccessful in a stand-alone
(nonMEX-file) application, the function returns NULL.

Call mxCreateLogicalScalar to create a scalar logical mxArray.
mxCreateLogicalScalar is a convenience function that can be used in place of
the following code:

pa = mxCreatelLogicalMatrix (1, 1);
*mxGetLogicals(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

mxIsLogicalScalar, mxIsLogicalScalarTrue, mxCreatelLogicalMatrix,
mxCreatelLogicalArray, mxGetLogicals

mxCreateNumericArray

Purpose

C Syntax

Arguments

Returns

Description

Create unpopulated N-dimensional numeric mxArray

#include "matrix.h"
mxArray *mxCreateNumericArray(int ndim, const int *dims,
mxClassID class, mxComplexity ComplexFlag);

ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

class

The way in which the numerical data is to be represented in memory. For
example, specifying mxINT16_CLASS causes each piece of numerical data in the
mxArray to be represented as a 16-bit signed integer. You can specify any class
except for m~xXNUMERIC CLASS, mxSTRUCT CLASS, mxCELL CLASS, or
mxOBJECT_CLASS.

ComplexFlag

Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data will have some
imaginary components, specify mxCOMPLEX.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericArray returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateNumericArray is unsuccessful when there is not
enough free heap space to create the mxArray.

Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by class. After creating
the mxArray, mxCreateNumericArray initializes all its real data elements to 0.
If ComplexFlag equals mxCOMPLEX, mxCreateNumericArray also initializes all
its imaginary data elements to 0. mxCreateNumericArray differs from
mxCreateDoubleMatrix in two important respects:

130

mxCreateNumericArray

Examples

See Also

131

¢ All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray could
be any numerical type, including different integer precisions.

® mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

See phonebook.c and doubleelement.c in the refbook subdirectory of the
examples directory. For an additional example, see mxisfinite.c in the mx
subdirectory of the examples directory.

mxClassID, mxCreateDoubleMatrix, mxCreateSparse, mxCreateString,
mxComplexity

mxCreateNumericMatrix

Purpose

C Syntax

Arguments

Returns

Description

See Also

Create numeric matrix and initialize all its data elements to 0

#include "matrix.h"
mxArray *mxCreateNumericMatrix(int m, int n, mxClassID class,
mxComplexity ComplexFlag);

m
The desired number of rows.

n
The desired number of columns.

class

The way in which the numerical data is to be represented in memory. For
example, specifying mxINT16_CLASS causes each piece of numerical data in the
mxArray to be represented as a 16-bit signed integer. You can specify any
numeric class including mxDOUBLE_CLASS, mxSINGLE CLASS, mxINT8 CLASS,
mxUINT8 CLASS, mxINT16_CLASS, mxUINT16_CLASS, mxINT32 CLASS, and
mxUINT32_CLASS.

ComplexFlag

Specify either mxREAL or mxCOMPLEX. If the data you plan to put into the mxArray
has no imaginary components, specify mxREAL. If the data has some imaginary
components, specify mxCOMPLEX.

A pointer to the created mxArray, if successful. mxCreateNumericMatrix is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateNumericMatrix is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateNumericMatrix is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericMatrix returns NULL.

Call mxCreateNumericMatrix to create an 2-dimensional mxArray in which all
data elements have the numeric data type specified by class. After creating
the mxArray, mxCreateNumericMatrix initializes all its real data elements to O.
If ComplexFlag equals mxCOMPLEX, mxCreateNumericMatrix also initializes all
its imaginary data elements to 0. mxCreateNumericMatrix allocates dynamic
memory to store the created mxArray. When you finish using the mxArray, call
mxDestroyArray to destroy it.

mxCreateNumericArray

132

mxCreateScalarDouble

Purpose

C Syntax

Arguments

Returns

Description

See Also

133

Create scalar, double-precision array initialized to the specified value

Note This function is replaced by mxCreateDoubleScalar in version 6.5 of
MATLAB. mxCreateScalarDouble is still supported in version 6.5, but may be
removed in a future version.

#include "matrix.h"
mxArray *mxCreateScalarDouble(double value);

value
The desired value to which you want to initialize the array.

A pointer to the created mxArray, if successful. mxCreateScalarDouble is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateScalarDouble is unsuccessful in a MEX-file, the MEX-file prints an
“Out of Memory” message, terminates, and control returns to the MATLAB
prompt. If mxCreateScalarDouble is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateScalarDouble returns NULL.

Call mxCreateScalarDouble to create a scalar double mxArray.
mxCreateScalarDouble is a convenience function that can be used in place of
the following code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

mxGetPr, mxCreateDoubleMatrix

mxCreateSparse

Purpose Create two-dimensional unpopulated sparse mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparse(int m, int n, int nzmax,
mxComplexity ComplexFlag);

Arguments m
The desired number of rows.

n
The desired number of columns.

nzmax

The number of elements that mxCreateSparse should allocate to hold the pr,
ir, and, if ComplexFlag is mxCOMPLEX, pi arrays. Set the value of nzmax to be
greater than or equal to the number of nonzero elements you plan to put into
the mxArray, but make sure that nzmax is less than or equal to m*n.

ComplexFlag

Set this value to mxREAL or mxCOMPLEX. If the mxArray you are creating is to
contain imaginary data, then set ComplexFlag to mxCOMPLEX. Otherwise, set
ComplexFlag to mxREAL.

Returns A pointer to the created sparse mxArray if successful, and NULL otherwise. The
most likely reason for failure is insufficient free heap space. If that happens,
try reducing nzmax, m, or n.

Descripﬁon Call mxCreateSparse to create an unpopulated sparse mxArray. The returned
sparse mxArray contains no sparse information and cannot be passed as an
argument to any MATLAB sparse functions. In order to make the returned
sparse mxArray useful, you must initialize the pr, ir, jc, and (if it exists) pi
array.

mxCreateSparse allocates space for:
® A pr array of length nzmax.
® A pi array of length nzmax (but only if ComplexFlag is mxCOMPLEX).

® An ir array of length nzmax.
® A jc array of length n+1.

134

mxCreateSparse

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all
its heap space.

Examples See fulltosparse.c in the refbook subdirectory of the examples directory.
See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetPi, mxSetIr, mxSetdc,
mxComplexity

135

mxCreateSparselogicalMatrix

Purpose

C Syntax

Arguments

Returns

Description

See Also

Create unpopulated two-dimensional, sparse, logical mxArray

#include "matrix.h"
mxArray *mxCreateSparseLogicalMatrix(int m, int n);

m
The desired number of rows.

n
The desired number of columns.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateSparseLogicalMatrix returns NULL. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. mxCreateSparseLogicalMatrix is unsuccessful when there
is not enough free heap space to create the mxArray.

Use mxCreateSparseLogicalMatrix to create an m-by-n mxArray of logical
(true and false) elements. mxCreateSparseLogicalMatrix initializes each
element in the array to false.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its elements.

mxCreatelLogicalMatrix, mxCreateLogicalArray, mxCreatelLogicalScalar,
mxCreateSparse, mxIsLogical

136

mxCreateString

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

137

Create 1-by-n string mxArray initialized to the specified string

#include "matrix.h"
mxArray *mxCreateString(const char *str);

str
The C string that is to serve as the mxArray s initial data.

A pointer to the created string mxArray if successful, and NULL otherwise. The
most likely cause of failure is insufficient free heap space.

Use mxCreateString to create a string mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require string array
inputs.

Free the string mxArray when you are finished using it. To free a string
mxArray, call nxDestroyArray.

See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatestructarray.c, mxisclass.c, and
mxsetallocfcns.c in the mx subdirectory of the examples directory.

mxCreateCharMatrixFromStrings, mxCreateCharArray

mxCreateStructArray

Purpose

C Syntax

Arguments

Returns

Description

Examples

Create unpopulated N-dimensional structure mxArray

#include "matrix.h"
mxArray *mxCreateStructArray(int ndim, const int *dims, int nfields,
const char **field _names);

ndim
Number of dimensions. If you set ndim to be less than 2,
mxCreateNumericArray creates a two-dimensional mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. Typically, the dims array should have ndim
elements.

nfields
The desired number of fields in each element.

field_names
The desired list of field names.

A pointer to the created structure mxArray if successful, and NULL otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Call mxCreateStructArray to create an unpopulated structure mxArray. Each
element of a structure mxArray contains the same number of fields (specified in
nfields). Each field has a name; the list of names is specified in field names.
A structure mxArray in MATLAB is conceptually identical to an array of
structs in the C language.

Each field holds one mxArray pointer. mxCreateStructArray initializes each
field to NULL. Call mxSetField or mxSetFieldByNumber to place a non-NULL
mxArray pointer in a field.

When you finish using the returned structure mxArray, call mxDestroyArray to
reclaim its space.

See mxcreatestructarray.c in the mx subdirectory of the examples directory.

138

mxCreateStructArray

See Also mxDestroyArray, mxSetNzmax

139

mxCreateStructMatrix

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Create unpopulated two-dimensional structure mxArray

#include "matrix.h"
mxArray *mxCreateStructMatrix(int m, int n, int nfields,
const char **field _names);

m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

field names
The desired list of field names.

A pointer to the created structure mxArray if successful, and NULL otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

mxCreateStructMatrix and mxCreateStructArray are almost identical. The
only difference is that mxCreateStructMatrix can only create two-dimensional
mxArrays, while mxCreateStructArray can create mxArrays having two or
more dimensions.

See phonebook.c in the refbook subdirectory of the examples directory.

mxCreateStructArray, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetFieldNumber, mxIsStruct

140

mxDestroyArray

Purpose

C Syntax

Arguments

Description

Examples

See Also

141

Free dynamic memory allocated by an mxCreate routine

#include "matrix.h"
void mxDestroyArray(mxArray *array_ptr);

array_ptr
Pointer to the mxArray that you want to free.

mxDestroyArray deallocates the memory occupied by the specified mxArray.
mxDestroyArray not only deallocates the memory occupied by the mxArray s
characteristics fields (such as m and n), but also deallocates all the mxArray s
associated data arrays (such as pr, pi, ir, and/or jc). You should not call
mxDestroyArray on an mxArray you are returning on the left-hand side.

See sincall.c in the refbook subdirectory of the examples directory.

For additional examples, see mexcallmatlab.c and mexgetarray.c in the mex
subdirectory of the examples directory; see mxisclass.c and
mxsetallocfcns.c in the mx subdirectory of the examples directory.

mxCalloc, mxFree, mexMakeArrayPersistent, mexMakeMemoryPersistent

mxDuplicateArray

Purpose

C Syntax

Arguments

Returns

Description

Examples

Make a deep copy of an array

#include "matrix.h"
mxArray *mxDuplicateArray(const mxArray *in);

in
Pointer to the mxArray that you want to copy.

Pointer to a copy of the array.

mxDuplicateArray makes a deep copy of an array, and returns a pointer to the
copy. A deep copy refers to a copy in which all levels of data are copied. For
example, a deep copy of a cell array copies each cell, and the contents of the
each cell (if any), and so on.

See mexget.c in the mex subdirectory of the examples directory and
phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecellmatrix.c, mxgetinf.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

142

mxFree

Purpose

C Syntax

Arguments

Description

143

Free dynamic memory allocated by mxCalloc

#include "matrix.h"
void mxFree(void *ptr);

ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc.

To deallocate heap space, MATLAB applications should always call mxFree
rather than the ANSI C free function.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications.

In MEX-files, mxFree automatically

e Calls the ANSI C free function, which deallocates the contiguous heap space
that begins at address ptr.

® Removes this memory parcel from the MATLAB memory management
facility’s list of memory parcels.

The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file’s
parcels when control returns to the MATLAB prompt.

By default, when mxFree appears in stand-alone MATLAB applications,
mxFree simply calls the ANSI C free function. If this default behavior is
unacceptable, you can write your own memory deallocation routine and
register this routine with mxSetAllocFcns. Then, whenever mxFree is called,
mxFree calls your memory allocation routine instead of free.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent. However, if an application calls
mexMakeMemoryPersistent, then the specified memory parcel becomes
persistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.
Nevertheless, it is a good programming practice to deallocate memory just as

mxFree

Examples

See Also

soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call nexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see phonebook.c in the refbook subdirectory of the
examples directory; see explore.c and mexatexit.c in the mex subdirectory of
the examples directory; see mxcreatecharmatrixfromstr.c, mxisfinite.c,
mxmalloc.c, mxsetallocfcns.c, and mxsetdimensions.c in the mx
subdirectory of the examples directory.

mxCalloc, mxDestroyArray, mxMalloc, mexMakeArrayPersistent,
mexMakeMemoryPersistent

144

mxFreeMatrix (Obsolete)

v4 Compatible This API function is obsolete and is not supported in MATLAB 5 or later. If you
need to use this function in existing code, use the -V4 option of the mex script.

Use

mxDestroyArray

instead of

mxFreeMatrix

See Also mxDestroyArray

145

mxGetCell

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get a cell’s contents

#include "matrix.h"
mxArray *mxGetCell(const mxArray *array_ptr, int index);

array_ptr
Pointer to a cell mxArray.

index

The number of elements in the cell mxArray between the first element and the
desired one. See mxCalcSingleSubscript for details on calculating an index in
a multidimensional cell array.

A pointer to the ith cell mxArray if successful, and NULL otherwise. Causes of
failure include:

¢ The indexed cell array element has not been populated.

® Specifying an array_ptr that does not point to a cell mxArray.

® Specifying an index greater than the number of elements in the cell.

¢ Insufficient free heap space to hold the returned cell mxArray.

Call mxGetCell to get a pointer to the mxArray held in the indexed element of
the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

See explore.c in the mex subdirectory of the examples directory.

mxCreateCellArray, mxIsCell, mxSetCell

146

mxGetChars

Purpose

C Syntax

Arguments

Returns

Description

See Also

147

Get pointer to character array data

#include "matrix.h"
mxCHAR *mxGetChars(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The address of the first character in the mxArray. Returns NULL if the specified
array is not a character array.

Call mxGetChars to determine the address of the first character in the mxArray
that array_ptr points to. Once you have the starting address, you can access
any other element in the mxArray.

mxGetString, mxGetPr, mxGetPi, mxGetCell, mxGetField, mxGetLogicals,
mxGetScalar

mxGetClassiD

Purpose

C Syntax

Arguments

Returns

Get (as an enumerated constant) an mxArray s class

#include "matrix.h"
mxClassID mxGetClassID(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The class (category) of the mxArray that array_ptr points to. Classes are:

mXUNKNOWN_CLASS

The class cannot be determined. You cannot specify this category for an
mxArray; however, mxGetClassID can return this value if it cannot identify the
class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxOBJECT CLASS
Identifies a user-defined (nonstandard) mxArray.

mxCHAR_CLASS
Identifies a string mxArray; that is an mxArray whose data is represented as
mxCHAR’s.

mxLOGICAL_CLASS
Identifies a logical mxArray; that is, an mxArray that stores logical values
representing true and false.

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as double-precision,
floating-point numbers.

mXSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as single-precision,
floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit integers.

148

mxGetClassID

Description

Examples

See Also

149

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 8-bit integers.

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed 16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed 32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned 32-bit integers.

mxINT64_CLASS
Reserved for possible future use.

mxUINT64_CLASS
Reserved for possible future use.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

Use mxGetClassId to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a logical mxArray, then mxGetClassID returns
mxLOGICAL_CLASS.

mxGetClassIDis similar to mxGetClassName, except that the former returns the
class as an enumerated value and the latter returns the class as a string.

See phonebook.c in the refbook subdirectory of the examples directory and
explore.c in the mex subdirectory of the examples directory.

mxGetClassName

mxGetClassName

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get (as a string) an mxArray s class

#include "matrix.h"
const char *mxGetClassName(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The class (as a string) of array_ptr.

Call mxGetClassName to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if
array_ptr points to a sparse mxArray, then mxGetClassName returns sparse.

mxGetClassIDis similar to mxGetClassName, except that the former returns the
class as an enumerated value and the latter returns the class as a string.

See mexfunction.c in the mex subdirectory of the examples directory. For an
additional example, see mxisclass.c in the mx subdirectory of the examples

directory.

mxGetClassID

150

mxGetData

Purpose

C Syntax

Arguments

Description

Examples

See Also

151

Get pointer to data

#include "matrix.h"
void *mxGetData(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

Similar to mxGetPr, except mxGetData returns a void *. Use mxGetData on
numeric arrays with contents other than double.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxisfinite.c in the mx subdirectory of the examples directory.

mxGetPr

mxGetDimensions

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get a pointer to the dimensions array

#include "matrix.h"
const int *mxGetDimensions(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The address of the first element in a dimension array. Each integer in the
dimensions array represents the number of elements in a particular
dimension. The array is not NULL-terminated.

Use mxGetDimensions to determine how many elements are in each dimension
of the mxArray that array_ptr points to. Call mxGetNumberOfDimensions to get
the number of dimensions in the mxArray.

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

For additional examples, see findnz.c and phonebook.c in the refbook
subdirectory of the examples directory; see explore.c in the mex subdirectory
of the examples directory; see mxgeteps.c and mxisfinite.c in the mx
subdirectory of the examples directory.

mxGetNumberOfDimensions

152

mxGetElementSize

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

153

Get the number of bytes required to store each data element

#include "matrix.h"
int mxGetElementSize(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The number of bytes required to store one element of the specified mxArray, if
successful. Returns 0 on failure. The primary reason for failure is that
array_ptr points to an mxArray having an unrecognized class. If array_ptr
points to a cell mxArray or a structure mxArray, then mxGetElementSize
returns the size of a pointer (not the size of all the elements in each cell or
structure field).

Call mxGetElementSize to determine the number of bytes in each data element
of the mxArray. For example, if the mxClassID of an mxArray is mxINT16_CLASS,
then the mxArray stores each data element as a 16-bit (2 byte) signed integer.
Thus, mxGetElementSize returns 2.

mxGetElementSize is particularly helpful when using a non-MATLAB routine
to manipulate data elements. For example, memcpy requires (for its third
argument) the size of the elements you intend to copy.

See doubleelement.c and phonebook.c in the refbook subdirectory of the
examples directory.

mxGetM, mxGetN

mxGetEps

Purpose

C Syntax

Returns

Description

Examples

See Also

Get value of eps

#include "matrix.h"
double mxGetEps(void);

The value of the MATLAB eps variable.

Call mxGetEps to return the value of the MATLAB eps variable. This variable
holds the distance from 1.0 to the next largest floating-point number. As such,
it is a measure of floating-point accuracy. The MATLAB PINV and RANK
functions use eps as a default tolerance.

See mxgeteps.c in the mx subdirectory of the examples directory.

mxGetInf, mxGetNaN

154

mxGetField

Purpose

C Syntax

Arguments

Returns

Description

155

Get a field value, given a field name and an index in a structure array

#include "matrix.h"
mxArray *mxGetField(const mxArray *array_ptr, int index,
const char *field_name);

array_ptr
Pointer to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray.

field_name
The name of the field whose value you want to extract.

A pointer to the mxArray in the specified field at the specified field name, on
success. Returns NULL if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

® Specifying an array_ptr that does not point to a structure mxArray. To
determine if array_ptr points to a structure mxArray, call mxIsStruct.

¢ Specifying an out-of-range index to an element past the end of the mxArray.
For example, given a structure mxArray that contains 10 elements, you
cannot specify an index greater than 9.

® Specifying a nonexistent field name. Call mxGetFieldNameByNumber or
mxGetFieldNumber to get existing field names.

¢ Insufficient heap space to hold the returned mxArray.

Call mxGetField to get the value held in the specified element of the specified
field. In pseudo-C terminology, mxGetField returns the value at

array_ptr[index].field_name

mxGetFieldByNumber is similar to mxGetField. Both functions return the same
value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes field num as its third argument, and mxGetField
takes field_name as its third argument.

mxGetField

See Also

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field num = mxGetFieldNumber(pa, "field name");
mxGetFieldByNumber(pa, index, field num);

where index is zero if you have a one-by-one structure.

mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

156

mxGetFieldByNumber

Purpose

C Syntax

Arguments

Returns

Description

157

Get a field value, given a field number and an index in a structure array

#include "matrix.h"
mxArray *mxGetFieldByNumber(const mxArray *array_ptr, int index,
int field_number);

array_ptr
Pointer to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for more details on calculating an index.

field_number

The position of the field whose value you want to extract. The first field within
each element has a field number of 0, the second field has a field number of 1,
and so on. The last field has a field number of N-1, where N is the number of
fields.

A pointer to the mxArray in the specified field for the desired element, on
success. Returns NULL if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

® Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to is a structure mxArray.
® Specifying an index < 0 or >= the number of elements in the array.

® Specifying a nonexistent field number. Call mxGetFieldNumber to determine
the field number that corresponds to a given field name.

Call mxGetFieldByNumber to get the value held in the specified field number
at the indexed element.

Note Inputsto a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxGetFieldByNumber

Examples

See Also

Calling
mxGetField(pa, index, "field_name");
is equivalent to calling

field num = mxGetFieldNumber(pa, "field name");
mxGetFieldByNumber(pa, index, field num);

where index is zero if you have a one-by-one structure.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples
directory.

mxGetField, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

158

mxGetFieldNameByNumber

Purpose

C Syntax

Arguments

Returns

Description

Examples

159

Get a field name, given a field number in a structure array

#include "matrix.h"
const char *mxGetFieldNameByNumber(const mxArray *array_ptr,
int field _number);

array_ptr
Pointer to a structure mxArray.

field_number

The position of the desired field. For instance, to get the name of the first field,
set field number to 0; to get the name of the second field, set field number to
1; and so on.

A pointer to the nth field name, on success. Returns NULL on failure. Common
causes of failure include:

® Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

® Specifying a value of field number greater than or equal to the number of
fields in the structure mxArray. (Remember that field number 0 symbolizes
the first field, so index N-1 symbolizes the last field.)

Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop in
order to get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field_number O represents the field name name; field_number 1
represents field name billing; field number 2 represents field name test. A
field number other than 0, 1, or 2 causes mxGetFieldNameByNumber to return
NULL.

See phonebook.c in the refbook subdirectory of the examples directory.

mxGetFieldNameByNumber

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory and explore.c in the mex subdirectory of the examples
directory.

See Also mxGetField, mxIsStruct, mxSetField

160

mxGetFieldNumber

Purpose

C Syntax

Arguments

Returns

Description

161

Get a field number, given a field name in a structure array

#include "matrix.h"
int mxGetFieldNumber(const mxArray *array_ptr,
const char *field name);

array_ptr
Pointer to a structure mxArray.

field_name
The name of a field in the structure mxArray.

The field number of the specified field name, on success. The first field has a
field number of 0, the second field has a field number of 1, and so on. Returns
-1 on failure. Common causes of failure include:

® Specifying an array_ptr that does not point to a structure mxArray. Call
mxIsStruct to determine if array_ptr points to a structure mxArray.

® Specifying the field name of a nonexistent field.

If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know
its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field name "name" has a field number of 0; the field name "billing" has
afield number of 1; and the field name "test" has a field number of 2. If you
call mxGetFieldNumber and specify a field_name of anything other than
"name", "billing", or "test", then mxGetFieldNumber returns -1.

mxGetFieldNumber

Examples

See Also

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field num = mxGetFieldNumber(pa, "field name");
mxGetFieldByNumber(pa, index, field num);

where index is zero if you have a one-by-one structure.
See mxcreatestructarray.c in the mx subdirectory of the examples directory.

mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

162

mxGetimagData

Purpose

C Syntax

Arguments

Description

Examples

See Also

163

Get pointer to imaginary data of an mxArray

#include "matrix.h"
void *mxGetImagData(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

Similar to mxGetPi, except it returns a void *. Use mxGetImagData on numeric
arrays with contents other than double.

See mxisfinite.c in the mx subdirectory of the examples directory.

mxGetPi

mxGetinf

Purpose

C Syntax

Returns

Description

Examples

See Also

Get the value of infinity

#include "matrix.h"
double mxGetInf(void);

The value of infinity on your system.

Call mxGetInf to return the value of the MATLAB internal inf variable. inf is
a permanent variable representing IEEE arithmetic positive infinity. The
value of inf is built into the system; you cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

¢ Operations resulting in overflow. For example, exp (10000) returns infinity
because the result is too large to be represented on your machine.

See mxgetinf.c in the mx subdirectory of the examples directory.

mxGetEps, mxGetNaN

164

mxGetlr

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

165

Get the ir array of a sparse matrix

#include "matrix.h"
int *mxGetIr(const mxArray *array_ptr);

array_ptr
Pointer to a sparse mxArray.

A pointer to the first element in the ir array, if successful, and NULL otherwise.
Possible causes of failure include:
¢ Specifying a full (nonsparse) mxArray.

® Specifying a NULL array_ptr. (This usually means that an earlier call to
mxCreateSparse failed.)

Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetdJc.

See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxsetdimensions.c and mxsetnzmax.c in the mx
subdirectory of the examples directory.

mxGetdc, mxGetNzmax, mxSetIr, mxSetdc, mxSetNzmax

mxGetJc

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get the jc array of a sparse matrix

#include "matrix.h"
int *mxGetdc(const mxArray *array_ptr);

array_ptr
Pointer to a sparse mxArray.

A pointer to the first element in the jc array, if successful, and NULL otherwise.
The most likely cause of failure is specifying an array_ptr that points to a full
(nonsparse) mxArray.

Use mxGetJc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetdc.

See fulltosparse.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxgetnzmax.c, mxsetdimensions.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory.

mxGetIr, mxSetIr, mxSetdc

166

mxGetlogicals

Purpose

C Syntax

Arguments

Returns

Description

See Also

167

Get pointer to logical array data

#include "matrix.h"
mxLOGICAL *mxGetLogicals(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The address of the first logical in the mxArray. Returns NULL if the specified
array is not a logical array.

Call mxGetLogicals to determine the address of the first logical element in the
mxArray that array_ptr points to. Once you have the starting address, you can
access any other element in the mxArray.

mxIsLogical, mxIsLogicalScalar, mxIsLogicalScalarTrue,
mxCreatelLogicalScalar, mxCreatelLogicalMatrix, mxCreateLogicalArray

mxGetM

Purpose

C Syntax

Arguments
Returns

Description

Examples

See Also

Get the number of rows

#include "matrix.h"
int mxGetM(const mxArray *array_ptr);

array_ptr
Pointer to an array.

The number of rows in the mxArray to which array_ptr points.

mxGetM returns the number of rows in the specified array. The term rows
always means the first dimension of the array no matter how many dimensions
the array has. For example, if array_ptr points to a four-dimensional array
having dimensions 8-by-9-by-5-by-3, then mxGetM returns 8.

See convec.c in the refbook subdirectory of the examples directory.

For additional examples, see fulltosparse.c, revord.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
mxmalloc.c and mxsetdimensions.c in the mx subdirectory of the examples
directory; see mexget.c, mexlock.c, mexsettrapflag.c, and yprime.c in the
mex subdirectory of the examples directory.

mxGetN, mxSetM, mxSetN

168

mxGetN

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

169

Get the total number of columns in a two-dimensional mxArray or the total
number of elements in dimensions 2 through N for an m-by-n array.

#include "matrix.h"
int mxGetN(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The number of columns in the mxArray.

Call mxGetN to determine the number of columns in the specified mxArray.

Ifarray_ptris an N-dimensional mxArray, mxGetN is the product of dimensions
2 through N. For example, if array_ptr points to a four-dimensional mxArray
having dimensions 13-by-5-by-4-by-6, then mxGetN returns the value 120
(5x4x6). If the specified mxArray has more than two dimensions and you need
to know exactly how many elements are in each dimension, then call
mxGetDimensions.

If array_ptr points to a sparse mxArray, mxGetN still returns the number of
columns, not the number of occupied columns.

See convec.c in the refbook subdirectory of the examples directory.

For additional examples,
® See fulltosparse.c, revord.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory.

® See explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c in
the mex subdirectory of the examples directory.

® See mxmalloc.c, mxsetdimensions.c, mxgetnzmax.c, and mxsetnzmax.c in
the mx subdirectory of the examples directory.

mxGetM, mxGetNumberOfDimensions, mxSetM, mxSetN

mxGetName (Obsolete)

V5 Compqtible This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB. If you need to
use this function in existing code, use the -V5 option of the mex script.

170

mxGetNaN

Purpose

C Syntax

Returns

Description

Examples

See Also

171

Get the value of NaN (Not-a-Number)

#include "matrix.h"
double mxGetNaN(void);

The value of NaN (Not-a-Number) on your system.

Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE
arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example,

® 0.0/0.0
® Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify it.
See mxgetinf.c in the mx subdirectory of the examples directory.

mxGetEps, mxGetInf

mxGetNumberOfDimensions

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get the number of dimensions

#include "matrix.h"
int mxGetNumberOfDimensions(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The number of dimensions in the specified mxArray. The returned value is
always 2 or greater.

Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call
mxGetDimensions.

See explore.c in the mex subdirectory of the examples directory.

For additional examples, see findnz.c, fulltosparse.c, and phonebook.c in
the refbook subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, and mxisfinite.c in the mx
subdirectory of the examples directory.

mxSetM, mxSetN, mxGetDimensions

172

mxGetNumberOfElements

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

173

Get number of elements in an array

#include "matrix.h"
int mxGetNumberOfElements(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

Number of elements in the specified mxArray.

mxGetNumberOfElements tells you how many elements an array has. For
example, if the dimensions of an array are 3-by-5-by-10, then
mxGetNumberOfElements will return the number 150.

See findnz.c and phonebook.c in the refbook subdirectory of the examples
directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c,
mxisfinite.c, and mxsetdimensions.c in the mx subdirectory of the examples
directory.

mxGetDimensions, mxGetM, mxGetN, mxGetClassID, mxGetClassName

mxGetNumberOfFields

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get the number of fields in a structure mxArray

#include "matrix.h"
int mxGetNumberOfFields(const mxArray *array_ptr);

array_ptr
Pointer to a structure mxArray.

The number of fields, on success. Returns 0 on failure. The most common cause
of failure is that array_ptr is not a structure mxArray. Call mxIsStruct to
determine if array_ptr is a structure.

Call mxGetNumberOfFields to determine how many fields are in the specified
structure mxArray.

Once you know the number of fields in a structure, it is easy to loop through
every field in order to set or to get field values.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxisclass.c in the mx subdirectory of the
examples directory; see explore.c in the mex subdirectory of the examples
directory.

mxGetField, mxIsStruct, mxSetField

174

mxGetNzmax

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

175

Get the number of elements in the ir, pr, and (if it exists) pi arrays

#include "matrix.h"
int mxGetNzmax(const mxArray *array_ptr);

array_ptr
Pointer to a sparse mxArray.

The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that array_ptr points to a full (nonsparse) mxArray.

Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

See mxgetnzmax.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

mxSetNzmax

mxGetPi

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Get an mxArray’s imaginary data elements

#include "matrix.h"
double *mxGetPi(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The imaginary data elements of the specified mxArray, on success. Returns
NULL if there is no imaginary data or if there is an error.

The pi field points to an array containing the imaginary data of the mxArray.
Call mxGetPi to get the contents of the pi field; that is, to get the starting
address of this imaginary data.

The best way to determine if an mxArray is purely real is to call mxIsComplex.
The imaginary parts of all input matrices to a MATLAB function are allocated
if any of the input matrices are complex.

See convec.c, findnz.c, and fulltosparse.c in the refbook subdirectory of

the examples directory.

For additional examples, see explore.c and mexcallmatlab.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgetinf.c, mxisfinite.c, and mxsetnzmax.c in the mx subdirectory of the
examples directory.

mxGetPr, mxSetPi, mxSetPr

176

mxGetPr

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

177

Get an mxArray’s real data elements

#include "matrix.h"
double *mxGetPr(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

The address of the first element of the real data. Returns NULL if there is no real
data.

Call mxGetPr to determine the starting address of the real data in the mxArray
that array_ptr points to. Once you have the starting address, you can access
any other element in the mxArray.

See convec.c, doubleelement.c, findnz.c, fulltosparse.c, sincall.c,
timestwo.c, timestwoalt.c, and xtimesy.c in the refbook subdirectory of the

examples directory.

mxGetPi, mxSetPi, mxSetPr

mxGetScalar

Purpose

C Syntax

Arguments

Returns

Description

Examples

Get the real component of an mxArray s first data element

#include "matrix.h"
double mxGetScalar(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray other than a cell mxArray or a structure mxArray.

The value of the first real (nonimaginary) element of the mxArray. Notice that
mxGetScalar returns a double. Therefore, if real elements in the mxArray are
stored as something other than doubles, mxGetScalar automatically converts
the scalar value into a double. To preserve the original data representation of
the scalar, you must cast the return value to the desired data type.

If array_ptr points to a structure mxArray or a cell mxArray, mxGetScalar
returns 0.0.

If array_ptr points to a sparse mxArray, mxGetScalar returns the value of the
first nonzero real element in the mxArray.

If array_ptr points to an empty mxArray, mxGetScalar returns an
indeterminate value.

Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when array_ptr points to an mxArray
containing only one element (a scalar). However, array _ptr can point to an
mxArray containing many elements. If array_ptr points to an mxArray
containing multiple elements, mxGetScalar returns the value of the first real
element. If array_ptr points to a two-dimensional mxArray, mxGetScalar
returns the value of the (1,1) element; if array_ptr points to a
three-dimensional mxArray, mxGetScalar returns the value of the (1,1,1)
element; and so on.

See timestwoalt.c and xtimesy.c in the refbook subdirectory of the
examples directory.

For additional examples, see mxsetdimensions.c in the mx subdirectory of the
examples directory; see mexget.c, mexlock.c and mexsettrapflag.c in the
mex subdirectory of the examples directory.

178

mxGetScalar

See Also mxGetM, mxGetN

179

mxGetString

Purpose

C Syntax

Arguments

Returns

Description

Copy a string mxArray s data into a C-style string

#include "matrix.h"
int mxGetString(const mxArray *array_ptr, char *buf, int buflen);

array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray having the
mxCHAR_CLASS class.

buf

The starting location into which the string should be written. mxGetString
writes the character data into buf and then terminates the string with a NULL
character (in the manner of C strings). buf can either point to dynamic or static
memory.

buflen

Maximum number of characters to read into buf. Typically, you set buflen to
1 plus the number of elements in the string mxArray to which array_ptr points.
See the mxGetM and mxGetN reference pages to find out how to get the number
of elements.

Note Users of multibyte character sets should be aware that MATLAB packs
multibyte characters into an mxChar (16-bit unsigned integer). When
allocating space for the return string, to avoid possible truncation you should
set

buflen = (mxGetM(prhs[0]) * mxGetN(prhs[0]) * sizeof(mxChar)) + 1

0 on success, and 1 on failure. Possible reasons for failure include:

® Specifying an mxArray that is not a string mxArray.

¢ Specifying buflen with less than the number of characters needed to store
the entire mxArray pointed to by array_ptr. If this is the case, 1 is returned
and the string is truncated.

Call mxGetString to copy the character data of a string mxArray into a C-style
string. The copied C-style string starts at buf and contains no more than

180

mxGetString

buflen-1 characters. The C-style string is always terminated with a NULL
character.

If the string array contains several rows, they are copied, one column at a time,
into one long string array.

Examples See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see explore.c in the mex subdirectory of the
examples directory; see mxmalloc.c and mxsetallocfcns.c in the mx
subdirectory of the examples directory.

See Also mxCreateCharArray, mxCreateCharMatrixFromStrings, mxCreateString

181

mxlIsCell

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if a cell mxArray

#include "matrix.h"
bool mxIsCell(const mxArray *array_ptr);

array_ptr
Pointer to an array.

trueifarray_ptr points to an array having the class mxCELL_CLASS, and false
otherwise.

Use mxIsCell to determine if the specified array is a cell array.

Calling mxIsCell is equivalent to calling

mxGetClassID(array_ptr) == mxCELL_CLASS

Note mxIsCell does not answer the question, “Is this mxArray a cell of a cell
array?”. An individual cell of a cell array can be of any type.

mxIsClass

182

mxlIsChar

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

183

True if a string mxArray

#include "matrix.h"
bool mxIsChar(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

trueifarray_ptr points to an array having the class mxCHAR_CLASS, and false
otherwise.
Use mxIsChar to determine if array_ptr points to string mxArray.
Calling mxIsChar is equivalent to calling
mxGetClassID(array_ptr) == mxCHAR_CLASS
See phonebook.c and revord.c in the refbook subdirectory of the examples
directory.
For additional examples, see mxcreatecharmatrixfromstr.c, mxislogical.c,

and mxmalloc.c in the mx subdirectory of the examples directory.

mxIsClass, mxGetClassID

mxlIsClass

Purpose

C Syntax

Arguments

True if mxArray is a member of the specified class

#include "matrix.h"

bool mxIsClass(const mxArray *array_ptr, const char *name);

array_ptr

Pointer to an array.

name

The array category that you are testing. Specify name as a string (not as an
enumerated constant). You can specify any one of the following predefined

constants:

Value of Name

Corresponding Class

cell

char

double
function handle
int8

int16

int32
logical
single
struct

uint8

uint16
uint32
<class_name>

unknown

mxCELL_CLASS
mXCHAR_CLASS
mxDOUBLE_CLASS
mxFUNCTION_CLASS
mxINT8_CLASS
mxINT16_CLASS
mxINT32_CLASS
mxLOGICAL_CLASS
mxSINGLE_CLASS
mxSTRUCT_CLASS
mxUINT8_CLASS
mxUINT16_CLASS
mxUINT32_CLASS
mxOBJECT_CLASS
mxUNKNOWN_CLASS

184

mxlsClass

Returns

Description

Examples

See Also

185

In the table, <class name> represents the name of a specific MATLAB custom
object.

