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x

What Is the Fixed-Point Blockset?
The Fixed-Point Blockset includes a collection of blocks that extend the 
standard Simulink® block library. With these blocks, you can create 
discrete-time dynamic systems that use fixed-point arithmetic. As a result, 
Simulink can simulate effects commonly encountered in fixed-point systems 
for applications such as control systems and time-domain filtering. The 
Fixed-Point Blockset includes these major features:

• Integer, fractional, and generalized fixed-point data types

- Unsigned and two’s complement formats

- Word sizes in simulation from 1 to 128 bits

• Floating-point data types

- IEEE-style singles and doubles

- A nonstandard IEEE-style data type, where the fraction can range from 1 
to 52 bits and the exponent can range from 1 to 11 bits

• Methods for overflow handling, scaling, and rounding of fixed-point data 
types

• Tools that facilitate

- The collection of minimum and maximum simulation values 

- The optimization of scaling parameters

- The display of input and output signals

In addition, you can generate C code for execution on a fixed-point embedded 
processor with Real-Time Workshop®. The generated code uses only integer 
types and automatically includes all operations, such as shifts, needed to 
account for differences in fixed-point locations.

Exploring the Blockset
To open the main Fixed-Point Blockset library, type

fixpt

at the MATLAB®  command line, or right-click on the Fixed-Point Blockset 
listing in the Simulink Library Browser. The main library contains 12 
sublibraries. Refer to “Blocks—By Category” on page 9-2.



What Is the Fixed-Point Blockset?
You can double-click on any block icon in a library to see its parameter dialog 
box. Click the Help button to view the HTML-based help for that block.
xi
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How to Get Online Help
The Fixed-Point Blockset provides several ways to get online help:

• Block, System, and Filter Help

Click the Help button in any block, system, or filter dialog box to view its 
HTML-based documentation.

• Help Desk

Type helpdesk or doc at the MATLAB command line to load the main 
MATLAB help page into the Help browser.

• Release Information 

Type whatsnew fixpoint at the MATLAB command line to view information 
related to the version of the Fixed-Point Blockset that you’re using.



System Requirements
System Requirements
The Fixed-Point Blockset is a multiplatform product that you install on a host 
computer running any of the operating systems supported by The MathWorks. 
The Fixed-Point Blockset requires

• MATLAB 6.5 (Release 13) or later

• Simulink 5.0 (Release 13) or later

If you want to generate code from your fixed-point models, you must have 
Real-Time Workshop®. If you want to create an executable from the generated 
code, you must have the appropriate C compiler and linker.

For the most up-to-date information about system requirements, see the 
system requirements section available in the support area of the MathWorks 
Web site (http://www.mathworks.com/support).

Licensing Information
Beginning with Release 13, the Fixed-Point Blockset is shipped and installed 
with every copy of Simulink. You can edit a model containing fixed-point blocks 
without a fixed-point license. However, you must have a fixed-point license to

• Update a Simulink diagram (Ctrl+D) containing fixed-point data types

• Run a model containing fixed-point data types

• Generate code from a model containing fixed-point data types

• Log the minimum and maximum values produced by a simulation

• Handle overflows by saturating to the minimum or maximum possible value

• Automatically scale the output of a model using the autoscaling tool

The following products also depend on a fixed-point license to take full 
advantage of fixed-point features in R13:

• DSP Blockset

• Embedded Target for the TI TMS320C600™ DSP Platform

• Real-Time Workshop

• Real-Time Workshop Embedded Coder

• Stateflow

• Stateflow Coder
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• xPC Target

To work with a model containing blocks from the Fixed-Point Blockset without 
a fixed-point license:

1 Access the Fixed-Point Settings interface from the model by selecting Tools 
-> Fixed-Point settings.

2 Set the Logging mode parameter to Force off model-wide.

3 Set the Data type override parameter to True doubles or True singles 
model-wide.



Related Products
Related Products
The MathWorks provides several products that are especially relevant to the 
kinds of tasks you can perform with the Fixed-Point Blockset.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are 
reading the documentation from the CD

• The products area of the MathWorks Web site 
(http://www.mathworks.com/products)

Note  The toolboxes listed below all include functions that extend the 
capabilities of MATLAB. The blocksets all include blocks that extend the 
capabilities of Simulink.

Product Description

DSP Blockset Design and simulate DSP systems

Filter Design Toolbox Design and analyze advanced floating-point 
and fixed-point filters

Real-Time Workshop Generate C code from Simulink models

Simulink Design and simulate continuous- and 
discrete-time systems

Simulink Performance 
Tools

Manage and optimize the performance of large 
Simulink models

Simulink Report 
Generator

Automatically generate documentation for 
Simulink and Stateflow models

Stateflow® Design and simulate event-driven systems
xv



 Preface

xvi
Stateflow Coder Generate C code from Stateflow charts

xPC Target Perform real-time rapid prototyping using PC 
hardware

Product Description



Using This Guide
Using This Guide
This guide describes how to use the Fixed-Point Blockset to emulate fixed-point 
arithmetic when modeling discrete-time dynamic systems in Simulink. It 
contains tutorial information that describes how to use the blockset features, 
as well as a reference entry for each block and function in the blockset.

Expected Background
This guide assumes you are familiar with both MATLAB and Simulink. If you 
are new to MATLAB, you should read the Getting Started with MATLAB 
documentation. If you are new to Simulink, you should read the Using 
Simulink documentation.

You should also have a basic understanding of Boolean algebra and binary 
word representations.

If You Are a New User
Start with Chapter 1, “Introduction,” which describes how the Fixed-Point 
Blockset can help you bridge the gap between designing a dynamic system and 
implementing it on fixed-point digital hardware. Then read Chapter 2, 
“Getting Started with the Blockset,” which describes many Fixed-Point 
Blockset features and provides a simple example. After reading this chapter, 
you should be able to create simple fixed-point models. If you want detailed 
information about a specific block, refer to Chapter 9, “Block Reference.” If you 
want detailed information about a specific function, refer to Chapter 8, 
“Function Reference.”

If You Are an Experienced User
Start with Chapter 6, “Tutorial: Feedback Controller Simulation,” which 
describes how to simulate a fixed-point digital controller design. You should 
then read those parts of the guide that address the functionality that concerns 
you. If you want detailed information about a specific block, refer to Chapter 9, 
“Block Reference.” If you want detailed information about a specific function, 
refer to Chapter 8, “Function Reference.”
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How This Book Is Organized
The organization of this guide is described below.

Chapter Name Description

Introduction Describes how the Fixed-Point Blockset can help 
you bridge the gap between designing a dynamic 
system and implementing it on fixed-point digital 
hardware.

Getting Started with 
the Blockset

Shows you how to use many Fixed-Point Blockset 
features. After reading this chapter, you should be 
able to create simple fixed-point models.

Data Types and 
Scaling

Describes fixed-point data types, floating-point 
data types, and data type scaling.

Arithmetic 
Operations

Describes fixed-point arithmetic and its 
limitations.

Realization 
Structures

Describes how to create fixed-point realization 
structures.

Tutorial: Feedback 
Controller Simulation

Describes how to simulate a fixed-point digital 
controller design.

Tutorial: Producing 
Lookup Table Data

Describes how to create lookup table data using 
the lookup table approximation functions.

Function Reference Describes MATLAB M-file scripts and functions 
provided with the blockset.

Block Reference Describes each fixed-point block in detail.

Code Generation Describes the simulation features that are 
available for code generation. Recommendations 
for producing efficient code are provided.

Selected Bibliography Provides a selected list of references.
ii



Installation
Installation
To determine if the Fixed-Point Blockset is installed on your system, type 

ver

at the MATLAB command line. When you enter this command, MATLAB 
displays information about the version of MATLAB you are running, including 
a list of installed add-on products and their version numbers. Check the list to 
see if the Fixed-Point Blockset appears.

For information about installing the blockset, see your platform-specific 
MATLAB Installation guide.

If you experience installation difficulties and have Web access, look for the 
installation and license information at the MathWorks Web site 
(http://www.mathworks.com/support).
xix
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Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A, 
enter

A = 5

Function names, syntax, 
filenames, directory/folder 
names, and user input

Monospace font The cos function finds the 
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax 
descriptions in reference 
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions, 
operators, and constants

This vector represents the 
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options 
menu.

New terms and for 
emphasis

Italics An array is an ordered 
collection of information.

Omitted input arguments (...) ellipsis denotes all of the 
input/output arguments from 
preceding syntaxes. 

[c,ia,ib] = union(...)

String variables (from a 
finite list)

Monospace italics sysc = d2c(sysd,'method')
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Overview
This chapter provides a rationale for using fixed-point hardware in general, 
and the Fixed-Point Blockset in particular. The decision to use fixed-point 
hardware is simply a choice to represent numbers in a particular form. This 
representation often offers advantages in terms of the power consumption, 
size, memory usage, speed, and cost of the final product.

Physical Quantities and Measurement Scales
A measurement of a physical quantity can take many numerical forms. For 
example, the boiling point of water is 100 degrees Celsius, 212 degrees 
Fahrenheit, 373 degrees Kelvin, or 671.4 degrees Rankine. No matter what 
number is given, the physical quantity is exactly the same. The numbers are 
different because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange 
of information. However, there are situations where it makes sense to create 
and use unique nonstandard scales. These situations usually involve making 
the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum detail 
on a fixed size sheet of paper. A typical road atlas of the USA will show each 
state on a two-page display. The scale of inches to miles will be unique for most 
states. By using a large ratio of miles to inches, all of Texas can fit on two pages. 
Using the same scale for Rhode Island would make poor use of the page. Using 
a much smaller ratio of miles to inches would allow Rhode Island to be shown 
with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar to 
fitting a state map on a piece of paper. The map scale should allow all the 
boundaries of the state to fit on the page. Similarly, the binary scale for a 
measurement should allow the maximum and minimum possible values to 
“fit.” The map scale should also make the most of the paper in order to get 
maximum detail. Similarly, the binary scale for a measurement should make 
the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility 
advantages. However, there are times when it is worthwhile to break 
convention and use a unique nonstandard scale. There are also occasions when 
a mix of uniqueness and compatibility makes sense.
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Selecting a Measurement Scale
Suppose that you want to make measurements of the temperature of liquid 
water, and that you want to represent these measurements using 8-bit 
unsigned integers. Fortunately, the temperature range of liquid water is 
limited. No matter what scale you use, liquid water can only go from the 
freezing point to the boiling point. Therefore, this is range of temperatures the 
you must capture using just the 256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For 
example, the units for the integers could be Celsius. Hence, the integers 0 and 
100 represent water at the freezing point and at the boiling point, respectively. 
On the upside, this scale gives a trivial conversion from the integers to degrees 
Celsius. On the downside, the numbers 101 to 255 are unused. By using this 
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers 0 
and 255 represent water at the freezing point and at the boiling point, 
respectively. On the upside, this scale gives maximum precision since there are 
254 values between freezing and boiling instead of just 99. On the downside, 
the units are roughly 0.3921568 degree Celsius per bit so the conversion to 
Celsius requires division by 2.55, which is a relatively expensive operation on 
most fixed-point processors.

A third approach is to use a “semi-standard” scale. For example, the integers 0 
and 200 could represent water at the freezing point and at the boiling point, 
respectively. The units for this scale are 0.5 degrees Celsius per bit. On the 
downside, this scale doesn’t use the numbers from 201 to 255, which represents 
a waste of more than 21%. On the upside, this scale permits relatively easy 
conversion to a standard scale. The conversion to Celsius involves division by 
2, which is a very easy shift operation on most processors.

Measurement Scales: Beyond Multiplication
One of the key operations in converting from one scale to another is 
multiplication. The preceding case study gave three examples of conversions 
from a quantized integer value Q to a real-world Celsius value V that involved 
only multiplication:
1-3
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Graphically, the conversion is a line with slope S, which must pass through the 
origin. A line through the origin is called a purely linear conversion. Restricting 
yourself to a purely linear conversion can be very wasteful and it is often better 
to use the general equation of a line:

By adding a bias term B, you can obtain greater precision when quantizing to 
a limited number of bits.

The general equation of a line gives a very useful conversion to a quantized 
scale. However, like all quantization methods, the precision is limited and 
errors can be introduced by the conversion. The general equation of a line with 
quantization error is given by

If the quantized value Q is rounded to the nearest representable number, then

That is, the amount of quantization error is determined by both the number of 
bits and by the scale. This scenario represents the best case error. For other 
rounding schemes, the error can be twice as large.

Example: Selecting a Measurement Scale
On typical electronically controlled internal combustion engines, the flow of 
fuel is regulated to obtain the desired ratio of air to fuel in the cylinders just 
prior to combustion. Therefore, knowledge of the current air flow rate is 
required. Some manufacturers use sensors that directly measure air flow while 
other manufacturers calculate air flow from measurements of related signals. 
The relationship of these variables is derived from the ideal gas equation. The 

V

100°C
100 bits
---------------------- Q1⋅

100°C
255 bits
---------------------- Q2⋅

100°C
200 bits
---------------------- Q3⋅
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Overview
ideal gas equation involves division by air temperature. For proper results, an 
absolute temperature scale such as Kelvin or Rankine must be used in the 
equation. However, quantization directly to an absolute temperature scale 
would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a 
typical engine, the radiator is designed to keep the block below the boiling point 
of the cooling fluid. Let's assume a maximum of 225o F (380o K). As the air flows 
through the intake manifold, it can be heated up to this maximum 
temperature. For a cold start in an extreme climate, the temperature can be as 
low as -60o F (222o K). Therefore, using the absolute Kelvin scale, the range of 
interest is 222o K to 380o K.

The air temperature needs to be quantized for processing by the embedded 
control system. Assuming an unrealistic quantization to 3-bit unsigned 
numbers: 0,1,2,...,7, the purely linear conversion with maximum precision is

V 380°K
7.5 bit
----------------- Q⋅=
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The quantized conversion and range of interest are shown below.

Notice that there are 7.5 possible quantization values. This is because only half 
of the first bit corresponds to temperatures (real-world values) greater than 
zero.

The quantization error is
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Overview
The range of interest of the quantized conversion and the absolute value of the 
quantized error are shown below.

As an alternative to the purely linear conversion, consider the general linear 
conversion with maximum precision:
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The quantized conversion and range of interest are shown below.

The quantization error is

which is approximately 2.5 times smaller than the error associated with the 
purely linear conversion.
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Overview
The range of interest of the quantized conversion and the absolute value of the 
quantized error are shown below.

Clearly, the general linear scale gives much better precision than the purely 
linear scale over the range of interest.
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Why Use Fixed-Point Hardware?
Digital hardware is becoming the primary means by which control systems and 
signal processing filters are implemented. Digital hardware can be classified as 
either off-the-shelf hardware (for example, microcontrollers, microprocessors, 
general purpose processors, and digital signal processors) or custom hardware. 
Within these two types of hardware, there are many architecture designs. 
These designs range from systems with a single instruction, single data stream 
processing unit to systems with multiple instruction, multiple data stream 
processing units.

Within digital hardware, numbers are represented as either fixed-point or 
floating-point data types. For both these data types, word sizes are fixed at a 
set number of bits. However, the dynamic range of fixed-point values is much 
less than floating-point values with equivalent word sizes. Therefore, in order 
to avoid overflow or unreasonable quantization errors, fixed-point values must 
be scaled. Since floating-point processors can greatly simplify the real-time 
implementation of a control law or digital filter, and floating-point numbers 
can effectively approximate real-world numbers, then why use a 
microcontroller or processor with fixed-point hardware support?

• Size and Power Consumption — The logic circuits of fixed-point hardware 
are much less complicated than those of floating-point hardware. This means 
that the fixed-point chip size is smaller with less power consumption when 
compared with floating-point hardware. For example, consider a portable 
telephone where one of the product design goals is to make it as portable 
(small and light) as possible. If one of today’s high-end floating-point, 
general-purpose processors is used, a large heat sink and battery would also 
be needed resulting in a costly, large, and heavy portable phone.

• Memory Usage and Speed — In general fixed-point calculations require 
less memory and less processor time to perform.

• Cost — Fixed-point hardware is more cost effective where price/cost is an 
important consideration. When using digital hardware in a product, 
especially mass-produced products, fixed-point hardware costs much less 
than floating-point hardware and can result in significant savings.

After making the decision to use fixed-point hardware, the next step is to 
choose a method for implementing the dynamic system (for example, control 
system or digital filter). Floating-point software emulation libraries are 
0



Why Use Fixed-Point Hardware?
generally ruled out because of timing or memory size constraints. Therefore, 
you are left with fixed-point math where binary integer values are scaled.
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Why Use the Fixed-Point Blockset?
The Fixed-Point Blockset allows you to efficiently design control systems and 
digital filters that you will implement using fixed-point arithmetic. With the 
Fixed-Point Blockset, you can construct Simulink models that contain detailed 
fixed-point information about your systems. You can then perform bit-true 
simulations with the models to observe the effects of limited range and 
precision on your designs.

You can configure the Fixed-Point Settings interface to automatically log the 
overflows, saturations, and signal extremes of your simulations. You can also 
use it to automate scaling decisions and to compare your fixed-point 
implementations against idealized, floating-point benchmarks.

You can use the Fixed-Point Blockset with Real-Time Workshop to 
automatically generate efficient, integer-only C code representations of your 
designs. You can use this C code in a production target or for rapid prototyping. 
You can also use the Fixed-Point Blockset with Real-Time Workshop 
Embedded Coder to generate real-time C code for use on an integer production, 
embedded target.
2



The Development Cycle
The Development Cycle
The Fixed-Point Blockset provides tools that aid in the development and 
testing of fixed-point dynamic systems. You directly design dynamic system 
models in Simulink, which are ready for implementation on fixed-point 
hardware. The development cycle is illustrated below.

Start

Model plant or
signal source

Design
requirements

met?

Use the model as a
specification for

yes

Model fixed-point
controller or filter

no

creating production
code

Simulink
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Using MATLAB, Simulink, and the Fixed-Point Blockset, you follow these 
steps of the development cycle:

1 Model the system (plant or signal source) within Simulink using the built-in 
blocks and double precision numbers. Typically, the model will contain 
nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control 
system or digital filter) with the Fixed-Point Blockset that meets the design, 
performance, and other constraints.

3 Analyze the results and go back to 1 if needed.

When you have met the design requirements, you can use the model as a 
specification for creating production code using Real-Time Workshop®.

The above steps interact strongly. In steps 1 and 2, there is a significant 
amount of freedom to select different solutions. Generally, you fine-tune the 
model based upon feedback from the results of the current implementation 
(step 3). There is no specific modeling approach. For example, you may obtain 
models from first principles such as equations of motion, or from a frequency 
response such as a sine sweep. There are many controllers that meet the same 
frequency-domain or time-domain specifications. Additionally, for each 
controller there are an infinite number of realizations.

The Fixed-Point Blockset helps expedite the design cycle by allowing you to 
simulate the effects of various fixed-point controller and digital filter 
structures.
4
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Compatibility with Simulink Blocks
You can connect built-in Simulink blocks directly to Fixed-Point Blockset 
blocks provided the signals use built-in Simulink data types. The built-in data 
types include uint8, uint16, uint32, int8, int16, int32, single, double, and 
boolean. The Fixed-Point Blockset supports all built-in data types. However, a 
fixed-point signal consisting of 8-, 16-, or 32-bit integers is compatible with 
built-in Simulink blocks only when its scaling is given by a slope of 1 and a bias 
of 0.

Some Simulink blocks impose restrictions on the data type of the signals they 
can handle. For example, some Simulink blocks only accept doubles. To 
incorporate these blocks into your fixed-point model, you must configure the 
driving block(s) to use doubles. 

Note  If you want to connect Simulink blocks that only handle built-in data 
types to Fixed-Point Blockset blocks that output blockset-specific data types, 
then you must use the Gateway Out or Conversion block to convert to a 
built-in data type.

Some Simulink blocks can accept signals of any data type. For these blocks, you 
can input any of the built-in data types or any of the blockset-specific data 
types. Examples of blockset-specific data types include 32-bit signed integers 
with a scaling of 2-8, and 18-bit unsigned integers with a scaling of 20.

In some cases, fixed-point signals that are not built-in data types are converted 
to a real-world value as it enters the block. For example, the To Workspace 
block will output a 32-bit signed integer with a scaling of 2-8 as a double.

Refer to the Simulink documentation for detailed information about the data 
types handled by each Simulink block.

Unified Simulink and Fixed-Point Blockset Blocks
Many core Simulink and Fixed-Point Blockset blocks with similar functions 
have been unified in Version 4.0 of the Fixed-Point Blockset. For example, the 
Sum block in the Simulink Math Operations library and the Sum block in the 
Fixed-Point Blockset Math library are now the same block. All the 
functionality from each original block has been maintained in unifying these 
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blocks. Compatibility with fixed-point data types and/or specific fixed-point 
features are now available with all of these blocks, whether they are used from 
the Simulink Blockset or from the Fixed-Point Blockset. You do not need to 
make any changes to your previously-existing models as a result of this 
improvement. You can now use any of the unified blocks with either built-in 
data types or fixed-point data types, which eliminates the need for you to 
replace blocks in your models when you want to use different data types. This 
change does not require all Simulink users to have a Fixed-Point Blockset 
license. Refer to “Licensing Information” on page -xiii for more information.

Fixed-Point Blockset blocks that have been unified no longer have an “F” on 
their block icon. However, not all Fixed-Point Blockset blocks that have 
counterparts in Simulink libraries have been unified. You can still use the 
fixpt_convert function to replace nonunified Simulink blocks with their 
Fixed-Point Blockset counterparts in your models.

Non-unified Fixed-Point Blockset blocks have an advantage over their 
Simulink counterparts in that they can handle more data types. However, you 
may still want to use the Simulink counterparts of non-unified Fixed-Point 
Blockset blocks in some cases, since they support faster simulation times for 
the data types they handle.

The following table lists the unified blocks in this release, and the Simulink 
and Fixed-Point Blockset libraries in which they are found.

Block Simulink Library Fixed-Point Blockset Library

Abs Math Operations Math

Constant Sources Sources

Data Store Memory Signal Routing N/A

Data Store Read Signal Routing N/A

Data Store Write Signal Routing N/A

Gain Math Operations Math

Inport Ports & Subsystems, Sources N/A

Logical Operator Math Operations Logic & Comparison
6
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Frame-Based Signals
Most real-time systems optimize throughput rates by processing data in 
“batch” or “frame-based” mode, where each batch or frame is a collection of 
consecutive signal samples that have been buffered into a single unit. You can 
process signals in Simulink as frame-based signals.

Look-Up Table Look-Up Tables Look-Up Tables

Look-Up Table (2-D) Look-Up Tables Look-Up Tables

Manual Switch Signal Routing N/A

Memory Discrete N/A

Merge Signal Routing N/A

Multiport Switch Signal Routing Select

Outport Ports & Subsystems, Sinks N/A

Product Math Operations Math

Rate Transition Signal Attributes N/A

Relational Operator Math Operations Logic & Comparison

Relay Discontinuities Nonlinear

Saturation Discontinuities Nonlinear

Sign Math Operations Nonlinear

Signal Specification Signal Attributes N/A

Slider Gain Math Operations N/A

Sum Math Operations Math

Switch Signal Routing Select

Unit Delay Discrete Delays & Holds

Zero-Order Hold Discrete Delays & Holds

Block Simulink Library Fixed-Point Blockset Library
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Fixed-Point Blockset blocks accept frame-based signals for simulation and code 
generation, except for the Dot Product and FIR blocks.

The DSP Blockset also supports frame-based processing, and can use blocks 
from the Fixed-Point Blockset in models that process frame-based signals. 

For further understanding of frame-based processing, refer to “Working with 
Signals” in the DSP Blockset documentation.

Matrix Signals
The Simulink documentation refers to two-dimensional (2-D) signals as 
matrices. Simulink blocks can output 2-D signals, which consist of streams of 
two-dimensional arrays emitted at a frequency of one 2-D array per sample 
time.

Fixed-Point Blockset blocks support matrix-based signals for simulation and 
code generation, except for the Dot Product and FIR blocks.

For further understanding of matrix-based processing, refer to “Working with 
Signals” in the Simulink documentation.
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Overview of Blockset Features
This section provides a brief overview of important Fixed-Point Blockset 
features. After reading this section and the example that follows, you should be 
able to configure simple fixed-point models that suit your own application 
needs.

Configuring Fixed-Point Blocks
You configure fixed-point blocks with a parameter dialog box. To configure 
blocks, you supply values for parameters via editable text fields, check boxes, 
and parameter lists. The dialog box for the Gateway In block is shown below.

The following sections discuss parameters associated with this block. 

• “Real-World Values Versus Integer Values” on page 2-3

• “Selecting the Output Data Type” on page 2-3

• “Selecting the Output Scaling” on page 2-5

• “Rounding” on page 2-7
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• “Overflow Handling” on page 2-7

• “Locking the Output Scaling” on page 2-8

For detailed information about each fixed-point block, refer to Chapter 9, 
“Block Reference.”

Real-World Values Versus Integer Values
You can configure the fixed-point gateway blocks to treat signals as real-world 
values or as stored integers with the Input and output to have equal 
parameter. The possible values are Real World Value and Stored Integer.

In terms of the variables defined in “The General [Slope Bias] Encoding 
Scheme” on page 2-6, the real-world value is given by V and the stored integer 
value is given by Q. You may want to treat numbers as stored integer values if 
you are modeling hardware that produces integers as output.

Selecting the Output Data Type
For many fixed-point blocks, you have the option of specifying the output data 
type via the block dialog box, or inheriting the output data type from another 
block. You control how the output data type is selected with the Output data 
type and scaling or Output data type mode parameter list. Some possible 
values are Specify via dialog, Inherit via internal rule, Inherit via 
back propagation and Same as input.

The Fixed-Point Blockset supports several fixed-point and floating-point data 
types. Fixed-point data types are characterized by their word size in bits and 
by their radix (binary) point. The radix point is the means by which fixed-point 
values are scaled. Additionally

• Unsigned and two’s complement formats are supported.

• The fixed-point word size can range from 1 to 128 bits in simulation.

• The radix point is not required to be contiguous with the fixed-point word.

Floating-point data types are characterized by their sign bit, fraction 
(mantissa) field, and exponent field. The Fixed-Point Blockset supports IEEE 
singles, IEEE doubles, and a nonstandard IEEE-style floating-point data type.
2-3
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Note  You can create Fixed-Point Blockset data types directly in the MATLAB 
workspace and then pass the resulting structure to a fixed-point block, or you 
can specify the data type directly with the block dialog box.

Integers. You specify unsigned and signed integers with the uint and sint 
functions, respectively.

For example, to specify a 16-bit unsigned integer via the block dialog box, you 
configure the Output data type parameter as uint(16). To specify a 16-bit 
signed integer, you configure the Output data type parameter as sint(16). 

For integer data types, the default radix point is assumed to lie to the right of 
all bits.

Fractional Numbers. You specify unsigned and signed fractional numbers with 
the ufrac and sfrac functions, respectively. 

For example, to configure the output as a 16-bit unsigned fractional number via 
the block dialog box, you specify the Output data type parameter to be 
ufrac(16). To configure a 16-bit signed fractional number, you specify Output 
data type to be sfrac(16). 

Fractional numbers are distinguished from integers by their default scaling. 
Whereas signed and unsigned integer data types have a default radix point to 
the right of all bits, unsigned fractional data types have a default radix point 
to the left of all bits, while signed fractional data types have a default radix 
point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which act 
to “guard” against overflow. For example, sfrac(16,4) specifies a 16-bit signed 
fractional number with 4 guard bits. The guard bits lie to the left of the default 
radix point.

Generalized Fixed-Point Numbers. You specify unsigned and signed generalized 
fixed-point numbers with the ufix and sfix functions. respectively. 

For example, to configure the output as a 16-bit unsigned generalized 
fixed-point number via the block dialog box, you specify the Output data type 
parameter to be ufix(16). To configure a 16-bit signed generalized fixed-point 
number, you specify Output data type to be sfix(16).
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Generalized fixed-point numbers are distinguished from integers and 
fractionals by the absence of a default scaling. For these data types, you must 
explicitly specify the scaling with the Output scaling or Output scaling value 
parameter, or inherit the scaling from another block. Refer to “Selecting the 
Output Scaling” on page 2-5 for more information.

Floating-Point Numbers. The Fixed-Point Blockset supports single-precision and 
double-precision floating-point numbers as defined by the IEEE Standard 
754-1985 for Binary Floating-Point Arithmetic. You specify floating-point 
numbers with the float function.

For example, to configure the output as a single-precision floating-point 
number via the block dialog box, you specify the Output data type parameter 
to be float('single'). To configure a double-precision floating-point number, 
you specify Output data type to be float('double').

You can also specify a nonstandard floating-point number that mimics the 
IEEE style. For this data type, the fraction (mantissa) can range from 1 to 52 
bits and the exponent can range from 1 to 11 bits. For example, to configure a 
nonstandard floating-point number having 32 total bits and 9 exponents bits, 
you specify Output data type to be float(32,9).

Note  These numbers are normalized with a hidden leading 1 for all 
exponents except the smallest possible exponent. However, the largest 
possible exponent might not be treated as a flag for Infs or NaNs.

Selecting the Output Scaling
Most data types supported by the Fixed-Point Blockset have a default scaling 
that you cannot change. However, for generalized fixed-point data types, you 
have the option of specifying the output scaling via the block dialog box, or 
inheriting the output scaling from another block. You control how the output 
scaling is selected with the Output data type and scaling or Output data 
type mode parameter.

The Fixed-Point Blockset supports two general scaling modes: radix point-only 
scaling and [Slope Bias] scaling. In addition to these general scaling modes, the 
blockset provides you with additional block-specific scaling choices for constant 
vectors and constant matrices. These scaling choices are based on radix 
2-5
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point-only scaling and are designed to maximize precision. Refer to “Example: 
Constant Scaling for Best Precision” on page 3-11 for more information.

To help you understand the supported scaling modes, the general [Slope Bias] 
encoding scheme is presented in the next section.

The General [Slope Bias] Encoding Scheme. When representing an arbitrarily 
precise real-world value with a fixed-point number, it is often useful to define 
a general [Slope Bias] encoding scheme

where

• is the real-world value.

•  is the approximate real-world value.

• Q is an integer that encodes V.

• B is the bias.

• S = F2E is the slope.

The slope is partitioned into two components:

• 2E specifies the radix point. E is the fixed power-of-two exponent.

• F is the fractional slope. It is normalized such that .

Radix Point-Only Scaling. This is “powers-of-two” scaling since it involves moving 
only the radix point. Radix point-only scaling does not require the radix point 
to be contiguous with the data word. The advantage of this scaling mode is the 
number of processor arithmetic operations is minimized.

You specify radix point-only scaling with the syntax 2^ E where E is 
unrestricted. This creates a MATLAB structure with a bias B = 0 and a 
fractional slope F = 1.0.

For example, if you specify the value 2^ 10 for the Output scaling or Output 
scaling value parameter, then the generalized fixed-point number has a 
power-of-two exponent E = -10. This value defines the radix point location to be 
10 places to the left of the least significant bit.

V V�≈ SQ B+=

V

V�
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[Slope Bias] Scaling. With this scaling mode, you can provide a slope and a bias. 
The advantage of [Slope Bias] scaling is that it typically provides more efficient 
use of a finite number of bits.

You specify [Slope Bias] scaling with the syntax [slope bias], which creates 
a MATLAB structure with the given slope and bias. 

For example, if you specify the value [5/9 10] for the Output scaling or 
Output scaling value parameter, then the generalized fixed-point number has 
a slope of 5/9 and a bias of 10. The blockset would automatically store F as 
1.1111 and E as -1 due to the normalization condition .

Rounding
You specify how fixed-point numbers are rounded with the Round toward or 
Round integer calculations toward parameter. These rounding modes are 
supported:

• Zero – This mode rounds toward zero and is equivalent to the MATLAB fix 
function.

• Nearest – This mode rounds toward the nearest representable number, with 
the exact midpoint rounded toward positive infinity. Rounding toward 
nearest is equivalent to the MATLAB round function.

• Ceiling – This mode rounds toward positive infinity and is equivalent to the 
MATLAB ceil function.

• Floor – This mode rounds toward negative infinity and is equivalent to the 
MATLAB floor function.

Overflow Handling
You control how overflow conditions are handled for fixed-point operations 
with the Saturate to max or min when overflows occur or Saturate on 
integer overflow checkbox. 

If this box is selected, then overflows saturate to either the maximum or 
minimum value represented by the data type. For example, an overflow 
associated with a signed 8-bit integer can saturate to -128 or 127. 

If this box is not selected, then overflows wrap to the appropriate value that is 
representable by the data type. For example, the number 130 does not fit in a 
signed 8-bit integer, and would wrap to -126.

1 F 2<≤
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Locking the Output Scaling
If the output data type is a generalized fixed-point number, then you have the 
option of locking its scaling by checking the Lock output scaling so 
autoscaling tool can’t change it or Lock output scaling against changes by 
the autoscaling tool checkbox.

When locked, the automatic scaling script autofixexp will not change the 
output scaling. Otherwise, the autofixexp is free to adjust the scaling.

Additional Features and Capabilities
In addition to the features described in “Configuring Fixed-Point Blocks” on 
page 2-2, the Fixed-Point Blockset provides you with these features and 
capabilities:

• An automatic scaling tool

• Code generation capabilities

Automatic Scaling
You can use the autofixexp script to automatically change the scaling for each 
block that has generalized fixed-point output and does not have its scaling 
locked. The script uses the maximum and minimum values logged during the 
last simulation run. The scaling is changed such that the simulation range is 
covered and the precision is maximized.

As an alternative to (and extension of) the automatic scaling script, you can use 
the Fixed-Point Settings interface. This tool allows you to easily control the 
parameters associated with automatic scaling and display the simulation 
results for a given model. To learn how to use the Fixed-Point Settings 
interface, refer to Chapter 6, “Tutorial: Feedback Controller Simulation.”

Code Generation
With Real-Time Workshop®, the Fixed-Point Blockset can generate C code. The 
code generated from fixed-point blocks uses only integer types and 
automatically includes all operations, such as shifts, needed to account for 
differences in fixed-point locations. 

You can use the generated code on embedded fixed-point processors or rapid 
prototyping systems even if they contain a floating-point processor. The code is 
structured so that key operations can be readily replaced by optimized 
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target-specific libraries that you supply. You can also use Target Language 
Compiler™ to customize the generated code. Refer to Appendix A, “Code 
Generation” for more information about code generation using fixed-point 
blocks.
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Example: Converting from Doubles to Fixed-Point
The purpose of this example is to show you how to simulate a continuous real- 
world doubles signal using a generalized fixed-point data type. The model used 
is the simplest possible model and employs only two fixed-point blocks. 
Although simple in design, the model gives you the opportunity to explore 
many of the important features of the Fixed-Point Blockset including

• Data types

• Scaling

• Rounding

• Logging minimum and maximum simulation values to the workspace

• Overflow handling

The model used in this example is given by the fxpdemo_dbl2fix demo. You 
can launch this demo by typing its name at the MATLAB command line:

fxpdemo_dbl2fix

The model is shown below.

Block Descriptions
The Signal Generator block is configured to output a sine wave with an 
amplitude defined on the interval [-5 5]. It always outputs double-precision 
numbers.

The Gateway In block (Dbl To FixPt1) is used as the interface between 
Simulink and the Fixed-Point Blockset. Its function is to convert the 
double-precision numbers from the Signal Generator block into one of the 

Zero−Order
Hold

Signal
enerator Scope

Mux

Mux

FixPt
GUI

Out

FixPt to Dbl1

In

Dbl To FixPt1
0



Example: Converting from Doubles to Fixed-Point
Fixed-Point Blockset data types. For simplicity, its output signal is limited to 
5 bits in this example.

The Gateway Out (FixPt to Dbl1) block is used as the interface between the 
Fixed-Point Blockset and Simulink. Its function is to convert one of the 
Fixed-Point Blockset data types into a Simulink data type. In this example, it 
outputs double-precision numbers.

The GUI block launches the Fixed-Point Settings interface, fxptdlg. This tool 
provides convenient access to the global override and logging parameters, the 
logged minimum and maximum simulation data, the automatic scaling script, 
and the plot interface tool. It is not used in this example. If you have many 
fixed-point blocks whose scaling must be optimized, however, you should use 
this tool. Refer to Chapter 6, “Tutorial: Feedback Controller Simulation” for 
more information.

Note  As described in “Compatibility with Simulink Blocks” on page 1-15, you 
can eliminate the gateway blocks from your fixed-point model if all signals use 
built-in data types. 

Simulation Results
The results of two simulation trials are given below. The first trial uses radix 
point-only scaling while the second trial uses [Slope Bias] scaling.

Trial 1: Radix Point-Only Scaling
When using radix point-only scaling, your goal is to find the optimal 
power-of-two exponent E, as defined in “Selecting the Output Scaling” on 
page 2-5. For this scaling mode, the fractional slope F is set to 1 and no bias is 
required. 

The Gateway In block is configured in this way:

• Output data type 

The output data type is given by sfix(5). This creates a MATLAB structure 
that is a 5-bit, signed generalized fixed-point number.
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• Output scaling 

The output scaling is given by 2^ 2, which puts the radix point two places to 
the left of the rightmost bit. This gives a maximum value of 011.11 = 3.75, a 
minimum value of 100.00 = -4.00, and a precision of (1/2)2 = 0.25.

• Rounding 

The rounding mode is given by Nearest. This rounds the fixed-point result to 
the nearest representable number, with the exact midpoint rounded towards 
positive infinity.

• Overflows

Fixed-point values that overflow will saturate to the maximum or minimum 
value represented by the word.

The resulting real-world and fixed-point simulation results are shown below.

The simulation clearly demonstrates the quantization effects of fixed-point 
arithmetic. The combination of using a 5-bit word with a precision of (1/2)2 = 
0.25 produces a discretized output that does not span the full range of the input 
signal.
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If you want to span the complete range of the input signal with 5 bits using 
radix point-only scaling, then your only option is to sacrifice precision. Hence, 
the output scaling would be given by 2^ 1, which puts the radix point one place 
to the left of the rightmost bit. This scaling gives a maximum value of 0111.1 = 
7.5, a minimum value of 1000.0 = -8.0, and a precision of (1/2)1 = 0.5.

Trial 2: [Slope Bias] Scaling
When using [Slope Bias] scaling, your goal is to find the optimal fractional 
slope F and fixed power-of-two exponent E, as defined in “Selecting the Output 
Scaling” on page 2-5. No bias is required for this example since the sine wave 
is defined on the interval [-5 5]. The Gateway In block configuration is the 
same as that of the previous trial except for the scaling.

To arrive at a value for the slope, you can begin by assuming a fixed power-of- 
two exponent of -2. In the previous trial, this value defined the radix point-only 
scaling and resulted in a precision of 0.25. To find the fractional slope, you 
divide the maximum value of the sine wave by the maximum value of the scaled 
5-bit number. The result is 5.00/3.75 = 1.3333. The slope (and precision) is 
1.3333.(0.25) = 0.3333. You specify this value as [0.3333] for the Output 
scaling parameter.

Of course, you could have specified a fixed power-of-two exponent of -1 and a 
corresponding fractional slope of 0.6667. Naturally, the resulting slope is the 
same since E was reduced by one bit but F was increased by one bit. In this 
case, the blockset would automatically store F as 1.3332 and E as -2 due to the 
normalization condition of . 1 F 2<≤
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The resulting real-world and fixed-point simulation results are shown below. 

This somewhat cumbersome process used to find the slope is not really 
necessary. All that is required is the range of the data you are simulating and 
the size of the fixed-point word used in the simulation. In general, you can 
achieve reasonable simulation results by selecting your scaling based on the 
formula

where

• max is the maximum value to be simulated.

• min is the minimum value to be simulated.

• ws is the word size in bits.

• 2ws – 1 is the largest value of a word with whose size is given by ws.

For this example, the formula produces a slope of 0.32258.
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Demos
To help you learn the Fixed-Point Blockset, a collection of demos is provided. 
You can explore specific blockset features by changing block parameters and 
observing the effects of those changes.

The demos are divided into two groups: basic demos that illustrate the basic 
functionality of the Fixed-Point Blockset, and advanced demos that illustrate 
the functionality of systems built with fixed-point blocks. All demos are located 
in the fxpdemos directory.

You can access the demos through the MATLAB Demo browser. You launch the 
Demo browser by clicking the Demos block in the Fixed-Point Blockset library, 
or by typing

demo blockset 'Fixed Point'

at the command line. To open a demo, double-click the name of the demo in 
lower pane of the Demo browser.

Basic Fixed-Point Blockset Demos
The basic demos are listed below.

Demo Name Description

Double to Fixed-Point 
Conversion

Convert a double precision value to a 
fixed-point value.

Fixed-Point to Fixed-Point 
Conversion

Convert a fixed-point value to another 
fixed-point value.

Fixed-Point to Fixed-Point 
Inherited Conversion

Convert a fixed-point value to an inherited 
fixed-point value.

Fixed-Point Sine Add and multiply two fixed-point sine wave 
signals.

Fixed-Point Filters Simulate implementations of a fixed-point 
filter.
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“Example: Converting from Doubles to Fixed-Point” on page 2-10 discusses the 
Double to Fixed-Point Conversion demo, while Chapter 6, “Tutorial: Feedback 
Controller Simulation” discusses the Scaling a Fixed-Point Control Design 
demo.

Advanced Fixed-Point Blockset Demos
The advanced demos are intended to show you how to build and test systems 
suited to your particular needs. The output of these demos is compared to the 
output of analogous built-in Simulink blocks with identical input.

The advanced demos are listed below.

Scaling a Fixed-Point 
Control Design

Simulate a fixed-point feedback design.

Generating Only 
Fixed-Point Code

Generate pure integer code for a fixed-point 
digital controller.

Demo Name Description

Fixed-Point 
Integrators

Compare output from the Integrator Trapezoidal, 
Integrator Backward, and Integrator Forward blocks 
to output from the Simulink Discrete Integrator block.

Fixed-Point 
Derivatives

Compare output from the Derivative and Derivative: 
Filtered realizations to output from the Simulink 
derivatives built using the Discrete Filter and Transfer 
Fcn blocks.

Fixed-Point Lead 
and Lag Filters

Compare output from the Lead and Lag Filter block to 
output from analogous Simulink filters built using the 
Discrete Filter block.

Fixed-Point State 
Space

Compare output from the State-Space Realization 
realization to output from the analogous built-in 
Simulink State-Space and Discrete State-Space blocks.

Demo Name Description
6



Demos
Additional fixed-point demos for direct form II, series cascade form, and 
parallel form realizations are discussed in Chapter 5, “Realization Structures.”

Fixed-Point Data 
Type Propagation

Illustrate data type propagation using the Data Type 
Propagation block, and the “Inherit via back 
propagation” setting.

Fixed-Point 
Function 
Approximation

Compare the fixed-point lookup approximation of a 
function with the ideal function.

Demo Name Description
2-17
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Data Types and Scaling

Overview (p. 3-2) An overview of data types and scaling in digital hardware

Fixed-Point Numbers (p. 3-3) A discussion of the representation and manipulation of 
fixed-point numbers, both in general and in the 
Fixed-Point Blockset

Floating-Point Numbers (p. 3-15) A discussion of the representation and manipulation of 
floating-point numbers
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Overview
In digital hardware, numbers are stored in binary words. A binary word is a 
fixed-length sequence of binary digits (1’s and 0’s). The way in which hardware 
components or software functions interpret this sequence of 1’s and 0’s is 
described by a data type.

Binary numbers are represented as either fixed-point or floating-point data 
types. A fixed-point data type is characterized by the word size in bits, the radix 
(binary) point, and whether it is signed or unsigned. The radix point is the 
means by which fixed-point values are scaled. Within the Fixed-Point Blockset, 
fixed-point data types can be integers, fractionals, or generalized fixed-point 
numbers. The main difference between these data types is their default radix 
point. Floating-point data types are characterized by a sign bit, a fraction (or 
mantissa) field, and an exponent field. The blockset adheres to the IEEE 
Standard 754-1985 for Binary Floating-Point Arithmetic (referred to simply as 
the IEEE Standard 754 throughout this guide) and supports singles, doubles, 
and a nonstandard IEEE-style floating-point data type.

When choosing a data type, you must consider these factors:

• The numerical range of the result

• The precision required of the result

• The associated quantization error (i.e., the rounding mode)

• The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture 
used, and the cost of development, among others.

With the Fixed-Point Blockset, you can explore the relationship between data 
types, range, precision, and quantization error in the modeling of dynamic 
digital systems. With Real-Time Workshop®, you can generate production code 
based on that model.
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Fixed-Point Numbers
Fixed-point numbers are stored in data types that are characterized by their 
word size in bits, radix point, and whether they are signed or unsigned. The 
Fixed-Point Blockset supports integers, fractionals, and generalized 
fixed-point numbers. The main difference between these data types is their 
default radix point.

Note  Fixed-point word sizes up to 128 bits are supported.

A common representation of a binary fixed-point number (either signed or 
unsigned) is shown below.

where

• bi are the binary digits (bits).

• The size of the word in bits is given by ws.

• The most significant bit (MSB) is the leftmost bit, and is represented by 
location .

• The least significant bit (LSB) is the rightmost bit, and is represented by 
location b0.

• The radix point is shown four places to the left of the LSB.

Signed Fixed-Point Numbers
Computer hardware typically represents the negation of a binary fixed-point 
number in three different ways: sign/magnitude, one’s complement, and two’s 
complement. Two’s complement is the preferred representation of signed 
fixed-point numbers and is supported by the Fixed-Point Blockset.

�
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Negation using two’s complement consists of a bit inversion (translation into 
one’s complement) followed by the addition of a one. For example, the two’s 
complement of 000101 is 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded 
explicitly within the binary word (i.e., there is no sign bit). Instead, the sign 
information is implicitly defined within the computer architecture.

Radix Point Interpretation
The radix point is the means by which fixed-point numbers are scaled. It is 
usually the software that determines the radix point. When performing basic 
math functions such as addition or subtraction, the hardware uses the same 
logic circuits regardless of the value of the scale factor. In essence, the logic 
circuits have no knowledge of a scale factor. They are performing signed or 
unsigned fixed-point binary algebra as if the radix point is to the right of b0.

Within the Fixed-Point Blockset, the main difference between fixed-point data 
types is the default radix point. For integers and fractionals, the radix point is 
fixed at the default value. For generalized fixed-point data types, you must 
either explicitly specify the scaling by configuring dialog box parameters, or 
inherit the scaling from another block. The supported fixed-point data types 
are described below.

