
Modeling

Simulation

Implementation

User’s Guide
Version 4

For Use with Simulink®

Fixed-Point
Blockset

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Blockset User’s Guide
 COPYRIGHT 1995 - 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: March 1995 First printing
April 1997 Second printing Revised for MATLAB 5
January 1999 Third printing Revised for MATLAB 5.3 (Release 11)
September 2000 Fourth printing New for Version 3 (Release 12)
June 2001 Online only Revised for Version 3.1 (Release 12.1)
August 2001 Fifth printing Minor revisions for Version 3.1
July 2002 Online only Revised for Version 4 (Release 13)

Contents
Preface

What Is the Fixed-Point Blockset? . x
Exploring the Blockset . x

How to Get Online Help . xii

System Requirements . xiii
Licensing Information . xiii

Related Products . xv

Using This Guide . xvii
Expected Background . xvii
If You Are a New User . xvii
If You Are an Experienced User . xvii
How This Book Is Organized . xviii

Installation . xix

Typographical Conventions . xx

1
Introduction

Overview . 1-2
Physical Quantities and Measurement Scales 1-2
Selecting a Measurement Scale . 1-3
Example: Selecting a Measurement Scale 1-4

Why Use Fixed-Point Hardware? . 1-10
i

ii Contents
Why Use the Fixed-Point Blockset? . 1-12

The Development Cycle . 1-13

Compatibility with Simulink Blocks 1-15
Unified Simulink and Fixed-Point Blockset Blocks 1-15
Frame-Based Signals . 1-17
Matrix Signals . 1-18

2
Getting Started with the Blockset

Overview of Blockset Features . 2-2
Configuring Fixed-Point Blocks . 2-2
Additional Features and Capabilities . 2-8

Example: Converting from Doubles to Fixed-Point 2-10
Block Descriptions . 2-10
Simulation Results . 2-11

Demos . 2-15
Basic Fixed-Point Blockset Demos . 2-15
Advanced Fixed-Point Blockset Demos 2-16

3
Data Types and Scaling

Overview . 3-2

Fixed-Point Numbers . 3-3
Signed Fixed-Point Numbers . 3-3
Radix Point Interpretation . 3-4
Scaling . 3-5
Quantization . 3-6

Range and Precision . 3-8
Example: Fixed-Point Scaling . 3-10
Example: Constant Scaling for Best Precision 3-11

Floating-Point Numbers . 3-15
Scientific Notation . 3-15
The IEEE Format . 3-17
Range and Precision . 3-19
Exceptional Arithmetic . 3-21

4
Arithmetic Operations

Overview . 4-2

Limitations on Precision . 4-3
Rounding . 4-3
Padding with Trailing Zeros . 4-9
Example: Limitations on Precision and Errors 4-10
Example: Maximizing Precision . 4-10

Limitations on Range . 4-12
Saturation and Wrapping . 4-13
Guard Bits . 4-14
Example: Limitations on Range . 4-15

Recommendations for Arithmetic and Scaling 4-16
Addition . 4-16
Accumulation . 4-19
Multiplication . 4-20
Gain . 4-21
Division . 4-23
Summary . 4-25

Parameter and Signal Conversions . 4-26
Parameter Conversions . 4-27
Signal Conversions . 4-27
iii

iv Contents
Rules for Arithmetic Operations . 4-30
Computational Units . 4-30
Addition and Subtraction . 4-30
Multiplication . 4-35
Division . 4-39
Shifts . 4-41

Example: Conversions and Arithmetic Operations 4-43

5
Realization Structures

Overview . 5-2
Realizations and Data Types . 5-2

Targeting an Embedded Processor . 5-3
Size Assumptions . 5-3
Operation Assumptions . 5-3
Design Rules . 5-4

Canonical Forms . 5-6
Direct Form II . 5-7
Series Cascade Form . 5-10
Parallel Form . 5-13

6
Tutorial: Feedback Controller Simulation

Overview . 6-2

Simulink Model of a Feedback Design 6-3
Simulation Setup . 6-4

Idealized Feedback Design . 6-6

Digital Controller Realization . 6-7
Direct Form Realization . 6-8

Simulation Results . 6-10
1. Initial Guess at Scaling . 6-10
2. Data Type Override . 6-13
3. Automatic Scaling . 6-15

7
Tutorial: Producing Lookup Table Data

Overview . 7-2

Worst Case Error for a Lookup Table 7-3
Example: Square Root Function . 7-3

Creating Lookup Tables for a Sine Function 7-5
Parameters for fixpt_look1_func_approx 7-5
Setting Function Parameters for the Lookup Table 7-6
Example 1: Using errmax with Unrestricted Spacing 7-7
Example 2: Using nptsmax with Unrestricted Spacing 7-10
Example 3: Using errmax with Even Spacing 7-12
Example 4: Using nptsmax with Even Spacing 7-13
Example 5: Using errmax with Power of Two Spacing 7-14
Example 6: Using nptsmax with Power of Two Spacing 7-16
Specifying Both errmax and nptsmax . 7-17
Comparing the Examples . 7-18

Summary: Using the Lookup Table Functions 7-19

Effect of Spacing on Speed, Error, and Memory Usage . . . 7-20
Data ROM Required . 7-21
Determining Out-of-Range Inputs . 7-22
Determining Input Location . 7-22
Interpolation . 7-24
Conclusion . 7-26
v

vi Contents
8
Function Reference

Functions—By Category . 8-2
Conversions . 8-3
Fixed-Point Settings Interface . 8-3
Global Changes . 8-3
Lookup Tables . 8-3
Data Type Structures . 8-4
Tools . 8-4

9
Block Reference

Blocks—By Category . 9-2
Bits . 9-3
Calculus . 9-3
Data Type . 9-5
Delays & Holds . 9-5
Edge Detect . 9-7
Filters . 9-7
Logic & Comparison . 9-8
LookUp . 9-8
Math . 9-9
Nonlinear . 9-10
Select . 9-10
Sources . 9-11

Overview of the Block Reference Pages 9-12

The Block Dialog Box . 9-15

Common Block Features . 9-16
Block Parameters . 9-16
Block Icon Labels . 9-20
Port Data Type Display . 9-21

A
Code Generation

Overview . A-2

Code Generation Support . A-3
Languages . A-3
Storage Class of Variables . A-3
Storage Class of Parameters . A-3
Rounding Modes . A-3
Overflow Handling . A-4
Blocks . A-4
Scaling . A-4

Generating Pure Integer Code . A-5
Example: Generating Pure Integer Code A-5
HTML Report . A-9

Using the Simulink Accelerator . A-11

Using External Mode or rsim Target A-12
External Mode . A-12
Rapid Simulation Target . A-12

Customizing Generated Code . A-13
Macros Versus Functions . A-13
Bit Sizes for Target C Compiler . A-13

B
Selected Bibliography
vii

viii Contents

Preface

What Is the Fixed-Point Blockset? (p. x) A brief overview of the features and capabilities of the
Fixed-Point Blockset

How to Get Online Help (p. xii) Tips on accessing Help online while using the Fixed-Point
Blockset

System Requirements (p. xiii) System requirements for the Fixed-Point Blockset

Related Products (p. xv) MathWorks products related to the Fixed-Point Blockset

Using This Guide (p. xvii) Tips on using this guide and an overview of its
organization

Installation (p. xix) Information on installing the Fixed-Point Blockset

Typographical Conventions (p. xx) Typographical conventions used in this guide

 Preface

x

What Is the Fixed-Point Blockset?
The Fixed-Point Blockset includes a collection of blocks that extend the
standard Simulink® block library. With these blocks, you can create
discrete-time dynamic systems that use fixed-point arithmetic. As a result,
Simulink can simulate effects commonly encountered in fixed-point systems
for applications such as control systems and time-domain filtering. The
Fixed-Point Blockset includes these major features:

• Integer, fractional, and generalized fixed-point data types

- Unsigned and two’s complement formats

- Word sizes in simulation from 1 to 128 bits

• Floating-point data types

- IEEE-style singles and doubles

- A nonstandard IEEE-style data type, where the fraction can range from 1
to 52 bits and the exponent can range from 1 to 11 bits

• Methods for overflow handling, scaling, and rounding of fixed-point data
types

• Tools that facilitate

- The collection of minimum and maximum simulation values

- The optimization of scaling parameters

- The display of input and output signals

In addition, you can generate C code for execution on a fixed-point embedded
processor with Real-Time Workshop®. The generated code uses only integer
types and automatically includes all operations, such as shifts, needed to
account for differences in fixed-point locations.

Exploring the Blockset
To open the main Fixed-Point Blockset library, type

fixpt

at the MATLAB® command line, or right-click on the Fixed-Point Blockset
listing in the Simulink Library Browser. The main library contains 12
sublibraries. Refer to “Blocks—By Category” on page 9-2.

What Is the Fixed-Point Blockset?
You can double-click on any block icon in a library to see its parameter dialog
box. Click the Help button to view the HTML-based help for that block.
xi

 Preface

xii
How to Get Online Help
The Fixed-Point Blockset provides several ways to get online help:

• Block, System, and Filter Help

Click the Help button in any block, system, or filter dialog box to view its
HTML-based documentation.

• Help Desk

Type helpdesk or doc at the MATLAB command line to load the main
MATLAB help page into the Help browser.

• Release Information

Type whatsnew fixpoint at the MATLAB command line to view information
related to the version of the Fixed-Point Blockset that you’re using.

System Requirements
System Requirements
The Fixed-Point Blockset is a multiplatform product that you install on a host
computer running any of the operating systems supported by The MathWorks.
The Fixed-Point Blockset requires

• MATLAB 6.5 (Release 13) or later

• Simulink 5.0 (Release 13) or later

If you want to generate code from your fixed-point models, you must have
Real-Time Workshop®. If you want to create an executable from the generated
code, you must have the appropriate C compiler and linker.

For the most up-to-date information about system requirements, see the
system requirements section available in the support area of the MathWorks
Web site (http://www.mathworks.com/support).

Licensing Information
Beginning with Release 13, the Fixed-Point Blockset is shipped and installed
with every copy of Simulink. You can edit a model containing fixed-point blocks
without a fixed-point license. However, you must have a fixed-point license to

• Update a Simulink diagram (Ctrl+D) containing fixed-point data types

• Run a model containing fixed-point data types

• Generate code from a model containing fixed-point data types

• Log the minimum and maximum values produced by a simulation

• Handle overflows by saturating to the minimum or maximum possible value

• Automatically scale the output of a model using the autoscaling tool

The following products also depend on a fixed-point license to take full
advantage of fixed-point features in R13:

• DSP Blockset

• Embedded Target for the TI TMS320C600™ DSP Platform

• Real-Time Workshop

• Real-Time Workshop Embedded Coder

• Stateflow

• Stateflow Coder
xiii

 Preface

xiv
• xPC Target

To work with a model containing blocks from the Fixed-Point Blockset without
a fixed-point license:

1 Access the Fixed-Point Settings interface from the model by selecting Tools
-> Fixed-Point settings.

2 Set the Logging mode parameter to Force off model-wide.

3 Set the Data type override parameter to True doubles or True singles
model-wide.

Related Products
Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Fixed-Point Blockset.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The products area of the MathWorks Web site
(http://www.mathworks.com/products)

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the
capabilities of Simulink.

Product Description

DSP Blockset Design and simulate DSP systems

Filter Design Toolbox Design and analyze advanced floating-point
and fixed-point filters

Real-Time Workshop Generate C code from Simulink models

Simulink Design and simulate continuous- and
discrete-time systems

Simulink Performance
Tools

Manage and optimize the performance of large
Simulink models

Simulink Report
Generator

Automatically generate documentation for
Simulink and Stateflow models

Stateflow® Design and simulate event-driven systems
xv

 Preface

xvi
Stateflow Coder Generate C code from Stateflow charts

xPC Target Perform real-time rapid prototyping using PC
hardware

Product Description

Using This Guide
Using This Guide
This guide describes how to use the Fixed-Point Blockset to emulate fixed-point
arithmetic when modeling discrete-time dynamic systems in Simulink. It
contains tutorial information that describes how to use the blockset features,
as well as a reference entry for each block and function in the blockset.

Expected Background
This guide assumes you are familiar with both MATLAB and Simulink. If you
are new to MATLAB, you should read the Getting Started with MATLAB
documentation. If you are new to Simulink, you should read the Using
Simulink documentation.

You should also have a basic understanding of Boolean algebra and binary
word representations.

If You Are a New User
Start with Chapter 1, “Introduction,” which describes how the Fixed-Point
Blockset can help you bridge the gap between designing a dynamic system and
implementing it on fixed-point digital hardware. Then read Chapter 2,
“Getting Started with the Blockset,” which describes many Fixed-Point
Blockset features and provides a simple example. After reading this chapter,
you should be able to create simple fixed-point models. If you want detailed
information about a specific block, refer to Chapter 9, “Block Reference.” If you
want detailed information about a specific function, refer to Chapter 8,
“Function Reference.”

If You Are an Experienced User
Start with Chapter 6, “Tutorial: Feedback Controller Simulation,” which
describes how to simulate a fixed-point digital controller design. You should
then read those parts of the guide that address the functionality that concerns
you. If you want detailed information about a specific block, refer to Chapter 9,
“Block Reference.” If you want detailed information about a specific function,
refer to Chapter 8, “Function Reference.”
xvii

 Preface

xvi
How This Book Is Organized
The organization of this guide is described below.

Chapter Name Description

Introduction Describes how the Fixed-Point Blockset can help
you bridge the gap between designing a dynamic
system and implementing it on fixed-point digital
hardware.

Getting Started with
the Blockset

Shows you how to use many Fixed-Point Blockset
features. After reading this chapter, you should be
able to create simple fixed-point models.

Data Types and
Scaling

Describes fixed-point data types, floating-point
data types, and data type scaling.

Arithmetic
Operations

Describes fixed-point arithmetic and its
limitations.

Realization
Structures

Describes how to create fixed-point realization
structures.

Tutorial: Feedback
Controller Simulation

Describes how to simulate a fixed-point digital
controller design.

Tutorial: Producing
Lookup Table Data

Describes how to create lookup table data using
the lookup table approximation functions.

Function Reference Describes MATLAB M-file scripts and functions
provided with the blockset.

Block Reference Describes each fixed-point block in detail.

Code Generation Describes the simulation features that are
available for code generation. Recommendations
for producing efficient code are provided.

Selected Bibliography Provides a selected list of references.
ii

Installation
Installation
To determine if the Fixed-Point Blockset is installed on your system, type

ver

at the MATLAB command line. When you enter this command, MATLAB
displays information about the version of MATLAB you are running, including
a list of installed add-on products and their version numbers. Check the list to
see if the Fixed-Point Blockset appears.

For information about installing the blockset, see your platform-specific
MATLAB Installation guide.

If you experience installation difficulties and have Web access, look for the
installation and license information at the MathWorks Web site
(http://www.mathworks.com/support).
xix

 Preface

xx
Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1

Introduction

Overview (p. 1-2) An overview of measurement scales and representing
numbers

Why Use Fixed-Point Hardware?
(p. 1-10)

A discussion of the limitations and benefits of fixed-point
hardware

Why Use the Fixed-Point Blockset?
(p. 1-12)

A description of key features and capabilities of the
Fixed-Point Blockset

The Development Cycle (p. 1-13) An overview of the development cycle for simulating
dynamic systems

Compatibility with Simulink Blocks
(p. 1-15)

A discussion of the compatibility of Fixed-Point Blockset
blocks with Simulink blocks

1 Introduction

1-2
Overview
This chapter provides a rationale for using fixed-point hardware in general,
and the Fixed-Point Blockset in particular. The decision to use fixed-point
hardware is simply a choice to represent numbers in a particular form. This
representation often offers advantages in terms of the power consumption,
size, memory usage, speed, and cost of the final product.

Physical Quantities and Measurement Scales
A measurement of a physical quantity can take many numerical forms. For
example, the boiling point of water is 100 degrees Celsius, 212 degrees
Fahrenheit, 373 degrees Kelvin, or 671.4 degrees Rankine. No matter what
number is given, the physical quantity is exactly the same. The numbers are
different because four different scales are used.

Well known standard scales like Celsius are very convenient for the exchange
of information. However, there are situations where it makes sense to create
and use unique nonstandard scales. These situations usually involve making
the most of a limited resource.

For example, nonstandard scales allow map makers to get the maximum detail
on a fixed size sheet of paper. A typical road atlas of the USA will show each
state on a two-page display. The scale of inches to miles will be unique for most
states. By using a large ratio of miles to inches, all of Texas can fit on two pages.
Using the same scale for Rhode Island would make poor use of the page. Using
a much smaller ratio of miles to inches would allow Rhode Island to be shown
with the maximum possible detail.

Fitting measurements of a variable inside an embedded processor is similar to
fitting a state map on a piece of paper. The map scale should allow all the
boundaries of the state to fit on the page. Similarly, the binary scale for a
measurement should allow the maximum and minimum possible values to
“fit.” The map scale should also make the most of the paper in order to get
maximum detail. Similarly, the binary scale for a measurement should make
the most of the processor in order to get maximum precision.

Use of standard scales for measurements has definite compatibility
advantages. However, there are times when it is worthwhile to break
convention and use a unique nonstandard scale. There are also occasions when
a mix of uniqueness and compatibility makes sense.

Overview
Selecting a Measurement Scale
Suppose that you want to make measurements of the temperature of liquid
water, and that you want to represent these measurements using 8-bit
unsigned integers. Fortunately, the temperature range of liquid water is
limited. No matter what scale you use, liquid water can only go from the
freezing point to the boiling point. Therefore, this is range of temperatures the
you must capture using just the 256 possible 8-bit values: 0,1,2,...,255.

One approach to representing the temperatures is to use a standard scale. For
example, the units for the integers could be Celsius. Hence, the integers 0 and
100 represent water at the freezing point and at the boiling point, respectively.
On the upside, this scale gives a trivial conversion from the integers to degrees
Celsius. On the downside, the numbers 101 to 255 are unused. By using this
standard scale, more than 60% of the number range has been wasted.

A second approach is to use a nonstandard scale. In this scale, the integers 0
and 255 represent water at the freezing point and at the boiling point,
respectively. On the upside, this scale gives maximum precision since there are
254 values between freezing and boiling instead of just 99. On the downside,
the units are roughly 0.3921568 degree Celsius per bit so the conversion to
Celsius requires division by 2.55, which is a relatively expensive operation on
most fixed-point processors.

A third approach is to use a “semi-standard” scale. For example, the integers 0
and 200 could represent water at the freezing point and at the boiling point,
respectively. The units for this scale are 0.5 degrees Celsius per bit. On the
downside, this scale doesn’t use the numbers from 201 to 255, which represents
a waste of more than 21%. On the upside, this scale permits relatively easy
conversion to a standard scale. The conversion to Celsius involves division by
2, which is a very easy shift operation on most processors.

Measurement Scales: Beyond Multiplication
One of the key operations in converting from one scale to another is
multiplication. The preceding case study gave three examples of conversions
from a quantized integer value Q to a real-world Celsius value V that involved
only multiplication:
1-3

1 Introduction

1-4
Graphically, the conversion is a line with slope S, which must pass through the
origin. A line through the origin is called a purely linear conversion. Restricting
yourself to a purely linear conversion can be very wasteful and it is often better
to use the general equation of a line:

By adding a bias term B, you can obtain greater precision when quantizing to
a limited number of bits.

The general equation of a line gives a very useful conversion to a quantized
scale. However, like all quantization methods, the precision is limited and
errors can be introduced by the conversion. The general equation of a line with
quantization error is given by

If the quantized value Q is rounded to the nearest representable number, then

That is, the amount of quantization error is determined by both the number of
bits and by the scale. This scenario represents the best case error. For other
rounding schemes, the error can be twice as large.

Example: Selecting a Measurement Scale
On typical electronically controlled internal combustion engines, the flow of
fuel is regulated to obtain the desired ratio of air to fuel in the cylinders just
prior to combustion. Therefore, knowledge of the current air flow rate is
required. Some manufacturers use sensors that directly measure air flow while
other manufacturers calculate air flow from measurements of related signals.
The relationship of these variables is derived from the ideal gas equation. The

V

100°C
100 bits
---------------------- Q1⋅

100°C
255 bits
---------------------- Q2⋅

100°C
200 bits
---------------------- Q3⋅

=

Conversion 1

Conversion 2

Conversion 3

V SQ B+=

V SQ B Error±+=

S
2
---- Error S

2
----≤ ≤�

Overview
ideal gas equation involves division by air temperature. For proper results, an
absolute temperature scale such as Kelvin or Rankine must be used in the
equation. However, quantization directly to an absolute temperature scale
would cause needlessly large quantization errors.

The temperature of the air flowing into the engine has a limited range. On a
typical engine, the radiator is designed to keep the block below the boiling point
of the cooling fluid. Let's assume a maximum of 225o F (380o K). As the air flows
through the intake manifold, it can be heated up to this maximum
temperature. For a cold start in an extreme climate, the temperature can be as
low as -60o F (222o K). Therefore, using the absolute Kelvin scale, the range of
interest is 222o K to 380o K.

The air temperature needs to be quantized for processing by the embedded
control system. Assuming an unrealistic quantization to 3-bit unsigned
numbers: 0,1,2,...,7, the purely linear conversion with maximum precision is

V 380°K
7.5 bit
----------------- Q⋅=
1-5

1 Introduction

1-6
The quantized conversion and range of interest are shown below.

Notice that there are 7.5 possible quantization values. This is because only half
of the first bit corresponds to temperatures (real-world values) greater than
zero.

The quantization error is

0 50 100 150 200 250 300 350 400
−1

0

1

2

3

4

5

6

7

8

Real World Value, V (oK)

Q
u

an
ti

ze
d

V
al

u
e,

 Q
 (

50
.6

66
7o K

/b
it

)
w

it
h

 B
ia

s
=

 0
o K

Visualization of Quantized Conversion

V = 222oK

V = 380oK

25.33� °K/bit Error 25.33°K/bit≤ ≤

Overview
The range of interest of the quantized conversion and the absolute value of the
quantized error are shown below.

As an alternative to the purely linear conversion, consider the general linear
conversion with maximum precision:

240 260 280 300 320 340 360 380
200

250

300

350

400

Real World Value, V (oK)

Q
u

an
ti

ze
d

V
al

u
e,

 Q

Visualization of Quantized Conversion

240 260 280 300 320 340 360 380
0

10

20

30

40

Real World Value, V (oK)

Q
u

an
ti

za
ti

on
 E

rr
or

 (
o K

/b
it

)

V 380°K 222°K�
8

 Q 222°K 0.5 380°K 222°K�

8

 ⋅+ +⋅=
1-7

1 Introduction

1-8
The quantized conversion and range of interest are shown below.

The quantization error is

which is approximately 2.5 times smaller than the error associated with the
purely linear conversion.

0 50 100 150 200 250 300 350 400
−1

0

1

2

3

4

5

6

7

8

Real World Value, V (oK)

Q
u

an
ti

ze
d

V
al

u
e,

 Q
 (

19
.7

5o K
/b

it
)

w
it

h
 B

ia
s

=
 2

31
.8

75
o K

Visualization of Quantized Conversion

V = 222oK

V = 380oK

9.875� °K/bit Error 9.875°K/bit≤ ≤

Overview
The range of interest of the quantized conversion and the absolute value of the
quantized error are shown below.

Clearly, the general linear scale gives much better precision than the purely
linear scale over the range of interest.

240 260 280 300 320 340 360 380
200

250

300

350

400

Real World Value, V (oK)

Q
u

an
ti

ze
d

V
al

u
e,

 Q

Visualization of Quantized Conversion

240 260 280 300 320 340 360 380
0

10

20

30

40

Real World Value, V (oK)

Q
u

an
ti

za
ti

on
 E

rr
or

 (
o K

/b
it

)

1-9

1 Introduction

1-1
Why Use Fixed-Point Hardware?
Digital hardware is becoming the primary means by which control systems and
signal processing filters are implemented. Digital hardware can be classified as
either off-the-shelf hardware (for example, microcontrollers, microprocessors,
general purpose processors, and digital signal processors) or custom hardware.
Within these two types of hardware, there are many architecture designs.
These designs range from systems with a single instruction, single data stream
processing unit to systems with multiple instruction, multiple data stream
processing units.

Within digital hardware, numbers are represented as either fixed-point or
floating-point data types. For both these data types, word sizes are fixed at a
set number of bits. However, the dynamic range of fixed-point values is much
less than floating-point values with equivalent word sizes. Therefore, in order
to avoid overflow or unreasonable quantization errors, fixed-point values must
be scaled. Since floating-point processors can greatly simplify the real-time
implementation of a control law or digital filter, and floating-point numbers
can effectively approximate real-world numbers, then why use a
microcontroller or processor with fixed-point hardware support?

• Size and Power Consumption — The logic circuits of fixed-point hardware
are much less complicated than those of floating-point hardware. This means
that the fixed-point chip size is smaller with less power consumption when
compared with floating-point hardware. For example, consider a portable
telephone where one of the product design goals is to make it as portable
(small and light) as possible. If one of today’s high-end floating-point,
general-purpose processors is used, a large heat sink and battery would also
be needed resulting in a costly, large, and heavy portable phone.

• Memory Usage and Speed — In general fixed-point calculations require
less memory and less processor time to perform.

• Cost — Fixed-point hardware is more cost effective where price/cost is an
important consideration. When using digital hardware in a product,
especially mass-produced products, fixed-point hardware costs much less
than floating-point hardware and can result in significant savings.

After making the decision to use fixed-point hardware, the next step is to
choose a method for implementing the dynamic system (for example, control
system or digital filter). Floating-point software emulation libraries are
0

Why Use Fixed-Point Hardware?
generally ruled out because of timing or memory size constraints. Therefore,
you are left with fixed-point math where binary integer values are scaled.
1-11

1 Introduction

1-1
Why Use the Fixed-Point Blockset?
The Fixed-Point Blockset allows you to efficiently design control systems and
digital filters that you will implement using fixed-point arithmetic. With the
Fixed-Point Blockset, you can construct Simulink models that contain detailed
fixed-point information about your systems. You can then perform bit-true
simulations with the models to observe the effects of limited range and
precision on your designs.

You can configure the Fixed-Point Settings interface to automatically log the
overflows, saturations, and signal extremes of your simulations. You can also
use it to automate scaling decisions and to compare your fixed-point
implementations against idealized, floating-point benchmarks.

You can use the Fixed-Point Blockset with Real-Time Workshop to
automatically generate efficient, integer-only C code representations of your
designs. You can use this C code in a production target or for rapid prototyping.
You can also use the Fixed-Point Blockset with Real-Time Workshop
Embedded Coder to generate real-time C code for use on an integer production,
embedded target.
2

The Development Cycle
The Development Cycle
The Fixed-Point Blockset provides tools that aid in the development and
testing of fixed-point dynamic systems. You directly design dynamic system
models in Simulink, which are ready for implementation on fixed-point
hardware. The development cycle is illustrated below.

Start

Model plant or
signal source

Design
requirements

met?

Use the model as a
specification for

yes

Model fixed-point
controller or filter

no

creating production
code

Simulink
1-13

1 Introduction

1-1
Using MATLAB, Simulink, and the Fixed-Point Blockset, you follow these
steps of the development cycle:

1 Model the system (plant or signal source) within Simulink using the built-in
blocks and double precision numbers. Typically, the model will contain
nonlinear elements.

2 Design and simulate a fixed-point dynamic system (for example, a control
system or digital filter) with the Fixed-Point Blockset that meets the design,
performance, and other constraints.

3 Analyze the results and go back to 1 if needed.

When you have met the design requirements, you can use the model as a
specification for creating production code using Real-Time Workshop®.