Or, you can specify one of your own class names.
For example,

mxIsClass("double");

is equivalent to calling

mxIsDouble(array_ptr);

which is equivalent to calling

strcmp (mxGetClassName (array_ptr), "double");

Note that it is most efficient to use the mxIsDouble form.

true if array_ptr points to an array having category name, and false
otherwise.

Each mxArray is tagged as being a certain type. Call mxIsClass to determine if
the specified mxArray has this type.

See mxisclass.c in the mx subdirectory of the examples directory.

mxIsEmpty, mxGetClassID, mxClassID

mxIsComplex

Purpose

C Syntax

Returns

Description

Examples

See Also

True if data is complex

#include "matrix.h"
bool mxIsComplex(const mxArray *array_ptr);

true if array_ptr is a numeric array containing complex data, and false
otherwise. If array_ptr points to a cell array or a structure array, then
mxIsComplex returns false.

Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is NULL if an mxArray is purely real
and does not have any imaginary data. If an mxArray is complex, pi points to
an array of numbers.

See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see convec.c, phonebook.c, timestwo.c, and
xtimesy.c in the refbook subdirectory of the examples directory; see
explore.c, yprime.c, mexlock.c, and mexsettrapflag.c in the mex
subdirectory of the examples directory; see mxcalcsinglesubscript.c,
mxgeteps.c, and mxgetinf.c in the mx subdirectory of the examples directory.

mxIsNumeric

186

mxIisDouble

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

187

True if mxArray represents its data as double-precision, floating-point numbers

#include "matrix.h"
bool mxIsDouble(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray stores its data as double-precision, floating-point numbers,
and false otherwise.

Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB version 5, MATLAB
can store real and imaginary data in a variety of numerical formats.

Calling mxIsDouble is equivalent to calling

mxGetClassID(array_ptr == mxDOUBLE_CLASS)
See findnz.c, fulltosparse.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory.

For additional examples, see mexget.c, mexlock.c, mexsettrapflag.c, and
yprime.c in the mex subdirectory of the examples directory; see
mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c, and mxisfinite.c in
the mx subdirectory of the examples directory.

mxIsClass, mxGetClassID

mxIsEmpty

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

True if mxArray is empty

#include "matrix.h"
bool mxIsEmpty(const mxArray *array_ptr);

array_ptr
Pointer to an array.

true if the mxArray is empty, and false otherwise.

Use mxIsEmpty to determine if an mxArray contains no data. An mxArray is
empty if the size of any of its dimensions is 0.

Note that mxIsEmpty is not the opposite of mxIsFull.
See mxisfinite.c in the mx subdirectory of the examples directory.

mxIsClass

188

mxIsFinite

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

189

True if value is finite

#include "matrix.h"
bool mxIsFinite(double value);

value
The double-precision, floating-point number that you are testing.

true if value is finite, and false otherwise.

Call mxIsFinite to determine whether or not value is finite. A number is finite
if it is greater than - Inf and less than Inf.

See mxisfinite.c in the mx subdirectory of the examples directory.

mxIsInf, mxIsNaN

mxIsFromGlobalWs$s

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

True if the mxArray was copied from the MATLAB global workspace

#include "matrix.h"
bool mxIsFromGlobalWS(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array was copied out of the global workspace, and false otherwise.

mxIsFromGlobalWs is useful for stand-alone MAT programs. mexIsGlobal tells
you if the pointer you pass actually points into the global workspace.

See matdgns.c and matcreat.c in the eng_mat subdirectory of the examples
directory.

mexIsGlobal

190

mxIsFull (Obsolete)

v4 Compatible This API function is obsolete and is not supported in MATLAB 5 or later. If you
need to use this function in existing code, use the -V4 option of the mex script.

Use
if(!mxIsSparse(prhs[0]))

instead of

if (mxIsFull(prhs[0]))

See Also mxIsSparse

191

mxIsinf

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

True if value is infinite

#include "matrix.h"
bool mxIsInf(double value);

value
The double-precision, floating-point number that you are testing.

true if value is infinite, and false otherwise.

Call mxIsInf to determine whether or not value is equal to infinity or minus
infinity. MATLAB stores the value of infinity in a permanent variable named
Inf, which represents IEEE arithmetic positive infinity. The value of the
variable, Inf, is built into the system; you cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

¢ Operations resulting in overflow. For example, exp (10000) returns infinity
because the result is too large to be represented on your machine.

If value equals NaN (Not-a-Number), then mxIsInf returns false. In other
words, NaN is not equal to infinity.

See mxisfinite.c in the mx subdirectory of the examples directory.

mxIsFinite, mxIsNaN

192

mxlisint8

Purpose

C Syntax

Arguments

Returns

Description

See Also

193

True if mxArray represents its data as signed 8-bit integers

#include "matrix.h"
bool mxIsInt8(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as signed 8-bit integers, and false otherwise.

Use mxIsInt8 to determine whether or not the specified array represents its
real and imaginary data as 8-bit signed integers.
Calling mxIsInt8 is equivalent to calling

mxGetClassID(array_ptr) == mxINT8_ CLASS

mxIsClass, mxGetClassID

mxlsint16

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as signed 16-bit integers

#include "matrix.h"
bool mxIsInt16(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as signed 16-bit integers, and false otherwise.

Use mxIsInt16 to determine whether or not the specified array represents its
real and imaginary data as 16-bit signed integers.

Calling mxIsInt16 is equivalent to calling

mxGetClassID(array_ptr) == mxINT16_CLASS

mxIsClass, mxGetClassID

194

mxlisint32

Purpose

C Syntax

Arguments

Returns

Description

See Also

195

True if mxArray represents its data as signed 32-bit integers

#include "matrix.h"
bool mxIsInt32(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as signed 32-bit integers, and false otherwise.

Use mxIsInt32 to determine whether or not the specified array represents its
real and imaginary data as 32-bit signed integers.
Calling mxIsInt32 is equivalent to calling

mxGetClassID(array_ptr) == mxINT32_CLASS

mxIsClass, mxGetClassID

mxlIsLogical

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

True if mxArray is of class mxLOGICAL

#include "matrix.h"
bool mxIsLogical(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true ifthe mxArray slogical flagis on, and false otherwise. If an mxArray does
not hold numeric data (for instance, if array_ptr points to a structure mxArray
or a cell mxArray), then mxIsLogical automatically returns False.

Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical) or numerical (not logical).

If an mxArray is logical, then MATLAB treats all zeros as meaning false and
all nonzero values as meaning true. For additional information on the use of
logical variables in MATLAB, type help logical at the MATLAB prompt.

See mxislogical.c in the mx subdirectory of the examples directory.

mxIsClass, mxSetLogical (Obsolete)

196

mxlIsLogicalScalar

Purpose

C Syntax

Arguments

Returns

Description

See Also

197

True if scalar mxArray of class mxLOGICAL

#include "matrix.h"
bool mxIsLogicalScalar(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray is of class mxLOGICAL and has 1-by-1 dimensions, and false
otherwise.

UsemxIslLogicalScalar todetermine whether MATLAB treats the scalar data
in the mxArray as logical or numerical. For additional information on the use of
logical variables in MATLAB, type help logical at the MATLAB prompt.

mxIsLogicalScalar(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1

mxIsLogicalScalarTrue, mxIsLogical, mxGetLogicals, mxGetScalar

mxlIsLogicalScalarTrue

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if scalar mxArray of class mxLOGICAL is true

#include "matrix.h"
bool mxIsLogicalScalarTrue(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the value of the mxArray s logical, scalar element is true, and false
otherwise.

Use mxIsLogicalScalarTrue to determine whether the value of a scalar
mxArray is true or false. For additional information on the use of logical
variables in MATLAB, type help logical at the MATLAB prompt.

mxIsLogicalScalarTrue(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1 &&
mxGetLogicals(pa)[0] == true

mxIsLogicalScalar, mxIsLogical, mxGetLogicals, mxGetScalar

198

mxIisNaN

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

199

True if value is NaN (Not-a-Number)

#include "matrix.h"
bool mxIsNaN(double value);

value
The double-precision, floating-point number that you are testing.

true if value is NaN (Not-a-Number), and false otherwise.

Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as

® 0.0/0.0

® Inf-Inf

The system understands a family of bit patterns as representing NaN. In other
words, NaN is not a single value, rather it is a family of numbers that MATLAB
(and other IEEE-compliant applications) use to represent an error condition or
missing data.

See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see findnz.c and fulltosparse.c in the refbook
subdirectory of the examples directory.

mxIsFinite, mxIsInf

mxIsNumeric

Purpose

C Syntax

Arguments

Returns

Description

Examples

True if mxArray is numeric

#include "matrix.h"
bool mxIsNumeric(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array’s storage type is:

® mxDOUBLE_CLASS
® mxSINGLE_CLASS
® mxINT8_ CLASS

® mxUINT8_CLASS
® mxINT16_CLASS
® mxUINT16_CLASS
® mxINT32_CLASS
® mxUINT32_CLASS

false if the array’s storage type is:

* mxCELL_CLASS
* mXxCHAR_CLASS

* mxFUNCTION_CLASS
* mxLOGICAL_CLASS
* mXOBJECT_CLASS

* mxSTRUCT_CLASS

* mxUNKNOWN_CLASS

Call mxIsNumeric to determine if the specified array contains numeric data. If

the specified array is a cell, string, or a structure, then mxIsNumeric returns
false. Otherwise, mxIsNumeric returns true.

Call mxGetClassID to determine the exact storage type.

See phonebook.c in the refbook subdirectory of the examples directory.

200

mxIsNumeric

See Also mxGetClassID

201

mxlIsSingle

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as single-precision, floating-point numbers

#include "matrix.h"
bool mxIsSingle(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the array stores its data as single-precision, floating-point numbers,
and false otherwise.

Use mxIsSingle to determine whether or not the specified array represents its
real and imaginary data as single-precision, floating-point numbers.

Calling mxIsSingle is equivalent to calling

mxGetClassID(array_ptr) == mxSINGLE_CLASS

mxIsClass, mxGetClassID

202

mxIsSparse

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

203

True if a sparse mxArray

#include "matrix.h"
bool mxIsSparse(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if array_ptr points to a sparse mxArray, and false otherwise. A false
return value means that array_ptr points to a full mxArray or that array_ptr
does not point to a legal mxArray.

Use mxIsSparse to determine if array ptr points to a sparse mxArray. Many
routines (for example, mxGetIr and mxGetJc) require a sparse mxArray as
input.

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxgetnzmax.c, mxsetdimensions.c, and

mxsetnzmax.c in the mx subdirectory of the examples directory.

mxGetIr, mxGetdc

mxlIsString (Obsolete)

V4 Com patible This API function is obsolete and is not supported in MATLAB 5 or later. If you
need to use this function in existing code, use the -V4 option of the mex script.

Use

mxIsChar

instead of

mxIsString

See Also mxChar, mxIsChar

204

mxlIsStruct

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

205

True if a structure mxArray

#include "matrix.h"
bool mxIsStruct(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if array_ptr points to a structure array, and false otherwise.
UsemxIsStructtodetermineifarray ptr points to a structure mxArray. Many
routines (for example, mxGetFieldName and mxSetField) require a structure
mxArray as an argument.

See phonebook.c in the refbook subdirectory of the examples directory.

mxCreateStructArray, mxCreateStructMatrix, mxGetNumberOfFields,
mxGetField, mxSetField

mxIsUint8

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as unsigned 8-bit integers

#include "matrix.h"
bool mxIsInt8(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray stores its data as unsigned 8-bit integers, and false
otherwise.

Use mxIsInt8 to determine whether or not the specified mxArray represents its
real and imaginary data as 8-bit unsigned integers.
Calling mxIsUint8 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT8_CLASS

mxGetClassID, mxIsClass, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint16,
mxIsUint32

206

mxIsUint16

Purpose

C Syntax

Arguments

Returns

Description

See Also

207

True if mxArray represents its data as unsigned 16-bit integers

#include "matrix.h"
bool mxIsUint16(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray stores its data as unsigned 16-bit integers, and false
otherwise.

Use mxIsUint16 to determine whether or not the specified mxArray represents
its real and imaginary data as 16-bit unsigned integers.
Calling mxIsUint16 is equivalent to calling

mxGetClassID(array ptr) == mxUINT16_CLASS

mxGetClassID, mxIsClass, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint16,
mxIsUint32

mxlsUint32

Purpose

C Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as unsigned 32-bit integers

#include "matrix.h"
bool mxIsUint32(const mxArray *array_ptr);

array_ptr
Pointer to an mxArray.

true if the mxArray stores its data as unsigned 32-bit integers, and false
otherwise.

Use mxIsUint32 to determine whether or not the specified mxArray represents
its real and imaginary data as 32-bit unsigned integers.
Calling mxIsUint32 is equivalent to calling

mxGetClassID(array_ptr) == mxUINT32_CLASS

mxIsClass, mxGetClassID, mxIsUint16, mxIsUint8, mxIsInt32, mxIsInt16,
mxIsInt8

208

mxMalloc

Purpose

C Syntax

Arguments

Returns

Description

209

Allocate dynamic memory using the MATLAB memory manager

#include "matrix.h"
#include <stdlib.h>
void *mxMalloc(size_t n);

n
Number of bytes to allocate.

A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxMalloc returns
NULL. If unsuccessful in a MEX-file, the MEX-file terminates and control
returns to the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

MATLAB applications should always call mxMalloc rather than malloc to
allocate memory. Note that mxMalloc works differently in MEX-files than in
stand-alone MATLAB applications.

In MEX-files, mxMalloc automatically

¢ Allocates enough contiguous heap space to hold n bytes.

¢ Registers the returned heap space with the MATLAB memory management
facility.

The MATLAB memory management facility maintains a list of all memory
allocated by mxMalloc. The MATLAB memory management facility
automatically frees (deallocates) all of a MEX-file’s parcels when control
returns to the MATLAB prompt.

In stand-alone MATLAB applications, mxMalloc defaults to calling the ANSI C
malloc function. If this default behavior is unacceptable, you can write your
own memory allocation routine, and then register this routine with
mxSetAllocFcns. Then, whenever mxMalloc is called, mxMalloc calls your
memory allocation routine instead of malloc.

By default, in a MEX-file, nxMalloc generates nonpersistent mxMalloc data. In
other words, the memory management facility automatically deallocates the

memory as soon as the MEX-file ends. If you want the memory to persist after
the MEX-file completes, call mexMakeMemoryPersistent after callingmxMalloc.

mxMalloc

Examples

See Also

Ifyou write a MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree.
mxFree deallocates the memory.

See mxmalloc.c in the mx subdirectory of the examples directory. For an
additional example, see mxsetdimensions.c in the mx subdirectory of the
examples directory.

mxCalloc, mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent, mxSetAllocFcns

210

mxRealloc

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

211

Reallocate memory

#include "matrix.h"
#include <stdlib.h>
void *mxRealloc(void *ptr, size_t size);

ptr
Pointer to a block of memory allocated by mxCalloc, or by a previous call to
mxRealloc.

size
New size of allocated memory, in bytes.

A pointer to the reallocated block of memory on success, and 0 on failure.

mxRealloc reallocates the memory routine for the managed list. If mxRealloc
fails to allocate a block, you must free the block since the ANSI definition of
realloc states that the block remains allocated. mxRealloc returns NULL in
this case, and in subsequent calls to mxRealloc of the form:

x = mxRealloc(x, size);

Note Failure to reallocate memory with mxRealloc can result in memory
leaks.

See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxCalloc, mxFree, mxMalloc, mxSetAllocFcns

mxRemoveField

Purpose

C Syntax

Arguments

Description

See Also

Remove a field from a structure array

#include "matrix.h"
extern void mxRemoveField(mxArray array_ptr, int field_number);

array_ptr
Pointer to a structure mxArray.

field_number

The number of the field you want to remove. For instance, to remove the first
field, set field number to 0; to remove the second field, set field number to 1;
and so on.

Call mxRemoveField to remove a field from a structure array. If the field does
not exist, nothing happens. This function does not destroy the field values. Use
mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field number O represents the field name name; field number 1
represents field name billing; field number 2 represents field name test.

mxAddField, mxDestroyArray, mxGetFieldByNumber

212

mxSetAllocFcns

Purpose

C Syntax

Arguments

213

Register your own memory allocation and deallocation functions in a
stand-alone engine or MAT application

#include "matrix.h"

#include <stdlib.h>

void mxSetAllocFcns(calloc_proc callocfcn, free_proc freefcn,
realloc_proc reallocfcn, malloc_proc mallocfcn);

callocfcn

The name of the function that mxCalloc uses to perform memory allocation
operations. The function you specify is ordinarily a wrapper around the ANSI
C calloc function. The callocfcn you write must have the prototype:

void * callocfcn(size_t nmemb, size_ t size);

nmemb The number of contiguous elements that you want the matrix
library to allocate on your behalf.

size The size of each element. To get the size, you typically use the
sizeof operator or the mxGetElementSize routine.

The callocfcn you specify must create memory in which all allocated memory
has been initialized to zero.

freefcn
The name of the function that mxFree uses to perform memory deallocation
(freeing) operations. The freefcn you write must have the prototype:

void freefcn(void *ptr);

ptr Pointer to beginning of the memory parcel to deallocate.

The freefcn you specify must contain code to determine if ptr is NULL. If ptr
is NULL, then your freefcn must not attempt to deallocate it.

reallocfcn
The name of the function that mxRealloc uses to perform memory reallocation
operations. The reallocfcn you write must have the prototype:

void * reallocfcn(void *ptr, size_t size);

mxSetAllocFcns

Description

Examples

See Also

ptr Pointer to beginning of the memory parcel to reallocate.

size The size of each element. To get the size, you typically use the
sizeof operator or the mxGetElementSize routine.

mallocfcn

The name of the function that API functions call in place of malloc to perform
memory reallocation operations. The mallocfcn you write must have the
prototype:

void * mallocfcn(size_t n);

n The number of bytes to allocate.

The mallocfcn you specify doesn’t need to initialize the memory it allocates.
Call mxSetAllocFcns to establish your own memory allocation and deallocation
routines in a stand-alone (nonMEX) application.

It is illegal to call mxSetAllocFcns from a MEX-file; doing so causes a compiler
error.

In a stand-alone application, if you do not call mxSetAllocFcns, then

¢ mxCalloc simply calls the ANSI C calloc routine.

* mxFree calls a free function, which calls the ANSI C free routine if a NULL
pointer is not passed.

® mxRealloc simply calls the ANSI C realloc routine.

Writing your own callocfcn, mallocfcn, freefcn, and reallocfcn allows you
to customize memory allocation and deallocation.

See mxsetallocfcns.c in the mx subdirectory of the examples directory.

mxCalloc, mxFree, mxMalloc, mxRealloc

214

mxSetCell

Purpose

C Syntax

Arguments

Description

Examples

See Also

215

Set the value of one cell

#include "matrix.h"
void mxSetCell(mxArray *array_ptr, int index, mxArray *value);

array_ptr
Pointer to a cell mxArray.

index

Index from the beginning of the mxArray. Specify the number of elements
between the first cell of the mxArray and the cell you want to set. The easiest
way to calculate index in a multidimensional cell array is to call
mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a cell. In fact,
you can even put another cell mxArray into a cell.

Call mxSetCell to put the designated value into a particular cell of a cell
mxArray. You can assign new values to unpopulated cells or overwrite the value
of an existing cell. To do the latter, first use mxDestroyArray to free what is
already there and then mxSetCell to assign the new value.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

See phonebook.c in the refbook subdirectory of the examples directory. For an
additional example, see mxcreatecellmatrix.c in the mx subdirectory of the
examples directory.

mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell

mxSetClassName

Purpose

C Syntax

Arguments

Returns

Description

See Also

Convert a MATLAB structure array to a MATLAB object array by specifying a
class name to associate with the object

#include "matrix.h"
int mxSetClassName (mxArray *array_ptr, const char *classname);

array_ptr
Pointer to an mxArray of class mxSTRUCT_CLASS.
classname
The object class to which to convert array ptr.

0 if successful, and nonzero otherwise.

mxSetClassName converts a structure array to an object array, to be saved
subsequently to a MAT-file. The object is not registered or validated by
MATLAB until it is loaded via the LOAD command. If the specified classname is
an undefined class within MATLAB, LOAD converts the object back to a simple
structure array.

mxIsClass, mxGetClassID

216

mxSetData

Purpose Set pointer to data

C Syntax #include "matrix.h"
void mxSetData(mxArray *array_ptr, void *data_ptr);

Arguments array _ptr
Pointer to an mxArray.

data_ptr
Pointer to data.

Description mxSetData is similar to mxSetPr, exceptits data_ptr argumentisavoid *. Use
this on numeric arrays with contents other than double.

See Also mxSetPr

217

mxSetDimensions

Purpose

C Syntax

Arguments

Returns

Description

Examples

See Also

Modify the number of dimensions and/or the size of each dimension

#include "matrix.h"
int mxSetDimensions(mxArray *array_ptr, const int *dims, int ndim);

array_ptr
Pointer to an mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[0] to 5 and dims[1]
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

ndim
The desired number of dimensions.

0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold
the input size array. So it is possible (though extremely unlikely) that
increasing the number of dimensions can cause the system to run out of heap
space.

Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is
similar to mxSetM and mxSetN; however, mxSetDimensions provides greater
control for reshaping mxArrays that have more than two-dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi
arrays. Consequently, if your call to mxSetDimensions increases the number of
elements in the mxArray, then you must enlarge the pr (and pi, if it exists)
arrays accordingly.

If your call to mxSetDimensions reduces the number of elements in the
mxArray, then you can optionally reduce the size of the pr and pi arrays using
mxRealloc.

See mxsetdimensions.c in the mx subdirectory of the examples directory.

mxGetNumberOfDimensions, mxSetM, mxSetN

218

mxSetField

Purpose

C Syntax

Arguments

Description

219

Set a field value of a structure array, given a field name and an index

#include "matrix.h"
void mxSetField(mxArray *array_ptr, int index,
const char *field_name, mxArray *value);

array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array ptr
points to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_name

The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber or mxGetFieldNumber to determine existing field
names.

value
Pointer to the mxArray you are assigning.

Use mxSetField to assign a value to the specified element of the specified field.
In pseudo-C terminology, mxSetField performs the assignment

array_ptr[index].field_name = value;

If there is already a value at the given position, the value pointer you specified
overwrites the old value pointer. However, mxSetField does not free the
dynamic memory that the old value pointer pointed to. Consequently, you
should free this old mxArray immediately before or after calling mxSetField.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxSetField

Examples

See Also

Calling
mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling
field num = mxGetFieldNumber(pa, "field name");
mxSetFieldByNumber (pa, index, field num, new_value_pa);

See mxcreatestructarray.c in the mx subdirectory of the examples directory.

mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetFieldByNumber

220

mxSetFieldByNumber

Purpose

C Syntax

Arguments

Description

221

Set a field value in a structure array, given a field number and an index

#include "matrix.h"
void mxSetFieldByNumber (mxArray *array_ptr, int index,
int field_number, mxArray *value);

array_ptr
Pointer to a structure mxArray. Call mxIsStruct to determine if array ptr
points to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 0, the
second element has an index of 1, and the last element has an index of N-1,
where N is the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for details on calculating an index.

field_number

The position of the field whose value you want to extract. The first field within
each element has a field_number of 0, the second field has a field_number of
1, and so on. The last field has a field number of N-1, where N is the number
of fields.

value
The value you are assigning.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Use mxSetFieldByNumber to assign a value to the specified element of the
specified field. mxSetFieldByNumber is almost identical to mxSetField,
however, the former takes a field number as its third argument and the latter
takes a field name as its third argument.

mxSetFieldByNumber

Examples

See Also

Calling

mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling

field num = mxGetFieldNumber(pa, "field name");
mxSetFieldByNumber (pa, index, field num, new_value_pa);

See mxcreatestructarray.c in the mx subdirectory of the examples directory.
For an additional example, see phonebook. ¢ in the refbook subdirectory of the
examples directory.

mxCreateStructArray, mxCreateStructMatrix, mxGetField,

mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField

222

mxSetimagData

Purpose

C Syntax

Arguments

Description

Examples

See Also

223

Set imaginary data pointer for an mxArray

#include "matrix.h"
void mxSetImagData(mxArray *array_ptr, void *pi);

array_ptr
Pointer to an mxArray.

pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

mxSetImagData is similar to mxSetPi, except its pi argument is a void *. Use
this on numeric arrays with contents other than double.

See mxisfinite.c in the mx subdirectory of the examples directory.

mxSetPi

mxSetir

Purpose

C Syntax

Arguments

Description

Set the ir array of a sparse mxArray

#include "matrix.h"
void mxSetIr(mxArray *array_ptr, int *ir);

array_ptr

Pointer to a sparse mxArray.

ir

Pointer to the ir array. The ir array must be sorted in column-major order.

Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetJc for more details on
jc.)

For example, suppose you create a 7-by-3 sparse mxArray named Sparrow
containing six nonzero elements by typing

Sparrow=zeros(7,3);
Sparrow(2,1)=1;

)=1
Sparrow(3,2)=1
Sparrow(2,3)=2;

)=1;
Sparrow(6,3)=1;
Sparrow=sparse (Sparrow) ;

The pr array holds the real data for the sparse matrix, which in Sparrow is the
five 1s and the one 2. If there is any nonzero imaginary data, then it is in a pi
array.

Subscript ir pr jc Comments

(2,1) 1 1 0 Column 1; ir is 1 because row is 2.

(5,1) 4 1 2 Column 1; ir is 4 because row is 5.

224

mxSetlir

Examples

See Also

225

Subscript ir pr jc Comments

(3,2) 2 1 3 Column 2; ir is 2 because row is 3.
(2,3) 1 2 6 Column 3; ir is 1 because row is 2.
(5,3) 4 1 Column 3; ir is 4 because row is 5.
(6,3) 5 1 Column 3; ir is 5 because row is 6.

Notice how each element of the ir array is always 1 less than the row of the
corresponding nonzero element. For instance, the first nonzero element is in
row 2; therefore, the first element in ir is 1 (that is, 2-1). The second nonzero
element is in row 5; therefore, the second element in ir is 4 (5-1).

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

See mxsetnzmax.c in the mx subdirectory of the examples directory. For an
additional example, see explore.c in the mex subdirectory of the examples
directory.

mxCreateSparse, mxGetIr, mxGetdc, mxSetdc

mxSetlJc

Purpose

C Syntax

Arguments

Description

Set the jc array of a sparse mxArray

#include "matrix.h"
void mxSetdc(mxArray *array_ptr, int *jc);

array_ptr

Pointer to a sparse mxArray.
jc

Pointer to the jc array.

Use mxSetdJc to specify a new jc array for a sparse mxArray. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array have the meanings:

® jc[j]is theindexin ir, pr (and pi if it exists) of the first nonzero entry in
the jth column.

® jc[j+1]-1is the index of the last nonzero entry in the jth column.

¢ jc[number of columns + 1] is equal to nnz, which is the number of nonzero
entries in the entire spare mxArray.

The number of nonzero elements in any column (denoted as column C) is
je[C] - jc[C-1];

For example, consider a 7-by-3 sparse mxArray named Sparrow containing six
nonzero elements, created by typing

Sparrow=zeros(7,3);
Sparrow(2,1)=1;

(Sparrow) ;

226

mxSetlJc

The contents of the ir, jc, and pr arrays are:

Subscript ir pr j¢ Comment

(2,1) 1 1 0 Column 1 contains two entries, at ir[0],ir[1]

(5,1) 4 1 2 Column 2 contains one entry, at ir[2]

(3,2) 2 1 3 Column 3 contains three entries, at ir[3],ir[4],
ir[5]

(2,3) 1 2 6 There are six nonzero elements.

(5,3) 4 1

(6,3) 5 1

As an example of a much sparser mxArray, consider an 8,000 element sparse
mxArray named Spacious containing only three nonzero elements. The ir, pr,
and jc arrays contain:

Subscript ir pr jc Comment

(73,2) 72 1 0 Column 1 contains zero entries
(50,3) 49 1 0 Column 2 contains one entry, at ir[0]
(64,5) 63 1 1 Column 3 contains one entry, at ir[1]
2 Column 4 contains zero entries.
2 Column 5 contains one entry, at ir[3]
3 Column 6 contains zero entries.
3 Column 7 contains zero entries.
3 Column 8 contains zero entries.
3 There are three nonzero elements.

227

mxSetlJc

Examples See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see explore.c in the mex subdirectory of the examples
directory.

See Also mxGetIr, mxGetJc, mxSetIr

228

mxSetlogical (Obsolete)

Purpose

C Syntax

Arguments

Description

Examples

See Also

229

Convert an mxArray to logical type

Note As of MATLAB version 6.5, mxSetLogical is obsolete. Support for
mxSetLogical may be removed in a future version.

#include "matrix.h"
void mxSetLogical (mxArray *array_ptr);

array_ptr
Pointer to an mxArray having a numeric class.

Use mxSetLogical to turn on an mxArray s logical flag. This flag tells
MATLAB that the array’s data is to be treated as Boolean. If the logical flag is
on, then MATLAB treats a 0 value as meaning false and a nonzero value as
meaning true. For additional information on the use of logical variables in
MATLAB, type help logical at the MATLAB prompt.

See mxislogical.c in the mx subdirectory of the examples directory.

mxCreateLogicalScalar, mxCreateLogicalMatrix, mxCreateLogicalArray,
mxCreateSparselLogicalMatrix

mxSetM

Purpose

C Syntax

Arguments

Description

Examples

See Also

Set the number of rows

#include "matrix.h"
void mxSetM(mxArray *array_ptr, int m);

m
The desired number of rows.

array_ptr

Pointer to an mxArray.

Call mxSetM to set the number of rows in the specified mxArray. The term “rows”
means the first dimension of an mxArray, regardless of the number of
dimensions. Call mxSetN to set the number of columns.

You typically use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays. Call mxRealloc to enlarge them.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the

examples directory.

mxGetM, mxGetN, mxSetN

230

mxSetN

Purpose

C Syntax

Arguments

Description

Examples

See Also

231

Set the number of columns

#include "matrix.h"
void mxSetN(mxArray *array_ptr, int n);

array_ptr
Pointer to an mxArray.

n
The desired number of columns.

Call mxSetN to set the number of columns in the specified mxArray. The term
“columns” always means the second dimension of a matrix. Calling mxSetN
forces an mxArray to have two dimensions. For example, if array_ptr points to
an mxArray having three dimensions, calling mxSetN reduces the mxArray to
two dimensions.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

See mxsetdimensions.c in the mx subdirectory of the examples directory. For
an additional example, see sincall.c in the refbook subdirectory of the

examples directory.

mxGetM, mxGetN, mxSetM

mxSetName (Obsolete)

V5 Compqtible This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB. If you need to
use this function in existing code, use the -V5 option of the mex script.

232

mxSetNzmax

Purpose

C Syntax

Arguments

Description

Examples

233

Set the storage space for nonzero elements

#include "matrix.h"
void mxSetNzmax(mxArray *array_ptr, int nzmax);

array_ptr
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays. To change the size of one of these arrays:

1 Call mxCalloc, setting n to the new value of nzmax.

2 Call the ANSI C routine memcpy to copy the contents of the old array to the
new area allocated in Step 1.

3 Call mxFree to free the memory occupied by the old array.

4 Call the appropriate mxSet routine (mxSetIr, mxSetPr, or mxSetPi) to
establish the new memory area as the current one.

Two ways of determining how big you should make nzmax are

® Set nzmax equal to or slightly greater than the number of nonzero elements
in a sparse mxArray. This approach conserves precious heap space.

® Make nzmax equal to the total number of elements in an mxArray. This
approach eliminates (or, at least reduces) expensive reallocations.

See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxSetNzmax

See Also mxGetNzmax

234

mxSetPi

Purpose

C Syntax

Arguments

Description

Examples

See Also

235

Set new imaginary data for an mxArray

#include "matrix.h"
void mxSetPi(mxArray *array_ptr, double *pi);

array_ptr
Pointer to a full (nonsparse) mxArray.

pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory leaks and other memory errors may result.

Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate functions optionally allocate heap space to hold imaginary data.
If you tell an mxCreate function to allocate heap space (for example, by setting
the ComplexFlag to mxComplex or by setting pi to a non-NULL value), then you
do not ordinarily use mxSetPi to initialize the created mxArray s imaginary
elements. Rather, you call nxSetPi to replace the initial imaginary values with
new ones.

See mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the examples
directory.

mxSetImagData, mxGetPi, mxGetPr, mxSetPr

mxSetPr

Purpose

C Syntax

Arguments

Description

Examples

See Also

Set new real data for an mxArray

#include "matrix.h"
void mxSetPr(mxArray *array_ptr, double *pr);

array_ptr
Pointer to a full (nonsparse) mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pr points to static memory,
then memory leaks and other memory errors may result.

Use mxSetPr to set the real data of the specified mxArray.

All mxCreate calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetPr to initialize the real elements of a freshly-created
mxArray. Rather, you call mxSetPr to replace the initial real values with new
ones.

See mxsetnzmax.c in the mx subdirectory of the examples directory.

mxGetPr, mxGetPi, mxSetPi

236

Fortran Engine Functions

engClose

engEvalString

engGetArray (Obsolete)
engGetFull (Obsolete)

engGetMatrix (Obsolete)
engGetVariable

engOpen
engOutputBuffer
engPutArray (Obsolete)
engPutFull (Obsolete)

engPutMatrix (Obsolete)
engPutVariable

Quit MATLAB engine session

Evaluate expression in character
array

Use engGetVariable

Use engGetVariable followed by
appropriate mxGet routines

Use engGetVariable

Copy variable from engine workspace
Start MATLAB engine session
Specify buffer for MATLAB output
Use engPutVariable

Use mxCreateDoubleMatrix and
engPutVariable

Use engPutVariable

Put variables into engine workspace

engClose

Purpose

Fortran Syntax

Arguments

Description

Example

Quit a MATLAB engine session

integer*4 function engClose(ep)
integer*4 ep

ep
Engine pointer.

This routine allows you to quit a MATLAB engine session.

engClose sends a quit command to the MATLAB engine session and closes the
connection. It returns 0 on success, and 1 otherwise. Possible failure includes
attempting to terminate a MATLAB engine session that was already
terminated.

See fengdemo. f in the eng_mat subdirectory of the examples directory for a

sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

238

engEvalString

Purpose

Fortran Syntax

Arguments

Description

Example

239

Evaluate expression in character array

integer*4 function engEvalString(ep, command)
integer*4 ep
character*(*) command

ep
Engine pointer.

command
character array to execute.

engEvalString evaluates the expression contained in command for the
MATLAB engine session, ep, previously started by engOpen. It returns a
nonzero value if the MATLAB session is no longer running, and zero otherwise.

On UNIX systems, engEvalString sends commands to MATLAB by writing
down a pipe connected to the MATLAB stdin. Any output resulting from the
command that ordinarily appears on the screen is read back from stdout into
the buffer defined by engOutputBuffer.

See fengdemo. f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

engGetArray (Obsolete)

Purpose Read mxArrays from a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use engGetVariable instead.

240

engGetFull (Obsolete)

Purpose Read full mxArrays from an engine

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

mp = engGetVariable(ep, name)
m = mxGetM(mp)

n = mxGetN(mp)

pr = mxGetPr(mp)

pi = mxGetPi(mp)
mxDestroyArray(mp)

instead of

engGetFull(ep, name, m, n, pr, pi)

See Also engGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi, mxDestroyArray

241

engGetMatrix (Obsolete)

Purpose Read mxArrays from a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use engGetVariable instead.

242

engGetVariable

Purpose

Fortran Syntax

Arguments

Description

See Also

243

Copy a variable from a MATLAB engine’s workspace

integer*4 function engGetVariable(ep, name)
integer*4 ep
character*(*) name

ep
Engine pointer.

name
Name of mxArray to get from MATLAB.

engGetVariable reads the named mxArray from the MATLAB engine session
associated with ep and returns a pointer to a newly allocated mxArray
structure, or 0 if the attempt fails. engGetVariable fails if the named variable
does not exist.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

engPutVariable

engOpen

Purpose

Fortran Syntax

Arguments

Description

Example

Start a MATLAB engine session

integer*4 function engOpen(startcmd)
integer*4 ep
character*(*) startcmd

ep
Engine pointer.

startcmd
Character array to start MATLAB process.