Integers
The default radix point for signed and unsigned integer data types is assumed 
to be just to the right of the LSB. You specify unsigned and signed integers with 
the uint and sint functions, respectively.

Fractionals
The default radix point for unsigned fractional data types is just to the left of 
the MSB, while for signed fractionals the radix point is just to the right of the 
MSB. If you specify guard bits, then they lie to the left of the radix point. You 
specify unsigned and signed fractional numbers with the ufrac and sfrac 
functions, respectively.

Generalized Fixed-Point Numbers
For signed and unsigned generalized fixed-point numbers, there is no default 
radix point. You specify unsigned and signed generalized fixed-point numbers 
with the ufix and sfix functions, respectively.
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Scaling
The dynamic range of fixed-point numbers is much less than that of 
floating-point numbers with equivalent word sizes. To avoid overflow 
conditions and minimize quantization errors, fixed-point numbers must be 
scaled.

With the Fixed-Point Blockset, you can select a fixed-point data type whose 
scaling is defined by its default radix point, or you can select a generalized 
fixed-point data type and choose an arbitrary linear scaling that suits your 
needs. This section presents the scaling choices available for generalized 
fixed-point data types.

A fixed-point number can be represented by a general [Slope Bias] encoding 
scheme

where

• is an arbitrarily precise real-world value.

• is the approximate real-world value.

• Q is an integer that encodes V.

• S = F.2E is the slope.

• B is the bias.

The slope is partitioned into two components:

• 2E specifies the radix point. E is the fixed power-of-two exponent.

• F is the fractional slope. It is normalized such that .

Note  S and B are constants and do not show up in the computer hardware 
directly – only the quantization value Q is stored in computer memory.

The scaling modes available to you within this encoding scheme are described 
below. For detailed information about how the supported scaling modes effect 
fixed-point operations, refer to “Recommendations for Arithmetic and Scaling” 
on page 4-16.
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Radix Point-Only Scaling
As the name implies, radix point-only (or “powers-of-two”) scaling involves 
moving only the radix point within the generalized fixed-point word. The 
advantage of this scaling mode is the number of processor arithmetic 
operations is minimized.

With radix point-only scaling, the components of the general [Slope Bias] 
formula have these values:

• F = 1

• S = 2E

• B = 0

That is, the scaling of the quantized real-world number is defined only by the 
slope S, which is restricted to a power of two.

In the Fixed-Point Blockset, you specify radix point-only scaling with the 
syntax 2^-E where E is unrestricted. This creates a MATLAB structure with a 
bias B = 0 and a fractional slope F = 1.0. For example, the syntax 2^-10 defines 
a scaling such that the radix point is at a location 10 places to the left of the 
least significant bit.

[Slope Bias] Scaling
When you scale by slope and bias, the slope S and bias B of the quantized 
real-world number can take on any value. You specify scaling by slope and bias 
with the syntax [slope bias], which creates a MATLAB structure with the 
given slope and bias. For example, a [Slope Bias] scaling specified by [5/9 10] 
defines a slope of 5/9 and a bias of 10. The slope must be a positive number.

See “Example: Fixed-Point Scaling” on page 3-10 and “Example: Constant 
Scaling for Best Precision” on page 3-11 for more information.

Quantization
The quantization Q of a real-world value V is represented by a weighted sum 
of bits. Within the context of the general [Slope Bias] encoding scheme, the 
value of an unsigned fixed-point quantity is given by



Fixed-Point Numbers
while the value of a signed fixed-point quantity is given by

where

• bi are binary digits, with .

• The word size in bits is given by ws, with ws = 1,2,3,...,128.

• S is given by F2E, where the scaling is unrestricted since the radix point does 
not have to be contiguous with the word.

bi are called bit multipliers and 2i are called the weights.

Example: Fixed-Point Format
The formats for 8-bit signed and unsigned fixed-point values are given below.

Note that you cannot discern whether these numbers are signed or unsigned 
data types merely by inspection since this information is not explicitly encoded 
within the word.

The binary number 0011.0101 yields the same value for the unsigned and two’s 
complement representation since the MSB = 0. Setting B = 0 and using the 
appropriate weights, bit multipliers, and scaling, the value is

V� S bi2
i

i 0=

ws 1�

∑ B+⋅=

V� S bws 1� 2ws 1�� bi2
i

i 0=

ws 2�

∑+ B+⋅=

bi 1 0,=

101 01 1
�

00

101 01 1
�

01

Unsigned data type

Signed data type
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Conversely, the binary number 1011.0101 yields different values for the 
unsigned and two’s complement representation since the MSB = 1. 

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling, 
the unsigned value is 

while the two’s complement value is

Range and Precision
The range of a number gives the limits of the representation while the precision 
gives the distance between successive numbers in the representation. The 
range and precision of a fixed-point number depends on the length of the word 
and the scaling.

V� F2E( ) Q⋅ 2E= bi2
i

i 0=

ws 1�

∑⋅=

2= 4� 0 27 0 26 1 25 1 24 0 23 1 22 0 21 1 20⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅( )⋅

3.3125=

V� F2E( ) Q⋅ 2E= bi2
i

i 0=

ws 1�

∑⋅=

2= 4� 1 27 0 26 1 25 1 24 0 23 1 22 0 21 1 20⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅( )⋅

11.3125=

V� F2E( ) Q⋅ 2E= bws 1� 2ws 1�� bi2
i

i 0=

ws 2�

∑+⋅=

2= 4� 1� 27 0 26 1 25 1 24 0 23 1 22 0 21 1 20⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅( )⋅

4.6875�=
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Range
The range of representable numbers for an unsigned and two’s complement 
fixed-point number of size ws, scaling S, and bias B is illustrated below.

For both the signed and unsigned fixed-point numbers of any data type, the 
number of different bit patterns is 2ws. 

For example, if the fixed-point data type is an integer with scaling defined as 
S = 1 and B = 0, then the maximum unsigned value is 2ws – 1 since zero must 
be represented. In two’s complement, negative numbers must be represented 
as well as zero so the maximum value is 2ws – 1– 1. Additionally, since there is 
only one representation for zero, there must be an unequal number of positive 
and negative numbers. This means there is a representation for –2ws – 1 but not 
for 2ws – 1. 

Precision
The precision (scaling) of integer and fractional data types is specified by the 
default radix point. For generalized fixed-point data types, the scaling must be 
explicitly defined as either [Slope Bias] or radix point-only. In either case, the 
precision is given by the slope.

Fixed-Point Data Type Parameters
The low limit, high limit, and default radix point-only scaling for the supported 
fixed-point data types discussed in “Radix Point Interpretation” on page 3-4 

negative numbers positive numbers

0S.(–2ws – 1) + B S.(2ws – 1– 1) + B

positive numbers

B S.(2ws – 1) + B
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are given below. See “Limitations on Precision” and “Limitations on Range” in 
Chapter 4 for more information.

Example: Fixed-Point Scaling

Range of an 8-Bit Fixed-Point Data Type — Radix Point-Only Scaling
The precision, range of signed values, and range of unsigned values for an 8-bit 
generalized fixed-point data type with radix point-only scaling follow. Note 
that the first scaling value (21) represents a radix point that is not contiguous 
with the word.

Fixed-Point Data Type Range and Default Scaling

Name Data Type Low Limit High Limit Default Scaling 
(~Precision)

Integer uint 0 2ws – 1 1

sint –2ws – 1 2ws – 1 – 1 1

Fractional ufrac 0 1 – 2–ws 2–ws

sfrac –1 1 – 2–(ws – 1) 2–(ws – 1)

Generalized 
Fixed-Point

ufix N/A N/A N/A

sfix N/A N/A N/A

Scaling Precision Range of Signed 
Values (low, high)

Range of Unsigned 
Values (low, high)

2
1

2.0 -256, 254 0, 510

2
0

1.0 -128, 127 0, 255

2
-1

0.5 -64, 63.5 0, 127.5

2
-2

0.25 -32, 31.75 0, 63.75

2
-3

0.125 -16, 15.875 0, 31.875

2
-4

0.0625 -8, 7.9375 0, 15.9375
0
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Range of an 8-Bit Fixed-Point Data Type – [Slope Bias] Scaling
The precision and range of signed and unsigned values for an 8-bit fixed-point 
data type using [Slope Bias] scaling follow. The slope starts at a value of 1.25 
and the bias is 1.0 for all slopes. Note that the slope is the same as the 
precision.

Example: Constant Scaling for Best Precision
The Fixed-Point Blockset provides you with block-specific modes for scaling 
constant vectors and constant matrices. These scaling modes are based on 
radix point-only scaling and are described below:

2
-5

0.03125 -4, 3.96875 0, 7.96875

2
-6

0.015625 -2, 1.984375 0, 3.984375

2
-7

0.0078125 -1, 0.9921875 0, 1.9921875

2
-8

0.00390625 -0.5, 0.49609375 0, 0.99609375

Bias Slope/Precision Range of Signed 
Values (low, high)

Range of Unsigned 
Values (low, high)

1 1.25 -159, 159.75 1, 319.75

1 0.625 -79, 80.375 1, 160.375

1 0.3125 -39, 40.6875 1, 80.6875

1 0.15625 -19, 20.84375 1, 40.84375

1 0.078125 -9, 10.921875 1, 20.921875

1 0.0390625 -4, 5.9609375 1, 10.9609375

1 0.01953125 -1.5, 3.48046875 1, 5.98046875

1 0.009765625 -0.25, 2.240234375 1, 3.490234375

1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

Scaling Precision Range of Signed 
Values (low, high)

Range of Unsigned 
Values (low, high)
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• Constant Vector Scaling 

Using this mode, you can scale a constant vector such that its precision is 
maximized element-by-element, or a common radix point is found based on 
the best precision for the largest value of the vector.

• Constant Matrix Scaling 

Using this mode, you can scale a constant matrix such that its precision is 
maximized element-by-element, or a common radix point is found based on 
the best precision for the largest value of each row, each column, or the whole 
matrix.

Constant matrix and constant vector scaling are available only for generalized 
fixed-point data types. All other fixed-point data types use their default 
scaling. The available constant matrix scaling modes are shown below for the 
Matrix Gain block.
2



Fixed-Point Numbers
To understand how you might use these scaling modes, consider a 5- by- 4 
matrix of doubles, M, defined as

  3.3333e-005  3.3333e-006  3.3333e-007  3.3333e-008
  3.3333e-004  3.3333e-005  3.3333e-006  3.3333e-007
  3.3333e-003  3.3333e-004  3.3333e-005  3.3333e-006
  3.3333e-002  3.3333e-003  3.3333e-004  3.3333e-005
  3.3333e-001  3.3333e-002  3.3333e-003  3.3333e-004

Now suppose M is input into the Matrix Gain block, and you want to scale it 
using one of the constant matrix scaling modes. The results of using these 
modes are described below:

• Use Specified Scaling 

Suppose the matrix elements are converted to a signed, 10-bit generalized 
fixed-point data type with radix point-only scaling of 2-7 (that is, the radix 
point is located seven places to the left of the rightmost bit). With this data 
format, M becomes
0 0 0 0
0 0 0 0
0 0 0 0
3.1250e-002 0 0 0
3.3594e-001  3.1250e-002 0 0

Note that many of the matrix elements are zero, and for the nonzero entries, 
the scaled values differ from the original values. This is because a double is 
converted to a binary word of fixed size and limited precision for each 
element. The larger and more precise the conversion data type, the more 
closely the scaled values match the original values.

• Best Precision: Element-wise

If M is scaled such that the precision is maximized for each matrix element, 
you obtain
3.3379e-005  3.3304e-006  3.3341e-007  3.3295e-008
3.3379e-004  3.3379e-005  3.3304e-006  3.3341e-007
3.3340e-003  3.3379e-004  3.3379e-005  3.3304e-006
3.3325e-002  3.3340e-003  3.3379e-004  3.3379e-005
3.3301e-001  3.3325e-002  3.3340e-003  3.3379e-004

• Best Precision: Row-wise 

If M is scaled based on the largest value for each row, you obtain
3-13
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3.3379e-005  3.3379e-006  3.5763e-007 0
3.3379e-004  3.3379e-005  2.8610e-006 0
3.3340e-003  3.3569e-004  3.0518e-005 0
3.3325e-002  3.2959e-003  3.6621e-004 0
3.3301e-001  3.3203e-002  2.9297e-003 0

• Best Precision: Column-wise 

If M is scaled based on the largest value for each column, you obtain
0 0 0 0
0 0 0 0
2.9297e-003  3.6621e-004  3.0518e-005  2.8610e-006
3.3203e-002  3.2959e-003  3.3569e-004  3.3379e-005
3.3301e-001  3.3325e-002  3.3340e-003  3.3379e-004

• Best Precision: Matrix-wise 

If M is scaled based on its largest matrix value, you obtain

0 0 0 0
0 0 0 0
2.9297e-003 0 0 0
3.3203e-002  2.9297e-003 0 0
3.3301e-001  3.3203e-002  2.9297e-003 0

The disadvantage of scaling the matrix column-wise, row-wise, or matrix-wise 
is reduced precision resulting from the use of a common radix point. The 
advantage of using a common radix point is reduced code size and possibly 
increased processor speed.
4
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Floating-Point Numbers
Fixed-point numbers are limited in that they cannot simultaneously represent 
very large or very small numbers using a reasonable word size. This limitation 
can be overcome by using scientific notation. With scientific notation, you can 
dynamically place the radix point at a convenient location and use powers of 
the radix to keep track of that location. Thus, you can represent a range of very 
large and very small numbers with only a few digits.

You can represent any binary floating-point number in scientific notation form 
as  where f is the fraction (or mantissa); 2 is the radix or base (binary 
in this case); and e is the exponent of the radix. The radix is always a positive 
number while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take 
into account that the sign, exponent, and fraction are all encoded within the 
same binary word. This results in complex logic circuits when compared with 
the circuits for binary fixed-point operations.

The Fixed-Point Blockset supports single-precision and double-precision 
floating-point numbers as defined by the IEEE Standard 754. Additionally, a 
nonstandard IEEE-style number is supported. To link the world of fixed-point 
numbers with the world of floating-point numbers, the concepts behind 
scientific notation are reviewed below.

Scientific Notation
A direct analogy exists between scientific notation and radix point notation. 
For example, scientific notation using five decimal digits for the fraction would 
take the form

where p is an integer of unrestricted range. Radix point notation using five bits 
for the fraction is the same except for the number base

where q is an integer of unrestricted range. The previous equation is valid for 
both fixed- and floating-point numbers. For both these data types, the fraction 
can be changed at any time by the processor. However, for fixed- point numbers 

 f± 2× e±

d.dddd 10× p ddddd.0± 10× p 4� 0± .ddddd 10× p 1+==±

b.bbbb 2× q± bbbbb.0 2× q 4�± 0.bbbbb 2× q 1+±= =
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the exponent never changes, while for floating-point numbers the exponent can 
be changed any time by the processor.

For fixed-point numbers, the exponent is fixed but there is no reason why the 
radix point must be contiguous with the fraction. For example, a word 
consisting of three unsigned bits is usually represented in scientific notation in 
one of these four ways.

If the exponent were greater than 0 or less than -3, then the representation 
would involve lots of zeros.

These extra zeros never change to ones, however, so they don’t show up in the 
hardware. Furthermore, unlike floating-point exponents, a fixed-point 
exponent never shows up in the hardware, so fixed-point exponents are not 
limited by a finite number of bits.

Note  Restricting the radix point to being contiguous with the fraction is 
unnecessary; the Fixed-Point Blockset allows you to extend the radix point to 
any arbitrary location.

bbb. bbb. 20×=

bb.b bbb. 2 1�×=

b.bb bbb. 2 2�×=

.bbb bbb. 2 3�×=

 

bbb00000. bbb. 25×=

bbb00. bbb. 22×=

.00bbb bbb. 2 5�×=

.00000bbb bbb. 2 8�×=
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The IEEE Format
The IEEE Standard 754 has been widely adopted, and is used with virtually all 
floating-point processors and arithmetic coprocessors — with the notable 
exception of many DSP floating-point processors.

Among other things, this standard specifies four floating-point number formats 
of which singles and doubles are the most widely used. Each format contains 
three components: a sign bit, a fraction field, and an exponent field. These 
components, as well as the specific formats for singles and doubles, are 
discussed below.

The Sign Bit
While two’s complement is the preferred representation for signed fixed-point 
numbers, IEEE floating-point numbers use a sign/magnitude representation, 
where the sign bit is explicitly included in the word. Using this representation, 
a sign bit of 0 represents a positive number and a sign bit of 1 represents a 
negative number.

The Fraction Field
In general, floating-point numbers can be represented in many different ways 
by shifting the number to the left or right of the radix point and decreasing or 
increasing the exponent of the radix by a corresponding amount. 

To simplify operations on these numbers, they are normalized in the IEEE 
format. A normalized binary number has a fraction of the form 1.f where f has 
a fixed size for a given data type. Since the leftmost fraction bit is always a 1, 
it is unnecessary to store this bit and is therefore implicit (or hidden). Thus, an 
n-bit fraction stores an n+1-bit number. The IEEE format also supports 
denormalized numbers, which have a fraction of the form 0.f. Normalized and 
denormalized formats are discussed in more detail in next section.

The Exponent Field
In the IEEE format, exponent representations are biased. This means a fixed 
value (the bias) is subtracted from the field to get the true exponent value. For 
example, if the exponent field is 8 bits, then the numbers 0 through 255 are 
represented, and there is a bias of 127. Note that some values of the exponent 
are reserved for flagging Inf (infinity), NaN (not-a-number), and denormalized 
numbers, so the true exponent values range from -126 to 127. See the sections 
“Inf” and “NaN” on page 3-22.
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Single Precision Format
The IEEE single-precision floating-point format is a 32-bit word divided into a 
1-bit sign indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. A 
representation of this format is given below.

The relationship between this format and the representation of real numbers 
is given by

“Exceptional Arithmetic” on page 3-21 discusses denormalized values.

Double Precision Format
The IEEE double-precision floating-point format is a 64-bit word divided into 
a 1-bit sign indicator s, an 11-bit biased exponent e, and a 52-bit fraction f. A 
representation of this format is given below.

The relationship between this format and the representation of real numbers 
is given by

“Exceptional Arithmetic” on page 3-21 discusses denormalized values.

b0b22b30b31

fs e

 value
1�( )s 2e 127�( ) 1.f( )⋅ ⋅

1�( )s 2e 126�( ) 0.f( )⋅ ⋅
exceptional value





= denormalized, e = 0, f > 0

otherwise

normalized, 0 e 255< <

b0b51b62b63

fs e

 value
1�( )s 2e 1023�( ) 1.f( )⋅ ⋅

1�( )s 2e 1022�( ) 0.f( )⋅ ⋅
exceptional value






= denormalized, e = 0, f > 0

otherwise

normalized, 0 e 2047< <
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Nonstandard IEEE Format
The Fixed-Point Blockset supports a nonstandard IEEE-style floating-point 
data type. This data type adheres to the definitions and formulas previously 
given for IEEE singles and doubles. You create nonstandard floating-point 
numbers with the float function:

float(TotalBits,ExpBits) 

TotalBits is the total word size and ExpBits is the size of the exponent field. 
The size of the fraction field and the bias are calculated from these input 
arguments. You can specify any number of exponent bits up to 11, and any 
number of total bits such that the fraction field is no more than 53 bits.

When specifying a nonstandard format, you should remember that the number 
of exponent bits largely determines the range of the result and the number of 
fraction bits largely determines the precision of the result.

Note  These numbers are normalized with a hidden leading one for all 
exponents except the smallest possible exponent. However, the largest 
possible exponent might not be treated as a flag for Inf or NaN.

Range and Precision
The range of a number gives the limits of the representation while the precision 
gives the distance between successive numbers in the representation. The 
range and precision of an IEEE floating-point number depend on the specific 
format.

Range
The range of representable numbers for an IEEE floating-point number with f 
bits allocated for the fraction, e bits allocated for the exponent, and the bias of 
e given by bias = 2e – 1– 1 is given below.

positive 
underflow

negative 
underflow

positive 
overflow

negative 
overflow

negative numbers positive numbers
3-19



3 Data Types and Scaling

3-2
where

• Normalized positive numbers are defined within the range 21 – bias to 
(2 – 2–f).2bias.

• Normalized negative numbers are defined within the range –21 – bias to 
–(2 – 2–f).2bias.

• Positive numbers greater than (2 – 2–f).2bias, and negative numbers greater 
than –(2 – 2–f).2bias are overflows.

• Positive numbers less than 21 – bias, and negative numbers less than –21 – bias 

are either underflows or denormalized numbers.

• Zero is given by a special bit pattern, where e = 0 and f = 0.

Overflows and underflows result from exceptional arithmetic conditions. 
Floating-point numbers outside the defined range are always mapped to .

Note  You can use the MATLAB commands realmin and realmax to 
determine the dynamic range of double-precision floating-point values for 
your computer.

Precision
Due to a finite word size, a floating-point number is only an approximation of 
the “true” value. Therefore, it is important to have an understanding of the 
precision (or accuracy) of a floating-point result. In general, a value v with an 
accuracy q is specified by . For IEEE floating-point numbers, 

 and . Thus, the precision is 
associated with the number of bits in the fraction field.

Note  In MATLAB, floating-point relative accuracy is given by the command 
eps, which returns the distance from 1.0 to the next largest floating-point 
number. For a computer that supports the IEEE Standard 754, eps = 2-52 or 
2.2204 510-16.

Inf±

v q±
v 1�( )s 2e bias�( ) 1.f( )⋅ ⋅= q 2 f� 2⋅ e bias�=
0
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Floating-Point Data Type Parameters
The high and low limits, exponent bias, and precision for the supported 
floating-point data types are given below.

Due to the sign/magnitude representation of floating-point numbers, there are 
two representations of zero, one positive and one negative. For both 
representations e = 0 and 0.f = 0.0.

Exceptional Arithmetic
In addition to specifying a floating-point format, the IEEE Standard 754 
specifies practices and procedures so that predictable results are produced 
independently of the hardware platform. Specifically, denormalized numbers, 
Inf, and NaN are defined to deal with exceptional arithmetic (underflow and 
overflow).

If an underflow or overflow is handled as Inf or NaN, then significant processor 
overhead is required to deal with this exception. Although the IEEE Standard 
754 specifies practices and procedures to deal with exceptional arithmetic 
conditions in a consistent manner, microprocessor manufacturers may handle 
these conditions in ways that depart from the standard. Some of the alternative 
approaches, such as saturation and wrapping, are discussed in Chapter 4, 
“Arithmetic Operations.”

Denormalized Numbers
Denormalized numbers are used to handle cases of exponent underflow. When 
the exponent of the result is too small (i.e., a negative exponent with too large 
a magnitude), the result is denormalized by right-shifting the fraction and 
leaving the exponent at its minimum value. The use of denormalized numbers 
is also referred to as gradual underflow. Without denormalized numbers, the 
gap between the smallest representable nonzero number and zero is much 

Data Type Low Limit High Limit Exponent 
Bias

 Precision

Single 127

Double 1023

Nonstandard

2 126� 10 38�≈ 2128 3 1038⋅≈ 2 23� 10 7�≈

2 1022� 2 10⋅ 308�≈ 21024 2 10⋅ 308≈ 2 52� 10 16�≈

2 1 bias�( ) 2( 2 f� ) 2bias⋅� 2e 1� 1� 2 f�
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wider than the gap between the smallest representable nonzero number and 
the next larger number. Gradual underflow fills that gap and reduces the 
impact of exponent underflow to a level comparable with round off among the 
normalized numbers. Thus, denormalized numbers provide extended range for 
small numbers at the expense of precision.

Inf
Arithmetic involving Inf (infinity) is treated as the limiting case of real 
arithmetic, with infinite values defined as those outside the range of 
representable numbers, or . With the 
exception of the special cases discussed below (NaN), any arithmetic operation 
involving Inf yields Inf. Inf is represented by the largest biased exponent 
allowed by the format and a fraction of zero.

NaN
A NaN (not-a-number) is a symbolic entity encoded in floating-point format. 
There are two types of NaN: signaling and quiet. A signaling NaN signals an 
invalid operation exception. A quiet NaN propagates through almost every 
arithmetic operation without signaling an exception. The following operations 
result in a NaN: , , , , and . 

Both types of NaN are represented by the largest biased exponent allowed by the 
format and a fraction that is nonzero. The bit pattern for a quiet NaN is given 
by 0.f  where the most significant number in f must be a one, while the bit 
pattern for a signaling NaN is given by 0.f  where the most significant number 
in f  must be zero and at least one of the remaining numbers must be nonzero.

∞ representable numbers( )≤ ∞<�

∞ ∞� ∞� ∞+ 0 ∞× 0 0⁄ ∞ ∞⁄
2
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Arithmetic Operations

Overview (p. 4-2) An overview of issues that need to be considered when 
performing fixed-point arithmetic operations—overflow, 
quantization, computational noise, and limit cycles

Limitations on Precision (p. 4-3) A discussion of the limits placed on the precision of 
fixed-point calculations, and how they are handled in the 
Fixed-Point Blockset

Limitations on Range (p. 4-12) A discussion of the limits placed on the range of 
fixed-point calculations, and how they are handled in the 
Fixed-Point Blockset

Recommendations for Arithmetic and 
Scaling (p. 4-16)

Recommendations for scaling in your fixed-point design 
based on the limitations of fixed-point arithmetic

Parameter and Signal Conversions 
(p. 4-26)

A discussion of the way the data types of parameters and 
signals are converted in simulations using the Fixed-Point 
Blockset

Rules for Arithmetic Operations 
(p. 4-30)

A description of the way the Fixed-Point Blockset 
performs arithmetic operations on inputs and parameters

Example: Conversions and Arithmetic 
Operations (p. 4-43)

An example highlighting the way the Fixed-Point Blockset 
converts the data types of and performs arithmetic 
operations on inputs and parameters
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Overview
When developing a dynamic system using floating-point arithmetic, you 
generally don’t have to worry about numerical limitations since floating-point 
data types have high precision and range. Conversely, when working with 
fixed-point arithmetic, you must consider these factors when developing 
dynamic systems:

• Overflow 

Adding two sufficiently large negative or positive values can produce a result 
that does not fit into the representation. This will have an adverse effect on 
the control system.

• Quantization 

Fixed-point values are rounded. Therefore, the output signal to the plant and 
the input signal to the control system do not have the same characteristics 
as the ideal discrete-time signal.

• Computational noise 

The accumulated errors that result from the rounding of individual terms 
within the realization introduces noise into the control signal.

• Limit cycles 

In the ideal system, the output of a stable transfer function (digital filter) 
approaches some constant for a constant input. With quantization, limit 
cycles occur where the output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations are 
performed using encoded fixed-point variables. It also provides 
recommendations for encoding fixed-point variables such that simulations and 
generated code are reasonably efficient.



Limitations on Precision
Limitations on Precision
Computer words consist of a finite numbers of bits. This means that the binary 
encoding of variables is only an approximation of an arbitrarily precise 
real-world value. Therefore, the limitations of the binary representation 
automatically introduce limitations on the precision of the value. For a general 
discussion of range and precision in the Fixed-Point Blockset, refer to “Range 
and Precision” in Chapter 3.

The precision of a fixed-point word depends on the word size and radix point 
location. Extending the precision of a word can always be accomplished with 
more bits, but you face practical limitations with this approach. Instead, you 
must carefully select the data type, word size, and scaling such that numbers 
are accurately represented. Rounding and padding with trailing zeros are 
typical methods implemented on processors to deal with the precision of binary 
words.

Rounding
The result of any operation on a fixed-point number is typically stored in a 
register that is longer than the number’s original format. When the result is 
put back into the original format, the extra bits must be disposed of. That is, 
the result must be rounded. Rounding involves going from high precision to 
lower precision and produces quantization errors and computational noise. 

The blockset provides four rounding modes, which are shown in the expanded 
drop-down menu in the dialog below.
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The Fixed-Point Blockset rounding modes are discussed below. The data is 
generated using the Simulink Signal Generator block and doubles are 
converted to signed 8-bit numbers with radix point-only scaling of 2-2.

Round Toward Zero
The simplest rounding mode computationally is when all digits beyond the 
number required are dropped. This mode is referred to as rounding toward 
zero, and it results in a number whose magnitude is always less than or equal 
to the more precise original value. In MATLAB, you can round to zero using the 
fix function.

Rounding toward zero introduces a cumulative downward bias in the result for 
positive numbers and a cumulative upward bias in the result for negative 
numbers. That is, all positive numbers are rounded to smaller positive 
numbers, while all negative numbers are rounded to smaller negative 
numbers. Rounding toward zero is shown below.



Limitations on Precision
An example comparing rounding to zero and truncation for unsigned and two’s 
complement numbers appears in “Example: Rounding to Zero Versus 
Truncation” on page 4-8.

Round Toward Nearest
When you round toward nearest, the number is rounded to the nearest 
representable value. This mode has the smallest errors associated with it and 
these errors are symmetric. As a result, rounding toward nearest is the most 
useful approach for most applications.
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−0.5
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1

Time

Round Toward Zero

Positive numbers are rounded 
to smaller positive numbers.

Negative numbers are rounded 
to smaller negative numbers.
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In MATLAB, you can round to nearest using the round function. Rounding 
toward nearest is shown below.

Round Toward Ceiling
When you round toward ceiling, both positive and negative numbers are 
rounded toward positive infinity. As a result, a positive cumulative bias is 
introduced in the number. 
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All numbers are rounded to the 
nearest representable number. 



Limitations on Precision
In MATLAB, you can round to ceiling using the ceil function. Rounding 
toward ceiling is shown below. 

Round Toward Floor
When you round toward floor, both positive and negative numbers are rounded 
to negative infinity. As a result, a negative cumulative bias is introduced in the 
number.
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All numbers are rounded 
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In MATLAB, you can round to floor using the floor function. Rounding toward 
floor is shown below. 

Rounding toward ceiling and rounding toward floor are sometimes useful for 
diagnostic purposes. For example, after a series of arithmetic operations, you 
may not know the exact answer because of word-size limitations, which 
introduce rounding. If every operation in the series is performed twice, once 
rounding to positive infinity and once rounding to negative infinity, you obtain 
an upper limit and a lower limit on the correct answer. You can then decide if 
the result is sufficiently accurate or if additional analysis is required.

Example: Rounding to Zero Versus Truncation
Rounding to zero and truncation or chopping are sometimes thought to mean 
the same thing. However, the results produced by rounding to zero and 
truncation are different for unsigned and two’s complement numbers. 
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Limitations on Precision
To illustrate this point, consider rounding a 5-bit unsigned number to zero by 
dropping (truncating) the two least significant bits. For example, the unsigned 
number 100.01 = 4.25 is truncated to 100 = 4. Therefore, truncating an 
unsigned number is equivalent to rounding to zero or rounding to floor. 

Now consider rounding a 5-bit two’s complement number by dropping the two 
least significant bits. At first glance, you may think truncating a two’s 
complement number is the same as rounding to zero. For example, dropping 
the last two digits of -3.75 yields -3.00. However, digital hardware performing 
two’s complement arithmetic yields a different result. Specifically, the number 
100.01 = -3.75 truncates to 100 = -4, which is rounding to floor. 

As you can see, rounding to zero for a two’s complement number is not the same 
as truncation when the original value is negative. For this reason, the 
ambiguous term “truncation” is not used in this guide, and four explicit 
rounding modes are used instead.

Padding with Trailing Zeros
Padding with trailing zeros involves extending the least significant bit (LSB) 
of a number with extra bits. This method involves going from low precision to 
higher precision.

For example, suppose two numbers are subtracted from each other. First, the 
exponents must be aligned, which typically involves a right shift of the number 
with the smaller value. In performing this shift, significant digits can “fall off” 
to the right. However, when the appropriate number of extra bits is appended, 
the precision of the result is maximized. Consider two 8-bit fixed-point 
numbers that are close in value and subtracted from each other

where q is an integer. To perform this operation, the exponents must be equal.

If the top number is padded by two zeros and the bottom number is padded with 
one zero, then the above equation becomes

1.0000000 2q 1.1111111 2q 1�⋅�⋅

1.0000000 2q⋅

 0.1111111 2q⋅�

0.0000001 2q⋅
--------------------------------------------
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which produces a more precise result. An example of padding with trailing 
zeros using the Fixed-Point Blockset is illustrated in “Digital Controller 
Realization” on page 6-7.

Example: Limitations on Precision and Errors
Fixed-point variables have a limited precision because digital systems 
represent numbers with a finite number of bits. For example, suppose you must 
represent the real-world number 35.375 with a fixed-point number. Using the 
encoding scheme described in “Scaling” on page 3-5, the representation is

 

The two closest approximations to the real-world value are Q = 13 and Q = 14.

In either case, the absolute error is the same:

For fixed-point values within the limited range, this represents the worst-case 
error if round-to-nearest is used. If other rounding modes are used, the 
worst-case error can be twice as large:

Example: Maximizing Precision
Precision is limited by slope. To achieve maximum precision, you should make 
the slope as small as possible while keeping the range adequately large. The 
bias is adjusted in coordination with the slope.

1.000000000 2q⋅

 0.111111110 2q⋅�

0.000000010 2q⋅
---------------------------------------------------

V� 2 2� Q 32+=

V� 2 2� 13( ) 32+ 35.25= =

V� 2 2� 14( ) 32+ 35.50= =

V� V� 0.125 F2E

2
-----------= =

V� V� F2E<
0



Limitations on Precision
Assume the maximum and minimum real-world value is given by max(V) and 
min(V), respectively. These limits may be known based on physical principles 
or engineering considerations. To maximize the precision, you must decide 
upon a rounding scheme and whether overflows saturate or wrap. To simplify 
matters, this example assumes the minimum real-world value corresponds to 
the minimum encoded value, and the maximum real-world value corresponds 
to the maximum encoded value. Using the encoding scheme described in 
“Scaling” on page 3-5, these values are given by

Solving for the slope, you get

This formula is independent of rounding and overflow issues, and depends only 
on the word size, ws.

max V( ) F2E max Q( )( ) B+=

min V( ) F2E min Q( )( ) B+=

F2E max V( ) min V( )�
max Q( ) min Q( )�
------------------------------------------------- max V( ) min V( )�

2ws 1�
-------------------------------------------------= =
4-11



4 Arithmetic Operations

4-1
Limitations on Range
Limitations on the range of a fixed-point word occur for the same reason as 
limitations on its precision. Namely, fixed-point words have limited size. For a 
general discussion of range and precision in the Fixed-Point Blockset, refer to 
“Range and Precision” in Chapter 3.

In binary arithmetic, a processor may need to take an n-bit fixed-point number 
and store it in m bits, where . If m < n, the range of the number has been 
reduced and an operation can produce an overflow condition. Some processors 
identify this condition as Inf or NaN. For other processors, especially digital 
signal processors (DSPs), the value saturates or wraps. If m > n, the range of 
the number has been extended. Extending the range of a word requires the 
inclusion of guard bits, which act to “guard” against potential overflow. In both 
cases, the range depends on the word’s size and scaling.

The Fixed-Point Blockset supports saturation and wrapping for all fixed-point 
data types, while guard bits are supported only for fractional data types. As 
shown below, you can select saturation or wrapping with the Saturate to max 
or min when overflows occur or Saturate on integer overflow checkbox, 
and you can specify guard bits with the Output data type parameter.

m n≠

36-bit signed fractional data type with 4 guard 
bits. The total word size is 40 bits.

Saturate overflows.
2



Limitations on Range
Saturation and Wrapping
Saturation and wrapping describe a particular way that some processors deal 
with overflow conditions. For example, Analog Device’s ADSP-2100 family of 
processors supports either of these modes. If a register has a saturation mode 
of operation, then an overflow condition is set to the maximum positive or 
negative value allowed. Conversely, if a register has a wrapping mode of 
operation, an overflow condition is set to the appropriate value within the 
range of the representation.

Example: Saturation and Wrapping
Consider an 8-bit unsigned word with radix point-only scaling of 2-5. Suppose 
this data type must represent a sine wave that ranges from -4 to 4. For values 
between 0 and 4, the word can represent these numbers without regard to 
overflow. This is not the case with negative numbers. If overflows saturate, all 
negative values are set to zero, which is the smallest number representable by 
the data type. The saturation of overflows is shown below.
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Overflows Saturate

Negative values 
saturate to zero

Negative values 
saturate to zero
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If overflows wrap, all negative values are set to the appropriate positive value. 
The wrapping of overflows is shown below.

Note  For most control applications, saturation is the safer way of dealing 
with fixed-point overflow. However, some processor architectures allow 
automatic saturation by hardware. If hardware saturation is not available, 
then extra software is required resulting in larger, slower programs. This cost 
is justified in some designs — perhaps for safety reasons. Other designs accept 
wrapping to obtain the smallest, fastest software.

Guard Bits
You can eliminate the possibility of overflow by appending the appropriate 
number of guard bits to a binary word. 
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Limitations on Range
For a two’s complement signed value, the guard bits are filled with either 0’s or 
1’s depending on the value of the most significant bit (MSB). This is called sign 
extension. For example, consider a 4-bit two’s complement number with value 
1011. If this number is extended in range to 7 bits with sign extension, then the 
number becomes 1111101 and the value remains the same. 

Guard bits are supported only for fractional data types. For both signed and 
unsigned fractionals, the guard bits lie to the left of the default radix point.

Example: Limitations on Range
Fixed-point variables have a limited range for the same reason they have 
limited precision — because digital systems represent numbers with a finite 
number of bits. As a general example, consider the case where an integer is 
represented as a fixed-point word of size ws. The range for signed and unsigned 
words is given by where

 

Using the general [Slope Bias] encoding scheme described in “Scaling” on 
page 3-5, the approximate real-world value has the range 

where

If the real-world value exceeds the limited range of the approximate value, 
then the accuracy of the representation can become significantly worse.

max Q( ) min Q( )�

min Q( )
0

2ws 1��



=

max Q( )
2ws 1�

2ws 1� 1�



=

unsigned

signed

unsigned

signed

max V�( ) min V�( )�

min V�( )
B

F2E 2ws 1�( )� B+



=

max V�( )
F2E 2ws 1�( ) B+

F2E 2ws 1� 1�( ) B+



=

unsigned

signed

unsigned

signed
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Recommendations for Arithmetic and Scaling
This section describes the relationship between arithmetic operations and 
fixed-point scaling, and some basic recommendations that may be appropriate 
for your fixed-point design. For each arithmetic operation:

• The general [Slope Bias] encoding scheme described in “Scaling” on page 3-5 
is used. 

• The scaling of the result is automatically selected based on the scaling of the 
two inputs. In other words, the scaling is inherited.

• Scaling choices are based on

- Minimizing the number of arithmetic operations of the result.

- Maximizing the precision of the result.

Additionally, radix point-only scaling is presented as a special case of the 
general encoding scheme.

In embedded systems, the scaling of variables at the hardware interface (the 
ADC or DAC) is fixed. However for most other variables, the scaling is 
something you can choose to give the best design. When scaling fixed-point 
variables, it is important to remember that:

• Your scaling choices depend on the particular design you are simulating.

• There is no best scaling approach. All choices have associated advantages 
and disadvantages. It is the goal of this section to expose these advantages 
and disadvantages to you.

Addition
Consider the addition of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme 
described in “Scaling” on page 3-5:

In a fixed-point system, the addition of values results in finding the variable 
Qa:

Va Vb Vc+=

Vi Fi2
EiQi Bi+=
6



Recommendations for Arithmetic and Scaling
This formula shows

• In general, Qa is not computed through a simple addition of Qb and Qc.

• In general, there are two multiplies of a constant and a variable, two 
additions, and some additional bit shifting.

Inherited Scaling for Speed
In the process of finding the scaling of the sum, one reasonable goal is to 
simplify the calculations. Simplifying the calculations should reduce the 
number of operations thereby increasing execution speed. The following 
choices can help to minimize the number of arithmetic operations: 

• Set Ba = Bb + Bc. This eliminates one addition.

• Set Fa = Fb or Fa = Fc. Either choice eliminates one of the two constant times 
variable multiplies.

The resulting formula is

These equations appear to be equivalent. However, your choice of rounding and 
precision may make one choice stand out over the other. To further simplify 
matters, you could choose Ea = Ec or Ea = Eb. This will eliminate some bit 
shifting.

Inherited Scaling for Maximum Precision
In the process of finding the scaling of the sum, one reasonable goal is 
maximum precision. You can determine the maximum precision scaling if the 
range of the variable is known. “Example: Maximizing Precision” on page 4-10 
shows that you can determine the range of a fixed-point operation from 

and . For a summation, you can determine the range from

Qa

Fb
Fa
------ 2

Eb Ea�
Qb

Fc
Fa
------ 2

Ec Ea�
Qc

Bb Bc Ba�+
Fa

--------------------------------- 2
Ea�

⋅+⋅+⋅=

Qa 2
Eb Ea�

Qb

Fc
Fa
------ 2

Ec Ea�
Qc⋅+=

or

Qa

Fb
Fa
------ 2⋅

Eb Ea�
Qb 2

Ec Ea�
Qc+=

max Va( ) min V� a( )
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You can now derive the maximum precision slope:

In most cases the input and output word sizes are much greater than one, and 
the slope becomes

which depends only on the size of the input and output words. The 
corresponding bias is

The value of the bias depends on whether the inputs and output are signed or 
unsigned numbers.

If the inputs and output are all unsigned, then the minimum value for these 
variables are all zero and the bias reduces to a particularly simple form:

If the inputs and the output are all signed, then the bias becomes

Radix Point-Only Scaling
For radix point-only scaling, finding Qa results in this simple expression:

min V� a( ) min V� b( ) min V� c( )+=

max V� a( ) max V� b( ) max V� c( )+=

Fa2
Ea max V� a( ) min V� a( )�

2
wsa 1�

-------------------------------------------------------=

Fb2
Eb 2

wsb 1�( ) Fc2
Ec 2

wsc 1�( )+

2
wsa 1�

-----------------------------------------------------------------------------------------=

Fa2
Ea Fb2

Eb wsb wsa�+
Fc2

Ec wsc wsa�+
+≈

Ba min V� a( ) Fa2
Ea min Qa( )⋅�=

Ba Bb Bc+=

Ba Bb Bc Fb2
Eb 2�

wsb 1�
2

wsb 1�
+( ) Fc2

Ec 2�
wsc 1�

2
wsc 1�

+( )+ + +≈

Ba Bb Bc+≈
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Recommendations for Arithmetic and Scaling
This scaling choice results in only one addition and some bit shifting. The 
avoidance of any multiplications is a big advantage of radix point-only scaling.

Note  The subtraction of values produces results that are analogous to those 
produced by the addition of values. 

Accumulation
The accumulation of values is closely associated with addition:

Finding Qa_new involves one multiply of a constant and a variable, two 
additions, and some bit shifting:

The important difference for fixed-point implementations is that the scaling of 
the output is identical to the scaling of the first input. 

Radix Point-Only Scaling
For radix point-only scaling, finding Qa_new results in this simple expression:

This scaling option only involves one addition and some bit shifting.

Note  The negative accumulation of values produces results that are 
analogous to those produced by the accumulation of values.

Qa 2
Eb Ea�

Qb 2
Ec Ea�

Qc+=

Va_new Va_old Vb+=

Qa_new Qa_old

Fb
Fa
------ 2

Eb Ea�
Qb

Bb
Fa
------- 2

Ea�
⋅+⋅+=

Qa_new Qa_old 2
Eb Ea�

Qb+=
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Multiplication
Consider the multiplication of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme 
described in “Scaling” on page 3-5:

In a fixed-point system, the multiplication of values results in finding the 
variable Qa:

This formula shows

• In general, Qa is not computed through a simple multiplication of Qb and Qc.

• In general, there is one multiply of a constant and two variables, two 
multiplies of a constant and a variable, three additions, and some additional 
bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices: 

• Set Ba = BbBc. This eliminates one addition operation.

• Set Fa = FbFc. This simplifies the triple multiplication – certainly the most 
difficult part of the equation to implement.

• Set Ea = Eb + Ec. This eliminates some of the bit-shifting.

The resulting formula is

Va Vb Vc×=

Vi Fi2
EiQi Bi+=

Qa

FbFc
Fa

------------- 2
Eb Ec Ea�+

QbQc

FbBc
Fa

------------- 2
Eb Ea�

Qb

FcBb
Fa

------------- 2
Ec Ea�

Qc⋅+⋅+⋅=

 
BbBc Ba�

Fa
--------------------------- 2

Ea�
⋅+

Qa QbQc

Bc
Fc
------ 2

Ec�
Qb⋅

Bb
Fb
------- 2

Eb�
Qc⋅+ +=
0



Recommendations for Arithmetic and Scaling
Inherited Scaling for Maximum Precision
You can determine the maximum precision scaling if the range of the variable 
is known. “Example: Maximizing Precision” on page 4-10 shows that you can 
determine the range of a fixed-point operation from and . 

For multiplication, you can determine the range from

where

Radix Point-Only Scaling
For radix point-only scaling, finding Qa results in this simple expression:

Gain
Consider the multiplication of a constant and a variable

where K is a constant called the gain. Since Va results from the multiplication 
of a constant and a variable, finding Qa is a simplified version of the general 
fixed-point multiply formula:

max V� a( ) min V� a( )

min V� a( ) min VLL VLH VHL VHH, , ,( )=

max V� a( ) max VLL VLH VHL VHH, , ,( )=

VLL min V� b( ) min V� c( )⋅=

VLH min V� b( ) max V� c( )⋅=

VHL max V� b( ) min V� c( )⋅=

VHH max V� b( ) max V� c( )⋅=

Qa 2
Eb Ec Ea�+

QbQc=

Va K Vb⋅=

Qa

KFb2
Eb

Fa2
Ea

--------------------
 
 
 
 

Qb

KBb Ba�

Fa2
Ea

-------------------------
 
 
 

+⋅=
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Note that the terms in the parentheses can be calculated offline. Therefore, 
there is only one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated 
form, the constants need to be encoded using a radix point-only format. For 
each of these constants, the range is the trivial case of only one value. Despite 
the trivial range, the radix point formulas for maximum precision are still 
valid. The maximum precision representations are the most useful choices 
unless there is an overriding need to avoid any shifting. The encoding of the 
constants is

resulting in the formula

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = KBb. This eliminates one constant term.

• Set Fa = KFb and Ea = Eb. This sets the other constant term to unity. 

The resulting formula is simply

If the number of bits is different, then either handling potential overflows or 
performing sign extensions is the only possible operations involved.