The above steps interact strongly. In steps 1 and 2, there is a significant
amount of freedom to select different solutions. Generally, you fine-tune the
model based upon feedback from the results of the current implementation
(step 3). There is no specific modeling approach. For example, you may obtain
models from first principles such as equations of motion, or from a frequency
response such as a sine sweep. There are many controllers that meet the same
frequency-domain or time-domain specifications. Additionally, for each
controller there are an infinite number of realizations.

The Fixed-Point Blockset helps expedite the design cycle by allowing you to
simulate the effects of various fixed-point controller and digital filter
structures.
4

Compatibility with Simulink Blocks
Compatibility with Simulink Blocks
You can connect built-in Simulink blocks directly to Fixed-Point Blockset
blocks provided the signals use built-in Simulink data types. The built-in data
types include uint8, uint16, uint32, int8, int16, int32, single, double, and
boolean. The Fixed-Point Blockset supports all built-in data types. However, a
fixed-point signal consisting of 8-, 16-, or 32-bit integers is compatible with
built-in Simulink blocks only when its scaling is given by a slope of 1 and a bias
of 0.

Some Simulink blocks impose restrictions on the data type of the signals they
can handle. For example, some Simulink blocks only accept doubles. To
incorporate these blocks into your fixed-point model, you must configure the
driving block(s) to use doubles.

Note If you want to connect Simulink blocks that only handle built-in data
types to Fixed-Point Blockset blocks that output blockset-specific data types,
then you must use the Gateway Out or Conversion block to convert to a
built-in data type.

Some Simulink blocks can accept signals of any data type. For these blocks, you
can input any of the built-in data types or any of the blockset-specific data
types. Examples of blockset-specific data types include 32-bit signed integers
with a scaling of 2-8, and 18-bit unsigned integers with a scaling of 20.

In some cases, fixed-point signals that are not built-in data types are converted
to a real-world value as it enters the block. For example, the To Workspace
block will output a 32-bit signed integer with a scaling of 2-8 as a double.

Refer to the Simulink documentation for detailed information about the data
types handled by each Simulink block.

Unified Simulink and Fixed-Point Blockset Blocks
Many core Simulink and Fixed-Point Blockset blocks with similar functions
have been unified in Version 4.0 of the Fixed-Point Blockset. For example, the
Sum block in the Simulink Math Operations library and the Sum block in the
Fixed-Point Blockset Math library are now the same block. All the
functionality from each original block has been maintained in unifying these
1-15

1 Introduction

1-1
blocks. Compatibility with fixed-point data types and/or specific fixed-point
features are now available with all of these blocks, whether they are used from
the Simulink Blockset or from the Fixed-Point Blockset. You do not need to
make any changes to your previously-existing models as a result of this
improvement. You can now use any of the unified blocks with either built-in
data types or fixed-point data types, which eliminates the need for you to
replace blocks in your models when you want to use different data types. This
change does not require all Simulink users to have a Fixed-Point Blockset
license. Refer to “Licensing Information” on page -xiii for more information.

Fixed-Point Blockset blocks that have been unified no longer have an “F” on
their block icon. However, not all Fixed-Point Blockset blocks that have
counterparts in Simulink libraries have been unified. You can still use the
fixpt_convert function to replace nonunified Simulink blocks with their
Fixed-Point Blockset counterparts in your models.

Non-unified Fixed-Point Blockset blocks have an advantage over their
Simulink counterparts in that they can handle more data types. However, you
may still want to use the Simulink counterparts of non-unified Fixed-Point
Blockset blocks in some cases, since they support faster simulation times for
the data types they handle.

The following table lists the unified blocks in this release, and the Simulink
and Fixed-Point Blockset libraries in which they are found.

Block Simulink Library Fixed-Point Blockset Library

Abs Math Operations Math

Constant Sources Sources

Data Store Memory Signal Routing N/A

Data Store Read Signal Routing N/A

Data Store Write Signal Routing N/A

Gain Math Operations Math

Inport Ports & Subsystems, Sources N/A

Logical Operator Math Operations Logic & Comparison
6

Compatibility with Simulink Blocks
Frame-Based Signals
Most real-time systems optimize throughput rates by processing data in
“batch” or “frame-based” mode, where each batch or frame is a collection of
consecutive signal samples that have been buffered into a single unit. You can
process signals in Simulink as frame-based signals.

Look-Up Table Look-Up Tables Look-Up Tables

Look-Up Table (2-D) Look-Up Tables Look-Up Tables

Manual Switch Signal Routing N/A

Memory Discrete N/A

Merge Signal Routing N/A

Multiport Switch Signal Routing Select

Outport Ports & Subsystems, Sinks N/A

Product Math Operations Math

Rate Transition Signal Attributes N/A

Relational Operator Math Operations Logic & Comparison

Relay Discontinuities Nonlinear

Saturation Discontinuities Nonlinear

Sign Math Operations Nonlinear

Signal Specification Signal Attributes N/A

Slider Gain Math Operations N/A

Sum Math Operations Math

Switch Signal Routing Select

Unit Delay Discrete Delays & Holds

Zero-Order Hold Discrete Delays & Holds

Block Simulink Library Fixed-Point Blockset Library
1-17

1 Introduction

1-1
Fixed-Point Blockset blocks accept frame-based signals for simulation and code
generation, except for the Dot Product and FIR blocks.

The DSP Blockset also supports frame-based processing, and can use blocks
from the Fixed-Point Blockset in models that process frame-based signals.

For further understanding of frame-based processing, refer to “Working with
Signals” in the DSP Blockset documentation.

Matrix Signals
The Simulink documentation refers to two-dimensional (2-D) signals as
matrices. Simulink blocks can output 2-D signals, which consist of streams of
two-dimensional arrays emitted at a frequency of one 2-D array per sample
time.

Fixed-Point Blockset blocks support matrix-based signals for simulation and
code generation, except for the Dot Product and FIR blocks.

For further understanding of matrix-based processing, refer to “Working with
Signals” in the Simulink documentation.
8

2

Getting Started with the
Blockset

Overview of Blockset Features (p. 2-2) An overview of specific features of the Fixed-Point
Blockset, such as scaling and overflow handling

Example: Converting from Doubles to
Fixed-Point (p. 2-10)

An example of using the Fixed-Point Blockset based on
the fxpdemo_dbl2fix demo, which highlights converting
between doubles and fixed-point data types

Demos (p. 2-15) A list of the basic and advanced demos available with the
Fixed-Point Blockset

2 Getting Started with the Blockset

2-2
Overview of Blockset Features
This section provides a brief overview of important Fixed-Point Blockset
features. After reading this section and the example that follows, you should be
able to configure simple fixed-point models that suit your own application
needs.

Configuring Fixed-Point Blocks
You configure fixed-point blocks with a parameter dialog box. To configure
blocks, you supply values for parameters via editable text fields, check boxes,
and parameter lists. The dialog box for the Gateway In block is shown below.

The following sections discuss parameters associated with this block.

• “Real-World Values Versus Integer Values” on page 2-3

• “Selecting the Output Data Type” on page 2-3

• “Selecting the Output Scaling” on page 2-5

• “Rounding” on page 2-7

Overview of Blockset Features
• “Overflow Handling” on page 2-7

• “Locking the Output Scaling” on page 2-8

For detailed information about each fixed-point block, refer to Chapter 9,
“Block Reference.”

Real-World Values Versus Integer Values
You can configure the fixed-point gateway blocks to treat signals as real-world
values or as stored integers with the Input and output to have equal
parameter. The possible values are Real World Value and Stored Integer.

In terms of the variables defined in “The General [Slope Bias] Encoding
Scheme” on page 2-6, the real-world value is given by V and the stored integer
value is given by Q. You may want to treat numbers as stored integer values if
you are modeling hardware that produces integers as output.

Selecting the Output Data Type
For many fixed-point blocks, you have the option of specifying the output data
type via the block dialog box, or inheriting the output data type from another
block. You control how the output data type is selected with the Output data
type and scaling or Output data type mode parameter list. Some possible
values are Specify via dialog, Inherit via internal rule, Inherit via
back propagation and Same as input.

The Fixed-Point Blockset supports several fixed-point and floating-point data
types. Fixed-point data types are characterized by their word size in bits and
by their radix (binary) point. The radix point is the means by which fixed-point
values are scaled. Additionally

• Unsigned and two’s complement formats are supported.

• The fixed-point word size can range from 1 to 128 bits in simulation.

• The radix point is not required to be contiguous with the fixed-point word.

Floating-point data types are characterized by their sign bit, fraction
(mantissa) field, and exponent field. The Fixed-Point Blockset supports IEEE
singles, IEEE doubles, and a nonstandard IEEE-style floating-point data type.
2-3

2 Getting Started with the Blockset

2-4
Note You can create Fixed-Point Blockset data types directly in the MATLAB
workspace and then pass the resulting structure to a fixed-point block, or you
can specify the data type directly with the block dialog box.

Integers. You specify unsigned and signed integers with the uint and sint
functions, respectively.

For example, to specify a 16-bit unsigned integer via the block dialog box, you
configure the Output data type parameter as uint(16). To specify a 16-bit
signed integer, you configure the Output data type parameter as sint(16).

For integer data types, the default radix point is assumed to lie to the right of
all bits.

Fractional Numbers. You specify unsigned and signed fractional numbers with
the ufrac and sfrac functions, respectively.

For example, to configure the output as a 16-bit unsigned fractional number via
the block dialog box, you specify the Output data type parameter to be
ufrac(16). To configure a 16-bit signed fractional number, you specify Output
data type to be sfrac(16).

Fractional numbers are distinguished from integers by their default scaling.
Whereas signed and unsigned integer data types have a default radix point to
the right of all bits, unsigned fractional data types have a default radix point
to the left of all bits, while signed fractional data types have a default radix
point to the right of the sign bit.

Both unsigned and signed fractional data types support guard bits, which act
to “guard” against overflow. For example, sfrac(16,4) specifies a 16-bit signed
fractional number with 4 guard bits. The guard bits lie to the left of the default
radix point.

Generalized Fixed-Point Numbers. You specify unsigned and signed generalized
fixed-point numbers with the ufix and sfix functions. respectively.

For example, to configure the output as a 16-bit unsigned generalized
fixed-point number via the block dialog box, you specify the Output data type
parameter to be ufix(16). To configure a 16-bit signed generalized fixed-point
number, you specify Output data type to be sfix(16).

Overview of Blockset Features
Generalized fixed-point numbers are distinguished from integers and
fractionals by the absence of a default scaling. For these data types, you must
explicitly specify the scaling with the Output scaling or Output scaling value
parameter, or inherit the scaling from another block. Refer to “Selecting the
Output Scaling” on page 2-5 for more information.

Floating-Point Numbers. The Fixed-Point Blockset supports single-precision and
double-precision floating-point numbers as defined by the IEEE Standard
754-1985 for Binary Floating-Point Arithmetic. You specify floating-point
numbers with the float function.

For example, to configure the output as a single-precision floating-point
number via the block dialog box, you specify the Output data type parameter
to be float('single'). To configure a double-precision floating-point number,
you specify Output data type to be float('double').

You can also specify a nonstandard floating-point number that mimics the
IEEE style. For this data type, the fraction (mantissa) can range from 1 to 52
bits and the exponent can range from 1 to 11 bits. For example, to configure a
nonstandard floating-point number having 32 total bits and 9 exponents bits,
you specify Output data type to be float(32,9).

Note These numbers are normalized with a hidden leading 1 for all
exponents except the smallest possible exponent. However, the largest
possible exponent might not be treated as a flag for Infs or NaNs.

Selecting the Output Scaling
Most data types supported by the Fixed-Point Blockset have a default scaling
that you cannot change. However, for generalized fixed-point data types, you
have the option of specifying the output scaling via the block dialog box, or
inheriting the output scaling from another block. You control how the output
scaling is selected with the Output data type and scaling or Output data
type mode parameter.

The Fixed-Point Blockset supports two general scaling modes: radix point-only
scaling and [Slope Bias] scaling. In addition to these general scaling modes, the
blockset provides you with additional block-specific scaling choices for constant
vectors and constant matrices. These scaling choices are based on radix
2-5

2 Getting Started with the Blockset

2-6
point-only scaling and are designed to maximize precision. Refer to “Example:
Constant Scaling for Best Precision” on page 3-11 for more information.

To help you understand the supported scaling modes, the general [Slope Bias]
encoding scheme is presented in the next section.

The General [Slope Bias] Encoding Scheme. When representing an arbitrarily
precise real-world value with a fixed-point number, it is often useful to define
a general [Slope Bias] encoding scheme

where

• is the real-world value.

• is the approximate real-world value.

• Q is an integer that encodes V.

• B is the bias.

• S = F2E is the slope.

The slope is partitioned into two components:

• 2E specifies the radix point. E is the fixed power-of-two exponent.

• F is the fractional slope. It is normalized such that .

Radix Point-Only Scaling. This is “powers-of-two” scaling since it involves moving
only the radix point. Radix point-only scaling does not require the radix point
to be contiguous with the data word. The advantage of this scaling mode is the
number of processor arithmetic operations is minimized.

You specify radix point-only scaling with the syntax 2^ E where E is
unrestricted. This creates a MATLAB structure with a bias B = 0 and a
fractional slope F = 1.0.

For example, if you specify the value 2^ 10 for the Output scaling or Output
scaling value parameter, then the generalized fixed-point number has a
power-of-two exponent E = -10. This value defines the radix point location to be
10 places to the left of the least significant bit.

V V�≈ SQ B+=

V

V�

1 F 2<≤

Overview of Blockset Features
[Slope Bias] Scaling. With this scaling mode, you can provide a slope and a bias.
The advantage of [Slope Bias] scaling is that it typically provides more efficient
use of a finite number of bits.

You specify [Slope Bias] scaling with the syntax [slope bias], which creates
a MATLAB structure with the given slope and bias.

For example, if you specify the value [5/9 10] for the Output scaling or
Output scaling value parameter, then the generalized fixed-point number has
a slope of 5/9 and a bias of 10. The blockset would automatically store F as
1.1111 and E as -1 due to the normalization condition .

Rounding
You specify how fixed-point numbers are rounded with the Round toward or
Round integer calculations toward parameter. These rounding modes are
supported:

• Zero – This mode rounds toward zero and is equivalent to the MATLAB fix
function.

• Nearest – This mode rounds toward the nearest representable number, with
the exact midpoint rounded toward positive infinity. Rounding toward
nearest is equivalent to the MATLAB round function.

• Ceiling – This mode rounds toward positive infinity and is equivalent to the
MATLAB ceil function.

• Floor – This mode rounds toward negative infinity and is equivalent to the
MATLAB floor function.

Overflow Handling
You control how overflow conditions are handled for fixed-point operations
with the Saturate to max or min when overflows occur or Saturate on
integer overflow checkbox.

If this box is selected, then overflows saturate to either the maximum or
minimum value represented by the data type. For example, an overflow
associated with a signed 8-bit integer can saturate to -128 or 127.

If this box is not selected, then overflows wrap to the appropriate value that is
representable by the data type. For example, the number 130 does not fit in a
signed 8-bit integer, and would wrap to -126.

1 F 2<≤
2-7

2 Getting Started with the Blockset

2-8
Locking the Output Scaling
If the output data type is a generalized fixed-point number, then you have the
option of locking its scaling by checking the Lock output scaling so
autoscaling tool can’t change it or Lock output scaling against changes by
the autoscaling tool checkbox.

When locked, the automatic scaling script autofixexp will not change the
output scaling. Otherwise, the autofixexp is free to adjust the scaling.

Additional Features and Capabilities
In addition to the features described in “Configuring Fixed-Point Blocks” on
page 2-2, the Fixed-Point Blockset provides you with these features and
capabilities:

• An automatic scaling tool

• Code generation capabilities

Automatic Scaling
You can use the autofixexp script to automatically change the scaling for each
block that has generalized fixed-point output and does not have its scaling
locked. The script uses the maximum and minimum values logged during the
last simulation run. The scaling is changed such that the simulation range is
covered and the precision is maximized.

As an alternative to (and extension of) the automatic scaling script, you can use
the Fixed-Point Settings interface. This tool allows you to easily control the
parameters associated with automatic scaling and display the simulation
results for a given model. To learn how to use the Fixed-Point Settings
interface, refer to Chapter 6, “Tutorial: Feedback Controller Simulation.”

Code Generation
With Real-Time Workshop®, the Fixed-Point Blockset can generate C code. The
code generated from fixed-point blocks uses only integer types and
automatically includes all operations, such as shifts, needed to account for
differences in fixed-point locations.

You can use the generated code on embedded fixed-point processors or rapid
prototyping systems even if they contain a floating-point processor. The code is
structured so that key operations can be readily replaced by optimized

Overview of Blockset Features
target-specific libraries that you supply. You can also use Target Language
Compiler™ to customize the generated code. Refer to Appendix A, “Code
Generation” for more information about code generation using fixed-point
blocks.
2-9

2 Getting Started with the Blockset

2-1
Example: Converting from Doubles to Fixed-Point
The purpose of this example is to show you how to simulate a continuous real-
world doubles signal using a generalized fixed-point data type. The model used
is the simplest possible model and employs only two fixed-point blocks.
Although simple in design, the model gives you the opportunity to explore
many of the important features of the Fixed-Point Blockset including

• Data types

• Scaling

• Rounding

• Logging minimum and maximum simulation values to the workspace

• Overflow handling

The model used in this example is given by the fxpdemo_dbl2fix demo. You
can launch this demo by typing its name at the MATLAB command line:

fxpdemo_dbl2fix

The model is shown below.

Block Descriptions
The Signal Generator block is configured to output a sine wave with an
amplitude defined on the interval [-5 5]. It always outputs double-precision
numbers.

The Gateway In block (Dbl To FixPt1) is used as the interface between
Simulink and the Fixed-Point Blockset. Its function is to convert the
double-precision numbers from the Signal Generator block into one of the

Zero−Order
Hold

Signal
enerator Scope

Mux

Mux

FixPt
GUI

Out

FixPt to Dbl1

In

Dbl To FixPt1
0

Example: Converting from Doubles to Fixed-Point
Fixed-Point Blockset data types. For simplicity, its output signal is limited to
5 bits in this example.

The Gateway Out (FixPt to Dbl1) block is used as the interface between the
Fixed-Point Blockset and Simulink. Its function is to convert one of the
Fixed-Point Blockset data types into a Simulink data type. In this example, it
outputs double-precision numbers.

The GUI block launches the Fixed-Point Settings interface, fxptdlg. This tool
provides convenient access to the global override and logging parameters, the
logged minimum and maximum simulation data, the automatic scaling script,
and the plot interface tool. It is not used in this example. If you have many
fixed-point blocks whose scaling must be optimized, however, you should use
this tool. Refer to Chapter 6, “Tutorial: Feedback Controller Simulation” for
more information.

Note As described in “Compatibility with Simulink Blocks” on page 1-15, you
can eliminate the gateway blocks from your fixed-point model if all signals use
built-in data types.

Simulation Results
The results of two simulation trials are given below. The first trial uses radix
point-only scaling while the second trial uses [Slope Bias] scaling.

Trial 1: Radix Point-Only Scaling
When using radix point-only scaling, your goal is to find the optimal
power-of-two exponent E, as defined in “Selecting the Output Scaling” on
page 2-5. For this scaling mode, the fractional slope F is set to 1 and no bias is
required.

The Gateway In block is configured in this way:

• Output data type

The output data type is given by sfix(5). This creates a MATLAB structure
that is a 5-bit, signed generalized fixed-point number.
2-11

2 Getting Started with the Blockset

2-1
• Output scaling

The output scaling is given by 2^ 2, which puts the radix point two places to
the left of the rightmost bit. This gives a maximum value of 011.11 = 3.75, a
minimum value of 100.00 = -4.00, and a precision of (1/2)2 = 0.25.

• Rounding

The rounding mode is given by Nearest. This rounds the fixed-point result to
the nearest representable number, with the exact midpoint rounded towards
positive infinity.

• Overflows

Fixed-point values that overflow will saturate to the maximum or minimum
value represented by the word.

The resulting real-world and fixed-point simulation results are shown below.

The simulation clearly demonstrates the quantization effects of fixed-point
arithmetic. The combination of using a 5-bit word with a precision of (1/2)2 =
0.25 produces a discretized output that does not span the full range of the input
signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

2

Example: Converting from Doubles to Fixed-Point
If you want to span the complete range of the input signal with 5 bits using
radix point-only scaling, then your only option is to sacrifice precision. Hence,
the output scaling would be given by 2^ 1, which puts the radix point one place
to the left of the rightmost bit. This scaling gives a maximum value of 0111.1 =
7.5, a minimum value of 1000.0 = -8.0, and a precision of (1/2)1 = 0.5.

Trial 2: [Slope Bias] Scaling
When using [Slope Bias] scaling, your goal is to find the optimal fractional
slope F and fixed power-of-two exponent E, as defined in “Selecting the Output
Scaling” on page 2-5. No bias is required for this example since the sine wave
is defined on the interval [-5 5]. The Gateway In block configuration is the
same as that of the previous trial except for the scaling.

To arrive at a value for the slope, you can begin by assuming a fixed power-of-
two exponent of -2. In the previous trial, this value defined the radix point-only
scaling and resulted in a precision of 0.25. To find the fractional slope, you
divide the maximum value of the sine wave by the maximum value of the scaled
5-bit number. The result is 5.00/3.75 = 1.3333. The slope (and precision) is
1.3333.(0.25) = 0.3333. You specify this value as [0.3333] for the Output
scaling parameter.

Of course, you could have specified a fixed power-of-two exponent of -1 and a
corresponding fractional slope of 0.6667. Naturally, the resulting slope is the
same since E was reduced by one bit but F was increased by one bit. In this
case, the blockset would automatically store F as 1.3332 and E as -2 due to the
normalization condition of . 1 F 2<≤
2-13

2 Getting Started with the Blockset

2-1
The resulting real-world and fixed-point simulation results are shown below.

This somewhat cumbersome process used to find the slope is not really
necessary. All that is required is the range of the data you are simulating and
the size of the fixed-point word used in the simulation. In general, you can
achieve reasonable simulation results by selecting your scaling based on the
formula

where

• max is the maximum value to be simulated.

• min is the minimum value to be simulated.

• ws is the word size in bits.

• 2ws – 1 is the largest value of a word with whose size is given by ws.

For this example, the formula produces a slope of 0.32258.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

max min�()

2ws 1�

4

Demos
Demos
To help you learn the Fixed-Point Blockset, a collection of demos is provided.
You can explore specific blockset features by changing block parameters and
observing the effects of those changes.

The demos are divided into two groups: basic demos that illustrate the basic
functionality of the Fixed-Point Blockset, and advanced demos that illustrate
the functionality of systems built with fixed-point blocks. All demos are located
in the fxpdemos directory.

You can access the demos through the MATLAB Demo browser. You launch the
Demo browser by clicking the Demos block in the Fixed-Point Blockset library,
or by typing

demo blockset 'Fixed Point'

at the command line. To open a demo, double-click the name of the demo in
lower pane of the Demo browser.

Basic Fixed-Point Blockset Demos
The basic demos are listed below.

Demo Name Description

Double to Fixed-Point
Conversion

Convert a double precision value to a
fixed-point value.

Fixed-Point to Fixed-Point
Conversion

Convert a fixed-point value to another
fixed-point value.

Fixed-Point to Fixed-Point
Inherited Conversion

Convert a fixed-point value to an inherited
fixed-point value.

Fixed-Point Sine Add and multiply two fixed-point sine wave
signals.

Fixed-Point Filters Simulate implementations of a fixed-point
filter.
2-15

2 Getting Started with the Blockset

2-1
“Example: Converting from Doubles to Fixed-Point” on page 2-10 discusses the
Double to Fixed-Point Conversion demo, while Chapter 6, “Tutorial: Feedback
Controller Simulation” discusses the Scaling a Fixed-Point Control Design
demo.

Advanced Fixed-Point Blockset Demos
The advanced demos are intended to show you how to build and test systems
suited to your particular needs. The output of these demos is compared to the
output of analogous built-in Simulink blocks with identical input.

The advanced demos are listed below.

Scaling a Fixed-Point
Control Design

Simulate a fixed-point feedback design.

Generating Only
Fixed-Point Code

Generate pure integer code for a fixed-point
digital controller.

Demo Name Description

Fixed-Point
Integrators

Compare output from the Integrator Trapezoidal,
Integrator Backward, and Integrator Forward blocks
to output from the Simulink Discrete Integrator block.

Fixed-Point
Derivatives

Compare output from the Derivative and Derivative:
Filtered realizations to output from the Simulink
derivatives built using the Discrete Filter and Transfer
Fcn blocks.

Fixed-Point Lead
and Lag Filters

Compare output from the Lead and Lag Filter block to
output from analogous Simulink filters built using the
Discrete Filter block.

Fixed-Point State
Space

Compare output from the State-Space Realization
realization to output from the analogous built-in
Simulink State-Space and Discrete State-Space blocks.

Demo Name Description
6

Demos
Additional fixed-point demos for direct form II, series cascade form, and
parallel form realizations are discussed in Chapter 5, “Realization Structures.”

Fixed-Point Data
Type Propagation

Illustrate data type propagation using the Data Type
Propagation block, and the “Inherit via back
propagation” setting.

Fixed-Point
Function
Approximation

Compare the fixed-point lookup approximation of a
function with the ideal function.

Demo Name Description
2-17

2 Getting Started with the Blockset

2-1
8

3

Data Types and Scaling

Overview (p. 3-2) An overview of data types and scaling in digital hardware

Fixed-Point Numbers (p. 3-3) A discussion of the representation and manipulation of
fixed-point numbers, both in general and in the
Fixed-Point Blockset

Floating-Point Numbers (p. 3-15) A discussion of the representation and manipulation of
floating-point numbers

3 Data Types and Scaling

3-2
Overview
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). The way in which hardware
components or software functions interpret this sequence of 1’s and 0’s is
described by a data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the radix
(binary) point, and whether it is signed or unsigned. The radix point is the
means by which fixed-point values are scaled. Within the Fixed-Point Blockset,
fixed-point data types can be integers, fractionals, or generalized fixed-point
numbers. The main difference between these data types is their default radix
point. Floating-point data types are characterized by a sign bit, a fraction (or
mantissa) field, and an exponent field. The blockset adheres to the IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic (referred to simply as
the IEEE Standard 754 throughout this guide) and supports singles, doubles,
and a nonstandard IEEE-style floating-point data type.

When choosing a data type, you must consider these factors:

• The numerical range of the result

• The precision required of the result

• The associated quantization error (i.e., the rounding mode)

• The method for dealing with exceptional arithmetic conditions

These choices depend on your specific application, the computer architecture
used, and the cost of development, among others.

With the Fixed-Point Blockset, you can explore the relationship between data
types, range, precision, and quantization error in the modeling of dynamic
digital systems. With Real-Time Workshop®, you can generate production code
based on that model.

Fixed-Point Numbers
Fixed-Point Numbers
Fixed-point numbers are stored in data types that are characterized by their
word size in bits, radix point, and whether they are signed or unsigned. The
Fixed-Point Blockset supports integers, fractionals, and generalized
fixed-point numbers. The main difference between these data types is their
default radix point.

Note Fixed-point word sizes up to 128 bits are supported.

A common representation of a binary fixed-point number (either signed or
unsigned) is shown below.

where

• bi are the binary digits (bits).

• The size of the word in bits is given by ws.

• The most significant bit (MSB) is the leftmost bit, and is represented by
location .

• The least significant bit (LSB) is the rightmost bit, and is represented by
location b0.

• The radix point is shown four places to the left of the LSB.