This routine allows you to start a MATLAB process to use MATLAB as a
computational engine.

engOpen (startcmd) starts a MATLAB process using the command specified in
startcmd, establishes a connection, and returns a unique engine identifier, or
0 if the open fails.

On the UNIX system, if startcmd is empty, engOpen starts MATLAB on the
current host using the command matlab. If startcmd is a hostname, engOpen
starts MATLAB on the designated host by embedding the specified hostname
string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is anything else (has white space in it, or nonalphanumeric
characters), it is executed literally to start MATLAB.

engOpen performs the following steps:
1 Creates two pipes.

2 Forks a new process and sets up the pipes to pass stdin and stdout from the
child to two file descriptors in the parent.

3 Executes a command to run MATLAB (rsh for remote execution).

See fengdemo.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to call the MATLAB engine functions
from a Fortran program.

244

engOutputBuffer

Purpose

Fortran Syntax

Arguments

Description

245

Specify buffer for MATLAB output

integer*4 function engOutputBuffer(ep, p)
integer*4 ep
character*n p

ep
Engine pointer.

p
Character buffer of length n, where n is the length of buffer p.

engOutputBuffer defines a character buffer for engEvalString to return any
output that would appear on the screen. It returns 1 if you pass it a NULL
engine pointer. Otherwise, it returns 0.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. engOutputBuffer(ep, p) tells any
subsequent calls to engEvalString to save the first n characters of output in
the character buffer p.

engPutArray (Obsolete)

Purpose Read mxArrays from a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use engPutVariable instead.

246

engPutFull (Obsolete)

Purpose

Description

See Also

247

Write full mxArrays into the workspace of an engine

This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

mp = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(mp, pr)

mxSetPi(mp, pi)
engPutVariable(ep, name, mp)

mxDestroyArray(mp)

instead of

engPutFull(ep, name, m, n, pr, pi)

engPutVariable, mxCreateDoubleMatrix, mxSetPr, mxSetPi, mxDestroyArray

engPutMatrix (Obsolete)
|

Purpose Write mxArrays into a MATLAB engine’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use engPutVariable instead.

248

engPutVariable

Purpose

Fortran Syntax

Arguments

Description

See Also

249

Put variables into a MATLAB engine’s workspace

integer*4 function engPutVariable(ep, mp)
integer*4 ep, mp

ep
Engine pointer.
mp

mxArray pointer.

engPutVariable writes mxArray mp to the engine ep. If the mxArray does not
exist in the workspace, it is created. If an mxArray with the same name already
exists in the workspace, the existing mxArray is replaced with the new mxArray.

engPutVariable returns 0 if successful and 1 if an error occurs.

engGetVariable

Fortran MAT-File

Functions

matClose

matDeleteArray (Obsolete)
matDeleteMatrix (Obsolete)
matDeleteVariable
matGetArray (Obsolete)
matGetArrayHeader (Obsolete)
matGetDir

matGetFull (Obsolete)

matGetMatrix (Obsolete)
matGetNextArray (Obsolete)

matGetNextArrayHeader (Obsolete)

matGetNextMatrix (Obsolete)
matGetNextVariable
matGetNextVariableInfo
matGetString (Obsolete)
matGetVariable
matGetVariableInfo

matOpen

matPutArray (Obsolete)

Close MAT-file

Use matDeleteVariable

Use matDeleteVariable

Delete named mxArray from MAT-file
Use matGetVariable

Use matGetVariableInfo

Get directory of mxArrays in MAT-file

Use matGetVariable followed by the
appropriate mxGet routines

Use matGetVariable

Use matGetNextVariable

Use matGetNextVariableInfo

Use matGetNextVariable

Read next mxArray from MAT-file
Load array header information only
Use matGetVariable and mxGetString
Read mxArray from MAT-file

Load array header information only
Open MAT-file

Use matPutVariable

matPutArrayAsGlobal (Obsolete)
matPutFull (Obsolete)

matPutMatrix (Obsolete)
matPutString (Obsolete)
matPutVariable

matPutVariableAsGlobal

251

Use matPutVariableAsGlobal

Use mxCreateDoubleMatrix and
matPutVariable

Use matPutVariable

Use mxCreateString and matPutArray
Write mxArrays into MAT-files

Put mxArrays into MAT-files

matClose

Purpose

Fortran Syntax

Arguments

Description

Examples

Closes a MAT-file

integer*4 function matClose(mfp)
integer*4 mfp

mfp
Pointer to MAT-file information.

matClose closes the MAT-file associated with mfp. It returns -1 for a write
error, and 0 if successful.

See matdemo1.f and matdemo2.f in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use this MAT-file routine
in a Fortran program.

252

matDeleteArray (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matDeleteVariable instead.

253

matDeleteMatrix (Obsolete)

Purpose Delete named mxArray from MAT-file

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matDeleteVariable instead.

254

matDeleteVariable

Purpose Delete named mxArray from MAT-file

Fortran Syntax integer*4 function matDeleteVariable(mfp, name)
integer*4 mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information.
name
Name of mxArray to delete.

Description matDeleteVariable deletes the named mxArray from the MAT-file pointed to
by mfp. The function returns 0 if successful, and nonzero otherwise.

255

matGetArray (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariable instead.

256

matGetArrayHeader (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariableInfo instead.

257

matGetDir

Purpose

Fortran Syntax

Arguments

Description

Example

Get directory of mxArrays in a MAT-file

integer*4 function matGetDir (mfp, num)
integer*4 mfp, num

mfp
Pointer to MAT-file information.

num
Address of the variable to contain the number of mxArrays in the MAT-file.

This routine allows you to get a list of the names of the mxArrays contained
within a MAT-file.

matGetDir returns a pointer to an internal array containing pointers to the
names of the mxArrays in the MAT-file pointed to by mfp. The length of the
internal array (number of mxArrays in the MAT-file) is placed into num. The
internal array is allocated using a single mxCalloc. Use mxFree to free the
array when you are finished with it.

matGetDir returns 0 and sets num to a negative number if it fails. If num is zero,
mfp contains no mxArrays.

MATLAB variable names can be up to length 32.

See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this MAT-file routine in a Fortran
program.

258

matGetFull (Obsolete)

Purpose Reads full mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

pm = matGetVariable(mfp, name)
m = mxGetM(pm)

n = mxGetN(pm)

pr = mxGetPr (pm)

pi = mxGetPi(pm)
mxDestroyArray (pm)

instead of

matGetFull(mfp, name, m, n, pr, pi)

See Also matGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi, mxDestroyArray

259

matGetMatrix (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matGetVariable instead.

260

matGetNextArray (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariable instead.

261

matGetNextArrayHeader (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariableInfo instead.

262

matGetNextMatrix (Obsolete)

Purpose Get next mxArray from MAT-file

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matGetNextVariable instead.

263

matGetNextVariable

Purpose

Fortran Syntax

Arguments

Description

Read next mxArray from MAT-file

integer*4 function matGetNextVariable(mfp, name)
integer*4 mfp
character*(*) name

mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

matGetNextVariable allows you to step sequentially through a MAT-file and
read all the mxArrays in a single pass. The function reads the next mxArray
from the MAT-file pointed to by mfp and returns a pointer to a newly allocated
mxArray structure. MATLAB returns the name of the mxArray in name.

Use matGetNextVariable immediately after opening the MAT-file with
matOpen and not in conjunction with other MAT-file routines. Otherwise, the
concept of the next mxArray is undefined.

matGetNextVariable returns 0 when the end-of-file is reached or if there is an
error condition.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

264

matGetNextVariablelnfo

Purpose

Fortran Syntax

Arguments

Description

265

Load array header information only

integer*4 function matGetNextVariableInfo(mfp, name)
integer*4 mfp
character*(*) name

mfp
Pointer to MAT-file information.

name
Address of the variable to contain the mxArray name.

matGetNextVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc, from the file’s current file offset. MATLAB
returns the name of the mxArray in name.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back to
MATLAB or saved to MAT-files.

matGetString (Obsolete)

Purpose Copy character mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

pm = matGetVariable(mfp, name)
mxGetString(pm, str, strlen)

instead of

matGetString(mfp, name, str, strlen)

266

matGetVariable

Purpose

Fortran Syntax

Arguments

Description

267

Read mxArrays from MAT-files

integer*4 function matGetVariable(mfp, name)
integer*4 mfp
character*(*) name

mfp

Pointer to MAT-file information.

name

Name of mxArray to get from MAT-file.

This routine allows you to copy an mxArray out of a MAT-file.

matGetVariable reads the named mxArray from the MAT-file pointed to by mfp
and returns a pointer to a newly allocated mxArray structure, or 0 if the
attempt fails.

Be careful in your code to free the mxArray created by this routine when you are
finished with it.

matGetVariablelnfo

Purpose

Fortran Syntax

Arguments

Description

Load array header information only

integer*4 function matGetVariableInfo(mfp, name);
integer*4 mfp
character*(*) name

mfp
Pointer to MAT-file information.

name
Name of mxArray.

matGetVariableInfo loads only the array header information, including
everything except pr, pi, ir, and jc. It recursively creates the cells/structures
through their leaf elements, but does not include pr, pi, ir, and jc.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetVariableInfo sets them to -1 instead. These headers
are for informational use only and should never be passed back to MATLAB or
saved to MAT-files.

268

matOpen

Purpose

Fortran Syntax

Arguments

Description

Examples

269

Opens a MAT-file

integer*4 function matOpen(filename, mode)
integer*4 mfp
character*(*) filename, mode

filename
Name of file to open.

mode
File opening mode. Legal values for mode are:

Table 2-1:

r Opens file for reading only. Determines the current version of
the MAT-file by inspecting the files and preserves the current
version.

u Opens file for update, both reading and writing, but does not

create the file if the file does not exist (equivalent to the r+
mode of fopen). Determines the current version of the MAT-file
by inspecting the files and preserves the current version.

w Opens file for writing only. Deletes previous contents, if any.
w4 Creates a MATLAB 4 MAT-file.
mfp

Pointer to MAT-file information.

This routine allows you to open MAT-files for reading and writing.
matOpen opens the named file and returns a file handle, or 0 if the open fails.
See matdemol.f and matdemo2.f in the eng_mat subdirectory of the examples

directory for sample programs that illustrate how to use the MATLAB
MAT-file routines in a Fortran program.

matPutArray (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matPutVariable instead.

270

matPutArrayAsGlobal (Obsolete)

Purpose Reads mxArrays from MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

Use matPutVariableAsGlobal instead.

271

matPutFull (Obsolete)

Purpose

Description

See Also

Writes full mxArrays into MAT-files

This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)

mxSetPi(pm, pi)
matPutVariable (mfp, name, pm)

mxDestroyArray (pm)

instead of

matPutFull(mfp, name, m, n, pr, pi)

mxCreateDoubleMatrix, mxSetName (Obsolete), mxSetPr, mxSetPi,
matPutVariable, mxDestroyArray

272

matPutMatrix (Obsolete)

Purpose Writes mxArrays into MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use matPutVariable instead.

273

matPutString (Obsolete)

Purpose Write character mxArrays into MAT-files

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

pm = mxCreateString(str)
matPutVariable (mfp, name, pm)
mxDestroyArray (pm)

instead of

matPutString (mfp, name, str)

274

matPutVariable

Purpose

Fortran Syntax

Arguments

Description

275

Write mxArrays into MAT-files

integer*4 function matPutVariable(mfp, name, pm)
integer*4 mfp, pm
character*(*) name

mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

pm
mxArray pointer.

This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray pm to the MAT-file mfp. If the mxArray does
not exist in the MAT-file, it is appended to the end. If an mxArray with the same
name already exists in the file, the existing mxArray is replaced with the new
mxArray by rewriting the file. The size of the new mxArray can be different than
the existing mxArray.

matPutVariable returns 0 if successful and nonzero if an error occurs.

matPutVariableAsGlobal

Purpose

Fortran Syntax

Arguments

Description

Put mxArrays into MAT-files as originating from the global workspace

integer*4 function matPutVariableAsGlobal(mfp, name, pm)
integer*4 mfp, pm
character*(*) name

mfp
Pointer to MAT-file information.

name
Name of mxArray to put into MAT-file.

pm
mxArray pointer.

This routine allows you to put an mxArray into a MAT-file.
matPutVariableAsGlobal is similar to matPutVariable, except the array,
when loaded by MATLAB, is placed into the global workspace and a reference
to it is set in the local workspace. If you write to a MATLAB 4 format file,
matPutVariableAsGlobal will not load it as global, and will act the same as
matPutVariable.

matPutVariableAsGlobal writes mxArray pm to the MAT-file mfp. If the
mxArray does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is replaced
with the new mxArray by rewriting the file. The size of the new mxArray can be
different than the existing mxArray.

matPutVariableAsGlobal returns 0 if successful and nonzero if an error occurs.

276

matPutVariableAsGlobal

277

Fortran MEX-Functions

mexAtExit

mexCallMATLAB

mexXErrMsgIdAndTxt

mexErrMsgTxt

mexEvalString

mexFunction
mexFunctionName
mexGetArray (Obsolete)
mexGetArrayPtr (Obsolete)
mexGetEps (Obsolete)
mexGetFull (Obsolete)

mexGetGlobal (Obsolete)
mexGetInf (Obsolete)
mexGetMatrix (Obsolete)
mexGetMatrixPtr (Obsolete)
mexGetNaN (Obsolete)

Register function to be called when
MATLARB is cleared or terminates

Call MATLAB function or
user-defined M-file or MEX-file

Issue error message with identifier
and return to MATLAB

Issue error message and return to
MATLAB

Execute MATLAB command in
caller’s workspace

Entry point to Fortran MEX-file
Name of current MEX-function
Use mexGetVariable

Use mexGetVariablePtr

Use mxGetEps

Use mexGetVariable, mxGetM,
mxGetN, mxGetPr, mxGetPi

Use mexGetVariablePtr
Use mxGetInf

Use mexGetVariable
Use mexGetVariablePtr
Use mxGetNaN

mexGetVariable

mexGetVariablePtr

mexIsFinite (Obsolete)
mexIsGlobal

mexIsInf (Obsolete)
mexIsLocked

mexIsNaN (Obsolete)

mexLock

mexMakeArrayPersistent

mexMakeMemoryPersistent

mexPrintf

mexPutArray (Obsolete)
mexPutFull (Obsolete)

mexPutMatrix (Obsolete)

mexPutVariable

mexSetTrapFlag

mexUnlock

mexWarnMsgIdAndTxt

mexWarnMsgTxt

279

Get copy of variable from another
workspace

Get read-only pointer to variable from
another workspace

Use mxIsFinite

True if mxArray has global scope
Use mxIsInf

True if MEX-file is locked

Use mxIsNaN

Lock MEX-file so it cannot be cleared
from memory

Make mxArray persist after MEX-file
completes

Make memory allocated by MATLAB
memory allocation routines persist
after MEX-file completes

ANSI C printf-style output routine
Use mexPutVariable

Use mxCreateDoubleMatrix, mxSetPr,
mxSetPi, mexPutVariable

Use mexPutVariable

Copy mxArray from your MEX-file
into another workspace

Control response of mexCallMATLAB to
errors

Unlock MEX-file so it can be cleared
from memory

Issue warning message with
identifier

Issue warning message

mexAtExit

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Register a subroutine to be called when the MEX-file is cleared or when
MATLAB terminates

integer*4 function mexAtExit (ExitFcn)
subroutine ExitFcn()

ExitFcn
The exit function. This function must be declared as external.

Always returns 0.

Use mexAtExit to register a subroutine to be called just before the MEX-file is
cleared or MATLAB is terminated. mexAtExit gives your MEX-file a chance to
perform an orderly shutdown of anything under its control.

Each MEX-file can register only one active exit subroutine at a time. If you call
mexAtExit more than once, MATLAB uses the ExitFcn from the more recent
mexAtExit call as the exit function.

If a MEX-file is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB does not
call the ExitFcn.

You must declare the ExitFcn as external in the Fortran routine that calls
mexAtExit if it is not within the scope of the file.

mexSetTrapFlag

280

mexCallMATLAB

Purpose

Fortran Syntax

Arguments

Returns

Description

281

Call a MATLAB function or operator, a user-defined M-file, or other MEX-file

integer*4 function mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
integer*4 nlhs, nrhs, plhs(*), prhs(*)

character*(*) name

On the Alpha platform, use:

integer*8 function mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
integer*4 nlhs, nrhs

integer*8 plhs(*), prhs(*)

character*(*) name

nlhs
Number of desired output arguments. This value must be less than or equal to
50.

plhs

Array of mxArray pointers that can be used to access the returned data from the
function call. Once the data is accessed, you can then call mxFree to free the
mxArray pointer. By default, MATLAB frees the pointer and any associated
dynamic memory it allocates when you return from the mexFunction call.

nrhs
Number of input arguments. This value must be less than or equal to 50.

prhs
Array of pointers to input data.

name

Character array containing the name of the MATLAB function, operator,
M-file, or MEX-file that you are calling. If name is an operator, place the
operator inside a pair of single quotes; for example, '+'.

0 if successful, and a nonzero value if unsuccessful and mexSetTrapFlag was
previously called.

Call mexCallMATLAB to invoke internal MATLAB functions, MATLAB
operators, M-files, or other MEX-files.

By default, if name detects an error, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt. If you want a different error behavior,
turn on the trap flag by calling mexSetTrapFlag.

mexCallMATLAB
|

See Also mexFunction, mexSetTrapFlag

282

mexErrMsgldAndTxt

Purpose

Fortran Syntax

Arguments

Description

See Also

283

Issue error message with identifier and return to the MATLAB prompt

subroutine mexErrMsgIdAndTxt(errorid, errormsg)
character*(*) errorid, errormsg

errorid
Character array containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on this topic.

errormsg
Character array containing the error message to be displayed.

Call mexErrMsgIdAndTxt to write an error message and its corresponding
identifier to the MATLAB window. After the error message prints, MATLAB
terminates the MEX-file and returns control to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke any registered exit routine
to allocate memory.

If your application calls mxCalloc or one of the mxCreate routines to create
mxArray pointers, mexErrMsgIdAndTxt automatically frees any associated
memory allocated by these calls.

mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

mexErrMsgTxt

Purpose

Fortran Syntax

Arguments

Description

See Also

Issue error message and return to the MATLAB prompt

subroutine mexErrMsgTxt(errormsg)
character*(*) errormsg

errormsg
Character array containing the error message to be displayed.

Call mexErrMsgTxt to write an error message to the MATLAB window. After
the error message prints, MATLAB terminates the MEX-file and returns
control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory. Consequently,
mexErrMsgTxt does not invoke any registered exit routine to allocate memory.

If your application calls mxCalloc or one of the mxCreate routines to create
mxArray pointers, mexErrMsgTxt automatically frees any associated memory
allocated by these calls.

mexErrMsgIdAndTxt, mexWarnMsgTxt, mexWarnMsgIdAndTxt

284

mexEvalString

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

285

Execute a MATLAB command in the workspace of the caller

integer*4 function mexEvalString(command)
character*(*) command

command
A character array containing the MATLAB command to execute.

0 if successful, and a nonzero value if unsuccessful.

Call mexEvalString to invoke a MATLAB command in the workspace of the
caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString provides no
way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equals sign in the command array
must already be current variables of the caller’s workspace.

mexCallMATLAB

mexFunction

Purpose

Fortran Syntax

Arguments

Description

MATLAB entry point to a Fortran MEX-file

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer*4 nlhs, nrhs, plhs(*), prhs(*)

nlhs
The number of expected outputs.

plhs
Array of pointers to expected outputs.

nrhs
The number of inputs.

prhs
Array of pointers to input data. The input data is read only and should not be
altered by your mexFunction.

mexFunction is not a routine you call. Rather, mexFunction is the name of a
subroutine you must write in every MEX-file. When you invoke a MEX-file,
MATLAB searches for a subroutine named mexFunction inside the MEX-file.
If it finds one, then the first executable line in mexFunction becomes the
starting point of the MEX-file. If MATLAB cannot find a subroutine named
mexFunction inside the MEX-file, MATLAB issues an error message.

When you invoke a MEX-file, MATLAB automatically loads nlhs, plhs, nrhs,
and prhs with the caller’s information. In the syntax of the MATLAB language,
functions have the general form

[a,b,c!] = fun(d,e!fi)

where the denotes more items of the same format. The a,b,c are left-hand
side arguments and thed,e,f areright-hand side arguments. The arguments
nlhs and nrhs contain the number of left-hand side and right-hand side
arguments, respectively, with which the MEX-file is called. prhs is an array of
mxArray pointers whose length is nrhs. plhsis a pointer to an array whose
length is nlhs, where your function must set pointers for the returned left-hand
side mxArrays.

286

mexFunctionName

Purpose Get the name of the current MEX-function

Fortran Syntax character*(*) function mexFunctionName ()

Arguments None
Returns The name of the current MEX-function.
Description mexFunctionName returns the name of the current MEX-function.

287

mexGetArray (Obsolete)

Purpose Get a copy of a variable from the specified workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.
Use

mexGetVariable (workspace, name)

instead of

mexGetArray(rname, workspace)

See Also mexGetVariable

288

mexGetArrayPtr (Obsolete)

Purpose Get a read-only pointer to a variable from the specified workspace
Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.
Use

mexGetVariablePtr(varname, workspace)

instead of

mexGetArrayPtr(varname, workspace)

See Also mexGetVariable

289

mexGetEps (Obsolete)

Purpose Get the value of eps

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetEps instead.

290

mexGetFull (Obsolete)

Purpose

Description

See Also

291

Routine to get component parts of a double-precision mxArray into a Fortran
workspace

This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use

pm = mexGetVariable("caller", name)
m = mxGetM(pm)

n mxGetN (pm)

pr mxGetPr (pm)

pi = mxGetPi(pm)

instead of

mexGetFull(name, m, n, pr, pi)

mexGetVariable, mxGetM, mxGetN, mxGetPr, mxGetPi

mexGetGlobal (Obsolete)

Purpose Get a pointer to an mxArray from the MATLAB global workspace
Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

mexGetVariablePtr(name, "global")

instead of

mexGetGlobal (name)

See Also mexGetVariablePtr, mxGetPr, mxGetPi

292

mexGetinf (Obsolete)

Purpose Get the value of infinity

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetInf instead.

293

mexGetMatrix (Obsolete)

Purpose Copies an mxArray from the caller’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

mexGetVariable("caller", name)

instead of

mexGetMatrix (name)

See Also mexGetVariable

294

mexGetMatrixPtr (Obsolete)

Purpose Get the pointer to an mxArray in the caller’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

mexGetVariablePtr(name, "caller")

instead of

mexGetMatrixPtr (name)

See Also mexGetVariablePtr

295

mexGetNaN (Obsolete)

Purpose Get the value of NaN (Not-a-Number)

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxGetNaN instead.

296

mexGetVariable

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

297

Get a copy of a variable from the specified workspace

integer*4 function mexGetVariable(workspace, varname)
character*(*) workspace, varname

workspace
Specifies where mexGetVariable should search in order to find variable
varname. The possible values are:

base Search for the variable in the base workspace
caller Search for the variable in the caller’s workspace
global Search for the variable in the global workspace
varname

Name of the variable to copy.

A copy of the variable on success. Returns 0 on failure. A common cause of
failure is specifying a variable that is not currently in the workspace.

Call mexGetVariable to get a copy of the specified variable. The returned
mxArray contains a copy of all the data and characteristics that the variable
had in the other workspace. Modifications to the returned mxArray do not affect
the variable in the workspace unless you write the copy back to the workspace
with mexPutVariable.

mexGetVariablePtr, mexPutVariable

mexGetVariablePir

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get a read-only pointer to a variable from the specified workspace

integer*4 function mexGetVariablePtr(varname, workspace)
character*(*) varname, workspace

varname
Name of the variable to copy. (Note that this is a variable name, not an mxArray
pointer.)

workspace
Specifies which workspace you want mexGetVariablePtr to search. The
possible values are:

base Search for the variable in the base workspace
caller Search for the variable in the caller’s workspace
global Search for the variable in the global workspace

A read-only pointer to the mxArray on success. Returns 0 on failure.

Call mexGetVariablePtr to get a read-only pointer to the specified variable
varname from the specified workspace. This command is useful for examining
an mxArray’s data and characteristics. If you need to change data or
characteristics, use mexGetVariable (along with mexPutVariable) instead of
mexGetVariablePtr.

mexGetVariable

298

mexIsFinite (Obsolete)

Purpose Determine whether or not a value is finite

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsFinite instead.

299

mexIsGlobal

Purpose True if mxArray has global scope

Fortran Syntax integer*4 function mexIsGlobal(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray has global scope, and 0 otherwise.
Description Use mexIsGlobal to determine if the specified mxArray has global scope.
See Also mexGetVariable, mexGetVariablePtr, mexPutVariable, global

300

mexlsinf (Obsolete)

Purpose Determine whether or not a value is infinite

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsInf instead.

301

mexlIsLocked

Purpose
Fortran Syntax
Arguments
Returns

Description

See Also

Determine if this MEX-file is locked

integer*4 function mexIsLocked()

none

1 if the MEX-file is locked; 0 if the file is unlocked.

Call mexIsLocked to determine if the MEX-file is locked. By default, MEX-files
are unlocked, meaning that users can clear the MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

mexLock, mexUnlock, mexMakeArrayPersistent, mexMakeMemoryPersistent

302

mexIsNaN (Obsolete)

Purpose Determine whether or not a value is NaN (Not-a-Number)

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsNaN instead.

303

mexLock

Purpose
Fortran Syntax
Arguments

Description

See Also

Lock a MEX-file so that it cannot be cleared from memory
subroutine mexLock()
none

By default, MEX-files are unlocked, meaning that a user can clear them at any
time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, call mexUnlock.

mexLock increments a lock count. If you call mexLock n times, you must call

mexUnlock n times to unlock your MEX-file.

mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

304

mexMakeArrayPersistent

Purpose

Fortran Syntax

Arguments

Description

See Also

305

Make an mxArray persist after the MEX-file completes

subroutine mexMakeArrayPersistent (pm)
integer*4 pm

pm
Pointer to an mxArray created by an mxCreate* routine.

By default, mxArrays allocated by mxCreate* routines are not persistent. The
MATLAB memory management facility automatically frees nonpersistent
mxArrays when the MEX-file finishes. If you want the mxArray to persist
through multiple invocations of the MEX-file, you must call
mexMakeArrayPersistent.

Note If you create a persistent mxArray, you are responsible for destroying it
when the MEX-file is cleared. If you do not destroy a persistent mxArray,
MATLAB will leak memory. See mexAtExit on how to register a function that
gets called when the MEX-file is cleared. See mexLock on how to lock your
MEX-file so that it is never cleared.

mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate functions.

mexMakeMemoryPersistent

Purpose

Fortran Syntax

Arguments

Description

See Also

Make memory allocated by MATLAB memory allocation routines (mxCalloc,
mxMalloc, mxRealloc) persist after the MEX-file completes

subroutine mexMakeMemoryPersistent(ptr)
integer*4 ptr

ptr
Pointer to the beginning of memory allocated by one of the MATLAB memory
allocation routines.

By default, memory allocated by MATLAB is nonpersistent, so it is freed
automatically when the MEX-file finishes. If you want the memory to persist,
you must call mexMakeMemoryPersistent.

Note Ifyou create persistent memory, you are responsible for freeing it when
the MEX-file is cleared. If you do not free the memory, MATLAB will leak
memory. To free memory, use mxFree. See mexAtExit on how to register a
function that gets called when the MEX-file is cleared. See mexLock on how to
lock your MEX-file so that it is never cleared.

mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree, mxMalloc,
mxRealloc

306

mexPrintf

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

307

Print a character array

integer*4 function mexPrintf(message)
character*(*) message

message
Character array containing message to be displayed.

Note Optional arguments to mexPrintf, such as format strings, are not
supported in Fortran.

Note If you want the literal % in your message, you must use %% in your
message string since % has special meaning to mexPrintf. Failing to do so
causes unpredictable results.

The number of characters printed. This includes characters specified with
backslash codes, such as \n and \b.

mexPrintf prints a character array on the screen and in the diary (if the diary
is in use). It provides a callback to the standard C printf routine already
linked inside MATLAB.

mexErrMsgTxt

mexPutArray (Obsolete)

Purpose Copy an mxArray into the specified workspace

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.
Use

mexPutVariable (workspace, name, pm)

instead of

mexPutArray(pm, workspace)

See Also mexPutVariable

308

mexPutFull (Obsolete)

Purpose Routine to create an mxArray from its component parts into a Fortran
workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

pm = mxCreateDoubleMatrix(m, n, 1)
mxSetPr(pm, pr)
mxSetPi(pm, pi)
mexPutVariable("caller", name, pm)

instead of

mexPutFull(name, m, n, pr, pi)

See Also mxCreateDoubleMatrix, mxSetName (Obsolete), mxSetPr, mxSetPi,
mexPutVariable

309

mexPutMatrix (Obsolete)

Purpose Writes an mxArray to the caller’s workspace

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

mexPutVariable("caller", name, pm)

instead of

mexPutMatrix (pm)

310

mexPutVariable

Purpose

Fortran Syntax

Arguments

Returns

Description

311

Copy an mxArray into the specified workspace

integer*4 function mexPutVariable(workspace, varname, pm)
character*(*) workspace, varname
integer*4 pm

workspace
Specifies the scope of the array that you are copying. The possible values are:

base Copy the mxArray to the base workspace
caller Copy the mxArray to the caller’s workspace
global Copy the mxArray to the list of global variables
varname

Name given to the mxArray in the workspace.

pm
Pointer to an mxArray.

0 on success; 1 on failure. A possible cause of failure is that the pm argument is
Zero.

Call mexPutVariable to copy the mxArray, at pointer pm, from your MEX-file
into the specified workspace. MATLAB gives the name, varname, to the copied
mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files or other MEX-files.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with the
contents of the new mxArray. For example, suppose the MATLAB workspace
defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the MATLAB workspace.

mexPutVariable("base", "Peaches", pm)

mexPutVariable

Then the old value of Peaches disappears and is replaced by the value passed
in by mexPutVariable.

See Also mexGetVariable

312

mexSetTrapFlag

Purpose

Fortran Syntax

Arguments

Description

See Also

313

Control response of mexCallMATLAB to errors

subroutine mexSetTrapFlag(trapflag)
integer*4 trapflag

trapflag
Control flag. Currently, the only legal values are:

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an error in
a call to mexCallMATLAB, MATLAB automatically terminates the MEX-file and
returns control to the MATLAB prompt. Calling mexSetTrapFlag with
trapflag set to 0 is equivalent to not calling mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trapflagto 1, then whenever MATLAB
detects an error in a call to mexCallMATLAB, MATLAB does not automatically
terminate the MEX-file. Rather, MATLAB returns control to the line in the
MEX-file immediately following the call to mexCallMATLAB. The MEX-file is
then responsible for taking an appropriate response to the error.

mexAtExit, mexErrMsgTxt

mexUnlock

Purpose
Fortran Syntax
Arguments

Description

See Also

Unlock this MEX-file so that it can be cleared from memory

subroutine mexUnlock()

none

By default, MEX-files are unlocked, meaning that a user can clear them at any

time. Calling mexLock locks a MEX-file so that it cannot be cleared. Calling
mexUnlock removes the lock so that the MEX-file can be cleared.

mexLock increments a lock count. If you called mexLock n times, you must call
mexUnlock n times to unlock your MEX-file.

mexIsLocked, mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent

314

mexWarnMsgldAndTxt

Purpose

Fortran Syntax

Arguments

Description

See Also

315

Issue warning message with identifier

subroutine mexWarnMsgIdAndTxt(warningid, warningmsg)
character*(*) warningid, warningmsg

errorid
Character array containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on this topic.

warningmsg
String containing the warning message to be displayed.

mexWarnMsgIdAndTxt causes MATLAB to display the contents of warningmsg.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the MEX-file
to terminate.

mexWarnMsgTxt, mexErrMsgIdAndTxt, mexErrMsgTxt

mexWarnMsgTxt

Purpose

Fortran Syntax

Arguments

Description

See Also

Issue warning message

subroutine mexWarnMsgTxt(warningmsg)
character*(*) warningmsg

warningmsg
String containing the warning message to be displayed.

mexWarnMsgTxt causes MATLAB to display the contents of warningmsg.

Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

mexWarnMsgIdAndTxt, mexErrMsgTxt, mexErrMsgIdAndTxt

316

Fortran MX-Functions

mxAddField

mxCalcSingleSubscript

mxCalloc

mxClassIDFromClassName

mxClearLogical (Obsolete)
mxCopyCharacterToPtr

mxCopyComplex8ToPtr

mxCopyComplex16ToPtr

mxCopyIntegeriToPtr

mxCopyInteger2ToPtr

mxCopyInteger4ToPtr

mxCopyPtrToCharacter

Add field to structure array

Return offset from first element to
desired element

Allocate dynamic memory using the
MATLAB memory manager

Get identifier that corresponds to a
class

Clear logical flag

Copy character values from Fortran
array to pointer array

Copy COMPLEX*8 values from Fortran
array to pointer array

Copy COMPLEX*16 values from Fortran
array to pointer array

Copy INTEGER*1 values from Fortran
array to pointer array

Copy INTEGER*2 values from Fortran
array to pointer array

Copy INTEGER*4 values from Fortran
array to pointer array

Copy character values from pointer
array to Fortran array

mxCopyPtrToComplex8

mxCopyPtrToComplex16

mxCopyPtrToIntegeri

mxCopyPtrToInteger2

mxCopyPtrToInteger4

mxCopyPtrToPtrArray

mxCopyPtrToReal4

mxCopyPtrToReal8

mxCopyReal4ToPtr

mxCopyReal8ToPtr

mxCreateCellArray

mxCreateCellMatrix

mxCreateCharArray

mxCreateCharMatrixFromStrings

mxCreateDoubleMatrix

Copy COMPLEX*8 values from pointer
array to Fortran array

Copy COMPLEX*16 values from pointer
array to Fortran array

Copy INTEGER*1 values from pointer
array to Fortran array

Copy INTEGER*2 values from pointer
array to Fortran array

Copy INTEGER*4 values from pointer
array to Fortran array

Copy pointer values from pointer
array to Fortran array

Copy REAL*4 values from pointer
array to Fortran array

Copy REAL*8 values from pointer
array to Fortran array

Copy REAL*4 values from Fortran
array to pointer array

Copy REAL*8 values from Fortran
array to pointer array

Create unpopulated N-dimensional
cell mxArray

Create unpopulated two-dimensional
cell mxArray

Create unpopulated N-dimensional
string mxArray

Create populated two-dimensional
string mxArray

Create unpopulated two-dimensional,
double-precision, floating-point
mxArray

318

mxCreateFull (Obsolete)

mxCreateNumericArray

mxCreateNumericMatrix

mxCreateScalarDouble

mxCreateSparse

mxCreateString

mxCreateStructArray

mxCreateStructMatrix

mxDestroyArray

mxDuplicateArray

mxFree

mxFreeMatrix (Obsolete)

mxGetCell
mxGetClassID
mxGetClassName
mxGetData

mxGetDimensions

319

Create unpopulated two-dimensional
mxArray

Create unpopulated N-dimensional
numeric mxArray

Create numeric matrix and initialize
data elements to 0

Create scalar, double-precision array
initialized to specified value

Create two-dimensional unpopulated
sparse mxArray

Create 1-by-n character array
initialized to specified string

Create unpopulated N-dimensional
structure mxArray

Create unpopulated
two-dimensional structure
mxArray

Free dynamic memory allocated by an
mxCreate routine

Make deep copy of array

Free dynamic memory allocated by
mxCalloc

Free dynamic memory allocated by
mxCreateFull and mxCreateSparse

Get cell's contents

Get mxArray's class
Get mxArray's class
Get pointer to data

Get pointer to dimensions array

mxGetElementSize

mxGetEps
mxGetField

mxGetFieldByNumber

mxGetFieldNameByNumber

mxGetFieldNumber

mxGetImagData

mxGetInf

mxGetIr

mxGetdc

mxGetM

mxGetN

mxGetName (Obsolete)
mxGetNaN
mxGetNumberOfDimensions
mxGetNumberOfElements

mxGetNumberOfFields

mxGetNzmax

mxGetPi

mxGetPr

Get number of bytes required to store
each data element

Get value of eps

Get field value, given field name and
index in structure array

Get field value, given field number
and index in structure array

Get field name, given field number in
structure array

Get field number, given field name in
structure array

Get pointer to imaginary data of
mxArray

Get value of infinity

Get ir array

Get jc array

Get number of rows

Get total number of columns
Get name of specified mxArray
Get the value of NaN

Get number of dimensions

Get number of elements in array

Get number of fields in structure
mxArray

Get number of elements in ir, pr, and
pi arrays

Get mxArray’s imaginary data
elements

Get mxArray’s real data elements

320

mxGetScalar

mxGetString
mxIsCell
mxIsChar

mxIsClass

mxIsComplex
mxIsDouble
mxIsEmpty

mxIsFinite

mxIsFromGlobalWs

mxIsFull (Obsolete)

mxIsInf

mxIsInt8

mxIsInti16

mxIsInt32

mxIsLogical
mxIsNaN

mxIsNumeric

mxIsSingle

mxIsSparse

321

Get real component of mxArray’s first
data element

Create character array from mxArray
True if cell mxArray
True if string mxArray

True if mxArray is member of
specified class

Inquire if mxArray is complex
Inquire if mxArray is of type double
True if mxArray is empty

True if value is finite

True if mxArray was copied from the
MATLAB global workspace

Inquire if mxArray is full
True if value is infinite

True if mxArray represents its data as
signed 8-bit integers

True if mxArray represents its data as
signed 16-bit integers

True if mxArray represents its data as
signed 32-bit integers

True if mxArray is Boolean
True if value is NaN

Inquire if mxArray contains numeric
data

True if mxArray represents its data as
single-precision, floating-point
numbers

Inquire if mxArray is sparse

mxIsString (Obsolete)

mxIsStruct

mxIsUint8

mxIsUinti16

mxIsUint32

mxMalloc

mxRealloc
mxRemoveField
mxSetCell
mxSetData
mxSetDimensions

mxSetField

mxSetFieldByNumber

mxSetImagData

mxSetIr

mxSetdc

mxSetLogical (Obsolete)
mxSetM

mxSetN

mxSetName (Obsolete)

Inquire if mxArray contains
character array

True if structure mxArray

True if mxArray represents its data as
unsigned 8-bit integers

True if mxArray represents its data as
unsigned 16-bit integers

True if mxArray represents its data as
unsigned 32-bit integers

Allocate dynamic memory using the
MATLAB memory manager

Reallocate memory

Remove field from structure array
Set value of one cell

Set pointer to data

Modify number/size of dimensions

Set field value of structure array,
given field name/index

Set field value in structure array,
given field number/index

Set imaginary data pointer for
mxArray

Set ir array of sparse mxArray
Set jc array of sparse mxArray
Set logical flag

Set number of rows

Set number of columns

Set name of mxArray

322

mxSetNzmax Set storage space for nonzero

elements

mxSetPi Set new imaginary data for an
mxArray

mxSetPr Set new real data for an mxArray

323

mxAddField

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Add a field to a structure array

integer*4 function mxAddField(pm, fieldname)
integer*4 pm
character*(*) fieldname

pm
Pointer to a structure mxArray.
fieldname

The name of the field you want to add.