Inherited Scaling for Maximum Precision
The scaling for maximum precision does not need to be different than the 
scaling for speed unless the output has fewer bits than the input. If this is the 

KFb2
Eb

Fa2
Ea

--------------------
 
 
 
 

2
EXQX=

KBb Ba�

Fa2
Ea

-------------------------
 
 
 

2
EYQY=

Qa 2
EXQXQB 2

EYQY+=

Qa Qb=
2



Recommendations for Arithmetic and Scaling
case, then saturation should be avoided by dividing the slope by 2 for each lost 
bit. This will prevent saturation but will cause rounding to occur.

Division
Division of values is an operation that should be avoided in fixed-point 
embedded systems, but it can occur in places. Therefore, consider the division 
of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme 
described in “Scaling” on page 3-5:

In a fixed-point system, the division of values results in finding the variable Qa:

This formula shows

• In general, Qa is not computed through a simple division of Qb by Qc.

• In general, there are two multiplies of a constant and a variable, two 
additions, one division of a variable by a variable, one division of a constant 
by a variable, and some additional bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = 0. This eliminates one addition operation.

• If Bc = 0, then set the fractional slope Fa = Fb/Fc. This eliminates one 
constant times variable multiplication.

The resulting formula is

Va Vb/Vc=

Vi Fi2
EiQi Bi+=

Qa
Fb2

EbQb Bb+

FcFa2
Ec Ea+

Qc BcFa 2
Ea⋅+

--------------------------------------------------------------------------
Ba
Fa
------- 2

Ea�
⋅�=

Qa

Qb
Qc
------- 2

Eb Ec� Ea� Bb Fb⁄( )
Qc

----------------------- 2
Ec� Ea�

⋅+⋅=
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If , then no clear recommendation can be made.

Inherited Scaling for Maximum Precision
You can determine the maximum precision scaling if the range of the variable 
is known. “Example: Maximizing Precision” on page 4-10 shows that you can 
determine the range of a fixed-point operation from and . 
For division, you can determine the range from

where for nonzero denominators

Radix Point-Only Scaling
For radix point-only scaling, finding Qa results in this simple expression:

Note  For the last two formulas involving Qa, a divide by zero, and zero 
divided by zero are possible. In these cases, the hardware will give some 
default behavior but you must make sure that these default responses give 
meaningful results for the embedded system.

Bc 0≠

max V� a( ) min V� a( )

min V� a( ) min VLL VLH VHL VHH, , ,( )=

max V� a( ) max VLL VLH VHL VHH, , ,( )=

VLL min V� b( ) min V� c( )⁄=

VLH min V� b( ) max V� c( )⁄=

VHL max V� b( ) min V� c( )⁄=

VHH max V� b( ) max V� c( )⁄=

Qa

Qb
Qc
------- 2

Eb Ec� Ea�
⋅=
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Recommendations for Arithmetic and Scaling
Summary
From the previous analysis of fixed-point variables scaled within the general 
[Slope Bias] encoding scheme, you can conclude

• Addition, subtraction, multiplication, and division can be very involved 
unless certain choices are made for the biases and slopes. 

• Radix point-only scaling guarantees simpler math, but generally sacrifices 
some precision.

Note that the previous formulas don’t show the following:

• Constants and variables are represented with a finite number of bits.

• Variables are either signed or unsigned.

• Rounding and overflow handling schemes. You must make these decisions 
before an actual fixed-point realization is achieved.
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Parameter and Signal Conversions
The previous sections of this chapter, together with Chapter 3, “Data Types 
and Scaling,” describe how data types, scaling, rounding, overflow handling, 
and arithmetic operations are incorporated into the Fixed-Point Blockset. With 
this knowledge, you can define the output of a fixed-point model by configuring 
fixed-point blocks to suit your particular application.

However, to completely understand the results generated by the Fixed-Point 
Blockset, you must be aware of these three issues:

• When numerical block parameters are converted from a double to a 
Fixed-Point Blockset data type

• When input signals are converted from one Fixed-Point Blockset data type 
to another (if at all)

• When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point block performs an arithmetic operation on 
its input signal and a parameter, and then generates output having 
characteristics that are specified by the block. The following diagram 
illustrates how these issues are related.

Fixed-Point Block 

Output Data Type
Output Scaling
Rounding
Overflow Handling

Parameter Value

OperationInput

Output
6



Parameter and Signal Conversions
The following sections discuss parameter conversions and signal conversions. 
“Rules for Arithmetic Operations” on page 4-30 discusses arithmetic 
operations.

Parameter Conversions
Parameters of fixed-point blocks that accept numerical values are always 
converted from a double to a Fixed-Point Blockset data type. Parameters can 
be converted to the input data type, the output data type, or to a data type 
explicitly specified by the block. For example, the FIR block converts the Initial 
condition parameter to the input data type, and converts the FIR coefficients 
parameter to a data type you explicitly specify via the block dialog box.

Parameters are always converted before any arithmetic operations are 
performed. Additionally, parameters are always converted offline using 
round-to-nearest and saturation. Offline conversions are discussed below.

For information about parameter conversions for a specific block, refer to 
Chapter 9, “Block Reference.”

Offline Conversions
An offline conversion is a conversion performed by your development platform 
(for example, the processor on your PC), and not by the fixed-point processor 
you are targeting. For example, suppose you are using a PC to develop a 
program to run on a fixed-point processor, and you need the fixed-point 
processor to compute 

over and over again. If a, b, and c are constant parameters, it is inefficient for 
the fixed-point processor to compute ab/c every time. Instead, the PC’s 
processor should compute ab/c offline one time, and the fixed-point processor 
computes only . This eliminates two costly fixed-point arithmetic 
operations.

Signal Conversions
Consider the conversion of a real-world value from one Fixed-Point Blockset 
data type to another. Ideally, the values before and after the conversion are 
equal

y ab
c

------- 
  u⋅ C u⋅= =

C u⋅
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where Vb is the input value and Va is the output value. To see how the 
conversion is implemented, the two ideal values are replaced by the general 
[Slope Bias] encoding scheme described in “Scaling” on page 3-5:

Solving for the output data type’s stored integer value, Qa is obtained:

where Fs is the adjusted fractional slope and Bnet is the net bias. The offline 
conversions and online conversions and operations are discussed below.

Offline Conversions
Both Fs and Bnet are computed offline using round-to-nearest and saturation. 
Bnet is then stored using the output data type and Fs is stored using an 
automatically selected data type.

Online Conversions and Operations
The remaining conversions and operations are performed online by the 
fixed-point processor, and depend on the slopes and biases for the input and 
output data types. The conversions and operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

2 The input integer value, Qb, is multiplied by the adjusted slope, Fs:

3 The result of step 2 is converted to the modified output data type where the 
slope is one and bias is zero:

Va Vb=

Vi Fi2
EiQi Bi+=

Qa

Fb
Fa
------2

Eb Ea�
Qb

Bb Ba�
Fa

--------------------2
Ea�

+=

Fs2
Eb Ea�

Qb Bnet+=

Qa Bnet=

QRawProduct FsQb=
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Parameter and Signal Conversions
This conversion includes any necessary bit shifting, rounding, or overflow 
handling.

4 The summation operation is performed:

This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code
Note that the maximum number of conversions and operations is performed 
when the slopes and biases of the input signal and output signal differ (are 
mismatched). If the scaling of these signals is identical (matched), the number 
of operations is reduced from the worst (most inefficient) case. For example, 
when an input has the same fractional slope and bias as the output, only step 
3 is required:

Exclusive use of radix point-only scaling for both input signals and output 
signals is a common way to eliminate the occurrence of mismatched slopes and 
biases, and results in the most efficient simulations and generated code.

QTemp convert QRawProduct( )=

Qa QTemp Qa+=

Qa convert Qb( )=
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Rules for Arithmetic Operations
Fixed-point arithmetic refers to how signed or unsigned binary words are 
operated on. The simplicity of fixed-point arithmetic functions such as addition 
and subtraction allows for cost-effective hardware implementations. 

This section describes the blockset-specific rules that are followed when 
arithmetic operations are performed on inputs and parameters. These rules 
are organized into four groups based on the operations involved: addition and 
subtraction, multiplication, division, and shifts. For each of these four groups, 
the rules for performing the specified operation are presented with an example 
using the rules.

Computational Units
The core architecture of many processors contains several computational units 
including arithmetic logic units (ALUs), multiply and accumulate units 
(MACs), and shifters. These computational units process the binary data 
directly and provide support for arithmetic computations of varying precision. 
The ALU performs a standard set of arithmetic and logic operations as well as 
division. The MAC performs multiply, multiply/add, and multiply/subtract 
operations. The shifter performs logical and arithmetic shifts, normalization, 
denormalization, and other operations. 

Addition and Subtraction
Addition is the most common arithmetic operation a processor performs. When 
two n-bit numbers are added together, it is always possible to produce a result 
with n + 1 nonzero digits due to a carry from the leftmost digit. For two’s 
complement addition of two numbers, there are three cases to consider:

• If both numbers are positive and the result of their addition has a sign bit of 
1, then overflow has occurred; otherwise the result is correct.

• If both numbers are negative and the sign of the result is 0, then overflow 
has occurred; otherwise the result is correct.

• If the numbers are of unlike sign, overflow cannot occur and the result is 
always correct.
0



Rules for Arithmetic Operations
Fixed-Point Blockset Summation Process
Consider the summation of two numbers. Ideally, the real-world values obey 
the equation

where Vb and Vc are the input values and Va is the output value. To see how 
the summation is actually implemented, the three ideal values should be 
replaced by the general [Slope Bias] encoding scheme described in “Scaling” on 
page 3-5:

The equation in “Addition” on page 4-16 gives the solution of the resulting 
equation for the stored integer, Qa. Using shorthand notation, that equation 
becomes

where Fsb and Fsc are the adjusted fractional slopes and Bnet is the net bias. 
The offline conversions, and online conversions and operations are discussed 
below.

Offline Conversions. Fsb, Fsc, and Bnet are computed offline using 
round-to-nearest and saturation. Furthermore, Bnet is stored using the output 
data type.

Online Conversions and Operations. The remaining operations are performed 
online by the fixed-point processor, and depend on the slopes and biases for the 
input and output data types. The worst (most inefficient) case occurs when the 
slopes and biases are mismatched. The worst-case conversions and operations 
are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

2 The first input integer value, Qb, is multiplied by the adjusted slope, Fsb:

Va V± b Vc±=

Vi Fi2
EiQi Bi+=

Qa  Fsb±= 2
Eb Ea�

Qb  Fsc± 2
Ec Ea�

Qc Bnet+

Qa Bnet=
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3 The previous product is converted to the modified output data type where 
the slope is one and the bias is zero:

This conversion includes any necessary bit shifting, rounding, or overflow 
handling.

4 The summation operation is performed:

This summation includes any necessary overflow handling.

5 Steps 2 to 4 are repeated for every number to be summed. 

It is important to note that bit shifting, rounding, and overflow handling are 
applied to the intermediate steps (3 and 4) and not to the overall sum.

Streamlining Simulations and Generated Code
If the scaling of the input and output signals is matched, the number of 
summation operations is reduced from the worst (most inefficient) case. For 
example, when an input has the same fractional slope as the output, step 2 
reduces to multiplication by one and can be eliminated. Trivial steps in the 
summation process are eliminated for both simulation and code generation. 
Exclusive use of radix point-only scaling for both input signals and output 
signals is a common way to eliminate the occurrence of mismatched slopes and 
biases, and results in the most efficient simulations and generated code.

Example: The Summation Process
Suppose you want to sum three numbers. Each of these numbers is represented 
by an 8-bit word, and each has a different radix point-only scaling. 
Additionally, the output is restricted to an 8-bit word with radix point-only 
scaling of 2-3.

The summation is shown below for the input values 19.875, 5.4375, and 
4.84375. 

QRawProduct FsbQb=

QTemp convert QRawProduct( )=

Qa Qa QTemp+±=
2



Rules for Arithmetic Operations
Applying the rules from the previous section, the sum follows these steps:

1 Since the biases are matched, the initial value of Qa is trivial:

2 The first number to be summed (19.875) has a fractional slope that matches 
the output fractional slope. Furthermore, the radix points and storage types 
are identical so the conversion is trivial:

3 The summation operation is performed:

4 The second number to be summed (5.4375) has a fractional slope that 
matches the output fractional slope, so a slope adjustment is not needed. The 
storage data types also match but the difference in radix points requires that 
both the bits and the radix point be shifted one place to the right:

Qa 00000.000=

Qb 10011.111=

QTemp Qb=

Qa Qa QTemp+ 10011.111= =
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Note that a loss in precision of one bit occurs, with the resulting value of 
QTemp determined by the rounding mode. For this example, round-to-floor is 
used. Overflow cannot occur in this case since the bits and radix point are 
both shifted to the right.

5 The summation operation is performed:

Note that overflow did not occur, but it is possible for this operation.

6 The third number to be summed (4.84375) has a fractional slope that 
matches the output fractional slope, so a slope adjustment is not needed. The 
storage data types also match but the difference in radix points requires that 
both the bits and the radix point be shifted two places to the right:

Note that a loss in precision of two bit occurs, with the resulting value of 
QTemp determined by the rounding mode. For this example, round-to-floor is 
used. Overflow cannot occur in this case since the bits and radix point are 
both shifted to the right.

7 The summation operation is performed:

Qc 0101.0111=

QTemp convert Qc( )=

QTemp 00101.011=

Qa Qa QTemp+=

10011.111
 00101.011 +

11001.010
--------------------------------------=

25.250=

Qd 100.11011=

QTemp convert Qd( )=

QTemp 00100.110=
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Rules for Arithmetic Operations
Note that overflow did not occur, but it is possible for this operation.

As shown below, the result of step 7 differs from the ideal sum:

Blocks that perform addition and subtraction include the Sum, Matrix Gain, 
and FIR blocks. 

Multiplication 
The multiplication of an n-bit binary number with an m-bit binary number 
results in a product that is up to m + n bits in length for both signed and 
unsigned words. Most processors perform n-bit by n-bit multiplication and 
produce a 2n-bit result (double bits) assuming there is no overflow condition.

For example, the Texas Instruments TMS320C2x family of processors 
performs two’s complement 16-bit by 16-bit multiplication and produces a 
32-bit (double bit) result.

Fixed-Point Blockset Multiplication Process
Consider the multiplication of two numbers. Ideally, the real-world values obey 
the equation

where Vb and Vc are the input values and Va is the output value. To see how 
the multiplication is actually implemented, the three ideal values should be 
replaced by the general [Slope Bias] encoding scheme described in “Scaling” on 
page 3-5:

Qa Qa QTemp+=

11001.010
 00100.110 +

11110.000
--------------------------------------

30.000=
=

10011.111    
0101.0111

     100.11011+
11110.001

-------------------------------------------
30.125=

Va Vb Vc×=
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The solution of the resulting equation for the output stored integer, Qa, is given 
below:

The worst-case implementation of this equation occurs when the slopes and 
biases of the input and output signals are mismatched. This worst-case 
implementation is permitted in simulation but is not always permitted for code 
generation since it often requires more resources than is considered practical 
for an embedded system. For code generation and bit-true simulations, the 
biases must be zero and the fractional slopes must match for most blocks. 
When these requirements are met, the implementation reduces to

The bit-true implementation of this equation is discussed below.

Offline Conversions. As shown in the previous section, no offline conversions are 
performed.

Online Conversions and Operations. The online conversions and operations for 
matched slopes and biases of zero are given by these steps:

1 The integer values, Qb and Qc, are multiplied together:

To maintain the full precision of the product, the radix point of QRawProduct 
is given by the sum of the radix points of Qb and Qc.

2 The previous product is converted to the output data type:

Vi Fi2
EiQi Bi+=

Qa

FbFc
Fa

------------- 2
Eb Ec Ea�+

QbQc

FbBc
Fa

------------- 2
Eb Ea�

Qb

FcBb
Fa

------------- 2
Ec Ea�

Qc⋅+⋅+⋅=

 
BbBc Ba�

Fa
--------------------------- 2

Ea�
⋅+

Qa 2
Eb Ec Ea�+

QbQc=

QRawProduct QbQc=
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Rules for Arithmetic Operations
This conversion includes any necessary bit shifting, rounding, or overflow 
handling. “Signal Conversions” on page 4-27 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied. 

Example: The Multiplication Process
Suppose you want to multiply three numbers. Each of these numbers is 
represented by a 5-bit word, and each has a different radix point-only scaling. 
Additionally, the output is restricted to a 10-bit word with radix point-only 
scaling of 2-4. The multiplication is shown below for the input values 5.75, 
2.375, and 1.8125.

Applying the rules from the previous section, the multiplication follows these 
steps:

1 The first two numbers (5.75 and 2.375) are multiplied:

Qa convert QRawProduct( )=
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Note that the radix point of the product is given by the sum of the radix 
points of the multiplied numbers.

2 The result of step 1 is converted to the output data type:

“Signal Conversions” on page 4-27 discusses conversions. Note that a loss in 
precision of one bit occurs, with the resulting value of QTemp determined by 
the rounding mode. For this example, round-to-floor is used. Furthermore, 
overflow did not occur but is possible for this operation. 

3 The result of step 2 and the third number (1.8125) are multiplied:

Note that the radix point of the product is given by the sum of the radix 
points of the multiplied numbers.

4 The product is converted to the output data type:

QRawProduct 101.11
 10.011×

101.11 2 3�⋅

101.11 2 2�⋅

 101.11+ 21⋅
01101.10101
-------------------------------------

-------------------------------------

13.65625=

=

QTemp convert QRawProduct( )=

001101.1010 13.6250==

QRawProduct 01101.1010
 1.1101          ×

1101.1010 2 4�⋅

1101.1010 2 2�⋅

1101.1010 2 1�⋅

 1101.1010+ 20⋅
0011000.10110010
----------------------------------------------------

----------------------------------------------------

24.6953125=

=
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Rules for Arithmetic Operations
“Signal Conversions” on page 4-27 discusses conversions. Note that a loss in 
precision of 4 bits occurred, with the resulting value of QTemp determined by 
the rounding mode. For this example, round-to-floor is used. Furthermore, 
overflow did not occur but is possible for this operation.

Blocks that perform multiplication include the Product, FIR, Gain, and Matrix 
Gain blocks.

Division
As with multiplication, division with mismatched scaling is complicated. 
Mismatched division is permitted for simulation only. For code generation and 
bit-true simulation, the signals must all have zero biases and matched 
fractional slopes.

Fixed-Point Blockset Division Process
Consider the division of two numbers. Ideally, the real-world values obey the 
equation

where Vb and Vc are the input values and Va is the output value. To see how 
the division is actually implemented, the three ideal values should be replaced 
by the general [Slope Bias] encoding scheme described in “Scaling” on page 3-5:

For the case where the slopes are one and the biases are zero for all signals, the 
solution of the resulting equation for the output stored integer, Qa, is given 
below:

This equation involves an integer division and some bit shifts. If , 
then any bit shifts are to the right and the implementation is simple. However, 
if , then the bit shifts are to the left and the implementation can 

Qa convert QRawProduct( )=

011000.1011 24.6875==

Va Vb Vc⁄=

Vi Fi2
EiQi Bi+=

Qa 2
Eb Ec� Ea�

Qb Qc⁄( )=

Ea Eb Ec�≥

Ea Eb Ec�<
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be more complicated. The essential issue is the output has more precision than 
the integer division provides. To get full precision, a fractional division is 
needed. The C programming language provides access to integer division only 
for fixed-point data types. Depending on the size of the numerator, some of the 
fractional bits may be obtained by performing a shift prior to the integer 
division. In the worst case, it may be necessary to resort to repeated 
subtractions in software. 

In general, division of values is an operation that should be avoided in 
fixed-point embedded systems. Division where the output has more precision 
than the integer division (i.e., ) should be used with even greater 
reluctance. Division of signals with nonzero biases or mismatched slopes is not 
supported.

Example: The Division Process
Suppose you want to divide two numbers. Each of these numbers is 
represented by an 8-bit word, and each has a radix point-only scaling of 2-4. 
Additionally, the output is restricted to an 8-bit word with radix point-only 
scaling of 2-4. 

The division of 9.1875 by 1.5000 is shown below.

For this example,

Assuming a large data type was available, this could be implemented as

Ea Eb Ec�<

Qa 2 4� 4�( )� 4�( )� Qb Qc⁄( )=

24 Qb Qc⁄( )=
0



Rules for Arithmetic Operations
where the numerator uses the larger date type. If a larger data type was not 
available, integer division combined with four repeated subtractions would be 
used. Both approaches produce the same result, with the former being more 
efficient.

Shifts
Nearly all microprocessors and digital signal processors support well-defined 
bit-shift (or simply shift) operations for integers. For example, consider the 
8-bit unsigned integer 00110101. The results of a 2-bit shift to the left and a 
2-bit shift to the right are shown below.

You can perform a shift with the Fixed-Point Blockset using the Shift 
Arithmetic block. Use this block to perform a bit shift, a radix point shift, or 
both. See Chapter 9, “Block Reference” for more information on performing bit 
and radix point shifts using the Shift Arithmetic block.

Shifting Bits to the Right
The special case of shifting bits to the right requires consideration of the 
treatment of the left-most bit, which may contain sign information. A shift to 
the right can be classified either as a logical shift right or an arithmetic shift 
right. For a logical shift right, a 0 is incorporated into the most significant bit 
for each bit shift. For an arithmetic shift right, the most significant bit is 
recycled for each bit shift. 

The Shift Arithmetic block performs an arithmetic shift right and, therefore, 
recycles the most significant bit for each bit shift right. For example, given the 
fixed-point number 11001.011 (-6.625), a bit shift two places to the right with 

Shift Operation Binary Value Decimal Value

No shift (original number) 00110101 53

Shift left by 2 bits 11010100 212

Shift right by 2 bits 00001101 13

Qa
24Qb( )

Qc
-------------------=
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the radix point unmoved yields the number 11110.010 (-1.75), as shown in the 
model below.

To perform a logical shift right on a signed number using the Shift Arithmetic 
block, use the Conversion block to cast the number as an unsigned number of 
equivalent length and scaling, as shown below. The model shows that the 
fixed-point signed number 11001.001 (-6.625) becomes 00110.010 (6.25).

Vy = Vu * 2^−2
Qy = Qu >> 2

Ey = Eu

Shift
Arithmetic

Out

Gateway Out

−1.75

Display

−6.625

Constant

sfix8_En3 sfix8_En3 double

Vy = Vu * 2^−2
Qy = Qu >> 2

Ey = Eu

Shift
Arithmetic

Out

Gateway Out

6.25

Display

Convert

Conversion

−6.625

Constant

sfix8_En3 ufix8_En3 ufix8_En3 double
2



Example: Conversions and Arithmetic Operations
Example: Conversions and Arithmetic Operations
This example uses the FIR block to illustrate when parameters are converted 
from a double to a fixed-point number, when the input data type is converted 
to the output data type, and when the rules for addition, subtraction, and 
multiplication are applied. For details about conversions and operations, refer 
to “Parameter and Signal Conversions” on page 4-26 and “Rules for Arithmetic 
Operations” on page 4-30.

Note  If a block can perform all four arithmetic operations, such as the FIR 
block, then the rules for multiplication and division are applied first.

Suppose you configure the FIR block for two outputs (SIMO mode) where the 
first output is given by

and the second output is given by

Additionally, the initial values of  and  are given by 0.8 and 
1.1, respectively and all inputs, parameters, and outputs have radix point-only 
scaling. 

To configure the FIR block for this situation, you must specify the FIR 
coefficients parameter as [13 11 -7; 6 -5 0] and the Initial condition 
parameter as [0.8 1.1] as shown below in the dialog box below.

y1 k( ) 13 u k( ) 11 u k 1�( ) 7 u k 2�( )⋅�⋅+⋅=

y2 k( ) 6 u k( ) 5 u k 1�( )⋅�⋅=

u k 1�( ) u k 2�( )
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Parameter conversions and block operations are given below in the order in 
which they are carried out by the FIR block:

1 The FIR coefficients parameter is converted from doubles to the 
Parameter data type offline using round-to-nearest and saturation.

The Initial condition parameter is converted from doubles to the input data 
type offline using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step 
for both outputs. For y1(0), the operations , , and  13 u⋅ 0( ) 11 0.8⋅ 7� 1.1⋅
4



Example: Conversions and Arithmetic Operations
are performed, while for y2(0), the operations  and  are 
performed. 

The results of these operations are then converted to the Output data type 
using the specified rounding and overflow modes.

3 The sum is carried out for y1(0) and y2(0). Note that the rules for addition 
and subtraction are satisfied since the coefficients and inputs are already 
converted to the Output data type.

4 Steps 2 and 3 are repeated for subsequent time steps.

6 u⋅ 0( ) 5� 0.8⋅
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Overview
This chapter investigates how you can realize digital filters using the 
Fixed-Point Blockset.

The Fixed-Point Blockset addresses the needs of the control system and signal 
processing fields, and other fields where algorithms are implemented on 
fixed-point hardware. In signal processing, a digital filter is a computational 
algorithm that converts a sequence of input numbers to a sequence of output 
numbers. The algorithm is designed such that the output signal meets 
frequency-domain or time-domain constraints (desirable frequency 
components are passed, undesirable components are rejected). 

In general terms, a discrete transfer function controller is a form of a digital 
filter. However, a digital controller may contain nonlinear functions such as 
look-up tables in addition to a discrete transfer function. This guide uses the 
term digital filter when referring to discrete transfer functions.

Realizations and Data Types
In an ideal world where numbers, calculations, and storage of states have 
infinite precision and range, there are virtually an infinite number of 
realizations for the same system. In theory, these realizations are all identical 
to each other.

In the more realistic world of double-precision numbers, calculations, and 
storage of states, small nonlinearities are introduced due to the finite precision 
and range of floating-point data types. Therefore, each realization of a given 
system produces different results. In most cases however, these differences are 
small.

In the world of fixed-point numbers where precision and range are limited, the 
differences in the realization results can be very large. Therefore, you must 
carefully select the data type, word size, and scaling for each realization 
element such that results are accurately represented. To assist you with this 
selection, design rules for modeling dynamic systems with fixed-point math are 
provided in “Targeting an Embedded Processor” on page 5-3.



Targeting an Embedded Processor
Targeting an Embedded Processor
This section describes issues that often arise when targeting a fixed-point 
design for use on an embedded processor, such as some general assumptions 
about integer sizes and operations available on embedded processors. These 
assumptions lead to design issues and design rules that may be useful for your 
specific fixed-point design.

Size Assumptions
Embedded processors are typically characterized by a particular bit size. For 
example, the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common. 
It is generally safe to assume that the processor is predominantly geared to 
processing integers of the specified bit size. Integers of the specified bit size are 
referred to as the base data type. Additionally, the processor typically provides 
some support for integers that are twice as wide as the base data type. Integers 
consisting of double bits are referred to as the accumulator data type. For 
example a 16-bit micro has a 16-bit base data type and a 32-bit accumulator 
data type.

Although other data types may be supported by the embedded processor, this 
section describes only the base and accumulator data types.

Operation Assumptions
The embedded processor operations discussed in this section are limited to the 
needs of a basic simulation diagram. Basic simulations use multiplication, 
addition, subtraction, and delays. Fixed-point models also need shifts to do 
scaling conversions. For all these operations, the embedded processor should 
have native instructions that allow the base data type as inputs. For 
accumulator-type inputs, the processor typically supports addition, 
subtraction, and delay (storage/retrieval from memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs due to 
complexity and size issues. A difficulty with multiplication is that the output 
needs to be twice as big as the inputs for full precision. For example, 
multiplying two 16-bit numbers requires a 32-bit output for full precision. The 
need to handle the outputs from a multiply operation is one of the reasons 
embedded processors include accumulator-type support. However, if 
multiplication of accumulator-type inputs is also supported, then there is a 
need to support a data type that is twice as big as the accumulator type. To 
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restrict this additional complexity, multiplication is typically not supported for 
inputs of the accumulator type.

Design Rules
The important design rules that you should be aware of when modeling 
dynamic systems with fixed-point math follow.

Design Rule 1: Only Multiply Base Data Types
It is best to multiply only inputs of the base data type. Embedded processors 
typically provide an instruction for the multiplication of base-type inputs, but 
not for the multiplication of accumulator-type inputs. If necessary, you can 
combine several instructions to handle multiplication of accumulator-type 
inputs. However, this can lead to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator-type to the 
base-type prior to multiply or gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type
There are two general reasons why a unit delay should use only base-type 
numbers:

• The unit delay essentially stores a variable’s value to RAM, and one time 
step later, retrieves that value from RAM. Because the value must be in 
memory from one time step to the next, the RAM must be exclusively 
dedicated to the variable and can’t be shared or used for another purpose. 
Using accumulator-type numbers instead of the base data type doubles the 
RAM requirements, which can significantly increase the cost of the 
embedded system.

• The unit delay typically feeds into a gain block. The multiplication design 
rule requires that the input (the unit delay signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator Data Type
Except for unit delay signals, most signals are not needed from one time step 
to the next. This means that the signal values can be temporarily stored in 
shared and reused memory. This shared and reused memory can be RAM or it 
can simply be registers in the CPU. In either case, storing the value as an 
accumulator data type is not much more costly than storing it as a base data 
type.



Targeting an Embedded Processor
Design Rule 4: Summation Can Use the Accumulator Data Type
Addition and subtraction can use the accumulator data type if there is 
justification. The typical justification is reducing the buildup of errors due to 
round-off or overflow.

For example, a common filter operation is a weighted sum of several variables. 
Multiplying a variable by a weight naturally produces a product of the 
accumulator type. Before summing, each product can be converted back to the 
base data type. This approach introduces round-off error into each part of the 
sum.

Alternatively, the products can be summed using the accumulator data type, 
and the final sum can be converted to the base data type. Round-off error is 
introduced in just one point and the precision is generally better. The cost of 
doing an addition or subtraction using accumulator-type numbers is slightly 
more expensive, but if there is justification, it is usually worth the cost.
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Canonical Forms
The Fixed-Point Blockset does not attempt to standardize on one particular 
fixed-point digital filter design method. For example, you can produce a design 
in continuous time and then obtain an “equivalent” discrete-time digital filter 
using one of many transformation methods. Alternatively, you can design 
digital filters directly in discrete time. After you obtain a digital filter, it can be 
realized for fixed-point hardware using any number of canonical forms. Typical 
canonical forms are the direct form, series form, and parallel form, all of which 
are outlined in this chapter.

For a given digital filter, the canonical forms describe a set of fundamental 
operations for the processor. Since there are an infinite number of ways to 
realize a given digital filter, you must make the best realization on a 
per-system basis. The canonical forms presented in this chapter optimize the 
implementation with respect to some factor, such as minimum number of delay 
elements.

In general, when choosing a realization method, you must take these factors 
into consideration:

• Cost 

The cost of the realization might rely on minimal code and data size.
• Timing constraints 

Real-time systems must complete their compute cycle within a fixed amount 
of time. Some realizations might yield faster execution speed on different 
processors.

• Output signal quality 

The limited range and precision of the binary words used to represent 
real-world numbers will introduce errors. Some realizations are more 
sensitive to these errors than others.

The Fixed-Point Blockset allows you to evaluate various digital filter 
realization methods in a simulation environment. Following the development 
cycle outlined in “The Development Cycle” in Chapter 1, you can fine-tune the 
realizations with the goal of reducing the cost (code and data size) or increasing 
signal quality. After you have achieved the desired performance, you can use 
the Real-Time Workshop to generate rapid prototyping C code and evaluate its 
performance with respect to your system’s real-time timing constraints. You 



Canonical Forms
can then modify the model based upon feedback from the rapid prototyping 
system.

The presentation of the various realization structures takes into account that 
a summing junction is a fundamental operator; thus you may find that the 
structures presented here look different from those in the fixed-point filter 
design literature. For each realization form, an example is provided using the 
transfer function shown below:

Direct Form II
In general, a direct form realization refers to a structure where the coefficients 
of the transfer function appear directly as gain blocks. The direct form II 
realization method is presented as using the minimal number of delay 
elements, which is equal to n, the order of the transfer function denominator.

The canonical direct form II is presented as “Standard Programming” in 
Discrete-Time Control Systems by Ogata. It is known as the “Control Canonical 
Form” in Digital Control of Dynamic Systems by Franklin, Powell, and 
Workman.
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You can derive the canonical direct form II realization by writing the 
discrete-time transfer function with input e(z) and output u(z) as

The block diagram for u(z)/h(z) follows:
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Canonical Forms
The block diagrams for h(z)/e(z) follow.

Combining these two block diagrams yields the direct form II diagram shown 
below. Notice that the feedforward part (top of block diagram) contains the 
numerator coefficients and the feedback part (bottom of block diagram) 
contains the denominator coefficients.
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The direct form II example transfer function is given by

The realization of Hex(z) using the Fixed-Point Blockset is shown below. You 
can display this model by typing

fxpdemo_direct_form2

at the MATLAB command line.

Series Cascade Form
In the canonical series cascade form, the transfer function H(z) is written as a 
product of first-order and second-order transfer functions:
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Canonical Forms
This equation yields the canonical series cascade form.

Factoring H(z) into Hi(z) where i = 1,2,3,...,p can be done in a number of ways. 
Using the poles and zeros of H(z), you can obtain Hi(z) by grouping pairs of 
conjugate complex poles and pairs of conjugate complex zeros to produce 
second-order transfer functions, or by grouping real poles and real zeros to 
produce either first-order or second-order transfer functions. You could also 
group two real zeros with a pair of conjugate complex poles or vice versa. Since 
there are many ways to obtain Hi(z), you should compare the various groupings 
to see which produces the best results for the transfer function under 
consideration.

For example, one factorization of H(z) might be

You must also take into consideration that the ordering of the individual Hi(z)’s 
will lead to systems with different numerical characteristics. You may want to 
try various orderings for a given set of Hi(z)’s to determine which gives the best 
numerical characteristics.
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The first order diagram for H(z) follows.

The second order diagram for H(z) follows.

The series cascade form example transfer function is given by
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Canonical Forms
The realization of Hex(z) using the Fixed-Point Blockset is shown below. You 
can display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.

Parallel Form
In the canonical parallel form, the transfer function H(z) is expanded into 
partial fractions. H(z) is then realized as a sum of a constant, first-order, and 
second-order transfer functions, as shown:

Hi z( ) u z( )
e z( )
----------- K H1 z( ) H2 z( ) … Hp z( )+ + + += =
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This expansion, where K is a constant and the  are the first and 
second-order transfer functions, follows.

As in the series canonical form, there is no unique description for the first-order 
and second-order transfer function. Due to the nature of the Sum block, the 
ordering of the individual filters doesn’t matter. However, because of the 
constant K, you can choose the first-order and second-order transfer functions 
such that their forms are simpler than those for the series cascade form 
described in the preceding section. This is done by expanding H(z) as
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Canonical Forms
The first order diagram for H(z) follows.

The second order diagram for H(z) follows.

The parallel form example transfer function is given by
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The realization of Hex(z) using the Fixed-Point Blockset is shown below. You 
can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.
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Tutorial: Feedback 
Controller Simulation

Overview (p. 6-2) An overview of the Fixed-Point Blockset features 
highlighted by the tutorial

Simulink Model of a Feedback Design 
(p. 6-3)

An introduction to the feedback design model used in the 
tutorial

Idealized Feedback Design (p. 6-6) Presentation of the open-loop and plant-only Bode plots 
for the simulation

Digital Controller Realization (p. 6-7) An introduction to the digital controller used in the 
tutorial

Simulation Results (p. 6-10) A step-by-step tutorial based on the fxpdemo_feedback 
demo, which highlights use of the Fixed-Point Settings 
interface
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Overview
The purpose of this tutorial is to show you how to simulate a fixed-point 
feedback design using the Fixed-Point Settings interface. In doing so, many of 
the essential features of the Fixed-Point Blockset are demonstrated. These 
include

• Selecting output data type

• Selecting output scaling

• Logging maximum and minimum simulation results

• Using the automatic scaling tool

• Overriding the output data type for a system or subsystem



Simulink Model of a Feedback Design
Simulink Model of a Feedback Design
Run the Simulink model of the feedback design by launching the MATLAB 
Demo browser and selecting the Scaling a Fixed Point Control Design demo. 
Launch the Demo browser by typing

demo blockset 'Fixed Point'

at the command line, or by opening the Demos block found in the Fixed-Point 
Blockset library. Alternatively, you can access the model directly by typing its 
name at the command line:

fxpdemo_feedback

The demo’s .mdl file automatically runs the M-file preload_feedback, which 
populates the workspace with the required parameter values. The feedback 
design model is shown below.

The model consists of the following blocks and subsystems:

• Reference

This Simulink Signal Generator block generates a continuous-time reference 
signal. It is configured to output a square wave.

• Sum

This Simulink or Fixed-Point Blockset Sum block subtracts the plant output 
from the reference signal.

• ZOH

The Simulink or Fixed-Point Blockset Zero-Order Hold block samples and 
holds the continuous signal. This block is configured so that it quantizes the 
signal in time by an amount tsamp = 0.01 second.
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• Analog to Digital Interface

The analog to digital (A/D) interface consists of a Gateway In block that 
converts a Simulink double to a Fixed-Point Blockset data type. It represents 
any hardware that digitizes the amplitude of the analog input signal. In the 
real world, its characteristics are fixed.

• Controller 

The digital controller is a subsystem that represents the software running on 
the hardware target. Refer to “Digital Controller Realization” on page 6-7.

• Digital to Analog Interface 

The digital to analog (D/A) interface consists of a Gateway Out block that 
converts a Fixed-Point Blockset data type into a Simulink double. It 
represents any hardware that converts a digitized signal into an analog 
signal. In the real world, its characteristics are fixed.

• Analog Plant 

The analog plant is described by a transfer function, and is controlled by the 
digital controller. In the real world, its characteristics are fixed.

• FixPt GUI

This block launches the Fixed-Point Settings interface.

The model also includes three scopes, which display the reference, plant input, 
and plant output signals.

Simulation Setup
To set up this kind of fixed-point feedback controller simulation, you perform 
the following steps:

1 Identify all design components.

In the real world, there are design components with fixed characteristics 
(the hardware) and design components with characteristics that you can 
change (the software). In this feedback design, the main hardware 
components are the A/D hardware, the D/A hardware, and the analog plant. 
The main software component is the digital controller.



Simulink Model of a Feedback Design
2 Develop a theoretical model of the plant and controller.

For the feedback design used in this tutorial, the plant is characterized by a 
transfer function. The characteristics of the plant are unimportant for this 
tutorial, and are not discussed.

The digital controller model used in this tutorial is described by a z-domain 
transfer function and is implemented using a direct-form realization.

3 Evaluate the behavior of the plant and controller.

You evaluate the behavior of the plant and the controller with a Bode plot. 
This evaluation is idealized since all numbers, operations, and states are 
double-precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and the 
Fixed-Point Blockset. Of course, in a simulation environment, you can treat 
all components (software and hardware) as though their characteristics are 
not fixed.
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Idealized Feedback Design
Open loop (controller and plant) and plant-only Bode plots for the Scaling a 
Fixed-Point Control Design demo are shown below. The open loop Bode plot 
results from a digital controller described in the idealized world of continuous 
time, double-precision coefficients, storage of states, and math operations.

The plant and controller design criteria are not important for the purposes of 
this tutorial. The Bode plots were created using the workspace variables 
produced by the preload_feedback M-file.
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Digital Controller Realization
Digital Controller Realization
In this simulation, the digital controller is implemented using the fixed-point 
direct-form realization shown below. The hardware target is a 16-bit processor. 
Variables and coefficients are generally represented using 16 bits, especially if 
these quantities are stored in ROM or global RAM. Use of 32-bit numbers is 
limited to temporary variables that exist briefly in CPU registers or in a stack.

The realization consists of these blocks:

• Up Cast

Up Cast is a Fixed-Point Blockset Conversion block that connects the A/D 
hardware with the digital controller. It pads the output word of the A/D 
hardware with trailing zeros to a 16-bit number (the base data type). 

• Numerator Terms and Denominator Terms

Each of these Fixed-Point Blockset FIR blocks represents a weighted sum 
carried out in the CPU target. The word size and precision used in the 
calculations reflect those of the accumulator. Numerator Terms multiplies 
and accumulates the most recent inputs with the FIR numerator coefficients. 
Denominator Terms multiples and accumulates the most recent delayed 
outputs with the FIR denominator coefficients. The coefficients are stored in 
6-7
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ROM using the base data type. The most recent inputs are stored in global 
RAM using the base data type.

• Combine Terms

Combine Terms is a Simulink or Fixed-Point Blockset Sum block that 
represents the accumulator in the CPU. Its word size and precision are twice 
that of the RAM (double bits).

• Down Cast

Down Cast is a Fixed-Point Blockset Conversion block that represents taking 
the number from the CPU and storing it in RAM. The word size and precision 
are reduced to half that of the accumulator when converted back to the base 
data type.

• Prev Out

Prev Out is a Simulink or Fixed-Point Blockset Unit Delay block that delays 
the feedback signal in memory by one sample period. The signals are stored 
in global RAM using the base data type.

Direct Form Realization
The controller directly implements this equation

where

• u(k – 1) represents the input from the previous time step.

• y(k) represents the current output, and y(k – 1) represents the output from 
the previous time step.

• bi represents the FIR numerator coefficients.

• ai represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the 
most recent inputs and numerator coefficients in the accumulator. The second 
summation in y(k) represents multiplication and accumulation of the most 
recent outputs and denominator coefficients in the accumulator. Since the FIR 
coefficients, inputs, and outputs are all represented by 16-bit numbers (the 

y k( ) biu k 1�( ) aiy k 1�( )
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N
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Digital Controller Realization
base data type), any multiplication involving these numbers produces a 32-bit 
output (the accumulator data type).
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Simulation Results
Using Simulink and the Fixed-Point Blockset, you can easily transition from a 
digital controller described in the ideal world of double-precision numbers to 
one realized in the world of fixed-point numbers. The simulation approach used 
in this tutorial follows these steps:

• “1. Initial Guess at Scaling” on page 6-10. For this tutorial, you run an initial 
“proof of concept” simulation using a reasonable guess at the fixed-point 
word size and scaling. This step is included only to illustrate how difficult it 
is to guess the best scaling.

• “2. Data Type Override” on page 6-13. Perform a global override of the 
fixed-point data types and scaling using double-precision numbers. The 
maximum and minimum simulation values for each digital controller block 
are logged to the workspace.

• “3. Automatic Scaling” on page 6-15. Use the automatic scaling procedure. 
This procedure uses the doubles simulation values previously logged to the 
MATLAB workspace, and changes the scaling for each block that does not 
have its scaling fixed.

The feedback controller simulation is performed with the Fixed-Point Settings 
interface. You launch the interface by selecting the FixPt GUI block within the 
fxpdemo_feedback model, by selecting Fixed-Point settings from the Tools 
menu in the model window, by right-clicking in the model and selecting 
Fixed-Point settings from the menu that pops up, or by typing

fxptdlg('fxpdemo_feedback')

at the command line. The three steps of the simulation are described in the 
following sections. You determine the quality of the simulation results by 
examining the input and output of the analog plant.

1. Initial Guess at Scaling
In the first step, initial guesses for the scaling of each block are already 
specified in each block mask in the model. This step is included to illustrate the 
difficulty of guessing at the best scaling.
0



Simulation Results
1 After you launch the Fixed-Point Settings interface, click the Run button in 
the dialog to run the simulation. When the simulation is finished, the 
Simulation data logged for current system pane of the interface displays 
the block name, the minimum and maximum simulation results, the data 
type, and the scaling for each block. The display shows that the Up Cast 
block saturated 23 times, indicating a poor guess for the scaling.

2 Click the Plot button. This launches the Plot System interface, which is 
shown below. This interface displays all MATLAB variable names that 
contain Scope block data for the current model.

3 To plot the simulation results, select one or more variable names in the Plot 
System interface, and then select the appropriate plot button. This 
simulation plots the fixed-point signals for the plant input and the plant 
output.

f1 Run simulation 2 Launch Plot System interface
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The plant input and output signals are shown below. These signals reflect the 
initial guess at scaling.

The Bode plot design sought to produce a well-behaved linear response for the 
closed-loop system. Clearly, the response is nonlinear. The nonlinear features 

3b Plot selected signals

3a Select both the plant input signal
and the plant output signal

Fixed-point plant
input signal

Fixed-point plant
output signal
2



Simulation Results
are due to significant quantization effects. An important part of fixed-point 
design is finding scaling that reduce quantization effects to acceptable levels.

2. Data Type Override
You can obtain ideal simulation limits by using the automatic scaling tool. 
However, you must first perform a data type override with doubles of all blocks 
with fixed-point output, and you must log maximum and minimum simulation 
values for all blocks that are to be scaled.

1 Make sure the Logging Mode parameter is set to Min, max and overflow 
for the fxpdemo_feedback system. This overrides all local logging settings 
for the subsystems of the model.

2 Perform a data type override with doubles by setting the Data type 
override parameter in the interface to True Doubles. This overrides all 
local data type settings for the subsystems of the model.

4 Launch

3 Run the
simulation

Plot System
interface

1 Log mins, maxes, 2 Set data type override
to true doublesand overflows
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3 Run the simulation by clicking the Run button.

4 Click the Plot button to launch the Plot System interface.

5 Compare the ideal (doubles) and fixed-point plant output signals using the 
Plot System interface.

The ideal and fixed-point plant output signals are shown below. The ideal 
signal is produced by overriding the block output scaling with true doubles.

5a Select the plant output signal

5b Plot both ideal (doubles) and fixed-point signal
4



Simulation Results
3. Automatic Scaling
Using the automatic scaling procedure, you can easily maximize the precision 
of the output data type while spanning the full simulation range. For a complex 
model, the absence of such a procedure can make achieving this goal tedious 
and time consuming.

Perform automatic scaling for the Controller block. This block is a subsystem 
representing software running on the target, and requires optimization.

Ideal plant output
signal

Fixed-point plant
output signal
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1 Turn off the data type override by setting Data type override in the 
Fixed-Point Settings interface to Use local settings. Each subsystem in 
the model now follows its own independent setting for this parameter.

1 Set data type override to Use local settings
6



Simulation Results
2 Select the Controller subsystem in the Select current system parameter of 
the interface.

3 Set the Safety margin parameter in the interface to 20. This sets the scaling 
so that the largest simulation value seen is at least 20% smaller than the 
maximum value allowed. The Safety margin parameter value multiplies 
the “raw” simulation values by a factor of 1.2. Setting this parameter to a 
value greater than 1 decreases the likelihood that an overflow will occur 
when fixed-point data types are being used.