Signed Fixed-Point Numbers
Computer hardware typically represents the negation of a binary fixed-point
number in three different ways: sign/magnitude, one’s complement, and two’s
complement. Two’s complement is the preferred representation of signed
fixed-point numbers and is supported by the Fixed-Point Blockset.

�
… b0b1bws 2� b5 b3b4 b2bws 1�

MSB

radix point

LSB

bws 1�
3-3

3 Data Types and Scaling

3-4
Negation using two’s complement consists of a bit inversion (translation into
one’s complement) followed by the addition of a one. For example, the two’s
complement of 000101 is 111011.

Whether a fixed-point value is signed or unsigned is usually not encoded
explicitly within the binary word (i.e., there is no sign bit). Instead, the sign
information is implicitly defined within the computer architecture.

Radix Point Interpretation
The radix point is the means by which fixed-point numbers are scaled. It is
usually the software that determines the radix point. When performing basic
math functions such as addition or subtraction, the hardware uses the same
logic circuits regardless of the value of the scale factor. In essence, the logic
circuits have no knowledge of a scale factor. They are performing signed or
unsigned fixed-point binary algebra as if the radix point is to the right of b0.

Within the Fixed-Point Blockset, the main difference between fixed-point data
types is the default radix point. For integers and fractionals, the radix point is
fixed at the default value. For generalized fixed-point data types, you must
either explicitly specify the scaling by configuring dialog box parameters, or
inherit the scaling from another block. The supported fixed-point data types
are described below.

Integers
The default radix point for signed and unsigned integer data types is assumed
to be just to the right of the LSB. You specify unsigned and signed integers with
the uint and sint functions, respectively.

Fractionals
The default radix point for unsigned fractional data types is just to the left of
the MSB, while for signed fractionals the radix point is just to the right of the
MSB. If you specify guard bits, then they lie to the left of the radix point. You
specify unsigned and signed fractional numbers with the ufrac and sfrac
functions, respectively.

Generalized Fixed-Point Numbers
For signed and unsigned generalized fixed-point numbers, there is no default
radix point. You specify unsigned and signed generalized fixed-point numbers
with the ufix and sfix functions, respectively.

Fixed-Point Numbers
Scaling
The dynamic range of fixed-point numbers is much less than that of
floating-point numbers with equivalent word sizes. To avoid overflow
conditions and minimize quantization errors, fixed-point numbers must be
scaled.

With the Fixed-Point Blockset, you can select a fixed-point data type whose
scaling is defined by its default radix point, or you can select a generalized
fixed-point data type and choose an arbitrary linear scaling that suits your
needs. This section presents the scaling choices available for generalized
fixed-point data types.

A fixed-point number can be represented by a general [Slope Bias] encoding
scheme

where

• is an arbitrarily precise real-world value.

• is the approximate real-world value.

• Q is an integer that encodes V.

• S = F.2E is the slope.

• B is the bias.

The slope is partitioned into two components:

• 2E specifies the radix point. E is the fixed power-of-two exponent.

• F is the fractional slope. It is normalized such that .

Note S and B are constants and do not show up in the computer hardware
directly – only the quantization value Q is stored in computer memory.

The scaling modes available to you within this encoding scheme are described
below. For detailed information about how the supported scaling modes effect
fixed-point operations, refer to “Recommendations for Arithmetic and Scaling”
on page 4-16.

V V�≈ SQ B+=

V

V�

1 F 2<≤
3-5

3 Data Types and Scaling

3-6
Radix Point-Only Scaling
As the name implies, radix point-only (or “powers-of-two”) scaling involves
moving only the radix point within the generalized fixed-point word. The
advantage of this scaling mode is the number of processor arithmetic
operations is minimized.

With radix point-only scaling, the components of the general [Slope Bias]
formula have these values:

• F = 1

• S = 2E

• B = 0

That is, the scaling of the quantized real-world number is defined only by the
slope S, which is restricted to a power of two.

In the Fixed-Point Blockset, you specify radix point-only scaling with the
syntax 2^-E where E is unrestricted. This creates a MATLAB structure with a
bias B = 0 and a fractional slope F = 1.0. For example, the syntax 2^-10 defines
a scaling such that the radix point is at a location 10 places to the left of the
least significant bit.

[Slope Bias] Scaling
When you scale by slope and bias, the slope S and bias B of the quantized
real-world number can take on any value. You specify scaling by slope and bias
with the syntax [slope bias], which creates a MATLAB structure with the
given slope and bias. For example, a [Slope Bias] scaling specified by [5/9 10]
defines a slope of 5/9 and a bias of 10. The slope must be a positive number.

See “Example: Fixed-Point Scaling” on page 3-10 and “Example: Constant
Scaling for Best Precision” on page 3-11 for more information.

Quantization
The quantization Q of a real-world value V is represented by a weighted sum
of bits. Within the context of the general [Slope Bias] encoding scheme, the
value of an unsigned fixed-point quantity is given by

Fixed-Point Numbers
while the value of a signed fixed-point quantity is given by

where

• bi are binary digits, with .

• The word size in bits is given by ws, with ws = 1,2,3,...,128.

• S is given by F2E, where the scaling is unrestricted since the radix point does
not have to be contiguous with the word.

bi are called bit multipliers and 2i are called the weights.

Example: Fixed-Point Format
The formats for 8-bit signed and unsigned fixed-point values are given below.

Note that you cannot discern whether these numbers are signed or unsigned
data types merely by inspection since this information is not explicitly encoded
within the word.

The binary number 0011.0101 yields the same value for the unsigned and two’s
complement representation since the MSB = 0. Setting B = 0 and using the
appropriate weights, bit multipliers, and scaling, the value is

V� S bi2
i

i 0=

ws 1�

∑ B+⋅=

V� S bws 1� 2ws 1�� bi2
i

i 0=

ws 2�

∑+ B+⋅=

bi 1 0,=

101 01 1
�

00

101 01 1
�

01

Unsigned data type

Signed data type
3-7

3 Data Types and Scaling

3-8
Conversely, the binary number 1011.0101 yields different values for the
unsigned and two’s complement representation since the MSB = 1.

Setting B = 0 and using the appropriate weights, bit multipliers, and scaling,
the unsigned value is

while the two’s complement value is

Range and Precision
The range of a number gives the limits of the representation while the precision
gives the distance between successive numbers in the representation. The
range and precision of a fixed-point number depends on the length of the word
and the scaling.

V� F2E() Q⋅ 2E= bi2
i

i 0=

ws 1�

∑⋅=

2= 4� 0 27 0 26 1 25 1 24 0 23 1 22 0 21 1 20⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅()⋅

3.3125=

V� F2E() Q⋅ 2E= bi2
i

i 0=

ws 1�

∑⋅=

2= 4� 1 27 0 26 1 25 1 24 0 23 1 22 0 21 1 20⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅()⋅

11.3125=

V� F2E() Q⋅ 2E= bws 1� 2ws 1�� bi2
i

i 0=

ws 2�

∑+⋅=

2= 4� 1� 27 0 26 1 25 1 24 0 23 1 22 0 21 1 20⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅()⋅

4.6875�=

Fixed-Point Numbers
Range
The range of representable numbers for an unsigned and two’s complement
fixed-point number of size ws, scaling S, and bias B is illustrated below.

For both the signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2ws.

For example, if the fixed-point data type is an integer with scaling defined as
S = 1 and B = 0, then the maximum unsigned value is 2ws – 1 since zero must
be represented. In two’s complement, negative numbers must be represented
as well as zero so the maximum value is 2ws – 1– 1. Additionally, since there is
only one representation for zero, there must be an unequal number of positive
and negative numbers. This means there is a representation for –2ws – 1 but not
for 2ws – 1.

Precision
The precision (scaling) of integer and fractional data types is specified by the
default radix point. For generalized fixed-point data types, the scaling must be
explicitly defined as either [Slope Bias] or radix point-only. In either case, the
precision is given by the slope.

Fixed-Point Data Type Parameters
The low limit, high limit, and default radix point-only scaling for the supported
fixed-point data types discussed in “Radix Point Interpretation” on page 3-4

negative numbers positive numbers

0S.(–2ws – 1) + B S.(2ws – 1– 1) + B

positive numbers

B S.(2ws – 1) + B
3-9

3 Data Types and Scaling

3-1
are given below. See “Limitations on Precision” and “Limitations on Range” in
Chapter 4 for more information.

Example: Fixed-Point Scaling

Range of an 8-Bit Fixed-Point Data Type — Radix Point-Only Scaling
The precision, range of signed values, and range of unsigned values for an 8-bit
generalized fixed-point data type with radix point-only scaling follow. Note
that the first scaling value (21) represents a radix point that is not contiguous
with the word.

Fixed-Point Data Type Range and Default Scaling

Name Data Type Low Limit High Limit Default Scaling
(~Precision)

Integer uint 0 2ws – 1 1

sint –2ws – 1 2ws – 1 – 1 1

Fractional ufrac 0 1 – 2–ws 2–ws

sfrac –1 1 – 2–(ws – 1) 2–(ws – 1)

Generalized
Fixed-Point

ufix N/A N/A N/A

sfix N/A N/A N/A

Scaling Precision Range of Signed
Values (low, high)

Range of Unsigned
Values (low, high)

2
1

2.0 -256, 254 0, 510

2
0

1.0 -128, 127 0, 255

2
-1

0.5 -64, 63.5 0, 127.5

2
-2

0.25 -32, 31.75 0, 63.75

2
-3

0.125 -16, 15.875 0, 31.875

2
-4

0.0625 -8, 7.9375 0, 15.9375
0

Fixed-Point Numbers
Range of an 8-Bit Fixed-Point Data Type – [Slope Bias] Scaling
The precision and range of signed and unsigned values for an 8-bit fixed-point
data type using [Slope Bias] scaling follow. The slope starts at a value of 1.25
and the bias is 1.0 for all slopes. Note that the slope is the same as the
precision.

Example: Constant Scaling for Best Precision
The Fixed-Point Blockset provides you with block-specific modes for scaling
constant vectors and constant matrices. These scaling modes are based on
radix point-only scaling and are described below:

2
-5

0.03125 -4, 3.96875 0, 7.96875

2
-6

0.015625 -2, 1.984375 0, 3.984375

2
-7

0.0078125 -1, 0.9921875 0, 1.9921875

2
-8

0.00390625 -0.5, 0.49609375 0, 0.99609375

Bias Slope/Precision Range of Signed
Values (low, high)

Range of Unsigned
Values (low, high)

1 1.25 -159, 159.75 1, 319.75

1 0.625 -79, 80.375 1, 160.375

1 0.3125 -39, 40.6875 1, 80.6875

1 0.15625 -19, 20.84375 1, 40.84375

1 0.078125 -9, 10.921875 1, 20.921875

1 0.0390625 -4, 5.9609375 1, 10.9609375

1 0.01953125 -1.5, 3.48046875 1, 5.98046875

1 0.009765625 -0.25, 2.240234375 1, 3.490234375

1 0.0048828125 0.375, 1.6201171875 1, 2.2451171875

Scaling Precision Range of Signed
Values (low, high)

Range of Unsigned
Values (low, high)
3-11

3 Data Types and Scaling

3-1
• Constant Vector Scaling

Using this mode, you can scale a constant vector such that its precision is
maximized element-by-element, or a common radix point is found based on
the best precision for the largest value of the vector.

• Constant Matrix Scaling

Using this mode, you can scale a constant matrix such that its precision is
maximized element-by-element, or a common radix point is found based on
the best precision for the largest value of each row, each column, or the whole
matrix.

Constant matrix and constant vector scaling are available only for generalized
fixed-point data types. All other fixed-point data types use their default
scaling. The available constant matrix scaling modes are shown below for the
Matrix Gain block.
2

Fixed-Point Numbers
To understand how you might use these scaling modes, consider a 5- by- 4
matrix of doubles, M, defined as

 3.3333e-005 3.3333e-006 3.3333e-007 3.3333e-008
 3.3333e-004 3.3333e-005 3.3333e-006 3.3333e-007
 3.3333e-003 3.3333e-004 3.3333e-005 3.3333e-006
 3.3333e-002 3.3333e-003 3.3333e-004 3.3333e-005
 3.3333e-001 3.3333e-002 3.3333e-003 3.3333e-004

Now suppose M is input into the Matrix Gain block, and you want to scale it
using one of the constant matrix scaling modes. The results of using these
modes are described below:

• Use Specified Scaling

Suppose the matrix elements are converted to a signed, 10-bit generalized
fixed-point data type with radix point-only scaling of 2-7 (that is, the radix
point is located seven places to the left of the rightmost bit). With this data
format, M becomes
0 0 0 0
0 0 0 0
0 0 0 0
3.1250e-002 0 0 0
3.3594e-001 3.1250e-002 0 0

Note that many of the matrix elements are zero, and for the nonzero entries,
the scaled values differ from the original values. This is because a double is
converted to a binary word of fixed size and limited precision for each
element. The larger and more precise the conversion data type, the more
closely the scaled values match the original values.

• Best Precision: Element-wise

If M is scaled such that the precision is maximized for each matrix element,
you obtain
3.3379e-005 3.3304e-006 3.3341e-007 3.3295e-008
3.3379e-004 3.3379e-005 3.3304e-006 3.3341e-007
3.3340e-003 3.3379e-004 3.3379e-005 3.3304e-006
3.3325e-002 3.3340e-003 3.3379e-004 3.3379e-005
3.3301e-001 3.3325e-002 3.3340e-003 3.3379e-004

• Best Precision: Row-wise

If M is scaled based on the largest value for each row, you obtain
3-13

3 Data Types and Scaling

3-1
3.3379e-005 3.3379e-006 3.5763e-007 0
3.3379e-004 3.3379e-005 2.8610e-006 0
3.3340e-003 3.3569e-004 3.0518e-005 0
3.3325e-002 3.2959e-003 3.6621e-004 0
3.3301e-001 3.3203e-002 2.9297e-003 0

• Best Precision: Column-wise

If M is scaled based on the largest value for each column, you obtain
0 0 0 0
0 0 0 0
2.9297e-003 3.6621e-004 3.0518e-005 2.8610e-006
3.3203e-002 3.2959e-003 3.3569e-004 3.3379e-005
3.3301e-001 3.3325e-002 3.3340e-003 3.3379e-004

• Best Precision: Matrix-wise

If M is scaled based on its largest matrix value, you obtain

0 0 0 0
0 0 0 0
2.9297e-003 0 0 0
3.3203e-002 2.9297e-003 0 0
3.3301e-001 3.3203e-002 2.9297e-003 0

The disadvantage of scaling the matrix column-wise, row-wise, or matrix-wise
is reduced precision resulting from the use of a common radix point. The
advantage of using a common radix point is reduced code size and possibly
increased processor speed.
4

Floating-Point Numbers
Floating-Point Numbers
Fixed-point numbers are limited in that they cannot simultaneously represent
very large or very small numbers using a reasonable word size. This limitation
can be overcome by using scientific notation. With scientific notation, you can
dynamically place the radix point at a convenient location and use powers of
the radix to keep track of that location. Thus, you can represent a range of very
large and very small numbers with only a few digits.

You can represent any binary floating-point number in scientific notation form
as where f is the fraction (or mantissa); 2 is the radix or base (binary
in this case); and e is the exponent of the radix. The radix is always a positive
number while f and e can be positive or negative.

When performing arithmetic operations, floating-point hardware must take
into account that the sign, exponent, and fraction are all encoded within the
same binary word. This results in complex logic circuits when compared with
the circuits for binary fixed-point operations.

The Fixed-Point Blockset supports single-precision and double-precision
floating-point numbers as defined by the IEEE Standard 754. Additionally, a
nonstandard IEEE-style number is supported. To link the world of fixed-point
numbers with the world of floating-point numbers, the concepts behind
scientific notation are reviewed below.

Scientific Notation
A direct analogy exists between scientific notation and radix point notation.
For example, scientific notation using five decimal digits for the fraction would
take the form

where p is an integer of unrestricted range. Radix point notation using five bits
for the fraction is the same except for the number base

where q is an integer of unrestricted range. The previous equation is valid for
both fixed- and floating-point numbers. For both these data types, the fraction
can be changed at any time by the processor. However, for fixed- point numbers

 f± 2× e±

d.dddd 10× p ddddd.0± 10× p 4� 0± .ddddd 10× p 1+==±

b.bbbb 2× q± bbbbb.0 2× q 4�± 0.bbbbb 2× q 1+±= =
3-15

3 Data Types and Scaling

3-1
the exponent never changes, while for floating-point numbers the exponent can
be changed any time by the processor.

For fixed-point numbers, the exponent is fixed but there is no reason why the
radix point must be contiguous with the fraction. For example, a word
consisting of three unsigned bits is usually represented in scientific notation in
one of these four ways.

If the exponent were greater than 0 or less than -3, then the representation
would involve lots of zeros.

These extra zeros never change to ones, however, so they don’t show up in the
hardware. Furthermore, unlike floating-point exponents, a fixed-point
exponent never shows up in the hardware, so fixed-point exponents are not
limited by a finite number of bits.

Note Restricting the radix point to being contiguous with the fraction is
unnecessary; the Fixed-Point Blockset allows you to extend the radix point to
any arbitrary location.

bbb. bbb. 20×=

bb.b bbb. 2 1�×=

b.bb bbb. 2 2�×=

.bbb bbb. 2 3�×=

bbb00000. bbb. 25×=

bbb00. bbb. 22×=

.00bbb bbb. 2 5�×=

.00000bbb bbb. 2 8�×=

6

Floating-Point Numbers
The IEEE Format
The IEEE Standard 754 has been widely adopted, and is used with virtually all
floating-point processors and arithmetic coprocessors — with the notable
exception of many DSP floating-point processors.

Among other things, this standard specifies four floating-point number formats
of which singles and doubles are the most widely used. Each format contains
three components: a sign bit, a fraction field, and an exponent field. These
components, as well as the specific formats for singles and doubles, are
discussed below.

The Sign Bit
While two’s complement is the preferred representation for signed fixed-point
numbers, IEEE floating-point numbers use a sign/magnitude representation,
where the sign bit is explicitly included in the word. Using this representation,
a sign bit of 0 represents a positive number and a sign bit of 1 represents a
negative number.

The Fraction Field
In general, floating-point numbers can be represented in many different ways
by shifting the number to the left or right of the radix point and decreasing or
increasing the exponent of the radix by a corresponding amount.

To simplify operations on these numbers, they are normalized in the IEEE
format. A normalized binary number has a fraction of the form 1.f where f has
a fixed size for a given data type. Since the leftmost fraction bit is always a 1,
it is unnecessary to store this bit and is therefore implicit (or hidden). Thus, an
n-bit fraction stores an n+1-bit number. The IEEE format also supports
denormalized numbers, which have a fraction of the form 0.f. Normalized and
denormalized formats are discussed in more detail in next section.

The Exponent Field
In the IEEE format, exponent representations are biased. This means a fixed
value (the bias) is subtracted from the field to get the true exponent value. For
example, if the exponent field is 8 bits, then the numbers 0 through 255 are
represented, and there is a bias of 127. Note that some values of the exponent
are reserved for flagging Inf (infinity), NaN (not-a-number), and denormalized
numbers, so the true exponent values range from -126 to 127. See the sections
“Inf” and “NaN” on page 3-22.
3-17

3 Data Types and Scaling

3-1
Single Precision Format
The IEEE single-precision floating-point format is a 32-bit word divided into a
1-bit sign indicator s, an 8-bit biased exponent e, and a 23-bit fraction f. A
representation of this format is given below.

The relationship between this format and the representation of real numbers
is given by

“Exceptional Arithmetic” on page 3-21 discusses denormalized values.

Double Precision Format
The IEEE double-precision floating-point format is a 64-bit word divided into
a 1-bit sign indicator s, an 11-bit biased exponent e, and a 52-bit fraction f. A
representation of this format is given below.

The relationship between this format and the representation of real numbers
is given by

“Exceptional Arithmetic” on page 3-21 discusses denormalized values.

b0b22b30b31

fs e

 value
1�()s 2e 127�() 1.f()⋅ ⋅

1�()s 2e 126�() 0.f()⋅ ⋅
exceptional value

= denormalized, e = 0, f > 0

otherwise

normalized, 0 e 255< <

b0b51b62b63

fs e

 value
1�()s 2e 1023�() 1.f()⋅ ⋅

1�()s 2e 1022�() 0.f()⋅ ⋅
exceptional value

= denormalized, e = 0, f > 0

otherwise

normalized, 0 e 2047< <
8

Floating-Point Numbers
Nonstandard IEEE Format
The Fixed-Point Blockset supports a nonstandard IEEE-style floating-point
data type. This data type adheres to the definitions and formulas previously
given for IEEE singles and doubles. You create nonstandard floating-point
numbers with the float function:

float(TotalBits,ExpBits)

TotalBits is the total word size and ExpBits is the size of the exponent field.
The size of the fraction field and the bias are calculated from these input
arguments. You can specify any number of exponent bits up to 11, and any
number of total bits such that the fraction field is no more than 53 bits.

When specifying a nonstandard format, you should remember that the number
of exponent bits largely determines the range of the result and the number of
fraction bits largely determines the precision of the result.

Note These numbers are normalized with a hidden leading one for all
exponents except the smallest possible exponent. However, the largest
possible exponent might not be treated as a flag for Inf or NaN.

Range and Precision
The range of a number gives the limits of the representation while the precision
gives the distance between successive numbers in the representation. The
range and precision of an IEEE floating-point number depend on the specific
format.

Range
The range of representable numbers for an IEEE floating-point number with f
bits allocated for the fraction, e bits allocated for the exponent, and the bias of
e given by bias = 2e – 1– 1 is given below.

positive
underflow

negative
underflow

positive
overflow

negative
overflow

negative numbers positive numbers
3-19

3 Data Types and Scaling

3-2
where

• Normalized positive numbers are defined within the range 21 – bias to
(2 – 2–f).2bias.

• Normalized negative numbers are defined within the range –21 – bias to
–(2 – 2–f).2bias.

• Positive numbers greater than (2 – 2–f).2bias, and negative numbers greater
than –(2 – 2–f).2bias are overflows.

• Positive numbers less than 21 – bias, and negative numbers less than –21 – bias

are either underflows or denormalized numbers.

• Zero is given by a special bit pattern, where e = 0 and f = 0.

Overflows and underflows result from exceptional arithmetic conditions.
Floating-point numbers outside the defined range are always mapped to .

Note You can use the MATLAB commands realmin and realmax to
determine the dynamic range of double-precision floating-point values for
your computer.

Precision
Due to a finite word size, a floating-point number is only an approximation of
the “true” value. Therefore, it is important to have an understanding of the
precision (or accuracy) of a floating-point result. In general, a value v with an
accuracy q is specified by . For IEEE floating-point numbers,

 and . Thus, the precision is
associated with the number of bits in the fraction field.

Note In MATLAB, floating-point relative accuracy is given by the command
eps, which returns the distance from 1.0 to the next largest floating-point
number. For a computer that supports the IEEE Standard 754, eps = 2-52 or
2.2204 510-16.

Inf±

v q±
v 1�()s 2e bias�() 1.f()⋅ ⋅= q 2 f� 2⋅ e bias�=
0

Floating-Point Numbers
Floating-Point Data Type Parameters
The high and low limits, exponent bias, and precision for the supported
floating-point data types are given below.

Due to the sign/magnitude representation of floating-point numbers, there are
two representations of zero, one positive and one negative. For both
representations e = 0 and 0.f = 0.0.

Exceptional Arithmetic
In addition to specifying a floating-point format, the IEEE Standard 754
specifies practices and procedures so that predictable results are produced
independently of the hardware platform. Specifically, denormalized numbers,
Inf, and NaN are defined to deal with exceptional arithmetic (underflow and
overflow).

If an underflow or overflow is handled as Inf or NaN, then significant processor
overhead is required to deal with this exception. Although the IEEE Standard
754 specifies practices and procedures to deal with exceptional arithmetic
conditions in a consistent manner, microprocessor manufacturers may handle
these conditions in ways that depart from the standard. Some of the alternative
approaches, such as saturation and wrapping, are discussed in Chapter 4,
“Arithmetic Operations.”

Denormalized Numbers
Denormalized numbers are used to handle cases of exponent underflow. When
the exponent of the result is too small (i.e., a negative exponent with too large
a magnitude), the result is denormalized by right-shifting the fraction and
leaving the exponent at its minimum value. The use of denormalized numbers
is also referred to as gradual underflow. Without denormalized numbers, the
gap between the smallest representable nonzero number and zero is much

Data Type Low Limit High Limit Exponent
Bias

 Precision

Single 127

Double 1023

Nonstandard

2 126� 10 38�≈ 2128 3 1038⋅≈ 2 23� 10 7�≈

2 1022� 2 10⋅ 308�≈ 21024 2 10⋅ 308≈ 2 52� 10 16�≈

2 1 bias�() 2(2 f�) 2bias⋅� 2e 1� 1� 2 f�
3-21

3 Data Types and Scaling

3-2
wider than the gap between the smallest representable nonzero number and
the next larger number. Gradual underflow fills that gap and reduces the
impact of exponent underflow to a level comparable with round off among the
normalized numbers. Thus, denormalized numbers provide extended range for
small numbers at the expense of precision.

Inf
Arithmetic involving Inf (infinity) is treated as the limiting case of real
arithmetic, with infinite values defined as those outside the range of
representable numbers, or . With the
exception of the special cases discussed below (NaN), any arithmetic operation
involving Inf yields Inf. Inf is represented by the largest biased exponent
allowed by the format and a fraction of zero.

NaN
A NaN (not-a-number) is a symbolic entity encoded in floating-point format.
There are two types of NaN: signaling and quiet. A signaling NaN signals an
invalid operation exception. A quiet NaN propagates through almost every
arithmetic operation without signaling an exception. The following operations
result in a NaN: , , , , and .

Both types of NaN are represented by the largest biased exponent allowed by the
format and a fraction that is nonzero. The bit pattern for a quiet NaN is given
by 0.f where the most significant number in f must be a one, while the bit
pattern for a signaling NaN is given by 0.f where the most significant number
in f must be zero and at least one of the remaining numbers must be nonzero.

∞ representable numbers()≤ ∞<�

∞ ∞� ∞� ∞+ 0 ∞× 0 0⁄ ∞ ∞⁄
2

4

Arithmetic Operations

Overview (p. 4-2) An overview of issues that need to be considered when
performing fixed-point arithmetic operations—overflow,
quantization, computational noise, and limit cycles

Limitations on Precision (p. 4-3) A discussion of the limits placed on the precision of
fixed-point calculations, and how they are handled in the
Fixed-Point Blockset

Limitations on Range (p. 4-12) A discussion of the limits placed on the range of
fixed-point calculations, and how they are handled in the
Fixed-Point Blockset

Recommendations for Arithmetic and
Scaling (p. 4-16)

Recommendations for scaling in your fixed-point design
based on the limitations of fixed-point arithmetic

Parameter and Signal Conversions
(p. 4-26)

A discussion of the way the data types of parameters and
signals are converted in simulations using the Fixed-Point
Blockset

Rules for Arithmetic Operations
(p. 4-30)

A description of the way the Fixed-Point Blockset
performs arithmetic operations on inputs and parameters

Example: Conversions and Arithmetic
Operations (p. 4-43)

An example highlighting the way the Fixed-Point Blockset
converts the data types of and performs arithmetic
operations on inputs and parameters

4 Arithmetic Operations

4-2
Overview
When developing a dynamic system using floating-point arithmetic, you
generally don’t have to worry about numerical limitations since floating-point
data types have high precision and range. Conversely, when working with
fixed-point arithmetic, you must consider these factors when developing
dynamic systems:

• Overflow

Adding two sufficiently large negative or positive values can produce a result
that does not fit into the representation. This will have an adverse effect on
the control system.