Field number on success, or 0 if inputs are invalid or an out-of-memory
condition occurs.

Call mxAddField to add a field to a structure array. You must then create the
values with the mxCreate* functions and use mxSetFieldByNumber to set the

individual values for the field.

mxRemoveField, mxSetFieldByNumber

324

mxCalcSingleSubscript

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

325

Return the offset (index) from the first element to the desired element

integer*4 function mxCalcSingleSubscript(pm, nsubs, subs)
integer*4 pm, nsubs, subs

pm
Pointer to an mxArray.

nsubs
The number of elements in the subs array. Typically, you set nsubs equal to the
number of dimensions in the mxArray that pm points to.

subs

An array of integers. Each value in the array should specify that dimension’s
subscript. The value in subs (1) specifies the row subscript, and the value in
subs(2) specifies the column subscript. Use 1-based indexing to specify the
desired array element. For example, to express the starting element of a
two-dimensional mxArray in subs, set subs(1) to 1 and subs(2) to 1.

The number of elements between the start of the mxArray and the specified
subscript. This returned number is called an “index”; many mx routines (for
example, mxGetField) require an index as an argument.

If subs describes the starting element of an mxArray, mxCalcSingleSubscript
returns 0. If subs describes the final element of an mxArray, then
mxCalcSingleSubscript returns N-1 (where N is the total number of elements).

Call mxCalcSingleSubscript to determine how many elements there are
between the beginning of the mxArray and a given element of that mxArray. For
example, given a subscript like (5,7), mxCalcSingleSubscript returns the
distance from the (1,1) element of the array to the (5,7) element. Remember
that the mxArray data type internally represents all data elements in a
one-dimensional array no matter how many dimensions the MATLAB mxArray
appears to have.

Use mxCalcSingleSubscript with functions that interact with
multidimensional cells and structures. mxGetCell and mxSetCell are two such
functions.

mxGetCell, mxSetCell

mxCalloc

Purpose Allocate dynamic memory using the MATLAB memory manager

Fortran Syniax integer*4 function mxCalloc(n, size)
integer*4 n, size

Arguments n
Number of elements to allocate. This must be a nonnegative number.
size
Number of bytes per element.

Returns A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxCalloc returns 0.
If unsuccessful in a MEX-file, the MEX-file terminates and control returns to
the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

Description The MATLAB memory management facility maintains a list of all memory
allocated by mxCalloc (and by the mxCreate calls). The MATLAB memory
management facility automatically frees (deallocates) all of a MEX-file’s
parcels when control returns to the MATLAB prompt.

By default, in a MEX-file, mxCalloc generates nonpersistent mxCalloc data. In
other words, the memory management facility automatically deallocates the
memory as soon as the MEX-file ends. When you finish using the memory
allocated by mxCalloc, call mxFree. mxFree deallocates the memory.

mxCalloc works differently in MEX-files than in stand-alone MATLAB
applications. In MEX-files, mxCalloc automatically

¢ Allocates enough contiguous heap space to hold n elements.
¢ Initializes all n elements to 0.

¢ Registers the returned heap space with the MATLAB memory management
facility.

In stand-alone MATLAB applications, the MATLAB memory manager is not
used.

See Also mxFree

326

mxClassIDFromClassName

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

327

Get identifier that corresponds to a class

integer*4 function mxClassIDFromClassName(classname)
character*(*) classname

classname
A character array specifying a MATLAB class name. Use one of the strings
from the table below.

A numeric identifier used internally by MATLAB to represent the MATLAB
class, classname. Returns 0 if classname is not a recognized MATLAB class.

Use mxClassIDFromClassName to obtain an identifier for any class that is
recognized by MATLAB. This function is most commonly used to provide a
classid argument to mxCreateNumericArray and mxCreateNumericMatrix.

Valid choices for classname are shown below. MATLAB returns 0 if c1assname
is unrecognized.

cell char double function_handle
int8 int16 int32 int64

object single sparse struct

uint8 uint16 uint32 uint64

mxGetClassName, mxCreateNumericArray, mxCreateNumericMatrix

mxClearlogical (Obsolete)

Purpose

Fortran Syntax

Arguments

Description

See Also

Clear the logical flag

Note As of MATLAB version 6.5, mxClearLogical is obsolete. Support for
mxClearLogical may be removed in a future version.

subroutine mxClearLogical(pm)
integer*4 pm

pm
Pointer to an mxArray having a numeric class.

Use mxClearLogical to turn off the mxArray’s logical flag. This flag, when
cleared, tells MATLAB that the mxArray’s data is to be treated as numeric data
rather than as Boolean data. If the logical flag is on, then MATLAB treats a 0
value as meaning false and a nonzero value as meaning true.

Call mxSetLogical to turn on the mxArray’s logical flag. For additional
information on the use of logical variables in MATLAB, type help logical at
the MATLAB prompt.

mxIsLogical, mxSetLogical (Obsolete), logical

328

mxCopyCharacterToPtr

Purpose

Fortran Syntax

Arguments

Description

See Also

329

Copy character values from a Fortran array to a pointer array

subroutine mxCopyCharacterToPtr(y, px, n)
character*(*) y
integer*4 px, n

y
character Fortran array.

pX
Pointer to character or name array.

n
Number of elements to copy.

mxCopyCharacterToPtr copies n character values from the Fortran character
array y into the MATLAB string array pointed to by px. This subroutine is
essential for copying character data between MATLAB pointer arrays and
ordinary Fortran character arrays.

mxCopyPtrToCharacter, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

mxCopyComplex8ToPir

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy COMPLEX*8 values from a Fortran array to a pointer array

subroutine mxCopyComplex8ToPtr(y, pr, pi, n)
complex*8 y(n)
integer*4 pr, pi, n

y
COMPLEX*8 Fortran array.

pr
Pointer to the real data of a single-precision MATLAB array.

pi
Pointer to the imaginary data of a single-precision MATLAB array.

n
Number of elements to copy.

mxCopyComplex8ToPtr copies n COMPLEX*8 values from the Fortran COMPLEX*8
array y into the MATLAB arrays pointed to by pr and pi. This subroutine is
essential for use with Fortran compilers that do not support the %VAL construct
in order to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

mxCopyPtrToComplex8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

330

mxCopyComplex16ToPtr

Purpose

Fortran Syntax

Arguments

Description

See Also

331

Copy COMPLEX*16 values from a Fortran array to a pointer array

subroutine mxCopyComplex16ToPtr(y, pr, pi, n)
complex*16 y(n)
integer*4 pr, pi, n

y
COMPLEX*16 Fortran array.

pr
Pointer to the real data of a double-precision MATLAB array.

pi
Pointer to the imaginary data of a double-precision MATLAB array.

n
Number of elements to copy.

mxCopyComplex16ToPtr copies n COMPLEX*16 values from the Fortran
COMPLEX*16 array y into the MATLAB arrays pointed to by pr and pi. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

mxCopyPtrToComplex16, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopylinteger1ToPtr

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy INTEGER*1 values from a Fortran array to a pointer array

subroutine mxCopyIntegeriToPtr(y, px, n)
integer*1 y(n)
integer*4 px, n

y
INTEGER*1 Fortran array.

pX
Pointer to ir or jc array.

n
Number of elements to copy.

mxCopyIntegeriToPtr copies n INTEGER*1 values from the Fortran INTEGER*1
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

mxCopyPtrToIntegeri, mxCreateNumericArray, mxCreateNumericMatrix

332

mxCopylnteger2ToPtr

Purpose

Fortran Syntax

Arguments

Description

See Also

333

Copy INTEGER*2 values from a Fortran array to a pointer array

subroutine mxCopyInteger2ToPtr(y, px, n)
integer*2 y(n)
integer*4 px, n

y
INTEGER*2 Fortran array.

pX
Pointer to ir or jc array.

n
Number of elements to copy.

mxCopyInteger2ToPtr copies n INTEGER*2 values from the Fortran INTEGER*2
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

mxCopyPtrToInteger2, mxCreateNumericArray, mxCreateNumericMatrix

mxCopylinteger4ToPtr

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy INTEGER*4 values from a Fortran array to a pointer array

subroutine mxCopyInteger4ToPtr(y, px, n)
integer*4 y(n)
integer*4 px, n

y
INTEGER*4 Fortran array.

pX
Pointer to ir or jc array.

n
Number of elements to copy.

mxCopyInteger4ToPtr copies n INTEGER*4 values from the Fortran INTEGER*4
array y into the MATLAB array pointed to by px, either an ir or jc array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

mxCopyPtrToInteger4, mxCreateNumericArray, mxCreateNumericMatrix

334

mxCopyPtrToCharacter

Purpose

Fortran Syntax

Arguments

Description

Example

See Also

335

Copy character values from a pointer array to a Fortran array

subroutine mxCopyPtrToCharacter(px, y, n)
character*(*) y
integer*4 px, n

pX
Pointer to character or name array.

y
character Fortran array.

n
Number of elements to copy.

mxCopyPtrToCharacter copies n character values from the MATLAB array
pointed to by px into the Fortran character array y. This subroutine is
essential for copying character data from MATLAB pointer arrays into
ordinary Fortran character arrays.

See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

mxCopyCharacterToPtr, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

mxCopyPtrToComplex8

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy COMPLEX*8 values from a pointer array to a Fortran array

subroutine mxCopyPtrToComplex8(pr, pi, y, n)
complex*8 y(n)
integer*4 pr, pi, n

pr
Pointer to the real data of a single-precision MATLAB array.

pi
Pointer to the imaginary data of a single-precision MATLAB array.

y
COMPLEX*8 Fortran array.

n
Number of elements to copy.

mxCopyPtrToComplex8 copies n COMPLEX*8 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*8 array y. This subroutine is
essential for use with Fortran compilers that do not support the %VAL construct
in order to set up standard Fortran arrays for passing as arguments to the
computation routine of a MEX-file.

mxCopyComplex8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

336

mxCopyPtrToComplex16

Purpose

Fortran Syntax

Arguments

Description

See Also

337

Copy COMPLEX*16 values from a pointer array to a Fortran array

subroutine mxCopyPtrToComplexi6(pr, pi, y, n)
complex*16 y(n)
integer*4 pr, pi, n

pr
Pointer to the real data of a double-precision MATLAB array.

pi
Pointer to the imaginary data of a double-precision MATLAB array.

y
COMPLEX*16 Fortran array.

n
Number of elements to copy.

mxCopyPtrToComplex16 copies n COMPLEX*16 values from the MATLAB arrays
pointed to by pr and pi into the Fortran COMPLEX*16 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

mxCopyComplex16ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyPtrTolntegerl

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy INTEGER*1 values from a pointer array to a Fortran array

subroutine mxCopyPtrToIntegeri(px, y, n)
integer*1 y(n)
integer*4 px, n

pX
Pointer to ir or jc array.

y
INTEGER*1 Fortran array.

n
Number of elements to copy.

mxCopyPtrToIntegeri copies n INTEGER*1 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*1 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

mxCopyInteger1ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

338

mxCopyPtrTolnteger2

Purpose

Fortran Syntax

Arguments

Description

See Also

339

Copy INTEGER*2 values from a pointer array to a Fortran array

subroutine mxCopyPtrToInteger2(px, y, n)
integer*2 y(n)
integer*4 px, n

pX
Pointer to ir or jc array.

y
INTEGER*2 Fortran array.

n
Number of elements to copy.

mxCopyPtrToInteger2 copies n INTEGER*2 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*2 arrayy.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

mxCopyInteger2ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

mxCopyPtrTolnteger4

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy INTEGER*4 values from a pointer array to a Fortran array

subroutine mxCopyPtrToInteger4(px, y, n)
integer*4 y(n)
integer*4 px, n

pX
Pointer to ir or jc array.

y
INTEGER*4 Fortran array.

n
Number of elements to copy.

mxCopyPtrToInteger4 copies n INTEGER*4 values from the MATLAB array
pointed to by px, either an ir or jc array, into the Fortran INTEGER*4 array y.
This subroutine is essential for use with Fortran compilers that do not support
the %VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

Note This function can only be used with sparse matrices.

mxCopyInteger4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix

340

mxCopyPtrToPtrArray

Purpose

Fortran Syntax

Arguments

Description

Example

See Also

341

Copy pointer values from a pointer array to a Fortran array

subroutine mxCopyPtrToPtrArray(px, y, n)
integer*4 y(n)
integer*4 px, n

pX
Pointer to pointer array.

y
INTEGER*4 Fortran array.

n
Number of pointers to copy.

mxCopyPtrToPtrArray copies n pointers from the MATLAB array pointed to by
px into the Fortran array y. This subroutine is essential for copying the output
of matGetDir into an array of pointers. After calling this function, each element
of y contains a pointer to a string. You can convert these strings to Fortran
character arrays by passing each element of y as the first argument to
mxCopyPtrToCharacter.

See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

matGetDir, mxCopyPtrToCharacter

mxCopyPtrToReal4

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy REAL*4 values from a pointer array to a Fortran array

subroutine mxCopyPtrToReal4(px, y, n)
real*4 y(n)
integer*4 px, n

pX
Pointer to the real or imaginary data of a single-precision MATLAB array.

y
REAL*4 Fortran array.

n
Number of elements to copy.

mxCopyPtrToReal4 copies n REAL*4 values from the MATLAB array pointed to
by px, either a pr or pi array, into the Fortran REAL*4 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

mxCopyReal4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

342

mxCopyPtrToReal8

Purpose

Fortran Syntax

Arguments

Description

Example

See Also

343

Copy REAL*8 values from a pointer array to a Fortran array

subroutine mxCopyPtrToReal8(px, y, n)
real*8 y(n)
integer*4 px, n

pX
Pointer to the real or imaginary data of a double-precision MATLAB array.

y
REAL*8 Fortran array.

n
Number of elements to copy.

mxCopyPtrToReal8 copies n REAL*8 values from the MATLAB array pointed to
by px, either a pr or pi array, into the Fortran REAL*8 array y. This subroutine
is essential for use with Fortran compilers that do not support the %VAL
construct in order to set up standard Fortran arrays for passing as arguments
to the computation routine of a MEX-file.

See fengdemo. f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

mxCopyReal8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCopyReal4ToPtr

Purpose

Fortran Syntax

Arguments

Description

See Also

Copy REAL*4 values from a Fortran array to a pointer array

subroutine mxCopyReal4ToPtr(y, px, n)
real*4 y(n)
integer*4 px, n

y
REAL*4 Fortran array.

pX
Pointer to the real or imaginary data of a single-precision MATLAB array.

n
Number of elements to copy.

mxCopyReal4ToPtr(y,px,n) copies n REAL*4 values from the Fortran REAL*4
array y into the MATLAB array pointed to by px, either a pr or pi array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

mxCopyPtrToReal4, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

344

mxCopyReal8ToPtr

Purpose

Fortran Syntax

Arguments

Description

Example

See Also

345

Copy REAL*8 values from a Fortran array to a pointer array

subroutine mxCopyReal8ToPtr(y, px, n)
real*8 y(n)
integer*4 px, n

y
REAL*8 Fortran array.

pX
Pointer to the real or imaginary data of a double-precision MATLAB array.

n
Number of elements to copy.

mxCopyReal8ToPtr(y,px,n) copies n REAL*8 values from the Fortran REAL*8
array y into the MATLAB array pointed to by px, either a pr or pi array. This
subroutine is essential for use with Fortran compilers that do not support the
%VAL construct in order to set up standard Fortran arrays for passing as
arguments to the computation routine of a MEX-file.

See matdemo1.f and fengdemo.f in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to use this routine in a
Fortran program.

mxCopyPtrToReal8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

mxCreateCellArray

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Create an unpopulated N-dimensional cell mxArray

integer*4 function mxCreateCellArray(ndim, dims)
integer*4 ndim, dims

ndim
The desired number of dimensions in the created cell. For example, to create a
three-dimensional cell mxArray, set ndim to 3.

dims

The dimensions array. Each element in the dimensions array contains the size
of the mxArray in that dimension. For example, setting dims (1) to 5 and
dims(2) to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellArray returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. The most common cause of failure is insufficient free heap
space.

Use mxCreateCellArray to create a cell mxArray whose size is defined by ndim
and dims. For example, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;
dims(1) = 4; dims(2) = 8; dims(3) = 7;

The created cell mxArray is unpopulated; that is, mxCreateCellArray
initializes each cell to 0. To put data into a cell, call mxSetCell.

mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

346

mxCreateCellMatrix

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

347

Create an unpopulated two-dimensional cell mxArray

integer*4 function mxCreateCellMatrix(m, n)
integer*4 m, n

m
The desired number of rows.

n
The desired number of columns.

A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCellMatrix returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCellMatrix to be unsuccessful.

Use mxCreateCellMatrix to create an m-by-n two-dimensional cell mxArray.
The created cell mxArray is unpopulated; that is, mxCreateCellMatrix
initializes each cell to 0. To put data into the cells, call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only, but
mxCreateCellArray can create mxArrays having any number of dimensions
greater than 1.

mxCreateCellArray

mxCreateCharArray

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Create an unpopulated N-dimensional character mxArray

integer*4 function mxCreateCharArray(ndim, dims)
integer*4 ndim, dims

ndim

The desired number of dimensions in the character mxArray. You must specify
a positive number. If you specify 0, 1, or 2, mxCreateCharArray creates a
two-dimensional mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims (1) to 5 and dims(2)
to 7 establishes a 5-by-7 character mxArray. The dims array must have at least
ndim elements.

A pointer to the created character mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharArray returns 0. If
unsuccessful in a MEX-file, the MEX-file terminates and control returns to the
MATLAB prompt. Insufficient free heap space is the only reason for
mxCreateCharArray to be unsuccessful.

Use mxCreateCharArray to create an mxArray of characters whose size is
defined by ndim and dims. For example, to establish a two-dimensional mxArray
of characters having dimensions 12-by-3, set

ndim = 2;
dims(1) = 12; dims(2) = 3;

The created mxArray is unpopulated; that is, mxCreateCharArray initializes
each character to INTEGER*2 0.

mxCreateString

348

mxCreateCharMatrixFromStrings

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

349

Create a populated two-dimensional char mxArray

integer*4 function mxCreateCharMatrixFromStrings(m, str)
integer*4 m
character*(*) str(m)

m
The desired number of rows in the created string mxArray. The value you
specify for m should equal the size of the str array.

str
A Fortran character*n array of size m, where each element of the array is n
bytes.

A pointer to the created char mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateCharMatrixFromStrings
returns 0. If unsuccessful in a MEX-file, the MEX-file terminates, and control
returns to the MATLAB prompt. Insufficient free heap space is the primary
reason for mxCreateCharMatrixFromStrings to be unsuccessful. Another
possible reason for failure is that str contains fewer than m strings.

Use mxCreateCharMatrixFromStrings to create a two-dimensional string
mxArray, where each row is initialized to str. The created mxArray has

dimensions m-by-n, where n is the length of the number of characters in str(i).

mxCreateCharArray, mxCreateString

mxCreateDoubleMatrix

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Create an unpopulated two-dimensional, double-precision, floating-point
mxArray

integer*4 function mxCreateDoubleMatrix(m, n, ComplexFlag)
integer*4 m, n, ComplexFlag

m
The desired number of rows.

n
The desired number of columns.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary component,
specify 0. If the data has some imaginary components, specify 1.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateDoubleMatrix returns 0. If unsuccessful
in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt. mxCreateDoubleMatrix is unsuccessful when there is not enough free
heap space to create the mxArray.

Use mxCreateDoubleMatrix to create an m-by-n mxArray.

If you set ComplexFlag to 0, mxCreateDoubleMatrix allocates enough memory
to hold m-by-n real elements and initializes each element to 0.0.

If you set ComplexFlag to 1, mxCreateDoubleMatrix allocates enough memory
to hold m-by-n real elements and m-by-n imaginary elements. It initializes each
real and imaginary element to 0.0.

Call mxDestroyArray when you finish using the mxArray. mxDestroyArray
deallocates the mxArray and its associated real and complex elements.

mxCreateNumericArray

350

mxCreateFull (Obsolete)

Purpose Create an unpopulated two-dimensional mxArray

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxCreateDoubleMatrix instead.

See Also mxCreateSparse

351

mxCreateNumericArray

Purpose

Fortran Syntax

Arguments

Returns

Create an unpopulated N-dimensional numeric mxArray

integer*4 function mxCreateNumericArray(ndim, dims, classid,
ComplexFlag)
integer*4 ndim, dims, classid, ComplexFlag

ndim
Number of dimensions. If you specify a value for ndim that is less than 2,
mxCreateNumericArray automatically sets the number of dimensions to 2.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims (1) to 5 and dims(2)
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

classid

A numerical identifier that represents a particular MATLAB class. Use the
function, mxClassIDFromClassName, to derive the classid value from a class
name character array.

The classid tells MATLAB how you want the numerical array data to be
represented in memory. For example, specifying the int32 class causes each
piece of numerical data in the mxArray to be represented as a 32-bit signed
integer.

mxCreateNumericArray accepts any of the MATLAB signed numeric classes,
shown to the left in the table below.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary components,
specify 0. If the data will have some imaginary components, specify 1.

A pointer to the created mxArray, if successful. If unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericArray returns 0. If unsuccessful
in a MEX-file, the MEX-file terminates and control returns to the MATLAB
prompt. mxCreateNumericArray is unsuccessful when there is not enough free
heap space to create the mxArray.

352

mxCreateNumericArray

Description

353

Call mxCreateNumericArray to create an N-dimensional mxArray in which all
data elements have the numeric data type specified by classid. After creating
the mxArray, mxCreateNumericArray initializes all its real data elements to 0.
If ComplexFlag is set to 1, mxCreateNumericArray also initializes all its
imaginary data elements to 0.

The following table shows the Fortran data types that are equivalent to
MATLAB classes. Use these as shown in the example below.

MATLAB Class Name Fortran Type
int8 INTEGER*1
int16 INTEGER*2
int32 INTEGER*4
single REAL*4
double REAL*8
single, with imaginary components COMPLEX*8
double, with imaginary components COMPLEX*16

mxCreateNumericArray differs from mxCreateDoubleMatrix in two important
respects:

¢ All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray could
be any numerical type, including different integer precisions.

® mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the created
mxArray. When you finish with the created mxArray, call mxDestroyArray to
deallocate its memory.

mxCreateNumericArray

Example To create a 4-by-4-by-2 array of REAL*8 elements having no imaginary
components, use

C Create 4x4x2 mxArray of REAL*8
data dims / 4, 4, 2 /
mxCreateNumericArray (3, dims,

+ mxClassIDFromClassName('double'), 0)
See Also mxCreateDoubleMatrix, mxCreateNumericMatrix, mxCreateSparse,
mxCreateString

354

mxCreateNumericMatrix

Purpose

Fortran Syntax

Arguments

Returns

Description

355

Create a numeric matrix and initialize all its data elements to 0

integer*4 function mxCreateNumericMatrix(m, n, classid,
ComplexFlag)
integer*4 m, n, classid, ComplexFlag

m
The desired number of rows.

n
The desired number of columns.

classid

A numerical identifier that represents a particular MATLAB class. Use the
function, mxClassIDFromClassName, to derive the classid value from a class
name character array.

The classid tells MATLAB how you want the numerical array data to be
represented in memory. For example, specifying the int32 class causes each
piece of numerical data in the mxArray to be represented as a 32-bit signed
integer.

mxCreateNumericMatrix accepts any of the MATLAB signed numeric classes,
shown to the left in the table below.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary components,
specify 0. If the data has some imaginary components, specify 1.

A pointer to the created mxArray, if successful. mxCreateNumericMatrix is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateNumericMatrix is unsuccessful in a MEX-file, the MEX-file prints an
Out of Memory message, terminates, and control returns to the MATLAB
prompt. If mxCreateNumericMatrix is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateNumericMatrix returns O.

Call mxCreateNumericMatrix to create an two-dimensional mxArray in which
all data elements have the numeric data type specified by classid. After
creating the mxArray, mxCreateNumericMatrix initializes all its real data
elements to 0. If ComplexFlag is set to 1, mxCreateNumericMatrix also
initializes all its imaginary data elements to 0. mxCreateNumericMatrix

mxCreateNumericMatrix

allocates dynamic memory to store the created mxArray. When you finish using

the mxArray, call mxDestroyArray to destroy it.

The following table shows the Fortran data types that are equivalent to
MATLAB classes. Use these as shown in the example below.

MATLAB Class Name

Fortran Type

int8 BYTE

int16 INTEGER*2

int32 INTEGER*4

single REAL*4

double REAL*8

single, with imaginary components COMPLEX*8

double, with imaginary components COMPLEX*16
Example To create a 4-by-3 matrix of REAL*4 elements having no imaginary components,

use
C Create 4x3 mxArray of REAL*4
mxCreateNumericMatrix (4, 3,
+ mxClassIDFromClassName('single'), 0)

See Also mxCreateDoubleMatrix, mxCreateNumericArray

356

mxCreateScalarDouble

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

357

Create a scalar, double-precision array initialized to the specified value

integer*4 function mxCreateScalarDouble(value)
real*4 value

value
The desired value to which you want to initialize the array.

A pointer to the created mxArray, if successful. mxCreateScalarDouble is
unsuccessful if there is not enough free heap space to create the mxArray. If
mxCreateScalarDouble is unsuccessful in a MEX-file, the MEX-file prints an
Out of Memory message, terminates, and control returns to the MATLAB
prompt. If mxCreateScalarDouble is unsuccessful in a stand-alone
(nonMEX-file) application, mxCreateScalarDouble returns 0.

Call mxCreateScalarDouble to create a scalar double mxArray.
mxCreateScalarDouble is a convenience function that can be used in place of
the following code.

pm = mxCreateDoubleMatrix (1, 1, 0)
mxCopyReal8ToPtr(value, mxGetPr(pm), 1)

When you finish using the mxArray, call mxDestroyArray to destroy it.

mxGetPr, mxCreateDoubleMatrix

mxCreateSparse

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Create a two-dimensional unpopulated sparse mxArray

integer*4 function mxCreateSparse(m, n, nzmax, ComplexFlag)
integer*4 m, n, nzmax, ComplexFlag

m
The desired number of rows.

n
The desired number of columns.

nzmax
The number of elements that mxCreateSparse should allocate to hold the pr,

ir,and, if ComplexFlag = 1, piarrays. Set the value of nzmax to be greater than
or equal to the number of nonzero elements you plan to put into the mxArray,
but make sure that nzmax is less than or equal to m*n.

ComplexFlag
Specify REAL = 0 if the data has no imaginary components; specify
COMPLEX = 1 if the data has some imaginary components.

An unpopulated, sparse mxArray if successful, and 0 otherwise.

Call mxCreateSparse to create an unpopulated sparse mxArray. The returned
sparse mxArray contains no sparse information and cannot be passed as an
argument to any MATLAB sparse functions. In order to make the returned
sparse mxArray useful, you must initialize the pr, ir, jc, and (if it exists) pi
array.

mxCreateSparse allocates space for

® A pr array of length nzmax.

® A pi array of length nzmax (but only if ComplexFlag is COMPLEX = 1).
® An ir array of length nzmax.

® A jc array of length n+1.

When you finish using the sparse mxArray, call mxDestroyArray to reclaim all
its heap space.

mxDestroyArray, mxSetNzmax, mxSetPr, mxSetIr, mxSetdc

358

mxCreateString

Purpose

Fortran Syntax

Arguments

Returns

Description

Example

359

Create a 1-by-n character array initialized to the specified string

integer*4 function mxCreateString(str)
character*(*) str

str
The string that is to serve as the mxArray s initial data.

A character array initialized to str if successful, and 0 otherwise.

Use mxCreateString to create a character mxArray initialized to str. Many
MATLAB functions (for example, strcmp and upper) require character
mxArray inputs.

Free the character mxArray when you are finished using it. To free a
character mxArray, call mxDestroyArray.

See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

mxCreateStructArray

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Create an unpopulated N-dimensional structure mxArray

integer*4 function mxCreateStructArray(ndim, dims, nfields,
fieldnames)

integer*4 ndim, dims, nfields

character*(*) fieldnames(nfields)

ndim
Number of dimensions. If you set ndim to be less than 2, mxCreateStructArray
creates a two-dimensional mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims[1] to 5 and dims[2]
to 7 establishes a 5-by-7 mxArray. Typically, the dims array should have ndim
elements.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

A pointer to the created structure mxArray if successful, and zero otherwise.
The most likely cause of failure is insufficient heap space to hold the returned
mxArray.

Call mxCreateStructArray to create an unpopulated structure mxArray. Each
element of a structure mxArray contains the same number of fields (specified in
nfields). Each field has a name; the list of names is specified in fieldnames.

Each field holds one mxArray pointer. mxCreateStructArray initializes each
field to zero. Call mxSetField or mxSetFieldByNumber to place a non-zero
mxArray pointer in a field.

When you finish using the returned structure mxArray, call mxDestroyArray to
reclaim its space.

mxDestroyArray, mxCreateStructMatrix, mxIsStruct, mxAddField,
mxSetField, mxGetField, mxRemoveField

360

mxCreateStructMatrix

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

361

Create an unpopulated two-dimensional structure mxArray

integer*4 function mxCreateStructMatrix(m, n, nfields, fieldnames)
integer*4 m, n, nfields
character*(*) fieldnames(nfields)

m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

A pointer to the created structure mxArray if successful, and 0 otherwise. The
most likely cause of failure is insufficient heap space to hold the returned
mxArray.

mxCreateStructMatrix and mxCreateStructArray are almost identical. The
only difference is that mxCreateStructMatrix can only create two-dimensional
mxArrays, while mxCreateStructArray can create mxArrays having two or
more dimensions.

mxCreateStructArray, mxIsStruct, mxAddField, mxSetField, mxGetField,
mxRemoveField

mxDestroyArray

Purpose

Fortran Syntax

Arguments

Description

See Also

Free dynamic memory allocated by an mxCreate routine

subroutine mxDestroyArray (pm)
integer*4 pm

pm
Pointer to the mxArray that you want to free.

mxDestroyArray deallocates the memory occupied by the specified mxArray.
mxDestroyArray not only deallocates the memory occupied by the mxArray’s
characteristics fields (such as m and n), but also deallocates all the mxArray’s
associated data arrays (such as pr, pi, ir, and/or jc). You should not call
mxDestroyArray on an mxArray you are returning on the left-hand side.

mxCalloc, mxFree, mexMakeArrayPersistent, mexMakeMemoryPersistent

362

mxDuplicateArray

Purpose

Fortran Syntax

Arguments

Returns

Description

363

Make a deep copy of an array

integer*4 function mxDuplicateArray(in)
integer*4 in

in
Pointer to the mxArray that you want to copy.

Pointer to a copy of the array.

mxDuplicateArray makes a deep copy of an array, and returns a pointer to the
copy. A deep copy refers to a copy in which all levels of data are copied. For
example, a deep copy of a cell array copies each cell, and the contents of the
each cell (if any), and so on.

mxFree

Purpose

Fortran Syntax

Arguments

Description

See Also

Free dynamic memory allocated by mxCalloc

subroutine mxFree(ptr)
integer*4 ptr

ptr
Pointer to the beginning of any memory parcel allocated by mxCalloc.

mxFree deallocates heap space. mxFree frees memory using the MATLAB
memory management facility. This ensures correct memory management in
error and abort (Ctrl-C) conditions.

mxFree works differently in MEX-files than in stand-alone MATLAB
applications. With MEX-files, mxFree returns to the heap any memory
allocated using mxCalloc. If you do not free memory with this command,
MATLAB frees it automatically on return from the MEX-file. In stand-alone
MATLAB applications, you have to explicitly free memory, and MATLAB
memory management is not used.

In a MEX-file, your use of mxFree depends on whether the specified memory
parcel is persistent or nonpersistent. By default, memory parcels created by
mxCalloc are nonpersistent.

The MATLAB memory management facility automatically frees all
nonpersistent memory whenever a MEX-file completes. Thus, even if you do
not call mxFree, MATLAB takes care of freeing the memory for you.
Nevertheless, it is a good programming practice to deallocate memory just as
soon as you are through using it. Doing so generally makes the entire system
run more efficiently.

When a MEX-file completes, the MATLAB memory management facility does
not free persistent memory parcels. Therefore, the only way to free a persistent
memory parcel is to call mxFree. Typically, MEX-files call nexAtExit to register
a clean-up handler. Then, the clean-up handler calls mxFree.

mxCalloc, mxDestroyArray

364

mxFreeMatrix (Obsolete)

Purpose Free dynamic memory allocated by mxCreateFull and mxCreateSparse

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxDestroyArray instead.

See Also mxCalloc, mxFree

365

mxGetCell

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get a cell’s contents

integer*4 function mxGetCell(pm, index)
integer*4 pm, index

pm
Pointer to a cell mxArray.

index

The number of elements in the cell mxArray between the first element and the
desired one. See mxCalcSingleSubscript for details on calculating an index in
a multidimensional cell array.

A pointer to the ith cell mxArray if successful, and 0 otherwise. Causes of
failure include:

¢ The indexed cell array element has not been populated.

® Specifying an array pointer, pm, that does not point to a cell mxArray.

® Specifying an index greater than the number of elements in the cell.

¢ Insufficient free heap space to hold the returned cell mxArray.

Call mxGetCell to get a pointer to the mxArray held in the indexed element of
the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxCreateCellArray, mxIsCell, mxSetCell

366

mxGetClassID

Purpose Get an mxArray’s class identifier

Fortran Syntax integer*4 function mxGetClassID(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns A numeric identifier that represents the class (category) of the mxArray that pm
points to.
Description Use mxGetClassId to determine the class of an mxArray. The class of an

mxArray identifies the kind of data the mxArray is holding.

See Also mxGetClassName

367

mxGetClassName

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get (as a character array) an mxArray’s class

character*(*) function mxGetClassName (pm)
integer*4 pm

pm
Pointer to an mxArray.

The class (as a character array) of mxArray, pm.
Call mxGetClassName to determine the class of an mxArray. The class of an
mxArray identifies the kind of data the mxArray is holding. For example, if pm

points to a sparse mxArray, then mxGetClassName returns sparse.

mxGetClassID

368

mxGetData

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

369

Get pointer to data

integer*4 function mxGetData(pm)
integer*4 pm

pm
Pointer to an mxArray.

The address of the first element of the real data, on success. Returns 0 if there
is no real data or if there is an error.

Call mxGetData to get a pointer to the real data in the mxArray that pm points
to. To copy values from the pointer to Fortran, use one of the mxCopyPtrTo*
functions in the manner shown here.

C Get the data in mxArray, pm
mxCopyPtrToReal8 (mxGetData(pm), data,
+ mxGetNumberOfElements (pm))

mxGetData is equivalent to using mxGetPr.

mxGetImagData, mxSetData, mxSetImagData, mxCopyPtrToReal4,
mxCopyPtrToReal8, mxGetPr

mxGetDimensions

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get a pointer to the dimensions array

integer*4 function mxGetDimensions(pm)
integer*4 pm

pm
Pointer to an mxArray.