Due to the nonlinear effects of quantization, a fixed-point simulation will 
produce results that are different from an idealized, doubles-based 
simulation. Signals in a fixed-point simulation may cover a larger or smaller 
range than in a doubles-based simulation. If the range increases enough, 
overflows or saturations could occur. A safety margin decreases the 
likelihood of this happening, but it may also decrease the precision of the 
simulation.

5 Run simulation 6 Launch Plot System interface

2 Select the
Controller
subsystem

3 Set the
safety
margin to
20

4 Run the
autoscale
script
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4 Run the autofixexp M-file script by clicking the Autoscale Blocks button. 
This script automatically changes the scaling on all fixed-point blocks that 
do not have their scaling locked, and that have their output data type 
specified as a generalized fixed-point number. This script uses the minimum 
and maximum data logged from the previous simulation to change each 
block’s scaling such that the precision is maximized while the full range of 
simulation values is spanned for each block.

5 Run the simulation by clicking the Run button. This simulation will use the 
new scaling set in Step 4.

6 Launch the Plot System interface and plot the plant output signal. The 
resulting plot is shown below.

You can produce a close-up of a portion of the plot by clicking at the upper left 
of the region you want to expand, and dragging the pointer to the lower right 
while pressing the mouse button. When you then release the mouse button, you 
produce the plot below.
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Simulation Results
Note that a steady state has been achieved, but a small limit cycle is present in 
the steady state due to poor A/D design.

Limit cycles produced
by the A2D block
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Overview (p. 7-2) An overview of the topics covered by the tutorial

Worst Case Error for a Lookup Table 
(p. 7-3)

A description of worst case error for a lookup table, and 
how to find it using the fixpt_look1_func_plot function

Creating Lookup Tables for a Sine 
Function (p. 7-5)

A step-by-step tutorial on how to make lookup tables 
using the fixpt_look1_func_approx function

Summary: Using the Lookup Table 
Functions (p. 7-19)

A brief summary of conclusions from the tutorial on how 
to use fixpt_look1_func_plot and 
fixpt_look1_func_approx to create lookup tables

Effect of Spacing on Speed, Error, and 
Memory Usage (p. 7-20)

A comparison of lookup tables with differing spacing — 
uneven, even, and power of two
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Overview
A function lookup table is a method by which you can approximate a function 
by a table with a finite number of points (X,Y). Function lookup tables are 
essential to many fixed-point applications. The function you want to 
approximate is called the ideal function. The X values of the lookup table are 
called the breakpoints. You approximate the value of the ideal function at a 
point by linearly interpolating between the two adjacent breakpoints closest to 
the point.

In creating the points for a function lookup table, you generally want to achieve 
one or both of the following goals:

• Minimize the worst case error for a specified maximum number of 
breakpoints

• Minimize the number of breakpoints for a specified maximum allowed error

This tutorial shows you how to create function lookup tables using the function 
fixpt_look1_func_approx. You can optimize the lookup table to minimize the 
number of data points, the error, or both. You can also restrict the spacing of 
the breakpoints to be even or even powers of two, in order to speed up 
computations using the table.

This tutorial also explains how to use the function fixpt_look1_func_plot to 
find the worst case error of a lookup table and plot the errors at all points.



Worst Case Error for a Lookup Table
Worst Case Error for a Lookup Table
This section explains the worst case error of a lookup table, and how to find the 
worst case error using the function fixpt_look1_func_plot. It gives a simple 
example of the worst case error of a lookup table for the square root function.

The error at any point of a function lookup table is the absolute value of the 
difference between the ideal function at the point and the corresponding Y 
value found by linearly interpolating between the adjacent breakpoints. The 
worst case error, or maximum absolute error, of a lookup table is the maximum 
absolute value of all errors in the interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of the 
lookup table are 0, .25 and 1, then in a perfect implementation of the lookup 
table, the worst case error is 1/8 = .125, which occurs at the point 1/16 = .0625. 
In practice, the error could be greater, depending on the fixed point 
quantization and other factors.

Example: Square Root Function
This example shows how to use the function fixpt_look1_func_plot to find 
the maximum absolute error for the simple lookup table whose breakpoints are 
0, .25, and 1. The corresponding Y data points of the lookup table, which you 
find by taking the square roots of the breakpoints, are 0, .5 and 1.

To use the function fixpt_look1_func_plot, you need to first define its 
parameters. To do so, type the following at the MATLAB prompt:

funcstr='sqrt(x)'; %Define the square root function
xdata=[0;.25;1]; %Set the breakpoints
ydata=sqrt(xdata); %Find the square root of the breakpoints
xmin = 0; %Set the minimum breakpoint
xmax = 1; %Set the maximum breakpoint
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method

Next, type

errworst=fixpt_look1_func_plot(xdata,ydata,funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)
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This returns the worst case error of the lookup table as the variable errworst:

errworst =
0.1250

It also generates the plots shown below. The upper box (Outputs) displays a 
plot of the square root function, and a plot of the fixed-point lookup 
approximation underneath. The approximation is found by linear interpolation 
between the breakpoints. The lower box (Absolute Error) displays the errors at 
all points in the interval from 0 to 1. Notice that the maximum absolute error 
occurs at .0625. The error at the breakpoints is 0.
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Creating Lookup Tables for a Sine Function
This section explains how to use the function fixpt_look1_func_approx to 
create lookup tables. It gives examples that show how to create lookup tables 
for the function sin(2 x) on the interval from 0 to .25. The section covers

• “Parameters for fixpt_look1_func_approx” on page 7-5

• “Setting Function Parameters for the Lookup Table” on page 7-6

• “Example 1: Using errmax with Unrestricted Spacing” on page 7-7

• “Example 2: Using nptsmax with Unrestricted Spacing” on page 7-10

• “Restricting the Spacing” on page 7-11

• “Example 3: Using errmax with Even Spacing” on page 7-12

• “Example 4: Using nptsmax with Even Spacing” on page 7-13

• “Example 5: Using errmax with Power of Two Spacing” on page 7-14

• “Example 6: Using nptsmax with Power of Two Spacing” on page 7-16

• “Specifying Both errmax and nptsmax” on page 7-17

• “Comparing the Examples” on page 7-18

Parameters for fixpt_look1_func_approx
To use the function fixpt_look1_func_approx, you must first define its 
parameters. The required parameters for the function are

• funcstr – The ideal function

• xmin – The minimum input of interest

• xmax – The maximum input of interest

• xdt – The x data type

• xscale – The x data scaling

• ydt – The y data type

• yscale – The y data scaling

• rndmeth – The rounding method

In addition there are three optional parameters:

• errmax – The maximum allowed error of the lookup table

• nptsmax – The maximum number of points of the lookup table

π
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• spacing – The allowed spacing between breakpoints

You must use at least one of the parameters errmax and nptsmax. The next 
section “Setting Function Parameters for the Lookup Table” on page 7-6 gives 
typical settings for these parameters.

Using Only errmax
If you use only the errmax parameter, without nptsmax, the function creates a 
lookup table with the fewest points, for which the worst case error is at most 
errmax. See “Example 1: Using errmax with Unrestricted Spacing” on page 7-7.

Using Only nptsmax
If you use only the nptsmax parameter without errmax, the function creates a 
lookup table with at most nptsmax points, which has the smallest worse case 
error. See “Example 2: Using nptsmax with Unrestricted Spacing” on 
page 7-10.

The section “Specifying Both errmax and nptsmax” on page 7-17 describes how 
the function behaves when you specify both errmax and nptsmax. 

Spacing
You can use the optional spacing parameter to restrict the spacing between 
breakpoints of the lookup table. The options are

• 'unrestricted' – The default.

• 'even' – The distance between any two adjacent breakpoints is the same.

• 'pow2' – The distance between any two adjacent breakpoints is the same and 
the distance is a power of two.

The section “Restricting the Spacing” on page 7-11 and the examples that 
follow it explain how to use the spacing parameter.

Setting Function Parameters for the Lookup Table
To do the examples in this section, you must first set parameter values for the 
fixpt_look1_func_approx function. To do so, type the following at the 
MATLAB prompt:

funcstr = 'sin(2*pi*x)'; %Define the sine function
xmin = 0; %Set the minimum input of interest
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xmax = 0.25; %Set the maximum input of interest
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method
errmax = 2^-10; %Set the maximum allowed error
nptsmax = 21; %Specify the maximum number of points

If you exit MATLAB after typing these commands, you must retype them 
before trying any of the other examples in this section.

Example 1: Using errmax with Unrestricted Spacing
The first example shows how to create a lookup table that has the fewest data 
points for a specified worst case error, with unrestricted spacing. Before trying 
the example, enter the same parameter values given in the section “Setting 
Function Parameters for the Lookup Table” on page 7-6, if you have not 
already done so in this MATLAB session.

You specify the maximum allowed error by typing

errmax = 2^-10;

Creating the Lookup Table
To create the lookup table, type

[xdata,ydata,errworst]=fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax);

Note that the nptsmax and spacing parameters are not specified. 

The function returns three variables:

• xdata, the vector of breakpoints of the lookup table

• ydata, the vector found by applying ideal function, sin(2 x), to xdata

• errworst, which specifies the maximum possible error in the lookup table

The value of errworst is less than or equal to the value of errmax.

You can find the number of X data points by typing 

length(xdata)

π
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ans =

16

This means that 16 points are required to approximate sin(2 x) to within the 
tolerance specified by errmax.

You can display the maximum error by typing errworst. This returns

errworst =
9.7656e-004

Plotting the Results
You can plot the output of the function fixpt_look1_func_plot by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

The resulting plots are shown below.

π
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The upper plot shows the ideal function, sin(2 x) and the fixed-point lookup 
approximation between the breakpoints. In this example, the ideal function 
and the approximation are so close together that the two graphs appear to 
coincide. The lower plot displays the errors. 

In this example, the Y data points, returned by the function 
fixpt_look1_func_approx as ydata, are equal to the ideal function applied to 
the points in xdata. However, you can define a different set of values for ydata 
after running fixpt_look1_func_plot. This can sometimes reduce the 
maximum error. 

You can also change the values of xmin and xmax in order to evaluate the lookup 
table on a subset of the original interval.

To find the new maximum error after changing ydata, xmin or xmax, type

errworst=fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,...
xdt,xscale,ydt,yscale,rndmeth)

π
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Example 2: Using nptsmax with Unrestricted 
Spacing
The next example shows how to create a lookup table that minimizes the worst 
case error for a specified maximum number of data points, with unrestricted 
spacing. Before starting the example, enter the same parameter values given 
in the section “Setting Function Parameters for the Lookup Table” on page 7-6, 
if you have not already done so in this MATLAB session.

Setting the Number of Breakpoints
You specify the number of breakpoints in the lookup table by typing

nptsmax = 21;

Creating the Lookup Table
Next, type 

[xdata,ydata,errworst]= fixpt_look1_func_approx(funcstr, 
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets, [], tell the function to ignore the parameter errmax, which 
is not used in this example. Omitting errmax causes the function 
fixpt_look1_func_approx to return a lookup table of size specified by 
nptsmax, with the smallest worst case error.

The function returns a vector xdata, with 21 points. You can find the maximum 
error for this set of points is given by typing errworst at the MATLAB prompt. 
This returns

errworst =
5.1139e-004

Plotting the Results
To plot the lookup table along with the errors, type

fixpt_look1_func_plot(funcstr,xdata,xdt,xscale,ydata,ydt,...
yscale,rndmeth);

The resulting plots are shown below.
0
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Restricting the Spacing
In the previous two examples, the function fixpt_look1_func_approx creates 
lookup tables with unrestricted spacing between the breakpoints. You can 
restrict the spacing to improve the computational efficiency of the lookup table, 
using the spacing parameter. 

The options for spacing are:

• 'unrestricted' – The default.

• 'even' – The distance between any two adjacent breakpoints is the same.

• 'pow2' – The distance between any two adjacent breakpoints is the same and 
is a power of two.

Both power of two and even spacing increase the computational speed of the 
lookup table and use less command read-only memory (ROM). However, 
specifying either of the spacing restrictions along with errmax usually requires 
more data points in the lookup table than does unrestricted spacing, in order 
to achieve the same degree of accuracy. The section “Effect of Spacing on Speed, 
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Error, and Memory Usage” on page 7-20 discusses the tradeoffs between 
different spacing options. 

Example 3: Using errmax with Even Spacing
The next example shows how to create a lookup table that has evenly spaced 
breakpoints and a specified worst case error. To try the example, you must first 
enter the parameter values given in the section “Setting Function Parameters 
for the Lookup Table” on page 7-6, if you have not already done so in this 
MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst]=fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

You can find the number of points in the lookup table by typing length(xdata). 

ans =
20

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

This produces the following plots.
2
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Example 4: Using nptsmax with Even Spacing
The next example shows how to create a lookup table that has evenly space 
breakpoints and minimizes the worst case error for a specified maximum 
number of points. To try the example, you must first enter the parameter 
values given in the section “Setting Function Parameters for the Lookup Table” 
on page 7-6, if you have not already done so in this MATLAB session.

Next, at the MATLAB prompt type

spacing='even';
[xdata ydata errworst]= fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 21 evenly spaced points to achieve a maximum absolute 
error of 2^-10.2209.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
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xscale,ydt,yscale,rndmeth);

Example 5: Using errmax with Power of Two 
Spacing
The next example shows how to construct a lookup table that has power of two 
spacing and a specified worst case error. To try the example, you must first 
enter the parameter values given in the section “Setting Function Parameters 
for the Lookup Table” on page 7-6, if you have not already done so in this 
MATLAB session.

Next, at the MATLAB prompt type

spacing ='pow2';
[xdata ydata 
errworst]=fixpt_look1_func_approx(funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth,errmax,[],spacing);

To find out how many points are in the lookup table, type 
4
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length(xdata)

ans =
33

This means that 33 points are required to achieve the worst case error specified 
by errmax. To verify that these points are evenly spaced, type

widths=diff(xdata)

This generates a vector whose entries are the differences between consecutive 
points in xdata. Every entry of widths is 2-7.

To find the maximum error for the lookup table, type 

errworst

errworst =
3.7209e-004

This is less than the value of errmax.

To plot the lookup table data along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

This displays the plots shown below.
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Example 6: Using nptsmax with Power of Two 
Spacing
The next example shows how to create a lookup table that has power of two 
spacing and minimizes the worst case error for a specified maximum number 
of points. To try the example, you must first enter the parameter values given 
in the section “Setting Function Parameters for the Lookup Table” on page 7-6, 
if you have not already done so in this MATLAB session:

spacing ='pow2';
[xdata, errworst]= fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 17 points to achieve a maximum absolute error of 
2^-9.6267.

To plot the lookup table along with the errors, type
6
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fixpt_look1_func_plot(funcstr,xdata,xdt,xscale,ydt,yscale,rndmet
h);

This produces the plots shown below.

Specifying Both errmax and nptsmax
If you include both the errmax and the nptsmax parameters, the function 
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax 
data points, whose worst case error is at most errmax. If it can find a lookup 
table meeting both conditions, it uses the following order of priority for spacing:

1 Power of two

2 Even

3 Unrestricted
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If the function cannot find any lookup table satisfying both conditions, it 
ignores nptsmax and returns a lookup table with unrestricted spacing, whose 
worst case error is at most errmax. In this case, the function behaves the same 
as if the nptsmax parameter were omitted.

Using the parameters described the section “Setting Function Parameters for 
the Lookup Table” on page 7-6, the following examples illustrate the results of 
using different values for nptsmax when you enter

[xdata ydata errworst]=fixpt_look1_func_approx(funcstr, 
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,numptsmax);

The results for three different settings for nptsmax are as follows:

• numptsmax=33 — The function creates the lookup table with 33 points having 
power of two spacing as in Example 3.

• numptsmax=21 — Since the errmax and numptsmax conditions cannot be met 
with power of two spacing, the function creates the lookup table with 20 
points having even spacing, as in Example 5.

• numptsmax=16 — Since the errmax and numptsmax conditions cannot be met 
with either power of two or even spacing, the function creates the lookup 
table with 16 points having unrestricted spacing, as in Example 1.

Comparing the Examples
The following table summarizes the results for the examples. Note that when 
you specify errmax, even spacing requires more data points than unrestricted, 
and power of two spacing requires more points than even spacing.

Example Options Spacing Worst Case Error Number of Points in Table

1 errmax=2^-10 'unrestricted' 2^-10 16

2 nptsmax=21 'unrestricted' 2^-10.933 21

3 errmax=2^-10 'even' 2^-10.0844 20

4 nptsmax=21 'even' 2^-10.2209 21

5 errmax=2^-10 'pow2' 2^-11.3921 33

6 nptsmax=21 'pow2' 2^-9.627 17
8
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Summary: Using the Lookup Table Functions
The following summarizes how to use the lookup table approximation 
functions:

1 Define

a The ideal function to be approximated

b The range, xmin to xmax, over which to find X and Y data

c The fixed-point implementation: data type, scaling, and rounding method

d The maximum acceptable error, the maximum number of points, and the 
spacing

2 Run the fixpt_look1_func_approx function to generate X and Y data.

3 Use the fixpt_look1_func_plot function to plot the function and error 
between the ideal and approximated function using the selected X and Y 
data, and to calculate the error and the number of points used.

4 Vary input criteria, such as errmax, nptsmax and spacing, to produce sets of 
X and Y data that generate functions with varying worst-case error, number 
of points required, and spacing.

5 Compare results of the number of points required and maximum absolute 
error from various runs to choose the best set of X and Y data.
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Effect of Spacing on Speed, Error, and Memory Usage
This section compares the implementations of lookup tables that use 
breakpoints whose spacing is uneven, even, and power of two. This comparison 
is only valid when the breakpoints are not tunable. If the breakpoints can be 
tuned in the generated code, then all three cases generate the same code. The 
comparison will focus on the amount of read-only memory (ROM) used for data, 
the amount of ROM used for commands, and the speed with which the 
commands are executed.

As a specific example, this comparison uses the demo fxpdemo_approx_sin. 
There are three fixed-point lookup tables in this model. All three lookup tables 
approximate the function sin(2*pi*u) over the first quadrant. All three 
achieve a worst case error of less than 2^-8. However, they have different 
restrictions on their breakpoint spacing.

You can use the model fxpdemo_approx, which this demo opens, to generate 
code with Real-Time Workshop. This section presents several segments of the 
generated code. These segments of code were edited and arranged for clarity 
and to emphasize key differences. 

This section covers the following topics:

• “Data ROM Required” on page 7-21

• “Determining Out-of-Range Inputs” on page 7-22

• “Determining Input Location” on page 7-22

• “Interpolation” on page 7-24

• “Conclusion” on page 7-26

To open the demo, type at the MATLAB prompt

fxpdemo_approx_sin

This opens the model shown below.
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Data ROM Required
This section looks at the data ROM required by each of the three spacing 
options.

Uneven Case
Uneven spacing requires both Y data points and breakpoints:

int16_T  yuneven[8];
uint16_T xuneven[8];

The total bytes used is 32.

Even Case
Even spacing requires only Y data points:

int16_T yeven[10];

The total bytes used is 20. The breakpoints are not explicitly required. The code 
will use the spacing between the breakpoints, and may use the smallest and 
largest breakpoint. At most three values related to the breakpoints are needed. 
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Power of Two Case
Power of two spacing requires only Y data points:

int16_T ypow2[17];

The total bytes used is 34. The breakpoints are not explicitly required. The code 
will use the spacing between the breakpoints, and may use the smallest and 
largest breakpoint. At most three values related to the breakpoints are needed. 

Determining Out-of-Range Inputs
In all three cases you have to guard against the possibility that the input is less 
than the smallest breakpoint or greater than the biggest breakpoint. There 
may be differences in how occurrences of these possibilities are handled. 
However, the differences are generally minor and are normally not a key factor 
in deciding to use one spacing method over another. The subsequent sections 
assume that out-of-range inputs are impossible or have already been handled.

Determining Input Location
This section describes how the three fixed point lookup tables determine where 
the current input is relative to the breakpoints.

Uneven Case
Unevenly spaced breakpoints require a general-purpose algorithm such as a 
binary search to determine where the input lies in relation to the breakpoints. 
The following code provides an example:

iLeft = 0;
iRght = 7; /* number of breakpoints minus 1 */

while ( ( iRght - iLeft ) > 1 )
{
  i = ( iLeft + iRght ) >> 1;

if ( uAngle < xuneven[i] )
  {
    iRght = i;
  }
  else
  {
2
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    iLeft = i;
  }
}

The while loop executes up to log2(N) times where N is number of breakpoints.

Even Case
Evenly spaced breakpoints require only one step to determine where the input 
lies in relation to the breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the 
dividend would be (uAngle - SmallestBreakPoint). In this example, the 
smallest breakpoint was zero, so the subtraction was optimized out.

Power of Two Case
Power of two spaced breakpoints require only one step to determine where the 
input lies in relation to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2^8. The 
smallest breakpoint was zero, so uAngle replaced the general case of (uAngle 
- SmallestBreakPoint).

Comparison
To determine where the input is located with respect to the breakpoints, the 
unevenly spaced case clearly requires much more code than the other two 
cases. This code requires additional command ROM. This ROM penalty can be 
reduced if many lookup tables share the binary search algorithm as a function. 
Even if the code is shared, the number of clock cycles required to determine the 
location of the input is much higher for the unevenly spaced cases than the 
other two cases. If the code is shared, then function call overhead decreases the 
speed of execution a little more.

In the evenly spaced case and the power of two spaced case, you can determine 
the location of the input with a single line of code. The evenly spaced cased uses 
a general integer division. The power of two case uses a shift instead of general 
division because the divisor is an exact power of two. Without knowing the 
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specific processor to be used, you cannot be certain that a shift is better than 
division. 

Many processors can implement division with a single assembly language 
instruction, so the code will be small. However, this instruction often takes 
many clock cycles to complete. Quite a few processors do not provide a division 
instruction. Division on these processors is implemented via repeated 
subtractions. This is slow and requires a fair amount of machine code, but this 
code can be shared. 

Most processors provide a way to do logical and arithmetic shifts left and right. 
A distinguishing difference is whether the processor can do N shifts in one 
instruction (barrel shift) or requires N instructions that shift one bit at a time. 
The barrel shift will require less code. Whether or not the barrel shift also 
increases speed depends on the hardware that supports the operation.

The compiler can also complicate the comparison. In the previous example, the 
command uAngle >> 8 essentially takes the upper 8 bits in a 16 bit word. The 
compiler may detect this and replace the bit shifts with an instruction that 
takes the bits directly. If the number of shifts is some other value, such as 7, 
this optimization would not occur.

Interpolation
In theory, you can calculate the interpolation with the following code:

y = ( yData[iRght] - yData[iLeft] ) * ( u - xData[iLeft] )
/ ( xData[iRght] - xData[iLeft] ) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between 
neighboring breakpoints. If this value is constant, i.e., even spacing, some 
simplification is possible. If spacing is not just even but also a power of two, 
then very significant simplifications are possible for fixed-point 
implementations. 

Uneven Case
For the uneven case, one possible implementation of the ideal interpolation in 
fixed point is as follows:

xNum  = uAngle         - xuneven[iLeft];
xDen  = xuneven[iRght] - xuneven[iLeft];
yDiff = yuneven[iRght] - yuneven[iLeft];
4



Effect of Spacing on Speed, Error, and Memory Usage
MUL_S32_S16_U16( bigProd, yDiff, xNum ); 

  DIV_NZP_S16_S32_U16_FLOOR( yDiff, bigProd, xDen );

  yUneven = yuneven[iLeft] + yDiff;

The multiplication and division routines are not shown here. These can be 
somewhat involved and depend on the target processor. For example, these 
routines look quite different for a 16-bit processor than for a 32-bit processor.

Even Case
Evenly spaced breakpoints implement interpolation using just slightly 
different calculations than the uneven case. The key difference is that the 
calculations do not directly use the breakpoints. This means the breakpoints 
are not required in ROM, which can be a very significant savings:

xNum  = uAngle - ( iLeft * 455U );

  yDiff = yeven[iLeft+1] - yeven[iLeft];

  MUL_S32_S16_U16( bigProd, yDiff, xNum ); 

  DIV_NZP_S16_S32_U16_FLOOR( yDiff, bigProd, 455U );

  yEven = yeven[iLeft] + yDiff;

Power of Two Case
Power of two spaced breakpoints implement interpolation using very different 
calculations than the other two cases. Like the uneven case, breakpoints are 
not used in the generated code and therefore not required in ROM:

lambda = uAngle & 0x00FFU;

  yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

  MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2);

  yPow2 += ypow2[iLeft];
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This implementation has very significant advantages over the uneven and 
even implementations. The key difference is that a subtraction and a division 
are replaced by a bitwise-AND combined with a shift right at the end of the 
multiply. Another advantage is that the term (u - xData[iLeft] ) / ( 
xData[iRght] - xData[iLeft]) is computed with no loss of precision, because 
the spacing is a power of two. In contrast, the uneven and even cases usually 
introduce rounding error in this calculation.

Conclusion
The number of Y data points follows the expected pattern. For the same worst 
case error, unrestricted spacing (uneven) requires the fewest data points, and 
power of two spaced breakpoints requires the most. However, the 
implementation for the evenly spaced and the power of two cases does not need 
the breakpoints in the generated code. This reduces their data ROM 
requirements by a half. As a result, the evenly spaced case actually uses less 
data ROM than the unevenly spaced case. Also, the power of two case requires 
only slightly more ROM than the uneven case. Changing the worst case error 
can change these rankings. Nonetheless, when you compare data ROM usage, 
you should always take into account the fact that the evenly spaced and power 
of two spaced cases do not require their breakpoints in ROM.

The effort of determining where the current input is relative to the breakpoints 
strongly favors the evenly spaced and power of two spaced cases. With uneven 
spacing, you use a binary search method that loops up to log2(N) times. With 
even and power of two spacing, you can determine the location with the 
execution of one line of C code. But you cannot decide the relative advantages 
of power of two versus evenly spaced without detailed knowledge of the 
hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which 
uses a bitwise AND operation and a shift to replace a subtraction and a 
division. The amount of advantage provided by this depends on the specific 
hardware, but you would expect an advantage in code size, speed, and also in 
accuracy. The evenly space case calculates the interpolation with a minor 
improvement in efficiency over the unevenly spaced case.
6
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8 Function Reference

8-2
Functions—By Category
This chapter contains reference pages for the Fixed-Point Blockset M-file 
functions. In some cases, you will not call these functions from the MATLAB 
command line. Instead, they are automatically called when you specify certain 
parameter values via block dialog boxes or via the Fixed-Point Settings 
interface.

“Conversions” on page 8-3 Functions for converting legacy models to 
fixed-point data types, converting 
floating-point to fixed-point numbers, and 
updating fixed-point models

“Fixed-Point Settings 
Interface” on page 8-3

A function for calling the Fixed-Point Settings 
interface

“Global Changes” on 
page 8-3

Functions for making global changes 
throughout a system or subsystem

“Lookup Tables” on page 8-3 Functions for implementing and using lookup 
tables

“Data Type Structures” on 
page 8-4

Functions to create MATLAB structures

“Tools” on page 8-4 Functions that yield more information about a 
simulation or value



Functions—By Category
Conversions

Fixed-Point Settings Interface

Global Changes

Lookup Tables

fixpt_convert Convert Simulink models and subsystems to 
fixed-point equivalents

fixpt_convert_prep Prepare a Simulink model for more complete 
conversion to fixed point

fpupdate Update obsolete fixed-point blocks from 
previous Fixed-Point Blockset releases to 
current fixed-point blocks

num2fixpt Quantize a value using a Fixed-Point Blockset 
representation

fxptdlg Invoke the Fixed-Point Settings interface

autofixexp Automatically change the scaling for each 
fixed-point block that does not have its scaling 
locked

fixpt_restore_links Restore links for fixed-point blocks

fixpt_set_all Set a property for every fixed-point block in a 
subsystem

fixpt_interp1 Implement a 1-D lookup table

fixpt_look1_func_approx Optimize, for a fixed-point function, the x values 
that are generated for a lookup table

fixpt_look1_func_plot Plot a function with x values generated by the 
fixpt_look1_func_approx function
8-3
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8-4
Data Type Structures

Tools

float Create a MATLAB structure describing a 
floating-point data type

sfix Create a MATLAB structure describing a 
signed generalized fixed-point data type

sfrac Create a MATLAB structure describing a 
signed fractional data type

sint Create a MATLAB structure describing a 
signed integer data type

ufix Create a MATLAB structure describing an 
unsigned generalized fixed-point data type

ufrac Create a MATLAB structure describing an 
unsigned fractional data type

uint Create a MATLAB structure describing an 
unsigned integer data type

fixptbestexp Determine the exponent that gives the best 
precision fixed-point representation of a value

fixptbestprec Determine the maximum precision available 
for the fixed-point representation of a value

showfixptsimerrors Display overflows from the last simulation

showfixptsimranges Display the logged maximum and minimum 
values from the last simulation
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autofixexp
8autofixexpPurpose Automatically change the scaling for each fixed-point block that does not have 
its scaling locked

Syntax autofixexp

Description The autofixexp script automatically changes the scaling for each block that 
does not have its scaling locked. This script uses the maximum and minimum 
data obtained from the last simulation run to log data to the workspace. The 
scaling is changed such that the simulation range is covered and the precision 
is maximized. The script follows these steps:

1 The global variable FixPtTempGlobal is created to “steal” parameters (such 
as data type) from variables not known in the base workspace. For example, 
assume the Sum block has its output data type specified as DerivedVar. 
DerivedVar is derived in the mask initialization based on mask parameters 
and the block is under a mask.

The value of the parameter DerivedVar is retrieved by temporarily 
replacing DerivedVar with stealparameter(DerivedVar) in the block 
dialog. A model update is then forced. When stealparameter(DerivedVar) 
is evaluated, it returns the value of DerivedVar without modification and 
stores the value in FixPtTempGlobal. The stolen value is immediately used 
by this procedure and is not needed again. Therefore, the procedure can 
move from one block to the next using the same global variable.

2 The RangeFactor variable allows you to specify a range differing from that 
defined by the maximum and minimum values logged in FixPtSimRanges. 
For example, a RangeFactor value of 1.55 specifies that a range at least 55 
percent larger is desired. A value of 0.85 specifies that a range up to 15 
percent smaller is acceptable.

You should be aware that the scaling is not exact for the radix point-only 
case since the range is given (approximately) by a power of two. The lower 
limit is exact, but the upper limit is always one bit below a power of two. 

For example, if the maximum logged value is 5 and the minimum logged 
value is -0.5, then any RangeFactor from 4/5 to slightly under 8/5 would 
produce the same radix point since these limits are less than a factor of two 
from each other. The radix point selected will produce a range from -8 to +8 
(minus a bit).
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3 The global variable FixPtSimRanges is retrieved from the workspace. This 
is the variable that holds the maximum and minimum simulation values.

4 The workspace is searched for the variables SlopeBits and BiasBits, which 
specify the number of bits to use in representing slopes and biases. If these 
variables are not found, then they are automatically created with default 
values of 7 and 8, respectively. 

5 All blocks that logged maximum and minimum simulation data are 
processed.

6 All blocks that do not have their scaling locked are automatically scaled. If 
the data type class is FIX, then radix point-only scaling is performed. If the 
data type class is INT, then [Slope Bias] scaling is performed. To find out a 
data type’s class, refer to its reference page.

See Also fxptdlg, showfixptsimranges
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8fixptbestexpPurpose Determine the exponent that gives the best precision fixed-point 
representation of a value

Syntax out = fixptbestexp(RealWorldValue,TotalBits,IsSigned)
out = fixptbestexp(RealWorldValue,FixPtDataType)

Description out = fixptbestexp(RealWorldValue,TotalBits,IsSigned) determines the 
exponent that gives the best precision for the fixed-point representation of the 
real-world value specified by RealWorldValue. You specify the number of bits 
for the fixed-point number with TotalBits, and you specify whether the 
fixed-point number is signed with IsSigned. If IsSigned is 1, the number is 
signed. If IsSigned is 0, the number is not signed. The exponent is returned to 
out.

out = fixptbestexp(RealWorldValue,FixPtDataType) determines the 
exponent that gives the best precision based on the data type specified by 
FixPtDataType.

Example The following command returns the exponent that gives the best precision for 
the real-world value 4/3 using a signed, 16-bit number:

out = fixptbestexp(4/3,16,1)
out =
   -14

Alternatively, you can specify the fixed-point data type:

out = fixptbestexp(4/3,sfix(16))
out =
   -14

This value means that the maximum precision representation of 4/3 is obtained 
by placing 14 bits to the right of the radix point:

01.01010101010101

You would specify the precision of this representation in fixed-point blocks by 
setting the scaling to 2^-14 or 2^fixptbestexp(4/3,16,1).

See Also fixptbestprec, sfix, ufix
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8fixptbestprecPurpose Determine the maximum precision available for the fixed-point representation 
of a value

Syntax out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
out = fixptbestprec(RealWorldValue,FixPtDataType)

Description out = fixptbestprec(RealWorldValue,TotalBits,IsSigned) determines 
the maximum precision for the fixed-point representation of the real-world 
value specified by RealWorldValue. You specify the number of bits for the fixed- 
point number with TotalBits, and you specify whether the fixed-point number 
is signed with IsSigned. If IsSigned is 1, the number is signed. If IsSigned is 
0, the number is not signed. The maximum precision is returned to out.

out = fixptbestprec(RealWorldValue,FixPtDataType) determines the 
maximum precision based on the data type specified by FixPtDataType.

Example The following command returns the maximum precision available for the 
real-world value 4/3 using a signed, 8-bit number:

out = fixptbestprec(4/3,8,1)
out =
   0.015625

Alternatively, you can specify the fixed-point data type:

out = fixptbestprec(4/3,sfix(8))
out =
   0.015625

This value means that the maximum precision available for 4/3 is obtained by 
placing six bits to the right of the radix point since 2-6 equals 0.015625:

01.010101

You can use the maximum precision as the scaling parameter in fixed-point 
blocks.

See Also fixptbestexp, sfix, ufix
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8fixpt_convertPurpose Convert Simulink models and subsystems to fixed-point equivalents

Syntax res = fixpt_convert
res = fixpt_convert('SystemName')
res = fixpt_convert('SystemName','Display')
res = fixpt_convert('SystemName','Display','AutoSave')

Description res is a structure that contains lists of blocks handled during conversion. res 
= fixpt_convert converts the Simulink model or subsystem specified by 
bdroot. The fields of this structure are given below.

res = fixpt_convert('SystemName') converts the Simulink model or 
subsystem specified by SystemName.

res = fixpt_convert('SystemName','Display') returns information 
associated with the conversion according to the method specified by Display. 
The Display methods are given below.

Output Field Description

encapsulated Structure containing lists of blocks grouped by type that 
are encapsulated between fixed-point gateway blocks. The 
encapsulated versions are not truly fixed-point, but they 
will function within a fixed-point model.

replaced Blocks that are replaced with fixed-point equivalents or 
with other blocks from a user-specified replacement list.

skipped Blocks that are skipped because they are fixed-point 
compatible. Some of these blocks can cause errors if used 
in certain ways. For example, the Mux block can create 
lines that give different data types at downstream input 
ports.

Display Method Description

filename Write detailed block information to the specified file.

off Do not display block information.
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res = fixpt_convert('SystemName','Display','AutoSave') determines 
the state of the converted model or subsystem. If AutoSave is on, then the 
converted model or subsystem is saved and closed. If AutoSave is off, then the 
converted model or subsystem is unsaved and left open.

Remarks If your Simulink model references blocks from a custom Simulink library, then 
these blocks are encapsulated upon conversion. A block is encapsulated when 
it cannot be converted to an equivalent fixed-point block. Encapsulation 
involves associating a Gateway In or a Gateway Out block with the Simulink 
block. To reduce the number of blocks that are encapsulated, you should 
convert the entire library by passing the library name to fixpt_convert, and 
then converting the model. 

To create a custom list of blocks to convert, you should use the 
fixpt_convert_userpairs script. To learn how to use this script, read the 
comments included in the M-file.

The data types for fixed-point outputs taking Boolean values are specified by 
the variable LogicType. The data types of all other fixed-point outputs and 
parameters are specified by the variable BaseType. You can change these 
variables to any data type. For example, in the MATLAB workspace you can 
type

BaseType = sfix(16)
LogicType = uint(8)

The converted model will not work if these variables are not defined.

Best precision mode is used when available. Otherwise, the precision is set to 
20, which means that the radix point is to the right of all bits. To automatically 

on Display detailed block information.

on+filename Display detailed block information, and write 
detailed block information to the specified file.

outline Display the conversion process outline.

outline+filename Display the conversion process outline, and write 
detailed block information to the specified file.

Display Method Description
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set the scaling, run a simulation with doubles override on and then invoke the 
automatic scaling script, autofixexp. You can run autofixexp directly, or in 
conjunction with the Fixed-Point Settings interface, fxptdlg.

Example This example uses fixpoint_convert to convert a Simulink model of a direct 
form II realization to its fixed-point equivalent. “Direct Form II” on page 5-7 
discusses this realization. The Simulink model shown below, 
fxpdemo_preconvet, is included as a demo with the blockset. 

The following command converts this model to its fixed-point equivalent, 
suppresses the display of detailed block information, and does not save the 
model after conversion:

res = fixpt_convert('fxpdemo_preconvert','off','off')

b0

b1

b2

b3

a1

a2

a3

Zero−Order
Hold z

1

Unit Delay2
z

1

Unit Delay1
z

1

Unit Delay

Output
ComparisonInput

0.5

Gain5

−0.84

Gain4

−0.09

Gain3

0.5

Gain2

1.85

Gain1

2.2

Gain
8-12



fixpt_convert
The built-in blocks that are replaced by fixed-point equivalent blocks are given 
by the replaced field:

res.replaced
ans = 
        UnitDelay: {3x1 cell}
    ZeroOrderHold: {[1x40 char]}
             Gain: {6x1 cell}
              Sum: {2x1 cell}

The built-in blocks that are skipped since they are compatible with the 
Fixed-Point Blockset are given by the skipped field:

res.skipped
ans = 
Mux: {'fxpdemo_preconvert_fixpt/Mux'}

The built-in blocks that are encapsulated by fixed-point gateway blocks so that 
they are made compatible with the Fixed-Point Blockset are given by the 
encapsulated field:

res.encapsulated
ans = 
              Scope: {[1x42 char]}
    SignalGenerator: {'fxpdemo_preconvert_fixpt/Input'}

Note that the initial class of the base data type is double:

BaseType = 
    Class: 'DOUBLE'

You can now run the simulation for the converted model:

sim fxpdemo_preconvert_fixpt
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The output from the simulation is shown below. You should compare this 
output to the output produced by the fixed-point direct from II model, 
fxpdemo_direct_form2.

Next, define a fixed-point base data type:

BaseType = sfix(16)

Follow the automatic scaling procedure described in the autofixexp reference 
pages with 20% safety margin, and then run the simulation:

sim fxpdemo_preconvert_fixpt

The simulation now produces an error. This is because the vector signal leading 
into the scope is not homogeneous with regard to data type and scaling. 

In general, solving the problem of nonhomogeneous signals requires that you 
analyze how the signal is being used. If the distinct scaling and data type 
properties are important, then you must fully or partially unvectorize the 
relevant part of the model. Alternatively, you can force the signals to be 
homogenous using the Gateway Out block. Since this example plots real-world 
values in the Scope, inserting gateway blocks on the signals leading into the 
Scope is an adequate solution.

See Also autofixexp, fixpt_convert_prep, fxptdlg

0 20 40 60 80 100 120 140 160 180 200
−8

−6

−4

−2

0

2

4

6

8

10
8-14



fixpt_convert_prep
8fixpt_convert_prepPurpose Prepare a Simulink model for more complete conversion to fixed-point data 
types

Syntax fixpt_convert_prep('SystemName')

Description fixpt_convert_prep('SystemName') prepares the Simulink model or 
subsystem specified by SystemName for more complete conversion (less 
encapsulation) to fixed-point data types using the fixpt_convert function. It 
does so by replacing this select set of blocks:

• Old style Latch blocks

Old style Latch blocks are replaced with a version contained in the 
fixpt_convert_lib library. The old style Latch block contains a Transport 
Delay block, which is a very inefficient implementation for both 
floating-point and fixed-point data types.

• Function blocks acting like selectors

Function blocks acting like selectors are replaced with the Selector block. 
Function blocks acting like selectors require that you specify the width of the 
input. To get this information, the model must be put into compile mode, 
which is inefficient.

• A select set of additional function blocks

You can replace function blocks that have replacements in the 
fixpt_convert_lib library. Alternatively, you can use fixpt_convert_prep 
as a prototype for creating a customized list of function blocks to be replaced. 
To do this, copy the function and the library to another directory, and then 
customize the library to include function blocks that you commonly 
encounter when converting models from floating point to fixed-point.

Note  This function is meant to be a starting point for customizing the 
Simulink to Fixed-Point Blockset conversion process.

See Also fixpt_convert
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8fixpt_interp1Purpose Implement a 1-D lookup table

Syntax y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_interp1 implements a lookup table to find output(s) y for input(s) x. If 
x falls between two xdata values, then y is found by interpolating between the 
corresponding ydata pair. If x falls above the range given by xdata, y is given 
as the maximum ydata value. If x falls below the range given by xdata, y is 
given as the minimum ydata value.

If either the input data type, xdt, or the output data type, ydt, is floating point, 
then floating-point calculation is used to perform the interpolation. Otherwise, 
integer-only calculation is used. This calculation handles the input scaling, 
xscale, and the output scaling, yscale, appropriately, and obeys the 
designated rounding method, rndmeth.

Example Define xdata as a vector of 33 evenly spaced points between 0 and 8, and ydata 
as the sinc of xdata.

xdata = linspace(0,8,33).';
ydata = sinc(xdata);

Now define your input x as a vector of 201 evenly spaced points between -1 and 
9.

x = linspace(-1,9,201).';

Notice that x includes some values that are both lower and higher than the 
range of xdata.

You can now use fixpt_interp1 to interpolate outputs for x.

y = fixpt_interp1(xdata,ydata,x,sfix(8),2^-3,sfix(16),2^-14,... 
'Floor')

See Also fixpt_look1_func_approx, fixpt_look1_func_plot, sfix
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8fixpt_look1_func_approxPurpose Optimize for a fixed-point function, the x values, or breakpoints, that are 
generated for a lookup table

Syntax [xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax,spacing)

Description fixpt_look1_func_approx('funcstr',xmin,xmax,xdt,xscale,ydt,yscale,
rndmeth,errmax) optimizes the breakpoints of a lookup table over a specified 
range. The lookup table satisfies the maximum acceptable error, maximum 
number of points, and spacing requirements given by the optional parameters. 
The breakpoints refer to the x values of the lookup table. The command 

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax)

returns the X and Y coordinates of the lookup table as vectors xdata and ydata, 
respectively. It also returns the maximum absolute error of the lookup table as 
a variable errworst.

The fixed-point approximation is found by interpolating between the lookup 
table data points. The required input parameters are as follows. 

Input Value

'funcstr' Function of x funcstr is the function for which breakpoints 
are approximated.

xmin Minimum value of x

xmax Maximum value of x

xdt Data type of x
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• xmin and xmax specify the range over which the breakpoints are 
approximated.

• xdt, xscale, ydt, yscale, and rndmeth follow conventions used by the 
Fixed-Point Blockset.

• rndmeth has a default value listed in the input table.

In addition to the required parameters, there are three optional inputs, as 
follows.

Of these, you must use at least one of the parameters errmax and nptsmax. If 
you omit one of these, use brackets, [], in place of the omitted parameter. The 
function will then ignore that requirement for the lookup table.

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by the Fixed-Point Blockset: 
'Toward Zero', 'Nearest', 'Floor' (default value), 
'Ceiling'

Input Value

errmax Maximum acceptable error

nptsmax Maximum number of points

errworst Spacing: 'even', 'pow2' (even power of 2), 'unrestricted' 
(default value)

Input Value
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The outputs of the function are as follows.

Criteria For Optimizing the Breakpoints: errmax, nptsmax, and spacing
The approximation produced from the lookup table must satisfy the 
requirements for the maximum acceptable error, errmax, the maximum 
number of points, nptsmax, and the spacing, spacing. The requirements are

• The maximum absolute error is less than errmax.

• The number of points required is less than nptsmax.

• The spacing is specified as unrestricted, even or even power of 2.

Modes for errmax and nptsmax

• If both errmax and nptsmax are specified

The returned breakpoints will meet both criteria if possible. The errmax 
parameter is given priority, and nptsmax is ignored, if both criteria cannot be 
met with the specified spacing.

• If only errmax is specified

The breakpoints that meet the error criteria, and have the least number of 
points are returned.

• If only nptsmax is specified

The breakpoints that require nptsmax or fewer, and give the smallest worst 
case error are returned

Output Value

xdata The breakpoints for the lookup table

ydata The ideal function applied to the 
breakpoints

errworst The worst case error, which is the 
maximum absolute error between the ideal 
function and the approximation given by 
the lookup table
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Modes for Spacing
If no spacing is specified, and more than one spacing method meets the 
requirements given by errmax and nptsmax, power of 2 spacing is chosen over 
even spacing, which in turn is chosen over uneven spacing. This case occurs 
when the errmax and nptsmax are both specified, but typically does not occur 
when only one is specified:

• If unrestricted is entered, the function chooses the spacing that provides 
the best optimization.

• If even is entered, the function chooses an evenly spaced set of points, 
including the pow2 spacing.

• If pow2 spacing is entered, the function chooses an even power of 2 spaced set 
of points.

Note  The global optimum may not be found. The worst case error can depend 
on fixed-point calculations, which are highly nonlinear. Furthermore, the 
optimization approach is heuristic.

The spacing you choose depends on the parameters you want to optimize: 
execution speed, function approximation error, ROM usage, and RAM usage:

• The execution speed depends on the bisection search, and the interpolation 
method.

• The error depends on how accurately the method approximates the 
nonuniform curvature of the function.

• The ROM usage depends on the amount of data and command ROM used.

• The RAM usage depends on how much global and stack RAM is used.

When the lookup table has even power of two spacing, division is replaced by a 
bit shift. As a result, the execution speed is faster than for evenly spaced data.

Using the Approximation Function

1 Choose a function and use the eval('funcstr'); command to view the 
function before creating the lookup table.

2 Define the remaining inputs.
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3 Run the fixpt_look1_func_approx function.

4 Use the fixpt_look1_func_plot function to plot the function from the 
selected breakpoints, and to calculate the error and the number of points 
used.