• Quantization

Fixed-point values are rounded. Therefore, the output signal to the plant and
the input signal to the control system do not have the same characteristics
as the ideal discrete-time signal.

• Computational noise

The accumulated errors that result from the rounding of individual terms
within the realization introduces noise into the control signal.

• Limit cycles

In the ideal system, the output of a stable transfer function (digital filter)
approaches some constant for a constant input. With quantization, limit
cycles occur where the output oscillates between two values in steady state.

This chapter describes the limitations involved when arithmetic operations are
performed using encoded fixed-point variables. It also provides
recommendations for encoding fixed-point variables such that simulations and
generated code are reasonably efficient.

Limitations on Precision
Limitations on Precision
Computer words consist of a finite numbers of bits. This means that the binary
encoding of variables is only an approximation of an arbitrarily precise
real-world value. Therefore, the limitations of the binary representation
automatically introduce limitations on the precision of the value. For a general
discussion of range and precision in the Fixed-Point Blockset, refer to “Range
and Precision” in Chapter 3.

The precision of a fixed-point word depends on the word size and radix point
location. Extending the precision of a word can always be accomplished with
more bits, but you face practical limitations with this approach. Instead, you
must carefully select the data type, word size, and scaling such that numbers
are accurately represented. Rounding and padding with trailing zeros are
typical methods implemented on processors to deal with the precision of binary
words.

Rounding
The result of any operation on a fixed-point number is typically stored in a
register that is longer than the number’s original format. When the result is
put back into the original format, the extra bits must be disposed of. That is,
the result must be rounded. Rounding involves going from high precision to
lower precision and produces quantization errors and computational noise.

The blockset provides four rounding modes, which are shown in the expanded
drop-down menu in the dialog below.
4-3

4 Arithmetic Operations

4-4
The Fixed-Point Blockset rounding modes are discussed below. The data is
generated using the Simulink Signal Generator block and doubles are
converted to signed 8-bit numbers with radix point-only scaling of 2-2.

Round Toward Zero
The simplest rounding mode computationally is when all digits beyond the
number required are dropped. This mode is referred to as rounding toward
zero, and it results in a number whose magnitude is always less than or equal
to the more precise original value. In MATLAB, you can round to zero using the
fix function.

Rounding toward zero introduces a cumulative downward bias in the result for
positive numbers and a cumulative upward bias in the result for negative
numbers. That is, all positive numbers are rounded to smaller positive
numbers, while all negative numbers are rounded to smaller negative
numbers. Rounding toward zero is shown below.

Limitations on Precision
An example comparing rounding to zero and truncation for unsigned and two’s
complement numbers appears in “Example: Rounding to Zero Versus
Truncation” on page 4-8.

Round Toward Nearest
When you round toward nearest, the number is rounded to the nearest
representable value. This mode has the smallest errors associated with it and
these errors are symmetric. As a result, rounding toward nearest is the most
useful approach for most applications.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Zero

Positive numbers are rounded
to smaller positive numbers.

Negative numbers are rounded
to smaller negative numbers.
4-5

4 Arithmetic Operations

4-6
In MATLAB, you can round to nearest using the round function. Rounding
toward nearest is shown below.

Round Toward Ceiling
When you round toward ceiling, both positive and negative numbers are
rounded toward positive infinity. As a result, a positive cumulative bias is
introduced in the number.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Nearest

All numbers are rounded to the
nearest representable number.

Limitations on Precision
In MATLAB, you can round to ceiling using the ceil function. Rounding
toward ceiling is shown below.

Round Toward Floor
When you round toward floor, both positive and negative numbers are rounded
to negative infinity. As a result, a negative cumulative bias is introduced in the
number.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Ceiling

All numbers are rounded
toward positive infinity.
4-7

4 Arithmetic Operations

4-8
In MATLAB, you can round to floor using the floor function. Rounding toward
floor is shown below.

Rounding toward ceiling and rounding toward floor are sometimes useful for
diagnostic purposes. For example, after a series of arithmetic operations, you
may not know the exact answer because of word-size limitations, which
introduce rounding. If every operation in the series is performed twice, once
rounding to positive infinity and once rounding to negative infinity, you obtain
an upper limit and a lower limit on the correct answer. You can then decide if
the result is sufficiently accurate or if additional analysis is required.

Example: Rounding to Zero Versus Truncation
Rounding to zero and truncation or chopping are sometimes thought to mean
the same thing. However, the results produced by rounding to zero and
truncation are different for unsigned and two’s complement numbers.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time

Round Toward Floor

All numbers are rounded
toward negative infinity.

Limitations on Precision
To illustrate this point, consider rounding a 5-bit unsigned number to zero by
dropping (truncating) the two least significant bits. For example, the unsigned
number 100.01 = 4.25 is truncated to 100 = 4. Therefore, truncating an
unsigned number is equivalent to rounding to zero or rounding to floor.

Now consider rounding a 5-bit two’s complement number by dropping the two
least significant bits. At first glance, you may think truncating a two’s
complement number is the same as rounding to zero. For example, dropping
the last two digits of -3.75 yields -3.00. However, digital hardware performing
two’s complement arithmetic yields a different result. Specifically, the number
100.01 = -3.75 truncates to 100 = -4, which is rounding to floor.

As you can see, rounding to zero for a two’s complement number is not the same
as truncation when the original value is negative. For this reason, the
ambiguous term “truncation” is not used in this guide, and four explicit
rounding modes are used instead.

Padding with Trailing Zeros
Padding with trailing zeros involves extending the least significant bit (LSB)
of a number with extra bits. This method involves going from low precision to
higher precision.

For example, suppose two numbers are subtracted from each other. First, the
exponents must be aligned, which typically involves a right shift of the number
with the smaller value. In performing this shift, significant digits can “fall off”
to the right. However, when the appropriate number of extra bits is appended,
the precision of the result is maximized. Consider two 8-bit fixed-point
numbers that are close in value and subtracted from each other

where q is an integer. To perform this operation, the exponents must be equal.

If the top number is padded by two zeros and the bottom number is padded with
one zero, then the above equation becomes

1.0000000 2q 1.1111111 2q 1�⋅�⋅

1.0000000 2q⋅

 0.1111111 2q⋅�

0.0000001 2q⋅
--
4-9

4 Arithmetic Operations

4-1
which produces a more precise result. An example of padding with trailing
zeros using the Fixed-Point Blockset is illustrated in “Digital Controller
Realization” on page 6-7.

Example: Limitations on Precision and Errors
Fixed-point variables have a limited precision because digital systems
represent numbers with a finite number of bits. For example, suppose you must
represent the real-world number 35.375 with a fixed-point number. Using the
encoding scheme described in “Scaling” on page 3-5, the representation is

The two closest approximations to the real-world value are Q = 13 and Q = 14.

In either case, the absolute error is the same:

For fixed-point values within the limited range, this represents the worst-case
error if round-to-nearest is used. If other rounding modes are used, the
worst-case error can be twice as large:

Example: Maximizing Precision
Precision is limited by slope. To achieve maximum precision, you should make
the slope as small as possible while keeping the range adequately large. The
bias is adjusted in coordination with the slope.

1.000000000 2q⋅

 0.111111110 2q⋅�

0.000000010 2q⋅

V� 2 2� Q 32+=

V� 2 2� 13() 32+ 35.25= =

V� 2 2� 14() 32+ 35.50= =

V� V� 0.125 F2E

2
-----------= =

V� V� F2E<
0

Limitations on Precision
Assume the maximum and minimum real-world value is given by max(V) and
min(V), respectively. These limits may be known based on physical principles
or engineering considerations. To maximize the precision, you must decide
upon a rounding scheme and whether overflows saturate or wrap. To simplify
matters, this example assumes the minimum real-world value corresponds to
the minimum encoded value, and the maximum real-world value corresponds
to the maximum encoded value. Using the encoding scheme described in
“Scaling” on page 3-5, these values are given by

Solving for the slope, you get

This formula is independent of rounding and overflow issues, and depends only
on the word size, ws.

max V() F2E max Q()() B+=

min V() F2E min Q()() B+=

F2E max V() min V()�
max Q() min Q()�
--- max V() min V()�

2ws 1�
---= =
4-11

4 Arithmetic Operations

4-1
Limitations on Range
Limitations on the range of a fixed-point word occur for the same reason as
limitations on its precision. Namely, fixed-point words have limited size. For a
general discussion of range and precision in the Fixed-Point Blockset, refer to
“Range and Precision” in Chapter 3.

In binary arithmetic, a processor may need to take an n-bit fixed-point number
and store it in m bits, where . If m < n, the range of the number has been
reduced and an operation can produce an overflow condition. Some processors
identify this condition as Inf or NaN. For other processors, especially digital
signal processors (DSPs), the value saturates or wraps. If m > n, the range of
the number has been extended. Extending the range of a word requires the
inclusion of guard bits, which act to “guard” against potential overflow. In both
cases, the range depends on the word’s size and scaling.

The Fixed-Point Blockset supports saturation and wrapping for all fixed-point
data types, while guard bits are supported only for fractional data types. As
shown below, you can select saturation or wrapping with the Saturate to max
or min when overflows occur or Saturate on integer overflow checkbox,
and you can specify guard bits with the Output data type parameter.

m n≠

36-bit signed fractional data type with 4 guard
bits. The total word size is 40 bits.

Saturate overflows.
2

Limitations on Range
Saturation and Wrapping
Saturation and wrapping describe a particular way that some processors deal
with overflow conditions. For example, Analog Device’s ADSP-2100 family of
processors supports either of these modes. If a register has a saturation mode
of operation, then an overflow condition is set to the maximum positive or
negative value allowed. Conversely, if a register has a wrapping mode of
operation, an overflow condition is set to the appropriate value within the
range of the representation.

Example: Saturation and Wrapping
Consider an 8-bit unsigned word with radix point-only scaling of 2-5. Suppose
this data type must represent a sine wave that ranges from -4 to 4. For values
between 0 and 4, the word can represent these numbers without regard to
overflow. This is not the case with negative numbers. If overflows saturate, all
negative values are set to zero, which is the smallest number representable by
the data type. The saturation of overflows is shown below.

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

Time

Overflows Saturate

Negative values
saturate to zero

Negative values
saturate to zero
4-13

4 Arithmetic Operations

4-1
If overflows wrap, all negative values are set to the appropriate positive value.
The wrapping of overflows is shown below.

Note For most control applications, saturation is the safer way of dealing
with fixed-point overflow. However, some processor architectures allow
automatic saturation by hardware. If hardware saturation is not available,
then extra software is required resulting in larger, slower programs. This cost
is justified in some designs — perhaps for safety reasons. Other designs accept
wrapping to obtain the smallest, fastest software.

Guard Bits
You can eliminate the possibility of overflow by appending the appropriate
number of guard bits to a binary word.

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8
Overflows Wrap

Time

Negative values
wrap to positive
values.

Negative values
wrap to positive
values.
4

Limitations on Range
For a two’s complement signed value, the guard bits are filled with either 0’s or
1’s depending on the value of the most significant bit (MSB). This is called sign
extension. For example, consider a 4-bit two’s complement number with value
1011. If this number is extended in range to 7 bits with sign extension, then the
number becomes 1111101 and the value remains the same.

Guard bits are supported only for fractional data types. For both signed and
unsigned fractionals, the guard bits lie to the left of the default radix point.

Example: Limitations on Range
Fixed-point variables have a limited range for the same reason they have
limited precision — because digital systems represent numbers with a finite
number of bits. As a general example, consider the case where an integer is
represented as a fixed-point word of size ws. The range for signed and unsigned
words is given by where

Using the general [Slope Bias] encoding scheme described in “Scaling” on
page 3-5, the approximate real-world value has the range

where

If the real-world value exceeds the limited range of the approximate value,
then the accuracy of the representation can become significantly worse.

max Q() min Q()�

min Q()
0

2ws 1��

=

max Q()
2ws 1�

2ws 1� 1�

=

unsigned

signed

unsigned

signed

max V�() min V�()�

min V�()
B

F2E 2ws 1�()� B+

=

max V�()
F2E 2ws 1�() B+

F2E 2ws 1� 1�() B+

=

unsigned

signed

unsigned

signed
4-15

4 Arithmetic Operations

4-1
Recommendations for Arithmetic and Scaling
This section describes the relationship between arithmetic operations and
fixed-point scaling, and some basic recommendations that may be appropriate
for your fixed-point design. For each arithmetic operation:

• The general [Slope Bias] encoding scheme described in “Scaling” on page 3-5
is used.

• The scaling of the result is automatically selected based on the scaling of the
two inputs. In other words, the scaling is inherited.

• Scaling choices are based on

- Minimizing the number of arithmetic operations of the result.

- Maximizing the precision of the result.

Additionally, radix point-only scaling is presented as a special case of the
general encoding scheme.

In embedded systems, the scaling of variables at the hardware interface (the
ADC or DAC) is fixed. However for most other variables, the scaling is
something you can choose to give the best design. When scaling fixed-point
variables, it is important to remember that:

• Your scaling choices depend on the particular design you are simulating.

• There is no best scaling approach. All choices have associated advantages
and disadvantages. It is the goal of this section to expose these advantages
and disadvantages to you.

Addition
Consider the addition of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 3-5:

In a fixed-point system, the addition of values results in finding the variable
Qa:

Va Vb Vc+=

Vi Fi2
EiQi Bi+=
6

Recommendations for Arithmetic and Scaling
This formula shows

• In general, Qa is not computed through a simple addition of Qb and Qc.

• In general, there are two multiplies of a constant and a variable, two
additions, and some additional bit shifting.

Inherited Scaling for Speed
In the process of finding the scaling of the sum, one reasonable goal is to
simplify the calculations. Simplifying the calculations should reduce the
number of operations thereby increasing execution speed. The following
choices can help to minimize the number of arithmetic operations:

• Set Ba = Bb + Bc. This eliminates one addition.

• Set Fa = Fb or Fa = Fc. Either choice eliminates one of the two constant times
variable multiplies.

The resulting formula is

These equations appear to be equivalent. However, your choice of rounding and
precision may make one choice stand out over the other. To further simplify
matters, you could choose Ea = Ec or Ea = Eb. This will eliminate some bit
shifting.

Inherited Scaling for Maximum Precision
In the process of finding the scaling of the sum, one reasonable goal is
maximum precision. You can determine the maximum precision scaling if the
range of the variable is known. “Example: Maximizing Precision” on page 4-10
shows that you can determine the range of a fixed-point operation from

and . For a summation, you can determine the range from

Qa

Fb
Fa
------ 2

Eb Ea�
Qb

Fc
Fa
------ 2

Ec Ea�
Qc

Bb Bc Ba�+
Fa

--------------------------------- 2
Ea�

⋅+⋅+⋅=

Qa 2
Eb Ea�

Qb

Fc
Fa
------ 2

Ec Ea�
Qc⋅+=

or

Qa

Fb
Fa
------ 2⋅

Eb Ea�
Qb 2

Ec Ea�
Qc+=

max Va() min V� a()
4-17

4 Arithmetic Operations

4-1
You can now derive the maximum precision slope:

In most cases the input and output word sizes are much greater than one, and
the slope becomes

which depends only on the size of the input and output words. The
corresponding bias is

The value of the bias depends on whether the inputs and output are signed or
unsigned numbers.

If the inputs and output are all unsigned, then the minimum value for these
variables are all zero and the bias reduces to a particularly simple form:

If the inputs and the output are all signed, then the bias becomes

Radix Point-Only Scaling
For radix point-only scaling, finding Qa results in this simple expression:

min V� a() min V� b() min V� c()+=

max V� a() max V� b() max V� c()+=

Fa2
Ea max V� a() min V� a()�

2
wsa 1�

---=

Fb2
Eb 2

wsb 1�() Fc2
Ec 2

wsc 1�()+

2
wsa 1�

---=

Fa2
Ea Fb2

Eb wsb wsa�+
Fc2

Ec wsc wsa�+
+≈

Ba min V� a() Fa2
Ea min Qa()⋅�=

Ba Bb Bc+=

Ba Bb Bc Fb2
Eb 2�

wsb 1�
2

wsb 1�
+() Fc2

Ec 2�
wsc 1�

2
wsc 1�

+()+ + +≈

Ba Bb Bc+≈
8

Recommendations for Arithmetic and Scaling
This scaling choice results in only one addition and some bit shifting. The
avoidance of any multiplications is a big advantage of radix point-only scaling.

Note The subtraction of values produces results that are analogous to those
produced by the addition of values.

Accumulation
The accumulation of values is closely associated with addition:

Finding Qa_new involves one multiply of a constant and a variable, two
additions, and some bit shifting:

The important difference for fixed-point implementations is that the scaling of
the output is identical to the scaling of the first input.

Radix Point-Only Scaling
For radix point-only scaling, finding Qa_new results in this simple expression:

This scaling option only involves one addition and some bit shifting.

Note The negative accumulation of values produces results that are
analogous to those produced by the accumulation of values.

Qa 2
Eb Ea�

Qb 2
Ec Ea�

Qc+=

Va_new Va_old Vb+=

Qa_new Qa_old

Fb
Fa
------ 2

Eb Ea�
Qb

Bb
Fa
------- 2

Ea�
⋅+⋅+=

Qa_new Qa_old 2
Eb Ea�

Qb+=
4-19

4 Arithmetic Operations

4-2
Multiplication
Consider the multiplication of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 3-5:

In a fixed-point system, the multiplication of values results in finding the
variable Qa:

This formula shows

• In general, Qa is not computed through a simple multiplication of Qb and Qc.

• In general, there is one multiply of a constant and two variables, two
multiplies of a constant and a variable, three additions, and some additional
bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = BbBc. This eliminates one addition operation.

• Set Fa = FbFc. This simplifies the triple multiplication – certainly the most
difficult part of the equation to implement.

• Set Ea = Eb + Ec. This eliminates some of the bit-shifting.

The resulting formula is

Va Vb Vc×=

Vi Fi2
EiQi Bi+=

Qa

FbFc
Fa

------------- 2
Eb Ec Ea�+

QbQc

FbBc
Fa

------------- 2
Eb Ea�

Qb

FcBb
Fa

------------- 2
Ec Ea�

Qc⋅+⋅+⋅=

BbBc Ba�

Fa
--------------------------- 2

Ea�
⋅+

Qa QbQc

Bc
Fc
------ 2

Ec�
Qb⋅

Bb
Fb
------- 2

Eb�
Qc⋅+ +=
0

Recommendations for Arithmetic and Scaling
Inherited Scaling for Maximum Precision
You can determine the maximum precision scaling if the range of the variable
is known. “Example: Maximizing Precision” on page 4-10 shows that you can
determine the range of a fixed-point operation from and .

For multiplication, you can determine the range from

where

Radix Point-Only Scaling
For radix point-only scaling, finding Qa results in this simple expression:

Gain
Consider the multiplication of a constant and a variable

where K is a constant called the gain. Since Va results from the multiplication
of a constant and a variable, finding Qa is a simplified version of the general
fixed-point multiply formula:

max V� a() min V� a()

min V� a() min VLL VLH VHL VHH, , ,()=

max V� a() max VLL VLH VHL VHH, , ,()=

VLL min V� b() min V� c()⋅=

VLH min V� b() max V� c()⋅=

VHL max V� b() min V� c()⋅=

VHH max V� b() max V� c()⋅=

Qa 2
Eb Ec Ea�+

QbQc=

Va K Vb⋅=

Qa

KFb2
Eb

Fa2
Ea

Qb

KBb Ba�

Fa2
Ea

+⋅=
4-21

4 Arithmetic Operations

4-2
Note that the terms in the parentheses can be calculated offline. Therefore,
there is only one multiplication of a constant and a variable and one addition.

To implement the above equation without changing it to a more complicated
form, the constants need to be encoded using a radix point-only format. For
each of these constants, the range is the trivial case of only one value. Despite
the trivial range, the radix point formulas for maximum precision are still
valid. The maximum precision representations are the most useful choices
unless there is an overriding need to avoid any shifting. The encoding of the
constants is

resulting in the formula

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = KBb. This eliminates one constant term.

• Set Fa = KFb and Ea = Eb. This sets the other constant term to unity.

The resulting formula is simply

If the number of bits is different, then either handling potential overflows or
performing sign extensions is the only possible operations involved.

Inherited Scaling for Maximum Precision
The scaling for maximum precision does not need to be different than the
scaling for speed unless the output has fewer bits than the input. If this is the

KFb2
Eb

Fa2
Ea

2
EXQX=

KBb Ba�

Fa2
Ea

2
EYQY=

Qa 2
EXQXQB 2

EYQY+=

Qa Qb=
2

Recommendations for Arithmetic and Scaling
case, then saturation should be avoided by dividing the slope by 2 for each lost
bit. This will prevent saturation but will cause rounding to occur.

Division
Division of values is an operation that should be avoided in fixed-point
embedded systems, but it can occur in places. Therefore, consider the division
of two real-world values:

These values are represented by the general [Slope Bias] encoding scheme
described in “Scaling” on page 3-5:

In a fixed-point system, the division of values results in finding the variable Qa:

This formula shows

• In general, Qa is not computed through a simple division of Qb by Qc.

• In general, there are two multiplies of a constant and a variable, two
additions, one division of a variable by a variable, one division of a constant
by a variable, and some additional bit shifting.

Inherited Scaling for Speed
The number of arithmetic operations can be reduced with these choices:

• Set Ba = 0. This eliminates one addition operation.

• If Bc = 0, then set the fractional slope Fa = Fb/Fc. This eliminates one
constant times variable multiplication.

The resulting formula is

Va Vb/Vc=

Vi Fi2
EiQi Bi+=

Qa
Fb2

EbQb Bb+

FcFa2
Ec Ea+

Qc BcFa 2
Ea⋅+

--
Ba
Fa
------- 2

Ea�
⋅�=

Qa

Qb
Qc
------- 2

Eb Ec� Ea� Bb Fb⁄()
Qc

----------------------- 2
Ec� Ea�

⋅+⋅=
4-23

4 Arithmetic Operations

4-2
If , then no clear recommendation can be made.

Inherited Scaling for Maximum Precision
You can determine the maximum precision scaling if the range of the variable
is known. “Example: Maximizing Precision” on page 4-10 shows that you can
determine the range of a fixed-point operation from and .
For division, you can determine the range from

where for nonzero denominators

Radix Point-Only Scaling
For radix point-only scaling, finding Qa results in this simple expression:

Note For the last two formulas involving Qa, a divide by zero, and zero
divided by zero are possible. In these cases, the hardware will give some
default behavior but you must make sure that these default responses give
meaningful results for the embedded system.

Bc 0≠

max V� a() min V� a()

min V� a() min VLL VLH VHL VHH, , ,()=

max V� a() max VLL VLH VHL VHH, , ,()=

VLL min V� b() min V� c()⁄=

VLH min V� b() max V� c()⁄=

VHL max V� b() min V� c()⁄=

VHH max V� b() max V� c()⁄=

Qa

Qb
Qc
------- 2

Eb Ec� Ea�
⋅=
4

Recommendations for Arithmetic and Scaling
Summary
From the previous analysis of fixed-point variables scaled within the general
[Slope Bias] encoding scheme, you can conclude

• Addition, subtraction, multiplication, and division can be very involved
unless certain choices are made for the biases and slopes.

• Radix point-only scaling guarantees simpler math, but generally sacrifices
some precision.

Note that the previous formulas don’t show the following:

• Constants and variables are represented with a finite number of bits.

• Variables are either signed or unsigned.

• Rounding and overflow handling schemes. You must make these decisions
before an actual fixed-point realization is achieved.
4-25

4 Arithmetic Operations

4-2
Parameter and Signal Conversions
The previous sections of this chapter, together with Chapter 3, “Data Types
and Scaling,” describe how data types, scaling, rounding, overflow handling,
and arithmetic operations are incorporated into the Fixed-Point Blockset. With
this knowledge, you can define the output of a fixed-point model by configuring
fixed-point blocks to suit your particular application.

However, to completely understand the results generated by the Fixed-Point
Blockset, you must be aware of these three issues:

• When numerical block parameters are converted from a double to a
Fixed-Point Blockset data type

• When input signals are converted from one Fixed-Point Blockset data type
to another (if at all)

• When arithmetic operations on input signals and parameters are performed

For example, suppose a fixed-point block performs an arithmetic operation on
its input signal and a parameter, and then generates output having
characteristics that are specified by the block. The following diagram
illustrates how these issues are related.

Fixed-Point Block

Output Data Type
Output Scaling
Rounding
Overflow Handling

Parameter Value

OperationInput

Output
6

Parameter and Signal Conversions
The following sections discuss parameter conversions and signal conversions.
“Rules for Arithmetic Operations” on page 4-30 discusses arithmetic
operations.

Parameter Conversions
Parameters of fixed-point blocks that accept numerical values are always
converted from a double to a Fixed-Point Blockset data type. Parameters can
be converted to the input data type, the output data type, or to a data type
explicitly specified by the block. For example, the FIR block converts the Initial
condition parameter to the input data type, and converts the FIR coefficients
parameter to a data type you explicitly specify via the block dialog box.

Parameters are always converted before any arithmetic operations are
performed. Additionally, parameters are always converted offline using
round-to-nearest and saturation. Offline conversions are discussed below.

For information about parameter conversions for a specific block, refer to
Chapter 9, “Block Reference.”

Offline Conversions
An offline conversion is a conversion performed by your development platform
(for example, the processor on your PC), and not by the fixed-point processor
you are targeting. For example, suppose you are using a PC to develop a
program to run on a fixed-point processor, and you need the fixed-point
processor to compute

over and over again. If a, b, and c are constant parameters, it is inefficient for
the fixed-point processor to compute ab/c every time. Instead, the PC’s
processor should compute ab/c offline one time, and the fixed-point processor
computes only . This eliminates two costly fixed-point arithmetic
operations.

Signal Conversions
Consider the conversion of a real-world value from one Fixed-Point Blockset
data type to another. Ideally, the values before and after the conversion are
equal

y ab
c

 u⋅ C u⋅= =

C u⋅
4-27

4 Arithmetic Operations

4-2
where Vb is the input value and Va is the output value. To see how the
conversion is implemented, the two ideal values are replaced by the general
[Slope Bias] encoding scheme described in “Scaling” on page 3-5:

Solving for the output data type’s stored integer value, Qa is obtained:

where Fs is the adjusted fractional slope and Bnet is the net bias. The offline
conversions and online conversions and operations are discussed below.

Offline Conversions
Both Fs and Bnet are computed offline using round-to-nearest and saturation.
Bnet is then stored using the output data type and Fs is stored using an
automatically selected data type.

Online Conversions and Operations
The remaining conversions and operations are performed online by the
fixed-point processor, and depend on the slopes and biases for the input and
output data types. The conversions and operations are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

2 The input integer value, Qb, is multiplied by the adjusted slope, Fs:

3 The result of step 2 is converted to the modified output data type where the
slope is one and bias is zero:

Va Vb=

Vi Fi2
EiQi Bi+=

Qa

Fb
Fa
------2

Eb Ea�
Qb

Bb Ba�
Fa

--------------------2
Ea�

+=

Fs2
Eb Ea�

Qb Bnet+=

Qa Bnet=

QRawProduct FsQb=
8

Parameter and Signal Conversions
This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

This summation includes any necessary overflow handling.

Streamlining Simulations and Generated Code
Note that the maximum number of conversions and operations is performed
when the slopes and biases of the input signal and output signal differ (are
mismatched). If the scaling of these signals is identical (matched), the number
of operations is reduced from the worst (most inefficient) case. For example,
when an input has the same fractional slope and bias as the output, only step
3 is required:

Exclusive use of radix point-only scaling for both input signals and output
signals is a common way to eliminate the occurrence of mismatched slopes and
biases, and results in the most efficient simulations and generated code.