A pointer to the first element in a dimension array. Each integer in the
dimensions array represents the number of elements in a particular
dimension.

Use mxGetDimensions to determine how many elements are in each dimension
of the mxArray that pm points to. Call mxGetNumberOfDimensions to get the
number of dimensions in the mxArray.

mxGetDimensions returns a pointer to the dimension array. To copy the values
to Fortran, use mxCopyPtrToInteger4 in the manner shown here.

C Get dimensions of mxArray, pm
mxCopyPtrToInteger4 (mxGetDimensions(pm), dims,
+ mxGetNumberOfDimensions(pm))

mxGetNumberOfDimensions

370

mxGetElementSize

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

371

Get the number of bytes required to store each data element

integer*4 function mxGetElementSize (pm)
integer*4 pm

pm
Pointer to an mxArray.

The number of bytes required to store one element of the specified mxArray, if
successful. Returns 0 on failure. The primary reason for failure is that pm points
to an mxArray having an unrecognized class. If pm points to a cell mxArray or a
structure mxArray, then mxGetElementSize returns the size of a pointer (not
the size of all the elements in each cell or structure field).

Call mxGetElementSize to determine the number of bytes in each data element
of the mxArray. For example, if the class of an mxArray is int16, then the
mxArray stores each data element as a 16-bit (2 byte) signed integer. Thus,
mxGetElementSize returns 2.

mxGetM, mxGetN

mxGetEps

Purpose Get value of eps

Fortran Syntax real*s function mxGetEps

Returns The value of the MATLAB eps variable.

Description Call mxGetEps to return the value of the MATLAB eps variable. This variable
holds the distance from 1.0 to the next largest floating-point number. As such,
it is a measure of floating-point accuracy. The MATLAB pinv and rank

functions use eps as a default tolerance.

See Also mxGetInf, mxGetNaN

372

mxGetField

Purpose

Fortran Syntax

Arguments

Returns

Description

373

Get a field value, given a field name and an index in a structure array

integer*4 function mxGetField(pm, index, fieldname)
integer*4 pm, index
character*(*) fieldname

pm
Pointer to a structure mxArray.

index

The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldname
The name of the field whose value you want to extract.

A pointer to the mxArray in the specified field at the specified fieldname, on
success. Returns zero if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

¢ Specifying a pmthat does not point to a structure mxArray. To determine if pm
points to a structure mxArray, call mxIsStruct.

® Specifying an out-of-range index to an element past the end of the mxArray.
For example, given a structure mxArray that contains 10 elements, you
cannot specify an index greater than 10.

® Specifying a nonexistent fieldname. Call mxGetFieldNameByNumber to get
existing field names.
¢ Insufficient heap space to hold the returned mxArray.

Call mxGetField to get the value held in the specified element of the specified
field.

mxGetFieldByNumber is similar to mxGetField. Both functions return the same
value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes fieldnumber as its third argument, and
mxGetField takes fieldname as its third argument.

mxGetField

See Also

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber (pm, index, fieldnum)

where index is 1 if you have a one-by-one structure.

mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField, mxSetFieldByNumber

374

mxGetFieldByNumber

Purpose

Fortran Syntax

Arguments

Returns

Description

375

Get a field value, given a field number and an index in a structure array

integer*4 function mxGetFieldByNumber (pm, index, fieldnumber)
integer*4 pm, index, fieldnumber

pm
Pointer to a structure mxArray.

index
The desired element. The first element of an mxArray has an index of 1, the

second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldnumber

The position of the field whose value you want to extract. The first field within
each element has a field number of 1, the second field has a field number of 2,
and so on. The last field has a field number of N, where N is the number of fields.

A pointer to the mxArray in the specified field for the desired element, on
success. Returns zero if passed an invalid argument or if there is no value
assigned to the specified field. Common causes of failure include:

® Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to is a structure mxArray.
® Specifying an index < 1 or > the number of elements in the array.

® Specifying a nonexistent field number. Call mxGetFieldNumber to determine
the field number that corresponds to a given field name.

Call mxGetFieldByNumber to get the value held in the specified fieldnumber at
the indexed element.

Note Inputsto a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxGetFieldByNumber

See Also

Calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber (pm, index, fieldnum)

where index is 1 if you have a one-by-one structure.

mxGetField, mxGetFieldNameByNumber, mxGetNumberOfFields, mxSetField,
mxSetFieldByNumber

376

mxGetFieldNameByNumber

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

377

Get a field name, given a field number in a structure array

character*(*) function mxGetFieldNameByNumber (pm, fieldnumber)
integer*4 pm, fieldnumber

pm
Pointer to a structure mxArray.

fieldnumber
The position of the desired field. For instance, to get the name of the first field,

set fieldnumber to 1; to get the name of the second field, set fieldnumber to 2;
and so on.

The nth field name, on success. Returns 0 on failure. Common causes of failure
include:

® Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to a structure mxArray.

® Specifying a value of fieldnumber greater than the number of fields in the
structure mxArray. (Remember that fieldnumber 1 represents the first field,
so index N represents the last field.)

Call mxGetFieldNameByNumber to get the name of a field in the given structure
mxArray. A typical use of mxGetFieldNameByNumber is to call it inside a loop to
get the names of all the fields in a given mxArray.

Consider a MATLAB structure initialized to

patient.name = 'dJohn Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The fieldnumber 1 represents the field name name; fieldnumber 2 represents
field name billing; fieldnumber 3 represents field name test. A fieldnumber
other than 1, 2, or 3 causes mxGetFieldNameByNumber to return 0.

mxGetField, mxIsStruct, mxSetField

mxGetFieldNumber

Purpose

Fortran Syntax

Arguments

Returns

Description

Get a field number, given a field name in a structure array

integer*4 function mxGetFieldNumber (pm, fieldname)
integer*4 pm
character*(*) fieldname

pm
Pointer to a structure mxArray.

fieldname
The name of a field in the structure mxArray.

The field number of the specified fieldname, on success. The first field has a
field number of 1, the second field has a field number of 2, and so on. Returns
0 on failure. Common causes of failure include:

® Specifying a pm that does not point to a structure mxArray. Call mxIsStruct
to determine if pm points to a structure mxArray.

® Specifying the fieldname of a nonexistent field.

If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do not know
its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The field name name has a field number of 1; the field name billing has a field
number of 2; and the field name test has a field number of 3. If you call
mxGetFieldNumber and specify a fieldname of anything other than 'name’,
'billing', or 'test', then mxGetFieldNumber returns 0.

378

mxGetFieldNumber

Calling

mxGetField(pm, index, 'fieldname');

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname');
mxGetFieldByNumber (pm, index, fieldnum);

where index is 1 if you have a 1-by-1 structure.

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxSetField, mxSetFieldByNumber

379

mxGetimagData

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get pointer to imaginary data of an mxArray

integer*4 function mxGetImagData(pm)
integer*4 pm

pm
Pointer to an mxArray.

The address of the first element of the imaginary data, on success. Returns 0 if
there is no imaginary data or if there is an error.

Call mxGetImagData to determine the starting address of the imaginary data in
the mxArray that pm points to. To copy values from the pointer to Fortran, use
one of the mxCopyPtrToComplex* functions in the manner shown here.

C Get the real and imaginary data in mxArray, pm
mxCopyPtrToComplex16 (mxGetData(pm), mxGetImagData(pm),
+ data, mxGetNumberOfElements(pm))

mxGetImagData is equivalent to using mxGetPi.

mxGetData, mxSetImagData, mxSetData, mxCopyPtrToComplex8,
mxCopyPtrToComplex16, mxGetPi

380

mxGetinf

Purpose
Fortran Syntax
Returns

Description

See Also

381

Get the value of infinity
real*8 function mxGetInf

The value of infinity on your system.

Call mxGetInf to return the value of the MATLAB internal inf variable. inf is
a permanent variable representing IEEE arithmetic positive infinity. The
value of inf is built into the system. You cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

® Operations resulting in overflow. For example, exp (10000) returns infinity
because the result is too large to be represented on your machine.

mxGetEps, mxGetNaN

mxGetir

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get the ir array

integer*4 function mxGetIr(pm)
integer*4 pm

pm
Pointer to a sparse mxArray.

A pointer to the first element in the ir array if successful, and zero otherwise.
Possible causes of failure include:

® Specifying a full (nonsparse) mxArray.
® An earlier call to mxCreateSparse failed.

Use mxGetIr to obtain the starting address of the ir array. The ir array is an
array of integers; the length of the ir array is typically nzmax values. For
example, if nzmax equals 100, then the ir array should contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetdJc.

mxGetdc, mxGetNzmax, mxSetIr, mxSetdc, mxSetNzmax

382

mxGetlJc

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

383

Get the jc array

integer*4 function mxGetdc (pm)
integer*4 pm

pm
Pointer to a sparse mxArray.

A pointer to the first element in the jc array if successful, and zero otherwise.
The most likely cause of failure is specifying a pointer that points to a full
(nonsparse) mxArray.

Use mxGetJc to obtain the starting address of the jc array. The jc array is an
integer array having n+1 elements where n is the number of columns in the
sparse mxArray. The values in the jc array indirectly indicate columns
containing nonzero elements. For a detailed explanation of the jc array, see
mxSetdc.

mxGetIr, mxSetIr, mxSetdc

mxGetM

Purpose

Fortran Syntax

Arguments

Returns
Description

Example

See Also

Get the number of rows

integer*4 function mxGetM(pm)
integer*4 pm

pm
Pointer to an mxArray.

The number of rows in the mxArray to which pm points.
mxGetM returns the number of rows in the specified array.

See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

mxGetN, mxSetM, mxSetN

384

mxGetN

Purpose

Fortran Syntax

Arguments

Returns

Description

Example

See Also

385

Get the total number of columns

integer*4 function mxGetN(pm)
integer*4 pm

pm
Pointer to an mxArray.

The number of columns in the mxArray.

Call mxGetN to determine the number of columns in the specified mxArray.

If pm points to a sparse mxArray, mxGetN still returns the number of columns,
not the number of occupied columns.

See matdemo2.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

mxGetM, mxSetM, mxSetN

mxGetName (Obsolete)

Purpose Get the name of the specified mxArray

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

386

mxGetNaN

Purpose Get the value of NaN (Not-a-Number)

Fortran Syntax real*s function mxGetNaN

Returns The value of NaN (Not-a-Number) on your system.

Description Call mxGetNaN to return the value of NaN for your system. NaN is the IEEE

arithmetic representation for Not-a-Number. Certain mathematical operations
return NaN as a result, for example:

® 0.0/0.0
® Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify it.

See Also mxGetEps, mxGetInf

387

mxGetNumberOfDimensions

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get the number of dimensions

integer*4 function mxGetNumberOfDimensions(pm)
integer*4 pm

pm
Pointer to an mxArray.

The number of dimensions in the specified mxArray. The returned value is
always 2 or greater.

Use mxGetNumberOfDimensions to determine how many dimensions are in the
specified array. To determine how many elements are in each dimension, call

mxGetDimensions.

mxSetM, mxSetN, mxGetDimensions

388

mxGetNumberOfElements

Purpose Get number of elements in an array

Fortran Syntax integer*4 function mxGetNumberOfElements(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns Number of elements in the specified mxArray.
Description mxGetNumberOfElements tells you how many elements an mxArray has. For
example, if the dimensions of an array are 3-by-5-by-10, then

mxGetNumberOfElements will return the number 150.

See Also mxGetDimensions, mxGetM, mxGetN, mxGetClassName

389

mxGetNumberOfFields

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get the number of fields in a structure mxArray

integer*4 function mxGetNumberOfFields(pm)
integer*4 pm

pm
Pointer to a structure mxArray.

The number of fields, on success. Returns 0 on failure of if no fields exist. The
most common cause of failure is that pm is not a structure mxArray. Call
mxIsStruct to determine if pm is a structure.

Call mxGetNumberOfFields to determine how many fields are in the specified
structure mxArray.

Once you know the number of fields in a structure, it is easy to loop through
every field to set or to get field values.

mxGetField, mxIsStruct, mxSetField

390

mxGetNzmax

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

391

Get the number of elements in the ir, pr, and (if it exists) pi arrays

integer*4 function mxGetNzmax(pm)
integer*4 pm

pm
Pointer to a sparse mxArray.

The number of elements allocated to hold nonzero entries in the specified
sparse mxArray, on success. Returns an indeterminate value on error. The most
likely cause of failure is that pm points to a full (nonsparse) mxArray.

Use mxGetNzmax to get the value of the nzmax field. The nzmax field holds an
integer value that signifies the number of elements in the ir, pr, and, if it
exists, the pi arrays. The value of nzmax is always greater than or equal to the
number of nonzero elements in a sparse mxArray. In addition, the value of
nzmax is always less than or equal to the number of rows times the number of
columns.

As you adjust the number of nonzero elements in a sparse mxArray, MATLAB
often adjusts the value of the nzmax field. MATLAB adjusts nzmax in order to
reduce the number of costly reallocations and in order to optimize its use of
heap space.

mxSetNzmax

mxGetPi

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get an mxArray’s imaginary data elements

integer*4 function mxGetPi(pm)
integer*4 pm

pm
Pointer to an mxArray.

The imaginary data elements of the specified mxArray, on success. Returns 0 if
there is no imaginary data or if there is an error.

Use mxGetPi to determine the starting address of the imaginary data in the
mxArray that pm points to.

See the description for mxGetImagData, which is an equivalent function to
mxGetPi.

mxGetPr, mxSetPi, mxSetPr, mxGetImagData

392

mxGetPr

Purpose

Fortran Syntax

Arguments

Returns

Description

Example

See Also

393

Get an mxArray’s real data elements

integer*4 function mxGetPr (pm)
integer*4 pm

pm
Pointer to an mxArray.

The address of the first element of the real data. Returns 0 if there is no real
data.

Use mxGetPr to determine the starting address of the real data in the mxArray
that pm points to.

See the description for mxGetData, which is an equivalent function to mxGetPr.
See matdemoil.f and fengdemo.f in the eng_mat subdirectory of the examples

directory for a sample program that illustrates how to use this routine in a
Fortran program.

mxGetPi, mxSetPr, mxSetPi, mxGetData

mxGetScalar

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Get the real component of an mxArray’s first data element

real*8 function mxGetScalar(pm)
integer*4 pm

pm
Pointer to an mxArray.

The value of the first real (nonimaginary) element of the mxArray. If pm points
to a sparse mxArray, mxGetScalar returns the value of the first nonzero real
element in the mxArray.

If pm points to an empty mxArray, mxGetScalar returns an indeterminate value.

Call mxGetScalar to get the value of the first real (nonimaginary) element of
the mxArray.

In most cases, you call mxGetScalar when pm points to an mxArray containing
only one element (a scalar). However, pm can point to an mxArray containing
many elements. If pm points to an mxArray containing multiple elements,
mxGetScalar returns the value of the first real element. If pm points to a
two-dimensional mxArray, mxGetScalar returns the value of the (1,1)
element.

mxGetM, mxGetN

394

mxGetString

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

395

Create a character array from an mxArray

integer*4 function mxGetString(pm, str, strlen)
integer*4 pm, strlen
character*(*) str

pm
Pointer to an mxArray.

str
Fortran character array.

strlen
Number of characters to retrieve from the mxArray.

0 on success, and 1 otherwise.

Call mxGetString to copy a character array from an mxArray. mxGetString
copies and converts the character array from the mxArray pm into the
character array str. Storage space for character array str must be allocated
previously.

Only up to strlen characters are copied, so ordinarily, strlen is set to the
dimension of the character array to prevent writing past the end of the array.
Check the length of the character array in advance using mxGetM and mxGetN.
If the character array contains several rows, they are copied, one column at a
time, into one long character array.

mxCalloc

mxlIsCell

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if a cell mxArray

integer*4 function mxIsCell(pm)
integer*4 pm

pm
Pointer to an array.

1 if pm points to an array of the MATLAB cell class, and 0 otherwise.

Use mxIsCell to determine if the specified mxArray is a cell array.
Calling mxIsCell is equivalent to calling

mxGetClassName (pm) .eq. 'cell’

Note mxIsCell does not answer the question, “Is this mxArray a cell of a cell
array?”. An individual cell of a cell array can be of any type.

mxIsClass

396

mxlIsChar

Purpose

Fortran Syntax

Arguments
Returns

Description

See Also

397

True if a character mxArray

integer*4 function mxIsChar(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if pm points to an array of the MATLAB char class, and 0 otherwise.

Use mxIsChar to determine if the specified array is a character mxArray.
Calling mxIsChar is equivalent to calling

mxGetClassName(pm) .eq. 'char'

mxIsClass, mxGetClassID

mxlIsClass

Purpose

Fortran Syntax

Arguments

Returns

Description

Example

See Also

True if mxArray is a member of the specified class

integer*4 function mxIsClass(pm, classname)
integer*4 pm
character*(*) classname

pm
Pointer to an array.

classname
A character array specifying the class name you are testing for. You can
specify any one of the following predefined constants.

cell char double function_handle
int8 int16 int32 object

single sparse struct uint8

uint16 uint32 <class_name> unknown

In the table, <class_name> represents the name of a specific MATLAB custom
object. You can also specify one of your own class names.

1 if pm points to an array having category classname, and 0 otherwise.

Each mxArray is tagged as being a certain type. Call mxIsClass to determine if
the specified mxArray has this type.

mxIsClass(pm, 'double')

is equivalent to calling either one of the following

mxIsDouble (pm)

mxGetClassName (pm) .eq. 'double’

It is more efficient to use the mxIsDouble form.

mxIsEmpty, mxGetClassID

398

mxIsComplex

Purpose Inquire if an mxArray is complex

Fortran Syntax integer*4 function mxIsComplex(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if complex, and 0 otherwise.

Descripi‘ion Use mxIsComplex to determine whether or not an imaginary part is allocated
for an mxArray. The imaginary pointer pi is 0 if an mxArray is purely real and
does not have any imaginary data. If an mxArray is complex, pi points to an

array of numbers.

See Also mxIsNumeric

399

mxIsDouble

Purpose Inquire if an mxArray is of type double

Fortran Syntax integer*4 function mxIsDouble (pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if true, O if false. If mxIsDouble returns 0, the array has no Fortran access
functions and your Fortran program cannot use it.

Descripﬁon Call mxIsDouble to determine whether or not the specified mxArray represents
its real and imaginary data as double-precision, floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB 5, MATLAB can
store real and imaginary data in a variety of numerical formats.

Calling mxIsDouble is equivalent to calling

mxGetClassName (pm) .eq. 'double’

400

mxIsEmpty

Purpose True if mxArray is empty

Fortran Syntax integer*4 function mxIsEmpty (pm)
integer*4 pm

Arguments pm
Pointer to an array.

Returns 1 if the mxArray is empty, and 0 otherwise.

Description Use mxIsEmpty to determine if an mxArray contains no data. An mxArray is
empty if the size of any of its dimensions is 0.

Note that mxIsEmpty is not the opposite of mxIsFull.

See Also mxIsClass

401

mxIsFinite

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if value is finite

integer*4 function mxIsFinite(value)
real*8 value

value
The double-precision, floating-point number that you are testing.

1 if value is finite, and 0 otherwise.

Call mxIsFinite to determine whether or not value is finite. A number is finite
if it is greater than - Inf and less than Inf.

mxIsInf, mxIsNaN

402

mxIsFromGlobalWs$s

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

403

True if the mxArray originated from the MATLAB global workspace

integer*4 function mxIsFromGlobalWS(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the array originated from the global workspace, and 0 otherwise.

Use mxIsFromGlobalws with stand-alone MAT programs to determine if an
array was a global variable when it was saved.

mexIsGlobal

mxIsFull (Obsolete)

Purpose Inquire if an mxArray is full

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.
Use

if (mxIsSparse(prhs(1)) .eq. 0)

instead of

if (mxIsFull(prhs(1)) .eq. 1)

See Also mxIsSparse

404

mxIsinf

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

405

True if value is infinite

integer*4 function mxIsInf(value)
integer*4 value

value
The double-precision, floating-point number that you are testing.

1 if value is infinite, and 0 otherwise.

Call mxIsInf to determine whether or not value is equal to infinity or minus
infinity. MATLAB stores the value of infinity in a permanent variable named
Inf, which represents IEEE arithmetic positive infinity. The value of the
variable, Inf, is built into the system. You cannot modify it.

Operations that return infinity include:

¢ Division by 0. For example, 5/0 returns infinity.

¢ Operations resulting in overflow. For example, exp (10000) returns infinity
because the result is too large to be represented on your machine.

mxIsFinite, mxIsNaN

mxlisint8

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as signed 8-bit integers

integer*4 function mxIsInt8(pm)

integer*4 pm

pm
Pointer to an mxArray.

1 if the array stores its data as signed 8-bit integers, and 0 otherwise.

Use mxIsInt8 to determine whether or not the specified array represents its

real and imaginary data as 8-bit signed integers.

Calling mxIsInt8 is equivalent to calling

mxGetClassName (pm)

mxIsClass, mxGetClassID

.eq.

'int8'

406

mxlIsint16

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

407

True if mxArray represents its data as signed 16-bit integers

integer*4 function mxIsInt16(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the array stores its data as signed 16-bit integers, and 0 otherwise.

Use mxIsInt16 to determine whether or not the specified array represents its
real and imaginary data as 16-bit signed integers.
Calling mxIsInt16 is equivalent to calling

mxGetClassName(pm) == 'int16'

mxIsClass, mxGetClassID

mxlisint32

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as signed 32-bit integers

integer*4 function mxIsInt32(pm)
integer*4 pm

m
Pointer to an mxArray.

1 if the array stores its data as signed 32-bit integers, and 0 otherwise.

Use mxIsInt32 to determine whether or not the specified array represents its
real and imaginary data as 32-bit signed integers.
Calling mxIsInt32 is equivalent to calling

mxGetClassName (pm) == 'int32'

mxIsClass, mxGetClassID

408

mxlIsLogical

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

409

True if mxArray is Boolean

integer*4 function mxIsLogical(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 ifthe mxArray’s logical flag is on, and 0 otherwise. If an mxArray does not hold
numeric data (for instance, if pm points to a structure mxArray or a cell
mxArray), then mxIsLogical automatically returns 0.

Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical) or numerical (not logical).

If an mxArray is logical, then MATLAB treats all zeros as meaning false and
all nonzero values as meaning true. For additional information on the use of
logical variables in MATLAB, type help logical at the MATLAB prompt.

mxIsClass, mxSetLogical (Obsolete), logical

mxisNaN

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if value is NaN (Not-a-Number)

integer*4 function mxIsNaN(value)
integer*4 value

value
The double-precision, floating-point number that you are testing.

1 if value is NaN (Not-a-Number), and 0 otherwise.

Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations such as:

® 0.0/0.0

® Inf-Inf

The system understands a family of bit patterns as representing NaN. In other
words, NaN is not a single value, rather it is a family of numbers that MATLAB
(and other IEEE-compliant applications) uses to represent an error condition
or missing data.

mxIsFinite, mxIsInf

410

mxIsNumeric

Purpose

Fortran Syntax

Arguments

Returns

Description

Example

See Also

411

Inquire if an mxArray contains numeric data

integer*4 function mxIsNumeric(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the mxArray contains numeric data, and 0 otherwise.

Call mxIsNumeric to inquire whether or not the mxArray contains a character
array.

See matdemo1.f in the eng_mat subdirectory of the examples directory for a
sample program that illustrates how to use this routine in a Fortran program.

mxIsString (Obsolete)

mxlIsSingle

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as single-precision, floating-point numbers

integer*4 function mxIsSingle(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the array stores its data as single-precision, floating-point numbers, and 0
otherwise.

Use mxIsSingle to determine whether or not the specified array represents its
real and imaginary data as single-precision, floating-point numbers.

Calling mxIsSingle is equivalent to calling

mxGetClassName (pm) .eq. 'single’

mxIsClass, mxGetClassID

412

mxIsSparse

Purpose Inquire if an mxArray is sparse

Fortran Syntax integer*4 function mxIsSparse(pm)
integer*4 pm

Arguments pm
Pointer to an mxArray.

Returns 1 if the mxArray is sparse, and 0 otherwise.

Description Use mxIsSparse to determine if an mxArray is stored in sparse form. Many
routines (for example, mxGetIr and mxGetJc) require a sparse mxArray as
input.

There are no corresponding set routines. Use mxCreateSparse to create sparse
mxArrays.

See Also mxGetIr, mxGetdc, mxCreateSparse

413

mxlIsString (Obsolete)

Purpose Inquire if an mxArray contains a character array

Description This API function is obsolete and is not supported in MATLAB 6.1 or later. This
function may not be available in a future version of MATLAB.

Use mxIsChar instead.

See Also mxCreateString, mxGetString

414

mxlIsStruct

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

415

True if a structure mxArray

integer*4 function mxIsStruct(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if pm points to a structure array; otherwise, 0.
Use mxIsStruct to determine if pm points to a structure mxArray. Many
routines (for example, mxGetFieldName and mxSetField) require a structure

mxArray as an argument.

mxCreateStructArray, mxCreateStructMatrix, mxGetNumberOfFields,
mxGetField, mxSetField

mxIsUint8

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as unsigned 8-bit integers

integer*4 function mxIsInt8(pm)
integer*4 pm

m
Pointer to an mxArray.

1 if the mxArray stores its data as unsigned 8-bit integers, and 0 otherwise.

Use mxIsInt8 to determine whether or not the specified mxArray represents its
real and imaginary data as 8-bit unsigned integers.
Calling mxIsUint8 is equivalent to calling

mxGetClassName (pm) == 'uint8'

mxGetClassID, mxIsClass, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint16,
mxIsUint32

416

mxIsUint16

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

417

True if mxArray represents its data as unsigned 16-bit integers

integer*4 function mxIsUint16(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the mxArray stores its data as unsigned 16-bit integers, and 0 otherwise.

Use mxIsUint16 to determine whether or not the specified mxArray represents
its real and imaginary data as 16-bit unsigned integers.
Calling mxIsUint16 is equivalent to calling

mxGetClassName(pm) == 'uinti16'

mxGetClassID, mxIsClass, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint8,
mxIsUint32

mxlsUint32

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

True if mxArray represents its data as unsigned 32-bit integers

integer*4 function mxIsUint32(pm)
integer*4 pm

pm
Pointer to an mxArray.

1 if the mxArray stores its data as unsigned 32-bit integers, and 0 otherwise.

Use mxIsUint32 to determine whether or not the specified mxArray represents
its real and imaginary data as 32-bit unsigned integers.
Calling mxIsUint32 is equivalent to calling

mxGetClassName (pm) == 'uint32'

mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32, mxIsUint8§,
mxIsUint16

418

mxMalloc

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

419

Allocate dynamic memory using the MATLAB memory manager

integer*4 function mxMalloc(n)
integer*4 n

n
Number of bytes to allocate.

A pointer to the start of the allocated dynamic memory, if successful. If
unsuccessful in a stand-alone (nonMEX-file) application, mxMalloc returns 0.
If unsuccessful in a MEX-file, the MEX-file terminates and control returns to
the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

Use mxMalloc to allocate dynamic memory using the MATLAB memory
management facility.

MATLAB maintains a list of all memory allocated by mxMalloc. MATLAB
automatically frees (deallocates) all of a MEX-file’s memory when the MEX-file
completes and control returns to the MATLAB prompt.

If you want the memory to persist after a MEX-file completes, call
mexMakeMemoryPersistent after calling mxMalloc. If you write a MEX-file with
persistent memory, be sure to register a mexAtExit function to free allocated
memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree. mxFree
deallocates the memory.

Note that mxMalloc works differently in MEX-files than in stand-alone
MATLAB applications.

In MEX-files, mxMalloc automatically:

¢ Allocates enough contiguous heap space to hold n bytes.

® Registers the returned heap space with the MATLAB memory management
facility.

mxCalloc, mxFree, mxDestroyArray, mexMakeArrayPersistent,
mexMakeMemoryPersistent

mxRealloc

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Reallocate memory

integer*4 function mxRealloc(ptr, size)
integer*4 ptr, size

ptr
Pointer to a block of memory allocated by mxCalloc, or by a previous call to
mxRealloc.

size
New size of allocated memory, in bytes.

A pointer to the reallocated block of memory on success, and 0 on failure.

mxRealloc reallocates the memory routine for the managed list. If mxRealloc
fails to allocate a block, you must free the block since the ANSI definition of
realloc states that the block remains allocated. mxRealloc returns 0 in this
case, and in subsequent calls to mxRealloc of the form

x = mxRealloc(x, size)

Note Failure to reallocate memory with mxRealloc can result in memory
leaks.

mxCalloc, mxFree, mxMalloc

420

mxRemoveField

Purpose

Fortran Syntax

Arguments

Description

See Also

421

Remove a field from a structure array

subroutine mxRemoveField(pm, fieldnumber)
integer*4 pm, fieldnumber

pm
Pointer to a structure mxArray.

fieldnumber

The number of the field you want to remove. For instance, to remove the first
field, set fieldnumber to 1; to remove the second field, set fieldnumber to 2;
and so on.

Call mxRemoveField to remove a field from a structure array. If the field does
not exist, nothing happens. This function does not destroy the field values. Use
mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

The fieldnumber 1 represents the field name name; fieldnumber 2 represents
field name billing; fieldnumber 3 represents field name test.

mxAddField, mxDestroyArray, mxGetFieldByNumber

mxSetCell

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the value of one cell

subroutine mxSetCell(pm, index, value)
integer*4 pm, index, value

pm
Pointer to a cell mxArray.

index

Index from the beginning of the mxArray. Specify the number of elements
between the first cell of the mxArray and the cell you want to set. The easiest
way to calculate the index in a multidimensional cell array is to call
mxCalcSingleSubscript.

value

The new value of the cell. You can put any kind of mxArray into a cell. In fact,
you can even put another cell mxArray into a cell. Use one of the mxCreate*
functions to create the value mxArray.

Call mxSetCell to put the designated value into a particular cell of a cell
mxArray. You can assign new values to unpopulated cells or overwrite the value
of an existing cell. To do the latter, first use mxDestroyArray to free what is
already there and then mxSetCell to assign the new value.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell

422

mxSetData

Purpose

Fortran Syntax

Arguments

Description

See Also

423

Set pointer to data

subroutine mxSetData(pm, pr)
integer*4 pm, pr

pm
Pointer to an mxArray.

pr
Pointer to the first element of an array. Each element in the array contains the
real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Use mxSetData to set the real data of the specified mxArray.

All mxCreate* calls allocate heap space to hold real data. Therefore, you do not
ordinarily use mxSetData to initialize the real elements of a freshly created
mxArray. Rather, you call nxSetData to replace the initial real values with new
ones.

Free the memory used by pr by calling mxDestroyArray to destroy the entire
mxArray.

mxSetData is equivalent to using mxSetPr.

mxSetImagData, mxGetData, mxGetImagData, mxSetPr

mxSetDimensions

Purpose

Fortran Syntax

Arguments

Returns

Description

See Also

Modify the number of dimensions and/or the size of each dimension

integer*4 function mxSetDimensions(pm, dims, ndim)
integer*4 pm, dims, ndim

pm
Pointer to an mxArray.

dims

The dimensions array. Each element in the dimensions array contains the size
of the array in that dimension. For example, setting dims (1) to 5 and dims(2)
to 7 establishes a 5-by-7 mxArray. In most cases, there should be ndim elements
in the dims array.

ndim
The desired number of dimensions.

0 on success, and 1 on failure. mxSetDimensions allocates heap space to hold
the input size array. So it is possible (though extremely unlikely) that
increasing the number of dimensions can cause the system to run out of heap
space.

Call mxSetDimensions to reshape an existing mxArray. mxSetDimensions is
similar to mxSetM and mxSetN; however, mxSetDimensions provides greater
control for reshaping mxArrays that have more than two-dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr or pi
array. Consequently, if your call to mxSetDimensions increases the number of
elements in the mxArray, then you must enlarge the pr (and pi, if it exists)
array accordingly.

If your call to mxSetDimensions reduces the number of elements in the
mxArray, then you can optionally reduce the size of the pr and pi arrays using
mxRealloc.

mxGetNumberOfDimensions, mxSetM, mxSetN

424

mxSetField

Purpose

Fortran Syntax

Arguments

Description

425

Set a field value of a structure array, given a field name and an index

subroutine mxSetField(pm, index, fieldname, value)
integer*4 pm, index, value
character*(*) fieldname

pm
Pointer to a structure mxArray. Call mxIsStruct to determine if pm points to a
structure mxArray.

index

The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldname
The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber to determine existing field names.

value
Pointer to the mxArray you are assigning. Use one of the mxCreate* functions
to create the value mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Use mxSetField to assign a value to the specified element of the specified field.
If there is already a value at the given position, the value pointer you specified
overwrites the old value pointer. However, mxSetField does not free the
dynamic memory that the old value pointer pointed to. Consequently, you are
responsible for destroying this mxArray.

mxSetField is almost identical to mxSetFieldByNumber; however, the former
takes a field name as its third argument, and the latter takes a field number
as its third argument.

mxSetField

See Also

Calling

mxSetField(pm, index, 'fieldname', newvalue)
is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')

mxSetFieldByNumber (pm, index, fieldnum, newvalue)

mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetFieldByNumber

426

mxSetFieldByNumber

Purpose

Fortran Syntax

Arguments

Description

427

Set a field value in a structure array, given a field number and an index

subroutine mxSetFieldByNumber(pm, index, fieldnumber, value)
integer*4 pm, index, fieldnumber, value

pm
Pointer to a structure mxArray. Call mxIsStruct to determine if pm points to a
structure mxArray.

index

The desired element. The first element of an mxArray has an index of 1, the
second element has an index of 2, and the last element has an index of N, where
N is the total number of elements in the structure mxArray.

fieldnumber

The position of the field whose value you want to extract. The first field within
each element has a fieldnumber of 1, the second field has a fieldnumber of 2,
and so on. The last field has a fieldnumber of N, where N is the number of fields.

value
The value you are assigning. Use one of the mxCreate* functions to create the
value mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of
an argument passed from MATLAB causes unpredictable results.

Use mxSetFieldByNumber to assign a value to the specified element of the
specified field. If there is already a value at the given position, the value
pointer you specified overwrites the old value pointer. However,
mxSetFieldByNumber does not free the dynamic memory that the old value
pointer pointed to. Consequently, you are responsible for destroying this
mxArray.

mxSetFieldByNumber is almost identical to mxSetField; however, the former
takes a field number as its third argument, and the latter takes a field name
as its third argument.

Calling

mxSetFieldByNumber

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling
fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber (pm, index, fieldnum, newvalue)

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetNumberOfFields,
mxIsStruct, mxSetField

428

mxSetimagData

Purpose

Fortran Syntax

Arguments

Description

See Also

429

Set imaginary data pointer for an mxArray

subroutine mxSetImagData(pm, pi)
integer*4 pm, pi

pm
Pointer to an mxArray.

pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Use mxSetImagData to set the imaginary data of the specified mxArray.

Most mxCreate* functions optionally allocate heap space to hold imaginary
data. If you tell an mxCreate* function to allocate heap space (for example, by
setting the ComplexFlag to COMPLEX = 1 or by setting pi to a nonzero value),
then you do not ordinarily use mxSetImagData to initialize the created
mxArray’s imaginary elements. Rather, you call mxSetImagData to replace the
initial imaginary values with new ones.

Free the memory used by pi by calling mxDestroyArray to destroy the entire
mxArray.

mxSetImagData is equivalent to using mxSetPi.

mxSetData, mxGetImagData, mxGetData, mxSetPi

mxSetir

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the ir array of a sparse mxArray

subroutine mxSetIr(pm, ir)
integer*4 pm,ir

pm
Pointer to a sparse mxArray.

ir

Pointer to the ir array. The ir array must be sorted in column-major order.

Use mxSetIr to specify the ir array of a sparse mxArray. The ir array is an
array of integers; the length of the ir array should equal the value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a nonzero
element can be found. (The jc array is an index that indirectly specifies a
column where nonzero elements can be found. See mxSetJc for more details on
jc.)

The ir array must be in column-major order. That means that the ir array
must define the row positions in column 1 (if any) first, then the row positions
in column 2 (if any) second, and so on through column N. Within each column,
row position 1 must appear prior to row position 2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array that
is already sorted.

mxCreateSparse, mxGetIr, mxGetdc, mxSetdc

430

mxSetlJc

Purpose Set the jc array of a sparse mxArray

Fortran Syntax subroutine mxSetdc(pm, jc)
integer*4 pm, jc

Arguments pm
Pointer to a sparse mxArray.
jc
Pointer to the jc array.
Description Use mxSetdJc to specify a new jc array for a sparse mxArray. The jc array is an

integer array having n+1 elements where n is the number of columns in the
sparse mxArray.