5 Vary the inputs to produce sets of breakpoints that generate functions with 
varying number of points required and worst case error.

6 Compare the number of points required and worst case error from various 
runs to choose the best set of breakpoints.

Calculating the Output Function
To calculate the function, use the returned breakpoints with

• The eval function

• A function lookup table. The x values are the breakpoints from the 
fixpt_look1_func_approx function, and the y values can be supplied using 
the eval function.

See Chapter 7, “Tutorial: Producing Lookup Table Data” for a tutorial on using 
fixpt_look1_func_approx.
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The following table summarizes the effect of spacing on the execution speed, 
error, and memory used. 

Table 8-1:  Comparison of the Spacing Options

Parameter Even Power of Two 
Spaced Data

Evenly Spaced Data Unevenly Spaced Data

Execution 
Speed

The execution speed is 
the fastest. The position 
search and 
interpolation are the 
same as for evenly 
spaced data. However, 
to increase the speed 
more, the position 
search is replaced by a 
bit shift, and the 
interpolation is 
replaced with a bit 
mask.

The execution speed is 
faster then that for 
unevenly spaced data 
because the position 
search is faster and the 
interpolation requires a 
simple division.

The execution speed is the 
slowest of the different 
spacings because the 
position search is slower, 
and the interpolation 
requires more operations.

Error The error can be larger 
than that for unevenly 
spaced data because 
approximating a 
function with 
nonuniform curvature 
requires more points to 
achieve the same 
accuracy.

The error can be larger 
than that for unevenly 
spaced data because 
approximating a 
function with 
nonuniform curvature 
requires more points to 
achieve the same 
accuracy.

The error can be smaller 
because approximating a 
function with nonuniform 
curvature requires fewer 
points to achieve the same 
accuracy.

ROM 
Usage

Uses less command 
ROM, but more data 
ROM.

Uses less command 
ROM, but more data 
ROM.

Uses more command ROM, 
and less data ROM.

RAM 
Usage

Not significant. Not significant. Not significant.
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Examples This example produces a lookup table for a sine function. The inputs for the 
example are as follows:

funcstr = 'sin(2*pi*x)';
xmin = 0;
xmax = 0.25;
xdt = ufix(16);
xscale = 2^-16;
ydt = sfix(16);
yscale = 2^-14;
rndmeth = 'Floor';
errmax = 2^-10;
spacing = 'pow2';

To create the lookup table, type

[xdata, ydata, errWorst]=fixpt_look1_func_approx(funcstr, 
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing); 

The brackets [ ] are a place holder for the nptsmax parameter, which is not used 
in this example.

You can then plot the ideal function, the approximation, and the errors by 
typing 

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

The fixpt_look1_func_plot function produces a plot of the fixed-point sine 
function, using these breakpoints, and a plot of the error between the ideal 
function and the fixed-point function. The maximum absolute error and the 
number of points required are listed with the plot. The error drops to zero at a 
breakpoint, and increases between breakpoints due to the difference in 
curvature of the ideal function and the line drawn between breakpoints.

The resulting plots are shown below.
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The lookup table requires 33 points to achieve a maximum absolute error of 
2^-11.3922.

See Also fixpt_look1_func_plot
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8fixpt_look1_func_plotPurpose Plot a function with x values generated by the fixpt_look1_func_approx 
function

Syntax errworst=fixpt_look1_func_plot(xdata,ydata,'funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_look1_func_plot(xdata,ydata,'funcstr',xmin,xmax,xdt,xscale,
ydt,yscale,rndmeth) plots a lookup table approximation function and its 
error from the ideal function. You can use the fixpt_look1_func_approx 
function to generate xdata and ydata, the X and Y data points for the lookup 
table. The function returns the maximum absolute error as a variable 
errworst. The inputs are as follows.

The fixpt_look1_func_approx function applies the ideal function to the 
points in xdata to produce ydata. While this is the easiest way to generate 
ydata, you are not required to use these values for ydata as input for the 
fixpt_look1_func_approx function. Choosing different values for ydata can, 
in some cases, produce a lookup table with a smaller maximum absolute error.

Input Value

xdata x values for the lookup table

ydata y values for the lookup table

'funcstr' Function of x

xmin Minimum input of interest

xmax Maximum input of interest

xdt Data type of x

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by the blockset: 'Toward Zero', 
'Nearest', 'Floor', 'Ceiling'
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See Chapter 7, “Tutorial: Producing Lookup Table Data” for a tutorial on using 
the function fixpt_look1_func_plot. For an example of the function, see the 
reference page for the fixpt_look1_func_approx function.

See Also fixpt_look1_func_approx
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8fixpt_restore_linksPurpose Restore links for fixed-point blocks

Syntax res = fixpt_restore_links
res = fixpt_restore_links('SystemName')
res = fixpt_restore_links('SystemName','AutoSave')

Description res = fixpt_restore_links restores broken links for the fixed-point blocks 
contained in the model or subsystem specified by bdroot. By default, the 
models and libraries containing restored block links are left open and unsaved. 
res contains the names of the blocks that had broken links restored.

res = fixpt_restore_links('SystemName') restores links for the fixed-point 
blocks contained in the model or subsystem specified by SystemName.

res = fixpt_restore_links('SystemName','AutoSave') determines the 
state of the models or subsystems containing restored block links. If AutoSave 
is on, the models or subsystems are saved and closed. If AutoSave is off, the 
models or subsystems are unsaved and left open.

Remarks Breaking library links to fixed-point blocks will almost certainly produce an 
error when you attempt to run the model. If broken links exist, you will likely 
uncover them when upgrading to the latest release of the Fixed-Point Blockset.
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8fixpt_set_allPurpose Set a property for every fixed-point block in a subsystem

Syntax fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)

Description fixpt_set_all sets the property fixptPropertyName of every applicable block 
in the model or subsystem SystemName to the value fixptPropertyValue.

Example To set every fixed-point block in a model called Filter_1 to round towards the 
floor and to saturate upon overflow, type

fixpt_set_all('Filter_1','RndMeth','Floor')
fixpt_set_all('Filter_1','DoSatur','on')
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8floatPurpose Create a MATLAB structure describing a floating-point data type

Syntax a = float('single')
a = float('double')
a = float(TotalBits, ExpBits)

Description float('single') returns a MATLAB structure that describes the data type of 
an IEEE single (32 total bits, 8 exponent bits). 

float('double') returns a MATLAB structure that describes the data type of 
an IEEE double (64 total bits, 11 exponent bits). 

float(TotalBits, ExpBits) returns a MATLAB structure that describes a 
nonstandard floating-point data type that mimics the IEEE style. That is, the 
numbers are normalized with a hidden leading one for all exponents except the 
smallest possible exponent. However, the largest possible exponent might not 
be treated as a flag for Infs and NaNs.

float is automatically called when a floating-point number is specified in a 
block dialog box.

Note  Unlike fixed-point numbers, floating-point numbers are not subject to 
any specified scaling.

Example Define a nonstandard, IEEE-style, floating-point data type with 31 total bits 
(excluding the hidden leading one) and 9 exponent bits:

a = float(31,9)
a = 
       Class: 'FLOAT'
    MantBits: 21
     ExpBits: 9

See Also sfix, sfrac, sint, ufix, ufrac, uint
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8fpupdatePurpose Update obsolete fixed-point blocks from previous Fixed-Point Blockset releases 
to current fixed-point blocks

Syntax fpupdate('model')
fpupdate('model',blkprompt)
fpupdate('model',blkprompt,varprompt)
fpupdate('model',blkprompt,varprompt,muxprompt)
fpupdate('model',blkprompt,varprompt,muxprompt,message)

Description fpupdate('model') replaces all obsolete fixed-point blocks contained in model 
with current fixed-point blocks. The model must be opened prior to calling 
fpupdate.

fpupdate('model',blkprompt) prompts you for replacement of obsolete 
blocks. If blkprompt is 0 (the default), you will not be prompted. If blkprompt 
is 1, you will have these three options:

• y (default) replaces the block.

• n does not replace the block.

• a replaces all blocks without further prompting.

fpupdate('model',blkprompt,varprompt) gives you the option of updating 
variables that appear in each block’s dialog box with their actual numerical 
values. Note that such an update is possible only if the variables can be 
evaluated in the MATLAB workspace. If varprompt is 1 (the default), you are 
prompted for each variable found in the block diagram. If varprompt is 0, all 
variables are automatically updated without prompting.

fpupdate('model',blkprompt,varprompt, muxprompt) allows you to update 
the input size parameters of the Mux and Demux blocks found in model. The 
input sizes of these blocks may need to be updated to account for the mismatch 
between the old and new fixed-point data representations. In the old 
representation, each number had a width of 2. In the new representation, each 
number has a width of 1. To update Mux and Demux blocks that have only 
fixed-point inputs, the vector that specifies the input size should be divided by 
2. If muxprompt is 1 (the default), each Mux and Demux block found in model is 
updated. If muxprompt is 0, the Mux and Demux blocks are automatically 
updated without prompting.
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fpupdate('model',blkprompt,varprompt,muxprompt,message) allows you to 
show or suppress any warning or update messages generated during the 
update process. If message is 1 (the default), all messages are displayed. If 
message is 0, all messages are suppressed.

fpupdate calls addterms to terminate any unconnected input or output ports 
by attaching Ground or Terminator blocks, respectively. 

Example To see how fpupdate works, convert the obsolete model 
fixpoint/obsolete/fpex1.mdl:

fpex1
fpupdate('fpex1')
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8fxptdlgPurpose Invokes the Fixed-Point Settings interface

Syntax fxptdlg('model')

Description fxptdlg('model') brings up the Fixed-Point Settings interface for the 
MDL-file model. You can also invoke this interface by 

• Selecting Fixed-Point settings in the Tools menu in the model window

• Right-clicking in any subsystem and selecting Fixed-Point settings from 
the menu that pops up

• Clicking on the Fixed-Point GUI block, which is included with all blockset 
demos

The Fixed-Point Settings interface provides convenient access to global data 
type overrides and logging settings, the logged data, the automatic scaling 
script, and the Plot System interface. You can invoke the Fixed-Point Settings 
interface for any system or subsystem, and it controls the model specified by 
the Select current system parameter.

For each block in the model that logs data, the Fixed-Point Settings interface 
displays its name, minimum simulation value, maximum simulation value, 
data type, and scaling in the Simulation data logged for current system 
pane. Additionally, if a signal saturates or overflows, a message is displayed for 
the associated block indicating how many times saturation or overflow 
occurred. You can display a block’s dialog box by double-clicking on the 
appropriate block entry in this pane.
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Parameters 
and Dialog Box

Select current system
Displays the names of all systems and subsystems in currently opened 
models in a hierarchical format. The menu can be expanded and collapsed 
using the + and - signs. The information displayed in the rest of the 
Fixed-Point Settings interface applies to the subsystem designated by this 
parameter.

Logging mode 
Controls which blocks log data. The value of this parameter for parent 
systems controls logging for all child subsystems, unless Use local 
settings is selected.

•Use local settings—Data is logged according to the value of this 
parameter set for each subsystem. Otherwise, settings for parent systems 
always override those of child systems.

   Run button

 Pause button

Stop button

Show plot dialog button
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•Min, max and overflow—Minimum value, maximum value, and 
overflow data is logged for all blocks in the current system or subsystem.

•Overflow—Only overflow data is logged for all blocks in the current 
system or subsystem.

•Force off—No data is logged for any block in the current system or 
subsystem. Use this selection to work with models containing fixed-point 
enabled blocks if you do not have a Fixed-Point Blockset license.

Data type override
Controls data type override. The value of this parameter for parent 
systems controls data type override for all child subsystems, unless Use 
local settings is selected.

•Use local settings—Data types are overridden according to the value 
of this parameter set for each subsystem. Otherwise, settings for parent 
systems override those of child systems.

•Scaled doubles—The output data type of all blocks in the current 
system or subsystem is overridden with doubles, however the scaling and 
bias specified in the mask of each block is maintained.

•True doubles—The output data type of all blocks in the current system 
or subsystem is overridden with true doubles. The overridden values have 
no scaling or bias.

•True singles—The output data type of all blocks in the current system 
or subsystem is overridden with true singles. The overridden values have 
no scaling or bias.

•Force off—No data type override is performed on any block in the 
current system or subsystem.

Set this parameter to True doubles or True singles to work with models 
containing fixed-point enabled blocks if you do not have a Fixed-Point 
Blockset license.

Block Name
Displays blocks that log data in the selected system or subsystem. The 
block path is described in terms of the blockset model name. The minimum 
value, maximum value, data type, and scaling are shown opposite each 
block name when the simulation is run.
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Logging Type
Controls the logging type.

•Overwrite log—Information in the Simulation data logged for 
current system pane is completely cleared before new logging data is 
entered.

•Merge log—New logging data is merged with any information previously 
appearing in the Simulation data logged for current system pane.

Safety margin 
The Safety Margin parameter is used as part of the automatic scaling 
procedure. Before automatic scaling is performed, you must run the 
simulation to collect min/max data. To learn how to do this, refer to 
Chapter 6, “Tutorial: Feedback Controller Simulation.”

Simulation values are multiplied by the factor designated by this 
parameter, allowing you to specify a range different from that defined by 
the maximum and minimum values logged to the workspace. For example, 
a value of 55 specifies that a range at least 55 percent larger is desired. A 
value of -15 specifies that a range up to 15 percent smaller is acceptable.

The Fixed-Point Settings interface contains eight buttons: 

• Run runs the model and updates the display with the latest simulation 
information.

• Pause pauses the simulation.
• Stop stops the simulation from running.
• Show plot dialog invokes the Plot System interface, which displays any To 

Workspace, Outport, or Scope blocks found in the model.
• Open System invokes the Fixed-Point Settings interface for the system or 

subsystem displayed in the Select current system parameter.
• Autoscale Blocks invokes the automatic scaling script autofixexp.
• Close closes the interface.
• Help displays the HTML-based help for the fxptdlg function.

The Plot System interface is shown below. In this example it is displaying 
variable names that correspond to Scope block outputs from the 
fxpdemo_feedback demo.
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To plot the simulation results, select one or more variable names, and then 
select the appropriate plot button:

• Plot Signals plots the raw signal data for the selected variable(s).

• Plot Doubles plots doubles data for the selected variable(s). Doubles are 
generated when the Data type override parameter is set to True doubles.

•  Plot Both plots both raw signal data and doubles data for the selected 
signal(s). Note that the doubles override does not overwrite the raw data.

• Cancel allows you to exit the interface without plotting.

Example To learn how to use the Fixed-Point Settings interface, refer to Chapter 6, 
“Tutorial: Feedback Controller Simulation.”

See Also autofixexp, showfixptsimerrors, showfixptsimranges
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8num2fixptPurpose Quantize a value using a Fixed-Point Blockset representation

Syntax outValue = num2fixpt(OrigValue,FixPtDataType,FixPtScaling,... 
RndMeth, DoSatur)

Description num2fixpt casts a real-world value represented in floating-point doubles, 
OrigValue, as a fixed-point number, outValue. 

Example The command

num2fixpt(Pi,sfix(8),2^-5,'Nearest',on)

returns Pi as a signed 8-bit fixed-point number with scaling of 2^-5. Rounding 
is towards the nearest representable value, and overflows saturate.

See Also fixptbestexp, fixptbestprec, float, sfix

OrigValue Identifies the real-world value to be cast to fixed-point.

FixPtDataType Designates the desired fixed-point data type of outValue.

FixPtScaling Indicates the scaling of the output in either Slope or [Slope 
Bias] format. 

RndMeth Specifies the rounding technique to be used on the output. If 
FixPtDataType is FLOAT, then RndMeth is ignored.

DoSatur Indicates whether the output should be saturated to the 
minimum or maximum representable value upon underflow 
or overflow. If FixPtDataType is FLOAT, then DoSatur is 
ignored.
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8sfixPurpose Create a MATLAB structure describing a signed generalized fixed-point data 
type

Syntax a = sfix(TotalBits)

Description sfix(TotalBits) returns a MATLAB structure that describes the data type of 
a signed generalized fixed-point number with a word size given by TotalBits.

sfix is automatically called when a signed generalized fixed-point data type is 
specified in a block dialog box.

Note  A default radix point is not included in this data type description. 
Instead, the scaling must be explicitly defined in the block dialog box.

Example Define a 16-bit signed generalized fixed-point data type:

a = sfix(16)
a = 
       Class: 'FIX'
    IsSigned: 1
    MantBits: 16

See Also float, sfrac, sint, ufix, ufrac, uint
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8sfracPurpose Create a MATLAB structure describing a signed fractional data type

Syntax a = sfrac(TotalBits)
a = sfrac(TotalBits, GuardBits)

Description sfrac(TotalBits) returns a MATLAB structure that describes the data type 
of a signed fractional number with a word size given by TotalBits. 

sfrac(TotalBits, GuardBits) returns a MATLAB structure that describes 
the data type of a signed fractional number. The total word size is given by 
TotalBits with GuardBits bits located to the left of the sign bit.

sfrac is automatically called when a signed fractional data type is specified in 
a block dialog box.

The default radix point for this data type is assumed to lie immediately to the 
right of the sign bit. If guard bits are specified, they lie to the left of the radix 
point in addition to the sign bit.

Example Define an 8-bit signed fractional data type with 4 guard bits. Note that the 
range of this number is -24 = -16 to (1 – 2(1 - 8)).24 = 15.875:

a = sfrac(8,4)
a = 
        Class: 'FRAC'
     IsSigned: 1
     MantBits: 8
    GuardBits: 4

See Also float, sfix, sint, ufix, ufrac, uint
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8showfixptsimerrorsPurpose Display overflows from the last simulation

Syntax showfixptsimerrors

Description The showfixptsimerrors script displays any overflows from the last 
fixed-point simulation. This information is also visible in the Fixed-Point 
Settings interface.

See Also fxptdlg, showfixptsimranges
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8showfixptsimrangesPurpose Display the logged maximum and minimum values from the last fixed-point 
simulation.

Syntax showfixptsimranges

Description The showfixptsimranges script displays the logged maximum and minimum 
values from the last fixed-point simulation.

The logged data is stored in the FixPtSimRanges cell array, which can be 
accessed by the autofixexp automatic scaling script.

See Also autofixexp, fxptdlg, showfixptsimerrors
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8sintPurpose Create a MATLAB structure describing a signed integer data type

Syntax a = sint(TotalBits)

Description sint(TotalBits) returns a MATLAB structure that describes the data type of 
a signed integer with a word size given by TotalBits.

sint is automatically called when a signed integer is specified in a block dialog 
box.

The default radix point for this data type is assumed to lie to the right of all 
bits. 

Example Define a 16-bit signed integer data type:

a = sint(16)
a = 
       Class: 'INT'
    IsSigned: 1
    MantBits: 16

See Also float, sfix, sfrac, ufix, ufrac, uint
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8ufixPurpose Create a MATLAB structure describing an unsigned generalized fixed-point 
data type

Syntax a = ufix(TotalBits)

Description ufix(TotalBits) returns a MATLAB structure that describes the data type of 
an unsigned generalized fixed-point data type with a word size given by 
TotalBits. 

ufix is automatically called when an unsigned generalized fixed-point data 
type is specified in a block dialog box.

Note  The default radix point is not included in this data type description. 
Instead, the scaling must be explicitly defined in the block dialog box.

Example Define a 16-bit unsigned generalized fixed-point data type:

a = ufix(16)
a = 
       Class: 'FIX'
    IsSigned: 0
    MantBits: 16

See Also float, sfix, sfrac, sint, ufrac, uint
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8ufracPurpose Create a MATLAB structure describing an unsigned fractional data type

Syntax a = ufrac(TotalBits)
a = ufrac(TotalBits, GuardBits)

Description ufrac(TotalBits) returns a MATLAB structure that describes the data type 
of an unsigned fractional number with a word size given by TotalBits. 

ufrac(TotalBits, GuardBits) returns a MATLAB structure that describes 
the data type of an unsigned fractional number. The total word size is given by 
TotalBits with GuardBits bits located to the left of the radix point.

ufrac is automatically called when an unsigned fractional data type is 
specified in a block dialog box.

The default radix point for this data type is assumed to lie immediately to the 
left of all bits. If guard bits are specified, then they lie to the left the default 
radix point.

Example Define an 8-bit unsigned fractional data type with 4 guard bits. Note that the 
range of this number is from 0 to (1 – 2-8).24 = 15.9375:

a = ufrac(8,4)
a = 
        Class: 'FRAC'
     IsSigned: 0
     MantBits: 8
    GuardBits: 4

See Also float, sfix, sfrac, sint, ufix, uint
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8uintPurpose Create a MATLAB structure describing an unsigned integer data type

Syntax a = uint(TotalBits)

Description uint(TotalBits) returns a MATLAB structure that describes the data type of 
an unsigned integer with a word size given by TotalBits.

uint is automatically called when an unsigned integer is specified in a block 
dialog box.

The default radix point for this data type is assumed to lie to the right of all 
bits. 

Example Define a 16-bit unsigned integer:

a = uint(16)
a = 
       Class: 'INT'
    IsSigned: 0
    MantBits: 16

See Also float, sfix, sfrac, sint, ufix, ufrac
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Fixed-Point Blockset block’s reference page

The Block Dialog Box (p. 9-15) An introduction to the types of information presented in 
each Fixed-Point Blockset block’s dialog box

Common Block Features (p. 9-16) A discussion of the features and functionalities common to 
most or all Fixed-Point Blockset blocks
 



9 Block Reference

9-2
Blocks—By Category
The Fixed-Point Blockset blocks are divided into the following sublibraries:

“Bits” on page 9-3 Blocks that manipulate the bits of a signal

“Calculus” on page 9-3 Blocks that perform calculus functions

“Data Type” on page 9-5 Blocks that manipulate or convert the data 
type of a signal

“Delays & Holds” on 
page 9-5

Blocks that delay or hold a signal

“Edge Detect” on page 9-7 Blocks that detect a change in a signal or a 
signal edge

“Filters” on page 9-7 Blocks that filter a signal

“Logic & Comparison” on 
page 9-8

Blocks that perform logic and comparison 
functions

“LookUp” on page 9-8 Blocks that implement lookup tables

“Math” on page 9-9 Blocks that perform math functions

“Nonlinear” on page 9-10 Blocks that limit or truncate a signal

“Select” on page 9-10 Blocks that select which input or which part of 
an input gets passed on

“Sources” on page 9-11 Blocks that create a signal



Blocks—By Category
Bits

Calculus

Bit Clear Set the specified bit of the stored integer to zero

Bit Set Set the specified bit of the stored integer to one

Bitwise Operator Perform the specified bitwise operation on the 
inputs

Shift Arithmetic Arithmetically shift the bits and/or the radix point 
of a signal

Accumulator Compute a cumulative sum

Accumulator Resettable Compute a cumulative sum with external Boolean 
reset

Accumulator Resettable 
Limited

Compute a limited cumulative sum with external 
Boolean reset

Derivative Compute a discrete time derivative

Difference Calculate the change in a signal over one time step

Integrator Backward Perform discrete-time integration of a signal using 
the backward method

Integrator Backward 
Resettable

Perform discrete-time integration of a signal using 
the backward method, with external Boolean reset

Integrator Backward 
Resettable Limited

Perform discrete-time limited integration of a 
signal using the backward method, with external 
Boolean reset

Integrator Forward Perform discrete-time integration of a signal using 
the forward method

Integrator Forward 
Resettable

Perform discrete-time integration of a signal using 
the forward method, with external Boolean reset

Integrator Forward 
Resettable Limited

Perform discrete-time limited integration of a 
signal using the forward method, with external 
Boolean reset
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9-4
Integrator Trapezoidal Perform discrete-time integration of a signal using 
the trapezoidal method

Integrator Trapezoidal 
Resettable

Perform discrete-time integration of a signal using 
the trapezoidal method, with external Boolean 
reset

Integrator Trapezoidal 
Resettable Limited

Perform discrete-time limited integration of a 
signal using the trapezoidal method, with external 
Boolean reset

Sample Rate Probe Output weighted sample rate

Sample Time Add Add the input signal to weighted sample time

Sample Time Divide Divide the input signal by weighted sample time

Sample Time Multiply Multiply the input signal by weighted sample time

Sample Time Probe Output weighted sample time

Sample Time Subtract Subtract weighted sample time from the input 
signal



Blocks—By Category
Data Type

Delays & Holds

Conversion Convert from one Fixed-Point Blockset data type 
to another

Conversion Inherited Convert from one Fixed-Point Blockset data type 
to another, and inherit the data type and scaling

Data Type Duplicate Set all inputs to the same data type

Data Type Propagation Configure the data type and scaling of the 
propagated signal based on information from the 
reference signals

Gateway In Convert a Simulink data type to a Fixed-Point 
Blockset data type

Gateway In Inherited Convert a Simulink data type to a Fixed-Point 
Blockset data type, and inherit the data type and 
scaling

Gateway Out Convert a Fixed-Point Blockset data type to a 
Simulink data type

Scaling Strip Remove scaling and map to a built in integer

Integer Delay Delay a signal N sample periods

Tapped Delay Delay a scalar signal multiple sample periods and 
output all the delayed versions

Unit Delay Delay a signal one sample period

Unit Delay Enabled Delay a signal one sample period, if the external 
enable signal is on

Unit Delay Enabled 
External IC

Delay a signal one sample period, if the external 
enable signal is on, with an external initial 
condition

Unit Delay Enabled 
Resettable

Delay a signal one sample period, if the external 
enable signal is on, with an external Boolean reset
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Unit Delay Enabled 
Resettable External IC

Delay a signal one sample period, if the external 
enable signal is on, with an external Boolean reset 
and initial condition

Unit Delay External IC Delay a signal one sample period, with an external 
initial condition

Unit Delay Resettable Delay a signal one sample period, with an external 
Boolean reset

Unit Delay Resettable 
External IC

Delay a signal one sample period, with an external 
Boolean reset and initial condition

Unit Delay With Preview 
Enabled 

Output the signal and the signal delayed by one 
sample period, if the external enable signal is on

Unit Delay With Preview 
Enabled Resettable

Output the signal and the signal delayed by one 
sample period, if the external enable signal is on, 
with an external Boolean reset

Unit Delay With Preview 
Enabled Resettable 
External RV

Output the signal and the signal delayed by one 
sample period, if the external enable signal is on, 
with an external RV reset

Unit Delay With Preview 
Resettable

Output the signal and the signal delayed by one 
sample period, with an external Boolean reset

Unit Delay With Preview 
Resettable External RV

Output the signal and the signal delayed by one 
sample period, with an external RV reset

Zero-Order Hold Implement a zero-order hold of one sample period



Blocks—By Category
Edge Detect

Filters

Detect Change Detect a change in a signal’s value

Detect Decrease Detect a decrease in a signal’s value

Detect Fall Negative Detect a falling edge when the signal’s value 
decreases to a strictly negative value, and its 
previous value was nonnegative

Detect Fall Nonpositive Detect a falling edge when the signal’s value 
decreases to a nonpositive value, and its previous 
value was strictly positive

Detect Increase Detect an increase in a signal’s value

Detect Rise Nonnegative Detect a rising edge when a signal’s value 
increases to a nonnegative value, and its previous 
value was strictly negative

Detect Rise Positive Detect a rising edge when a signal’s value 
increases to a strictly positive value, and its 
previous value was nonpositive

Filter Direct Form I Implement a Direct Form I realization of a filter

Filter Direct Form I Time 
Varying

Implement a time varying Direct Form I 
realization of a filter

Filter Direct Form II Implement a Direct Form II realization of a filter

Filter Direct Form II 
Time Varying

Implement a time varying Direct Form II 
realization of a filter

Filter First Order Implement a discrete-time first order filter

Filter Lead or Lag Implement a discrete-time lead or lag filter

Filter Real Zero Implement a discrete time filter that has a real 
zero and no pole
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9-8
Logic & Comparison

LookUp

FIR Implement a fixed-point finite impulse response 
(FIR) filter

State-Space Implement discrete-time state space

Compare to Constant Determine if a signal is equal to the specified 
constant

Compare To Zero Determine if a signal is equal to zero

Interval Test Determine if a signal is in a specified interval

Interval Test Dynamic Determine if a signal is in a specified interval

Logical Operator Perform the specified logical operation on the 
inputs

Relational Operator Perform the specified relational operation on the 
inputs

Cosine Implement a cosine function in fixed-point using a 
lookup table approach that exploits quarter wave 
symmetry

Look-Up Table Approximate a one-dimensional function using a 
selected lookup method

Look-Up Table Dynamic Provide a region of zero output

Look-Up Table (2-D) Approximate a two-dimensional function using a 
selected lookup method

Sine Implement a sine function in fixed-point using a 
lookup table approach that exploits quarter wave 
symmetry



Blocks—By Category
Math
Abs Output the absolute value of the input

Add Add two inputs

Decrement Real World Decrease the real world value of the signal by one

Decrement Stored 
Integer

Decrease the stored value of a signal by one

Decrement Time To Zero Decrease the real world value of the signal by the 
sample time, but only to zero

Decrement To Zero Decrease the real world value of a signal by one, 
but only to zero

Divide Divide the first input by the second input

Dot Product Generate the dot product of two input vectors

Gain Multiply the input by a constant

Increment Real World Increase the real world value of the signal by one

Increment Stored Integer Increase the stored integer value of a signal by one

Matrix Gain Multiply the input by a constant matrix

MinMax Determine the minimum or maximum input value

MinMax Running 
Resettable

Determine the minimum or maximum of a signal 
over time

Multiply Multiply two inputs

Multiply Matrix Multiply two input matrices

Product Multiply or divide inputs

Product of Elements Collapse the input vector by multiplying all 
elements

Product of Elements 
Inverted

Collapse the input vector by dividing all elements

Subtract Subtract the second input from the first input

Sum Add or subtract inputs
9-9
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Nonlinear

Select

Sum of Elements Collapse the input vector by adding all elements

Sum of Elements 
Negated

Collapse the input vector by subtracting all 
elements

Unary Minus Negate the input

Dead Zone Provide a region of zero output

Dead Zone Dynamic Set the input within the bounds to zero

Rate Limiter Limit the rising and falling rates of the signal

Rate Limiter Dynamic Limit the rising and falling rates of the signal

Relay Switch output between two constants

Saturation Bound the range of the input

Saturation Dynamic Bound the range of the input

Sign Indicate the sign of the input

Wrap To Zero Set output to zero if input is above threshold

Index Vector Output the element of the input vector that 
corresponds to the value of the control input

Multi-Port Switch Switch output between different inputs based on 
the value of the first input

Switch Switch output between the first input and the 
third input based on the value of the second input
0



Blocks—By Category
Sources
Constant Generate a constant value

Counter Free Count up and overflow back to zero after the 
maximum value possible is reached for the 
specified number of bits

Counter Limited Count up, and wrap back to zero after outputting 
the specified upper limit

Repeating Sequence 
Interpolated

Output a discrete-time sequence and repeat, 
interpolating between data points

Repeating Sequence 
Stair

Output a discrete time sequence and repeat
9-11
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Overview of the Block Reference Pages
To open the main Fixed-Point library, type

fixpt

at the MATLAB prompt. This opens the main library window as shown below.

The main library contains twelve sublibraries. To open a sublibrary, 
double-click on its icon. These tables describe how the Fixed-Point Blockset 
blocks are grouped into the sublibraries:

• “Bits” on page 9-3

• “Calculus” on page 9-3

• “Data Type” on page 9-5

• “Delays & Holds” on page 9-5

• “Edge Detect” on page 9-7

• “Filters” on page 9-7
2



Overview of the Block Reference Pages
• “Logic & Comparison” on page 9-8

• “LookUp” on page 9-8

• “Math” on page 9-9

• “Nonlinear” on page 9-10

• “Select” on page 9-10

• “Sources” on page 9-11

Fixed-Point Blockset block reference pages appear in alphabetical order and 
contain some or all of this information:

• The block name and icon

• The purpose of the block

• A description of the block

• Additional remarks about block usage

• The data types and numeric type (complex or real) accepted and generated 
by the block

• The block parameter dialog box, including a brief description of each 
parameter

• The rules for some or all of these topics, as they apply to the block:

- Converting block parameters from double precision numbers to 
Fixed-Point Blockset data types 

- Converting the input data type(s) to the output data type

- Performing block operations between inputs and parameters

• An example using the block

• The block characteristics, including some or all of these, as they apply to the 
block:

- Input Port(s)—the data type(s) accepted by the block and whether the 
inputs can be a scalar or vector

- Output Port(s)—the data type(s) produced by the block and whether the 
outputs can be a scalar or vector

- Dimensionalized—whether the block accepts and/or generates 
multidimensional signal arrays. For more information, see “Signal Basics” 
in the Using Simulink documentation.
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- Direct Feedthrough—whether the block or any of its ports has direct 
feedthrough

- Sample Time—how the block’s sample time is determined, whether by the 
block itself or inherited from the block that drives it or is driven by it

- Scalar Expansion—whether or not scalars are expanded to vectors

- States—the number of discrete states

- Vectorized—whether or not the block accepts and/or generates vector 
signals

- Zero Crossing—whether the block detects zero-crossing events. For more 
information, see “Zero Crossing Detection” in the Using Simulink 
documentation.
4



The Block Dialog Box
The Block Dialog Box
You configure Fixed-Point Blockset blocks with a parameter dialog box. The 
parameter dialog box provides you with

• The name and block type at the top of the dialog box

• A brief description of the block’s behavior below the title

• Zero or more editable parameter fields, check boxes, or parameter lists below 
the description. You specify the parameter values using valid MATLAB 
expressions.

• A row of four buttons labeled OK, Cancel, Help, and Apply at the bottom of 
the dialog box. The OK button sets the current parameter values and closes 
the dialog box. The Cancel button reverts all the parameter values back to 
their values at the time the dialog box was opened, losing any changes you 
made. The Help button displays the HTML-based reference information for 
the block. The Apply button sets the current parameter values, but does not 
close the dialog box.

Simulink stores the strings entered in these fields and passes them to 
MATLAB for evaluation when a simulation is started. If MATLAB variables 
are used, the simulation uses the values that exist in the workspace at the start 
of the simulation. These variables are not necessarily the same as when the 
variables are entered into the dialog box fields. If a simulation is running when 
a parameter is changed, MATLAB evaluates the parameter as soon as you click 
the OK or Apply button.
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Common Block Features
For convenience, the following sections describe common block features:

• “Block Parameters” on page 9-16

• “Block Icon Labels” on page 9-20

• “Port Data Type Display” on page 9-21

Block Parameters
Many Fixed-Point Blockset blocks use the same parameters, which you 
configure through the block dialog box. Some common block parameters are 
associated with these blockset features:

• Parameter and output data type selection

• Parameter and output scaling selection

• Autoscaling

• Rounding

• Overflow handling

Block-specific parameters are described in the block reference pages.

Selecting the Data Type and Scaling
For many fixed-point blocks, you need to associate data type and scaling 
information with numerical parameters and output signals. Fixed-Point 
Blockset blocks often provide you with the option of inheriting information 
from an input signal, from the next block downstream, or by an internal rule. 
Alternatively, you can often specify the data type and scaling yourself in the 
dialog. You control this option with the Output data type mode and 
Parameter data type mode parameters. These drop-down lists often support 
one or more of the following four choices:

• Specify via dialog—You explicitly specify the output data type and scaling 
with the Output data type and Output scaling value parameters, or the 
parameter data type and scaling with the Parameter data type and 
Parameter scaling value parameters.

• Inherit via back propagation—Specified data type and scaling 
information is inherited by backpropagation from the next block 
downstream. In many cases, you will find that the Data Type Propagation 
6
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block provides you with the most flexibility when back propagating the data 
type.

• Inherit via internal rule—The specified data type information is 
inherited from the input(s). The goal of the inheritance rule is to select the 
“natural” data type and scaling for the output. The specific rule that is used 
depends on the block operation. 

For example, if you are multiplying two signed 16-bit signals, the Product 
block produces the natural output of a signed 32-bit data type. An 
“unnatural” output is produced if the inputs have different signs and 
different sizes. In this case, some trial and error may be required to achieve 
satisfactory results. 

If you are adding signals, two natural choices for the output data type and 
scaling are possible: to preserve the precision or to prevent overflow. 
However, blocks only support one rule. For example, the Sum block 
preserves precision. If your goal is to prevent overflow, then you should 
manually configure the data type and scaling. 

• Same as input—The output data type and scaling are the same as the input 
signal.

In addition, the Output data type mode and Parameter data type mode 
parameters often include built-in data types in their drop-down lists for easy 
selection. Built-in data types can also be entered into the Output data type or 
Parameter data type parameter if Specify via dialog is selected for the 
Output data type mode or Parameter data type mode parameter.

The supported fixed-point data types that may be entered into the Output data 
type or Parameter data type parameter and their default scalings are shown 
below.

Output Data Types and Default Scaling

Data Type Description Default Scaling

float Floating-point number None

sfix Signed generalized fixed-point number None

sfrac Signed fractional number Right of the sign bit
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In the Fixed-Point Blockset, the word size in bits of fixed-point data types is 
given as an argument to the data type. For example, sfix(16) specifies a 16-bit 
signed generalized fixed-point number. Word sizes from 1 to 128 bits are 
supported in simulation.

Floating-point data types are IEEE-style and are specified as 
float('single') for single-precision numbers and float('double') for 
double-precision numbers. Nonstandard IEEE-style numbers are specified as 
float(TotalBits,ExpBits) where TotalBits is the total number of physical 
bits and ExpBits is the number of exponent bits.

For more information about supported fixed-point data types and their default 
scaling, refer to Chapter 3, “Data Types and Scaling.”

If you select Specify via dialog for the Output data type mode or 
Parameter data type mode parameter, you must also explicitly specify the 
output or parameter scaling with the Output scaling value or Parameter 
scaling value parameter. The supported scaling modes for generalized 

sint Signed integer Right of the least 
significant bit

ufix Unsigned generalized fixed-point 
number

None

uint Unsigned integer Right of the least 
significant bit

ufrac Unsigned fractional number Left of the most 
significant bit

Output Data Types and Default Scaling

Data Type Description Default Scaling
8
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fixed-point data types are given below. Default scaling is used for all other 
fixed-point data types.

Note that some blocks provide a form of radix point-only scaling for constant 
vectors and constant matrices. Refer to “Example: Constant Scaling for Best 
Precision” on page 3-11 for more information.

Locking the Output Scaling
If the Lock output scaling against changes by the autoscaling tool check 
box is selected, then the automatic scaling tool autofixexp will not change the 
Output scaling value parameter. Otherwise, the automatic scaling tool is free 
to adjust the scaling. You can run autofixexp directly from the command line, 
or through the Fixed-Point Settings interface, fxptdlg.

Scaling Modes for Generalized Fixed-Point Data Types

Scaling Mode Description

Radix point-only Specify radix point-only (powers-of-two) scaling. For 
example, a scaling of 2^ 10 (or pow2( 10)) places the 
radix point at a location 10 places to the left of the least 
significant bit.

[Slope Bias] Specify [Slope Bias] scaling. For example, a scaling of 
[5/9 10] specifies a slope of 5/9 and a bias of 10. When 
using this mode, you must specify a positive slope.
9-19



9 Block Reference

9-2
Rounding
You can choose the rounding mode for the block operation with the Round 
integer calculations toward parameter list. The available rounding modes 
are shown below.

Handling Overflows
Overflow handling for fixed-point numbers is specified with the Saturate on 
integer overflow check box. If selected, fixed-point overflow results saturate. 
Otherwise, overflow results wrap. Whenever a result saturates, a warning is 
displayed.

Block Icon Labels
Many Fixed-Point Blockset icons look like those of built-in Simulink blocks. In 
fact, many Simulink blocks with fixed-point capabilities appear in the 
Fixed-Point Blockset libraries. For this reason, all blocks that belong only to 
the Fixed-Point Blockset have an “F” on their icons.

The Gateway In, Gateway In Inherited, and Gateway Out blocks have 
additional labels, which reflect how the input and output signals are treated. 
If the block input or output is treated as a real-world value, then a “V” appears 
next to the relevant port on the block icon. If the block input or output is treated 
as a stored integer, then an “I” appears next to the relevant port on the block 
icon.

Rounding Modes 

Rounding Mode Description

Zero Round the output towards zero.

Nearest Round the output towards the nearest representable 
number, with the exact midpoint rounded towards 
positive infinity.

Ceiling Round the output towards positive infinity.

Floor Round the output towards negative infinity.
0
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Port Data Type Display
To display the data types of ports in your model, select Port data types from 
the Simulink Format menu.

The port display for fixed-point signals consists of three parts: the data type, 
the number of bits, and the scaling. The data type and number of bits reflect 
the block’s Output data type parameter value or the data type that is 
inherited from the driving block or through backpropagation. The scaling 
reflects the block’s Output scaling value parameter value or the scaling that 
is inherited from the driving block or through backpropagation. 

For example, the model below displays its port data types:

The data type display associated with the In 1 block in the model indicates that 
the output data type is sfix(16) (a signed, 16-bit, generalized fixed-point 
number) with [Slope Bias] scaling of [0.2 10]. Note that this scaling is not the 
block’s default scaling. The data type display associated with the In 2 block 
indicates that the output data type is sfix(16) with radix point-only scaling of 
2^-6.

The following table provides a key for various symbols that may appear in the 
port data type display for Fixed-Point Blockset blocks.

Port Data Type Display Symbols

Symbol Description

uint unsigned integer fixed-point data type

sint signed integer fixed-point data type

summed signal

multiplied signal

2 rad/s

1 rad/s

Sum

Sine Wave1

Sine Wave

Scope

Product

Out

Out 2

Out

Out 1

In

In 2

In

In 1

sfix16_En6

sfix16_En2

sfix16_En8

double

double

double

double

sfix16_Sp2_B10
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For more information on Fixed-Point Blockset data types, refer to “Fixed-Point 
Data Type Parameters” on page 3-9. 

For more information on [Slope Bias] and radix point-only scaling, refer to 
“Scaling” on page 3-5.

ufrac unsigned fraction fixed-point data type

sfrac signed fraction fixed-point data type

ufix unsigned generalized fixed-point data type

sfix signed generalized fixed-point data type

fltu doubles-override of an unsigned fixed-point data type

flts doubles-override of a signed fixed-point data type

B bias

E 2^

e 10^

F fractional slope

n negative

p decimal point

S slope

Port Data Type Display Symbols

Symbol Description
2



Alphabetical List of Blocks

9-23
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The following pages contain the reference sheets for the Fixed-Point Blockset 
blocks in alphabetical order.



Abs
9AbsPurpose Output the absolute value of the input

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is 
problematic since it is not representable by the data type. In this case, the 
behavior of the block is controlled by the Saturate on integer overflow check 
box. If selected, the absolute value of the data type saturates to the most 
positive value. If not selected, the absolute value of the most negative value 
represented by the data type has no effect.

For example, suppose the block input is an 8-bit signed integer. The range of 
this data type is from -128 to 127, and the absolute value of -128 is not 
representable. If the Saturate on integer overflow check box is selected, then 
the absolute value of -128 is 127. If it is not selected, then the absolute value of 
-128 remains at -128.

Data Type 
Support

An Abs block accepts a real- or complex-valued input of any data type and 
outputs a real value of the same data type as the input.

Parameters 
and Dialog Box

Saturate on integer overflow
When selected, the block maps signed integer input elements 
corresponding to the most negative value of that data type to the most 
positive value of that data type.

• For 8-bit integers, -128 is mapped to 127.

• For 16-bit integers, -32768 maps to 32767. 

|u|

Abs
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• For 32-bit integers, -2147483648 maps to 2147483647.

When not selected, the block does not act on signed integer input elements 
corresponding to the most negative value of that data type.

• For 8-bit integers, -128 remains -128.

• For 16-bit integers, -32768 remains -32768. 

• For 32-bit integers, -2147483648 remains -2147483648.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero 
Crossing Detection” in the Using Simulink documentation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Zero Crossing No, unless Enable zero crossing detection is 
selected
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Accumulator
9AccumulatorPurpose Compute a cumulative sum

Library Calculus

Description At time step n, the Accumulator block computes a cumulative sum of all input 
values u up to time n and outputs the sum.

Parameters 
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Port Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Accumulator Resettable
9Accumulator ResettablePurpose Compute a cumulative sum with external Boolean reset

Library Calculus

Description The Accumulator Resettable block computes a cumulative sum, based on the 
values of an external Boolean reset signal. 

The block can reset its state based on an external reset signal R. The block has 
two input ports, one for the input signal u, and another for the reset signal R. 
When the reset is false at time n, the block adds the current value of the input 
signal u to the sum at time n-1. When the reset is true at time n, the block 
resets the sum to the value of the Initial condition for previous output 
parameter, and outputs the sum. 

Parameters 
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Characteristics

See Also Accumulator

Input Ports Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Of the input and reset source ports

Scalar Expansion Of inputs and gain
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Accumulator Resettable Limited
9Accumulator Resettable LimitedPurpose Compute a limited cumulative sum with external Boolean reset

Library Calculus

Description The Accumulator Resettable Limited block computes a cumulative sum, based 
on the values of an external Boolean reset signal. 

The block can reset its state based on an external reset signal R. When the 
cumulative sum reaches one of the limits given by the Upper limit and Lower 
limit parameters, the sum saturates to that limit.

The block has two input ports, one for the input signal u, and another for the 
reset signal R. When the reset R is false at time n, the block adds the current 
value of the input signal u to the sum at time n-1. When the cumulative sum is 
outside the limits given by the Upper limit and Lower limit parameters, the 
sum saturates to one of the bounds.

When the reset R is true at time n, the block resets the sum to the value of the 
Initial condition for previous output parameter, and outputs the sum.

Parameters 
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Upper limit
The upper limit for saturation of the cumulative sum.
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Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Accumulator

Input Ports Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Of the input and reset source ports

Scalar Expansion Of inputs and gain
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Add
9AddPurpose Add or subtract inputs

Library Math

Description The Add block is an implementation of the Sum block. See “Sum” on page 9-216 
for more information.

Add
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Bit Clear
9Bit ClearPurpose Set the specified bit of the stored integer to zero

Library Bits

Description The Bit Clear block is a masked block that sets the specified bit, given by its 
index, of the stored integer to zero. Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter, where 
bit zero is the least significant bit.

True floating-point data types are not supported.

Parameters 
and Dialog Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of constants 
2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100 01000 10000]. 
With bit 2 set to 0, the result is [00001 00010 00000 01000 10000], which is 
represented in decimal as [1 2 0 8 16].