QTemp convert QRawProduct()=

Qa QTemp Qa+=

Qa convert Qb()=
4-29

4 Arithmetic Operations

4-3
Rules for Arithmetic Operations
Fixed-point arithmetic refers to how signed or unsigned binary words are
operated on. The simplicity of fixed-point arithmetic functions such as addition
and subtraction allows for cost-effective hardware implementations.

This section describes the blockset-specific rules that are followed when
arithmetic operations are performed on inputs and parameters. These rules
are organized into four groups based on the operations involved: addition and
subtraction, multiplication, division, and shifts. For each of these four groups,
the rules for performing the specified operation are presented with an example
using the rules.

Computational Units
The core architecture of many processors contains several computational units
including arithmetic logic units (ALUs), multiply and accumulate units
(MACs), and shifters. These computational units process the binary data
directly and provide support for arithmetic computations of varying precision.
The ALU performs a standard set of arithmetic and logic operations as well as
division. The MAC performs multiply, multiply/add, and multiply/subtract
operations. The shifter performs logical and arithmetic shifts, normalization,
denormalization, and other operations.

Addition and Subtraction
Addition is the most common arithmetic operation a processor performs. When
two n-bit numbers are added together, it is always possible to produce a result
with n + 1 nonzero digits due to a carry from the leftmost digit. For two’s
complement addition of two numbers, there are three cases to consider:

• If both numbers are positive and the result of their addition has a sign bit of
1, then overflow has occurred; otherwise the result is correct.

• If both numbers are negative and the sign of the result is 0, then overflow
has occurred; otherwise the result is correct.

• If the numbers are of unlike sign, overflow cannot occur and the result is
always correct.
0

Rules for Arithmetic Operations
Fixed-Point Blockset Summation Process
Consider the summation of two numbers. Ideally, the real-world values obey
the equation

where Vb and Vc are the input values and Va is the output value. To see how
the summation is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling” on
page 3-5:

The equation in “Addition” on page 4-16 gives the solution of the resulting
equation for the stored integer, Qa. Using shorthand notation, that equation
becomes

where Fsb and Fsc are the adjusted fractional slopes and Bnet is the net bias.
The offline conversions, and online conversions and operations are discussed
below.

Offline Conversions. Fsb, Fsc, and Bnet are computed offline using
round-to-nearest and saturation. Furthermore, Bnet is stored using the output
data type.

Online Conversions and Operations. The remaining operations are performed
online by the fixed-point processor, and depend on the slopes and biases for the
input and output data types. The worst (most inefficient) case occurs when the
slopes and biases are mismatched. The worst-case conversions and operations
are given by these steps:

1 The initial value for Qa is given by the net bias, Bnet:

2 The first input integer value, Qb, is multiplied by the adjusted slope, Fsb:

Va V± b Vc±=

Vi Fi2
EiQi Bi+=

Qa Fsb±= 2
Eb Ea�

Qb Fsc± 2
Ec Ea�

Qc Bnet+

Qa Bnet=
4-31

4 Arithmetic Operations

4-3
3 The previous product is converted to the modified output data type where
the slope is one and the bias is zero:

This conversion includes any necessary bit shifting, rounding, or overflow
handling.

4 The summation operation is performed:

This summation includes any necessary overflow handling.

5 Steps 2 to 4 are repeated for every number to be summed.

It is important to note that bit shifting, rounding, and overflow handling are
applied to the intermediate steps (3 and 4) and not to the overall sum.

Streamlining Simulations and Generated Code
If the scaling of the input and output signals is matched, the number of
summation operations is reduced from the worst (most inefficient) case. For
example, when an input has the same fractional slope as the output, step 2
reduces to multiplication by one and can be eliminated. Trivial steps in the
summation process are eliminated for both simulation and code generation.
Exclusive use of radix point-only scaling for both input signals and output
signals is a common way to eliminate the occurrence of mismatched slopes and
biases, and results in the most efficient simulations and generated code.

Example: The Summation Process
Suppose you want to sum three numbers. Each of these numbers is represented
by an 8-bit word, and each has a different radix point-only scaling.
Additionally, the output is restricted to an 8-bit word with radix point-only
scaling of 2-3.

The summation is shown below for the input values 19.875, 5.4375, and
4.84375.

QRawProduct FsbQb=

QTemp convert QRawProduct()=

Qa Qa QTemp+±=
2

Rules for Arithmetic Operations
Applying the rules from the previous section, the sum follows these steps:

1 Since the biases are matched, the initial value of Qa is trivial:

2 The first number to be summed (19.875) has a fractional slope that matches
the output fractional slope. Furthermore, the radix points and storage types
are identical so the conversion is trivial:

3 The summation operation is performed:

4 The second number to be summed (5.4375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed. The
storage data types also match but the difference in radix points requires that
both the bits and the radix point be shifted one place to the right:

Qa 00000.000=

Qb 10011.111=

QTemp Qb=

Qa Qa QTemp+ 10011.111= =
4-33

4 Arithmetic Operations

4-3
Note that a loss in precision of one bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor is
used. Overflow cannot occur in this case since the bits and radix point are
both shifted to the right.

5 The summation operation is performed:

Note that overflow did not occur, but it is possible for this operation.

6 The third number to be summed (4.84375) has a fractional slope that
matches the output fractional slope, so a slope adjustment is not needed. The
storage data types also match but the difference in radix points requires that
both the bits and the radix point be shifted two places to the right:

Note that a loss in precision of two bit occurs, with the resulting value of
QTemp determined by the rounding mode. For this example, round-to-floor is
used. Overflow cannot occur in this case since the bits and radix point are
both shifted to the right.

7 The summation operation is performed:

Qc 0101.0111=

QTemp convert Qc()=

QTemp 00101.011=

Qa Qa QTemp+=

10011.111
 00101.011 +

11001.010
--------------------------------------=

25.250=

Qd 100.11011=

QTemp convert Qd()=

QTemp 00100.110=
4

Rules for Arithmetic Operations
Note that overflow did not occur, but it is possible for this operation.

As shown below, the result of step 7 differs from the ideal sum:

Blocks that perform addition and subtraction include the Sum, Matrix Gain,
and FIR blocks.

Multiplication
The multiplication of an n-bit binary number with an m-bit binary number
results in a product that is up to m + n bits in length for both signed and
unsigned words. Most processors perform n-bit by n-bit multiplication and
produce a 2n-bit result (double bits) assuming there is no overflow condition.

For example, the Texas Instruments TMS320C2x family of processors
performs two’s complement 16-bit by 16-bit multiplication and produces a
32-bit (double bit) result.

Fixed-Point Blockset Multiplication Process
Consider the multiplication of two numbers. Ideally, the real-world values obey
the equation

where Vb and Vc are the input values and Va is the output value. To see how
the multiplication is actually implemented, the three ideal values should be
replaced by the general [Slope Bias] encoding scheme described in “Scaling” on
page 3-5:

Qa Qa QTemp+=

11001.010
 00100.110 +

11110.000

30.000=
=

10011.111
0101.0111

 100.11011+
11110.001

30.125=

Va Vb Vc×=
4-35

4 Arithmetic Operations

4-3
The solution of the resulting equation for the output stored integer, Qa, is given
below:

The worst-case implementation of this equation occurs when the slopes and
biases of the input and output signals are mismatched. This worst-case
implementation is permitted in simulation but is not always permitted for code
generation since it often requires more resources than is considered practical
for an embedded system. For code generation and bit-true simulations, the
biases must be zero and the fractional slopes must match for most blocks.
When these requirements are met, the implementation reduces to

The bit-true implementation of this equation is discussed below.

Offline Conversions. As shown in the previous section, no offline conversions are
performed.

Online Conversions and Operations. The online conversions and operations for
matched slopes and biases of zero are given by these steps:

1 The integer values, Qb and Qc, are multiplied together:

To maintain the full precision of the product, the radix point of QRawProduct
is given by the sum of the radix points of Qb and Qc.

2 The previous product is converted to the output data type:

Vi Fi2
EiQi Bi+=

Qa

FbFc
Fa

------------- 2
Eb Ec Ea�+

QbQc

FbBc
Fa

------------- 2
Eb Ea�

Qb

FcBb
Fa

------------- 2
Ec Ea�

Qc⋅+⋅+⋅=

BbBc Ba�

Fa
--------------------------- 2

Ea�
⋅+

Qa 2
Eb Ec Ea�+

QbQc=

QRawProduct QbQc=
6

Rules for Arithmetic Operations
This conversion includes any necessary bit shifting, rounding, or overflow
handling. “Signal Conversions” on page 4-27 discusses conversions.

3 Steps 1 and 2 are repeated for each additional number to be multiplied.

Example: The Multiplication Process
Suppose you want to multiply three numbers. Each of these numbers is
represented by a 5-bit word, and each has a different radix point-only scaling.
Additionally, the output is restricted to a 10-bit word with radix point-only
scaling of 2-4. The multiplication is shown below for the input values 5.75,
2.375, and 1.8125.

Applying the rules from the previous section, the multiplication follows these
steps:

1 The first two numbers (5.75 and 2.375) are multiplied:

Qa convert QRawProduct()=
4-37

4 Arithmetic Operations

4-3
Note that the radix point of the product is given by the sum of the radix
points of the multiplied numbers.

2 The result of step 1 is converted to the output data type:

“Signal Conversions” on page 4-27 discusses conversions. Note that a loss in
precision of one bit occurs, with the resulting value of QTemp determined by
the rounding mode. For this example, round-to-floor is used. Furthermore,
overflow did not occur but is possible for this operation.

3 The result of step 2 and the third number (1.8125) are multiplied:

Note that the radix point of the product is given by the sum of the radix
points of the multiplied numbers.

4 The product is converted to the output data type:

QRawProduct 101.11
 10.011×

101.11 2 3�⋅

101.11 2 2�⋅

 101.11+ 21⋅
01101.10101

13.65625=

=

QTemp convert QRawProduct()=

001101.1010 13.6250==

QRawProduct 01101.1010
 1.1101 ×

1101.1010 2 4�⋅

1101.1010 2 2�⋅

1101.1010 2 1�⋅

 1101.1010+ 20⋅
0011000.10110010
--

--

24.6953125=

=

8

Rules for Arithmetic Operations
“Signal Conversions” on page 4-27 discusses conversions. Note that a loss in
precision of 4 bits occurred, with the resulting value of QTemp determined by
the rounding mode. For this example, round-to-floor is used. Furthermore,
overflow did not occur but is possible for this operation.

Blocks that perform multiplication include the Product, FIR, Gain, and Matrix
Gain blocks.

Division
As with multiplication, division with mismatched scaling is complicated.
Mismatched division is permitted for simulation only. For code generation and
bit-true simulation, the signals must all have zero biases and matched
fractional slopes.

Fixed-Point Blockset Division Process
Consider the division of two numbers. Ideally, the real-world values obey the
equation

where Vb and Vc are the input values and Va is the output value. To see how
the division is actually implemented, the three ideal values should be replaced
by the general [Slope Bias] encoding scheme described in “Scaling” on page 3-5:

For the case where the slopes are one and the biases are zero for all signals, the
solution of the resulting equation for the output stored integer, Qa, is given
below:

This equation involves an integer division and some bit shifts. If ,
then any bit shifts are to the right and the implementation is simple. However,
if , then the bit shifts are to the left and the implementation can

Qa convert QRawProduct()=

011000.1011 24.6875==

Va Vb Vc⁄=

Vi Fi2
EiQi Bi+=

Qa 2
Eb Ec� Ea�

Qb Qc⁄()=

Ea Eb Ec�≥

Ea Eb Ec�<
4-39

4 Arithmetic Operations

4-4
be more complicated. The essential issue is the output has more precision than
the integer division provides. To get full precision, a fractional division is
needed. The C programming language provides access to integer division only
for fixed-point data types. Depending on the size of the numerator, some of the
fractional bits may be obtained by performing a shift prior to the integer
division. In the worst case, it may be necessary to resort to repeated
subtractions in software.

In general, division of values is an operation that should be avoided in
fixed-point embedded systems. Division where the output has more precision
than the integer division (i.e.,) should be used with even greater
reluctance. Division of signals with nonzero biases or mismatched slopes is not
supported.

Example: The Division Process
Suppose you want to divide two numbers. Each of these numbers is
represented by an 8-bit word, and each has a radix point-only scaling of 2-4.
Additionally, the output is restricted to an 8-bit word with radix point-only
scaling of 2-4.

The division of 9.1875 by 1.5000 is shown below.

For this example,

Assuming a large data type was available, this could be implemented as

Ea Eb Ec�<

Qa 2 4� 4�()� 4�()� Qb Qc⁄()=

24 Qb Qc⁄()=
0

Rules for Arithmetic Operations
where the numerator uses the larger date type. If a larger data type was not
available, integer division combined with four repeated subtractions would be
used. Both approaches produce the same result, with the former being more
efficient.

Shifts
Nearly all microprocessors and digital signal processors support well-defined
bit-shift (or simply shift) operations for integers. For example, consider the
8-bit unsigned integer 00110101. The results of a 2-bit shift to the left and a
2-bit shift to the right are shown below.

You can perform a shift with the Fixed-Point Blockset using the Shift
Arithmetic block. Use this block to perform a bit shift, a radix point shift, or
both. See Chapter 9, “Block Reference” for more information on performing bit
and radix point shifts using the Shift Arithmetic block.

Shifting Bits to the Right
The special case of shifting bits to the right requires consideration of the
treatment of the left-most bit, which may contain sign information. A shift to
the right can be classified either as a logical shift right or an arithmetic shift
right. For a logical shift right, a 0 is incorporated into the most significant bit
for each bit shift. For an arithmetic shift right, the most significant bit is
recycled for each bit shift.

The Shift Arithmetic block performs an arithmetic shift right and, therefore,
recycles the most significant bit for each bit shift right. For example, given the
fixed-point number 11001.011 (-6.625), a bit shift two places to the right with

Shift Operation Binary Value Decimal Value

No shift (original number) 00110101 53

Shift left by 2 bits 11010100 212

Shift right by 2 bits 00001101 13

Qa
24Qb()

Qc
-------------------=
4-41

4 Arithmetic Operations

4-4
the radix point unmoved yields the number 11110.010 (-1.75), as shown in the
model below.

To perform a logical shift right on a signed number using the Shift Arithmetic
block, use the Conversion block to cast the number as an unsigned number of
equivalent length and scaling, as shown below. The model shows that the
fixed-point signed number 11001.001 (-6.625) becomes 00110.010 (6.25).

Vy = Vu * 2^−2
Qy = Qu >> 2

Ey = Eu

Shift
Arithmetic

Out

Gateway Out

−1.75

Display

−6.625

Constant

sfix8_En3 sfix8_En3 double

Vy = Vu * 2^−2
Qy = Qu >> 2

Ey = Eu

Shift
Arithmetic

Out

Gateway Out

6.25

Display

Convert

Conversion

−6.625

Constant

sfix8_En3 ufix8_En3 ufix8_En3 double
2

Example: Conversions and Arithmetic Operations
Example: Conversions and Arithmetic Operations
This example uses the FIR block to illustrate when parameters are converted
from a double to a fixed-point number, when the input data type is converted
to the output data type, and when the rules for addition, subtraction, and
multiplication are applied. For details about conversions and operations, refer
to “Parameter and Signal Conversions” on page 4-26 and “Rules for Arithmetic
Operations” on page 4-30.

Note If a block can perform all four arithmetic operations, such as the FIR
block, then the rules for multiplication and division are applied first.

Suppose you configure the FIR block for two outputs (SIMO mode) where the
first output is given by

and the second output is given by

Additionally, the initial values of and are given by 0.8 and
1.1, respectively and all inputs, parameters, and outputs have radix point-only
scaling.

To configure the FIR block for this situation, you must specify the FIR
coefficients parameter as [13 11 -7; 6 -5 0] and the Initial condition
parameter as [0.8 1.1] as shown below in the dialog box below.

y1 k() 13 u k() 11 u k 1�() 7 u k 2�()⋅�⋅+⋅=

y2 k() 6 u k() 5 u k 1�()⋅�⋅=

u k 1�() u k 2�()
4-43

4 Arithmetic Operations

4-4
Parameter conversions and block operations are given below in the order in
which they are carried out by the FIR block:

1 The FIR coefficients parameter is converted from doubles to the
Parameter data type offline using round-to-nearest and saturation.

The Initial condition parameter is converted from doubles to the input data
type offline using round-to-nearest and saturation.

2 The coefficients and inputs are multiplied together for the initial time step
for both outputs. For y1(0), the operations , , and 13 u⋅ 0() 11 0.8⋅ 7� 1.1⋅
4

Example: Conversions and Arithmetic Operations
are performed, while for y2(0), the operations and are
performed.

The results of these operations are then converted to the Output data type
using the specified rounding and overflow modes.

3 The sum is carried out for y1(0) and y2(0). Note that the rules for addition
and subtraction are satisfied since the coefficients and inputs are already
converted to the Output data type.

4 Steps 2 and 3 are repeated for subsequent time steps.

6 u⋅ 0() 5� 0.8⋅
4-45

4 Arithmetic Operations

4-4
6

5

Realization Structures

Overview (p. 5-2) A brief overview of creating filters using the Fixed-Point
Blockset

Targeting an Embedded Processor
(p. 5-3)

A description of issues that arise when targeting a
fixed-point design for use on an embedded processor

Canonical Forms (p. 5-6) A discussion of some canonical forms that optimize filter
implementation with respect to certain factors

5 Realization Structures

5-2
Overview
This chapter investigates how you can realize digital filters using the
Fixed-Point Blockset.

The Fixed-Point Blockset addresses the needs of the control system and signal
processing fields, and other fields where algorithms are implemented on
fixed-point hardware. In signal processing, a digital filter is a computational
algorithm that converts a sequence of input numbers to a sequence of output
numbers. The algorithm is designed such that the output signal meets
frequency-domain or time-domain constraints (desirable frequency
components are passed, undesirable components are rejected).

In general terms, a discrete transfer function controller is a form of a digital
filter. However, a digital controller may contain nonlinear functions such as
look-up tables in addition to a discrete transfer function. This guide uses the
term digital filter when referring to discrete transfer functions.

Realizations and Data Types
In an ideal world where numbers, calculations, and storage of states have
infinite precision and range, there are virtually an infinite number of
realizations for the same system. In theory, these realizations are all identical
to each other.

In the more realistic world of double-precision numbers, calculations, and
storage of states, small nonlinearities are introduced due to the finite precision
and range of floating-point data types. Therefore, each realization of a given
system produces different results. In most cases however, these differences are
small.

In the world of fixed-point numbers where precision and range are limited, the
differences in the realization results can be very large. Therefore, you must
carefully select the data type, word size, and scaling for each realization
element such that results are accurately represented. To assist you with this
selection, design rules for modeling dynamic systems with fixed-point math are
provided in “Targeting an Embedded Processor” on page 5-3.

Targeting an Embedded Processor
Targeting an Embedded Processor
This section describes issues that often arise when targeting a fixed-point
design for use on an embedded processor, such as some general assumptions
about integer sizes and operations available on embedded processors. These
assumptions lead to design issues and design rules that may be useful for your
specific fixed-point design.

Size Assumptions
Embedded processors are typically characterized by a particular bit size. For
example, the terms “8-bit micro,” “32-bit micro,” or “16-bit DSP” are common.
It is generally safe to assume that the processor is predominantly geared to
processing integers of the specified bit size. Integers of the specified bit size are
referred to as the base data type. Additionally, the processor typically provides
some support for integers that are twice as wide as the base data type. Integers
consisting of double bits are referred to as the accumulator data type. For
example a 16-bit micro has a 16-bit base data type and a 32-bit accumulator
data type.

Although other data types may be supported by the embedded processor, this
section describes only the base and accumulator data types.

Operation Assumptions
The embedded processor operations discussed in this section are limited to the
needs of a basic simulation diagram. Basic simulations use multiplication,
addition, subtraction, and delays. Fixed-point models also need shifts to do
scaling conversions. For all these operations, the embedded processor should
have native instructions that allow the base data type as inputs. For
accumulator-type inputs, the processor typically supports addition,
subtraction, and delay (storage/retrieval from memory), but not multiplication.

Multiplication is typically not supported for accumulator-type inputs due to
complexity and size issues. A difficulty with multiplication is that the output
needs to be twice as big as the inputs for full precision. For example,
multiplying two 16-bit numbers requires a 32-bit output for full precision. The
need to handle the outputs from a multiply operation is one of the reasons
embedded processors include accumulator-type support. However, if
multiplication of accumulator-type inputs is also supported, then there is a
need to support a data type that is twice as big as the accumulator type. To
5-3

5 Realization Structures

5-4
restrict this additional complexity, multiplication is typically not supported for
inputs of the accumulator type.

Design Rules
The important design rules that you should be aware of when modeling
dynamic systems with fixed-point math follow.

Design Rule 1: Only Multiply Base Data Types
It is best to multiply only inputs of the base data type. Embedded processors
typically provide an instruction for the multiplication of base-type inputs, but
not for the multiplication of accumulator-type inputs. If necessary, you can
combine several instructions to handle multiplication of accumulator-type
inputs. However, this can lead to large, slow embedded code.

You can insert blocks to convert inputs from the accumulator-type to the
base-type prior to multiply or gain blocks, if necessary.

Design Rule 2: Delays Should Use the Base Data Type
There are two general reasons why a unit delay should use only base-type
numbers:

• The unit delay essentially stores a variable’s value to RAM, and one time
step later, retrieves that value from RAM. Because the value must be in
memory from one time step to the next, the RAM must be exclusively
dedicated to the variable and can’t be shared or used for another purpose.
Using accumulator-type numbers instead of the base data type doubles the
RAM requirements, which can significantly increase the cost of the
embedded system.

• The unit delay typically feeds into a gain block. The multiplication design
rule requires that the input (the unit delay signal) use the base data type.

Design Rule 3: Temporary Variables Can Use the Accumulator Data Type
Except for unit delay signals, most signals are not needed from one time step
to the next. This means that the signal values can be temporarily stored in
shared and reused memory. This shared and reused memory can be RAM or it
can simply be registers in the CPU. In either case, storing the value as an
accumulator data type is not much more costly than storing it as a base data
type.

Targeting an Embedded Processor
Design Rule 4: Summation Can Use the Accumulator Data Type
Addition and subtraction can use the accumulator data type if there is
justification. The typical justification is reducing the buildup of errors due to
round-off or overflow.

For example, a common filter operation is a weighted sum of several variables.
Multiplying a variable by a weight naturally produces a product of the
accumulator type. Before summing, each product can be converted back to the
base data type. This approach introduces round-off error into each part of the
sum.

Alternatively, the products can be summed using the accumulator data type,
and the final sum can be converted to the base data type. Round-off error is
introduced in just one point and the precision is generally better. The cost of
doing an addition or subtraction using accumulator-type numbers is slightly
more expensive, but if there is justification, it is usually worth the cost.
5-5

5 Realization Structures

5-6
Canonical Forms
The Fixed-Point Blockset does not attempt to standardize on one particular
fixed-point digital filter design method. For example, you can produce a design
in continuous time and then obtain an “equivalent” discrete-time digital filter
using one of many transformation methods. Alternatively, you can design
digital filters directly in discrete time. After you obtain a digital filter, it can be
realized for fixed-point hardware using any number of canonical forms. Typical
canonical forms are the direct form, series form, and parallel form, all of which
are outlined in this chapter.

For a given digital filter, the canonical forms describe a set of fundamental
operations for the processor. Since there are an infinite number of ways to
realize a given digital filter, you must make the best realization on a
per-system basis. The canonical forms presented in this chapter optimize the
implementation with respect to some factor, such as minimum number of delay
elements.

In general, when choosing a realization method, you must take these factors
into consideration:

• Cost

The cost of the realization might rely on minimal code and data size.
• Timing constraints

Real-time systems must complete their compute cycle within a fixed amount
of time. Some realizations might yield faster execution speed on different
processors.

• Output signal quality

The limited range and precision of the binary words used to represent
real-world numbers will introduce errors. Some realizations are more
sensitive to these errors than others.

The Fixed-Point Blockset allows you to evaluate various digital filter
realization methods in a simulation environment. Following the development
cycle outlined in “The Development Cycle” in Chapter 1, you can fine-tune the
realizations with the goal of reducing the cost (code and data size) or increasing
signal quality. After you have achieved the desired performance, you can use
the Real-Time Workshop to generate rapid prototyping C code and evaluate its
performance with respect to your system’s real-time timing constraints. You

Canonical Forms
can then modify the model based upon feedback from the rapid prototyping
system.

The presentation of the various realization structures takes into account that
a summing junction is a fundamental operator; thus you may find that the
structures presented here look different from those in the fixed-point filter
design literature. For each realization form, an example is provided using the
transfer function shown below:

Direct Form II
In general, a direct form realization refers to a structure where the coefficients
of the transfer function appear directly as gain blocks. The direct form II
realization method is presented as using the minimal number of delay
elements, which is equal to n, the order of the transfer function denominator.

The canonical direct form II is presented as “Standard Programming” in
Discrete-Time Control Systems by Ogata. It is known as the “Control Canonical
Form” in Digital Control of Dynamic Systems by Franklin, Powell, and
Workman.

Hex z() 1 2.2z 1� 1.85z 2� 0.5z 3�+ + +
1 0.5z 1�� 0.84z 2� 0.09z 3�+ +
---=

1 0.5z 1�+() 1 1.7z 1� z 2�+ +()
1 0.1z 1�+() 1 0.6z 1�� 0.9z 2�+()

--=

5.5556 3.4639
1 0.1z 1�+
--------------------------� 1.0916� 3.0086z 1�+

1 0.6z 1�� 0.9z 2�+
--+=
5-7

5 Realization Structures

5-8
You can derive the canonical direct form II realization by writing the
discrete-time transfer function with input e(z) and output u(z) as

The block diagram for u(z)/h(z) follows:

u z()
e z()
----------- u z()

h z()
----------- h z()

e z()
-----------⋅=

b0 b1z 1� … bmz m�+ + +()

u z()
h z()

1

1 a1z 1� a2z 2� … anz n�+ + + +
--

h z()
e z()

=

+z -1
z -1z -1

b
0

b
1

b
m

u(z)h(z)
+

u z()
h z()
----------- b0 b1z 1� ... bmz m�++ +=

Canonical Forms
The block diagrams for h(z)/e(z) follow.

Combining these two block diagrams yields the direct form II diagram shown
below. Notice that the feedforward part (top of block diagram) contains the
numerator coefficients and the feedback part (bottom of block diagram)
contains the denominator coefficients.

e(z)
z -1 z -1 z -1

n
-a

2-a
1

-a

h(z)
+

h z()
e z()
----------- 1

1 a1z 1� a2z 2� ... anz n�+ + + +
---=

z -1
z -1z -1

b0

b1

b
m u(z)

h(z)e(z)
z -1

n-a

2
-a

1
-a

m-a

+

+

u z()
e z()

5-9

5 Realization Structures

5-1
The direct form II example transfer function is given by

The realization of Hex(z) using the Fixed-Point Blockset is shown below. You
can display this model by typing

fxpdemo_direct_form2

at the MATLAB command line.

Series Cascade Form
In the canonical series cascade form, the transfer function H(z) is written as a
product of first-order and second-order transfer functions:

Hex z() 1 2.2z 1� 1.85z 2� 0.5z 3�+ + +
1 0.5z 1�� 0.84z 2� 0.09z 3�+ +
---=

Hi z() u z()
e z()
----------- H1 z() H2 z() H3 z()…Hp z()⋅ ⋅= =
0

Canonical Forms
This equation yields the canonical series cascade form.