See Also mxGetIr, mxGetJc, mxSetIr

431

mxSetLogical (Obsolete)

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the logical flag

Note As of MATLAB version 6.5, mxSetLogical is obsolete. Support for
mxSetLogical may be removed in a future version.

subroutine mxSetLogical(pm)
integer*4 pm

pm
Pointer to an mxArray having a numeric class.

Use mxSetLogical to turn on an mxArray’s logical flag. This flag, when set, tells
MATLAB that the array’s data is to be treated as Boolean. If the logical flag is
on, then MATLAB treats a 0 value as meaning false and a nonzero value as
meaning true. For additional information on the use of logical variables in
MATLAB, type help logical at the MATLAB prompt.

mxClearLogical (Obsolete), mxIsLogical, logical

432

mxSetM

Purpose

Fortran Syntax

Arguments

Description

See Also

433

Set the number of rows

subroutine mxSetM(pm, m)
integer*4 pm, m

pm
Pointer to an mxArray.

m
The desired number of rows.

Call mxSetM to set the number of rows in the specified mxArray. Call mxSetN to
set the number of columns.

You can use mxSetM to change the shape of an existing mxArray. Note that
mxSetM does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetM and mxSetN increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the array, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently.

mxGetM, mxGetN, mxSetN

mxSetN

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the number of columns

subroutine mxSetN(pm, n)
integer*4 pm, n

pm
Pointer to an mxArray.

n
The desired number of columns.

Call mxSetN to set the number of columns in the specified mxArray. Call mxSetM
to set the number of rows in the specified mxArray.

You typically use mxSetN to change the shape of an existing mxArray. Note that
mxSetN does not allocate or deallocate any space for the pr, pi, ir, or jc arrays.
Consequently, if your calls to mxSetN and mxSetM increase the number of
elements in the mxArray, then you must enlarge the pr, pi, ir, and/or jc
arrays.

If your calls to mxSetM and mxSetN end up reducing the number of elements in
the mxArray, then you may want to reduce the sizes of the pr, pi, ir, and/or jc
arrays in order to use heap space more efficiently. However, reducing the size
is not mandatory.

mxGetM, mxGetN, mxSetM

434

mxSetName (Obsolete)

Purpose Set the name of an mxArray

Description This API function is obsolete and is not supported in MATLAB 6.5 or later. This
function may not be available in a future version of MATLAB.

435

mxSetNzmax

Purpose

Fortran Syntax

Arguments

Description

See Also

Set the storage space for nonzero elements

subroutine mxSetNzmax(pm, nzmax)
integer*4 pm, nzmax

pm
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to hold the
arrays pointed to by ir, pr, and pi (if it exists). Set nzmax greater than or equal
to the number of nonzero elements in the mxArray, but set it to be less than or
equal to the number of rows times the number of columns. If you specify an
nzmax value of 0, mxSetNzmax sets the value of nzmax to 1.

Use mxSetNzmax to assign a new value to the nzmax field of the specified sparse
mxArray. The nzmax field holds the maximum possible number of nonzero
elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must be equal
to nzmax. Therefore, after calling mxSetNzmax, you must change the size of the
ir, pr, and pi arrays.

How big should nzmax be? One thought is that you set nzmax equal to or slightly
greater than the number of nonzero elements in a sparse mxArray. This
approach conserves precious heap space. Another technique is to make nzmax
equal to the total number of elements in an mxArray. This approach eliminates
(or, at least reduces) expensive reallocations.

mxGetNzmax

436

mxSetPi

Purpose

Fortran Syntax

Arguments

Description

See Also

437

Set new imaginary data for an mxArray

subroutine mxSetPi(pm, pi)
integer*4 pm, pi

pm
Pointer to a full (nonsparse) mxArray.

pi

Pointer to the first element of an array. Each element in the array contains the
imaginary component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory. If pi points to static memory,
memory errors will result when the array is destroyed.

Use mxSetPi to set the imaginary data of the specified mxArray.

See the description for mxSetImagData, which is an equivalent function to
mxSetPi.

mxSetPr, mxGetPi, mxGetPr, mxSetImagData

mxSetPr

Purpose

Fortran Syntax

Arguments

Description

See Also

Set new real data for an mxArray

subroutine mxSetPr(pm, pr)

integer*4 pm, pr

pm

Pointer to a full (nonsparse) mxArray.

pr

Pointer to the first element of an array. Each element in the array contains the

real component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this dynamic memory.

Use mxSetPr to set the real data of the specified mxArray.

See the description for mxSetData, which is an equivalent function to mxSetPr.

mxSetPi, mxGetPr, mxGetPi, mxSetData

438

mxSetPr

439

Java Interface Functions

class

import
isa
isjava
javaArray

javachk

javaMethod
javaObject
methods

methodsview

usejava

Create object or return class of object

Add a package or class to the current
Java import list

Detect an object of a given class

Test whether an object is a Java
object

Constructs a Java array

Generate an error message based on
Java feature support

Invokes a Java method
Constructs a Java object
Display method names

Displays information on all methods
implemented by a class

Determine if a Java feature is
supported in MATLAB

class

Purpose

Syntax

Description

441

Create object or return class of object

str = class(object)

obj = class(s, 'class_name')
obj = class(s, 'class_name',parenti,parent2...)
obj = class(struct([]),'class_name',parenti,parent2...)

str = class(object) returns a string specifying the class of object.

The following table lists the object class names that may be returned. All
except the last one are MATLAB classes.

logical
char
int8
uint8
int16
uint16é
int32
uint32
inte4
uint64
single
double
cell
struct
function handle

‘class_name'

Logical array of true and false values
Characters array

8-bit signed integer array

8-bit unsigned integer array

16-bit signed integer array

16-bit unsigned integer array

32-bit signed integer array

32-bit unsigned integer array

64-bit signed integer array

64-bit unsigned integer array
Single-precision floating point number array
Double-precision floating point number array
Cell array

Structure array

Array of values for calling functions indirectly

Custom MATLAB object class or Java class

obj = class(s, 'class_name') creates an object of MATLAB class
'class_name' using structure s as a template. This syntax is valid only in a

class

Examples

See Also

function named class_name.min a directory named @class_name (where
'class_name' is the same as the string passed into class).

obj = class(s,'class_name',parenti,parent2,...) creates an object of
MATLAB class 'class_name' that inherits the methods and fields of the
parent objects parent1, parent2, and so on. Structure s is used as a template
for the object.

obj = class(struct([]), 'class_name',parentl,parent2,...) creates an
object of MATLAB class 'class_name' that inherits the methods and fields of
the parent objects parent1, parent2, and so on. Specifying the empty structure,
struct([]), as the first argument ensures that the object created contains no
fields other than those that are inherited from the parent objects.

To return in nameStr the name of the class of Java object j

nameStr = class(j)
To create a user-defined MATLAB object of class polynom

p = class(p, 'polynom')

inferiorto, isa, superiorto

The “MATLAB Classes and Objects” and the “Calling Java from MATLAB”
chapters in Programming and Data Types.

442

import

Purpose

Syntax

Description

443

Add a package or class to the current Java import list for the MATLAB
command environment or for the calling function

import package name.*

import class_name

import cls_or_pkg _namel cls_or_pkg_name2...
import

L = import

import package name.* adds all the classes in package name to the current
import list. Note that package name must be followed by . *.

import class_name adds a single class to the current import list. Note that
class_name must be fully qualified (that is, it must include the package name).

import cls_or_pkg _nameil cls_or_pkg_name2... adds all named classes and
packages to the current import list. Note that each class name must be fully
qualified, and each package name must be followed by . *.

import with no input arguments displays the current import list, without
adding to it.

L = import with no input arguments returns a cell array of strings containing
the current import list, without adding to it.

The import command operates exclusively on the import list of the function
from which it is invoked. When invoked at the command prompt, import uses
the import list for the MATLAB command environment. If import is used in a
script invoked from a function, it affects the import list of the function. If
import is used in a script that is invoked from the command prompt, it affects
the import list for the command environment.

The import list of a function is persistent across calls to that function and is
only cleared when the function is cleared.

To clear the current import list, use the following command.

clear import

This command may only be invoked at the command prompt. Attempting to use
clear import within a function results in an error.

import

Remarks

Examples

See Also

The only reason for using import is to allow your code to refer to each imported
class with the immediate class name only, rather than with the fully qualified
class name. import is particularly useful in streamlining calls to constructors,
where most references to Java classes occur.

This example shows importing and using the single class, java.lang.String,
and two complete packages, java.util and java.awt.

import java.lang.String
import java.util.* java.awt.*

f = Frame; % Create java.awt.Frame object

s = String('hello'); % Create java.lang.String object

methods Enumeration % List java.util.Enumeration methods
clear

444

Purpose
Syntax

Description

445

Detect an object of a given MATLAB class or Java class
K = isa(obj,'class_name')
K = isa(obj,'class_name') returns logical true (1) if obj is of class (or a

subclass of) class_name, and logical false (0) otherwise.

The argument obj is a MATLAB object or a Java object. The argument
class_name is the name of a MATLAB (predefined or user-defined) or a Java
class. Predefined MATLAB classes include:

logical Logical array of true and false values
char Characters array

numeric Integer or floating-point array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uinti16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

single Single-precision floating-point array
double Double-precision floating-point array
cell Cell array

struct Structure array

function_handle Function Handle

‘class_name' Custom MATLAB object class or Java class

To check for a sparse array, use issparse. To check for a complex array, use
~isreal.

Examples isa(rand(3,4), 'double')
ans =
1

The following example creates an instance of the user-defined MATLAB class,
named polynom. The isa function identifies the object as being of the polynom
class.

polynom_obj = polynom([1 O -2 -5]);
isa(polynom_obj, 'polynom')
ans =

1

See Also class, is*

446

isjava

Purpose Determine if item is a Java object
Syntax tf = isjava(A)
Descripﬁon tf = isjava(A) returns logical true (1) if A is a Java object, and logical false

(0) otherwise.

Examples Create an instance of the Java Frame class and isjava indicates that it is a
Java object.

frame = java.awt.Frame('Frame A');
isjava(frame)
ans =

1

Note that, isobject, which tests for MATLAB objects, returns false (0).

isobject(frame)

ans =

See Also isobject, javaArray, javaMethod, javaObject, isa, is*

447

javaArray

Purpose
Syntax

Description

Examples

See Also

Constructs a Java array
javaArray('package_name.class_name ,x1,...,Xxn)

javaArray ('package_name.class_name ,x1,...,xn) constructs an empty
Java array capable of storing objects of Java class, 'class _name'. The
dimensions of the array are x1 by ... by xn. You must include the package
name when specifying the class.

The array that you create with javaArray is equivalent to the array that you
would create with the Java code

A = new class_name[x1]...[xn];
The following example constructs and populates a 4-by-5 array of
java.lang.Double objects.

dblArray = javaArray ('java.lang.Double', 4, 5);

for m = 1:4
for n = 1:5
dblArray(m,n) = java.lang.Double((m*10) + n);
end
end
dblArray
dblArray =
java.lang.Double[][]:
[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

javaObject, javaMethod, class, methodsview, isjava

448

javachk

Purpose

Syntax

Description

Examples

449

Generate an error message based on Java feature support

javachk(feature)
javachk(feature, component)

javachk(feature) returns a generic error message if the specified Java
feature is not available in the current MATLAB session. If it is available,
javachk returns an empty matrix. Possible feature arguments are shown in
the following table.

Feature Description

‘awt' Abstract Window Toolkit components1 are available.
"desktop' The MATLAB interactive desktop is running.

"jvm' The Java Virtual Machine is running.

"swing' Swing components2 are available.

1. Java’s GUI components in the Abstract Window Tookit
2. Java’s lightweight GUI components in the Java Foundation Classes

javachk(feature, component) works the same as the above syntax, except
that the specified component is also named in the error message. (See the
example below.)

The following M-file displays an error with the message "CreateFrame is not
supported on this platform." when runin a MATLAB session in which the
AWT’s GUI components are not available. The second argument to javachk
specifies the name of the M-file, which is then included in the error message
generated by MATLAB.

javachk

javamsg = javachk('awt', mfilename);
if isempty(javamsg)
myFrame = java.awt.Frame;
myFrame.setVisible(1);
else
error(javamsg);
end

See Also usejava

450

javaMethod

Purpose

Syntax

Description

Remarks

Examples

451

Invokes a Java method

X = javaMethod('method_name', 'class_name ,x1,...,Xn)
X = javaMethod('method_name',J,x1,...,xn)
javaMethod('method_name', 'class_name ,x1,...,xn) invokes the static

method method _name in the class class_name, with the argument list that
matches x1,...,xn.

javaMethod('method_name',J,x1,...,xn) invokes the nonstatic method
method_name on the object J, with the argument list that matches x1,...,xn.

Using the javaMethod function enables you to

¢ Use methods having names longer than 31 characters

® Specify the method you want to invoke at run-time, for example, as input
from an application user

The javaMethod function enables you to use methods having names longer
than 31 characters. This is the only way you can invoke such a method in
MATLAB. For example:

javaMethod('DataDefinitionAndDataManipulationTransactions', T);

With javaMethod, you can also specify the method to be invoked at run-time.
In this situation, your code calls javaMethod with a string variable in place of
the method name argument. When you use javaMethod to invoke a static
method, you can also use a string variable in place of the class name argument.

Note Typically, you do not need to use javaMethod. The default MATLAB
syntax for invoking a Java method is somewhat simpler and is preferable for
most applications. Use javaMethod primarily for the two cases described
above.

To invoke the static Java method isNaN on class, java.lang.Double, use

javaMethod('isNaN', 'java.lang.Double',2.2)

javaMethod
|

The following example invokes the nonstatic method setTitle, where
frameObj is a java.awt.Frame object.

frameObj = java.awt.Frame;
javaMethod('setTitle', frameObj, 'New Title');

See Also javaArray, javaObject, import, methods, isjava

452

javaObiject

Purpose
Syntax

Description

Remarks

453

Constructs a Java object

J = javaObject('class_name ,x1,...,Xn)

javaObject('class_name ,x1,...,xn) invokes the Java constructor for class
'class_name with the argument list that matches x1, ... ,xn, to return a new
object.

Ifthere is no constructor that matches the class name and argument list passed
to javaObject, an error occurs.

Using the javaObject function enables you to

¢ Use classes having names with more than 31 consecutive characters

¢ Specify the class for an object at run-time, for example, as input from an
application user

The default MATLAB constructor syntax requires that no segment of the input
class name be longer than 31 characters. (A name segment, is any portion of the
class name before, between, or after a period. For example, there are three

segments in class, java.lang.String.) Any class name segment that exceeds
31 characters is truncated by MATLAB. In the rare case where you need to use
a class name of this length, you must use javaObject to instantiate the class.

The javaObject function also allows you to specify the Java class for the object
being constructed at run-time. In this situation, you call javaObject with a
string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObject(class, text);

In the usual case, when the class to instantiate is known at development time,
it is more convenient to use the MATLAB constructor syntax. For example, to
create a java.lang.String object, you would use

strObj = java.lang.String('hello');

javaObject

Note Typically, you will not need to use javaObject. The default MATLAB
syntax for instantiating a Java class is somewhat simpler and is preferable for
most applications. Use javaObject primarily for the two cases described
above.

Exumples The following example constructs and returns a Java object of class
java.lang.String:

strObj = javaObject('java.lang.String', 'hello')

See Also javaArray, javaMethod, import, methods, fieldnames, isjava

454

methods

Purpose

Syntax

Description

Examples

455

Display method names

m = methods('classname')

m = methods('object')

m = methods(..., '-full')

m = methods('classname') returns, in a cell array of strings, the names of all

methods for the MATLAB, COM, or Java class, classname.

m = methods('object') returns the names of all methods for the MATLAB,
COM, or Java class of which object is an instance.

m = methods(..., '-full') returns the full description of the methods
defined for the class, including inheritance information and, for COM and Java
methods, attributes and signatures. For any overloaded method, the returned
array includes a description of each of its signatures.

For MATLAB classes, inheritance information is returned only if that class has
been instantiated.

List the methods of MATLAB class, stock:
methods('stock')

m

m:
‘display’
‘get
‘set’
‘stock’
‘subsasgn’
‘subsref’

Create a MathWorks sample COM control and list its methods:

h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
methods (h)

Methods for class com.mwsamp.mwsampctrl.i:

AboutBox GetR8Array SetR8 move
Beep GetR8Vector SetR8Array propedit
FireClickEvent GetVariantArray SetR8Vector release

methods

GetBSTR GetVariantVector addproperty save
GetBSTRArray Redraw delete send
GetI4 SetBSTR deleteproperty set
GetI4Array SetBSTRArray events

GetI4Vector SetI4 get

GetIDispatch SetI4Array invoke

GetR8 SetI4Vector load

Display a full description of all methods on Java object, java.awt.Dimension:

methods java.awt.Dimension -full

Dimension(java.awt.Dimension)
Dimension(int,int)
Dimension()
void wait() throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException
% Inherited from java.lang.Object
java.lang.Class getClass() % Inherited from java.lang.Object

See Also methodsview, invoke, ismethod, help, what, which

456

methodsview

Purpose

Syntax

Description

Examples

457

Displays information on all methods implemented by a class.

methodsview packagename.classname
methodsview classname
methodsview(object)

methodsview packagename.classname displays information describing the
Java class, classname, that is available from the package of Java classes,
packagename.

methodsview classname displays information describing the MATLAB, COM,
or imported Java class, classname.

methodsview(object) displays information describing the object
instantiated from a COM or Java class.

MATLAB creates a new window in response to the methodsview command.
This window displays all of the methods defined in the specified class. For each
of these methods, the following additional information is supplied:

® Name of the method

® Method type qualifiers (for example, abstract or synchronized)

¢ Data type returned by the method

® Arguments passed to the method

® Possible exceptions thrown

¢ Parent of the specified class

The following command lists information on all methods in the
java.awt.MenuItem class.

methodsview java.awt.Menultem

methodsview

J Methods of class java.awt Menultem =] B3

MATLAB displays this information in a new window, as shown below

synchronized

synchronized

synchronized

woid
woid
woid
woid
woid
woid
woid
hoolean

Qualifiers Return Type MHarme Arguments
Menultern] =
enultem (java.lang.String)
enultem (java.lang.String java. awt. MenuShartcut)

addActionListener
addMatify
deleteShortcut
dizable
dispatchEvent
enahle

enahle

equals

(java.awt event ActionListener
i

i

i

(java.awt AWTEvent)

i

(boolean)

(java.lang.Ohject)

java.lang.5tring getActionCommand 9]

javalang.Class getClass 9]

java.awt Font getFont 9]

java.lang.5tring getLabel 9] [—

java.lang.5tring getMame 9]

java.awt MenuContainer getParent 9]

java.awt peer.MenuCompaonentPeer netPeer 9]

java.awt MenuShorcut getShortcut 9]

int hashCode 9]

hoolean isEnabled 9]

void notify i

void notifyAll 9] —
4 | L|J

See Also methods, import, class, javaArray

458

usejava

Purpose
Syntax

Description

Examples

See Also

459

Determine if a Java feature is supported in MATLAB
usejava(feature)

usejava(feature) returns 1 if the specified feature is supported and 0
otherwise. Possible feature arguments are shown in the following table.

Feature Description

‘awt' Abstract Window Toolkit components! are available
"desktop' The MATLAB interactive desktop is running

"jvm' The Java Virtual Machine is running

'swing' Swing components? are available

1. Java’s GUI components in the Abstract Window Tookit

2. Java’s lightweight GUI components in the Java Foundation Classes

The following conditional code ensures that the AWT’s GUI components are
available before the M-file attempts to display a Java Frame.

if usejava('awt')

myFrame = java.awt.Frame;
else

disp('Unable to open a Java Frame');
end

The next example is part of an M-file that includes Java code. It fails gracefully
when run in a MATLAB session that does not have access to a JVM.
if ~usejava('jvm')
error([mfilename ' requires Java to run.']);
end

javachk

COM Functions

actxcontrol

actxserver
addproperty (COM)
delete (COM)
deleteproperty (COM)

eventlisteners (COM)

events (COM)

fieldnames

get (COM)

inspect

invoke (COM)

isevent (COM)

ismethod (COM)

Create a COM control in a figure
window

Create a COM automation server
Add custom property to COM object
Delete a COM control or server

Remove custom property from COM
object

Return a list of events attached to
listeners

Return a list of events that the control
can trigger

Return property names of a COM
object

Get property value from an object or
interface

Display graphical interface to list and
modify property values

Invoke a method on an object or
interface, or display methods

Determine if an item is an event of a
COM control

Determine if an item is a method of a
COM object

isprop (COM)

load (COM)

methods

methodsview

move (COM)

propedit (COM)

registerevent (COM)

release (COM)
save (COM)

send (COM)
set (COM)

unregisterallevents (COM)

unregisterevent (COM)

461

Determine if an item is a property of a
COM object

Initialize a COM control object from a
file

List all methods for the control or
server

Display graphical interface to list
method information

Resize a COM control in the parent
window

Request the control to display its
built-in property page

Register an event handler with a
control's event

Release an interface

Serialize a COM control object to a
file

Obsolete — duplicate of events

Set an object or interface property to
a specific value

Unregister all events for a control

Unregister an event handler with a
control's event

actxcontrol

Purpose

Syntax

Arguments

Create a COM control in a figure window

h = actxcontrol (progid [, position [, fig_handle ...
[, callback | {event1l eventhandler1; event2 eventhandler2; ...}
[, filename]]1]])

progid
String that is the name of the control to create. The control vendor provides this
string.

position

Position vector containing the x and y location and the xsize and ysize of the
control, expressed in pixel units as [x y xsize ysize]. Defaults to [20 20 60
60].

fig_handle

Handle Graphics handle of the figure window in which the control is to be
created. If the control should be invisible, use the handle of an invisible figure
window. Defaults to gcf.

callback

Name of an M-function that accepts a variable number of arguments. This
function will be called whenever the control triggers an event. Each argument
is converted to a MATLAB string. See the section, “Writing Event Handlers” in
the External Interfaces documentation for more information on handling
control events.

event
Triggered event specified by either number or name.

eventhandler

Name of an M-function that accepts a variable number of arguments. This
function will be called whenever the control triggers the event associated with
it. See “Writing Event Handlers” in the External Interfaces documentation for
more information on handling control events.

filename

The name of a file to which a previously created control has been saved. When
you specify filename, MATLAB creates a new control using the position,
handle, and event/eventhandler arguments, and then initializes the control
from the specified file. The progid argument in actxcontrol must match the
progid of the saved control.

462

actxcontrol

Description

Examples

463

Create a COM control at a particular location within a figure window. If the
parent figure window is invisible, the control will be invisible. The returned
COM object represents the default interface for the control. This interface must
be released through a call to release when it is no longer needed to free the
memory and resources used by the interface. Note that releasing the interface
does not delete the control itself (use the delete command to delete the
control.)

The strings specified in the callback, event, and eventhandler arguments are
not case sensitive.

Note There are two ways to handle events. You can create a single handler
(callback) for all events, or you can specify a cell array that contains pairs of
events and event handlers. In the cell array format, specify events by name in
a quoted string. There is no limit to the number of pairs that can be specified
in the cell array. Although using the single callback method may be easier in
some cases, using the cell array technique creates more efficient code that
results in better performance.

For an example callback event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli directory.

Basic Control Methods
Create a control that runs Microsoft’s Calendar application:

f = figure('pos',[300 300 500 500]);

cal = actxcontrol('mscal.calendar', [0 O 500 500], f)
cal =
COM.mscal.calendar

Call the get method on cal to list all properties of the Calendar:

get(cal)
BackColor: 2.1475e+009
Day: 23
DayFont: [1x1 Interface.mscal.calendar.DayFont]
Value: '8/20/2001'

actxcontrol

Read just one property to record today’s date:

date = get(cal, 'Value')
date =
8/23/2001

Set the Day property to a new value:

set(cal, 'Day', 5);
date = get(cal, 'Value')
date =

8/5/2001

Calling invoke with no arguments lists all available methods:

meth = invoke(cal)
meth =
NextDay: 'HRESULT NextDay(handle)'
NextMonth: 'HRESULT NextMonth(handle)'
NextWeek: 'HRESULT NextWeek(handle)'
NextYear: 'HRESULT NextYear(handle)'

Invoke the NextWeek method to advance the current date by one week:

NextWeek(cal);
date = get(cal, 'Value')
date =

8/12/2001

Call events to list all Calendar events that can be triggered:

events(cal)

ans =
Click = void Click()
DblClick = void DblClick()
KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
KeyPress = void KeyPress(int16 KeyAscii)
KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
BeforeUpdate = void BeforeUpdate(int16 Cancel)
AfterUpdate = void AfterUpdate()
NewMonth = void NewMonth()

464

actxcontrol

NewYear = void NewYear()

Set Up Event Handling

See the section, Sample Event Handlers in the External Interfaces

documentation for examples of event handler functions and how to register
them with MATLAB.

See Also actxserver, release, delete, save, load

465

actxserver

Purpose

Syntax

Arguments

Description

Examples

Create a COM Automation server and return a COM object for the server’s
default interface

h = actxserver (progid [, machinename])

progid

This is a string that is the name of the control to instantiate. This string is
provided by the control or server vendor and should be obtained from the
vendor’s documentation. For example, the progid for MATLAB is
matlab.application.

machinename

This is the name of a remote machine on which the server is to be run. This
argument is optional and is used only in environments that support
Distributed Component Object Model (DCOM) — see “Using MATLAB As a
DCOM Server Client” in the External Interfaces documentation. This can be
an IP address or a DNS name.

Create a COM Automation server and return a COM object that represents the
server’s default interface. Local/Remote servers differ from controls in that
they are run in a separate address space (and possibly on a separate machine)
and are not part of the MATLAB process. Additionally, any user interface that
they display will be in a separate window and will not be attached to the
MATLAB process. Examples of local servers are Microsoft Excel and Microsoft
Word. There is currently no support for events generated from automation
servers.

Launch Microsoft Excel and make the main frame window visible:

e
e =

actxserver ('Excel.Application')

COM.excel.application
set(e, 'Visible', 1);

466

actxserver

Call the get method on the excel object to list all properties of the application:

get(e)
ans =
Application: [1x1 Interface.excel.application.Application]
Creator: 'xlCreatorCode'
Parent: [1x1 Interface.Excel.Application.Parent]
Workbooks: [1x1 Interface.excel.application.Workbooks]
UsableHeight: 666.7500

Create an interface:

eWorkbooks = get(e, 'Workbooks')
eWorkbooks =
Interface.excel.application.Workbooks

List all methods for that interface by calling invoke with just the handle
argument:

invoke (eWorkbooks)
ans =
Add: 'handle Add(handle, [Optional]Variant)'
Close: 'void Close(handle)'’
Item: 'handle Item(handle, Variant)'
Open: 'handle Open(handle, string, [Optional]Variant)'
OpenText: 'void OpenText(handle, string, [Optional]Variant)'

Invoke the Add method on workbooks to add a new workbook, also creating a
new interface:

w
W =
Interface.Excel.Application.Workbooks.Add

Add (eWorkbooks)

Quit the application and delete the object:

Quit(e);
delete(e);

See Also actxcontrol, release, delete, save, load

467

addproperty (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

Add custom property to COM object
addproperty(h, 'propertyname')

h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string specifying the name of the custom property to add to the object or
interface.

Add a custom property, propertyname, to the object or interface, h. You can
assign a value to that property using set.

Create an mwsamp control and add a new property named Position to it. Assign
an array value to the property:

f = figure('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f);

get(h)
Label: 'Label'
Radius: 20

addproperty(h, 'Position');
set(h, 'Position', [200 120]);
get(h)
Label: 'Label'
Radius: 20
Position: [200 120]

get(h, 'Position')
ans =

200 120

deleteproperty, get, set, inspect

468

delete (COM)

Purpose
Syntax

Arguments

Description

Examples

469

Delete a COM control or server
delete(h)

h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

Release all interfaces derived from the specified COM server or control, and
then delete the server or control itself. This is different from releasing an
interface, which releases and invalidates only that interface.

Create a Microsoft Calender application. Then create a TitleFont interface
and use it to change the appearance of the font of the calendar’s title:

f = figure('pos',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 O 500 500], f);

TFont = get(cal, 'TitleFont')
TFont =
Interface.mscal.calendar.TitleFont

set(TFont, 'Name', 'Viva BoldExtraExtended');
set(TFont, 'Bold', 0);

When you’re finished working with the title font, release the TitleFont
interface:

release(TFont);

Now create a GridFont interface and use it to modify the size of the calendar’s
date numerals:

GFont = get(cal, 'GridFont')
GFont =
Interface.mscal.calendar.GridFont

set(GFont, 'Size', 16);

When you’re done, delete the cal object and the figure window. Deleting the
cal object also releases all interfaces to the object (e.g., GFont):

delete (COM)

delete

(cal);
delete(f)
f;

H

clear

Note that, although the object and interfaces themselves have been destroyed,
the variables assigned to them still reside in the MATLAB workspace until you
remove them with clear.

whos
Name Size Bytes Class
GFont 1x1 0 handle
TFone 1x1 0 handle
cal 1x1 0 handle

Grand total is 3 elements using O bytes

See Also release, save, load, actxcontrol, actxserver

470

deleteproperty (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

471

Remove custom property from COM object
deleteproperty(h, 'propertyname')

h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string specifying the name of the custom property to delete.

Delete a property, propertyname, from the custom properties belonging to
object or interface, h. You can only delete properties that have been created
with addproperty.

Create an mwsamp control and add a new property named Position to it. Assign
an array value to the property:

f = figure('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);

get(h)
Label: 'Label'
Radius: 20

addproperty(h, 'Position');
set(h, 'Position', [200 120]);
get(h)
Label: 'Label'
Radius: 20
Position: [200 120]

Delete the custom Position property:

deleteproperty(h, 'Position');

get(h)
Label: 'Label'
Radius: 20

addproperty, get, set, inspect

eventlisteners (COM)

Purpose Return a list of events attached to listeners
Syntax eventlisteners(h)
Arguments h

Handle for a MATLAB COM control object.

Description eventlisteners lists any events, along with their callback or event handler
routines, that have been registered with control, h. The function returns a cell
array of strings, with each row containing the name of a registered event and
the handler routine for that event. If the control has no registered events, then
eventlisteners returns an empty cell array.

Events and their callback or event handler routines must be registered in order
for the control to respond to them. You can register events either when you
create the control, using actxcontrol, or at any time afterwards, using
registerevent.

Examples Create an mwsamp control, registering only the Click event. eventlisteners
returns the name of the event and its event handler routine, myclick:

f
h

figure('pos', [100 200 200 200]);
actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f,
{'Click' 'myclick'});

eventlisteners(h)
ans =
‘click 'myclick’

Register two more events: Db1Click and MouseDown. eventlisteners returns
the names of the three registered events along with their respective handler
routines:

registerevent(h, {'DblClick', 'my2click';
'MouseDown' 'mymoused'});

eventlisteners(h)

ans =
‘click 'myclick’
'dblclick’ 'my2click’
"mousedown’ ‘mymoused’

472

eventlisteners (COM)

Now unregister all events for the control, and eventlisteners returns an
empty cell array, indicating that no events have been registered for the control:

unregisterallevents(h)
eventlisteners(h)
ans =

{}

See Also events, registerevent, unregisterevent, unregisterallevents, isevent

473

events (COM)

Purpose Return a list of events that the control can trigger
Syntax events(h)
Arguments h

Handle for a MATLAB COM control object.

Description Returns a structure array containing all events, both registered and
unregistered, known to the control, and the function prototype used when
calling the event handler routine. For each array element, the structure field
is the event name and the contents of that field is the function prototype for
that event’s handler.

Note The send function is identical to events, but send will be made obsolete
in a future release.

Examples Create an mwsamp control and list all events:

f = figure ('pos', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 O 200 200], f);

events(h)
Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,
Variant x, Variant y)

Or assign the output to a variable and get one field of the returned structure:

ev = events(h);

ev.MouseDown
ans =
void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

See Also isevent, eventlisteners, registerevent, unregisterevent,
unregisterallevents

474

fieldnames

Purpose

Syntax

Description

Examples

475

Return field names of a structure, or property names of an object

names = fieldnames(s)

names = fieldnames(obj)

names = fieldnames(obj,'-full')

names = fieldnames(s) returns a cell array of strings containing the

structure field names associated with the structure s.

names = fieldnames(obj) returns a cell array of strings containing the names
of the public data fields associated with obj, which is either a MATLAB, COM,
or Java object.

names = fieldnames(obj,'-full') returns a cell array of strings containing

the name, type, attributes, and inheritance of each field associated with obj,
which is either a MATLAB, COM, or Java object.

Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude’;
mystr(2,1).ID = 1

the command n = fieldnames(mystr) yields

"name'’
IIDI

In another example, if f is an object of Java class java.awt.Frame, the
command fieldnames (f) lists the properties of f.

f = java.awt.Frame;

fieldnames(f)
ans =
'"WIDTH'
"HEIGHT'
"PROPERTIES'
'SOMEBITS'
'FRAMEBITS'

fieldnames

"ALLBITS'

See Also isfield, orderfields, rmfield, dynamic field names

476

get (COM)

Purpose
Syntax

Arguments

Description

Examples

477

Retrieve a property value from an interface or get a list of properties
v = get(h[, 'propertyname'])

h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string that is the name of the property value to be retrieved.

Returns the value of the property specified by propertyname. If no property is
specified, then get returns a list of all properties for the object or interface.

The meaning and type of the return value is dependent upon the specific
property being retrieved. The object’s documentation should describe the
specific meaning of the return value. See “Converting Data” in the External
Interfaces documentation for a description of how MATLAB converts COM
data types.

Create a COM server running Microsoft Excel:

e = actxserver ('Excel.Application');

Retrieve a single property value:

get(e, 'Path')
ans =
D:\Applications\MSOffice\Office

Retrieve a list of all properties for the CommandBars interface:

c = get(e, 'CommandBars');
get(c)
ans =
Application: [1x1
Interface.excel.application.CommandBars.Application]
Creator: 1.4808e+009
ActionControl: []
ActiveMenuBar: [1x1
Interface.excel.application.CommandBars.ActiveMenuBar]
Count: 94

get (COM)

DisplayTooltips:
DisplayKeysInTooltips:
LargeButtons:
MenuAnimationStyle:
Parent:

1
0
0

[

msoMenuAnimationNone'
1x1

Interface.excel.application.CommandBars.Parent]
AdaptiveMenus: 0O

DisplayFonts:

1

See Also set, inspect, isprop, addproperty, deleteproperty

478

inspect

Purpose

Syntax

Description

Example

479

Display graphical user interface to list and modify property values

inspect
inspect(h)

inspect creates a separate Property Inspector window to enable the display
and modification of the properties of any object you select in the figure window
or Layout Editor.

inspect(h) creates a Property Inspector window for the graphics, Java, or
COM object attached to handle, h.

To change the value of any property, click on the property name shown at the
left side of the window, and then enter the new value in the field at the right.

Note If you modify properties at the MATLAB command line, you must
refresh the Property Inspector window to see the change reflected there.
Refresh the Property Inspector by reinvoking inspect on the object.

Create a COM Excel server and open a Property Inspector window with
inspect:

h = actxserver('excel.application');
inspect(h)

Scroll down until you see the DefaultFilePath property. Click on the property
name shown at the left. Then replace the text at the right with C:\ExcelWork.

inspect

E Property Inspector ;lglll
ﬁ com.excel. application

+— CommandBars Interface_excel_application_CommandBarsBeanAdapterd ;I
— Commandnderlines ;I}{ICummandUnderIinesAutumatic

— ConstrainNumeric ll False

— ControlCharacters il False

— CopyOhjects'WithCells WTrue J
— Creatar :I}{ICreatorCode

— Cursar :I}{IDefauIt

— CursarMovement i}

— CustomListCount 4

— CutCopyMode :l

— DDEAppReturnCode o

— DataEntryMode -4146

— DefaultFileFath CAExCelWork

— DefaultSaveFormat :leWorkbuukNormal

— DefaultSheetDirection 1}

[+ DefaultwebCptions Interface_excel_application_DefaultebOptionsBeanAdapterd |

Check this field in the MATLAB command window and confirm that it has
changed:

get(h, 'DefaultFilePath')
ans =
C:\ExcelWork

See Also get, set, isprop, guide, addproperty, deleteproperty

480

invoke (COM)

Purpose Invoke a method on an object or interface
Syntax v = invoke(h, ['methodname' [, argl, arg2, ...]1])
Arguments h

Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

methodname
A string that is the name of the method to be invoked.

argl, ..., argn
Arguments, if any, required by the method being invoked.

Description Invoke a method on an object’s interface and retrieve the return value of the
method, if any. The data type of the value is dependent upon the specific
method being invoked and is determined by the specific control or server. If the
method returns a COM interface, then invoke returns a new MATLAB COM
object that represents the interface returned. See “Converting Data” in the
External Interfaces documentation for a description of how MATLAB converts
COM data types.

When you specify only a handle argument with invoke, MATLAB returns a
structure array containing a list of all methods available for the object and
their prototypes.