Characteristics Input Port Any data type supported by the blockset, except a 
true floating-point data type

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
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Bit Set
9Bit SetPurpose Set the specified bit of the stored integer to one

Library Bits

Description The Bit Set block is a masked block that sets the specified bit of the stored 
integer to one. Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter, where 
bit zero is the least significant bit. 

True floating-point data types are not supported.

Parameters 
and Dialog Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of constants 
2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100 01000 10000]. 
With bit 2 set to 1, the result is [00101 00110 00100 01100 10100], which is 
represented in decimal as [5 6 4 12 20].

Characteristics

See Also Bit Clear

Input Port Any data type supported by the blockset, except a 
true floating-point data type

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
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Bitwise Operator
9Bitwise OperatorPurpose Perform the specified bitwise operation on the inputs

Library Bits

Description The Bitwise Operator block is a masked S-function that performs the specified 
bitwise operation on its operands.

Unlike the logic operations performed by the Logical Operator block, bitwise 
operations treat the operands as a vector of bits rather than a single number. 
You select the bitwise Boolean operation with the Operator parameter list. 
The supported operations are given below.

Unlike the Simulink Bitwise Logical Operator block, the Bitwise Operator 
block does not support shift operations. Refer to “Shifts” on page 4-41 to learn 
how to perform shift operations with the Fixed-Point Blockset.

The size of the output depends on the number of inputs, their vector size, and 
the selected operator:

• The NOT operator accepts only one input, which can be a scalar or a vector. 
If the input is a vector, the output is a vector of the same size containing the 
bitwise logical complements of the input vector elements.

• For a single vector input, the block applies the operation (except the NOT 
operator) to all elements of the vector. If a bit mask is not specified, then the 
output is a scalar. If a bit mask is specified, then the output is a vector.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is TRUE

NAND TRUE if at least one of the corresponding bits is FALSE

NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are TRUE

NOT TRUE if the input is FALSE (available only for single input)
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Bitwise Operator
• For two or more inputs, the block performs the operation between all of the 
inputs. If the inputs are vectors, the operation is performed between 
corresponding elements of the vectors to produce a vector output.

When configured as a multi-input XOR gate, this block performs an addition- 
modulo-two operation as mandated by the IEEE Standard for Logic Elements.

If the Use bit mask check box is not selected, then the block can accept multiple 
inputs. You select the number of input ports with the Number of input ports 
parameter. The input data types must be identical.

If the Use bit mask check box is selected, then a single input is associated with 
the bit mask you specify with the Bit Mask parameter. You specify the bit 
mask using any valid MATLAB expression. For example, you can specify the 
bit mask 00100101 as 2^5+2^2+2^0. Alternatively, you can use strings to 
specify a hexadecimal bit mask such as {'FE73','12AC'}. If the bit mask is 
larger than the input signal data type, then it is ignored. 

Note  The output data type, which is inherited from the driving block, should 
represent zero exactly. Data types that satisfy this condition include signed 
and unsigned integers and any floating-point data type.

The Treat mask as parameter list controls how the mask is treated. The 
possible values are Real World Value and Stored Integer. In terms of the 
general encoding scheme described in “Scaling” on page 3-5, Real World Value 
treats the mask as V = SQ + B where S is the slope and B is the bias. Stored 
Integer treats the mask as a stored integer, Q. For more information about 
this parameter list, refer to the Gateway In block.

Remarks You can use the bit mask to perform a bit set or a bit clear on the input. To 
perform a bit set, you configure the Operator parameter list to OR and create a 
bit mask with a 1 for each corresponding input bit that you want to set to 1. To 
perform a bit clear, you configure the Operator parameter list to AND and 
create a bit mask with a 0 for each corresponding input bit that you want to set 
to 0.

For example, suppose you want to perform a bit set on the fourth bit of an 8-bit 
input vector. The bit mask would be 00010000, which you can specify as 2^4 in 
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Bitwise Operator
the Bit mask parameter. To perform a bit clear, the bit mask would be 
11101111, which you can specify as 2^7+2^6+2^5+2^3+2^2+2^1+2^0 in the Bit 
mask parameter.

Parameters 
and Dialog Box

Operator
The bitwise logical operator associated with the specified operands.

Use bit mask
Specify if the bit mask is used (single input only).

Number of input ports
The number of inputs.

Bit Mask
The bit mask to associate with a single input.

Treat mask as
Treat the mask as a real-world value or as an integer.

Conversions The Bit Mask parameter is converted from a double to the input data type 
offline using round-to-nearest and saturation. Refer to “Parameter 
Conversions” on page 4-27 for more information about parameter conversions.
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Examples To help you understand the Bitwise Operator block logic operations, consider 
the fixed-point model shown below.

The Constant blocks are configured to output an 8-bit unsigned integer 
(uint(8)). The results for all logic operations are shown below.

Characteristics

Operation Binary Value  Decimal Value

AND 00101000 40

OR 11111101 253

NAND 11010111 215

NOR 00000010 2

XOR 11111000 248

NOT N/A N/A

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Scalar Expansion Of inputs
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Compare To Constant
9Compare To ConstantPurpose Determine if a signal is equal to the specified constant

Library Logic & Comparison

Description The Compare To Constant block is a masked block that determines if a signal 
is equal to the specified constant where:

• The output is true (not 0) when the input signal is equal to the specified 
constant.

• The output is false (equal to 0) when the input signal is not equal to the 
specified constant.

You enter the constant with the Constant value parameter. 

Parameters 
and Dialog Box

Operator
Specify how the input is compared to the constant value.

Constant value
Specify the constant value that the input is compared with.

Characteristics

See Also Compare to Zero

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes
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Compare To Zero
9Compare To ZeroPurpose Determine if a signal is equal to zero

Library Logic & Comparison

Description The Compare To Zero block is a masked block that determines if a signal is 
equal to zero where:

• The output is true (not 0) when the input signal is equal to zero.

• The output is false (equal to 0) when the input signal is not equal to zero.

Parameters 
and Dialog Box

Operator
Specify how the input is compared to zero.

Characteristics

See Also Compare To Constant

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes
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Constant
9ConstantPurpose Generate a constant value

Library Simulink Sources and Fixed-Point Blockset Sources

Description The Constant block generates a real or complex constant value. The block 
generates a scalar, vector, or matrix output, depending on the dimensionality 
of the Constant value parameter and the setting of the Interpret vector 
parameters as 1-D parameter. 

The output of the block has the same dimensions and elements of the Constant 
value parameter. If you specify a vector for this parameter, and you want the 
block to interpret it as 1-D, select the Interpret vector parameters as 1-D 
parameter.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type 
Support

By default, a Constant block outputs a signal whose data type and complexity 
is the same as that of the block’s Constant value parameter. However, you can 
specify the output to be any supported data type.

Parameters 
and Dialog Box

Constant value
Constant value output by the block. It can be a scalar, vector, or matrix.

1

Constant

0.0

Constant
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Constant
Interpret vector parameters as 1-D
If selected, a vector specified for the Constant value parameter results in 
a 1-D signal.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.

Output data type mode
Specify how the data type of the output is designated. The data type can be 
inherited through backpropagation, or can be designated in the Constant 
value parameter; for example int8(29). You can also choose a built-in 
data type from the drop-down list. Lastly, if you choose Specify via 
dialog, the Output data type, Output Scaling Mode, and Output scaling 
value parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is 
only visible if Specify via dialog is selected for the Output data type 
mode parameter.
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Constant
Output Scaling Mode
Specify how the scaling of the output is designated. The output can be 
automatically scaled to maintain best vector-wise precision without 
overflow, or you can choose to specify the scaling in the dialog via the 
Output scaling value parameter. This parameter is only visible if 
Specify via dialog is selected for the Output data type mode 
parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This 
parameter is only visible if Specify via dialog is selected for the Output 
data type mode parameter, and if Use specified scaling is selected for 
the Output Scaling Mode parameter.

Conversions 
and Operations

The Constant value parameter is converted from its data type to the specified 
output data type offline using round-to-nearest and saturation. Refer to 
“Parameter Conversions” on page 4-27 for more information about parameter 
conversions.

Characteristics Dimensionalized Yes

Direct Feedthrough No

Sample Time Constant

Scalar Expansion No

Zero Crossing No
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Conversion
9ConversionPurpose Convert from one Fixed-Point Blockset data type to another

Library Data Type

Description The Conversion block is a masked S-function that converts from one 
Fixed-Point Blockset data type to another.

This block requires that you specify the data type and scaling for the 
conversion. If you want to inherit this information from an input signal, you 
should use the Conversion Inherited block.

For a detailed description of all block parameters, refer to “Block Parameters” 
on page 9-16. For more information about converting from one Fixed-Point 
Blockset data type to another, refer to “Signal Conversions” on page 4-27.

Parameters 
and Dialog Box

Input and Output to have equal
Specify the type of value of the input and output that are to be equal.
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Conversion
Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling via backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These 
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for 
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Conversion Inherited

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes
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Conversion Inherited
9Conversion InheritedPurpose Convert from one Fixed-Point Blockset data type to another, and inherit the 
data type and scaling

Library Data Type

Description The Conversion Inherited block is a masked S-function that forces dissimilar 
data types to be the same. The first (top) input is used as the reference signal 
and the second (bottom) input is converted to the reference type by inheriting 
the data type and scaling information. Either input will be scalar expanded 
such that the output has the same width as the widest input. 

If you want to specify the data type and scaling when converting from one 
Fixed-Point Blockset data type to another, you should use the Conversion 
block.

For a detailed description of all block parameters, refer to “Block Parameters” 
on page 9-16. For more information about converting from one Fixed-Point 
Blockset data type to another, refer to “Signal Conversions” on page 4-27.

Remarks Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.

• It allows you to create new fixed-point models with less effort since you can 
avoid the detail of specifying the associated parameters.

Parameters 
and Dialog Box
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Conversion Inherited
Input and Output to have equal
Specify the type of value of the input and output that are to be equal.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Conversion

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes
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Cosine
9CosinePurpose Implement a cosine function in fixed-point using a lookup table approach that 
exploits quarter wave symmetry

Library LookUp

Description The Cosine block implements a cosine function using a lookup table that 
exploits quarter wave symmetry. The output is normally a signed 16 bit 
number with 14 bits to the right of the radix point.

Parameters 
and Dialog Box

Number of data points for lookup table
The number of data points in the lookup table

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes
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Counter Free
9Counter FreePurpose Count up and overflow back to zero after the maximum value possible is 
reached for the specified number of bits

Library Sources

Description The Counter Free block is a masked block that counts up until the maximum 
possible value, 2Nbits - 1, is reached, where Nbits is the number of bits. Then 
the counter overflows to zero, and restarts counting up. The counter is always 
initialized to zero.

You can specify the number of bits with the Number of Bits parameter.

You can specify the sample time with the Sample time parameter.

The output is an unsigned integer. If the global doubles override is selected, the 
Counter Free does not wrap back to zero.

Parameters 
and Dialog Box

Number of Bits
Specified number of bits.

Sample time
Sample time.

Characteristics Output Port Unscaled integer or a floating-point data type

Scalar Expansion No

Vectorized No
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Counter Limited
9Counter LimitedPurpose Count up and wrap back to zero after outputting the specified upper limit

Library Sources

Description The Counter Limited block is a masked block that counts up until the specified 
upper limit is reached. Then the counter wraps back to zero, and restarts 
counting up. The counter is always initialized to zero.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A Sample 
time of -1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest number 
of bits needed to represent the upper limit.

Parameters 
and Dialog Box

Upper limit
Upper limit.

Sample time
Sample time.

Characteristics

See Also Counter Free

Output Port Unscaled integer or a floating-point data type

Scalar Expansion No

Vectorized No
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Data Type Duplicate
9Data Type DuplicatePurpose Force all inputs to the same data type

Library Data Type

Description The Data Type Duplicate block is a masked S-function that forces all inputs to 
have exactly the same data type. Other attributes of input signals, such as 
dimension, complexity, and sample time, are completely independent.

You can use the Data Type Duplicate block to check for consistency of data 
types among blocks. If all signals do not have the same data type, the block 
returns an error message.

The Data Type Duplicate block is typically used such that one signal to the 
block controls the data type for all other blocks. The other blocks are set to 
inherit their data types via backpropagation. 

The block is also used in a user created library. These library blocks can be 
placed in any model, and the data type for all library blocks are configured 
according to the usage in the model. To create a library block with more 
complex data type rules than duplication, use the Data Type Propagation 
block.

Parameters 
and Dialog Box

Number of input ports
Number of input ports.
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Data Type Duplicate
Characteristics

Input Port Any data type supported by the blockset

Scalar Expansion Yes

States 0

Vectorized Yes
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Data Type Propagation
9Data Type PropagationPurpose Set the data type and scaling of the propagated signal based on information 
from the reference signals

Library Data Type

Description The Data Type Propagation block allows you to control the data type and 
scaling of signals in your model. You can use this block in conjunction with 
fixed-point blocks that have their Specify data type and scaling parameter 
configured to Inherit via back propagation.

The block has three inputs: Ref1 and Ref2 are the reference inputs, while the 
Prop input back propagates the data type and scaling information gathered 
from the reference inputs. This information is then passed on to other 
fixed-point blocks.

The block provides you with many choices for propagating data type and 
scaling information. For example, you can:

• Use the number of bits from the Ref1 reference signal, or use the number of 
bits from widest reference signal.

• Use the range from the Ref2 reference signal, or use the range of the 
reference signal with the greatest range.

• Use a bias of zero, regardless of the biases used by the reference signals.

• Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the Propagated 
data type parameter list. If the parameter list is configured as Specify via 
dialog, then you manually specify the data type via the Propagated data type 
edit field. Refer to “Selecting the Data Type and Scaling” on page 9-16 to learn 
how to specify the data type. If the parameter list is configured as Inherit via 
propagation rule, then you must use the parameters described in “Inheriting 
Data Type Information” on page 9-55.

You specify how scaling information is propagated with the Propagated 
scaling parameter list. If the parameter list is configured as Specify via 
dialog, then you manually specify the scaling via the Propagated scaling edit 
field. Refer to “Selecting the Data Type and Scaling” on page 9-16 to learn how 
to specify the scaling. If the parameter list is configured as Inherit via 
propagation rule, then you must use the parameters described in “Inheriting 
Scaling Information” on page 9-57.
9-52



Data Type Propagation
Remarks After you use the information from the reference signals, you can apply a 
second level of adjustments to the data type and scaling by using individual 
multiplicative and additive adjustments. This flexibility has a variety of uses. 
For example, if you are targeting a DSP, then you can configure the block so 
that the number of bits associated with a MAC (multiply and accumulate) 
operation is twice as wide as the input signal, and has a certain number of 
guard bits added to it.

The Data Type Propagation block also provides a mechanism to force the 
computed number of bits to a useful value. For example, if you are targeting a 
16-bit micro, then the target C compiler is likely to support sizes of only 8 bits, 
16 bits, and 32 bits. The block will force these three choices to be used. For 
example, suppose the block computes a data type size of 24 bits. Since 24 bits 
is not directly usable by the target chip, the signal is forced up to 32 bits, which 
is natively supported.

There is also a method for dealing with floating-point reference signals. This 
makes it easier to create designs that are easily retargeted from fixed-point 
chips to floating-point chips or visa versa.

The Data Type Propagation block allows you to set up libraries of useful 
subsystems that will be properly configured based on the connected signals. 
Without this data type propagation process, a subsystem that you use from a 
library will almost certainly not work as desired with most integer or 
fixed-point signals, and manual intervention to configure the data type and 
scaling would be required. This block can eliminate the manual intervention in 
many situations.

Precedence Rules
The precedence of the dialog box parameters decreases from top to bottom. 
Additionally:

• Double-precision reference inputs have precedence over all other data types.

• Single-precision reference inputs have precedence over integer and 
fixed-point data types.

• Multiplicative adjustments are carried out before additive adjustments.

• The number of bits is determined before the precision or positive range is 
inherited from the reference inputs.
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Data Type Propagation
Parameters 
and Dialog Box
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Data Type Propagation
Propagated data type
Use the parameter list to propagate the data type via the dialog box, or 
inherit the data type from the reference signals. Use the edit field to specify 
the data type via the dialog box.

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box, or 
inherit the scaling from the reference signals. Use the edit field to specify 
the scaling via the dialog box.

Inheriting Data Type Information
If the Propagated data type parameter is Inherit via propagation rule, 
then these dialog box parameters are available to you.

The If any reference input is single, output is parameter list can be single 
or double. This parameter makes it easier to create designs that are easily 
retargeted from fixed-point chips to floating-point chips or visa versa.

The Is-Signed parameter list specifies the sign of Prop. The parameter values 
are described below.

Parameter 
Value

Description

IsSigned1 Prop is a signed data type if Ref1 is a signed data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed data type.

IsSigned1 or 
IsSigned2

Prop is a signed data type if either Ref1 or Ref2 are signed 
data types.
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Data Type Propagation
For example, if the Ref1 signal is ufix(16), the Ref2 signal is sfix(16), and 
the Is-Signed parameter is IsSigned1 or IsSigned2, then Prop is forced to be 
a signed data type.

The Number-of-bits: base parameter list specifies the number of bits used by 
Prop for the base data type. The parameter values are described below.

Refer to “Targeting an Embedded Processor” on page 5-3 for more information 
about the base data type.

The Number-of-bits: Multiplicative adjustment parameter allows you to 
adjust the number of bits used by Prop by including a multiplicative 
adjustment. For example, suppose you want to guarantee that the number of 
bits associated with a multiply and accumulate (MAC) operation is twice as 
wide as the input signal. To do this, you configure this parameter to the value 2.

TRUE Ref1 and Ref2 are ignored, and Prop is always a signed 
data type.

FALSE Ref1 and Ref2 are ignored, and Prop is always an 
unsigned data type.

Parameter Value Description

NumBits1 The number of bits for Prop is given by the number 
of bits for Ref1.

NumBits2 The number of bits for Prop is given by the number 
of bits for Ref2.

max([NumBits1 
NumBits2])

The number of bits for Prop is given by the 
reference signal with largest number of bits.

min([NumBits1 
NumBits2])

The number of bits for Prop is given by the 
reference signal with smallest number of bits.

NumBits1+NumBits2 The number of bits for Prop is given by the sum of 
the reference signal bits.

Parameter 
Value

Description
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Data Type Propagation
The Number-of-bits: Additive adjustment parameter allows you to adjust the 
number of bits used by Prop by including an additive adjustment. For example, 
if you are performing multiple additions during a MAC operation, the result 
may overflow. To prevent overflow, you can associate guard bits with the 
propagated data type. To associate four guard bits, you specify the value 4.

The Number-of-bits: Allowable final values parameter allows you to force the 
computed number of bits used by Prop to a useful value. For example, if you are 
targeting a processor that supports only 8, 16, and 32 bits, then you configure 
this parameter to [8,16,32]. The block always propagates the smallest 
specified value that fits. If you want to allow all fixed-point data types, you 
would specify the value 1:128.

Inheriting Scaling Information
If the Propagated scaling parameter is Inherit via propagation rule, then 
these dialog box parameters are available to you.

The Slope: Base parameter list specifies the slope used by Prop for the base 
data type. The parameter values are described below.

Parameter Value Description

Slope1 The slope of Prop is given by the slope of Ref1.

Slope2 The slope of Prop is given by the slope of Ref2.

max([Slope1 
Slope2])

The slope of Prop is given by the maximum slope 
of the reference signals.
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Data Type Propagation
You control the precision of Prop with Slope1 and Slope2, and you control the 
range of Prop with PosRange1 and PosRange2. Additionally, PosRange1 and 
PosRange2 are one bit higher than the maximum positive range of the 
associated reference signal.

The Slope: Multiplicative adjustment parameter allows you to adjust the 
slope used by Prop by including a multiplicative adjustment. For example, if 
you want 3 bits of additional precision (with a corresponding decrease in 
range), the multiplicative adjustment is 2^-3.

The Slope: Additive adjustment parameter allows you to adjust the slope 
used by Prop by including an additive adjustment. An additive slope 
adjustment is often not needed. The most likely use is to set the multiplicative 
adjustment to 0, and set the additive adjustment to force the final slope to a 
specified value.

min([Slope1 
Slope2])

The slope of Prop is given by the minimum slope 
of the reference signals.

Slope1*Slope2 The slope of Prop is given by the product of the 
reference signal slopes.

Slope1/Slope2 The slope of Prop is given by the ratio of the Ref1 
slope to the Ref2 slope.

PosRange1 The range of Prop is given by the range of Ref1.

PosRange2 The range of Prop is given by the range of Ref2.

max([PosRange1 
PosRange2])

The range of Prop is given by the maximum 
range of the reference signals.

min([PosRange1 
PosRange2])

The range of Prop is given by the minimum range 
of the reference signals.

PosRange1*PosRange2 The range of Prop is given by the product of the 
reference signal ranges.

PosRange1/PosRange2 The range of Prop is given by the ratio of the Ref1 
range to the Ref2 range.

Parameter Value Description
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Data Type Propagation
The Bias: Base parameter list specifies the bias used by Prop for the base data 
type. The parameter values are described below.

The Bias: Multiplicative adjustment parameter allows you to adjust the bias 
used by Prop by including a multiplicative adjustment.

The Bias: Additive adjustment parameter allows you to adjust the bias used 
by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is zero, you should 
configure both the multiplicative adjustment and the additive adjustment to 0.

Parameter Value Description

Bias1 The bias of Prop is given by the bias of Ref1.

Bias2 The bias of Prop is given by the bias of Ref2.

max([Bias1 Bias2]) The bias of Prop is given by the maximum bias of 
the reference signals.

min([Bias1 Bias2]) The bias of Prop is given by the minimum bias of 
the reference signals.

Bias1*Bias2 The bias of Prop is given by the product of the 
reference signal biases.

Bias1/Bias2 The bias of Prop is given by the ratio of the Ref1 
bias to the Ref2 bias.

Bias1+Bias2 The bias of Prop is given by the sum of the 
reference biases.

Bias1-Bias2 The bias of Prop is given by the difference of the 
reference biases.
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Data Type Propagation
If the Propagated scaling parameter is Obtain via best precision, then the 
following dialog box parameters are available to you.

You specify any values, such as the upper and lower limits on the propagated 
input, for the Values used to determine best precision scaling, which 
constrains the precision chosen to apply to those limits. Based on the data type, 
the scaling will automatically be selected such that these values can be 
represent with no overflow error and minimum quantization error.

Characteristics Input Ports Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes 
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Dead Zone
9Dead ZonePurpose Provide a region of zero output

Library Nonlinear

Description The Dead Zone block is a masked S-function that generates zero output within 
a specified region, called its dead zone. The lower limit of the dead zone is 
specified with the Start of dead zone parameter, while the upper limit of the 
dead zone is specified with the End of dead zone parameter. The block output 
depends on the input and dead zone:

• If the input is within the dead zone (greater than the lower limit and less 
than the upper limit), the output is zero.

• If the input is greater than or equal to the upper limit, the output is the input 
minus the upper limit.

• If the input is less than or equal to the lower limit, the output is the input 
minus the lower limit.

Parameters 
and Dialog Box

Start of dead zone
The lower limit of the dead zone.

End of dead zone
The upper limit of the dead zone.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Dead Zone
Examples Consider the model shown below, which compares a fixed-point signal and the 
output generated by the Dead Zone block. The signal source is a sine wave with 
unit amplitude.

The Start of dead zone parameter is configured to -0.5 and the End of dead 
zone parameter is configured to 0.5.

The resulting output is shown below.

Characteristics

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Dead Zone signal

Original fixed-point signal

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes, of parameters
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Dead Zone Dynamic
9Dead Zone DynamicPurpose Set inputs within the bounds to zero

Library Nonlinear

Description The Dead Zone Dynamic block is a masked block that dynamically bounds the 
range of the input signal, providing a region of zero output. The bounds change 
according to the upper and lower limit input signals where

• The input within the bounds is set to zero.

• The input below the lower limit is shifted down by the lower limit.

• The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is 
the lo port.

Parameters 
and Dialog Box

Characteristics

See Also Dead Zone

up

u

lo

y

Dead Zone
Dynamic

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
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Decrement Real World
9Decrement Real WorldPurpose Decrease the real world value of the signal by one

Library Math

Description The Decrement Real World block is a masked block that decreases the real 
world value of the signal by one. Overflows always wrap.

Parameters 
and Dialog Box

Characteristics

See Also Decrement Stored Integer, Decrement Time To Zero, Decrement To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
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Decrement Stored Integer
9Decrement Stored IntegerPurpose Decrease the stored integer value of a signal by one

Library Math

Description The Decrement Stored Integer block is a masked block that decreases the 
stored integer value of a signal by one.

Floating-point signals are also decreased by one, and overflows always wrap.

Parameters 
and Dialog Box

Characteristics

See Also Decrement Real World, Decrement Time To Zero, Decrement To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
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Decrement Time To Zero
9Decrement Time To ZeroPurpose Decrease the real-world value of the signal by the sample time, but only to zero.

Library Math

Description The Decrement Time To Zero block is a masked S-function that decreases the 
real-world value of the signal by the sample time, Ts. The output will never go 
below zero. This block only works with fixed sample rates.

Parameters 
and Dialog Box

Characteristics

See Also Decrement Real World, Decrement Stored Integer, Decrement To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
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Decrement To Zero
9Decrement To ZeroPurpose Decreases the real-world value of a signal by one, but only to zero.

Library Math

Description The Decrement To Zero block is a masked block that decreases the real-world 
value of the signal by one. The output will never go below zero.

Parameters 
and Dialog Box

Characteristics

See Also Decrement Real World, Decrement Stored Integer, Decrement Time To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
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Derivative
9DerivativePurpose Compute a discrete time derivative

Library Calculus

Description The Derivative block computes a discrete time derivative, by subtracting the 
input value at the previous time step from the current value, and dividing by 
the sample time.

Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous weighted input K*u/Ts
Set the initial condition for the previous scaled input.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Derivative
Characteristics Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Detect Change
9Detect ChangePurpose Detect a change in a signal’s value

Library Edge Detect

Description The Detect Change block is a masked block that determines if an input does 
not equal its previous value where

• The output is true (not 0), when the input signal does not equal its previous 
value.

• The output is false (equal to 0), when the input signal equals its previous 
value.

Parameters 
and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Characteristics

See Also Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect 
Increase, Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-70



Detect Decrease
9Detect DecreasePurpose Detect a decrease in a signal’s value

Library Edge Detect

Description The Detect Decrease block is a masked block that determines if an input is 
strictly less than its previous value where

• The output is true (not 0), when the input signal is less than its previous 
value.

• The output is false (equal to 0), when the input signal is greater than or equal 
to its previous value.

Parameters 
and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Characteristics

See Also Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect Increase, 
Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer 

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
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Detect Fall Negative
9Detect Fall NegativePurpose Detect a falling edge when the signal’s value decreases to a strictly negative 
value, and its previous value was nonnegative

Library Edge Detect

Description The Detect Fall Negative block is a masked block that determines if the input 
is less than zero, and its previous value was greater than or equal to zero where

• The output is true (not 0), when the input signal is less than zero, and its 
previous value was greater than or equal to zero.

• The output is false (equal to 0), when the input signal is greater than or equal 
to zero, or if the input signal is nonnegative, its previous value was positive 
or zero.

Parameters 
and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z < 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect Increase, 
Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
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Detect Fall Nonpositive
9Detect Fall NonpositivePurpose Detect a falling edge when the signal’s value decreases to a nonpositive value, 
and its previous value was strictly positive

Library Edge Detect

Description The Detect Fall Nonpositive block is a masked block that determines if the 
input is less than or equal to zero, and its previous value was positive where

• The output is true (not 0), when the input signal is less than or equal to zero, 
and its previous value was greater than zero.

• The output is false (equal to 0), when the input signal is greater than zero, 
or if it is nonpositive, its previous value was nonpositive.

Parameters 
and Dialog Box

Initial condition
Set the initial condition of the boolean expression U/z <= 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase, Detect 
Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
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Detect Increase
9Detect IncreasePurpose Detect an increase in a signal’s value

Library Edge Detect

Description The Detect Increase block is a masked block that determines if an input is 
strictly greater than its previous value where

• The output is true (not 0), when the input signal is greater than its previous 
value.

• The output is false (equal to 0), when the input signal is less than or equal to 
its previous value.

Parameters 
and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall 
Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
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Detect Rise Nonnegative
9Detect Rise NonnegativePurpose Detect a rising edge when a signal’s value increases to a nonnegative value, 
and its previous value was strictly negative

Library Edge Detect

Description The Detect Rise Nonnegative block is a masked block that determines if the 
input is greater than or equal to zero, and its previous value was less than zero 
where

• The output is true (not 0), when the input signal is greater than or equal to 
zero, and its previous value was less than zero.

• The output is false (equal to 0), when the input signal is less than zero, or if 
nonnegative, its previous value was greater than or equal to zero.

Parameters 
and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall 
Nonpositive, Detect Increase, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
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Detect Rise Positive
9Detect Rise PositivePurpose Detect a rising edge when a signal’s value increases to a strictly positive value, 
and its previous value was nonpositive

Library Edge Detect

Description The Detect Rise Positive block is a masked block that determines if the input 
is strictly positive, and its previous value was nonpositive where

• The output is true (not 0), when the input signal is greater than zero, and its 
previous value was less than zero.

• The output is false (equal to 0), when the input is negative or zero, or if the 
input is positive, its previous value was also positive.

Parameters 
and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z > 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall 
Nonpositive, Detect Increase, Detect Rise Nonnegative

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
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Difference
9DifferencePurpose Calculate the change in a signal over one time step

Library Calculus

Description The Difference block outputs the current input value minus the previous input 
value.

Parameters 
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Characteristics Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Divide
9DividePurpose Multiply or divide inputs

Library Math

Description The Divide block is an implementation of the Product block. See “Product” on 
page 9-173 for more information.

Divide
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Dot Product
9Dot ProductPurpose Generate the dot product

Library Math

Description The Dot Product block is a masked S-function that generates the dot product of 
its two input vectors. The scalar output, y, is equal to the MATLAB operation

y = sum(conj(u1).* u2)

where u1 and u2 represent the inputs. If both inputs are vectors, they must be 
the same length.

For a detailed description of all block parameters, refer to “Block Parameters” 
on page 9-16. For more information about converting from one Fixed-Point 
Blockset data type to another, refer to “Signal Conversions” on page 4-27.

Parameters 
and Dialog Box 

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.
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Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These 
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for 
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes 
9-81



Filter Direct Form I
9Filter Direct Form IPurpose Implement a Direct Form I realization of a filter

Library Filters

Description The Filter Direct Form I block implements a Direct Form I realization of the 
filter specified by the Numerator coefficients and the Denominator 
coefficients excluding lead parameters. The block only supports single 
input-single output filters.

The block automatically selects the data types and scalings of the output, the 
coefficients, and any temporary variables. 

Parameters 
and Dialog Box
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Filter Direct Form I
Numerator coefficients
Coefficients for the numerator of the filter.

Denominator coefficients excluding lead
Coefficients for the denominator of the filter, excluding the leading 
coefficient, which must be 1.0.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form I Time Varying, FIR

Input Ports Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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Filter Direct Form I Time Varying
9Filter Direct Form I Time VaryingPurpose Implement a time varying Direct Form I realization of a filter

Library Filters

Description The Filter Direct Form I Time Varying block implements a Direct Form I 
realization of the specified filter. The block only supports single input-single 
output filters.

The block automatically selects the data types and scalings of the output, the 
coefficients, and any temporary variables. 

Parameters 
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.
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Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form I, FIR

Input Port u Any data type supported by the blockset—it must be 
a scalar

Input Port Num Any data type supported by the blockset—it must be 
a scalar

Input Port Den No 
Lead

Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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9Filter Direct Form IIPurpose Implement a Direct Form II realization of a filter

Library Filters

Description The Filter Direct Form II block implements a Direct Form II realization of the 
filter specified by the Numerator coefficients and the Denominator 
coefficients excluding lead parameters. The block only supports single 
input-single output filters.

The block automatically selects the data types and scalings of the output, the 
coefficients, and any temporary variables. 

Parameters 
and Dialog Box
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Numerator coefficients
Coefficients for the numerator of the filter.

Denominator coefficients excluding lead
Coefficients for the denominator of the filter, excluding the leading 
coefficient, which must be 1.0.

Initial condition
Set the initial condition.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form II Time Varying, FIR

Input Ports Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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Filter Direct Form II Time Varying
9Filter Direct Form II Time VaryingPurpose Implement a time varying Direct Form II realization of a filter

Library Filters

Description The Filter Direct Form II Time Varying block implements a Direct Form II 
realization of the specified filter. The block only supports single input-single 
output filters.

The block automatically selects the data types and scalings of the output, the 
coefficients, and any temporary variables. 

Parameters 
and Dialog Box

Initial condition
Set the initial condition.

Round toward
Rounding mode for the fixed-point output.
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Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form II, FIR

Input Port u Any data type supported by the blockset—it must be 
a scalar

Input Port Num Any data type supported by the blockset—it must be 
a scalar

Input Port Den No 
Lead

Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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Filter First Order
9Filter First OrderPurpose Implement a discrete-time first order filter

Library Filters

Description The Filter First Order block implements a discrete-time first order filter of the 
input. The filter has a unity DC gain. 

Parameters 
and Dialog Box

Pole of filter (in Z plane)
Set the pole of the filter.

Initial condition for previous output
Set the initial condition for the previous output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Characteristics

See Also FIR

Input Ports Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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Filter Lead or Lag
9Filter Lead or LagPurpose Implement a discrete-time lead or lag filter

Library Filters

Description The Filter Lead or Lag block implements a discrete-time lead or lag filter of the 
input. The instantaneous gain of the filter is one, and the DC gain is equal to 
(1-z)/(1-p), where z is the zero and p is the pole of the filter.

The block implements a lead filter when 0 < z < p < 1, and implements a lag 
filter when 0 < p < z < 1.

Parameters 
and Dialog Box

Pole of filter (in Z plane)
Set the pole of the filter.

Zero of filter (in Z plane)
Set the zero of the filter.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous input
Set the initial condition for the previous input.
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Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also FIR

Input Ports Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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Filter Real Zero
9Filter Real ZeroPurpose Implement a discrete-time filter that has a real zero and no pole

Library Filters

Description The Filter Real Zero block implements a discrete-time filter that has a real zero 
and effectively has no pole. 

Parameters 
and Dialog Box

Zero of filter (in Z plane)
Set the zero of the filter.

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Filter Real Zero
Characteristics

See Also FIR

Input Ports Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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FIR
9FIRPurpose Implement a fixed-point finite impulse response (FIR) filter

Library Filters

Description The FIR block is a masked S-function that samples and holds the N most recent 
inputs, multiplies each input by a specified value (its FIR coefficient), and 
stacks them in a vector. This block supports both single-input/single-output 
(SISO) and single-input/multi-output (SIMO) modes.

For the SISO mode, the FIR coefficients parameter is specified as a row 
vector. For the SIMO mode, the FIR coefficients are specified as a matrix 
where each row corresponds to a separate output. 

The Initial condition parameter provides the initial values for all times 
preceding the start time in the FIR realization. You specify the time interval 
between samples with the Sample time parameter.

You can choose whether or not to specify the data type and scaling of the FIR 
coefficients in the dialog with the Gain data type and scaling parameter. If 
you select Specify via dialog for this parameter, the Parameter data type 
and Parameter scaling parameters become visible.

You can specify the scaling for the FIR coefficients with the Parameter scaling 
parameter. Note that there are two dialog box parameters that control the FIR 
coefficient scaling: one associated with an edit field, and one associated with a 
parameter list. If Parameter data type is a generalized fixed-point number 
such as sfix(16), the Parameter scaling list provides you with these scaling 
modes:

• Use Specified Scaling—This mode uses the [Slope Bias] or radix 
point-only scaling specified for the editable Parameter scaling parameter 
(for example, 2^-10).

• Best Precision: Element-wise—This mode produces radix points such 
that the precision is maximized for each element of the FIR coefficients 
parameter.

• Best Precision: Row-wise—This mode produces a common radix point for 
each element of the FIR coefficients row based on the best precision for the 
largest value of that row.
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• Best Precision: Column-wise—This mode produces a common radix point 
for each element of the FIR coefficients column based on the best precision 
for the largest value of that column.

• Best Precision: Matrix-wise—This mode produces a common radix point 
for each element of the FIR coefficients matrix based on the best precision 
for the largest value of the matrix.

If the FIR coefficients are specified as a row vector, then scaling element-wise 
and column-wise produce the same result, while scaling matrix-wise and 
row-wise produce the same result.

For a detailed description of all other block parameters, refer to “Block 
Parameters” on page 9-16.

Parameters 
and Dialog Box
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FIR
FIR coefficients
FIR coefficients. One row per output.

Initial condition
Initial values for all times preceding the start time.

Sample time
Sample time.

Gain data type and scaling
Choose whether to specify the data type of the FIR coefficients via the 
dialog or via an internal rule. If Specify via dialog is selected, the 
Parameter data type and Parameter scaling parameters become visible.

Parameter data type
Any data type supported by the Fixed-Point Blockset. This parameter is 
only visible if Specify via dialog is selected for the Gain data type and 
scaling parameter.

Parameter scaling
Set the parameter scaling using radix point-only or [Slope Bias] scaling. 
Additionally, the FIR coefficients vector or matrix can be scaled using the 
constant vector or constant matrix scaling modes for maximizing precision. 
These scaling modes are available only for generalized fixed-point data 
types. This parameter is only visible if Specify via dialog is selected for 
the Gain data type and scaling parameter.

Parameter scaling
This drop-down list enables you to specify the parameter scaling in the 
dialog or by an inherited rule. This parameter is only visible if Specify via 
dialog is selected for the Gain data type and scaling parameter.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.
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Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These 
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for 
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Conversions 
and Operations

The FIR coefficients parameter is converted from doubles to the specified data 
type offline using round-to-nearest and saturation.The Initial condition 
parameter is converted from doubles to the input data type offline using 
round-to-nearest and saturation. Refer to “Parameter Conversions” on 
page 4-27 for more information about parameter conversions.

The FIR block first multiplies its inputs by the FIR coefficients parameter, 
converts those results to the output data type using the specified rounding and 
overflow modes, and then carries out the summation. Refer to “Rules for 
Arithmetic Operations” on page 4-30 for more information about the rules this 
block adheres to when performing operations.

Examples Suppose you want to configure this block for two outputs (SIMO mode) where 
the first output is given by

the second output is given by

and the initial values of u(k – 1) and u(k – 2) are given by ic1 and ic2, 
respectively. To configure the FIR block for this situation, you must specify the 
FIR coefficient parameter as [a1 b1 c1; a2 b2 c2] where c2 = 0, and the 
Initial condition parameter as [ic1 ic2].

y1 k( ) a1 u k( ) b1 u k 1�( ) c1 u k 2�( )⋅+⋅+⋅=

y2 k( ) a2 u k( ) b2 u k 1�( )⋅+⋅=
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Characteristics Input Ports Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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Gain
9GainPurpose Multiply the input by a constant

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Gain block multiplies the input by a constant value (gain). The input and 
the gain can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The Multiplication 
parameter lets you specify element-wise or matrix multiplication. For matrix 
multiplication, this parameter also lets you indicate the order of the 
multiplicands.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type 
Support

The input and gain of the Gain block can be a real or complex scalar, vector, or 
matrix of any data type except boolean. If the input is real and the gain is 
complex, the output is complex.

Parameters 
and Dialog Box

Gain
Specify the value by which to multiply the input. The gain may be a scalar, 
vector, or matrix.

Multiplication
Specify the multiplication mode:

1

Gain

1.0

Gain
9-101



Gain
• Element-wise(K*u)—Each element of the input is multiplied by each 
element of the gain. The block performs expansions, if necessary, so that the 
input and gain have the same dimensions.

• Matrix(K*u)—The input and gain are matrix multiplied with the input as 
the second operand.

• Matrix(u*K)—The input and gain are matrix multiplied with the input as 
the first operand.

• Matrix(K*u)(u vector)—The input and gain are matrix multiplied with the 
input as the second operand, and the input is a vector. The input and the 
output are required to be vectors and their lengths are determined by the 
dimensions of the gain.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.
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Parameter data type mode
Set the data type and scaling of the gain to be the same as that of the input, 
or to be inherited via an internal rule. Alternatively, choose to specify the 
data type and scaling of the gain through the Parameter data type, 
Parameter scaling mode, and Parameter scaling parameters in the 
dialog.

Parameter data type
Set the gain data type. This parameter is only visible if Specify via 
dialog is selected for the Parameter data type mode parameter.

Parameter scaling mode
Set the mode to determine the scaling of the gain.

• Use specified scaling—This mode allows you to set the scaling of the gain 
in the Parameter scaling parameter.
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• Best Precision: Element-wise—This mode sets radix points for the 
elements of the gain such that the precision of each element is maximized.

• Best Precision: Row-wise—This mode sets a common radix point within 
each row of the gain such that the largest element of each row has the best 
possible precision.

• Best Precision: Column-wise—This mode sets a common radix point 
within each column of the gain such that the largest element of each column 
has the best possible precision.

• Best Precision: Matrix-wise—This mode sets a common radix point for 
all the elements of the gain such that the largest element has the best 
possible precision.

This parameter is only visible if Specify via dialog is selected for the 
Parameter data type mode parameter.

Parameter scaling
Set the gain scaling using either radix point-only or [Slope Bias] scaling. 
This parameter is only visible if Specify via dialog is selected for the 
Parameter data type mode parameter, and if Use specified scaling is 
selected for the Parameter scaling mode parameter.

Output data type mode
Set the data type and scaling of the output to be the same as that of the 
input, or to be inherited via an internal rule or by backpropagation. 
Alternatively, choose to specify the data type and scaling of the output 
through the Output data type and Output scaling value parameters in 
the dialog.

If you select Inherit via internal rule for this parameter, Simulink 
chooses a combination of output scaling and data type that requires the 
smallest amount of memory consistent with accommodating the output 
range and maintaining the output precision of the block. If the Production 
hardware characteristics parameter on the Advanced pane of the 
Simulation Parameters dialog is set to Unconstrained integer sizes, 
Simulink chooses the output data type without regard to hardware 
constraints. If the parameter is set to Microprocessor, Simulink chooses 
the smallest available hardware data type capable of meeting the range 
and precision constraints. For example, if the block multiplies an input of 
type int8 by a gain of int16 and Unconstrained integer sizes is 
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specified, the output data type is sfix24. If Microprocessor is specified 
and the microprocessor supports 8-bit, 16-bit, and 32-bit words, the output 
data type is int32. If none of the word lengths provided by the target 
microprocessor can accommodate the output range, Simulink displays an 
error message in the Simulink Diagnostic Viewer.

Output data type
Set the output data type. This parameter is only visible if Specify via 
dialog is selected for the Output data type mode parameter.

Output scaling value
Set the output scaling using either radix point-only or [Slope Bias] scaling. 
This parameter is only visible if Specify via dialog is selected for the 
Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if 
Specify via dialog is selected for the Output data type mode 
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions 
and Operations

The gain is converted from doubles to the specified data type offline using 
round-to-nearest and saturation. Refer to “Parameter Conversions” on 
page 4-27 for more information about parameter conversions. The input and 
gain are then multiplied, and the result is converted to the output data type 
using the specified rounding and overflow modes. Refer to “Rules for 
Arithmetic Operations” on page 4-30 for more information about the rules this 
block adheres to when performing operations.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block
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Scalar Expansion Of input and Gain parameter for Element-wise 
multiplication

Zero Crossing No
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Gateway In
9Gateway InPurpose Convert a Simulink data type to a Fixed-Point Blockset data type

Library Data Type

Description The Gateway In block is a masked S-function that converts a built-in Simulink 
data type to a Fixed-Point Blockset data type.

The Input and Output to have equal parameter list controls how the input is 
processed. The possible values are Real World Value and Stored Integer. In 
terms of the general encoding scheme described in “Scaling” on page 3-5, Real 
World Value treats the input as V = SQ + B where S is the slope and B is the 
bias. V is used to produce Q = (V - B)/S, which is stored in the output. Stored 
Integer treats the input as a stored integer, Q. The value of Q is directly used 
to produce the output. In this mode, the input and output are identical except 
that the input is a raw integer lacking proper scaling information. In both 
modes, the output data type includes the scaling information needed to 
correctly interpret the signal as a real-world value. 

For a detailed description of all other block parameters, refer to “Block 
Parameters” on page 9-16.

Parameters 
and Dialog Box
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Input and Output to have equal
Specify the type of value that the input and output are to have equal.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These 
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for 
generalized fixed-point output.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Examples This example uses the Gateway In block to help you understand the difference 
between a real-world value and a stored integer. Consider the two fixed-point 
models shown below.
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In the top model, the Gateway In block treats the input as a real-world value, 
and maps that value to an 8-bit signed generalized fixed-point data type with 
a scaling of 2-2. If the value is output from the Gateway Out block as a 
real-world value, then the scaling and data type information is retained and 
the output value is 001111.00, or 15. If the value is output from the Gateway 
Out block as a stored integer, then the scaling and data type information is not 
retained and the stored integer is interpreted as 00111100, or 60.

In the bottom model, the Gateway In block treats the input as a stored integer, 
and the data type and scaling information is not applied. If the value is output 
from the Gateway Out block as a real-world value, then the scaling and data 
type information is applied to the stored integer, and the output value is 
000011.11, or 3.75. If the value is output from the Gateway Out block as a 
stored integer, then you get back the original input value of 15.

The model shown below illustrates how a summation operation applies to 
real-world values and stored integers, and how scaling information is dealt 
with in generated code.
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Note that the summation operation produces the correct result when the 
Gateway Out block outputs a real-world value. This is because the specified 
scaling information is applied to the stored integer value. However, when the 
Gateway Out block outputs a stored integer value, then the summation 
operation produces an unexpected result due to the absence of scaling 
information.

If you generate code for the above model, then the code captures the 
appropriate scaling information. The code for the Sum block is shown below. 
The inputs to this block are tagged with the specified scaling information so 
that the necessary shifts are performed for the summation operation.

/* Sum Block: <Root>/Sum
   *
   *  y =  u0 + u1
   *
   * Input0  Data Type:  Fixed Point    S16  2^-2
   * Input1  Data Type:  Fixed Point    S16  2^-4
   * Output0 Data Type:  Fixed Point    S16  2^-5
   *
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   * Round Mode: Floor
   * Saturation Mode: Wrap
   *
   */
  sum = ((in1) << 3);
  sum += ((in2) << 1);

Characteristics

See Also Gateway In Inherited

Input Port Any built-in Simulink data type

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion No
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Gateway In Inherited
9Gateway In InheritedPurpose Convert a Simulink data type to a Fixed-Point Blockset data type, and inherit 
the data type and scaling

Library Data Type

Description The Gateway In Inherited block is a masked S-function that converts a built-in 
Simulink data type to a Fixed-Point Blockset data type.