Factoring H(z) into Hi(z) where i = 1,2,3,...,p can be done in a number of ways.
Using the poles and zeros of H(z), you can obtain Hi(z) by grouping pairs of
conjugate complex poles and pairs of conjugate complex zeros to produce
second-order transfer functions, or by grouping real poles and real zeros to
produce either first-order or second-order transfer functions. You could also
group two real zeros with a pair of conjugate complex poles or vice versa. Since
there are many ways to obtain Hi(z), you should compare the various groupings
to see which produces the best results for the transfer function under
consideration.

For example, one factorization of H(z) might be

You must also take into consideration that the ordering of the individual Hi(z)’s
will lead to systems with different numerical characteristics. You may want to
try various orderings for a given set of Hi(z)’s to determine which gives the best
numerical characteristics.

H (z)2 H (z)1 H (z)p

u(z)e(z)
H (z)3

H z() H1 z()H2 z()…Hp z()=

1 biz
1�+

1 aiz
1�+

i 1=

j

∏
1 eiz

1� fiz
2�+ +

1 ciz
1� diz

2�+ +

i j 1+=

p

∏=
5-11

5 Realization Structures

5-1
The first order diagram for H(z) follows.

The second order diagram for H(z) follows.

The series cascade form example transfer function is given by

x(z)
z -1

i
-a

i
b y(z)

y z()
x z()

1 biz
1�+

1 aiz
1�+

-----------------------=

++

x(z)
z -1

i-c

if
y(z)

z -1

ie

i-d

y z()
x z()

1 eiz
1� fiz

2�+ +

1 ciz
1� diz

2�+ +
---=

++

Hex z() 1 0.5z 1�+() 1 1.7z 1� z 2�+ +()
1 0.1z 1�+() 1 0.6z 1�� 0.9z 2�+()

--=
2

Canonical Forms
The realization of Hex(z) using the Fixed-Point Blockset is shown below. You
can display this model by typing

fxpdemo_series_cascade_form

at the MATLAB command line.

Parallel Form
In the canonical parallel form, the transfer function H(z) is expanded into
partial fractions. H(z) is then realized as a sum of a constant, first-order, and
second-order transfer functions, as shown:

Hi z() u z()
e z()
----------- K H1 z() H2 z() … Hp z()+ + + += =
5-13

5 Realization Structures

5-1
This expansion, where K is a constant and the are the first and
second-order transfer functions, follows.

As in the series canonical form, there is no unique description for the first-order
and second-order transfer function. Due to the nature of the Sum block, the
ordering of the individual filters doesn’t matter. However, because of the
constant K, you can choose the first-order and second-order transfer functions
such that their forms are simpler than those for the series cascade form
described in the preceding section. This is done by expanding H(z) as

Hi z()

e(z) u(z)

H (z)1

H (z)2

H (z)p

K

+

H z() K Hi z()

i 1=

j

∑ Hi z()

i j 1+=

p

∑+ +=

K
bi

1 aiz
1�+

i 1=

j

∑
ei fiz

1�+

1 ciz
1� diz

2�+ +

i j 1+=

p

∑+ +=
4

Canonical Forms
The first order diagram for H(z) follows.

The second order diagram for H(z) follows.

The parallel form example transfer function is given by

x(z)
z -1

i
-a

ib
y(z)

y z()
x z()

bi

1 aiz
1�+

-----------------------=

+

+

x(z)
z -1

i
-c

y(z)
z -1

i
f

i
-d

y z()
x z()

ei fiz
1�+

1 ciz
1� diz

2�+ +
---=

ie

+ +

Hex z() 5.5556 3.4639
1 0.1z 1�+
--------------------------� 1.0916� 3.0086z 1�+

1 0.6z 1�� 0.9z 2�+
--+=
5-15

5 Realization Structures

5-1
The realization of Hex(z) using the Fixed-Point Blockset is shown below. You
can display this model by typing

fxpdemo_parallel_form

at the MATLAB command line.
6

6

Tutorial: Feedback
Controller Simulation

Overview (p. 6-2) An overview of the Fixed-Point Blockset features
highlighted by the tutorial

Simulink Model of a Feedback Design
(p. 6-3)

An introduction to the feedback design model used in the
tutorial

Idealized Feedback Design (p. 6-6) Presentation of the open-loop and plant-only Bode plots
for the simulation

Digital Controller Realization (p. 6-7) An introduction to the digital controller used in the
tutorial

Simulation Results (p. 6-10) A step-by-step tutorial based on the fxpdemo_feedback
demo, which highlights use of the Fixed-Point Settings
interface

6 Tutorial: Feedback Controller Simulation

6-2
Overview
The purpose of this tutorial is to show you how to simulate a fixed-point
feedback design using the Fixed-Point Settings interface. In doing so, many of
the essential features of the Fixed-Point Blockset are demonstrated. These
include

• Selecting output data type

• Selecting output scaling

• Logging maximum and minimum simulation results

• Using the automatic scaling tool

• Overriding the output data type for a system or subsystem

Simulink Model of a Feedback Design
Simulink Model of a Feedback Design
Run the Simulink model of the feedback design by launching the MATLAB
Demo browser and selecting the Scaling a Fixed Point Control Design demo.
Launch the Demo browser by typing

demo blockset 'Fixed Point'

at the command line, or by opening the Demos block found in the Fixed-Point
Blockset library. Alternatively, you can access the model directly by typing its
name at the command line:

fxpdemo_feedback

The demo’s .mdl file automatically runs the M-file preload_feedback, which
populates the workspace with the required parameter values. The feedback
design model is shown below.

The model consists of the following blocks and subsystems:

• Reference

This Simulink Signal Generator block generates a continuous-time reference
signal. It is configured to output a square wave.

• Sum

This Simulink or Fixed-Point Blockset Sum block subtracts the plant output
from the reference signal.

• ZOH

The Simulink or Fixed-Point Blockset Zero-Order Hold block samples and
holds the continuous signal. This block is configured so that it quantizes the
signal in time by an amount tsamp = 0.01 second.
6-3

6 Tutorial: Feedback Controller Simulation

6-4
• Analog to Digital Interface

The analog to digital (A/D) interface consists of a Gateway In block that
converts a Simulink double to a Fixed-Point Blockset data type. It represents
any hardware that digitizes the amplitude of the analog input signal. In the
real world, its characteristics are fixed.

• Controller

The digital controller is a subsystem that represents the software running on
the hardware target. Refer to “Digital Controller Realization” on page 6-7.

• Digital to Analog Interface

The digital to analog (D/A) interface consists of a Gateway Out block that
converts a Fixed-Point Blockset data type into a Simulink double. It
represents any hardware that converts a digitized signal into an analog
signal. In the real world, its characteristics are fixed.

• Analog Plant

The analog plant is described by a transfer function, and is controlled by the
digital controller. In the real world, its characteristics are fixed.

• FixPt GUI

This block launches the Fixed-Point Settings interface.

The model also includes three scopes, which display the reference, plant input,
and plant output signals.

Simulation Setup
To set up this kind of fixed-point feedback controller simulation, you perform
the following steps:

1 Identify all design components.

In the real world, there are design components with fixed characteristics
(the hardware) and design components with characteristics that you can
change (the software). In this feedback design, the main hardware
components are the A/D hardware, the D/A hardware, and the analog plant.
The main software component is the digital controller.

Simulink Model of a Feedback Design
2 Develop a theoretical model of the plant and controller.

For the feedback design used in this tutorial, the plant is characterized by a
transfer function. The characteristics of the plant are unimportant for this
tutorial, and are not discussed.

The digital controller model used in this tutorial is described by a z-domain
transfer function and is implemented using a direct-form realization.

3 Evaluate the behavior of the plant and controller.

You evaluate the behavior of the plant and the controller with a Bode plot.
This evaluation is idealized since all numbers, operations, and states are
double-precision.

4 Simulate the system.

You simulate the feedback controller design using Simulink and the
Fixed-Point Blockset. Of course, in a simulation environment, you can treat
all components (software and hardware) as though their characteristics are
not fixed.
6-5

6 Tutorial: Feedback Controller Simulation

6-6
Idealized Feedback Design
Open loop (controller and plant) and plant-only Bode plots for the Scaling a
Fixed-Point Control Design demo are shown below. The open loop Bode plot
results from a digital controller described in the idealized world of continuous
time, double-precision coefficients, storage of states, and math operations.

The plant and controller design criteria are not important for the purposes of
this tutorial. The Bode plots were created using the workspace variables
produced by the preload_feedback M-file.

10
−1

10
0

10
1

10
2

10
3

10
−5

10
0

Bode Plots: Plant Only (dashed) and Open Loop (solid)

Freq (rad/sec)

M
a
g
n
it
u
d
e

10
−1

10
0

10
1

10
2

10
3

−400

−300

−200

−100

0

Freq (rad/sec)

P
h
a
s
e

Digital Controller Realization
Digital Controller Realization
In this simulation, the digital controller is implemented using the fixed-point
direct-form realization shown below. The hardware target is a 16-bit processor.
Variables and coefficients are generally represented using 16 bits, especially if
these quantities are stored in ROM or global RAM. Use of 32-bit numbers is
limited to temporary variables that exist briefly in CPU registers or in a stack.

The realization consists of these blocks:

• Up Cast

Up Cast is a Fixed-Point Blockset Conversion block that connects the A/D
hardware with the digital controller. It pads the output word of the A/D
hardware with trailing zeros to a 16-bit number (the base data type).

• Numerator Terms and Denominator Terms

Each of these Fixed-Point Blockset FIR blocks represents a weighted sum
carried out in the CPU target. The word size and precision used in the
calculations reflect those of the accumulator. Numerator Terms multiplies
and accumulates the most recent inputs with the FIR numerator coefficients.
Denominator Terms multiples and accumulates the most recent delayed
outputs with the FIR denominator coefficients. The coefficients are stored in
6-7

6 Tutorial: Feedback Controller Simulation

6-8
ROM using the base data type. The most recent inputs are stored in global
RAM using the base data type.

• Combine Terms

Combine Terms is a Simulink or Fixed-Point Blockset Sum block that
represents the accumulator in the CPU. Its word size and precision are twice
that of the RAM (double bits).

• Down Cast

Down Cast is a Fixed-Point Blockset Conversion block that represents taking
the number from the CPU and storing it in RAM. The word size and precision
are reduced to half that of the accumulator when converted back to the base
data type.

• Prev Out

Prev Out is a Simulink or Fixed-Point Blockset Unit Delay block that delays
the feedback signal in memory by one sample period. The signals are stored
in global RAM using the base data type.

Direct Form Realization
The controller directly implements this equation

where

• u(k – 1) represents the input from the previous time step.

• y(k) represents the current output, and y(k – 1) represents the output from
the previous time step.

• bi represents the FIR numerator coefficients.

• ai represents the FIR denominator coefficients.

The first summation in y(k) represents multiplication and accumulation of the
most recent inputs and numerator coefficients in the accumulator. The second
summation in y(k) represents multiplication and accumulation of the most
recent outputs and denominator coefficients in the accumulator. Since the FIR
coefficients, inputs, and outputs are all represented by 16-bit numbers (the

y k() biu k 1�() aiy k 1�()

i 1=

N

∑�

i 0=

N

∑=

Digital Controller Realization
base data type), any multiplication involving these numbers produces a 32-bit
output (the accumulator data type).
6-9

6 Tutorial: Feedback Controller Simulation

6-1
Simulation Results
Using Simulink and the Fixed-Point Blockset, you can easily transition from a
digital controller described in the ideal world of double-precision numbers to
one realized in the world of fixed-point numbers. The simulation approach used
in this tutorial follows these steps:

• “1. Initial Guess at Scaling” on page 6-10. For this tutorial, you run an initial
“proof of concept” simulation using a reasonable guess at the fixed-point
word size and scaling. This step is included only to illustrate how difficult it
is to guess the best scaling.

• “2. Data Type Override” on page 6-13. Perform a global override of the
fixed-point data types and scaling using double-precision numbers. The
maximum and minimum simulation values for each digital controller block
are logged to the workspace.

• “3. Automatic Scaling” on page 6-15. Use the automatic scaling procedure.
This procedure uses the doubles simulation values previously logged to the
MATLAB workspace, and changes the scaling for each block that does not
have its scaling fixed.

The feedback controller simulation is performed with the Fixed-Point Settings
interface. You launch the interface by selecting the FixPt GUI block within the
fxpdemo_feedback model, by selecting Fixed-Point settings from the Tools
menu in the model window, by right-clicking in the model and selecting
Fixed-Point settings from the menu that pops up, or by typing

fxptdlg('fxpdemo_feedback')

at the command line. The three steps of the simulation are described in the
following sections. You determine the quality of the simulation results by
examining the input and output of the analog plant.

1. Initial Guess at Scaling
In the first step, initial guesses for the scaling of each block are already
specified in each block mask in the model. This step is included to illustrate the
difficulty of guessing at the best scaling.
0

Simulation Results
1 After you launch the Fixed-Point Settings interface, click the Run button in
the dialog to run the simulation. When the simulation is finished, the
Simulation data logged for current system pane of the interface displays
the block name, the minimum and maximum simulation results, the data
type, and the scaling for each block. The display shows that the Up Cast
block saturated 23 times, indicating a poor guess for the scaling.

2 Click the Plot button. This launches the Plot System interface, which is
shown below. This interface displays all MATLAB variable names that
contain Scope block data for the current model.

3 To plot the simulation results, select one or more variable names in the Plot
System interface, and then select the appropriate plot button. This
simulation plots the fixed-point signals for the plant input and the plant
output.

f1 Run simulation 2 Launch Plot System interface
6-11

6 Tutorial: Feedback Controller Simulation

6-1
The plant input and output signals are shown below. These signals reflect the
initial guess at scaling.

The Bode plot design sought to produce a well-behaved linear response for the
closed-loop system. Clearly, the response is nonlinear. The nonlinear features

3b Plot selected signals

3a Select both the plant input signal
and the plant output signal

Fixed-point plant
input signal

Fixed-point plant
output signal
2

Simulation Results
are due to significant quantization effects. An important part of fixed-point
design is finding scaling that reduce quantization effects to acceptable levels.

2. Data Type Override
You can obtain ideal simulation limits by using the automatic scaling tool.
However, you must first perform a data type override with doubles of all blocks
with fixed-point output, and you must log maximum and minimum simulation
values for all blocks that are to be scaled.

1 Make sure the Logging Mode parameter is set to Min, max and overflow
for the fxpdemo_feedback system. This overrides all local logging settings
for the subsystems of the model.

2 Perform a data type override with doubles by setting the Data type
override parameter in the interface to True Doubles. This overrides all
local data type settings for the subsystems of the model.

4 Launch

3 Run the
simulation

Plot System
interface

1 Log mins, maxes, 2 Set data type override
to true doublesand overflows
6-13

6 Tutorial: Feedback Controller Simulation

6-1
3 Run the simulation by clicking the Run button.

4 Click the Plot button to launch the Plot System interface.

5 Compare the ideal (doubles) and fixed-point plant output signals using the
Plot System interface.

The ideal and fixed-point plant output signals are shown below. The ideal
signal is produced by overriding the block output scaling with true doubles.

5a Select the plant output signal

5b Plot both ideal (doubles) and fixed-point signal
4

Simulation Results
3. Automatic Scaling
Using the automatic scaling procedure, you can easily maximize the precision
of the output data type while spanning the full simulation range. For a complex
model, the absence of such a procedure can make achieving this goal tedious
and time consuming.

Perform automatic scaling for the Controller block. This block is a subsystem
representing software running on the target, and requires optimization.

Ideal plant output
signal

Fixed-point plant
output signal
6-15

6 Tutorial: Feedback Controller Simulation

6-1
1 Turn off the data type override by setting Data type override in the
Fixed-Point Settings interface to Use local settings. Each subsystem in
the model now follows its own independent setting for this parameter.

1 Set data type override to Use local settings
6

Simulation Results
2 Select the Controller subsystem in the Select current system parameter of
the interface.

3 Set the Safety margin parameter in the interface to 20. This sets the scaling
so that the largest simulation value seen is at least 20% smaller than the
maximum value allowed. The Safety margin parameter value multiplies
the “raw” simulation values by a factor of 1.2. Setting this parameter to a
value greater than 1 decreases the likelihood that an overflow will occur
when fixed-point data types are being used.

Due to the nonlinear effects of quantization, a fixed-point simulation will
produce results that are different from an idealized, doubles-based
simulation. Signals in a fixed-point simulation may cover a larger or smaller
range than in a doubles-based simulation. If the range increases enough,
overflows or saturations could occur. A safety margin decreases the
likelihood of this happening, but it may also decrease the precision of the
simulation.

5 Run simulation 6 Launch Plot System interface

2 Select the
Controller
subsystem

3 Set the
safety
margin to
20

4 Run the
autoscale
script
6-17

6 Tutorial: Feedback Controller Simulation

6-1
4 Run the autofixexp M-file script by clicking the Autoscale Blocks button.
This script automatically changes the scaling on all fixed-point blocks that
do not have their scaling locked, and that have their output data type
specified as a generalized fixed-point number. This script uses the minimum
and maximum data logged from the previous simulation to change each
block’s scaling such that the precision is maximized while the full range of
simulation values is spanned for each block.

5 Run the simulation by clicking the Run button. This simulation will use the
new scaling set in Step 4.

6 Launch the Plot System interface and plot the plant output signal. The
resulting plot is shown below.

You can produce a close-up of a portion of the plot by clicking at the upper left
of the region you want to expand, and dragging the pointer to the lower right
while pressing the mouse button. When you then release the mouse button, you
produce the plot below.
8

Simulation Results
Note that a steady state has been achieved, but a small limit cycle is present in
the steady state due to poor A/D design.

Limit cycles produced
by the A2D block
6-19

6 Tutorial: Feedback Controller Simulation

6-2
0

7

Tutorial: Producing
Lookup Table Data

Overview (p. 7-2) An overview of the topics covered by the tutorial

Worst Case Error for a Lookup Table
(p. 7-3)

A description of worst case error for a lookup table, and
how to find it using the fixpt_look1_func_plot function

Creating Lookup Tables for a Sine
Function (p. 7-5)

A step-by-step tutorial on how to make lookup tables
using the fixpt_look1_func_approx function

Summary: Using the Lookup Table
Functions (p. 7-19)

A brief summary of conclusions from the tutorial on how
to use fixpt_look1_func_plot and
fixpt_look1_func_approx to create lookup tables

Effect of Spacing on Speed, Error, and
Memory Usage (p. 7-20)

A comparison of lookup tables with differing spacing —
uneven, even, and power of two

7 Tutorial: Producing Lookup Table Data

7-2
Overview
A function lookup table is a method by which you can approximate a function
by a table with a finite number of points (X,Y). Function lookup tables are
essential to many fixed-point applications. The function you want to
approximate is called the ideal function. The X values of the lookup table are
called the breakpoints. You approximate the value of the ideal function at a
point by linearly interpolating between the two adjacent breakpoints closest to
the point.

In creating the points for a function lookup table, you generally want to achieve
one or both of the following goals:

• Minimize the worst case error for a specified maximum number of
breakpoints

• Minimize the number of breakpoints for a specified maximum allowed error

This tutorial shows you how to create function lookup tables using the function
fixpt_look1_func_approx. You can optimize the lookup table to minimize the
number of data points, the error, or both. You can also restrict the spacing of
the breakpoints to be even or even powers of two, in order to speed up
computations using the table.

This tutorial also explains how to use the function fixpt_look1_func_plot to
find the worst case error of a lookup table and plot the errors at all points.

Worst Case Error for a Lookup Table
Worst Case Error for a Lookup Table
This section explains the worst case error of a lookup table, and how to find the
worst case error using the function fixpt_look1_func_plot. It gives a simple
example of the worst case error of a lookup table for the square root function.

The error at any point of a function lookup table is the absolute value of the
difference between the ideal function at the point and the corresponding Y
value found by linearly interpolating between the adjacent breakpoints. The
worst case error, or maximum absolute error, of a lookup table is the maximum
absolute value of all errors in the interval containing the breakpoints.

For example, if the ideal function is the square root, and the breakpoints of the
lookup table are 0, .25 and 1, then in a perfect implementation of the lookup
table, the worst case error is 1/8 = .125, which occurs at the point 1/16 = .0625.
In practice, the error could be greater, depending on the fixed point
quantization and other factors.

Example: Square Root Function
This example shows how to use the function fixpt_look1_func_plot to find
the maximum absolute error for the simple lookup table whose breakpoints are
0, .25, and 1. The corresponding Y data points of the lookup table, which you
find by taking the square roots of the breakpoints, are 0, .5 and 1.

To use the function fixpt_look1_func_plot, you need to first define its
parameters. To do so, type the following at the MATLAB prompt:

funcstr='sqrt(x)'; %Define the square root function
xdata=[0;.25;1]; %Set the breakpoints
ydata=sqrt(xdata); %Find the square root of the breakpoints
xmin = 0; %Set the minimum breakpoint
xmax = 1; %Set the maximum breakpoint
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method

Next, type

errworst=fixpt_look1_func_plot(xdata,ydata,funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)
7-3

7 Tutorial: Producing Lookup Table Data

7-4
This returns the worst case error of the lookup table as the variable errworst:

errworst =
0.1250

It also generates the plots shown below. The upper box (Outputs) displays a
plot of the square root function, and a plot of the fixed-point lookup
approximation underneath. The approximation is found by linear interpolation
between the breakpoints. The lower box (Absolute Error) displays the errors at
all points in the interval from 0 to 1. Notice that the maximum absolute error
occurs at .0625. The error at the breakpoints is 0.

Creating Lookup Tables for a Sine Function
Creating Lookup Tables for a Sine Function
This section explains how to use the function fixpt_look1_func_approx to
create lookup tables. It gives examples that show how to create lookup tables
for the function sin(2 x) on the interval from 0 to .25. The section covers

• “Parameters for fixpt_look1_func_approx” on page 7-5

• “Setting Function Parameters for the Lookup Table” on page 7-6

• “Example 1: Using errmax with Unrestricted Spacing” on page 7-7

• “Example 2: Using nptsmax with Unrestricted Spacing” on page 7-10

• “Restricting the Spacing” on page 7-11

• “Example 3: Using errmax with Even Spacing” on page 7-12

• “Example 4: Using nptsmax with Even Spacing” on page 7-13

• “Example 5: Using errmax with Power of Two Spacing” on page 7-14

• “Example 6: Using nptsmax with Power of Two Spacing” on page 7-16

• “Specifying Both errmax and nptsmax” on page 7-17

• “Comparing the Examples” on page 7-18

Parameters for fixpt_look1_func_approx
To use the function fixpt_look1_func_approx, you must first define its
parameters. The required parameters for the function are

• funcstr – The ideal function

• xmin – The minimum input of interest

• xmax – The maximum input of interest

• xdt – The x data type

• xscale – The x data scaling

• ydt – The y data type

• yscale – The y data scaling

• rndmeth – The rounding method

In addition there are three optional parameters:

• errmax – The maximum allowed error of the lookup table

• nptsmax – The maximum number of points of the lookup table

π

7-5

7 Tutorial: Producing Lookup Table Data

7-6
• spacing – The allowed spacing between breakpoints

You must use at least one of the parameters errmax and nptsmax. The next
section “Setting Function Parameters for the Lookup Table” on page 7-6 gives
typical settings for these parameters.

Using Only errmax
If you use only the errmax parameter, without nptsmax, the function creates a
lookup table with the fewest points, for which the worst case error is at most
errmax. See “Example 1: Using errmax with Unrestricted Spacing” on page 7-7.

Using Only nptsmax
If you use only the nptsmax parameter without errmax, the function creates a
lookup table with at most nptsmax points, which has the smallest worse case
error. See “Example 2: Using nptsmax with Unrestricted Spacing” on
page 7-10.

The section “Specifying Both errmax and nptsmax” on page 7-17 describes how
the function behaves when you specify both errmax and nptsmax.

Spacing
You can use the optional spacing parameter to restrict the spacing between
breakpoints of the lookup table. The options are

• 'unrestricted' – The default.

• 'even' – The distance between any two adjacent breakpoints is the same.

• 'pow2' – The distance between any two adjacent breakpoints is the same and
the distance is a power of two.

The section “Restricting the Spacing” on page 7-11 and the examples that
follow it explain how to use the spacing parameter.

Setting Function Parameters for the Lookup Table
To do the examples in this section, you must first set parameter values for the
fixpt_look1_func_approx function. To do so, type the following at the
MATLAB prompt:

funcstr = 'sin(2*pi*x)'; %Define the sine function
xmin = 0; %Set the minimum input of interest

Creating Lookup Tables for a Sine Function
xmax = 0.25; %Set the maximum input of interest
xdt = ufix(16); %Set the x data type
xscale = 2^-16; %Set the x data scaling
ydt = sfix(16); %Set the y data type
yscale = 2^-14; %Set the y data scaling
rndmeth = 'Floor'; %Set the rounding method
errmax = 2^-10; %Set the maximum allowed error
nptsmax = 21; %Specify the maximum number of points

If you exit MATLAB after typing these commands, you must retype them
before trying any of the other examples in this section.

Example 1: Using errmax with Unrestricted Spacing
The first example shows how to create a lookup table that has the fewest data
points for a specified worst case error, with unrestricted spacing. Before trying
the example, enter the same parameter values given in the section “Setting
Function Parameters for the Lookup Table” on page 7-6, if you have not
already done so in this MATLAB session.

You specify the maximum allowed error by typing

errmax = 2^-10;

Creating the Lookup Table
To create the lookup table, type

[xdata,ydata,errworst]=fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax);

Note that the nptsmax and spacing parameters are not specified.

The function returns three variables:

• xdata, the vector of breakpoints of the lookup table

• ydata, the vector found by applying ideal function, sin(2 x), to xdata

• errworst, which specifies the maximum possible error in the lookup table

The value of errworst is less than or equal to the value of errmax.

You can find the number of X data points by typing

length(xdata)

π

7-7

7 Tutorial: Producing Lookup Table Data

7-8
ans =

16

This means that 16 points are required to approximate sin(2 x) to within the
tolerance specified by errmax.

You can display the maximum error by typing errworst. This returns

errworst =
9.7656e-004

Plotting the Results
You can plot the output of the function fixpt_look1_func_plot by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

The resulting plots are shown below.

π

Creating Lookup Tables for a Sine Function
The upper plot shows the ideal function, sin(2 x) and the fixed-point lookup
approximation between the breakpoints. In this example, the ideal function
and the approximation are so close together that the two graphs appear to
coincide. The lower plot displays the errors.

In this example, the Y data points, returned by the function
fixpt_look1_func_approx as ydata, are equal to the ideal function applied to
the points in xdata. However, you can define a different set of values for ydata
after running fixpt_look1_func_plot. This can sometimes reduce the
maximum error.

You can also change the values of xmin and xmax in order to evaluate the lookup
table on a subset of the original interval.

To find the new maximum error after changing ydata, xmin or xmax, type

errworst=fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,...
xdt,xscale,ydt,yscale,rndmeth)

π

7-9

7 Tutorial: Producing Lookup Table Data

7-1
Example 2: Using nptsmax with Unrestricted
Spacing
The next example shows how to create a lookup table that minimizes the worst
case error for a specified maximum number of data points, with unrestricted
spacing. Before starting the example, enter the same parameter values given
in the section “Setting Function Parameters for the Lookup Table” on page 7-6,
if you have not already done so in this MATLAB session.

Setting the Number of Breakpoints
You specify the number of breakpoints in the lookup table by typing

nptsmax = 21;

Creating the Lookup Table
Next, type

[xdata,ydata,errworst]= fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax);

The empty brackets, [], tell the function to ignore the parameter errmax, which
is not used in this example. Omitting errmax causes the function
fixpt_look1_func_approx to return a lookup table of size specified by
nptsmax, with the smallest worst case error.