Examples Create an mwsamp control and invoke its Redraw method:

f
h

figure ('pos', [100 200 200 200]);
actxcontrol ('mwsamp.mwsampctrl.i', [0 O 200 200], f);

set(h, 'Radius', 100);
invoke(h, 'Redraw');

Here is a simpler way to invoke. Just call the method directly, passing the
handle, and any arguments:

Redraw(h);

Call invoke with only the handle argument to display a list of all mwsamp
methods:

invoke (h)

481

invoke (COM)
|

ans =
Beep: 'void Beep(handle)'
Redraw: 'void Redraw(handle)'
GetVariantArray: 'Variant GetVariantArray(handle)'
etc.
See Also methods, ismethod

482

isevent (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

483

Determine if an item is an event of a COM control
isevent(h, ‘'name')

h
Handle for a MATLAB COM control object.

name
Name of the item to test.

Returns a logical 1 (true) if the specified name is an event that can be
recognized and responded to by the control, h. Otherwise, isevent returns
logical 0 (false).

isevent returns the same value regardless of whether the specified event is
registered with the control or not. In order for the control to respond to the
event, you must first register the event using either actxcontrol or
registerevent.

The string specified in the name argument is not case sensitive.

Create an mwsamp control and test to see if Db1Click is an event recognized by
the control. isevent returns true:

f = figure ('pos', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 O 200 200], f);

isevent(h, 'DblClick')
ans =
1

Try the same test on Redraw, which is a method, and isevent returns false:

isevent(h, 'Redraw')
ans =
0

events, eventlisteners, registerevent, unregisterevent,
unregisterallevents

ismethod (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

Determine if an item is a method of a COM object
ismethod(h, 'name')

h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

name
Name of the item to test.

Returns a logical 1 (true) if the specified name is a method that you can call on
COM object, h. Otherwise, ismethod returns logical 0 (false).

Create an Excel application and test to see if SaveWorkspace is a method of the
object. ismethod returns true:

h = actxserver ('Excel.Application');

ismethod(h, 'SaveWorkspace')

ans =
1

Try the same test on UsableWidth, which is a property, and isevent returns
false:

ismethod(h, 'UsableWidth')
ans =
0

methods, invoke

484

isprop (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

485

Determine if an item is a property of a COM object
isprop(h, 'name')

h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

name
Name of the item to test.

Returns a logical 1 (true) if the specified name is a property you can use with
COM object, h. Otherwise, isprop returns logical 0 (false).

Create an Excel application and test to see if UsableWidth is a property of the
object. isprop returns true:

h = actxserver ('Excel.Application');

isprop(h, 'Usablewidth')

ans =
1

Try the same test on SaveWorkspace, which is a method, and isprop returns
false:

isprop(h, 'SaveWorkspace')
ans =
0

get, inspect, addproperty, deleteproperty

load (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

Initialize a COM object from a file

load(h, 'filename')

h

Handle for a MATLAB COM control object.
filename

The full path and filename of the serialized data.

Initializes the COM object associated with the interface represented by the
MATLAB COM object h from a file. The file must have been created previously
by serializing an instance of the same control.

The COM 1load function is only supported for controls at this time.

Create an mwsamp control and save its original state to the file mwsample:

f = figure('pos', [100 200 200 2001]);
h actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f);
save(h, 'mwsample’)

Now, alter the figure by changing its label and the radius of the circle:

set(h, 'Label', 'Circle');
set(h, 'Radius', 50);
Redraw(h);

Using the load function, you can restore the control to its original state:

load(h, 'mwsample');
get(h)
ans =
Label: 'Label'
Radius: 20

save, actxcontrol, actxserver, release, delete

486

methods

Purpose

Syntax

Description

Examples

487

Display method names

m = methods('classname')

m = methods('object')

m = methods(..., '-full')

m = methods('classname') returns, in a cell array of strings, the names of all

methods for the MATLAB, COM, or Java class, classname.

m = methods('object') returns the names of all methods for the MATLAB,
COM, or Java class of which object is an instance.

m = methods(..., '-full') returns the full description of the methods
defined for the class, including inheritance information and, for COM and Java
methods, attributes and signatures. For any overloaded method, the returned
array includes a description of each of its signatures.

For MATLAB classes, inheritance information is returned only if that class has
been instantiated.

List the methods of MATLAB class, stock:
methods('stock')

m

m:
‘display’
‘get
‘set’
‘stock’
‘subsasgn’
‘subsref’

Create a MathWorks sample COM control and list its methods:

h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
methods (h)

Methods for class com.mwsamp.mwsampctrl.i:

AboutBox GetR8Array SetR8 move
Beep GetR8Vector SetR8Array propedit
FireClickEvent GetVariantArray SetR8Vector release

methods

GetBSTR GetVariantVector addproperty save
GetBSTRArray Redraw delete send
GetI4 SetBSTR deleteproperty set
GetI4Array SetBSTRArray events

GetI4Vector SetI4 get

GetIDispatch SetI4Array invoke

GetR8 SetI4Vector load

Display a full description of all methods on Java object, java.awt.Dimension:

methods java.awt.Dimension -full

Dimension(java.awt.Dimension)
Dimension(int,int)
Dimension()
void wait() throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException
% Inherited from java.lang.Object
java.lang.Class getClass() % Inherited from java.lang.Object

See Also methodsview, invoke, ismethod, help, what, which

488

methodsview

Purpose

Syntax

Description

Examples

489

Displays information on all methods implemented by a class.

methodsview packagename.classname
methodsview classname
methodsview(object)

methodsview packagename.classname displays information describing the
Java class, classname, that is available from the package of Java classes,
packagename.

methodsview classname displays information describing the MATLAB, COM,
or imported Java class, classname.

methodsview(object) displays information describing the object
instantiated from a COM or Java class.

MATLAB creates a new window in response to the methodsview command.
This window displays all of the methods defined in the specified class. For each
of these methods, the following additional information is supplied:

® Name of the method

® Method type qualifiers (for example, abstract or synchronized)

¢ Data type returned by the method

® Arguments passed to the method

® Possible exceptions thrown

¢ Parent of the specified class

The following command lists information on all methods in the
java.awt.MenuItem class.

methodsview java.awt.Menultem

methodsview

J Methods of class java.awt Menultem =] B3

MATLAB displays this information in a new window, as shown below

synchronized

synchronized

synchronized

woid
woid
woid
woid
woid
woid
woid
hoolean

Qualifiers Return Type MHarme Arguments
Menultern] =
enultem (java.lang.String)
enultem (java.lang.String java. awt. MenuShartcut)

addActionListener
addMatify
deleteShortcut
dizable
dispatchEvent
enahle

enahle

equals

(java.awt event ActionListener
i

i

i

(java.awt AWTEvent)

i

(boolean)

(java.lang.Ohject)

java.lang.5tring getActionCommand 9]

javalang.Class getClass 9]

java.awt Font getFont 9]

java.lang.5tring getLabel 9] [—

java.lang.5tring getMame 9]

java.awt MenuContainer getParent 9]

java.awt peer.MenuCompaonentPeer netPeer 9]

java.awt MenuShorcut getShortcut 9]

int hashCode 9]

hoolean isEnabled 9]

void notify i

void notifyAll 9] —
4 | L|J

See Also methods, import, class, javaArray

490

move (COM)

Purpose
Syntax

Arguments

Description

Examples

491

Move and/or resize a COM control in its parent window
move (h, position)

h
Handle for a MATLAB COM control object.

position
A four-element vector specifying the position of the control in the parent
window. The elements of the vector are

[left, bottom, width, height]

Moves the control to the position specified by the position argument. When
you use move with only the handle argument, h, it returns a four-element
vector indicating the current position of the control.

This example moves the control:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 O 200 200]);
= move(h, [50 50 200 200])

©T T
o O
w u

In 1

50 50 200 200

The next example resizes the control to always be centered in the figure as you
resize the figure window. Start by creating the script resizectrl.m that
contains

% Get the new position and size of the figure window
fpos = get(gcbo, 'position');

% Resize the control accordingly
move(h, [0 O fpos(3) fpos(4)]);

Now execute the following in MATLAB or in an M-file:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
set(f, 'ResizeFcn', 'resizectrl');

As you resize the figure window, notice that the circle moves so that it is always
positioned in the center of the window.

move (COM)
|

See Also set, get

492

propedit (COM)

Purpose Request the control to display its built-in property page

Syntax propedit (h)

Arguments h
Handle for a MATLAB COM control object.

Description Request the control to display its built-in property page. Note that some
controls do not have a built-in property page. For those objects, this command
will fail.

Examples Create a Microsoft Calendar control and display its property page:

cal = actxcontrol('mscal.calendar', [0 O 500 500]);
propedit(cal)

See Also inspect, get

493

registerevent (COM)

Purpose

Syntax

Arguments

Description

Register an event handler with a control’s event

registerevent(h, callback |

{event1 eventhandleri; event2 eventhandler2; ...})
h
Handle for a MATLAB COM control object.
callback

Name of an M-function that accepts a variable number of arguments. This
function will be called whenever the control triggers an event. Each argument
is converted to a MATLAB string. See the section, “Writing Event Handlers” in
the External Interfaces/API documentation for more information on handling
control events.

event
Any event associated with h that can be triggered. Specify event using the
event name.

eventhandler

Name of an M-function that accepts a variable number of arguments. This
function will be called whenever the control triggers the event associated with
it. See “Writing Event Handlers” in the External Interfaces/API
documentation for more information on handling control events.

Register one or more events with a single callback function or with a separate
handler function for each event. You can either register events at the time you
create the control (using actxcontrol), or register them dynamically at any
time after the control has been created (using registerevent).

The strings specified in the callback, event, and eventhandler arguments are
not case sensitive.

494

registerevent (COM)

Examples

495

Note There are two ways to handle events. You can create a single handler
(callback) for all events, or you can specify a cell array that contains pairs of
events and event handlers. In the cell array format, specify events by name in
a quoted string. There is no limit to the number of pairs that can be specified
in the cell array. Although using the single callback method may be easier in
some cases, using the cell array technique creates more efficient code that
results in better performance.

Create an mwsamp control and list all events associated with the control:

f = figure ('pos', [100 200 200 200]);
h actxcontrol ('mwsamp.mwsampctrl.2'; [0 O 200 200], f);

events(h)
ans =
Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,
Variant x, Variant vy)

Register all events with the same callback routine, sampev. Use the
eventlisteners function to see the event handler used by each event:

registerevent(h, 'sampev');

eventlisteners(h)

ans =
‘click! ‘sampev'
‘dblclick’ 'sampev'
‘mousedown’ ‘sampev’

unregisterallevents(h);

Register the Click and Db1Click events with event handlers myclick and
my2click, respectively:

registerevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});
eventlisteners(h)
ans =

‘click! 'myclick’

registerevent (COM)
|

'dblclick’ ‘my2click’

See Also events, eventlisteners, unregisterevent, unregisterallevents, isevent

496

release (COM)

Purpose
Syntax

Arguments

Description

Examples

497

Release an interface
release(h)

h
Handle for a COM object that represents the interface to be released.

Release the interface and all resources used by the interface. Each interface
handle must be released when you are finished manipulating its properties and
invoking its methods. Once an interface has been released, it is no longer valid
and subsequent operations on the MATLAB object that represents that
interface will result in errors.

Note Releasing the interface will not delete the control itself (see delete),
since other interfaces on that object may still be active. See “Releasing
Interfaces” in the External Interfaces/API documentation for more
information.

Create a Microsoft Calender application. Then create a TitleFont interface
and use it to change the appearance of the font of the calendar’s title:

f = figure('pos',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 O 500 500], f);

TFont = get(cal, 'TitleFont')
TFont
Interface.mscal.calendar.TitleFont

set(TFont, 'Name', 'Viva BoldExtraExtended');
set(TFont, 'Bold', 0);

When you’re finished working with the title font, release the TitleFont

interface:

release(TFont);
Now create a GridFont interface and use it to modify the size of the calendar’s
date numerals:

GFont = get(cal, 'GridFont')

release (COM)
|

GFont =
Interface.mscal.calendar.GridFont

set(GFont, 'Size', 16);

When you’re done, delete the cal object and the figure window:

delete(cal);
delete(f);
clear f;

See Also delete, save, load, actxcontrol, actxserver

498

save (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

499

Serialize a COM control object to a file
save(h, 'filename')

h
Handle for a MATLAB COM control object.

filename
The full path and filename of the serialized data.

Save the COM control object associated with the interface represented by the
MATLAB COM object h into a file.

The COM save function is only supported for controls at this time.

Create an mwsamp control and save its original state to the file mwsample:

f = figure('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f);
save(h, 'mwsample')

Now, alter the figure by changing its label and the radius of the circle:

set(h, 'Label', 'Circle');
set(h, 'Radius', 50);
Redraw(h);

Using the load function, you can restore the control to its original state:

load(h, 'mwsample');
get(h)
ans =
Label: 'Label'
Radius: 20

load, actxcontrol, actxserver, release, delete

send (COM)
|

Purpose Return a list of events that the control can trigger

Note Support for send will be removed in a future release of MATLAB. Use
the events function instead of send.

500

set (COM)

Purpose
Syntax

Arguments

Description

Examples

See Also

501

Set an interface property to a specific value
set(h, 'propertyname', value[, 'propertyname2', value2, ...])

h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string that is the name of the property to be set.

value
The value to which the interface property is set.

Set one or more properties of a COM object to the specified value(s). Each
propertyname argument must be followed by a value argument.

See “Converting Data” in the External Interfaces documentation for
information on how MATLAB converts workspace matrices to COM data types.

Create an mwsamp control and use set to change the Label and Radius
properties:

f = figure ('pos', [100 200 200 200]);
h actxcontrol ('mwsamp.mwsampctrl.i', [0 O 200 200], f);

set(h, 'Label', 'Click to fire event', 'Radius', 40);
invoke(h, 'Redraw');

get, inspect, isprop, addproperty, deleteproperty

unregisterallevents (COM)

Purpose
Syntax

Arguments

Description

Examples

Unregister all events for a control
unregisterallevents(h)

h
Handle for a MATLAB COM control object.

Unregister all events that have previously been registered with control, h.
After calling unregisterallevents, the control will no longer respond to any
events until you register them again using the registerevent function.

Create an mwsamp control, registering three events and their respective handler
routines. Use the eventlisteners function to see the event handler used by
each event:

f
h

figure ('pos', [100 200 200 200]);
actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f,
{'Click' 'myclick'; 'DblClick' 'my2click';
'"MouseDown' 'mymoused'});

eventlisteners(h)

ans =
‘click! 'myclick’
'dblclick’ 'my2click’
"mousedown’ "mymoused’

Unregister all of these events at once with unregisterallevents. Now, calling
eventlisteners returns an empty cell array, indicating that there are no
longer any events registered with the control:

unregisterallevents(h);
eventlisteners(h)
ans =

{}

502

unregisterallevents (COM)

To unregister specific events, use the unregisterevent function:

unregisterevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});
eventlisteners(h)
ans =

{}

See Also events, eventlisteners, registerevent, unregisterevent, isevent

503

unregisterevent (COM)

Purpose

Syntax

Arguments

Description

Examples

Unregister an event handler with a control’s event

unregisterevent(h, callback |

{event1 eventhandleri; event2 eventhandler2; ...})
h
Handle for a MATLAB COM control object.
callback

Name of an M-function previously registered with this object to handle events.
Callbacks are registered using either actxcontrol or registerevent.

event

Any event associated with h that can be triggered. Specify event using the
event name. Unlike actxcontrol, unregisterevent does not accept numeric
event identifiers.

eventhandler
Name of the event handler routine that you want to unregister for the event
specified in the preceding event argument.

Unregister the specified callback routines with all events for this control, or
unregister each specified eventhandler routine with the event associated with
it in the argument list. Once you unregister a callback or event handler routine,
MATLAB no longer responds to the event using that routine.

The strings specified in the callback, event, and eventhandler arguments are
not case sensitive.

You can unregister events at any time after a control has been created.

Create an mwsamp control and register all events with the same callback
routine, sampev. Use the eventlisteners function to see the event handler
used by each event. In this case, each event, when fired, will call sampev.m:

f = figure ('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 O 200 200], f,

'sampev');
eventlisteners(h)
ans =

‘click 'sampev’

504

unregisterevent (COM)

See Also

505

‘dblclick’ ‘sampev'
‘mousedown’ ‘sampev’

Unregister just the dblclick event. Now, when you list the registered events
using eventlisteners, you see that dblclick is no longer registered. The
control will no longer respond when you double-click the mouse over it:

unregisterevent(h, {'dblclick' 'sampev'});
eventlisteners(h)
ans =

‘click 'sampev'

'mousedown’ 'sampev’

This time, register the click and dblclick events with a different event
handler for each: myclick and my2click, respectively:

registerevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});

eventlisteners(h)

ans =
‘click! 'myclick’
‘dblclick’ 'my2click’

You can unregister these same events by specifying event names and their
handler routines in a cell array. Note that eventlisteners now returns an
empty cell array, meaning that no events are registered for the mwsamp control:

unregisterevent(h, {'click' 'myclick'; 'dblclick' 'my2click'});
eventlisteners(h)
ans =

{}

In this last example, you could have used unregisterallevents instead:

unregisterallevents(h);

events, eventlisteners, registerevent, unregisterallevents, isevent

DDE Functions

ddeadv
ddeexec
ddeinit
ddepoke
ddereq
ddeterm

ddeunadv

Set up advisory link

Send string for execution
Initiate DDE conversation
Send data to application
Request data from application
Terminate DDE conversation

Release advisory link

ddeadv

Purpose Set up advisory link
Syntax rc = ddeadv(channel,'item', 'callback')

rc = ddeadv(channel, 'item', 'callback', 'upmtx"')

rc = ddeadv(channel,'item','callback', 'upmtx',format)

rc = ddeadv(channel,'item', 'callback','upmtx',format,timeout)
Description ddeadv sets up an advisory link between MATLAB and a server application.

When the data identified by the item argument changes, the string specified
by the callback argument is passed to the eval function and evaluated. If the
advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect
the data in item.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

callback String specifying the callback that is evaluated on update
notification. Changing the data identified by item at the server
causes callback to get passed to the eval function to be

evaluated.
upmtx String specifying the name of a matrix that holds data sent
(optional) with an update notification. If upmtx is included, changing

item at the server causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link. Omitting upmtx or
specifying it as an empty string creates a warm link. If upmtx
exists in the workspace, its contents are overwritten. If upmtx
does not exist, it is created.

507

ddeadv

Examples

See Also

format
(optional)

timeout
(optional)

Two-element array specifying the format of the data to be sent
on update. The first element specifies the Windows clipboard
format to use for the data. The only currently supported format
is cf_text, which corresponds to a value of 1. The second
element specifies the type of the resultant matrix. Valid types
are numeric (the default, which corresponds to a value of 0)
and string (which corresponds to a value of 1). The default
format arrayis [1 0].

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). If
advisory link is not established within timeout milliseconds,
the function fails. The default value of timeout is three
seconds.

Set up a hot link between a range of cells in Excel (Row 1, Column 1 through
Row 5, Column 5) and the matrix x. If successful, display the matrix:

rc = ddeadv(channel, 'rici1:rb5c5', 'disp(x)', 'x');

Communication with Excel must have been established previously with a
ddeinit command.

ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

508

ddeexec

Purpose

Syntax

Description

Arguments

Examples

See Also

509

Send string for execution

rc = ddeexec(channel, 'command')
rc = ddeexec(channel, ‘command','item')
rc = ddeexec(channel, 'command','item',timeout)

ddeexec sends a string for execution to another application via an established
DDE conversation. Specify the string as the command argument.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeexec returns 1 in variable, rc. Otherwise it returns 0.

channel Conversation channel from ddeinit.

command String specifying the command to be executed.

item String specifying the DDE item name for execution. This
(optional) argument is not used for many applications. If your application

requires this argument, it provides additional information for
command. Consult your server documentation for more

information.
timeout Scalar specifying the time-out limit for this operation. timeout
(optional) is specified in milliseconds. (1000 milliseconds = 1 second). The

default value of timeout is three seconds.

Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel, '[formula.goto("rici")]")

Communication with Excel must have been established previously with a
ddeinit command.

ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

ddeinit

Purpose
Syntax

Description

Examples

See Also

Initiate DDE conversation

channel = ddeinit('service', 'topic')

channel = ddeinit('service', 'topic') returns a channel handle assigned
to the conversation, which is used with other MATLAB DDE functions.
'service' is a string specifying the service or application name for the

conversation. 'topic' is a string specifying the topic for the conversation.

To initiate a conversation with Excel for the spreadsheet 'stocks.xls"':

channel ddeinit('excel', 'stocks.xls')

channel
0.00

ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv

510

ddepoke

Purpose Send data to application

Syntax rc = ddepoke(channel, 'item',data)
rc = ddepoke(channel, 'item',data,format)
rc = ddepoke(channel, 'item',data,format,timeout)

Description ddepoke sends data to an application via an established DDE conversation.
ddepoke formats the data matrix as follows before sending it to the server
application:

¢ String matrices are converted, element by element, to characters and the
resulting character buffer is sent.

¢ Numeric matrices are sent as tab-delimited columns and carriage-return,
line-feed delimited rows of numbers. Only the real part of nonsparse
matrices are sent.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddepoke returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.
item String specifying the DDE item for the data sent. Item is the
server data entity that is to contain the data sent in the data
argument.
data Matrix containing the data to send.
format Scalar specifying the format of the data requested. The value
(optional) indicates the Windows clipboard format to use for the data

transfer. The only format currently supported is cf_text,
which corresponds to a value of 1.

timeout Scalar specifying the time-out limit for this operation. timeout
(optional) is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

511

ddepoke
|

Examples Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel, placing the
data in Row 1, Column 1 through Row 5, Column 5:

rc = ddepoke(channel, 'rici:r5c5', eye(5));

See Also ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv

512

ddereq

Purpose

Syntax

Description

Arguments

Examples

513

Request data from application

data = ddereq(channel, 'item')
data = ddereq(channel, 'item',format)
data = ddereq(channel, 'item',format,timeout)

ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or an
empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddereq returns a matrix containing the requested data in
variable, data. Otherwise, it returns an empty matrix.

channel Conversation channel from ddeinit.

item String specifying the server application's DDE item name for
the data requested.

format Two-element array specifying the format of the data requested.

(optional) The first element specifies the Windows clipboard format to

use. The only currently supported format is cf_text, which
corresponds to a value of 1. The second element specifies the
type of the resultant matrix. Valid types are numeric (the
default, which corresponds to 0) and string (which
corresponds to a value of 1). The default format array is [1 0].

timeout Scalar specifying the time-out limit for this operation. timeout
(optional) is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

Assume that we have an Excel spreadsheet stocks.x1s. This spreadsheet
contains the prices of three stocks in row 3 (columns 1 through 3) and the
number of shares of these stocks in rows 6 through 8 (column 2). Initiate
conversation with Excel with the command:

channel = ddeinit('excel', 'stocks.x1ls')

DDE functions require the rxcy reference style for Excel worksheets. In Excel
terminology the prices are in r3c1:r3c3 and the shares in réc2:r8c2.

ddereq

To request the prices from Excel:

prices = ddereq(channel, 'r3c1:r3c3"')

prices =
42.50 15.00 78.88

To request the number of shares of each stock:

shares = ddereq(channel, 'r6c2:r8c2'")

shares =
100.00
500.00
300.00
See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv

514

ddeterm

Purpose
Syntax

Description

Examples

See Also

515

Terminate DDE conversation

rc = ddeterm(channel)

rc = ddeterm(channel) accepts a channel handle returned by a previous call
to ddeinit that established the DDE conversation. ddeterm terminates this
conversation. rc is a return code where 0 indicates failure and 1 indicates

success.

To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc

1.00

ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv

ddeunadv

Purpose

Syntax

Description

Arguments

Example

See Also

Release advisory link

rc = ddeunadv(channel, 'item')
rc = ddeunadv(channel, 'item',format)
rc = ddeunadv(channel, 'item',format,timeout)

ddeunadv releases the advisory link between MATLAB and the server
application established by an earlier ddeadv call. The channel, item, and
format must be the same as those specified in the call to ddeadv that initiated
the link. If you include the timeout argument but accept the default format,
you must specify format as an empty matrix.

If successful, ddeunadv returns 1 in variable, rc. Otherwise it returns 0.

channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

format Two-element array. This must be the same as the format
(optional) argument for the corresponding ddeadv call.

timeout Scalar specifying the time-out limit for this operation. timeout
(optional) is specified in milliseconds. (1000 milliseconds = 1 second). The

default value of timeout is three seconds.

To release an advisory link established previously with ddeadv:

rc
rc

ddeunadv(channel, 'ri1ci1:r5c5"')

1.00

ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

516

ddeunadv

517

Serial Port I/0O Functions

clear (serial)

delete (serial)

disp (serial)

fclose (serial)

fgetl (serial)

fgets (serial)

fopen (serial)

fprintf (serial)
fread (serial)
freeserial

fscanf (serial)

fwrite (serial)
get (serial)

instrcallback

Remove serial port object from
MATLAB workspace

Remove serial port object from
memory

Display serial port object summary
information

Disconnect serial port object from the
device

Read from device and discard the
terminator

Read from device and include the
terminator

Connect serial port object to the
device

Write text to the device
Read binary data from the device
Release hold on a serial port

Read data from device and format as
text

Write binary data to the device
Return serial port object properties

Display event information when an
event occurs

instrfind

isvalid

length (serial)

load (serial)

readasync

record

save (serial)

serial

serialbreak

set (serial)

size (serial)

stopasync

519

Return serial port objects from
memory to the MATLAB workspace

Determine if serial port objects are
valid

Length of serial port object array

Load serial port objects and variables
into MATLAB workspace

Read data asynchronously from the
device

Record data and event information to
a file

Save serial port objects and variables
to MAT-file

Create a serial port object

Send break to device connected to the
serial port

Configure or display serial port object
properties

Size of serial port object array

Stop asynchronous read and write
operations

clear (serial)

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

Remove a serial port object from the MATLAB workspace

clear obj

obj A serial port object or an array of serial port objects.

clear obj removes obj from the MATLAB workspace.

If obj is connected to the device and it is cleared from the workspace, then obj
remains connected to the device. You can restore obj to the workspace with the
instrfind function. A serial port object connected to the device has a Status

property value of open.

To disconnect obj from the device, use the fclose function. To remove obj from
memory, use the delete function. You should remove invalid serial port objects
from the workspace with clear.

If you use the help command to display help for clear, then you need to supply
the pathname shown below.

help serial/private/clear

This example creates the serial port object s, copies s to a new variable scopy,
and clears s from the MATLAB workspace. s is then restored to the workspace
with instrfind and is shown to be identical to scopy.

s = serial('COM1');
SCopy = S;
clear s
s = instrfind;
isequal(scopy,s)
ans =

1

Functions
delete, fclose, instrfind, isvalid

520

clear (serial)

Properties
Status

521

delete (serial)

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

Remove a serial port object from memory

delete(obj)

obj A serial port object or an array of serial port objects.

delete(obj) removes obj from memory.

When you delete obj, it becomes an invalid object. Because you cannot connect
an invalid serial port object to the device, you should remove it from the

workspace with the clear command. If multiple references to obj exist in the
workspace, then deleting one reference invalidates the remaining references.

If obj is connected to the device, it has a Status property value of open. If you
issue delete while obj is connected, then the connection is automatically
broken. You can also disconnect obj from the device with the fclose function.

If you use the help command to display help for delete, then you need to
supply the pathname shown below.

help serial/delete

This example creates the serial port object s, connects s to the device, writes
and reads text data, disconnects s from the device, removes s from memory
using delete, and then removes s from the workspace using clear.

s = serial('COM1');
fopen(s)

fprintf(s, '*IDN?"')
idn = fscanf(s);
fclose(s)

delete(s)

clear s

Functions
clear, fclose, isvalid

522

delete (serial)

Properties
Status

523

disp (serial)

Purpose

Syntax

Arguments

Description

Remarks

Example

Display serial port object summary information

obj
disp(obj)

obj A serial port object or an array of serial port objects.

obj or disp(obj) displays summary information for obj.

In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when:

¢ Creating a serial port object

¢ Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,

communication state information, and information associated with read and
write operations.

The following commands display summary information for the serial port
object s.

s = serial('COM1")

s.BaudRate = 300

s

524

fclose (serial)

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

525

Disconnect a serial port object from the device

fclose(obj)

obj A serial port object or an array of serial port objects.

fclose(obj) disconnects obj from the device.

If obj was successfully disconnected, then the Status property is configured to
closed and the RecordStatus property is configured to off. You can reconnect
obj to the device using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with the
stopasync function, or wait for the write operation to complete.

If you use the help command to display help for fclose, then you need to
supply the pathname shown below.

help serial/fclose

This example creates the serial port object s, connects s to the device, writes
and reads text data, and then disconnects s from the device using fclose.

s = serial('COM1');
fopen(s)

fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

At this point, the device is available to be connected to a serial port object. If
you no longer need s, you should remove from memory with the delete
function, and remove it from the workspace with the clear command.

Functions
clear, delete, fopen, stopasync

fclose (serial)

Properties
RecordStatus, Status

526

fgetl (serial)

Purpose

Syntax

Arguments

Description

Remarks

527

Read one line of text from the device and discard the terminator

tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

obj A serial port object.

tline Text read from the instrument, excluding the terminator.

count The number of values read, including the terminator.

msg A message indicating if the read operation was
unsuccessful.

tline = fgetl(obj) reads one line of text from the device connected to obj,
and returns the data to tline. The returned data does not include the
terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg if the
read operation was unsuccessful.

Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time fgetl is issued.

If you use the help command to display help for fgetl, then you need to supply
the pathname shown below.

help serial/fgetl

fgetl (serial)

Example

See Also

Rules for Completing a Read Operation with fgetl
A read operation with fgetl blocks access to the MATLAB command line until:

¢ The terminator specified by the Terminator property is reached.
® The time specified by the Timeout property passes.
¢ The input buffer is filled.

Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');
fopen(s)
fprintf (s, 'RS232?")

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
17

Use fgetl to read the data returned from the previous write operation, and
discard the terminator.

settings = fgetl(s)

settings =

9600;0;0;NONE;LF

length(settings)

ans =

16

Disconnect s from the scope, and remove s from memory and the workspace.
fclose(s)
delete(s)
clear s

Functions
fgets, fopen

528

fgetl (serial)

Properties

BytesAvailable, InputBufferSize, ReadAsyncMode, Status, Terminator,
Timeout, ValuesReceived

529

fgets (serial)

Purpose

Syntax

Arguments

Description

Remarks

Read one line of text from the device and include the terminator

tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

obj A serial port object.

tline Text read from the instrument, including the terminator.

count The number of bytes read, including the terminator.

msg A message indicating if the read operation was
unsuccessful.

tline = fgets(obj) reads one line of text from the device connected to obj,
and returns the data to t1ine. The returned data includes the terminator with
the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to count.

[tline,count,msg] = fgets(obj) returns a warning message to msg if the
read operation was unsuccessful.

Before you can read text from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time fgets is issued.

If you use the help command to display help for fgets, then you need to supply
the pathname shown below.

help serial/fgets

530

fgets (serial)

Example

See Also

531

Rules for Completing a Read Operation with fgets
A read operation with fgets blocks access to the MATLAB command line until:

¢ The terminator specified by the Terminator property is reached.
¢ The time specified by the Timeout property passes.
¢ The input buffer is filled.

Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS2327? instructs
the scope to return serial port communications settings.

s = serial('COM1");
fopen(s)
fprintf (s, 'RS232?")

Because the default value for the ReadAsyncMode property is continuous, data
is automatically returned to the input buffer.

s.BytesAvailable
ans =
17

Use fgets to read the data returned from the previous write operation, and
include the terminator.

settings = fgets(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =

17

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Functions
fgetl, fopen

fgets (serial)

Properties

BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
Timeout, ValuesReceived

532

fopen (serial)

Purpose
Syntax

Arguments

Description

Remarks

Example

533

Connect a serial port object to the device

fopen(obj)

obj A serial port object or an array of serial port objects.

fopen(obj) connects obj to the device.

Before you can perform a read or write operation, obj must be connected to the
device with the fopen function. When obj is connected to the device:

¢ Data remaining in the input buffer or the output buffer is flushed.
¢ The Status property is set to open.

® The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput
properties are set to 0.

An error is returned if you attempt to perform a read or write operation while
obj is not connected to the device. You can connect only one serial port object
to a given device.

Some properties are read-only while the serial port object is open (connected),
and must be configured before using fopen. Examples include
InputBufferSize and OutputBufferSize. Refer to the property reference
pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected to the
device. If any of these properties are incorrectly configured, then an error is
returned when fopen is issued and obj is not connected to the device.
Properties of this type include BaudRate, and are associated with device
settings.

If you use the help command to display help for fopen, then you need to supply
the pathname shown below.

help serial/fopen

This example creates the serial port object s, connects s to the device using
fopen, writes and reads text data, and then disconnects s from the device.

fopen (serial)

s = serial('COM1');
fopen(s)

fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

See Also Functions
fclose

Properties
BytesAvailable, BytesToOutput, Status, ValuesReceived, ValuesSent

534

fprintf (serial)

Purpose

Syntax

Arguments

Description

Remarks

535

Write text to the device

fprintf(obj,'cmd"')

fprintf(obj, 'format','cmd"')
fprintf(obj, 'cmd', 'mode")
fprintf(obj, 'format','cmd', 'mode')

obj A serial port object.

‘cmd' The string written to the device.

‘format' C language conversion specification.

'mode' Specifies whether data is written synchronously or
asynchronously.

fprintf(obj,'cmd') writes the string cmd to the device connected to obj. The
default format is %s\n. The write operation is synchronous and blocks the
command line until execution is complete.

fprintf(obj,'format', 'cmd') writes the string using the format specified by
format. format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d, i, o, u, x,
X,f, e, E, g, G, c, and s. Refer to the sprintf file I/O format specifications or a
C manual for more information.

fprintf(obj,'cmd', 'mode') writes the string with command line access
specified by mode. If mode is sync, cmd is written synchronously and the
command line is blocked. If mode is async, cmd is written asynchronously and
the command line is not blocked. If mode is not specified, the write operation is
synchronous.

fprintf(obj, ' format','cmd', 'mode') writes the string using the specified
format. If mode is sync, cmd is written synchronously. If mode is async, cmd is
written asynchronously.

Before you can write text to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of

fprintf (serial)

open. An error is returned if you attempt to perform a write operation while ob j
is not connected to the device.

The ValuesSent property value is increased by the number of values written
each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fprintf, then you need to
supply the pathname shown below.

help serial/fprintf

Synchronous Versus Asynchronous Write Operations

By default, text is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

¢ The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

¢ The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Controlling Access to the MATLAB Command Line.

Rules for Completing a Write Operation with fprintf

A synchronous or asynchronous write operation using fprintf completes
when:

¢ The specified data is written.

¢ The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation with the
stopasync function.

536

fprintf (serial)

Rules for Writing the Terminator

All occurrences of \n in cmd are replaced with the Terminator property value.
Therefore, when using the default format %s\n, all commands written to the
device will end with this property value. The terminator required by your
device will be described in its documentation.

Example Create the serial port object s, connect s to a Tektronix TDS 210 oscilloscope,
and write the RS232? command with the fprintf function. RS232? instructs
the scope to return serial port communications settings.

s = serial('COM1');

fopen(s)
fprintf (s, 'RS2327")

Because the default format for fprintf is %s\n, the terminator specified by the
Terminator property was automatically written. However, in some cases you

might want to suppress writing the terminator. To do so, you must explicitly

specify a format for the data that does not include the terminator, or configure
the terminator to empty.

fprintf(s, '%s', 'RS2327?7")

See Also Functions
fopen, fwrite, stopasync

Properties

BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status,
TransferStatus, ValuesSent

537

fread (serial)

Purpose Read binary data from the device

Syntax A = fread(obj,size)
A fread(obj,size, 'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

Arguments

obj A serial port object.

size The number of values to read.

'‘precision The number of bits read for each value, and the

' interpretation of the bits as character, integer, or

floating-point values.

A Binary data returned from the device.

count The number of values read.

msg A message indicating if the read operation was unsuccessful.
Description A = fread(obj,size) reads binary data from the device connected to obj, and

returns the data to A. The maximum number of values to read is specified by
size. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m—by-n matrix in column
order.

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. You specify the size, in bytes, of the input
buffer with the InputBufferSize property. A value is defined as a byte
multiplied by the precision (see below).

A = fread(obj,size, 'precision') reads binary data with precision
specified by precision.

538

fread (serial)

Remarks

539

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. By
default, numeric values are returned in double-precision arrays. The supported
values for precision are listed below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the read
operation was unsuccessful.

Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read,
each time fread is issued.

If you use the help command to display help for fread, then you need to supply
the pathname shown below.

help serial/fread
Rules for Completing a Binary Read Operation
A read operation with fread blocks access to the MATLAB command line until:

¢ The specified number of values are read.

¢ The time specified by the Timeout property passes.