The block requires two inputs. The first (top) input provides the data type and 
scaling information. The second (bottom) input passes through to the output, 
and inherits the data type and scaling of the first input. If you want to explicitly 
specify the output data type and scaling, use the Gateway In block.

The Input and Output to have equal parameter list controls how the input is 
processed. The possible values are Real World Value and Stored Integer. In 
terms of the general encoding scheme described in “Scaling” on page 3-5, Real 
World Value treats the input as V = SQ + B where S is the slope and B is the 
bias. Stored Integer treats the input as a stored integer, Q. For more 
information about this parameter list, refer to the Gateway In block.

For a detailed description of all other block parameters, refer to “Block 
Parameters” on page 9-16.

Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.

• It allows you to create new fixed-point models with less effort since you can 
avoid the detail of specifying the associated parameters.
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Parameters 
and Dialog Box

Input and Output to have equal
Specify the type of value that the input and output are to have equal.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Gateway In

Input Port Any built-in Simulink data type

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion No
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Gateway Out
9Gateway OutPurpose Convert a Fixed-Point Blockset data type to a Simulink data type

Library Data Type

Description The Gateway Out block is a masked S-function that converts any data type 
supported by the Fixed-Point Blockset to a Simulink data type. 

The Output and Input to have equal parameter list controls how the output 
is treated. The possible values are Real World Value and Stored Integer. In 
terms of the general encoding scheme described in “Scaling” on page 3-5, Real 
World Value treats the output as V = SQ + B where S is the slope and B is the 
bias. Stored Integer treats the output as a stored integer, Q. Selecting Stored 
Integer may be useful in these circumstances:

• If you are generating code for a fixed-point processor, the resulting code only 
uses integers and does not use floating-point operations.

• If you want to partition your model based on hardware characteristics. For 
example, part of your model may involve simulating hardware that produces 
integers as output.

Note  If the fixed-point signal is a true integer such as sint(8) or uint(16), 
then Real World Value and Stored Integer produce identical output values.

For more information about this parameter list, refer to the Gateway In block 
description.

The Output data type parameter list specifies the Simulink data type to use 
for the output. All built-in data types are supported as well as the boolean data 
type. auto indicates the Fixed-Point Blockset data type is converted to 
whatever data type Simulink back propagates.

Remarks The MATLAB built-in integer data types are limited to 32 bits. If you want to 
output fixed-point numbers that range between 33 and 53 bits without loss of 
precision or range, you should use the Gateway Out block to store the value 
inside a double.
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If you want to output fixed-point numbers with more than 53 bits without loss 
of precision or range, then you must break the number into pieces using the 
Gain block, and then output the pieces using the Gateway Out block.

For example, suppose the original signal is an unsigned 128-bit value with 
default scaling. You can break this signal into four pieces using four parallel 
Gain blocks configured with the gain and output settings shown below.

For each Gain block, you must also configure the Round toward parameter to 
Floor, and the Saturate to max or min when overflows occur check box 
must be unselected.

Parameters 
and Dialog Box

Piece Gain Output Data Type

1 2^0 uint(32) – Least significant 32 bits

2 2^-32 uint(32)

3 2^-64 uint(32)

4 2^-96 uint(32) – Most significant 32 bits
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Gateway Out
Output and Input to have equal
Specify the type of value the input and output are to have equal.

Output data type
Any built-in data type supported by Simulink.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Gateway In

Input Ports Any data type supported by the blockset

Output Port Any built-in Simulink data type

Direct Feedthrough Yes

Scalar Expansion N/A
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Increment Real World
9Increment Real WorldPurpose Increase the real world value of the signal by one

Library Math

Description The Increment Real World block is a masked block that increases the real 
world value of the signal by one. Overflows always wrap.

Parameters 
and Dialog Box

Characteristics

See Also Increment Stored Integer

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
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Increment Stored Integer
9Increment Stored IntegerPurpose Increase the stored integer value of a signal by one

Library Math

Description The Increment Stored Integer block is a masked block that increases the stored 
integer value of a signal by one. 

Floating-point signals are also increased by one, and overflows always wrap.

Parameters 
and Dialog Box

Characteristics

See Also Increment Real World

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
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Index Vector
9Index VectorPurpose Switch output between different inputs based on the value of the first input

Library Select

Description The Index Vector block is an implementation of the Multi-Port Switch block. 
See “Multi-Port Switch” on page 9-170 for more information.

Index
Vector
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Integer Delay
9Integer DelayPurpose Delay a signal N sample periods

Library Delays & Holds

Description The Integer Delay block delays its input by N sample periods. 

The block accepts one input and generates one output, both of which can be 
scalar or vector. If the input is a vector, all elements of the vector are delayed 
by the same sample period.

Parameters 
and Dialog Box

Initial condition
The initial output of the simulation.

Sample time
Sample time.

Number of delays
The number of periods to delay the input signal.

Conversions The Initial condition parameter is converted from a double to the input data 
type offline using round-to-nearest and saturation.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Scalar Expansion Of input or initial conditions
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Integrator Backward
9Integrator BackwardPurpose Perform discrete-time integration of a signal using the backward method

Library Calculus

Description The Integrator Backward block performs a discrete-time integration of a signal 
using the backward method. The block multiplies the input by the weighted 
sample time and adds the result to the cumulative sum since time zero. The 
block outputs the sum up to the nth time step at time n.

Remarks The output of the Integrator Backward block differs from the output of the 
Integrator Forward block only by the first and last terms in the cumulative 
sum.

Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
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Integrator Backward
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward Resettable, Integrator Backward Resettable Limited, 
Integrator Forward, Integrator Forward Resettable, Integrator Forward 
Resettable Limited, Integrator Trapezoidal, Integrator Trapezoidal 
Resettable, Integrator Trapezoidal Resettable Limited

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Integrator Backward Resettable
9Integrator Backward ResettablePurpose Perform discrete-time integration of a signal using the backward method with 
external Boolean reset

Library Calculus

Description The Integrator Backward Resettable block performs a discrete-time 
integration of a signal using the backward method. 

The block can reset its state based on an external reset signal R. When the 
reset signal R is false, the block multiplies the input by the weighted sample 
time and adds the result to the cumulative sum since time zero. 

When the reset signal R is true, the block outputs the Initial condition for 
previous output parameter.

Remarks The output of the Integrator Backward Resettable block differs from the output 
of the Integrator Forward Resettable block only by the first and last terms in 
the cumulative sum.

Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.
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Integrator Backward Resettable
Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable Limited, Integrator 
Forward, Integrator Forward Resettable, Integrator Forward Resettable 
Limited, Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator 
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
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Integrator Backward Resettable Limited
9Integrator Backward Resettable LimitedPurpose Perform discrete-time limited integration of a signal using the backward 
method, with external Boolean reset

Library Calculus

Description The Integrator Backward Resettable Limited block performs a discrete-time 
integration of a signal using the backward method. 

The block can reset its state based on an external reset signal R. When the 
cumulative sum reaches one of the limits given by the Upper limit and Lower 
limit parameters, the sum saturates to that limit.

When the reset signal R is false, the block multiplies the input by the weighted 
sample time and adds the result to the cumulative sum since time zero. 

When the reset signal R is true, the block outputs the Initial condition for 
previous output parameter.

Remarks The output of the Integrator Backward Resettable Limited block differs from 
the output of the Integrator Forward Resettable Limited block only by the first 
and last terms in the cumulative sum.
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Integrator Backward Resettable Limited
Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Upper limit
The upper limit for saturation of the cumulative sum.

Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 
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Integrator Backward Resettable Limited
Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Forward, 
Integrator Forward Resettable, Integrator Forward Resettable Limited, 
Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator 
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
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Integrator Forward
9Integrator ForwardPurpose Perform discrete-time integration of a signal using the forward method

Library Calculus

Description The Integrator Forward block performs a discrete-time integration of a signal 
using the forward method. The block multiplies the input by the weighted 
sample time and adds the result to the cumulative sum since time zero. The 
block outputs the sum up to the nth time step at time n+1. The first term of the 
sum is the Initial condition for previous output parameter.

Remarks The output of the Integrator Forward block differs from the output of the 
Integrator Backward block only by the first and last terms in the cumulative 
sum.

Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
The options are:

- Specify via dialog
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- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward 
Resettable Limited, Integrator Forward Resettable, Integrator Forward 
Resettable Limited, Integrator Trapezoidal, Integrator Trapezoidal 
Resettable, Integrator Trapezoidal Resettable Limited

Input Port Any data type supported by the blockset

Output Port Same as the input 

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Integrator Forward Resettable
9Integrator Forward ResettablePurpose Perform discrete-time integration of a signal using the forward method, with 
external Boolean reset

Library Calculus

Description The Integrator Forward Resettable block performs a discrete-time integration 
of a signal using the forward method. When the external reset signal R is false, 
the block multiplies the input by the weighted sample time and adds the result 
to the cumulative sum since time zero. 

When the external reset signal R is true, the block outputs the Initial 
condition for previous output parameter.

Remarks The output of the Integrator Forward Resettable block differs from the output 
of the Integrator Backward Resettable block only by the first and last terms in 
the cumulative sum.

Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.
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Integrator Forward Resettable
Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward 
Resettable Limited, Integrator Forward, Integrator Forward Resettable 
Limited, Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator 
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Integrator Forward Resettable Limited
9Integrator Forward Resettable LimitedPurpose Perform discrete-time limited integration of a signal using the forward method, 
with external Boolean reset

Library Calculus

Description The Integrator Forward Resettable Limited block performs a discrete-time 
integration of a signal using the forward method. When the cumulative sum 
reaches one of the limits given by the Upper limit and Lower limit 
parameters, the sum saturates to that limit.

When the external reset signal R is false, the block multiplies the input by the 
weighted sample time and adds the result to the cumulative sum since time 
zero. 

When the external reset signal R is true, the block outputs the Initial 
condition for previous output parameter.

The first term of the sum is the product of the weighted sample time and the 
value of the Initial condition for previous input parameter.

Remarks The output of the Integrator Forward Resettable Limited block differs from the 
output of the Integrator Backward Resettable Limited block only by the first 
and last terms in the cumulative sum.
9-132



Integrator Forward Resettable Limited
Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Upper limit
The upper limit for saturation of the cumulative sum.

Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 
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Integrator Forward Resettable Limited
Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward 
Resettable Limited, Integrator Forward, Integrator Forward Resettable, 
Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator 
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Integrator Trapezoidal
9Integrator TrapezoidalPurpose Perform discrete-time integration of a signal using the trapezoidal method

Library Calculus

Description The Integrator Trapezoidal block performs a discrete-time integration of a 
signal using the trapezoidal method. At time step k, the block computes the 
average of the inputs at times k-1 and k, multiplies the average by the 
weighted sample time, and adds the result to the cumulative sum since time 
zero. The block outputs the sum up to the kth time step at time. 

The block calculates the output at time k by the rule

where  is the input at time k and 

 

At the first time step, y(0) is set to the value of Initial condition for previous 
output, and w(0) is set to the value of Initial condition for previous 
weighted input K*Ts*u/2.

Parameters 
and Dialog Box

y k( ) y k 1�( ) w k( ) w k 1�( )+ +=

u k( )

w k( ) K Ts⋅
2

---------------- u k( )⋅=
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Integrator Trapezoidal
Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous weighted input K*Ts*u/2
Set the initial condition for the previous weighted input.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward 
Resettable Limited, Integrator Forward, Integrator Forward Resettable, 
Integrator Forward Resettable Limited, Integrator Trapezoidal Resettable, 
Integrator Trapezoidal Resettable Limited

Input Port Any data type supported by the blockset

Output Port Same as the input 

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
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Integrator Trapezoidal Resettable
9Integrator Trapezoidal ResettablePurpose Perform discrete-time integration of a signal using the trapezoidal method, 
with external Boolean reset

Library Calculus

Description The Integrator Trapezoidal Resettable block performs a discrete-time 
integration of a signal using the trapezoidal method. 

The block can reset its state based on an external reset signal R. When the 
reset signal R is false at time k, the block calculates the output at time k by the 
rule

where  is the input at time k and 

 

When the reset signal R is true at time k, the block resets the output y(k) to the 
value of the Initial condition for previous output parameter, and resets w(k) 
to the value of the Initial condition for previous weighted input K*Ts*u/2 
parameter.

Parameters 
and Dialog Box

y k( ) y k 1�( ) w k( ) w k 1�( )+ +=

u k( )

w k( ) K Ts⋅
2

---------------- u k( )⋅=
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Integrator Trapezoidal Resettable
Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous weighted input K*Ts*u/2
Set the initial condition for the previous weighted input.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward 
Resettable Limited, Integrator Forward, Integrator Forward Resettable, 
Integrator Forward Resettable Limited, Integrator Trapezoidal, Integrator 
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
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Integrator Trapezoidal Resettable Limited
9Integrator Trapezoidal Resettable LimitedPurpose Perform discrete-time limited integration of a signal using the trapezoidal 
method, with external Boolean reset

Library Calculus

Description The Integrator Trapezoidal Resettable Limited block performs a discrete-time 
integration of a signal using the trapezoidal method. 

The block can reset its state based on an external reset signal R. When the 
cumulative sum reaches one of the limits given by the Upper limit and Lower 
limit parameters, the sum saturates to that limit.

When the reset signal R is false at time step k, the block calculates the output 
at time k by the rule

where  is the input at time k and 

 

When the reset signal R is true at time k, the block resets the output y(k) to the 
value of the Initial condition for previous output parameter. The block also 
resets w(k) to the value of the Initial condition for previous weighted input 
K*Ts*u/2 parameter.

y k( ) y k 1�( ) w k( ) w k 1�( )+ +=

u k( )

w k( ) K Ts⋅
2

---------------- u k( )⋅=
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Integrator Trapezoidal Resettable Limited
Parameters 
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous weighted input K*Ts*u/2
Set the initial condition for the previous weighted input.

Upper limit
The upper limit for saturation of the cumulative sum.

Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
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Integrator Trapezoidal Resettable Limited
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type 
and Output scaling parameters. 

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward 
Resettable Limited, Integrator Forward, Integrator Forward Resettable, 
Integrator Forward Resettable Limited, Integrator Trapezoidal, Integrator 
Trapezoidal Resettable

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
9-141



Interval Test
9Interval TestPurpose Determine if a signal is in a specified interval

Library Logic & Comparison

Description The Interval Test block outputs TRUE if the input is between the values 
specified by the Lower limit and Upper limit parameters. The block outputs 
FALSE if the input is outside those values. The output of the block when the 
input is equal to the Lower limit or the Upper limit is determined by whether 
the boxes next to Interval closed on left and Interval closed on right are 
selected in the dialog box.

Parameters 
and Dialog Box

Interval closed on right
When the box is selected, the Upper limit is included in the interval for 
which the block outputs TRUE.

Upper limit
The upper limit of the interval for which the block outputs TRUE.

Interval closed on left
When the box is selected, the Lower limit is included in the interval for 
which the block outputs TRUE.

Lower limit
The lower limit of the interval for which the block outputs TRUE.
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Interval Test
Characteristics

See Also Interval Test Dynamic

Input Ports Any data type supported by the blockset

Output Port Same data type as input

Direct Feedthrough Yes

Scalar Expansion Yes 
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Interval Test Dynamic
9Interval Test DynamicPurpose Determine if a signal is in a specified interval

Library Logic & Comparison

Description The Interval Test Dynamic block outputs TRUE if the input is between the 
values of the external signals up and lo. The block outputs FALSE if the input 
is outside those values. The output of the block when the input is equal to the 
signal up or the signal lo is determined by whether the boxes next to Interval 
closed on left and Interval closed on right are selected in the dialog box.

Parameters 
and Dialog Box

Interval closed on right
When the box is selected, the Upper limit is included in the interval for 
which the block outputs TRUE.

Interval closed on left
When the box is selected, the Lower limit is included in the interval for 
which the block outputs TRUE.

Characteristics

See Also Interval Test

Input Ports Any data type supported by the blockset

Output Port Same data type as output

Direct Feedthrough Yes

Scalar Expansion Yes 
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Logical Operator
9Logical OperatorPurpose Perform the specified logical operation on the inputs

Library Simulink Math Operations and Fixed-Point Blockset Logic & Comparison

Description The Logical Operator block performs the specified logical operation on its 
inputs. An input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero.

You select the Boolean operation connecting the inputs with the Operator 
parameter list. The block icon updates to display the selected operator. The 
supported operations are given below.

The number of input ports is specified with the Number of input ports 
parameter. The output type is specified with the Output data type mode and/
or the Output data type parameters. An output value is 1 if TRUE and 0 if 
FALSE.

Note  The output data type should represent zero exactly. Data types that 
satisfy this condition include signed and unsigned integers, and any 
floating-point data type.

The size of the output depends on input vector size and the selected operator:

AND

Logical
Operator

Operation Description

AND TRUE if all inputs are TRUE

OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE

NOR TRUE when no inputs are TRUE

XOR TRUE if an odd number of inputs are TRUE

NOT TRUE if the input is FALSE
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Logical Operator
• If the block has more than one input, any nonscalar inputs must have the 
same dimensions. For example, if any input is a 2-by-2 array, all other 
nonscalar inputs must also be 2-by-2 arrays. 

Scalar inputs are expanded to have the same dimensions as the nonscalar 
inputs.

If the block has more than one input, the output has the same dimensions as 
the inputs (after scalar expansion) and each output element is the result of 
applying the specified logical operation to the corresponding input elements. 
For example, if the specified operation is AND and the inputs are 2-by-2 
arrays, the output is a 2-by-2 array whose top left element is the result of 
applying AND to the top left elements of the inputs, etc.

• For a single vector input, the block applies the operation (except the NOT 
operator) to all elements of the vector. The output is always a scalar.

• The NOT operator accepts only one input, which can be a scalar or a vector. 
If the input is a vector, the output is a vector of the same size containing the 
logical complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an addition- 
modulo-two operation as mandated by the IEEE Standard for Logic Elements.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type 
Support

A Logical Operator block accepts real or complex signals of any data type. 
However, if the Output data type mode parameter is set to Logical, the 
input may only be boolean or double.
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Logical Operator
Parameters 
and Dialog Box

Operator
The logical operator to be applied to the block inputs. Valid choices are the 
operators listed previously.

Number of input ports
The number of block inputs. The value must be appropriate for the selected 
operator.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.
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Logical Operator
Require all inputs and output to have same data type
Select to require all inputs and the output to have the same data type.

Output data type mode
Set the output data type to Boolean, or choose to specify the data type 
through the Output data type parameter. 

Alternatively, you can select Logical to have the output data type 
determined by the Boolean Logic Signals parameter in the Advanced tab 
of the Simulation Parameters interface. If you select Logical and Boolean 
Logic Signals is on, then the output data type is always Boolean. If you 
select Logical and Boolean Logic Signals is off, then the output data 
type will match the input data type, which may be Boolean or double.

Logical output data type
Output data type. You should only use data types that represent zero 
exactly. Data types that satisfy this condition include signed and unsigned 
integers and any floating-point data type. This parameter is only visible if 
Specify via dialog is selected for the Output data type mode 
parameter.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion Of inputs

Zero Crossing No
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Look-Up Table
9Look-Up TablePurpose Approximate a one-dimensional function using the specified lookup method

Library Simulink Look-Up Tables and Fixed-Point Blockset LookUp

Description The Look-Up Table block computes an approximation to some function y=f(x) 
given data vectors x and y.

Note  To map two inputs to an output, use the Look-Up Table (2-D) block.

The length of the x and y data vectors provided to this block must match. Also, 
the x data vector must be strictly monotonically increasing after conversion to 
the input’s fixed-point data type, except in the following case. If the input x and 
the output signal are both either single or double, and if the lookup method is 
Interpolation-Extrapolation, then x may be monotonically increasing 
rather than strictly monotonically increasing. Note that due to quantization, 
the x data vector may be strictly monotonic in doubles format, but not so after 
conversion to a fixed-point data type.

You define the table by specifying the Vector of input values parameter as a 
1-by-n vector and the Vector of output values parameter as a 1-by-n vector. 
The block generates output based on the input values using one of these 
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs 
linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding 
element in the output vector.

- If no value matches the block’s input, then the block performs linear 
interpolation between the two appropriate elements of the table to 
determine an output value. If the block input is less than the first or 
greater than the last input vector element, then the block extrapolates 
using the first two or last two points.

• Interpolation-Use End Values—This method performs linear 
interpolation as described above but does not extrapolate outside the end 
points of the input vector. Instead, the end-point values are used.

Look−Up
Table
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• Use Input Nearest—This method does not interpolate or extrapolate. 
Instead, the element in x nearest the current input is found. The 
corresponding element in y is then used as the output.

• Use Input Below—This method does not interpolate or extrapolate. Instead, 
the element in x nearest and below the current input is found. The 
corresponding element in y is then used as the output. If there is no element 
in x below the current input, then the nearest element is found.

• Use Input Above—This method does not interpolate or extrapolate. Instead, 
the element in x nearest and above the current input is found. The 
corresponding element in y is then used as the output. If there is no element 
in x above the current input, then the nearest element is found.

To create a table with step transitions, repeat an input value with different 
output values. For example, these input and output parameter values create 
the input/output relationship described by the plot that follows:

Vector of input values: [-2 -1 -1 0 0 0 1 1 2]
Vector of output values: [-1 -1 -2 -2 1 2 2 1 1]

This example has three step discontinuities: at u = -1, 0, and +1.

When there are two points at a given input value, the block generates output 
according to these rules:

• When the input signal u is less than zero, the output is the value connected 
with the point first encountered when moving away from the origin in a 
negative direction. In this example, when u is -1, y is -2, marked with a solid 
circle.

The output value
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• When u is greater than zero, the output is the value connected with the point 
first encountered when moving away from the origin in a positive direction. 
In this example, when u is 1, y is 2, marked with a solid circle.

• When u is at the origin and there are two output values specified for zero 
input, the actual output is their average. In this example, if there were no 
point at u = 0 and y = 1, the output would be 0, the average of the two points 
at u = 0. If there are three points at zero, the block generates the output 
associated with the middle point. In this example, the output at the origin is 
1.

The Look-Up Table block icon displays a graph of the input vector versus the 
output vector. When a parameter is changed on the block’s dialog box, the 
graph is automatically redrawn when you click the Apply or Close button.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

To avoid parameter saturation errors, the automatic scaling script autofixexp 
employs a special rule for the Look-Up Table block. autofixexp modifies the 
scaling by using the output look-up values in addition to the logged minimum 
and maximum simulation values. This prevents the data from being saturated 
to different values. The look-up values are given by the Vector of output 
values parameter (the YDataPoints variable).

Parameters 
and Dialog Box
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Vector of input values
Specify the vector of input values. The input values vector must be the 
same size as the output values vector. Also, the input values vector must 
be strictly monotonically increasing after conversion to the input’s 
fixed-point data type, except in the following case. If the input values vector 
and the output signal are both either single or double, and if the lookup 
method is Interpolation-Extrapolation, then the input values vector 
may be monotonically increasing rather than strictly monotonically 
increasing. Note that due to quantization, the input values vector may be 
strictly monotonic in doubles format, but not so after conversion to a 
fixed-point data type.

Vector of output values
Specify the vector of output values. The output values vector must be the 
same size as the input values vector.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.
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Look-up method
Specify the lookup method. See “Description” on page 9-149 for a discussion 
of the options for this parameter.

Output data type mode
You can set the output signal to a built-in data type from this drop-down 
list, or you can choose the output data type and scaling to be the same as 
the input. Alternatively, you can choose to inherit the output data type and 
scaling by backpropagation. Lastly, if you choose Specify via dialog, the 
Output data type, Output scaling value, and Lock output scaling 
against changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is 
only visible if Specify via dialog is selected for the Output data type 
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This 
parameter is only visible if Specify via dialog is selected for the Output 
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if 
Specify via dialog is selected for the Output data type mode 
parameter.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions 
and Operations

The Vector of input values parameter is converted from doubles to the input 
data type. The Vector of output values parameter is converted from doubles 
to the output data type. Both conversion are performed offline using 
round-to-nearest and saturation. Refer to “Parameter Conversions” on 
page 4-27 for more information about parameter conversions.
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Examples

Suppose the Look-Up Table block in the above model is configured to use a 
vector of input values given by [-5:5], and a vector of output values given by 
sinh([-5:5]). The following results are generated.

Characteristics

See Also Look-Up Table Dynamic, Look-Up Table (2-D)

Look-Up Method Input Output Comment

Interpolation-
Extrapolation

1.4 2.153 N/A

5.2 83.59 N/A

Interpolation-
Use End Values

1.4 2.153 N/A

5.2 74.2 The value for sinh(5.0) was used.

Use Input 
Above

1.4 3.627 The value for sinh(2.0) was used.

5.2 74.2 The value for sinh(5.0) was used.

Use Input 
Below

1.4 1.175 The value for sinh(1.0) was used.

-5.2 -74.2 The value for sinh(-5.0) was used.

Use Input 
Nearest

1.4 1.175 The value for sinh(1.0) was used.

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Zero Crossing No
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9Look-Up Table DynamicPurpose Approximate a one-dimensional function using a selected look-up method and 
a dynamically specified table

Library LookUp

Description The Look-Up Table Dynamic block is a masked S-function that computes an 
approximation to some function y=f(x) given x, y data vectors. The look-up 
method can use interpolation, extrapolation, or the original values of the input. 

The x data vector must be strictly monotonically increasing after conversion to 
the input’s fixed-point data type. Note that due to quantization, the x data 
vector may be strictly monotonic in doubles format, but not so after conversion 
to a fixed-point data type.

Note  Unlike the Look-Up Table block, the Look-Up Table Dynamic block 
allows you to change the table data without stopping the simulation. For 
example, you may want to automatically incorporate new table data if the 
physical system you are simulating changes.

You define the look-up table by inputting the x and y table data to the block as 
1-by-n vectors. To help reduce the ROM used by the code generated for this 
block, you can use different data types for the x table data and the y table data. 
However, these restrictions apply:

• The y table data and the output vector must have the same sign, the same 
bias, and the same fractional slope.

• The x table data and the x data vector must have the same sign, the same 
bias, and the same fractional slope. Additionally, the precision and range for 
the x data vector must greater than or equal to the precision and range for 
the x table data.

The block generates output based on the input values using one of these 
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs 
linear interpolation and extrapolation of the inputs.
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- If a value matches the block’s input, the output is the corresponding 
element in the output vector.

- If no value matches the block’s input, then the block performs linear 
interpolation between the two appropriate elements of the table to 
determine an output value. If the block input is less than the first or 
greater than the last input vector element, then the block extrapolates 
using the first two or last two points.

• Interpolation-Use End Values—This method performs linear 
interpolation as described above but does not extrapolate outside the end 
points of the input vector. Instead, the end-point values are used.

• Use Input Nearest—This method does not interpolate or extrapolate. 
Instead, the element in x nearest the current input is found. The 
corresponding element in y is then used as the output.

• Use Input Below—This method does not interpolate or extrapolate. Instead, 
the element in x nearest and below the current input is found. The 
corresponding element in y is then used as the output. If there is no element 
in x below the current input, then the nearest element is found.

• Use Input Above—This method does not interpolate or extrapolate. Instead, 
the element in x nearest and above the current input is found. The 
corresponding element in y is then used as the output. If there is no element 
in x above the current input, then the nearest element is found.

For a detailed description of all other block parameters, refer to “Block 
Parameters” on page 9-16.
9-156



Look-Up Table Dynamic
Parameters 
and Dialog Box

Look-Up Method
Look-up method.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These 
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for 
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Conversions The table data is converted from doubles to the x data type. This conversion is 
performed offline using round-to-nearest and saturation. Refer to “Parameter 
Conversions” on page 4-27 for more information about parameter conversions. 

Examples For an example that illustrates the look-up methods supported by this block, 
see the example included in the Look-Up Table block reference pages.

Characteristics

See Also Look-Up Table, Look-Up Table (2-D)

Input Port(s) Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion No
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9Look-Up Table (2-D)Purpose Approximate a two-dimensional function using a selected look-up method

Library Simulink Look-Up Tables and Fixed-Point Blockset LookUp

Description The Look-Up Table (2-D) block computes an approximation to some function 
z=f(x,y) given x, y, z data points.

The Row index input values parameter is a 1-by-m vector of x data points, the 
Column index input values parameter is a 1-by-n vector of y data points, and 
the Matrix of output values parameter is an m-by-n matrix of z data points. 
Both the row and column vectors must be monotonically increasing. These 
vectors must be strictly monotonically increasing in the following cases:

• The input and output data types are both fixed-point.

• The input and output data types are different.

• The lookup method is not Interpolation-Extrapolation.

• The matrix of output values is complex.

• Minimum, maximum, and overflow logging is on.

The block generates output based on the input values using one of these 
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs 
linear interpolation and extrapolation of the inputs.

- If the inputs match row and column parameter values, the output is the 
value at the intersection of the row and column.

- If the inputs do not match row and column parameter values, then the 
block generates output by linearly interpolating between the appropriate 
row and column values. If either or both block inputs are less than the first 
or greater than the last row or column values, the block extrapolates using 
the first two or last two points.

• Interpolation-Use End Values—This method performs linear 
interpolation as described above but does not extrapolate outside the end 
points of x and y. Instead, the end-point values are used.

• Use Input Nearest—This method does not interpolate or extrapolate. 
Instead, the elements in x and y nearest the current inputs are found. The 
corresponding element in z is then used as the output.

2−D Lookup
Table

Look−Up
Table (2−D)
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• Use Input Below—This method does not interpolate or extrapolate. Instead, 
the elements in x and y nearest and below the current inputs are found. The 
corresponding element in z is then used as the output. If there are no 
elements in x or y below the current inputs, then the nearest elements are 
found.

• Use Input Above—This method does not interpolate or extrapolate. Instead, 
the elements in x and y nearest and above the current inputs are found. The 
corresponding element in z is then used as the output. If there are no 
elements in x or y above the current inputs, then the nearest elements are 
found.

To avoid parameter saturation errors, the automatic scaling script autofixexp 
employs a special rule for the Look-Up Table (2-D) block. autofixexp modifies 
the scaling by using the output look-up values in addition to the logged 
minimum and maximum simulation values. The output look-up values are 
converted to the specified output data type. This prevents the data from being 
saturated to different values.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

Parameters 
and Dialog Box

Row index input values
The row values for the table, entered as a vector. The vector values must 
increase monotonically.
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Column index input values
The column values for the table, entered as a vector. The vector values 
must increase monotonically.

Matrix of output values
The table of output values. The matrix size must match the dimensions 
defined by the Row and Column parameters.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.

Look-up method
Specify the lookup method. See “Description” on page 9-159 for a discussion 
of the options for this parameter.
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Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type mode
You can set the output signal to a built-in data type from this drop-down 
list, or you can choose the output data type and scaling to be the same as 
the input. Alternatively, you can choose to inherit the output data type and 
scaling by backpropagation. Lastly, if you choose Specify via dialog, the 
Output data type, Output scaling value, and Lock output scaling 
against changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is 
only visible if Specify via dialog is selected for the Output data type 
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This 
parameter is only visible if Specify via dialog is selected for the Output 
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if 
Specify via dialog is selected for the Output data type mode 
parameter.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Examples In this example, the block parameters are defined as

Row: [1 2]
Column: [3 4]
Table: [10 20; 30 40]

The first figure shows the block outputting a value at the intersection of block 
inputs that match row and column values. The first input is 1 and the second 
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input is 4. These values select the table value at the intersection of the first row 
(row parameter value 1) and second column (column parameter value 4).

In the second figure, the first input is 1.7 and the second is 3.4. These values 
cause the block to interpolate between row and column values, as shown in the 
table at the left. The value at the intersection (28) is the output value.

Characteristics

See Also Look-Up Table, Look-Up Table Dynamic

3 4

1 10 20

2 30 40

1

2

3 4

10 20

30 40

1.7 24 34

3.4

14

34

28

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Of one input if the other is a vector

Zero Crossing No
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9Matrix GainPurpose Multiply input by a constant matrix

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Matrix Gain block is an implementation of the Gain block. See “Gain” on 
page 9-101 for more information.

K*u

Matrix
Gain

K*uvec

Matrix
Gain
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9MinMaxPurpose Output the minimum or maximum input value

Library Math

Description The MinMax block is a masked S-function that outputs either the minimum or 
the maximum element of the inputs. You can choose which function to apply 
with the Function parameter list.

You specify the number of input ports with the Number of input ports 
parameter. If the block has one input port, the input must be a scalar or a 
vector. The block outputs a scalar equal to the minimum or maximum element 
of the input vector. 

If the block has multiple input ports, the non-scalar inputs must all have the 
same dimensions. The block expands any scalar inputs to have the same 
dimensions as the non-scalar inputs. The block outputs a signal having the 
same dimensions as the input. Each output element equals the minimum or 
maximum of the corresponding input elements.

For a detailed description of all other block parameters, refer to “Block 
Parameters” on page 9-16.

Parameters 
and Dialog Box
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Function
The function to apply to the input.

Number of input ports
The number of inputs to the block.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the 
data type and scaling from the driving block or by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These 
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for 
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also MinMax Running Resettable

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes 
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9MinMax Running ResettablePurpose Determine the minimum or maximum of a signal over time

Library Math

Description The MinMax Running Resettable block outputs the minimum or maximum of 
all past inputs u. You specify whether the block outputs the minimum or the 
maximum with the Function parameter.

The block can reset its state based on an external reset signal R. When the 
reset signal R is TRUE, the block resets the output to the value of the Initial 
condition parameter. 

Parameters 
and Dialog Box

Function
Specify whether the block outputs the minimum or the maximum.

Initial condition
Initial condition.

Characteristics

See Also MinMax

Input Ports Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Yes

Scalar Expansion Yes 
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9MultiplyPurpose Multiply or divide inputs

Library Math

Description The Multiply block is an implementation of the Product block. See “Product” on 
page 9-173 for more information.

Multiply
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Multiply Matrix
9Multiply MatrixPurpose Multiply or divide inputs

Library Math

Description The Multiply Matrix block is an implementation of the Product block. See 
“Product” on page 9-173 for more information.

Matrix
Multiply

Multiply
Matrix
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9Multi-Port SwitchPurpose Choose between multiple block inputs

Library Simulink Signal Routing and Fixed-Point Blockset Select

Description The Multi-Port Switch block chooses between a number of inputs. The first 
(top) input is called the control input, while the rest of the inputs are called 
data inputs. The value of the control input determines which data input is 
passed through to the output port.

If the control input is an integer value, then the specified data input is passed 
through to the output. For example, suppose the Use zero-based indexing 
parameter is not selected. If the control input is 1, then the first data input is 
passed through to the output. If the control input is 2, then the second data 
input is passed through to the output, and so on. If the control input is not an 
integer value, the block first truncates the value to an integer by rounding to 
floor. If the truncated control input is less than 1 or greater than the number 
of input ports, an out-of-bounds error is returned.

You specify the number of data inputs with the Number of input ports 
parameter. The data inputs can be scalar or vector. The block output is 
determined by these rules:

• If you specify only one data input and that input is a vector, the block 
behaves as an “index selector,” and not as a multi-port switch. The block 
output is the vector element that corresponds to the value of the control 
input.

• If you specify more than one data input, the block behaves like a multi-port 
switch. The block output is the data input that corresponds to the value of 
the control input. If at least one of the data inputs is a vector, the block 
output is a vector. Any scalar inputs are expanded to vectors.

• If the inputs are scalar, the output is a scalar.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

The Index Vector block, also in the Fixed-Point Blockset Select library, is 
another implementation of the Multi-Port Switch block that has different 
default parameter settings.

Multiport
Switch
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Data type 
support

The control input of a Multi-Port Switch block can be a real-valued signal of 
any data type, including fixed-point data types. The data inputs can of any 
complexity and data type, including fixed-point data types. 

Parameters 
and Dialog Box

Number of input ports
Specify the number of data inputs to the block.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.
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Use zero based indexing
If selected, the block uses zero-based indexing. Otherwise, the block uses 
one-based indexing.

Require all data port inputs to have same data type
Select to require all data port inputs to have the same data type.

Output data type mode
You can choose to inherit the output data type and scaling by 
backpropagation or by an internal rule. The internal rule causes the output 
of the block to have the same data type and scaling as the input with the 
larger positive range.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes 

Zero Crossing No 
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9ProductPurpose Multiply or divide inputs

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Product block performs multiplication or division of its inputs.

This block produces outputs using either element-wise or matrix 
multiplication, depending on the value of the Multiplication parameter. You 
specify the operations with the Number of inputs parameter. Multiply(*) and 
divide(/) characters indicate the operations to be performed on the inputs:

• If there are two or more inputs, then the number of characters must equal 
the number of inputs. For example, “*/*” requires three inputs. For this 
example, if the Multiplication parameter is set to Element-wise, the block 
divides the elements of the first (top) input by the elements of the second 
(middle) input, and then multiplies by the elements of the third (bottom) 
input. In this case, all nonscalar inputs to this block must have the same 
dimensions.

If, however, the Multiplication parameter is set to Matrix, the block output 
is the matrix product of the inputs marked “*” and the inverse of inputs 
marked “/”, with the order of operations following the entry in the Number 
of inputs parameter. The dimensions of the inputs must be such that the 
matrix product is defined.

Note  To perform a dot product on input vectors, use the Dot Product block.

• If only multiplication of inputs is required, then a numeric parameter value 
equal to the number of inputs can be supplied instead of “*” characters. This 
may be used in conjunction with either element-wise or matrix 
multiplication.

• If a single vector is input and the Multiplication parameter is set to 
Element-wise, then a single “*” will cause the block to output the scalar 
product of the vector elements. A single “/” will cause the block to output the 
inverse of the scalar product of the vector elements. 

• If a single matrix is input and the Multiplication parameter is set to 
Element-wise, then a single “*” or “/” will cause the block to error out. If, 

Product

Product
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however, the Multiplication parameter is set to Matrix, then a single “*” 
will cause the block to output the matrix unchanged, and a single “/” will 
cause the block to output the inverse of the matrix.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

For your convenience, the Fixed-Point Blockset Math library contains the 
following implementations of the Product block, each with different default 
parameter settings:

• Multiply

• Divide

• Product of Elements

• Product of Elements Inverted

• Multiply Matrix

Data Type 
Support

The Product block accepts signals of any complexity and data type, including 
fixed-point data types. All input signals must be of the same data type.

Parameters 
and Dialog Box

Number of inputs
Enter the number of inputs or a combination of “*” and “/” symbols. See 
“Description” above for a complete discussion of this parameter.
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Multiplication
Specify element-wise or matrix multiplication. See “Description” above for 
a complete discussion of this parameter.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.

Require all inputs to have same data type
Select this parameter to require that all inputs must have the same data 
type.

Output data type mode
Specify the output data type and scaling to be the same as the first input, 
or inherit the data type and scaling by an internal rule or by 
backpropagation. You can also choose a built-in data type from the 
drop-down list. Lastly, if you choose Specify via dialog, the Output 
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data type, Output scaling value, and Lock output scaling against 
changes by the autoscaling tool parameters become visible.

If you select Inherit via internal rule for this parameter, Simulink 
chooses a combination of output scaling and data type that requires the 
smallest amount of memory consistent with accommodating the output 
range and maintaining the output precision (and avoiding underflow in the 
case of division operations). If the Production hardware characteristics 
parameter on the Advanced pane of the Simulation Parameters dialog is 
set to Unconstrained integer sizes, Simulink chooses the data type 
without regard to hardware constraints. If the parameter is set to 
Microprocessor, Simulink chooses the smallest available hardware data 
type capable of meeting range, precision, and underflow constraints. For 
example, if the block multiplies inputs of type int8 and int16 and 
Unconstrained integer sizes is specified, the output data type is 
sfix24. If Microprocessor is specified and the microprocessor supports 
8-bit, 16-bit, and 32-bit words, the output data type is int32. If none of the 
word lengths provided by the target microprocessor can accommodate the 
output range, Simulink displays an error message in the Simulink 
Diagnostic Viewer.

Output data type
Specify any data type, including fixed-point data types. This parameter is 
only visible if Specify via dialog is selected for the Output data type 
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This 
parameter is only visible if Specify via dialog is selected for the Output 
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if 
Specify via dialog is selected for the Output data type mode 
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
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If selected, overflows saturate.

Conversions 
and Operations

The Product block first performs the specified multiply or divide operations on 
the inputs, and then converts the results to the output data type using the 
specified rounding and overflow modes. Refer to “Rules for Arithmetic 
Operations” on page 4-30 for more information about the rules that this block 
obeys when performing fixed-point operations.
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Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Zero Crossing No
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Product of Elements
9Product of ElementsPurpose Multiply or divide inputs

Library Math

Description The Product of Elements block is an implementation of the Product block. See 
“Product” on page 9-173 for more information.

Product of
Elements
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Product of Elements Inverted
9Product of Elements InvertedPurpose Multiply or divide inputs

Library Math

Description The Product of Elements Inverted block is an implementation of the Product 
block. See “Product” on page 9-173 for more information.

Product of
Elements
Inverted
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Rate Limiter
9Rate LimiterPurpose Limit the rising and falling rates of the signal

Library Nonlinear

Description The Rate Limiter block is a masked block that limits the rising and falling rates 
of the signal.

Use the Rising slew rate parameter to set the limit on the rising rate of the 
signal.

Use the Falling slew rate parameter to set the limit on the falling rate of the 
signal.

Parameters 
and Dialog Box

Rising slew rate
Limit on the rising rate of the signal.

Falling slew rate
Limit on the falling rate of the signal.

Characteristics

See Also Rate Limiter Dynamic

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
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Rate Limiter Dynamic
9Rate Limiter DynamicPurpose Limit the rising and falling rates of the signal

Library Nonlinear

Description The Rate Limiter Dynamic block is a masked block that limits the rising and 
falling rates of the signal.

The external signal up sets the upper limit on the rising rate of the signal.

The external signal lo sets the lower limit on the falling rate of the signal.

Parameters 
and Dialog Box

Characteristics

See Also Rate Limiter

Input Ports Any data type supported by the blockset

Output Port Same data type as input

Direct Feedthrough Yes

Scalar Expansion Yes 
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Relational Operator
9Relational OperatorPurpose Perform the specified relational operation on the inputs

Library Simulink Math Operations and Fixed-Point Blockset Logic & Comparison

Description The Relational Operator block performs the specified comparison of its two 
inputs.

The relational operator connecting the two inputs is selected with the 
Relational Operator parameter. The block icon updates to display the selected 
operator. The supported operations are given below.

You can specify inputs as scalars, arrays, or a combination of a scalar and an 
array:

• For scalar inputs, the output is a scalar.

• For array inputs, the output is an array of the same dimensions, where each 
element is the result of an element-by-element comparison of the input 
arrays.

• For mixed scalar/array inputs, the output is an array, where each element is 
the result of a comparison between the scalar and the corresponding array 
element.

The output data type is specified with the Output data type mode and Output 
data type parameters. The output equals 1 for TRUE and 0 for FALSE. 

<=

Relational
Operator

Operation Description

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second 
input

>= TRUE if the first input is greater than or equal to the 
second input

> TRUE if the first input is greater than the second input
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Relational Operator
Note  The output data type selected should represent zero exactly. Data types 
that satisfy this condition include signed and unsigned integers and any 
floating-point data type.

Data Type 
Support

A Relational Operator block accepts real or complex signals of any data type. 
However, if the Output data type mode parameter is set to Logical, the 
input may only be boolean or double.

One input can be real and the other complex if the operator is == or !=.

Parameters 
and Dialog Box

Relational Operator
Designate the relational operator used to compare the two inputs.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.
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Relational Operator
Require all inputs to have same data type
Select to require inputs to have the same data type.

Output data type mode
Set the output data type to boolean, or choose to specify the data type 
through the Output data type parameter. 

Alternatively, you can select Logical to have the output data type 
determined by the Boolean Logic Signals parameter in the Advanced tab 
of the Simulink Simulation Parameters interface. If you select Logical and 
Boolean Logic Signals is on, then the output data type is always boolean. 
If you select Logical and Boolean Logic Signals is off, then the output 
data type will match the input data type, which is always double.

Output data type
Specify the output data type. You should only use data types that represent 
zero exactly. Data types that satisfy this condition include signed and 
unsigned integers and any floating-point data type. This parameter is only 
visible if Specify via dialog is selected for the Output data type mode 
parameter.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero 
Crossing Detection” in the Using Simulink documentation.
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Relational Operator
Conversions 
and Operations

The input with the smaller positive range is converted to the data type of the 
other input offline using round-to-nearest and saturation. This conversion is 
performed prior to comparison. Refer to “Parameter Conversions” on page 4-27 
for more information about parameter conversions.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of inputs

Zero Crossing No, unless Enable zero crossing detection is 
selected.
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Relay
9RelayPurpose Switch output between two constants

Library Simulink Discontinuities and Fixed-Point Blockset Nonlinear

Description The Relay block allows its output to switch between two specified values. When 
the relay is on, it remains on until the input drops below the value of the 
Switch off point parameter. When the relay is off, it remains off until the 
input exceeds the value of the Switch on point parameter. The block accepts 
one input and generates one output.

The Switch on point value must be greater than or equal to the Switch off 
point. Specifying a Switch on point value greater than the Switch off point 
value models hysteresis, whereas specifying equal values models a switch with 
a threshold at that value.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type 
Support

This block supports any data type supported by the Fixed-Point Blockset. 

Parameters 
and Dialog Box

Relay
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Relay
Switch on point
The “on” threshold for the relay.

Switch off point
The “off” threshold for the relay.

Output when on
The output when the relay is on.

Output when off
The output when the relay is off.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.
9-188



Relay
Output data type mode
Specify the output data type and scaling to be the same as the inputs, or 
inherit the data type and scaling by backpropagation. Lastly, if you choose 
Specify via dialog, the Output data type, Output scaling value, and 
Parameter Scaling parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is 
only visible if Specify via dialog is selected for the Output data type 
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This 
parameter is only visible if Specify via dialog is selected for the Output 
data type mode parameter, and is only enabled if Use specified 
scaling is selected for the Parameter Scaling parameter.

Parameter Scaling

• Use Specified Scaling—This mode allows you to specify the output scaling 
in the Output scaling value parameter

• Best Precision: Vector-wise—This mode produces a common radix point 
for each element of the output vector based on the best precision for the 
largest value of the vector. 