The function returns a vector xdata, with 21 points. You can find the maximum
error for this set of points is given by typing errworst at the MATLAB prompt.
This returns

errworst =
5.1139e-004

Plotting the Results
To plot the lookup table along with the errors, type

fixpt_look1_func_plot(funcstr,xdata,xdt,xscale,ydata,ydt,...
yscale,rndmeth);

The resulting plots are shown below.
0

Creating Lookup Tables for a Sine Function
Restricting the Spacing
In the previous two examples, the function fixpt_look1_func_approx creates
lookup tables with unrestricted spacing between the breakpoints. You can
restrict the spacing to improve the computational efficiency of the lookup table,
using the spacing parameter.

The options for spacing are:

• 'unrestricted' – The default.

• 'even' – The distance between any two adjacent breakpoints is the same.

• 'pow2' – The distance between any two adjacent breakpoints is the same and
is a power of two.

Both power of two and even spacing increase the computational speed of the
lookup table and use less command read-only memory (ROM). However,
specifying either of the spacing restrictions along with errmax usually requires
more data points in the lookup table than does unrestricted spacing, in order
to achieve the same degree of accuracy. The section “Effect of Spacing on Speed,
7-11

7 Tutorial: Producing Lookup Table Data

7-1
Error, and Memory Usage” on page 7-20 discusses the tradeoffs between
different spacing options.

Example 3: Using errmax with Even Spacing
The next example shows how to create a lookup table that has evenly spaced
breakpoints and a specified worst case error. To try the example, you must first
enter the parameter values given in the section “Setting Function Parameters
for the Lookup Table” on page 7-6, if you have not already done so in this
MATLAB session.

Next, at the MATLAB prompt type

spacing = 'even';
[xdata ydata errworst]=fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

You can find the number of points in the lookup table by typing length(xdata).

ans =
20

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

This produces the following plots.
2

Creating Lookup Tables for a Sine Function
Example 4: Using nptsmax with Even Spacing
The next example shows how to create a lookup table that has evenly space
breakpoints and minimizes the worst case error for a specified maximum
number of points. To try the example, you must first enter the parameter
values given in the section “Setting Function Parameters for the Lookup Table”
on page 7-6, if you have not already done so in this MATLAB session.

Next, at the MATLAB prompt type

spacing='even';
[xdata ydata errworst]= fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 21 evenly spaced points to achieve a maximum absolute
error of 2^-10.2209.

To plot the lookup table along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
7-13

7 Tutorial: Producing Lookup Table Data

7-1
xscale,ydt,yscale,rndmeth);

Example 5: Using errmax with Power of Two
Spacing
The next example shows how to construct a lookup table that has power of two
spacing and a specified worst case error. To try the example, you must first
enter the parameter values given in the section “Setting Function Parameters
for the Lookup Table” on page 7-6, if you have not already done so in this
MATLAB session.

Next, at the MATLAB prompt type

spacing ='pow2';
[xdata ydata
errworst]=fixpt_look1_func_approx(funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth,errmax,[],spacing);

To find out how many points are in the lookup table, type
4

Creating Lookup Tables for a Sine Function
length(xdata)

ans =
33

This means that 33 points are required to achieve the worst case error specified
by errmax. To verify that these points are evenly spaced, type

widths=diff(xdata)

This generates a vector whose entries are the differences between consecutive
points in xdata. Every entry of widths is 2-7.

To find the maximum error for the lookup table, type

errworst

errworst =
3.7209e-004

This is less than the value of errmax.

To plot the lookup table data along with the errors, type

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

This displays the plots shown below.
7-15

7 Tutorial: Producing Lookup Table Data

7-1
Example 6: Using nptsmax with Power of Two
Spacing
The next example shows how to create a lookup table that has power of two
spacing and minimizes the worst case error for a specified maximum number
of points. To try the example, you must first enter the parameter values given
in the section “Setting Function Parameters for the Lookup Table” on page 7-6,
if you have not already done so in this MATLAB session:

spacing ='pow2';
[xdata, errworst]= fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax,spacing);

The result requires 17 points to achieve a maximum absolute error of
2^-9.6267.

To plot the lookup table along with the errors, type
6

Creating Lookup Tables for a Sine Function
fixpt_look1_func_plot(funcstr,xdata,xdt,xscale,ydt,yscale,rndmet
h);

This produces the plots shown below.

Specifying Both errmax and nptsmax
If you include both the errmax and the nptsmax parameters, the function
fixpt_look1_func_approx tries to find a lookup table with at most nptsmax
data points, whose worst case error is at most errmax. If it can find a lookup
table meeting both conditions, it uses the following order of priority for spacing:

1 Power of two

2 Even

3 Unrestricted
7-17

7 Tutorial: Producing Lookup Table Data

7-1
If the function cannot find any lookup table satisfying both conditions, it
ignores nptsmax and returns a lookup table with unrestricted spacing, whose
worst case error is at most errmax. In this case, the function behaves the same
as if the nptsmax parameter were omitted.

Using the parameters described the section “Setting Function Parameters for
the Lookup Table” on page 7-6, the following examples illustrate the results of
using different values for nptsmax when you enter

[xdata ydata errworst]=fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,numptsmax);

The results for three different settings for nptsmax are as follows:

• numptsmax=33 — The function creates the lookup table with 33 points having
power of two spacing as in Example 3.

• numptsmax=21 — Since the errmax and numptsmax conditions cannot be met
with power of two spacing, the function creates the lookup table with 20
points having even spacing, as in Example 5.

• numptsmax=16 — Since the errmax and numptsmax conditions cannot be met
with either power of two or even spacing, the function creates the lookup
table with 16 points having unrestricted spacing, as in Example 1.

Comparing the Examples
The following table summarizes the results for the examples. Note that when
you specify errmax, even spacing requires more data points than unrestricted,
and power of two spacing requires more points than even spacing.

Example Options Spacing Worst Case Error Number of Points in Table

1 errmax=2^-10 'unrestricted' 2^-10 16

2 nptsmax=21 'unrestricted' 2^-10.933 21

3 errmax=2^-10 'even' 2^-10.0844 20

4 nptsmax=21 'even' 2^-10.2209 21

5 errmax=2^-10 'pow2' 2^-11.3921 33

6 nptsmax=21 'pow2' 2^-9.627 17
8

Summary: Using the Lookup Table Functions
Summary: Using the Lookup Table Functions
The following summarizes how to use the lookup table approximation
functions:

1 Define

a The ideal function to be approximated

b The range, xmin to xmax, over which to find X and Y data

c The fixed-point implementation: data type, scaling, and rounding method

d The maximum acceptable error, the maximum number of points, and the
spacing

2 Run the fixpt_look1_func_approx function to generate X and Y data.

3 Use the fixpt_look1_func_plot function to plot the function and error
between the ideal and approximated function using the selected X and Y
data, and to calculate the error and the number of points used.

4 Vary input criteria, such as errmax, nptsmax and spacing, to produce sets of
X and Y data that generate functions with varying worst-case error, number
of points required, and spacing.

5 Compare results of the number of points required and maximum absolute
error from various runs to choose the best set of X and Y data.
7-19

7 Tutorial: Producing Lookup Table Data

7-2
Effect of Spacing on Speed, Error, and Memory Usage
This section compares the implementations of lookup tables that use
breakpoints whose spacing is uneven, even, and power of two. This comparison
is only valid when the breakpoints are not tunable. If the breakpoints can be
tuned in the generated code, then all three cases generate the same code. The
comparison will focus on the amount of read-only memory (ROM) used for data,
the amount of ROM used for commands, and the speed with which the
commands are executed.

As a specific example, this comparison uses the demo fxpdemo_approx_sin.
There are three fixed-point lookup tables in this model. All three lookup tables
approximate the function sin(2*pi*u) over the first quadrant. All three
achieve a worst case error of less than 2^-8. However, they have different
restrictions on their breakpoint spacing.

You can use the model fxpdemo_approx, which this demo opens, to generate
code with Real-Time Workshop. This section presents several segments of the
generated code. These segments of code were edited and arranged for clarity
and to emphasize key differences.

This section covers the following topics:

• “Data ROM Required” on page 7-21

• “Determining Out-of-Range Inputs” on page 7-22

• “Determining Input Location” on page 7-22

• “Interpolation” on page 7-24

• “Conclusion” on page 7-26

To open the demo, type at the MATLAB prompt

fxpdemo_approx_sin

This opens the model shown below.
0

Effect of Spacing on Speed, Error, and Memory Usage
Data ROM Required
This section looks at the data ROM required by each of the three spacing
options.

Uneven Case
Uneven spacing requires both Y data points and breakpoints:

int16_T yuneven[8];
uint16_T xuneven[8];

The total bytes used is 32.

Even Case
Even spacing requires only Y data points:

int16_T yeven[10];

The total bytes used is 20. The breakpoints are not explicitly required. The code
will use the spacing between the breakpoints, and may use the smallest and
largest breakpoint. At most three values related to the breakpoints are needed.
7-21

7 Tutorial: Producing Lookup Table Data

7-2
Power of Two Case
Power of two spacing requires only Y data points:

int16_T ypow2[17];

The total bytes used is 34. The breakpoints are not explicitly required. The code
will use the spacing between the breakpoints, and may use the smallest and
largest breakpoint. At most three values related to the breakpoints are needed.

Determining Out-of-Range Inputs
In all three cases you have to guard against the possibility that the input is less
than the smallest breakpoint or greater than the biggest breakpoint. There
may be differences in how occurrences of these possibilities are handled.
However, the differences are generally minor and are normally not a key factor
in deciding to use one spacing method over another. The subsequent sections
assume that out-of-range inputs are impossible or have already been handled.

Determining Input Location
This section describes how the three fixed point lookup tables determine where
the current input is relative to the breakpoints.

Uneven Case
Unevenly spaced breakpoints require a general-purpose algorithm such as a
binary search to determine where the input lies in relation to the breakpoints.
The following code provides an example:

iLeft = 0;
iRght = 7; /* number of breakpoints minus 1 */

while ((iRght - iLeft) > 1)
{
 i = (iLeft + iRght) >> 1;

if (uAngle < xuneven[i])
 {
 iRght = i;
 }
 else
 {
2

Effect of Spacing on Speed, Error, and Memory Usage
 iLeft = i;
 }
}

The while loop executes up to log2(N) times where N is number of breakpoints.

Even Case
Evenly spaced breakpoints require only one step to determine where the input
lies in relation to the breakpoints:

iLeft = uAngle / 455U;

The divisor 455U represents the spacing between breakpoints. In general, the
dividend would be (uAngle - SmallestBreakPoint). In this example, the
smallest breakpoint was zero, so the subtraction was optimized out.

Power of Two Case
Power of two spaced breakpoints require only one step to determine where the
input lies in relation to the breakpoints:

iLeft = uAngle >> 8;

The number of shifts is 8 because the breakpoints have spacing 2^8. The
smallest breakpoint was zero, so uAngle replaced the general case of (uAngle
- SmallestBreakPoint).

Comparison
To determine where the input is located with respect to the breakpoints, the
unevenly spaced case clearly requires much more code than the other two
cases. This code requires additional command ROM. This ROM penalty can be
reduced if many lookup tables share the binary search algorithm as a function.
Even if the code is shared, the number of clock cycles required to determine the
location of the input is much higher for the unevenly spaced cases than the
other two cases. If the code is shared, then function call overhead decreases the
speed of execution a little more.

In the evenly spaced case and the power of two spaced case, you can determine
the location of the input with a single line of code. The evenly spaced cased uses
a general integer division. The power of two case uses a shift instead of general
division because the divisor is an exact power of two. Without knowing the
7-23

7 Tutorial: Producing Lookup Table Data

7-2
specific processor to be used, you cannot be certain that a shift is better than
division.

Many processors can implement division with a single assembly language
instruction, so the code will be small. However, this instruction often takes
many clock cycles to complete. Quite a few processors do not provide a division
instruction. Division on these processors is implemented via repeated
subtractions. This is slow and requires a fair amount of machine code, but this
code can be shared.

Most processors provide a way to do logical and arithmetic shifts left and right.
A distinguishing difference is whether the processor can do N shifts in one
instruction (barrel shift) or requires N instructions that shift one bit at a time.
The barrel shift will require less code. Whether or not the barrel shift also
increases speed depends on the hardware that supports the operation.

The compiler can also complicate the comparison. In the previous example, the
command uAngle >> 8 essentially takes the upper 8 bits in a 16 bit word. The
compiler may detect this and replace the bit shifts with an instruction that
takes the bits directly. If the number of shifts is some other value, such as 7,
this optimization would not occur.

Interpolation
In theory, you can calculate the interpolation with the following code:

y = (yData[iRght] - yData[iLeft]) * (u - xData[iLeft])
/ (xData[iRght] - xData[iLeft]) + yData[iLeft]

The term (xData[iRght] - xData[iLeft]) is the spacing between
neighboring breakpoints. If this value is constant, i.e., even spacing, some
simplification is possible. If spacing is not just even but also a power of two,
then very significant simplifications are possible for fixed-point
implementations.

Uneven Case
For the uneven case, one possible implementation of the ideal interpolation in
fixed point is as follows:

xNum = uAngle - xuneven[iLeft];
xDen = xuneven[iRght] - xuneven[iLeft];
yDiff = yuneven[iRght] - yuneven[iLeft];
4

Effect of Spacing on Speed, Error, and Memory Usage
MUL_S32_S16_U16(bigProd, yDiff, xNum);

 DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, xDen);

 yUneven = yuneven[iLeft] + yDiff;

The multiplication and division routines are not shown here. These can be
somewhat involved and depend on the target processor. For example, these
routines look quite different for a 16-bit processor than for a 32-bit processor.

Even Case
Evenly spaced breakpoints implement interpolation using just slightly
different calculations than the uneven case. The key difference is that the
calculations do not directly use the breakpoints. This means the breakpoints
are not required in ROM, which can be a very significant savings:

xNum = uAngle - (iLeft * 455U);

 yDiff = yeven[iLeft+1] - yeven[iLeft];

 MUL_S32_S16_U16(bigProd, yDiff, xNum);

 DIV_NZP_S16_S32_U16_FLOOR(yDiff, bigProd, 455U);

 yEven = yeven[iLeft] + yDiff;

Power of Two Case
Power of two spaced breakpoints implement interpolation using very different
calculations than the other two cases. Like the uneven case, breakpoints are
not used in the generated code and therefore not required in ROM:

lambda = uAngle & 0x00FFU;

 yPow2 = ypow2[iLeft)+1] - ypow2[iLeft];

 MUL_S16_U16_S16_SR8(yPow2,lambda,yPow2);

 yPow2 += ypow2[iLeft];
7-25

7 Tutorial: Producing Lookup Table Data

7-2
This implementation has very significant advantages over the uneven and
even implementations. The key difference is that a subtraction and a division
are replaced by a bitwise-AND combined with a shift right at the end of the
multiply. Another advantage is that the term (u - xData[iLeft]) / (
xData[iRght] - xData[iLeft]) is computed with no loss of precision, because
the spacing is a power of two. In contrast, the uneven and even cases usually
introduce rounding error in this calculation.

Conclusion
The number of Y data points follows the expected pattern. For the same worst
case error, unrestricted spacing (uneven) requires the fewest data points, and
power of two spaced breakpoints requires the most. However, the
implementation for the evenly spaced and the power of two cases does not need
the breakpoints in the generated code. This reduces their data ROM
requirements by a half. As a result, the evenly spaced case actually uses less
data ROM than the unevenly spaced case. Also, the power of two case requires
only slightly more ROM than the uneven case. Changing the worst case error
can change these rankings. Nonetheless, when you compare data ROM usage,
you should always take into account the fact that the evenly spaced and power
of two spaced cases do not require their breakpoints in ROM.

The effort of determining where the current input is relative to the breakpoints
strongly favors the evenly spaced and power of two spaced cases. With uneven
spacing, you use a binary search method that loops up to log2(N) times. With
even and power of two spacing, you can determine the location with the
execution of one line of C code. But you cannot decide the relative advantages
of power of two versus evenly spaced without detailed knowledge of the
hardware and the C compiler.

The effort of calculating the interpolation favors the power of two case, which
uses a bitwise AND operation and a shift to replace a subtraction and a
division. The amount of advantage provided by this depends on the specific
hardware, but you would expect an advantage in code size, speed, and also in
accuracy. The evenly space case calculates the interpolation with a minor
improvement in efficiency over the unevenly spaced case.
6

8

Function Reference

Functions—By Category (p. 8-2) Tables of Fixed-Point Blockset functions by category

8 Function Reference

8-2
Functions—By Category
This chapter contains reference pages for the Fixed-Point Blockset M-file
functions. In some cases, you will not call these functions from the MATLAB
command line. Instead, they are automatically called when you specify certain
parameter values via block dialog boxes or via the Fixed-Point Settings
interface.

“Conversions” on page 8-3 Functions for converting legacy models to
fixed-point data types, converting
floating-point to fixed-point numbers, and
updating fixed-point models

“Fixed-Point Settings
Interface” on page 8-3

A function for calling the Fixed-Point Settings
interface

“Global Changes” on
page 8-3

Functions for making global changes
throughout a system or subsystem

“Lookup Tables” on page 8-3 Functions for implementing and using lookup
tables

“Data Type Structures” on
page 8-4

Functions to create MATLAB structures

“Tools” on page 8-4 Functions that yield more information about a
simulation or value

Functions—By Category
Conversions

Fixed-Point Settings Interface

Global Changes

Lookup Tables

fixpt_convert Convert Simulink models and subsystems to
fixed-point equivalents

fixpt_convert_prep Prepare a Simulink model for more complete
conversion to fixed point

fpupdate Update obsolete fixed-point blocks from
previous Fixed-Point Blockset releases to
current fixed-point blocks

num2fixpt Quantize a value using a Fixed-Point Blockset
representation

fxptdlg Invoke the Fixed-Point Settings interface

autofixexp Automatically change the scaling for each
fixed-point block that does not have its scaling
locked

fixpt_restore_links Restore links for fixed-point blocks

fixpt_set_all Set a property for every fixed-point block in a
subsystem

fixpt_interp1 Implement a 1-D lookup table

fixpt_look1_func_approx Optimize, for a fixed-point function, the x values
that are generated for a lookup table

fixpt_look1_func_plot Plot a function with x values generated by the
fixpt_look1_func_approx function
8-3

8 Function Reference

8-4
Data Type Structures

Tools

float Create a MATLAB structure describing a
floating-point data type

sfix Create a MATLAB structure describing a
signed generalized fixed-point data type

sfrac Create a MATLAB structure describing a
signed fractional data type

sint Create a MATLAB structure describing a
signed integer data type

ufix Create a MATLAB structure describing an
unsigned generalized fixed-point data type

ufrac Create a MATLAB structure describing an
unsigned fractional data type

uint Create a MATLAB structure describing an
unsigned integer data type

fixptbestexp Determine the exponent that gives the best
precision fixed-point representation of a value

fixptbestprec Determine the maximum precision available
for the fixed-point representation of a value

showfixptsimerrors Display overflows from the last simulation

showfixptsimranges Display the logged maximum and minimum
values from the last simulation

Alphabetical List of Functions

8-5

Alphabetical List of Functions 8

The following pages contain the reference sheets for the Fixed-Point Blockset
functions in alphabetical order.

autofixexp
8autofixexpPurpose Automatically change the scaling for each fixed-point block that does not have
its scaling locked

Syntax autofixexp

Description The autofixexp script automatically changes the scaling for each block that
does not have its scaling locked. This script uses the maximum and minimum
data obtained from the last simulation run to log data to the workspace. The
scaling is changed such that the simulation range is covered and the precision
is maximized. The script follows these steps:

1 The global variable FixPtTempGlobal is created to “steal” parameters (such
as data type) from variables not known in the base workspace. For example,
assume the Sum block has its output data type specified as DerivedVar.
DerivedVar is derived in the mask initialization based on mask parameters
and the block is under a mask.

The value of the parameter DerivedVar is retrieved by temporarily
replacing DerivedVar with stealparameter(DerivedVar) in the block
dialog. A model update is then forced. When stealparameter(DerivedVar)
is evaluated, it returns the value of DerivedVar without modification and
stores the value in FixPtTempGlobal. The stolen value is immediately used
by this procedure and is not needed again. Therefore, the procedure can
move from one block to the next using the same global variable.

2 The RangeFactor variable allows you to specify a range differing from that
defined by the maximum and minimum values logged in FixPtSimRanges.
For example, a RangeFactor value of 1.55 specifies that a range at least 55
percent larger is desired. A value of 0.85 specifies that a range up to 15
percent smaller is acceptable.

You should be aware that the scaling is not exact for the radix point-only
case since the range is given (approximately) by a power of two. The lower
limit is exact, but the upper limit is always one bit below a power of two.

For example, if the maximum logged value is 5 and the minimum logged
value is -0.5, then any RangeFactor from 4/5 to slightly under 8/5 would
produce the same radix point since these limits are less than a factor of two
from each other. The radix point selected will produce a range from -8 to +8
(minus a bit).
8-6

autofixexp
3 The global variable FixPtSimRanges is retrieved from the workspace. This
is the variable that holds the maximum and minimum simulation values.

4 The workspace is searched for the variables SlopeBits and BiasBits, which
specify the number of bits to use in representing slopes and biases. If these
variables are not found, then they are automatically created with default
values of 7 and 8, respectively.

5 All blocks that logged maximum and minimum simulation data are
processed.

6 All blocks that do not have their scaling locked are automatically scaled. If
the data type class is FIX, then radix point-only scaling is performed. If the
data type class is INT, then [Slope Bias] scaling is performed. To find out a
data type’s class, refer to its reference page.

See Also fxptdlg, showfixptsimranges
8-7

fixptbestexp
8fixptbestexpPurpose Determine the exponent that gives the best precision fixed-point
representation of a value

Syntax out = fixptbestexp(RealWorldValue,TotalBits,IsSigned)
out = fixptbestexp(RealWorldValue,FixPtDataType)

Description out = fixptbestexp(RealWorldValue,TotalBits,IsSigned) determines the
exponent that gives the best precision for the fixed-point representation of the
real-world value specified by RealWorldValue. You specify the number of bits
for the fixed-point number with TotalBits, and you specify whether the
fixed-point number is signed with IsSigned. If IsSigned is 1, the number is
signed. If IsSigned is 0, the number is not signed. The exponent is returned to
out.

out = fixptbestexp(RealWorldValue,FixPtDataType) determines the
exponent that gives the best precision based on the data type specified by
FixPtDataType.

Example The following command returns the exponent that gives the best precision for
the real-world value 4/3 using a signed, 16-bit number:

out = fixptbestexp(4/3,16,1)
out =
 -14

Alternatively, you can specify the fixed-point data type:

out = fixptbestexp(4/3,sfix(16))
out =
 -14

This value means that the maximum precision representation of 4/3 is obtained
by placing 14 bits to the right of the radix point:

01.01010101010101

You would specify the precision of this representation in fixed-point blocks by
setting the scaling to 2^-14 or 2^fixptbestexp(4/3,16,1).

See Also fixptbestprec, sfix, ufix
8-8

fixptbestprec
8fixptbestprecPurpose Determine the maximum precision available for the fixed-point representation
of a value

Syntax out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
out = fixptbestprec(RealWorldValue,FixPtDataType)

Description out = fixptbestprec(RealWorldValue,TotalBits,IsSigned) determines
the maximum precision for the fixed-point representation of the real-world
value specified by RealWorldValue. You specify the number of bits for the fixed-
point number with TotalBits, and you specify whether the fixed-point number
is signed with IsSigned. If IsSigned is 1, the number is signed. If IsSigned is
0, the number is not signed. The maximum precision is returned to out.

out = fixptbestprec(RealWorldValue,FixPtDataType) determines the
maximum precision based on the data type specified by FixPtDataType.

Example The following command returns the maximum precision available for the
real-world value 4/3 using a signed, 8-bit number:

out = fixptbestprec(4/3,8,1)
out =
 0.015625

Alternatively, you can specify the fixed-point data type:

out = fixptbestprec(4/3,sfix(8))
out =
 0.015625

This value means that the maximum precision available for 4/3 is obtained by
placing six bits to the right of the radix point since 2-6 equals 0.015625:

01.010101

You can use the maximum precision as the scaling parameter in fixed-point
blocks.

See Also fixptbestexp, sfix, ufix
8-9

fixpt_convert
8fixpt_convertPurpose Convert Simulink models and subsystems to fixed-point equivalents

Syntax res = fixpt_convert
res = fixpt_convert('SystemName')
res = fixpt_convert('SystemName','Display')
res = fixpt_convert('SystemName','Display','AutoSave')

Description res is a structure that contains lists of blocks handled during conversion. res
= fixpt_convert converts the Simulink model or subsystem specified by
bdroot. The fields of this structure are given below.

res = fixpt_convert('SystemName') converts the Simulink model or
subsystem specified by SystemName.

res = fixpt_convert('SystemName','Display') returns information
associated with the conversion according to the method specified by Display.
The Display methods are given below.

Output Field Description

encapsulated Structure containing lists of blocks grouped by type that
are encapsulated between fixed-point gateway blocks. The
encapsulated versions are not truly fixed-point, but they
will function within a fixed-point model.

replaced Blocks that are replaced with fixed-point equivalents or
with other blocks from a user-specified replacement list.

skipped Blocks that are skipped because they are fixed-point
compatible. Some of these blocks can cause errors if used
in certain ways. For example, the Mux block can create
lines that give different data types at downstream input
ports.

Display Method Description

filename Write detailed block information to the specified file.

off Do not display block information.
8-10

fixpt_convert
res = fixpt_convert('SystemName','Display','AutoSave') determines
the state of the converted model or subsystem. If AutoSave is on, then the
converted model or subsystem is saved and closed. If AutoSave is off, then the
converted model or subsystem is unsaved and left open.

Remarks If your Simulink model references blocks from a custom Simulink library, then
these blocks are encapsulated upon conversion. A block is encapsulated when
it cannot be converted to an equivalent fixed-point block. Encapsulation
involves associating a Gateway In or a Gateway Out block with the Simulink
block. To reduce the number of blocks that are encapsulated, you should
convert the entire library by passing the library name to fixpt_convert, and
then converting the model.

To create a custom list of blocks to convert, you should use the
fixpt_convert_userpairs script. To learn how to use this script, read the
comments included in the M-file.

The data types for fixed-point outputs taking Boolean values are specified by
the variable LogicType. The data types of all other fixed-point outputs and
parameters are specified by the variable BaseType. You can change these
variables to any data type. For example, in the MATLAB workspace you can
type

BaseType = sfix(16)
LogicType = uint(8)

The converted model will not work if these variables are not defined.

Best precision mode is used when available. Otherwise, the precision is set to
20, which means that the radix point is to the right of all bits. To automatically

on Display detailed block information.

on+filename Display detailed block information, and write
detailed block information to the specified file.

outline Display the conversion process outline.

outline+filename Display the conversion process outline, and write
detailed block information to the specified file.

Display Method Description
8-11

fixpt_convert
set the scaling, run a simulation with doubles override on and then invoke the
automatic scaling script, autofixexp. You can run autofixexp directly, or in
conjunction with the Fixed-Point Settings interface, fxptdlg.

Example This example uses fixpoint_convert to convert a Simulink model of a direct
form II realization to its fixed-point equivalent. “Direct Form II” on page 5-7
discusses this realization. The Simulink model shown below,
fxpdemo_preconvet, is included as a demo with the blockset.