Note The Terminator property is not used for binary read operations.

fread (serial)

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character
schar 8-bit signed character
char 8-bit signed or unsigned character
Integer int8 8-bit integer
int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uinti16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer
Floating-point single 32-bit floating point
float32 32-bit floating point
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

540

fread (serial)

See Also Functions
fgetl, fgets, fopen, fscanf

Properties

BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
ValuesReceived

541

freeserial

Purpose

Syntax

Arguments

Description

Remarks

See Also

Release hold on a serial port

freeserial
freeserial('port')
freeserial(obj)

‘port' A serial port name, or a cell array of serial port names

obj A serial port object, or an array of serial port objects.

freeserial releases the hold MATLAB has on all serial ports.

freeserial('port') releases the hold MATLAB has on the serial port
specified by port. port can be a cell array of strings.

freeserial(obj) releases the hold MATLAB has on the serial port associated
with the object specified by obj. obj can be an array of serial port objects.

An error is returned if a serial port object is connected to the port that is being
freed. Use the fclose function to disconnect the serial port object from the
serial port.

freeserial is necessary only on Windows platforms. You should use
freeserial if you need to connect to the serial port from another application
after a serial port object has been connected to that port, and you do not want
to exit MATLAB.

Functions
fclose

542

fscanf (serial)

Purpose

Syntax

Arguments

Description

543

Read data from the device, and format as text

A = fscanf(obj)
A = fscanf(obj, 'format"')
A = fscanf(obj, 'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)
obj A serial port object.
‘format' C language conversion specification.
size The number of values to read.
A Data read from the device and formatted as text.
count The number of values read.
msg A message indicating if the read operation was
unsuccessful.

A = fscanf(obj) reads data from the device connected to obj, and returns it
to A. The data is converted to text using the %c format.

A = fscanf(obj,'format') reads data and converts it according to format.
format is a C language conversion specification. Conversion specifications
involve the % character and the conversion characters d, i, 0, u, x, X, f, e, E, g,
G, ¢, and s. Refer to the sscanf file I/O format specifications or a C manual for
more information.

A = fscanf(obj,'format',size) reads the number of values specified by
size. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m—by-n matrix in column
order.

fscanf (serial)

Remarks

Example

size cannot be inf, and an error is returned if the specified number of values
cannot be stored in the input buffer. If size is not of the form [m,n], and a
character conversion is specified, then A is returned as a row vector. You specify
the size, in bytes, of the input buffer with the InputBufferSize property. An
ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if the read
operation did not complete successfully.

Before you can read data from the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to perform a read operation while obj
is not connected to the device.

If msg is not included as an output argument and the read operation was not
successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of values read
— including the terminator — each time fscanf is issued.

If you use the help command to display help for fscanf, then you need to
supply the pathname shown below.

help serial/fscanf

Rules for Completing a Read Operation with fscanf
A read operation with fscanf blocks access to the MATLAB command line

until:

® The terminator specified by the Terminator property is read.
¢ The time specified by the Timeout property passes.

¢ The number of values specified by size is read.

¢ The input buffer is filled (unless size is specified)

Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying sine wave.

s = serial('COM1");
fopen(s)

544

fscanf (serial)

See Also

545

Use the fprintf function to configure the scope to measure the peak-to-peak
voltage of the sine wave, return the measurement type, and return the
peak-to-peak voltage.

fprintf (s, 'MEASUREMENT:IMMED:TYPE PK2PK")
fprintf (s, 'MEASUREMENT:IMMED:TYPE?")
fprintf (s, '"MEASUREMENT: IMMED:VALUE? ")

Because the default value for the ReadAsyncMode property is continuous, data
associated with the two query commands is automatically returned to the input
buffer.

s.BytesAvailable
ans =
21

Use fscanf to read the measurement type. The operation will complete when
the first terminator is read.

meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number, and
exclude the terminator.
pk2pk = fscanf(s, '%e',14)
pk2pk =
2.0200

Disconnect s from the scope, and remove s from memory and the workspace.

fclose(s)
delete(s)
clear s

Functions
fgetl, fgets, fopen, fread, strread

Properties

BytesAvailable, BytesAvailableFcn, InputBufferSize, Status, Terminator,
Timeout

fwrite (serial)

Purpose

Syntax

Arguments

Description

Remarks

Write binary data to the device

fwrite(obj,A)
fwrite(obj,A, 'precision')
fwrite(obj,A, mode')
fwrite(obj,A, 'precision', mode')
obj A serial port object.
A The binary data written to the device.

'precision The number of bits written for each value, and the
' interpretation of the bits as character, integer, or
floating-point values.

‘mode’ Specifies whether data is written synchronously or
asynchronously.

fwrite(obj,A) writes the binary data A to the device connected to obj.

fwrite(obj,A, 'precision') writes binary data with precision specified by
precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character values. If
precision is not specified, uchar (an 8-bit unsigned character) is used. The
supported values for precision are listed below in Remarks.

fwrite(obj,A, '‘mode') writes binary data with command line access specified
by mode. If mode is sync, A is written synchronously and the command line is
blocked. If mode is async, A is written asynchronously and the command line is
not blocked. If mode is not specified, the write operation is synchronous.

fwrite(obj,A, 'precision', 'mode') writes binary data with precision
specified by precision and command line access specified by mode.

Before you can write data to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of

546

fwrite (serial)

547

open. An error is returned if you attempt to perform a write operation while ob j
is not connected to the device.

The ValuesSent property value is increased by the number of values written
each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to be written. You
can specify the size of the output buffer with the OutputBufferSize property.

If you use the help command to display help for fwrite, then you need to
supply the pathname shown below.

help serial/fwrite

Synchronous Versus Asynchronous Write Operations

By default, data is written to the device synchronously and the command line
is blocked until the operation completes. You can perform an asynchronous
write by configuring the mode input argument to be async. For asynchronous
writes:

¢ The BytesToOutput property value is continuously updated to reflect the
number of bytes in the output buffer.

¢ The M-file callback function specified for the OutputEmptyFcn property is
executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in progress
with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more detail
in Writing Data.
Rules for Completing a Write Operation with fwrite

A binary write operation using fwrite completes when:

¢ The specified data is written.

¢ The time specified by the Timeout property passes.

Note The Terminator property is not used with binary write operations.

fwrite (serial)

Supported Precisions
The supported values for precision are listed below.

Data Type Precision Interpretation
Character uchar 8-bit unsigned character
schar 8-bit signed character
char 8-bit signed or unsigned character
Integer int8 8-bit integer
int16 16-bit integer
int32 32-bit integer
uint8 8-bit unsigned integer
uinti16 16-bit unsigned integer
uint32 32-bit unsigned integer
short 16-bit integer
int 32-bit integer
long 32- or 64-bit integer
ushort 16-bit unsigned integer
uint 32-bit unsigned integer
ulong 32- or 64-bit unsigned integer
Floating-point single 32-bit floating point
float32 32-bit floating point
float 32-bit floating point
double 64-bit floating point
float64 64-bit floating point

548

fwrite (serial)

See Also Functions
fopen, fprintf

Properties

BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status, Timeout,
TransferStatus, ValuesSent

549

get (serial)

Purpose

Syntax

Arguments

Description

Remarks

Return serial port object properties

get(obj)
out = get(obj)
out = get(obj, 'PropertyName')

obj A serial port object or an array of serial port objects.

'"PropertyName A property name or a cell array of property names.

out A single property value, a structure of property values,
or a cell array of property values.

get(obj) returns all property names and their current values to the command
line for obj.

out = get(obj) returns the structure out where each field name is the name
of a property of obj, and each field contains the value of that property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a 1-by-n or
n-by-1 cell array of strings containing property names, then get returns a
1-by-n cell array of values to out. If obj is an array of serial port objects, then
out will be a m-by-n cell array of property values where m is equal to the length
of obj and n is equal to the number of properties specified.

Refer to “Displaying Property Names and Property Values” for a list of serial
port object properties that you can return with get.

When you specify a property name, you can do so without regard to case, and
you can make use of property name completion. For example, if s is a serial port
object, then these commands are all valid.

out = get(s, 'BaudRate');
out = get(s, 'baudrate');
out = get(s,'BAUD');

550

get (serial)

If you use the help command to display help for get, then you need to supply
the pathname shown below.

help serial/get

Example This example illustrates some of the ways you can use get to return property
values for the serial port object s.
s = serial('COM1');
outl = get(s);
out2 = get(s,{'BaudRate','DataBits'});
get(s, 'Parity')
ans =
none

See Also Functions
set

551

instrcallback

Purpose
Syntax

Arguments

Description

Remarks

Example

Display event information when an event occurs

instrcallback(obj,event)

obj An serial port object.

event The event that caused the callback to execute.

instrcallback(obj,event) displays a message that contains the event type,
the time the event occurred, and the name of the serial port object that caused
the event to occur.

For error events, the error message is also displayed. For pin status events, the
pin that changed value and its value are also displayed.

You should use instrcallback as a template from which you create callback
functions that suit your specific application needs.

The following example creates the serial port objects s, and configures s to
execute instrcallback when an output-empty event occurs. The event occurs
after the *IDN? command is written to the instrument.

s = serial('COM1');

set (s, 'OutputEmptyFcn',@instrcallback)
fopen(s)

fprintf(s, '*IDN?', 'async')

The resulting display from instrcallback is shown below.

OutputEmpty event occurred at 08:37:49 for the object:
Serial-COM1.

Read the identification information from the input buffer and end the serial
port session.

idn = fscanf(s);
fclose(s)
delete(s)

clear s

552

instrfind

Purpose

Syntax

Arguments

Description

Remarks

553

Return serial port objects from memory to the MATLAB workspace

out = instrfind

out = instrfind('PropertyName' ,PropertyValue,...)

out = instrfind(S)

out = instrfind(obj, 'PropertyName',PropertyValue,...)

'"PropertyNam A property name for obj.
e 1

Propertyvalu A property value supported by PropertyName.
e

S A structure of property names and property values.
obj A serial port object, or an array of serial port objects.
out An array of serial port objects.

out = instrfind returns all valid serial port objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an array of
serial port objects whose property names and property values match those
specified.

out = instrfind(S) returns an array of serial port objects whose property
names and property values match those defined in the structure S. The field
names of S are the property names, while the field values are the associated
property values.

out = instrfind(obj, 'PropertyName',PropertyValue,...) restricts the
search for matching property name/property value pairs to the serial port
objects listed in obj.

Refer to “Displaying Property Names and Property Values” for a list of serial
port object properties that you can use with instrfind.

instrfind

Example

See Also

You must specify property values using the same format as the get function
returns. For example, if get returns the Name property value as MyObject,
instrfind will not find an object with a Name property value of myobject.
However, this is not the case for properties that have a finite set of string
values. For example, instrfind will find an object with a Parity property
value of Even or even.

You can use property name/property value string pairs, structures, and cell
array pairs in the same call to instrfind.

Suppose you create the following two serial port objects.
s1 = serial('COM1');
s2 = serial('COM2');
set(s2, 'BaudRate',4800)
fopen([s1 s2])

You can use instrfind to return serial port objects based on property values.

outl = instrfind('Port', 'COM1"');
out2 = instrfind({'Port', 'BaudRate'},{'COM2',4800});

You can also use instrfind to return cleared serial port objects to the
MATLAB workspace.

clear s1 s2
newobjs = instrfind

Instrument Object Array

Index: Type: Status: Name :
1 serial open Serial-COM1
2 serial open Serial-COM2

To close both s1 and s2

fclose(newobjs)

Functions
clear, get

554

isvalid

Purpose
Syntax

Arguments

Description

Remarks

Example

See Also

555

Determine if serial port objects are valid

out = isvalid(obj)

obj A serial port object or array of serial port objects.

out A logical array.

out = isvalid(obj) returns the logical array out, which contains a 0 where
the elements of obj are invalid serial port objects and a 1 where the elements
of obj are valid serial port objects.

obj becomes invalid after it is removed from memory with the delete function.
Because you cannot connect an invalid serial port object to the device, you
should remove it from the workspace with the clear command.

Suppose you create the following two serial port objects.

serial('COM1');
serial('COM1');

s
s2

s2 becomes invalid after it is deleted.

delete(s2)

isvalid verifies that s1 is valid and s2 is invalid.

sarray = [s1 s2];
isvalid(sarray)
ans =
1 0
Functions

clear, delete

length (serial)

Purpose
Syntax

Arguments

Description

See Also

Length of serial port object array

length(obj)

obj A serial port object or an array of serial port objects.

length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Functions
size

556

load (serial)

Purpose

Syntax

Arguments

Description

Remarks

Example

557

Load serial port objects and variables into the MATLAB workspace

load filename
load filename obj1 obj2...

out = load('filename','obj1','obj2',...)
filename The MAT-file name.
obj1 obj2... Serial port objects or arrays of serial port objects.
out A structure containing the specified serial port objects.

load filename returns all variables from the MAT-file specified by filename
into the MATLAB workspace.

load filename obj1 obj2... returns the serial port objects specified by obj1
obj2 ... from the MAT-file filename into the MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified serial port
objects from the MAT-file filename as a structure to out instead of directly
loading them into the workspace. The field names in out match the names of
the loaded serial port objects.

Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To determine
if a property is read-only, examine its reference pages.

If you use the help command to display help for load, then you need to supply
the pathname shown below.

help serial/private/load

Suppose you create the serial port objects s1 and s2, configure a few properties
for s1, and connect both objects to their instruments.

s1 serial('COM1');

s2 serial('COM2');

set(s1, 'Parity', 'mark', 'DataBits',7)
fopen(s1)

load (serial)

See Also

fopen(s2)

Save s1 and s2 to the file MyObject.mat, and then load the objects into the
workspace using new variables.

save MyObject s1 s2
newsi = load MyObject si
news2 load('MyObject','s2")

Values for read-only properties are restored to their default values upon
loading, while all other properties values are honored.

get(news1,{'Parity', 'DataBits', 'Status'})

ans =
"mark’ [7] ‘closed’
get(news2,{'Parity', 'DataBits', 'Status'})
ans =
"none’ [8] ‘closed’
Functions
save
Properties
Status

558

readasync

Purpose Read data asynchronously from the device

Syntax readasync (obj)
readasync(obj,size)

Arguments

obj A serial port object.

size The number of bytes to read from the device.

Description readasync(obj) initiates an asynchronous read operation.

readasync(obj,size) asynchronously reads, at most, the number of bytes
given by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property value, an
error is returned.

Remarks Before you can read data, you must connect obj to the device with the fopen
function. A connected serial port object has a Status property value of open. An
error is returned if you attempt to perform a read operation while obj is not
connected to the device.

You should use readasync only when you configure the ReadAsyncMode
property to manual. readasync is ignored if used when ReadAsyncMode is
continuous.

The TransferStatus property indicates if an asynchronous read or write
operation is in progress. You can write data while an asynchronous read is in
progress because serial ports have separate read and write pins. You can stop
asynchronous read and write operations with the stopasync function.

You can monitor the amount of data stored in the input buffer with the
BytesAvailable property. Additionally, you can use the BytesAvailableFcn
property to execute an M-file callback function when the terminator or the
specified amount of data is read.

Rules for Completing an Asynchronous Read Operation

An asynchronous read operation with readasync completes when one of these
conditions is met:

559

readasync

Example

See Also

¢ The terminator specified by the Terminator property is read.
¢ The time specified by the Timeout property passes.

¢ The specified number of bytes is read.

® The input buffer is filled (if size is not specified).

Because readasync checks for the terminator, this function can be slow. To
increase speed, you might want to configure ReadAsyncMode to continuous and
continuously return data to the input buffer as soon as it is available from the

device.

This example creates the serial port object s, connects s to a Tektronix TDS 210
oscilloscope, configures s to read data asynchronously only if readasync is
issued, and configures the instrument to return the peak-to-peak value of the
signal on channel 1.

s = serial('COM1');

fopen(s)

s.ReadAsyncMode = 'manual';

fprintf (s, 'Measurement:Meas1:Source CH1')
fprintf(s, 'Measurement:Measi:Type Pk2Pk')
fprintf (s, 'Measurement:Measi:Value?')

Begin reading data asynchronously from the instrument using readasync.
When the read operation is complete, return the data to the MATLAB
workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =

15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

Functions
fopen, stopasync

560

readasync

Properties

BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

561

record

Purpose

Syntax

Arguments

Description

Remarks

Example

Record data and event information to a file

record(obj)
record(obj, 'switch')

obj A serial port object.

'switch' Switch recording capabilities on or off.

record(obj) toggles the recording state for obj.

record(obj, 'switch') initiates or terminates recording for obj. switch can
be on or of f. If switch is on, recording is initiated. If switch is off, recording
is terminated.

Before you can record information to disk, obj must be connected to the device
with the fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to record information while
obj is not connected to the device. Each serial port object must record
information to a separate file. Recording is automatically terminated when obj
is disconnected from the device with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
“Debugging: Recording Information to Disk.”

This example creates the serial port object s, connects s to the device,
configures s to record information to a file, writes and reads text data, and then
disconnects s from the device.

s = serial('COM1');

fopen(s)
s.RecordDetail = 'verbose';
s.RecordName = 'MySerialFile.txt';

record(s, 'on'")

562

record

fprintf(s, '*IDN?"')
out = fscanf(s);
record(s, 'off')
fclose(s)

See Also Functions
fclose, fopen

Properties
RecordDetail, RecordMode, RecordName, RecordStatus, Status

563

save (serial)

Purpose

Syntax

Arguments

Description

Remarks

Save serial port objects and variables to a MAT-file

save filename
save filename obj1 obj2...

filename The MAT-file name.

obj1 obj2... Serial port objects or arrays of serial port objects.

save filename saves all MATLAB variables to the MAT-file filename. If an
extension is not specified for filename, then the .mat extension is used.

save filename obj1 obj2... saves the serial port objects obj1 obj2 ... to the
MAT-file filename.

You can use save in the functional form as well as the command form shown
above. When using the functional form, you must specify the filename and
serial port objects as strings. For example. to save the serial port object s to the
file MySerial.mat

s = serial('COM1');
save('MySerial','s")

Any data that is associated with the serial port object is not automatically
stored in the MAT-file. For example, suppose there is data in the input buffer
for obj. To save that data to a MAT-file, you must bring it into the MATLAB
workspace using one of the synchronous read functions, and then save to the
MAT-file using a separate variable name. You can also save data to a text file
with the record function.

You return objects and variables to the MATLAB workspace with the load
command. Values for read-only properties are restored to their default values
upon loading. For example, the Status property is restored to closed. To
determine if a property is read-only, examine its reference pages.

If you use the help command to display help for save, then you need to supply
the pathname shown below.

help serial/private/save

564

save (serial)

Example This example illustrates how to use the command and functional form of save.

s = serial('COM1");

set(s, 'BaudRate',2400, 'StopBits',1)
save MySeriall s

set(s, 'BytesAvailableFcn',@mycallback)
save('MySerial2','s"')

See Also Functions
load, record

Properties
Status

565

serial

Purpose

Syntax

Arguments

Description

Remarks

Create a serial port object

obj = serial('port')
obj = serial('port', 'PropertyName',PropertyValue,...)
'port' The serial port name.

'PropertyName A serial port property name.

PropertyValue A property value supported by PropertyName.

obj The serial port object.

obj = serial('port') creates a serial port object associated with the serial
port specified by port. If port does not exist, or if it is in use, you will not be
able to connect the serial port object to the device.

obj = serial('port','PropertyName',PropertyValue,...) creates a serial
port object with the specified property names and property values. If an invalid
property name or property value is specified, an error is returned and the serial
port object is not created.

When you create a serial port object, these property values are automatically
configured:
¢ The Type property is given by serial.

® The Name property is given by concatenating Serial with the port specified
in the serial function.

® The Port property is given by the port specified in the serial function.

You can specify the property names and property values using any format
supported by the set function. For example, you can use property name/
property value cell array pairs. Additionally, you can specify property names
without regard to case, and you can make use of property name completion. For
example, the following commands are all valid.

s = serial('COM1', 'BaudRate',4800);

566

serial

Example

See Also

567

s = serial('COM1', 'baudrate',4800);
S serial('COM1', 'BAUD',4800);

Refer to “Configuring Property Values” for a list of serial port object properties
that you can use with serial.

Before you can communicate with the device, it must be connected to obj with
the fopen function. A connected serial port object has a Status property value
of open. An error is returned if you attempt a read or write operation while the
object is not connected to the device. You can connect only one serial port object
to a given serial port.

This example creates the serial port object s1 associated with the serial port
COM1.

s1 = serial('COM1');
The Type, Name, and Port properties are automatically configured.

get(s1,{'Type', 'Name', 'Port'})
ans =
‘serial’ 'Serial-COM1' "COM1 "
To specify properties during object creation

s2 = serial('COM2', 'BaudRate',1200, 'DataBits',7);

Functions
fclose, fopen

Properties
Name, Port, Status, Type

serialbreak

Purpose

Syntax

Arguments

Description

Remarks

See Also

Send a break to the device connected to the serial port

serialbreak(obj)
serialbreak(obj,time)

obj A serial port object.

time The duration of the break, in milliseconds.
serialbreak(obj) sends a break of 10 milliseconds to the device connected to
obj.

serialbreak(obj,time) sends a break to the device with a duration, in
milliseconds, specified by time. Note that the duration of the break might be
inaccurate under some operating systems.

For some devices, the break signal provides a way to clear the hardware buffer.

Before you can send a break to the device, it must be connected to obj with the
fopen function. A connected serial port object has a Status property value of
open. An error is returned if you attempt to send a break while obj is not
connected to the device.

serialbreak is a synchronous function, and blocks the command line until
execution is complete.

If you issue serialbreak while data is being asynchronously written, an error
is returned. In this case, you must call the stopasync function or wait for the
write operation to complete.

Functions
fopen, stopasync

Properties
Status

568

set (serial)

Purpose

Syntax

Arguments

Description

569

Configure or display serial port object properties

set(obj)

props = set(obj)

set(obj, 'PropertyName')
props = set(obj, 'PropertyName')
set(obj, 'PropertyName' ,PropertyValue,...)

set(obj,PN,PV)
set(obj,S)

obj

'PropertyName

PropertyValue
PN

PV

S

props

set(obj) displays all configurable properties values for obj. If a property has

A serial port object or an array of serial port objects.

A property name for obj.

A property value supported by PropertyName.

A cell array of property names.

A cell array of property values.

A structure with property names and property values.

A structure array whose field names are the property
names for obj, or cell array of possible values.

a finite list of possible string values, then these values are also displayed.

props = set(obj) returns all configurable properties and their possible

values for obj to props. props is a structure whose field names are the property
names of obj, and whose values are cell arrays of possible property values. If
the property does not have a finite set of possible values, then the cell array is

empty.

set(obj, 'PropertyName') displays the valid values for PropertyName if it
possesses a finite list of string values.

set (serial)

Remarks

Examples

props = set(obj, 'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values or an
empty cell array if PropertyName does not have a finite list of possible values.

set(obj, 'PropertyName' ,PropertyValue,...) configures multiple property
values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of strings
PN to the corresponding values in the cell array PV. PN must be a vector. PV can
be m-by-n where m is equal to the number of serial port objects in obj and n is
equal to the length of PN.

set(obj,S) configures the named properties to the specified values for obj. S
is a structure whose field names are serial port object properties, and whose
field values are the values of the corresponding properties.

Refer to “Configuring Property Values” for a list of serial port object properties
that you can configure with set.

You can use any combination of property name/property value pairs,
structures, and cell arrays in one call to set. Additionally, you can specify a
property name without regard to case, and you can make use of property name
completion. For example, if s is a serial port object, then the following
commands are all valid.

set (s, 'BaudRate')
set (s, 'baudrate')
set(s, 'BAUD"')

If you use the help command to display help for set, then you need to supply
the pathname shown below.

help serial/set

This example illustrates some of the ways you can use set to configure or
return property values for the serial port object s.

s = serial('COM1');

set (s, 'BaudRate',9600, 'Parity', ‘even')
set(s,{'StopBits', 'RecordName'}, {2, 'sydney.txt'})
set(s, 'Parity')

[{none} | odd | even | mark | space]

570

set (serial)

See Also Functions
get

571

size (serial)

Purpose

Syntax

Arguments

Description

See Also

Size of serial port object array

d = size(obj)

[myn] = size(obj)
[m1,m2,...,mn] = size(obj)
m = size(obj,dim)

obj A serial port object or an array of serial port objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the dimension
specified by dim.

n The number of columns in obj.

mi,m2,..., The length of the first N dimensions of obj.

mn

d = size(obj) returns the two-element row vector d containing the number of
rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in separate
output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions
of obj.

m = size(obj,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj,1) returns the number of rows.

Functions
length

572

stopasync

Purpose
Syntax

Arguments

Description

Remarks

See Also

573

Stop asynchronous read and write operations

stopasync(obj)

obj A serial port object or an array of serial port objects.

stopasync(obj) stops any asynchronous read or write operation that is in
progress for obj.

You can write data asynchronously using the fprintf or fwrite functions. You
can read data asynchronously using the readasync function, or by configuring
the ReadAsyncMode property to continuous. In-progress asynchronous
operations are indicated by the TransferStatus property.

If obj is an array of serial port objects and one of the objects cannot be stopped,
the remaining objects in the array are stopped and a warning is returned. After
an object stops:

¢ [ts TransferStatus property is configured to idle.

¢ Its ReadAsyncMode property is configured to manual.
¢ The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If you
execute the readasync function, or configure the ReadAsyncMode property to
continuous, then the new data is appended to the existing data in the input
buffer.

Functions
fprintf, fwrite, readasync

Properties
ReadAsyncMode, TransferStatus

	C Engine Functions
	engClose
	engEvalString
	engGetArray (Obsolete)
	engGetFull (Obsolete)
	engGetMatrix (Obsolete)
	engGetVariable
	engGetVisible
	engOpen
	engOpenSingleUse
	engOutputBuffer
	engPutArray (Obsolete)
	engPutFull (Obsolete)
	engPutMatrix (Obsolete)
	engPutVariable
	engSetEvalCallback (Obsolete)
	engSetEvalTimeout (Obsolete)
	engSetVisible
	engWinInit (Obsolete)

	C MAT-File Functions
	matClose
	matDeleteArray (Obsolete)
	matDeleteMatrix (Obsolete)
	matDeleteVariable
	matGetArray (Obsolete)
	matGetArrayHeader (Obsolete)
	matGetDir
	matGetFp
	matGetFull (Obsolete)
	matGetMatrix (Obsolete)
	matGetNextArray (Obsolete)
	matGetNextArrayHeader (Obsolete)
	matGetNextMatrix (Obsolete)
	matGetNextVariable
	matGetNextVariableInfo
	matGetString (Obsolete)
	matGetVariable
	matGetVariableInfo
	matOpen
	matPutArray (Obsolete)
	matPutArrayAsGlobal (Obsolete)
	matPutFull (Obsolete)
	matPutMatrix (Obsolete)
	matPutString (Obsolete)
	matPutVariable
	matPutVariableAsGlobal

	C MEX-Functions
	mexAddFlops (Obsolete)
	mexAtExit
	mexCallMATLAB
	mexErrMsgIdAndTxt
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexFunctionName
	mexGet
	mexGetArray (Obsolete)
	mexGetArrayPtr (Obsolete)
	mexGetEps (Obsolete)
	mexGetFull (Obsolete)
	mexGetGlobal (Obsolete)
	mexGetInf (Obsolete)
	mexGetMatrix (Obsolete)
	mexGetMatrixPtr (Obsolete)
	mexGetNaN (Obsolete)
	mexGetVariable
	mexGetVariablePtr
	mexIsFinite (Obsolete)
	mexIsGlobal
	mexIsInf (Obsolete)
	mexIsLocked
	mexIsNaN (Obsolete)
	mexLock
	mexMakeArrayPersistent
	mexMakeMemoryPersistent
	mexPrintf
	mexPutArray (Obsolete)
	mexPutFull (Obsolete)
	mexPutMatrix (Obsolete)
	mexPutVariable
	mexSet
	mexSetTrapFlag
	mexUnlock
	mexWarnMsgIdAndTxt
	mexWarnMsgTxt

	C MX-Functions
	mxAddField
	mxArrayToString
	mxAssert
	mxAssertS
	mxCalcSingleSubscript
	mxCalloc
	mxChar
	mxClassID
	mxClearLogical (Obsolete)
	mxComplexity
	mxCreateCellArray
	mxCreateCellMatrix
	mxCreateCharArray
	mxCreateCharMatrixFromStrings
	mxCreateDoubleMatrix
	mxCreateDoubleScalar
	mxCreateFull (Obsolete)
	mxCreateLogicalArray
	mxCreateLogicalMatrix
	mxCreateLogicalScalar
	mxCreateNumericArray
	mxCreateNumericMatrix
	mxCreateScalarDouble
	mxCreateSparse
	mxCreateSparseLogicalMatrix
	mxCreateString
	mxCreateStructArray
	mxCreateStructMatrix
	mxDestroyArray
	mxDuplicateArray
	mxFree
	mxFreeMatrix (Obsolete)
	mxGetCell
	mxGetChars
	mxGetClassID
	mxGetClassName
	mxGetData
	mxGetDimensions
	mxGetElementSize
	mxGetEps
	mxGetField
	mxGetFieldByNumber
	mxGetFieldNameByNumber
	mxGetFieldNumber
	mxGetImagData
	mxGetInf
	mxGetIr
	mxGetJc
	mxGetLogicals
	mxGetM
	mxGetN
	mxGetName (Obsolete)
	mxGetNaN
	mxGetNumberOfDimensions
	mxGetNumberOfElements
	mxGetNumberOfFields
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsCell
	mxIsChar
	mxIsClass
	mxIsComplex
	mxIsDouble
	mxIsEmpty
	mxIsFinite
	mxIsFromGlobalWS
	mxIsFull (Obsolete)
	mxIsInf
	mxIsInt8
	mxIsInt16
	mxIsInt32
	mxIsLogical
	mxIsLogicalScalar
	mxIsLogicalScalarTrue
	mxIsNaN
	mxIsNumeric
	mxIsSingle
	mxIsSparse
	mxIsString (Obsolete)
	mxIsStruct
	mxIsUint8
	mxIsUint16
	mxIsUint32
	mxMalloc
	mxRealloc
	mxRemoveField
	mxSetAllocFcns
	mxSetCell
	mxSetClassName
	mxSetData
	mxSetDimensions
	mxSetField
	mxSetFieldByNumber
	mxSetImagData
	mxSetIr
	mxSetJc
	mxSetLogical (Obsolete)
	mxSetM
	mxSetN
	mxSetName (Obsolete)
	mxSetNzmax
	mxSetPi
	mxSetPr

	Fortran Engine Functions
	engClose
	engEvalString
	engGetArray (Obsolete)
	engGetFull (Obsolete)
	engGetMatrix (Obsolete)
	engGetVariable
	engOpen
	engOutputBuffer
	engPutArray (Obsolete)
	engPutFull (Obsolete)
	engPutMatrix (Obsolete)
	engPutVariable

	Fortran MAT-File Functions
	matClose
	matDeleteArray (Obsolete)
	matDeleteMatrix (Obsolete)
	matDeleteVariable
	matGetArray (Obsolete)
	matGetArrayHeader (Obsolete)
	matGetDir
	matGetFull (Obsolete)
	matGetMatrix (Obsolete)
	matGetNextArray (Obsolete)
	matGetNextArrayHeader (Obsolete)
	matGetNextMatrix (Obsolete)
	matGetNextVariable
	matGetNextVariableInfo
	matGetString (Obsolete)
	matGetVariable
	matGetVariableInfo
	matOpen
	matPutArray (Obsolete)
	matPutArrayAsGlobal (Obsolete)
	matPutFull (Obsolete)
	matPutMatrix (Obsolete)
	matPutString (Obsolete)
	matPutVariable
	matPutVariableAsGlobal

	Fortran MEX-Functions
	mexAtExit
	mexCallMATLAB
	mexErrMsgIdAndTxt
	mexErrMsgTxt
	mexEvalString
	mexFunction
	mexFunctionName
	mexGetArray (Obsolete)
	mexGetArrayPtr (Obsolete)
	mexGetEps (Obsolete)
	mexGetFull (Obsolete)
	mexGetGlobal (Obsolete)
	mexGetInf (Obsolete)
	mexGetMatrix (Obsolete)
	mexGetMatrixPtr (Obsolete)
	mexGetNaN (Obsolete)
	mexGetVariable
	mexGetVariablePtr
	mexIsFinite (Obsolete)
	mexIsGlobal
	mexIsInf (Obsolete)
	mexIsLocked
	mexIsNaN (Obsolete)
	mexLock
	mexMakeArrayPersistent
	mexMakeMemoryPersistent
	mexPrintf
	mexPutArray (Obsolete)
	mexPutFull (Obsolete)
	mexPutMatrix (Obsolete)
	mexPutVariable
	mexSetTrapFlag
	mexUnlock
	mexWarnMsgIdAndTxt
	mexWarnMsgTxt

	Fortran MX-Functions
	mxAddField
	mxCalcSingleSubscript
	mxCalloc
	mxClassIDFromClassName
	mxClearLogical (Obsolete)
	mxCopyCharacterToPtr
	mxCopyComplex8ToPtr
	mxCopyComplex16ToPtr
	mxCopyInteger1ToPtr
	mxCopyInteger2ToPtr
	mxCopyInteger4ToPtr
	mxCopyPtrToCharacter
	mxCopyPtrToComplex8
	mxCopyPtrToComplex16
	mxCopyPtrToInteger1
	mxCopyPtrToInteger2
	mxCopyPtrToInteger4
	mxCopyPtrToPtrArray
	mxCopyPtrToReal4
	mxCopyPtrToReal8
	mxCopyReal4ToPtr
	mxCopyReal8ToPtr
	mxCreateCellArray
	mxCreateCellMatrix
	mxCreateCharArray
	mxCreateCharMatrixFromStrings
	mxCreateDoubleMatrix
	mxCreateFull (Obsolete)
	mxCreateNumericArray
	mxCreateNumericMatrix
	mxCreateScalarDouble
	mxCreateSparse
	mxCreateString
	mxCreateStructArray
	mxCreateStructMatrix
	mxDestroyArray
	mxDuplicateArray
	mxFree
	mxFreeMatrix (Obsolete)
	mxGetCell
	mxGetClassID
	mxGetClassName
	mxGetData
	mxGetDimensions
	mxGetElementSize
	mxGetEps
	mxGetField
	mxGetFieldByNumber
	mxGetFieldNameByNumber
	mxGetFieldNumber
	mxGetImagData
	mxGetInf
	mxGetIr
	mxGetJc
	mxGetM
	mxGetN
	mxGetName (Obsolete)
	mxGetNaN
	mxGetNumberOfDimensions
	mxGetNumberOfElements
	mxGetNumberOfFields
	mxGetNzmax
	mxGetPi
	mxGetPr
	mxGetScalar
	mxGetString
	mxIsCell
	mxIsChar
	mxIsClass
	mxIsComplex
	mxIsDouble
	mxIsEmpty
	mxIsFinite
	mxIsFromGlobalWS
	mxIsFull (Obsolete)
	mxIsInf
	mxIsInt8
	mxIsInt16
	mxIsInt32
	mxIsLogical
	mxIsNaN
	mxIsNumeric
	mxIsSingle
	mxIsSparse
	mxIsString (Obsolete)
	mxIsStruct
	mxIsUint8
	mxIsUint16
	mxIsUint32
	mxMalloc
	mxRealloc
	mxRemoveField
	mxSetCell
	mxSetData
	mxSetDimensions
	mxSetField
	mxSetFieldByNumber
	mxSetImagData
	mxSetIr
	mxSetJc
	mxSetLogical (Obsolete)
	mxSetM
	mxSetN
	mxSetName (Obsolete)
	mxSetNzmax
	mxSetPi
	mxSetPr

	Java Interface Functions
	class
	import
	isa
	isjava
	javaArray
	javachk
	javaMethod
	javaObject
	methods
	methodsview
	usejava

	COM Functions
	actxcontrol
	actxserver
	addproperty (COM)
	delete (COM)
	deleteproperty (COM)
	eventlisteners (COM)
	events (COM)
	fieldnames
	get (COM)
	inspect
	invoke (COM)
	isevent (COM)
	ismethod (COM)
	isprop (COM)
	load (COM)
	methods
	methodsview
	move (COM)
	propedit (COM)
	registerevent (COM)
	release (COM)
	save (COM)
	send (COM)
	set (COM)
	unregisterallevents (COM)
	unregisterevent (COM)

	DDE Functions
	ddeadv
	ddeexec
	ddeinit
	ddepoke
	ddereq
	ddeterm
	ddeunadv

	Serial Port I/O Functions
	clear (serial)
	delete (serial)
	disp (serial)
	fclose (serial)
	fgetl (serial)
	fgets (serial)
	fopen (serial)
	fprintf (serial)
	fread (serial)
	freeserial
	fscanf (serial)
	fwrite (serial)
	get (serial)
	instrcallback
	instrfind
	isvalid
	length (serial)
	load (serial)
	readasync
	record
	save (serial)
	serial
	serialbreak
	set (serial)
	size (serial)
	stopasync