This parameter is only visible if Specify via dialog is selected for the 
Output data type mode parameter.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero 
Crossing Detection” in the Using Simulink documentation.

Conversions 
and Operations

The Switch on point and Switch off point parameters are converted to the 
input data type offline using round-to-nearest and saturation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block
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Relay
Scalar Expansion Yes

Zero Crossing No, unless Enable zero crossing detection is 
selected
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Repeating Sequence Interpolated
9Repeating Sequence InterpolatedPurpose Output discrete-time sequence and repeat, interpolating between data points

Library Sources

Description The Repeating Sequence Interpolated block outputs a discrete-time sequence 
and then repeats it. Between data points, the block uses the method specified 
by the Look-Up Method parameter to determine the output.

Parameters 
and Dialog Box

Vector of output values
Column vector containing output values of the discrete time sequence. 

Vector of time values
Column vector containing time values. The time values must be a strictly 
increasing and the vector must have the same size as the vector of output 
values.

Look-Up Method
Specify the lookup method to determine the output between data points.
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Repeating Sequence Interpolated
Sample time
Sample time.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or by inheriting 
the data type and scaling by backpropagation.

Output data type
Any data type supported by the blockset.

Output scaling
Select the scaling method using the specified scaling or using the best 
precision.

Lock output scaling so autoscaling tool can’t change it
If the box is selected, output scaling is locked.

Characteristics

See Also Repeating Sequence Stair

Output Port Any data type supported by the blockset

Scalar Expansion Yes 
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Repeating Sequence Stair
9Repeating Sequence Stair

Purpose Output and repeat the discrete time sequence

Library Sources

Description The Repeating Sequence Stair block is a masked block that outputs and 
repeats a discrete time sequence.

You can specify the stair sequence with the Vector of output values 
parameter. For example, the vector can be specified as [3 1 2 4 1]', producing 
the stair sequence shown in the plot.

You can specify the sample time with the Sample time parameter.

You can select the output data type and scaling with the Output data type and 
scaling parameter, and set the output data type with the Output data type 
parameter.

For fixed-point data types, you can set the output scaling with the Output 
scaling parameter, and, below that parameter, select the method for scaling 
the output with the Output scaling parameter.

For a detailed description of all block parameters, refer to “Block Parameters” 
on page 9-4. For more information about converting from one Fixed-Point 
Blockset data type to another, refer to “Signal Conversions” on page 4-26.
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Repeating Sequence Stair
Parameters 
and Dialog Box

Vector of output values
Vector containing values of the repeating stair sequence.

Sample time
Sample time.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or by inheriting 
the data type and scaling by backpropagation.

Output data type
Any data type supported by the blockset.

Output scaling
Slope or [Slope Bias] scaling.

Lock output scaling so autoscaling tool can’t change it
If the box is selected, output scaling is locked.

Output scaling
Select the scaling method using the specified scaling or using the best 
precision.
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Repeating Sequence Stair
Characteristics

See Also Repeating Sequence Interpolated

Output Port Any data type supported by the blockset

Scalar Expansion No

Vectorized No
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Sample Rate Probe
9Sample Rate ProbePurpose Support calculations involving sample time

Library Calculus

Description The Sample Rate Probe block is an implementation of the Sample Time 
Multiply block. See “Sample Time Multiply” on page 9-199 for more 
information.

1/Ts

Sample Rate
Probe
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Sample Time Add
9Sample Time AddPurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Add block is an implementation of the Sample Time Multiply 
block. See “Sample Time Multiply” on page 9-199 for more information.

u+Ts

Sample Time
Add
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Sample Time Divide
9Sample Time DividePurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Divide block is an implementation of the Sample Time 
Multiply block. See “Sample Time Multiply” on page 9-199 for more 
information.

u/Ts

Sample Time
Divide
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Sample Time Multiply
9Sample Time MultiplyPurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Multiply block is a masked S-function that adds, subtracts, 
multiplies, or divides the input signal, u, by a weighted sample time Ts.

You specify the math operation with the Operation parameter. Additionally, 
you can specify to use only the weight with either the sample time or its 
inverse.

Enter the weighting factor with the Weight value. If the weight is 1, w is 
removed from the equation.

For a detailed description of all block parameters, refer to “Block Parameters” 
on page 9-4. For more information about converting from one Fixed-Point 
Blockset data type to another, refer to “Signal Conversions” on page 4-26.

The Calculus library contains the following implementations, which are all 
linked to the Sample Time Multiply block but have different parameter 
settings:

• Sample Time Divide

• Sample Time Add

• Sample Time Subtract

• Sample Time Probe

• Sample Rate Probe
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Sample Time Multiply
Parameters 
and Dialog Box

Operation
Specify operation to use: +, -, *, /, Ts only, 1/Ts only.

Weight value
Enter weight of sample time.

Implement using
Specify online calculations or offline scaling adjustment.

Output data type and scaling
Specify whether the output data type and scaling are inherited by an 
internal rule or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
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Sample Time Multiply
Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough For all math operations options except Ts and 1/Ts

Scalar Expansion No, the weight is always a scalar
9-201



Sample Time Probe
9Sample Time ProbePurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Probe block is an implementation of the Sample Time 
Multiply block. See “Sample Time Multiply” on page 9-199 for more 
information.

Ts

Sample Time
Probe
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Sample Time Subtract
9Sample Time SubtractPurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Subtract block is an implementation of the Sample Time 
Multiply block. See “Sample Time Multiply” on page 9-199 for more 
information.

u−Ts

Sample Time
Subtract
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Saturation
9SaturationPurpose Limit the range of a signal

Library Simulink Discontinuities and Fixed-Point Blockset Nonlinear

Description The Saturation block imposes upper and lower bounds on a signal. When the 
input signal is within the range specified by the Lower limit and Upper limit 
parameters, the input signal passes through unchanged. When the input 
signal is outside these bounds, the signal is clipped to the upper or lower bound.

When the Lower limit and Upper limit parameters are set to the same value, 
the block outputs that value.

Data Type 
Support

A Saturation block accepts and outputs real signals of any data type, including 
fixed-point data types. The output data type is the same as the input data type.

Parameters 
and Dialog Box

Upper limit
Specify the upper bound on the input signal. When the input signal to the 
Saturation block is above this value, the output of the block is clipped to 
this value.

Lower limit
Specify the lower bound on the input signal. When the input signal to the 
Saturation block is below this value, the output of the block is clipped to 
this value.

Saturation
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Saturation
Treat as gain when linearizing
Linearization commands in Simulink treat this block as a gain in state 
space. Select this parameter to cause linearization commands to treat the 
gain as 1; otherwise, the commands treat the gain as 0.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero 
Crossing Detection” in the Using Simulink documentation.

Conversions 
and Operations

Both the Upper limit and Lower limit parameters are converted to the input 
data type offline using round-to-nearest and saturation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameters and input

Zero Crossing No, unless Enable zero crossing detection is 
selected
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Saturation Dynamic
9Saturation DynamicPurpose Bound the range of the input

Library Nonlinear

Description The Saturation Dynamic block is a masked block that bounds the range of the 
input signal to upper and lower saturation values. The input signal outside of 
these limits saturates to one of the bounds where

• The input below the lower limit is set to the lower limit.

• The input above the upper limit is set to the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is 
the lo port.

Parameters 
and Dialog Box

Characteristics

See Also Saturation

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
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Scaling Strip
9Scaling StripPurpose Remove scaling and map to a built in integer

Library Data Type

Description The Scaling Strip block strips the scaling off a fixed point signal. It maps the 
input data type to the smallest built in data type that has enough data bits to 
hold the input. The stored integer value of the input is the value of the output. 
The output always has nominal scaling (slope = 1.0 and bias = 0.0), so the 
output does not make a distinction between real world value and stored integer 
value. 

Parameters 
and Dialog Box

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
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Shift Arithmetic
9Shift ArithmeticPurpose Shift the bits and/or radix point of a signal

Library Bits

Description The Shift Arithmetic block can be used to shift the bits or the radix point of a 
signal, or both. 

For example, the effects of radix point shifts two places to the right and two 
places to the left on an input of data type sfix(8) are shown below.

This block performs arithmetic bit shifts on signed numbers. Therefore, the 
most significant bit is recycled for each bit shift. The effects of bit shifts two 
places to the right and two places to the left on an input of data type sfix(8) 
follow.

Vy = Vu * 2^−8
Qy = Qu >> 8

Ey = Eu

Shift
Arithmetic Shift Operation Binary Value Decimal Value

No shift (original number) 11001.011 -6.625

Radix point shift right by 2 places 1100101.1 -26.5

Radix point shift left by 2 places 110.01011 -1.65625

Shift Operation Binary Value Decimal Value

No shift (original number) 11001.011 -6.625

Bit shift right by 2 places 11110.010 -1.75

Bit shift left by 2 places 00101.100 5.5
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Shift Arithmetic
Parameters 
and Dialog Box

Shift bits right how many places (negative is shift left)
The number of places the bits of the input signal is shifted. A positive value 
indicates a shift right, while a negative value indicates a shift left.

Shift binary point right how many places (negative is shift left)
The number of places the radix point of the input signal is shifted. A 
positive value indicates a shift right, while a negative value indicates a 
shift left.

Characteristics Input Port Any data type supported by the blockset. Inputs may 
be scalar or vector.

Output Port Any data type supported by the blockset. Output is 
scalar if the input is scalar, and vector if the input is 
vector.

Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion No

Vectorized Yes, accepts vector inputs
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Sign
9SignPurpose Indicate the sign of the input

Library Simulink Math Operations and Fixed-Point Blockset Nonlinear

Description The Sign block indicates the sign of the input:

• The output is 1 when the input is greater than zero.

• The output is 0 when the input is equal to zero.

• The output is -1 when the input is less than zero.

Data Type 
Support

The Sign block accepts signals of any data type including fixed-point data 
types. The output is a signed data type with the same number of bits as the 
input, and with nominal scaling (a slope of one and a bias of zero).

Parameters 
and Dialog Box

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero 
Crossing Detection” in the Using Simulink documentation.

Characteristics

Sign

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion N/A

Zero Crossing No, unless Enable zero crossing detection is 
selected
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Sine
9SinePurpose Implement a sine wave in fixed-point using a lookup table approach that 
exploits quarter wave symmetry

Library Lookup

Description The Sine block is a masked block that implements a sine wave in fixed-point 
using a lookup table method that exploits quarter wave symmetry.

You can set the number of data points to retrieve from the lookup table with 
the Number of data points for lookup table parameter.   

Parameters 
and Dialog Box

Number of data points for lookup table
Number of data points to retrieve from the lookup table.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion N/A
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State-Space
9State-SpacePurpose Implement discrete-time state space

Library Filters

Description The State-Space block implements the system described by

y(n)  = Cx(n) + Du(n)

x(n+1) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations have the 
same data type.

The matrices A, B, C and D have the following characteristics:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

In addition:

• The state x must be a n-by-1 vector

• The input u must be a m-by-1 vector

• The output y must be a r-by-1 vector

The block accepts one input and generates one output. The input vector width 
is determined by the number of columns in the B and D matrices. The output 
vector width is determined by the number of rows in the C and D matrices.
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State-Space
Parameters 
and Dialog Box

State Matrix A
Matrix of states.

Input Matrix B
Column vector of inputs.

Output Matrix C
Column vector of outputs.

Direct Feedthrough Matrix D
Matrix for direct feedthrough.

Initial condition for state
Initial condition for the state.

Data type for internal calculations
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State-Space
Data type for internal calculations. Some examples are sfix(16), unit(8), 
and float('single').

Scaling for State Equation AX+BU
Scaling for state equations.

Scaling for Output Equation CX+DU
Scaling for output equations.

Lock output scaling so autoscaling tool can’t change it
If the box is selected, the output scaling is locked.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Ports Any data type supported by the blockset—it must be 
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
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Subtract
9SubtractPurpose Add or subtract inputs

Library Math

Description The Subtract block is an implementation of the Sum block. See “Sum” on 
page 9-216 for more information.

Subtract
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Sum
9SumPurpose Add or subtract inputs

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Sum block performs addition or subtraction on its inputs. This block can 
add or subtract scalar, vector, or matrix inputs. It can also collapse the 
elements of a single input vector.

You specify the operations of the block with the List of Signs parameter. Plus 
(+), minus (-), and spacer (|) characters indicate the operations to be performed 
on the inputs:

• If there are two or more inputs, then the number of characters must equal 
the number of inputs. For example, “+-+” requires three inputs and 
configures the block to subtract the second (middle) input from the first (top) 
input, and then add the third (bottom) input. 

All nonscalar inputs must have the same dimensions. Scalar inputs will be 
expanded to have the same dimensions as the other inputs.

• A spacer character creates extra space between ports on the block’s icon.

• If only addition of all inputs is required, then a numeric parameter value 
equal to the number of inputs can be supplied instead of “+” characters.

• If only one vector is input, then a single “+” or “-” will collapse the vector 
using the specified operation.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

For your convenience, the Fixed-Point Blockset Math library contains the 
following implementations of the Sum block, each with different default 
parameter settings:

• Add

• Subtract

• Sum of Elements

• Sum of Elements Negated

Sum
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Sum
Data Type 
Support

The Sum block accepts signals of any complexity and data type, including 
fixed-point data types. The inputs may be of different data types unless the 
Require all inputs to have same data type parameter is selected.

Parameters 
and Dialog Box

Icon shape
Designate the icon shape of the block.

List of signs
Enter as many plus (+) and minus (-) characters as there are inputs. 
Addition is the default operation, so if you only want to add the inputs, 
enter the number of input ports. For a single vector input, “+” or “-” will 
collapse the vector using the specified operation.

You can manipulate the positions of the input ports on the block icon by 
inserting spacers (|) between the signs in the List of signs parameter. For 
example, “++|--” creates an extra space between the second and third 
input ports.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.
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Sum
Require all inputs to have same data type
Select this parameter to require that all inputs must have the same data 
type.

Output data type mode
Specify the output data type and scaling to be the same as the first input, 
or inherit the data type and scaling from an internal rule or by 
backpropagation. You can also choose a built-in data type from the 
drop-down list. Lastly, if you choose Specify via dialog, the Output 
data type, Output scaling value, and Lock output scaling against 
changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is 
only visible if Specify via dialog is selected for the Output data type 
mode parameter.
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Sum
Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This 
parameter is only visible if Specify via dialog is selected for the Output 
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if 
Specify via dialog is selected for the Output data type mode 
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions 
and Operations

The Sum block first converts the input data type(s) to the output data type 
using the specified rounding and overflow modes, and then performs the 
specified operations. Refer to “Rules for Arithmetic Operations” on page 4-30 
for more information about the rules that this block obeys when performing 
fixed-point operations.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

States 0

Zero Crossing No
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Sum of Elements
9Sum of ElementsPurpose Add or subtract inputs

Library Math

Description The Sum of Elements block is an implementation of the Sum block. See “Sum” 
on page 9-216 for more information.

Sum of
Elements
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Sum of Elements Negated
9Sum of Elements NegatedPurpose Add or subtract inputs

Library Math

Description The Sum of Elements Negated block is an implementation of the Sum block. 
See “Sum” on page 9-216 for more information.

Sum of
Elements
Negated
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Switch
9SwitchPurpose Switch output between the first input and the third input based on the value 
of the second input

Library Simulink Signal Routing and Fixed-Point Blockset Select

Description The Switch block passes through the first (top) input or the third (bottom) 
input based on the value of the second (middle) input. The first and third inputs 
are called data inputs. The second input is called the control input.

You select the conditions under which the first input is passed with the 
Criteria for passing first input parameter. You can make the block check 
whether the control input is greater than or equal to the threshold value, 
purely greater than the threshold value, or nonzero. If the control input meets 
the condition set in the Criteria for passing first input parameter, then the 
first input is passed. Otherwise, the third input is passed.

When the Show additional parameters check box is selected, some of the 
parameters that become visible are common to many blocks. For a detailed 
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type 
Support

A Switch block accepts real- or complex-valued signals of any data type for data 
and control inputs. The data type of the threshold is double.

Parameters 
and Dialog Box

Switch
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Switch
Criteria for passing first input
Select the conditions under which the first input is passed. You can make 
the block check whether the control input is greater than or equal to the 
threshold value, purely greater than the threshold value, or nonzero. If the 
control input meets the condition set in this parameter, then the first input 
is passed. Otherwise, the third input is passed.

Threshold
Assign the switch threshold that determines which input is passed to the 
output.

Show additional parameters
If selected, additional parameters specific to implementation of the block 
become visible as shown.

Require all data port inputs to have same data type
Select to require all data inputs to have the same data type.

Output data type mode
Choose to inherit the output data type and scaling by backpropagation or 
by an internal rule. The internal rule causes the output of the block to have 
the same data type and scaling as the input with the larger positive range.
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Switch
Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero 
Crossing Detection” in the Using Simulink documentation.

Characteristics

See Also Multi-Port Switch

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Zero Crossing No, unless Enable zero crossing detection is 
selected
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Tapped Delay
9Tapped DelayPurpose Delay a scalar signal multiple sample periods and output all the delayed 
versions

Library Delays & Holds

Description The Tapped Delay block delays its input by the specified number of sample 
periods, and outputs all the delayed versions.

This block provides a mechanism for discretizing a signal in time, or 
resampling the signal at a different rate. You specify the time between samples 
with the Sample time parameter. You specify the number of delays with the 
Number of delays parameter. A value of -1 instructs the block to inherit the 
number of delays by backpropagation. Each delay is equivalent to the z-1 
discrete-time operator, which is represented by the Unit Delay block.

The block accepts one scalar input and generates an output for each delay. The 
input must be a scalar. You specify the order of the output vector with the 
Order output vector starting with parameter list. Oldest orders the output 
vector starting with the oldest delay version and ending with the newest delay 
version. Newest orders the output vector starting with the newest delay 
version and ending with the oldest delay version.

The block output for the first sampling period is specified by the Initial 
condition parameter. Careful selection of this parameter can minimize 
unwanted output behavior.

Parameters 
and Dialog Box
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Tapped Delay
Initial condition
The initial output of the simulation.

Sample time
Sample time.

Number of delays
The number of discrete-time operators.

Order output vector starting with
Specify whether the oldest delay version is output first, or the newest delay 
version is output first.

Conversions The Initial condition parameter is converted from a double to the input data 
type offline using round-to-nearest and saturation.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Scalar Expansion Yes—of initial conditions
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Unary Minus
9Unary MinusPurpose Negate the input

Library Math

Description The Unary Minus block is a masked S-function that negates the input. The 
block accepts only signed data types.

For signed data types, you cannot accurately negate the most negative value 
since the result is not representable by the data type. In this case, the behavior 
of the block is controlled by the Saturate to max or min when overflows 
occur check box. If selected, the most negative value of the data type wraps to 
the most positive value. If not selected, the operation has no effect. If an 
overflow occurs, then a warning is returned to the MATLAB command line.

For example, suppose the block input is an 8-bit signed integer. The range of 
this data type is from -128 to 127, and the negation of -128 is not representable. 
If the Saturate to max or min when overflows occur check box is selected, 
then the negation of -128 is 127. If it is not selected, then the negation of -128 
remains at -128.

Parameters 
and Dialog Box

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input (a nonzero bias is negated offline)

Direct Feedthrough No

Scalar Expansion Yes—of input or initial conditions
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Unit Delay
9Unit DelayPurpose Delay a signal one sample period

Library Simulink Discrete and Fixed-Point Blockset Delays & Holds

Description The Unit Delay block delays its input by the specified sample period. This block 
is equivalent to the z-1 discrete-time operator. The block accepts one input and 
generates one output, which can be either both scalar or both vector. If the 
input is a vector, all elements of the vector are delayed by the same sample 
period.

You specify the block output for the first sampling period with the Initial 
conditions parameter. Careful selection of this parameter can minimize 
unwanted output behavior. The time between samples is specified with the 
Sample time parameter. A setting of -1 means the sample time is inherited.

The Unit Delay block provides a mechanism for discretizing one or more 
signals in time, or for resampling the signal at a different rate. If your model 
contains multirate transitions, then you must add Unit Delay blocks between 
the slow-to-fast transitions. The sample rate of the Unit Delay block must be 
set to that of the slower block. For fast-to-slow transitions, use the Zero Order 
Hold block. For more information about multirate transitions, refer to the 
Simulink or the Real-Time Workshop documentation.

Note  The Unit Delay block accepts continuous signals. When it has a 
continuous sample time, the block is equivalent to the Simulink Memory 
block.

Data Type 
Support

The Unit Delay block accepts real or complex signals of any data type, 
including fixed-point data types. If the data type of the input signal is 
user-defined, the initial condition must be zero.

z

1

Unit Delay
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Unit Delay
Parameters 
and Dialog Box

Initial conditions
The output of the simulation for the first sampling period, during which the 
output of the Unit Delay block is otherwise undefined.

Sample time
The time interval between samples. To inherit the sample time, set this 
parameter to -1.

Conversions 
and Operations

The Initial conditions parameter is converted from a double to the input data 
type offline using round-to-nearest and saturation.

Characteristics

See Also Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled 
Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External 
IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With 
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay 

Dimensionalized Yes

Direct Feedthrough No

Sample Time Discrete or continuous. When inheriting a continuous 
signal, this block acts as a Simulink Memory block.

Scalar Expansion Of input or initial conditions

States Yes—inherited from driving block for nonfixed-point 
data types.

Zero Crossing No
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With Preview Enabled Resettable External RV, Unit Delay With Preview 
Resettable, Unit Delay With Preview Resettable External RV
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Unit Delay Enabled
9Unit Delay EnabledPurpose Delay a signal one sample period, if the external enable signal is on

Library Delays & Holds

Description The Unit Delay Enabled block is a masked block that delays a signal by one 
sample period when the external enable signal E is on. While the enable is off, 
the block is disabled. It holds the current state at the same value and outputs 
that value. The enable signal is on when E is not 0, and off when E is 0.

You specify the block output for the first sampling period with the value Initial 
condition parameter.

The output data type is the same as the input u data type. The data type of the 
input u and the enable E can be any data type.

You input the sample time with the Sample time parameter. A setting of -1 
means the Sample time is inherited.

Parameters 
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.
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Unit Delay Enabled
Characteristics

See Also Unit Delay, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, 
Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit 
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview 
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With 
Preview Enabled Resettable External RV, Unit Delay With Preview 
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Output Port Same as the input u

Direct Feedthrough No

Scalar Expansion Yes
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Unit Delay Enabled External IC
9Unit Delay Enabled External ICPurpose Delay a signal one sample period, if the external enable signal is on, with an 
external initial condition

Library Delays & Holds

Description The Unit Delay Enabled External IC block is a masked block that delays a 
signal by one sample period when the enable signal E is on. While the enable is 
off, the block holds the current state at the same value and outputs that value. 
The enable E is on when E is not 0, and off when E is 0.

The initial condition of this block is given by the signal IC.

The input u and IC data types must be the same, and are any data type. The 
output data type is the same as u and IC. The enable E is any data type. 

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

Parameters 
and Dialog Box

Sample time
Sample time.
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Unit Delay Enabled External IC
Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled Resettable, Unit Delay 
Enabled Resettable External IC, Unit Delay External IC, Unit Delay 
Resettable, Unit Delay Resettable External IC, Unit Delay With Preview 
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With 
Preview Enabled Resettable External RV, Unit Delay With Preview 
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough Yes, of the reset input port
No, of the enable input port
Yes, of the external IC port

Scalar Expansion Yes
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Unit Delay Enabled Resettable
9Unit Delay Enabled ResettablePurpose Delay a signal one sample period, if the external enable signal is on, with an 
external Boolean reset

Library Delays & Holds

Description The Unit Delay Enabled Resettable block combines the features of the Unit 
Delay Enabled and Unit Delay Resettable blocks. 

The block can reset its state based on an external reset signal R. When the 
enable signal E is on and the reset signal R is false, the block outputs the input 
signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block resets 
the current state to the initial condition, specified by the Initial condition 
parameter, and outputs that state delayed by one sample period. 

When the enable signal is off, the block is disabled, and the state and output do 
not change except for resets. The enable signal is on when E is not 0, and off 
when E is 0.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

Parameters 
and Dialog Box

Initial condition
The initial output of the simulation.
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Unit Delay Enabled Resettable
Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable External IC, Unit Delay External IC, Unit Delay 
Resettable, Unit Delay Resettable External IC, Unit Delay With Preview 
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With 
Preview Enabled Resettable External RV, Unit Delay With Preview 
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Port Same as the input u

Direct Feedthrough No, of the input port
No, of the enable port
Yes, of the reset port

Scalar Expansion Yes
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Unit Delay Enabled Resettable External IC
9Unit Delay Enabled Resettable External ICPurpose Delay a signal one sample period, if the external enable signal is on, with an 
external Boolean reset and initial condition

Library Delays & Holds

Description The Unit Delay Enabled Resettable External IC block combines the features of 
the Unit Delay Enabled, Unit Delay External IC, and Unit Delay Resettable 
blocks. 

The block can reset its state based on an external reset signal R. When the 
enable signal E is on and the reset signal R is false, the block outputs the input 
signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block resets 
the current state to the initial condition given by the signal IC, and outputs 
that state delayed by one sample period. 

When the enable signal is off, the block is disabled, and the state and output do 
not change except for resets. The enable signal is on when E is not 0, and off 
when E is 0.

The output data type is the same as the input u and the initial condition IC 
data type, which can be any data type, but must be the same. The enable E and 
reset R can be any data type. 

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

Parameters 
and Dialog Box
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Unit Delay Enabled Resettable External IC
Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay External IC, Unit Delay Resettable, Unit 
Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay 
With Preview Enabled Resettable, Unit Delay With Preview Enabled 
Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With 
Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough No, of the input port
No, of the enable port
Yes, of the enable port
Yes, of the external IC port

Scalar Expansion Yes
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Unit Delay External IC
9Unit Delay External ICPurpose Delay a signal one sample period, with an external initial condition

Library Delays & Holds

Description The Unit Delay External IC block is a masked block that delays its input by one 
sample period. This block is equivalent to the z-1 discrete-time operator. The 
block accepts one input and generates one output, both of which can be scalar 
or vector. If the input is a vector, all elements of the vector are delayed by the 
same sample period.

The block’s output for the first sample period is equal to the signal IC. 

The input u and initial condition IC data types must be the same, and are any 
data type.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

Parameters 
and Dialog Box

Sample time
Sample time.

Characteristics Input Port u Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough No, of the input port
Yes, of the external IC port

Scalar Expansion Yes
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Unit Delay External IC
See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 
Resettable, Unit Delay Resettable External IC, Unit Delay With Preview 
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With 
Preview Enabled Resettable External RV, Unit Delay With Preview 
Resettable, Unit Delay With Preview Resettable External RV
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Unit Delay Resettable
9Unit Delay ResettablePurpose Delay a signal one sample period, with an external Boolean reset

Library Delays & Holds

Description The Unit Delay Resettable block delays a signal one sample period.

The block can reset its state based on an external reset signal R. The block has 
two input ports, one for the input signal u and the other for the external reset 
signal R. When the reset signal is false, the block outputs the input signal 
delayed by one time step. When the reset signal is true, the block resets the 
current state to the initial condition, specified by the Initial condition 
parameter, and outputs that state delayed by one time step. 

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

Parameters 
and Dialog Box

Initial condition
The initial output of the simulation.

Sample time
Sample time.
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Unit Delay Resettable
Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 
External IC, Unit Delay Resettable External IC, Unit Delay With Preview 
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With 
Preview Enabled Resettable External RV, Unit Delay With Preview 
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Port Same as the input u

Direct Feedthrough No, of the input port
Yes, of the reset port

Scalar Expansion Yes
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Unit Delay Resettable External IC
9Unit Delay Resettable External ICPurpose Delay a signal one sample period, with an external Boolean reset and initial 
condition

Library Delays & Holds

Description The Unit Delay Resettable External IC block delays a signal one sample period.

The block can reset its state based on an external reset signal R. The block has 
two input ports, one for the input signal u and the other for the reset signal R. 
When the reset signal is false, the block outputs the input signal delayed by one 
time step. When the reset signal is true, the block resets the current state to 
the initial condition given by the signal IC and outputs that state delayed by 
one time step. 

The input u and initial condition IC must be the same data type, but can be any 
data type. The output is the same data type as the inputs u and IC. The reset 
R can be any data type.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

Parameters 
and Dialog Box

Sample time
Sample time.
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Unit Delay Resettable External IC
Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 
External IC, Unit Delay Resettable, Unit Delay With Preview Enabled, Unit 
Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled 
Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With 
Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough No, of the input port
Yes, of the reset port
Yes, of the external IC port

Sample Time Inherited

Scalar Expansion Yes
9-244



Unit Delay With Preview Enabled
9Unit Delay With Preview EnabledPurpose Output the signal and the signal delayed by one sample period, if the external 
enable signal is on

Library Delays & Holds

Description The Unit Delay With Preview Enabled block supports calculations that have 
feedback and depend on the current input. 

The block has two output ports. When the external enable signal E is on, the 
upper port outputs the signal and the lower port outputs the signal delayed by 
one sample period. The block has two input ports, one for the input signal u and 
the other for the enable signal E. 

When the enable signal E is off, the block is disabled, and the state and output 
values do not change, except for resets. The enable signal is on when E is not 0, 
and off when E is 0.

The input u and initial condition IC must be the same data type, but can be any 
data type. The output is the same data type as the inputs u and IC. The reset 
R can be any data type.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

Parameters 
and Dialog Box
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Unit Delay With Preview Enabled
Initial condition
Initial condition.

Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit 
Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled 
Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With 
Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
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Unit Delay With Preview Enabled Resettable
9Unit Delay With Preview Enabled ResettablePurpose Output the signal and the signal delayed by one sample period, if the external 
enable signal is on, with an external Boolean reset

Library Delays & Holds

Description The Unit Delay With Preview Enabled Resettable block supports calculations 
that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The block has 
two output ports. When the external enable signal E is on and the reset R is 
false, the upper port outputs the signal and the lower port outputs the signal 
delayed by one sample period. The block has two input ports, one for the input 
signal u and the other for the enable signal E.

When the enable signal E is on and the reset R is true, the block resets the 
current state to the initial condition given by the Initial condition parameter. 
The block outputs that state delayed by one sample time through the lower 
output port, and outputs the state without a delay through the upper output 
port.

When the Enable signal is off, the block is disabled, and the state and output 
values do not change, except for resets. The enable signal is on when E is not 0, 
and off when E is 0.

The input u and initial condition IC must be the same data type, but can be any 
data type. The output is the same data type as the inputs u and IC. The reset 
R can be any data type.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.
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Unit Delay With Preview Enabled Resettable
Parameters 
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
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Unit Delay With Preview Enabled Resettable
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit 
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable 
External RV, Unit Delay With Preview Resettable, Unit Delay With Preview 
Resettable External RV
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Unit Delay With Preview Enabled Resettable External RV
9Unit Delay With Preview Enabled Resettable External RVPurpose Output the signal and the signal delayed by one sample period, if the external 
enable signal is on, with an external RV reset

Library Delays & Holds

Description The Unit Delay With Preview Enabled Resettable External RV block supports 
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The block has 
two output ports. When the external enable signal E is on and the reset R is 
false, the upper port outputs the signal and the lower port outputs the signal 
delayed by one sample period. The block has two input ports, one for the input 
signal u and the other for the enable signal E. 

When the enable signal E is on and the reset R is true, the upper output signal 
is forced to equal the external reset signal RV. The lower output signal is not 
affected until one time step later, at which time it is equal to the external reset 
signal RV at the previous time step. The block uses the internal Initial 
condition only when the model starts or when a parent enabled subsystem is 
used. The internal Initial condition only affects the lower output signal. The 
first output is only affected through feedback.

When the Enable signal is off, the block is disabled, and the state and output 
values do not change, except for resets. The enable signal is on when E is not 0, 
and off when E is 0.

The input u and initial condition IC must be the same data type, but can be any 
data type. The output is the same data type as the inputs u and IC. The reset 
R can be any data type.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.
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Unit Delay With Preview Enabled Resettable External RV
Parameters 
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port RV Same as the input u

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
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Unit Delay With Preview Enabled Resettable External RV
See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit 
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, 
Unit Delay With Preview Resettable, Unit Delay With Preview Resettable 
External RV
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Unit Delay With Preview Resettable
9Unit Delay With Preview ResettablePurpose Output the signal and the signal delayed by one sample period, with an 
external Boolean reset

Library Delays & Holds

Description The Unit Delay With Preview Resettable block supports calculations that have 
feedback and depend on the current input. 

The block can reset its state based on an external reset signal R. The block has 
two output ports. When the reset R is false, the upper port outputs the signal 
and the lower port outputs the signal delayed by one sample period.

When the reset R is true, the block resets the current state to the initial 
condition given by the Initial condition parameter. The block outputs that 
state delayed by one sample time through the lower output port, and outputs 
the state without a delay through the upper output port.

The input u and initial condition IC must be the same data type, but can be any 
data type. The output is the same data type as the inputs u and IC. The reset 
R can be any data type.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.
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Unit Delay With Preview Resettable
Parameters 
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit 
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, 

Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
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Unit Delay With Preview Enabled Resettable External RV, Unit Delay With 
Preview Resettable External RV
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Unit Delay With Preview Resettable External RV
9Unit Delay With Preview Resettable External RVPurpose Output the signal and the signal delayed by one sample period, with an 
external RV reset

Library Delays & Holds

Description The Unit Delay With Preview Resettable External RV block supports 
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The block has 
two output ports. When the external reset R is false, the upper port outputs the 
signal and the lower port outputs the signal delayed by one sample period. 

When the external reset R is true, the upper output signal is forced to equal the 
external reset signal RV. The lower output signal is not affected until one time 
step later, at which time it is equal to the external reset signal RV at the 
previous time step. The block uses the internal Initial condition only when the 
model starts or when a parent enabled subsystem is used. The internal Initial 
condition only affects the lower output signal. The first output is only affected 
through feedback.

The input u and initial condition IC must be the same data type, but can be any 
data type. The output is the same data type as the inputs u and IC. The reset 
R can be any data type.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.
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Unit Delay With Preview Resettable External RV
Parameters 
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port RV Same as the input u

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
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Unit Delay With Preview Resettable External RV
See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay 
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay 
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit 
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, 
Unit Delay With Preview Enabled Resettable External RV, Unit Delay With 
Preview Resettable
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Wrap To Zero
9Wrap To ZeroPurpose Set output to zero if input is above threshold

Library Nonlinear

Description The Wrap To Zero block sets the output to zero if the input is above the value 
set by the Threshold parameter, and outputs the input if the input is less than 
or equal to the Threshold.

Parameters 
and Dialog Box

Threshold
When the input exceeds the threshold, the output is set to zero.

Characteristics Input Port Any data type supported by the blockset

Output Ports Same as the input 

Direct Feedthrough Yes

Scalar Expansion Yes
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Zero-Order Hold
9Zero-Order HoldPurpose Implement a zero-order hold of one sample period

Library Simulink Discrete and Fixed-Point Blockset Delays & Holds

Description The Zero-Order Hold block samples and holds its input for the specified sample 
period. The block accepts one input and generates one output, both of which 
can be scalar or vector. If the input is a vector, all elements of the vector are 
held for the same sample period.

You specify the time between samples with the Sample time parameter. A 
setting of -1 means the Sample time is inherited.

This block provides a mechanism for discretizing one or more signals in time, 
or resampling the signal at a different rate. If your model contains multirate 
transitions, you must add Zero-Order Hold blocks between the fast-to-slow 
transitions. The sample rate of the Zero-Order Hold must be set to that of the 
slower block. For slow-to-fast transitions, use the Unit Delay block. For more 
information about multirate transitions, refer to the Simulink or the 
Real-Time Workshop documentation.

Data Type 
Support

The Zero-Order Hold block accepts real or complex signals of any data type, 
including fixed-point data types.

Parameters 
and Dialog Box

Sample time
Specify the time between samples. A value of -1 means the sample time is 
inherited.

Characteristics

Zero−Order
Hold

Dimensionalized Yes

Direct Feedthrough Yes
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Sample Time Discrete

Scalar Expansion No

Zero Crossing No
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Overview
You can generate C code with the Fixed-Point Blockset using Real-Time 
Workshop. The code generated from fixed-point blocks uses only integer types 
and automatically includes all operations, such as shifts, needed to account for 
differences in fixed-point locations. You can use the generated code on 
embedded fixed-point processors or rapid prototyping systems even if they 
contain a floating-point processor. The code is structured so that key operations 
can be readily replaced by optimized target-specific libraries that you supply. 
You can also use Target Language Compiler to customize the generated code. 
For more information about code generation, refer to the Real-Time Workshop 
and the Target Language Compiler documentation.

You can also generate code for testing on a rapid prototyping system such as 
xPC, the Real-Time Windows Target, or dSPACE. The target compiler and 
processor may support floating-point operations in software or in hardware. In 
any case, the fixed-point blocks generate pure integer code and do not use 
floating-point operations. This allows valid bit-true testing even on a 
floating-point processor.

You can also generate code for nonreal-time testing. For example, you can 
generate code to run in nonreal-time on computers running any supported 
operating system. Even though the processors have floating-point hardware, 
the code generated by fixed-point blocks is pure integer code. The Generic 
Real-Time Target (GRT) and the Simulink Accelerator are examples of where 
nonreal-time code is generated and run.
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Code Generation Support
All fixed-point blocks support code generation, but not every simulation feature 
is supported. The code generation support is described below.

Languages
• C support only

Storage Class of Variables
• Fixed-Point Blockset code generation handles variables that do not match 

the target compiler sizes for char, short, int, or long data types. Code 
generation supports any variable having a width less than or equal to a long, 
either signed or unsigned. For example, the C40 compiler defines a long to 
be 32 bits. Therefore, the allowable sizes for variables range between 1 and 
32 bits. This capability is particularly useful if you want to

- Prototype on one target chip, but use a different target chip for production.

- Provide bit-true simulation in a rapid prototyping environment for odd 
data type sizes used by FPGAs, ASICs, 24-bit DSPs, and so on.

• The Fixed-Point Blockset supports floating-point types, except for custom 
floating-point types.

Storage Class of Parameters
• The Real-Time Workshop external mode support requires that parameters 

be 1 to 32 bits, either signed or unsigned. The parameter size must also be 
compatible with the target C compiler.

• No floating-point support

Rounding Modes
• All four rounding modes are supported.

• Rounding to floor generates the most efficient code for most cases.
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Overflow Handling
• Saturation mode is supported.

• Wrapping mode is supported and generates the most efficient code.

• Automatic exclusion of saturation code when hardware saturation is 
available is currently not supported. Wrapping must be selected for 
Real-Time Workshop to exclude saturation code.

Blocks
All blocks generate code for all operations with a few exceptions:

• The Look-Up Table, Look-Up Table (2D), and Dynamic Look-Up Table blocks 
generate code for all look-up methods except extrapolation.

• A few combinations of scaling and operations lead to highly inefficient code. 
These few cases are described in the next section.

Scaling
• Radix point-only scaling is supported.

• [Slope Bias] scaling is supported for all blocks except when it leads to highly 
inefficient code. All blocks except four support all cases of [Slope Bias] 
scaling. The Gain, Matrix Gain, and FIR blocks support matched 
[Slope Bias] scaling where the block input signals and output signals have 
the same slopes and biases, but not mismatched [Slope Bias] scaling. The 
Product block supports mismatched slope, but not mismatched bias. For 
more information about matched and mismatched [Slope Bias] scaling, refer 
to “Signal Conversions” on page 4-27.

We generally recommend that signals with [Slope Bias] scaling (such as a 
sensor input) are immediately converted to radix point-only scaling. This 
typically produces more efficient code.
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Generating Pure Integer Code
All blocks generate pure integer code except for the Gateway In, Gateway In 
Inherited, and Gateway Out blocks. These blocks must generate floating-point 
code when handling floating-point input or output. However, if the input or 
output is an integer and the block is configured to treat the input or output as 
a stored integer, then these blocks will also generate pure integer code.

Example: Generating Pure Integer Code
This example outlines the steps you should take when generating pure integer 
code for your Fixed-Point Blockset model. The steps follow the description in 
the fxpdemo_code_only demo, which includes the model shown below.

Note  This example generates code using the Embedded C Real-Time Target 
(ERT), which is available with Real-Time Workshop Production Coder. If your 
version of Real-Time Workshop does not support ERT code generation, then 
you may want to select the Generic Real-Time Target (GRT). Using GRT, all 
Fixed-Point Blockset blocks (except the gateway blocks) will generate pure 
integer code. However, the code related to the GRT infrastructure is not 
generated to exclude floating-point operations. For example, GRT may decide 
when to execute blocks based on a floating-point counter. 

1 Copy the fixed-point portion of your model to a new model.

If your original model includes blocks that represent hardware, analog 
systems, and other blocks not related to embedded software, then you must 
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create a new model. This new model contains only the fixed-point portion, 
which represents the software that will be running on the fixed-point 
processor. For example, the digital controller subsystem shown above 
contains the fixed-point blocks from the fxpdemo_feedback model used for 
code generation.

2 Add root-level Inport and Outport blocks.

a Precede the blocks in your new model with root-level Inport blocks, and 
configure the Inport blocks to use the appropriate data type and scaling. 
For example, the Inport block shown above is configured to use the 
sfix(8) data type and to have an output scaling of 2^-4.

b Follow the blocks in your new model with root-level Outport blocks.

3 Configure the simulation parameters.

a Open the Simulink Simulation Parameters dialog box by selecting 
Simulation parameters under the Simulation menu.

b In the Solver window, configure Solver options to Fixed-step and 
discrete (no continuous states), and configure Fixed step size to the 
required value. The Solver window for this configuration is shown below.

c Select the Real-Time Workshop tab in the Simulation Parameters 
dialog box. Select the Browse button in the Configuration panel to open 
the System Target File Browser window. If it is available, select RTW 
Embedded Coder as the system target file as shown below, and click OK. 



Generating Pure Integer Code
Note that you may not have ERT code generation capability. If this is the 
case, you should select the Generic Real-Time Target.

The Real-Time Workshop pane now appears as shown below.

d To configure the code generation parameters, select ERT code 
generation options (1) from the Category parameter drop-down 
menu. Select the Integer code only check box and any other options that 
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you require. The ERT code generation options for this configuration are 
shown below. If you are using GRT, the dialog box choices are slightly 
different.

e Select ERT code generation options (2) from the Category parameter 
drop-down menu. Select the Initialize floats and doubles to 0.0 check 
box and any other options that you require, as shown below.

f Select General code generation options from the Category parameter 
drop-down menu. Select the Generate HTML report check box and any 
other options that you require, as shown below.



Generating Pure Integer Code
g Build the code by selecting the Generate code button.

HTML Report
When you select the Generate HTML report check box, Real-Time Workshop 
creates a report containing information about the generated code. The report, 
which is displayed in the Help browser, includes a table of the current code 
generation options. The color of the values in the right column indicates how 
the values affect code optimization. Values displayed in green are optimal for 
code generation, while values displayed in red are less than optimal. If you see 
a red value, change the corresponding setting in the Simulation Parameters 
dialog box. Then select the Real-Time Workshop tab and click Generate Code 
to generate new code. A screenshot of a report follows:
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The HTML report is contained in a subdirectory called HTML in your current 
working directory.
0



Using the Simulink Accelerator
Using the Simulink Accelerator
You can use the Simulink Accelerator with your Fixed-Point Blockset model if 
the model meets the code generation restrictions.

The Simulink Accelerator can drastically increase the speed of some 
fixed-point models. This is especially true for models that execute at a very 
large number of time steps. The time overhead to generate code for a 
fixed-point model will generally be larger than the time overhead to set up a 
model for simulation. As the number of time steps increases, the relative 
importance of this overhead decreases.

Refer to the Simulink documentation for more information about the Simulink 
Accelerator.
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Using External Mode or rsim Target
If you are using the Real-Time Workshop external mode or rapid simulation 
(rsim) target, there are situations where you may get unexpected errors when 
tuning block parameters.

These errors can arise when you use blocks that support constant scaling for 
best precision and you use the Best precision scaling option. To avoid these 
errors, you should use the Use specified scaling parameter value. Refer to 
“Example: Constant Scaling for Best Precision” on page 3-11 for a description 
of the constant scaling feature. Refer to Chapter 9, “Block Reference” for a 
description of blocks that support this feature.

For more information about external mode or rapid simulation target, refer to 
the Real-Time Workshop documentation.

External Mode
If you change a fixed-point block parameter by a sufficient amount 
(approximately a factor of two), the radix point changes. If you change a 
parameter such that the radix point moves during an external mode simulation 
(or during graphical editing) and you reconnect to the target, a checksum error 
occurs and you must rebuild the code.

For example, suppose a block has a parameter value of -2. You then build the 
code and connect in external mode. While connected, you change the parameter 
to -4. If the simulation is stopped and then restarted, this parameter change 
causes a radix point change. In external mode, the radix point is kept fixed. If 
you keep the parameter value of -4 and disconnect from the target, then when 
you reconnect, a checksum error occurs and you must rebuild the code.

Rapid Simulation Target
If a parameter change is great enough, and you are using the best precision 
mode for constant scaling, then you cannot use the rapid simulation target.

If you change a block parameter by a sufficient amount (approximately a factor 
of two), the best precision mode changes the radix point. Any change in the 
radix point requires the code to be rebuilt since the model checksum is changed. 
This means that if best precision parameters are changed over a great enough 
range, you cannot use the rapid simulation target and a checksum error 
message occurs when you initialize the rsim executable.
2
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Customizing Generated Code
You can customize generated code by directly modifying the Target Language 
Compiler file fixpttarget.tlc, which is located in the fixpoint directory. The 
two most important customizations are described below.

Macros Versus Functions
You can modify the TLC file to generate macros or C functions calls. With 
macros, you can avoid the overhead of a function call. With function calls, you 
can significantly reduce the overall code size for large routines. Additionally, 
many debuggers will not allow you to single-step through macros. This is not 
the case with function calls. The factory default setting is to generate macros.

Bit Sizes for Target C Compiler
You can modify the TLC file to accommodate custom target sizes by explicitly 
specifying the number of bits defined for char, short, int, or long data types.

If you do not manually override these sizes, then the sizes for the MATLAB 
host computer are automatically selected. For example, if you are running 
MATLAB under the Windows operating system, then char, short, int, and 
long default to 8, 16, 32, and 32 bits, respectively. Most other supported 
operating systems use the same data type sizes. However DEC Alpha, for 
example, defines a long as 64 bits.
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saturation 6-11
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 See also conversions
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Product of Elements block 9-179
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