The following command converts this model to its fixed-point equivalent,
suppresses the display of detailed block information, and does not save the
model after conversion:

res = fixpt_convert('fxpdemo_preconvert','off','off')

b0

b1

b2

b3

a1

a2

a3

Zero−Order
Hold z

1

Unit Delay2
z

1

Unit Delay1
z

1

Unit Delay

Output
ComparisonInput

0.5

Gain5

−0.84

Gain4

−0.09

Gain3

0.5

Gain2

1.85

Gain1

2.2

Gain
8-12

fixpt_convert
The built-in blocks that are replaced by fixed-point equivalent blocks are given
by the replaced field:

res.replaced
ans =
 UnitDelay: {3x1 cell}
 ZeroOrderHold: {[1x40 char]}
 Gain: {6x1 cell}
 Sum: {2x1 cell}

The built-in blocks that are skipped since they are compatible with the
Fixed-Point Blockset are given by the skipped field:

res.skipped
ans =
Mux: {'fxpdemo_preconvert_fixpt/Mux'}

The built-in blocks that are encapsulated by fixed-point gateway blocks so that
they are made compatible with the Fixed-Point Blockset are given by the
encapsulated field:

res.encapsulated
ans =
 Scope: {[1x42 char]}
 SignalGenerator: {'fxpdemo_preconvert_fixpt/Input'}

Note that the initial class of the base data type is double:

BaseType =
 Class: 'DOUBLE'

You can now run the simulation for the converted model:

sim fxpdemo_preconvert_fixpt
8-13

fixpt_convert
The output from the simulation is shown below. You should compare this
output to the output produced by the fixed-point direct from II model,
fxpdemo_direct_form2.

Next, define a fixed-point base data type:

BaseType = sfix(16)

Follow the automatic scaling procedure described in the autofixexp reference
pages with 20% safety margin, and then run the simulation:

sim fxpdemo_preconvert_fixpt

The simulation now produces an error. This is because the vector signal leading
into the scope is not homogeneous with regard to data type and scaling.

In general, solving the problem of nonhomogeneous signals requires that you
analyze how the signal is being used. If the distinct scaling and data type
properties are important, then you must fully or partially unvectorize the
relevant part of the model. Alternatively, you can force the signals to be
homogenous using the Gateway Out block. Since this example plots real-world
values in the Scope, inserting gateway blocks on the signals leading into the
Scope is an adequate solution.

See Also autofixexp, fixpt_convert_prep, fxptdlg

0 20 40 60 80 100 120 140 160 180 200
−8

−6

−4

−2

0

2

4

6

8

10
8-14

fixpt_convert_prep
8fixpt_convert_prepPurpose Prepare a Simulink model for more complete conversion to fixed-point data
types

Syntax fixpt_convert_prep('SystemName')

Description fixpt_convert_prep('SystemName') prepares the Simulink model or
subsystem specified by SystemName for more complete conversion (less
encapsulation) to fixed-point data types using the fixpt_convert function. It
does so by replacing this select set of blocks:

• Old style Latch blocks

Old style Latch blocks are replaced with a version contained in the
fixpt_convert_lib library. The old style Latch block contains a Transport
Delay block, which is a very inefficient implementation for both
floating-point and fixed-point data types.

• Function blocks acting like selectors

Function blocks acting like selectors are replaced with the Selector block.
Function blocks acting like selectors require that you specify the width of the
input. To get this information, the model must be put into compile mode,
which is inefficient.

• A select set of additional function blocks

You can replace function blocks that have replacements in the
fixpt_convert_lib library. Alternatively, you can use fixpt_convert_prep
as a prototype for creating a customized list of function blocks to be replaced.
To do this, copy the function and the library to another directory, and then
customize the library to include function blocks that you commonly
encounter when converting models from floating point to fixed-point.

Note This function is meant to be a starting point for customizing the
Simulink to Fixed-Point Blockset conversion process.

See Also fixpt_convert
8-15

fixpt_interp1
8fixpt_interp1Purpose Implement a 1-D lookup table

Syntax y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_interp1 implements a lookup table to find output(s) y for input(s) x. If
x falls between two xdata values, then y is found by interpolating between the
corresponding ydata pair. If x falls above the range given by xdata, y is given
as the maximum ydata value. If x falls below the range given by xdata, y is
given as the minimum ydata value.

If either the input data type, xdt, or the output data type, ydt, is floating point,
then floating-point calculation is used to perform the interpolation. Otherwise,
integer-only calculation is used. This calculation handles the input scaling,
xscale, and the output scaling, yscale, appropriately, and obeys the
designated rounding method, rndmeth.

Example Define xdata as a vector of 33 evenly spaced points between 0 and 8, and ydata
as the sinc of xdata.

xdata = linspace(0,8,33).';
ydata = sinc(xdata);

Now define your input x as a vector of 201 evenly spaced points between -1 and
9.

x = linspace(-1,9,201).';

Notice that x includes some values that are both lower and higher than the
range of xdata.

You can now use fixpt_interp1 to interpolate outputs for x.

y = fixpt_interp1(xdata,ydata,x,sfix(8),2^-3,sfix(16),2^-14,...
'Floor')

See Also fixpt_look1_func_approx, fixpt_look1_func_plot, sfix
8-16

fixpt_look1_func_approx
8fixpt_look1_func_approxPurpose Optimize for a fixed-point function, the x values, or breakpoints, that are
generated for a lookup table

Syntax [xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax,spacing)

Description fixpt_look1_func_approx('funcstr',xmin,xmax,xdt,xscale,ydt,yscale,
rndmeth,errmax) optimizes the breakpoints of a lookup table over a specified
range. The lookup table satisfies the maximum acceptable error, maximum
number of points, and spacing requirements given by the optional parameters.
The breakpoints refer to the x values of the lookup table. The command

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax)

returns the X and Y coordinates of the lookup table as vectors xdata and ydata,
respectively. It also returns the maximum absolute error of the lookup table as
a variable errworst.

The fixed-point approximation is found by interpolating between the lookup
table data points. The required input parameters are as follows.

Input Value

'funcstr' Function of x funcstr is the function for which breakpoints
are approximated.

xmin Minimum value of x

xmax Maximum value of x

xdt Data type of x
8-17

fixpt_look1_func_approx
• xmin and xmax specify the range over which the breakpoints are
approximated.

• xdt, xscale, ydt, yscale, and rndmeth follow conventions used by the
Fixed-Point Blockset.

• rndmeth has a default value listed in the input table.

In addition to the required parameters, there are three optional inputs, as
follows.

Of these, you must use at least one of the parameters errmax and nptsmax. If
you omit one of these, use brackets, [], in place of the omitted parameter. The
function will then ignore that requirement for the lookup table.

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by the Fixed-Point Blockset:
'Toward Zero', 'Nearest', 'Floor' (default value),
'Ceiling'

Input Value

errmax Maximum acceptable error

nptsmax Maximum number of points

errworst Spacing: 'even', 'pow2' (even power of 2), 'unrestricted'
(default value)

Input Value
8-18

fixpt_look1_func_approx
The outputs of the function are as follows.

Criteria For Optimizing the Breakpoints: errmax, nptsmax, and spacing
The approximation produced from the lookup table must satisfy the
requirements for the maximum acceptable error, errmax, the maximum
number of points, nptsmax, and the spacing, spacing. The requirements are

• The maximum absolute error is less than errmax.

• The number of points required is less than nptsmax.

• The spacing is specified as unrestricted, even or even power of 2.

Modes for errmax and nptsmax

• If both errmax and nptsmax are specified

The returned breakpoints will meet both criteria if possible. The errmax
parameter is given priority, and nptsmax is ignored, if both criteria cannot be
met with the specified spacing.

• If only errmax is specified

The breakpoints that meet the error criteria, and have the least number of
points are returned.

• If only nptsmax is specified

The breakpoints that require nptsmax or fewer, and give the smallest worst
case error are returned

Output Value

xdata The breakpoints for the lookup table

ydata The ideal function applied to the
breakpoints

errworst The worst case error, which is the
maximum absolute error between the ideal
function and the approximation given by
the lookup table
8-19

fixpt_look1_func_approx
Modes for Spacing
If no spacing is specified, and more than one spacing method meets the
requirements given by errmax and nptsmax, power of 2 spacing is chosen over
even spacing, which in turn is chosen over uneven spacing. This case occurs
when the errmax and nptsmax are both specified, but typically does not occur
when only one is specified:

• If unrestricted is entered, the function chooses the spacing that provides
the best optimization.

• If even is entered, the function chooses an evenly spaced set of points,
including the pow2 spacing.

• If pow2 spacing is entered, the function chooses an even power of 2 spaced set
of points.

Note The global optimum may not be found. The worst case error can depend
on fixed-point calculations, which are highly nonlinear. Furthermore, the
optimization approach is heuristic.

The spacing you choose depends on the parameters you want to optimize:
execution speed, function approximation error, ROM usage, and RAM usage:

• The execution speed depends on the bisection search, and the interpolation
method.

• The error depends on how accurately the method approximates the
nonuniform curvature of the function.

• The ROM usage depends on the amount of data and command ROM used.

• The RAM usage depends on how much global and stack RAM is used.

When the lookup table has even power of two spacing, division is replaced by a
bit shift. As a result, the execution speed is faster than for evenly spaced data.

Using the Approximation Function

1 Choose a function and use the eval('funcstr'); command to view the
function before creating the lookup table.

2 Define the remaining inputs.
8-20

fixpt_look1_func_approx
3 Run the fixpt_look1_func_approx function.

4 Use the fixpt_look1_func_plot function to plot the function from the
selected breakpoints, and to calculate the error and the number of points
used.

5 Vary the inputs to produce sets of breakpoints that generate functions with
varying number of points required and worst case error.

6 Compare the number of points required and worst case error from various
runs to choose the best set of breakpoints.

Calculating the Output Function
To calculate the function, use the returned breakpoints with

• The eval function

• A function lookup table. The x values are the breakpoints from the
fixpt_look1_func_approx function, and the y values can be supplied using
the eval function.

See Chapter 7, “Tutorial: Producing Lookup Table Data” for a tutorial on using
fixpt_look1_func_approx.
8-21

fixpt_look1_func_approx
The following table summarizes the effect of spacing on the execution speed,
error, and memory used.

Table 8-1: Comparison of the Spacing Options

Parameter Even Power of Two
Spaced Data

Evenly Spaced Data Unevenly Spaced Data

Execution
Speed

The execution speed is
the fastest. The position
search and
interpolation are the
same as for evenly
spaced data. However,
to increase the speed
more, the position
search is replaced by a
bit shift, and the
interpolation is
replaced with a bit
mask.

The execution speed is
faster then that for
unevenly spaced data
because the position
search is faster and the
interpolation requires a
simple division.

The execution speed is the
slowest of the different
spacings because the
position search is slower,
and the interpolation
requires more operations.

Error The error can be larger
than that for unevenly
spaced data because
approximating a
function with
nonuniform curvature
requires more points to
achieve the same
accuracy.

The error can be larger
than that for unevenly
spaced data because
approximating a
function with
nonuniform curvature
requires more points to
achieve the same
accuracy.

The error can be smaller
because approximating a
function with nonuniform
curvature requires fewer
points to achieve the same
accuracy.

ROM
Usage

Uses less command
ROM, but more data
ROM.

Uses less command
ROM, but more data
ROM.

Uses more command ROM,
and less data ROM.

RAM
Usage

Not significant. Not significant. Not significant.
8-22

fixpt_look1_func_approx
Examples This example produces a lookup table for a sine function. The inputs for the
example are as follows:

funcstr = 'sin(2*pi*x)';
xmin = 0;
xmax = 0.25;
xdt = ufix(16);
xscale = 2^-16;
ydt = sfix(16);
yscale = 2^-14;
rndmeth = 'Floor';
errmax = 2^-10;
spacing = 'pow2';

To create the lookup table, type

[xdata, ydata, errWorst]=fixpt_look1_func_approx(funcstr,
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

The brackets [] are a place holder for the nptsmax parameter, which is not used
in this example.

You can then plot the ideal function, the approximation, and the errors by
typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

The fixpt_look1_func_plot function produces a plot of the fixed-point sine
function, using these breakpoints, and a plot of the error between the ideal
function and the fixed-point function. The maximum absolute error and the
number of points required are listed with the plot. The error drops to zero at a
breakpoint, and increases between breakpoints due to the difference in
curvature of the ideal function and the line drawn between breakpoints.

The resulting plots are shown below.
8-23

fixpt_look1_func_approx
The lookup table requires 33 points to achieve a maximum absolute error of
2^-11.3922.

See Also fixpt_look1_func_plot
8-24

fixpt_look1_func_plot
8fixpt_look1_func_plotPurpose Plot a function with x values generated by the fixpt_look1_func_approx
function

Syntax errworst=fixpt_look1_func_plot(xdata,ydata,'funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_look1_func_plot(xdata,ydata,'funcstr',xmin,xmax,xdt,xscale,
ydt,yscale,rndmeth) plots a lookup table approximation function and its
error from the ideal function. You can use the fixpt_look1_func_approx
function to generate xdata and ydata, the X and Y data points for the lookup
table. The function returns the maximum absolute error as a variable
errworst. The inputs are as follows.

The fixpt_look1_func_approx function applies the ideal function to the
points in xdata to produce ydata. While this is the easiest way to generate
ydata, you are not required to use these values for ydata as input for the
fixpt_look1_func_approx function. Choosing different values for ydata can,
in some cases, produce a lookup table with a smaller maximum absolute error.

Input Value

xdata x values for the lookup table

ydata y values for the lookup table

'funcstr' Function of x

xmin Minimum input of interest

xmax Maximum input of interest

xdt Data type of x

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by the blockset: 'Toward Zero',
'Nearest', 'Floor', 'Ceiling'
8-25

fixpt_look1_func_plot
See Chapter 7, “Tutorial: Producing Lookup Table Data” for a tutorial on using
the function fixpt_look1_func_plot. For an example of the function, see the
reference page for the fixpt_look1_func_approx function.

See Also fixpt_look1_func_approx
8-26

fixpt_restore_links
8fixpt_restore_linksPurpose Restore links for fixed-point blocks

Syntax res = fixpt_restore_links
res = fixpt_restore_links('SystemName')
res = fixpt_restore_links('SystemName','AutoSave')

Description res = fixpt_restore_links restores broken links for the fixed-point blocks
contained in the model or subsystem specified by bdroot. By default, the
models and libraries containing restored block links are left open and unsaved.
res contains the names of the blocks that had broken links restored.

res = fixpt_restore_links('SystemName') restores links for the fixed-point
blocks contained in the model or subsystem specified by SystemName.

res = fixpt_restore_links('SystemName','AutoSave') determines the
state of the models or subsystems containing restored block links. If AutoSave
is on, the models or subsystems are saved and closed. If AutoSave is off, the
models or subsystems are unsaved and left open.

Remarks Breaking library links to fixed-point blocks will almost certainly produce an
error when you attempt to run the model. If broken links exist, you will likely
uncover them when upgrading to the latest release of the Fixed-Point Blockset.
8-27

fixpt_set_all
8fixpt_set_allPurpose Set a property for every fixed-point block in a subsystem

Syntax fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)

Description fixpt_set_all sets the property fixptPropertyName of every applicable block
in the model or subsystem SystemName to the value fixptPropertyValue.

Example To set every fixed-point block in a model called Filter_1 to round towards the
floor and to saturate upon overflow, type

fixpt_set_all('Filter_1','RndMeth','Floor')
fixpt_set_all('Filter_1','DoSatur','on')
8-28

float
8floatPurpose Create a MATLAB structure describing a floating-point data type

Syntax a = float('single')
a = float('double')
a = float(TotalBits, ExpBits)

Description float('single') returns a MATLAB structure that describes the data type of
an IEEE single (32 total bits, 8 exponent bits).

float('double') returns a MATLAB structure that describes the data type of
an IEEE double (64 total bits, 11 exponent bits).

float(TotalBits, ExpBits) returns a MATLAB structure that describes a
nonstandard floating-point data type that mimics the IEEE style. That is, the
numbers are normalized with a hidden leading one for all exponents except the
smallest possible exponent. However, the largest possible exponent might not
be treated as a flag for Infs and NaNs.

float is automatically called when a floating-point number is specified in a
block dialog box.

Note Unlike fixed-point numbers, floating-point numbers are not subject to
any specified scaling.

Example Define a nonstandard, IEEE-style, floating-point data type with 31 total bits
(excluding the hidden leading one) and 9 exponent bits:

a = float(31,9)
a =
 Class: 'FLOAT'
 MantBits: 21
 ExpBits: 9

See Also sfix, sfrac, sint, ufix, ufrac, uint
8-29

fpupdate
8fpupdatePurpose Update obsolete fixed-point blocks from previous Fixed-Point Blockset releases
to current fixed-point blocks

Syntax fpupdate('model')
fpupdate('model',blkprompt)
fpupdate('model',blkprompt,varprompt)
fpupdate('model',blkprompt,varprompt,muxprompt)
fpupdate('model',blkprompt,varprompt,muxprompt,message)

Description fpupdate('model') replaces all obsolete fixed-point blocks contained in model
with current fixed-point blocks. The model must be opened prior to calling
fpupdate.

fpupdate('model',blkprompt) prompts you for replacement of obsolete
blocks. If blkprompt is 0 (the default), you will not be prompted. If blkprompt
is 1, you will have these three options:

• y (default) replaces the block.

• n does not replace the block.

• a replaces all blocks without further prompting.

fpupdate('model',blkprompt,varprompt) gives you the option of updating
variables that appear in each block’s dialog box with their actual numerical
values. Note that such an update is possible only if the variables can be
evaluated in the MATLAB workspace. If varprompt is 1 (the default), you are
prompted for each variable found in the block diagram. If varprompt is 0, all
variables are automatically updated without prompting.

fpupdate('model',blkprompt,varprompt, muxprompt) allows you to update
the input size parameters of the Mux and Demux blocks found in model. The
input sizes of these blocks may need to be updated to account for the mismatch
between the old and new fixed-point data representations. In the old
representation, each number had a width of 2. In the new representation, each
number has a width of 1. To update Mux and Demux blocks that have only
fixed-point inputs, the vector that specifies the input size should be divided by
2. If muxprompt is 1 (the default), each Mux and Demux block found in model is
updated. If muxprompt is 0, the Mux and Demux blocks are automatically
updated without prompting.
8-30

fpupdate
fpupdate('model',blkprompt,varprompt,muxprompt,message) allows you to
show or suppress any warning or update messages generated during the
update process. If message is 1 (the default), all messages are displayed. If
message is 0, all messages are suppressed.

fpupdate calls addterms to terminate any unconnected input or output ports
by attaching Ground or Terminator blocks, respectively.

Example To see how fpupdate works, convert the obsolete model
fixpoint/obsolete/fpex1.mdl:

fpex1
fpupdate('fpex1')
8-31

fxptdlg
8fxptdlgPurpose Invokes the Fixed-Point Settings interface

Syntax fxptdlg('model')

Description fxptdlg('model') brings up the Fixed-Point Settings interface for the
MDL-file model. You can also invoke this interface by

• Selecting Fixed-Point settings in the Tools menu in the model window

• Right-clicking in any subsystem and selecting Fixed-Point settings from
the menu that pops up

• Clicking on the Fixed-Point GUI block, which is included with all blockset
demos

The Fixed-Point Settings interface provides convenient access to global data
type overrides and logging settings, the logged data, the automatic scaling
script, and the Plot System interface. You can invoke the Fixed-Point Settings
interface for any system or subsystem, and it controls the model specified by
the Select current system parameter.

For each block in the model that logs data, the Fixed-Point Settings interface
displays its name, minimum simulation value, maximum simulation value,
data type, and scaling in the Simulation data logged for current system
pane. Additionally, if a signal saturates or overflows, a message is displayed for
the associated block indicating how many times saturation or overflow
occurred. You can display a block’s dialog box by double-clicking on the
appropriate block entry in this pane.
8-32

fxptdlg
Parameters
and Dialog Box

Select current system
Displays the names of all systems and subsystems in currently opened
models in a hierarchical format. The menu can be expanded and collapsed
using the + and - signs. The information displayed in the rest of the
Fixed-Point Settings interface applies to the subsystem designated by this
parameter.

Logging mode
Controls which blocks log data. The value of this parameter for parent
systems controls logging for all child subsystems, unless Use local
settings is selected.

•Use local settings—Data is logged according to the value of this
parameter set for each subsystem. Otherwise, settings for parent systems
always override those of child systems.

 Run button

 Pause button

Stop button

Show plot dialog button
8-33

fxptdlg
•Min, max and overflow—Minimum value, maximum value, and
overflow data is logged for all blocks in the current system or subsystem.

•Overflow—Only overflow data is logged for all blocks in the current
system or subsystem.

•Force off—No data is logged for any block in the current system or
subsystem. Use this selection to work with models containing fixed-point
enabled blocks if you do not have a Fixed-Point Blockset license.

Data type override
Controls data type override. The value of this parameter for parent
systems controls data type override for all child subsystems, unless Use
local settings is selected.

•Use local settings—Data types are overridden according to the value
of this parameter set for each subsystem. Otherwise, settings for parent
systems override those of child systems.

•Scaled doubles—The output data type of all blocks in the current
system or subsystem is overridden with doubles, however the scaling and
bias specified in the mask of each block is maintained.

•True doubles—The output data type of all blocks in the current system
or subsystem is overridden with true doubles. The overridden values have
no scaling or bias.

•True singles—The output data type of all blocks in the current system
or subsystem is overridden with true singles. The overridden values have
no scaling or bias.

•Force off—No data type override is performed on any block in the
current system or subsystem.

Set this parameter to True doubles or True singles to work with models
containing fixed-point enabled blocks if you do not have a Fixed-Point
Blockset license.

Block Name
Displays blocks that log data in the selected system or subsystem. The
block path is described in terms of the blockset model name. The minimum
value, maximum value, data type, and scaling are shown opposite each
block name when the simulation is run.
8-34

fxptdlg
Logging Type
Controls the logging type.

•Overwrite log—Information in the Simulation data logged for
current system pane is completely cleared before new logging data is
entered.

•Merge log—New logging data is merged with any information previously
appearing in the Simulation data logged for current system pane.

Safety margin
The Safety Margin parameter is used as part of the automatic scaling
procedure. Before automatic scaling is performed, you must run the
simulation to collect min/max data. To learn how to do this, refer to
Chapter 6, “Tutorial: Feedback Controller Simulation.”

Simulation values are multiplied by the factor designated by this
parameter, allowing you to specify a range different from that defined by
the maximum and minimum values logged to the workspace. For example,
a value of 55 specifies that a range at least 55 percent larger is desired. A
value of -15 specifies that a range up to 15 percent smaller is acceptable.

The Fixed-Point Settings interface contains eight buttons:

• Run runs the model and updates the display with the latest simulation
information.

• Pause pauses the simulation.
• Stop stops the simulation from running.
• Show plot dialog invokes the Plot System interface, which displays any To

Workspace, Outport, or Scope blocks found in the model.
• Open System invokes the Fixed-Point Settings interface for the system or

subsystem displayed in the Select current system parameter.
• Autoscale Blocks invokes the automatic scaling script autofixexp.
• Close closes the interface.
• Help displays the HTML-based help for the fxptdlg function.

The Plot System interface is shown below. In this example it is displaying
variable names that correspond to Scope block outputs from the
fxpdemo_feedback demo.
8-35

fxptdlg
To plot the simulation results, select one or more variable names, and then
select the appropriate plot button:

• Plot Signals plots the raw signal data for the selected variable(s).

• Plot Doubles plots doubles data for the selected variable(s). Doubles are
generated when the Data type override parameter is set to True doubles.

• Plot Both plots both raw signal data and doubles data for the selected
signal(s). Note that the doubles override does not overwrite the raw data.

• Cancel allows you to exit the interface without plotting.

Example To learn how to use the Fixed-Point Settings interface, refer to Chapter 6,
“Tutorial: Feedback Controller Simulation.”

See Also autofixexp, showfixptsimerrors, showfixptsimranges
8-36

num2fixpt
8num2fixptPurpose Quantize a value using a Fixed-Point Blockset representation

Syntax outValue = num2fixpt(OrigValue,FixPtDataType,FixPtScaling,...
RndMeth, DoSatur)

Description num2fixpt casts a real-world value represented in floating-point doubles,
OrigValue, as a fixed-point number, outValue.

Example The command

num2fixpt(Pi,sfix(8),2^-5,'Nearest',on)

returns Pi as a signed 8-bit fixed-point number with scaling of 2^-5. Rounding
is towards the nearest representable value, and overflows saturate.

See Also fixptbestexp, fixptbestprec, float, sfix

OrigValue Identifies the real-world value to be cast to fixed-point.

FixPtDataType Designates the desired fixed-point data type of outValue.

FixPtScaling Indicates the scaling of the output in either Slope or [Slope
Bias] format.

RndMeth Specifies the rounding technique to be used on the output. If
FixPtDataType is FLOAT, then RndMeth is ignored.

DoSatur Indicates whether the output should be saturated to the
minimum or maximum representable value upon underflow
or overflow. If FixPtDataType is FLOAT, then DoSatur is
ignored.
8-37

sfix
8sfixPurpose Create a MATLAB structure describing a signed generalized fixed-point data
type

Syntax a = sfix(TotalBits)

Description sfix(TotalBits) returns a MATLAB structure that describes the data type of
a signed generalized fixed-point number with a word size given by TotalBits.

sfix is automatically called when a signed generalized fixed-point data type is
specified in a block dialog box.

Note A default radix point is not included in this data type description.
Instead, the scaling must be explicitly defined in the block dialog box.

Example Define a 16-bit signed generalized fixed-point data type:

a = sfix(16)
a =
 Class: 'FIX'
 IsSigned: 1
 MantBits: 16

See Also float, sfrac, sint, ufix, ufrac, uint
8-38

sfrac
8sfracPurpose Create a MATLAB structure describing a signed fractional data type

Syntax a = sfrac(TotalBits)
a = sfrac(TotalBits, GuardBits)

Description sfrac(TotalBits) returns a MATLAB structure that describes the data type
of a signed fractional number with a word size given by TotalBits.

sfrac(TotalBits, GuardBits) returns a MATLAB structure that describes
the data type of a signed fractional number. The total word size is given by
TotalBits with GuardBits bits located to the left of the sign bit.

sfrac is automatically called when a signed fractional data type is specified in
a block dialog box.

The default radix point for this data type is assumed to lie immediately to the
right of the sign bit. If guard bits are specified, they lie to the left of the radix
point in addition to the sign bit.

Example Define an 8-bit signed fractional data type with 4 guard bits. Note that the
range of this number is -24 = -16 to (1 – 2(1 - 8)).24 = 15.875:

a = sfrac(8,4)
a =
 Class: 'FRAC'
 IsSigned: 1
 MantBits: 8
 GuardBits: 4

See Also float, sfix, sint, ufix, ufrac, uint
8-39

showfixptsimerrors
8showfixptsimerrorsPurpose Display overflows from the last simulation

Syntax showfixptsimerrors

Description The showfixptsimerrors script displays any overflows from the last
fixed-point simulation. This information is also visible in the Fixed-Point
Settings interface.

See Also fxptdlg, showfixptsimranges
8-40

showfixptsimranges
8showfixptsimrangesPurpose Display the logged maximum and minimum values from the last fixed-point
simulation.

Syntax showfixptsimranges

Description The showfixptsimranges script displays the logged maximum and minimum
values from the last fixed-point simulation.

The logged data is stored in the FixPtSimRanges cell array, which can be
accessed by the autofixexp automatic scaling script.

See Also autofixexp, fxptdlg, showfixptsimerrors
8-41

sint
8sintPurpose Create a MATLAB structure describing a signed integer data type

Syntax a = sint(TotalBits)

Description sint(TotalBits) returns a MATLAB structure that describes the data type of
a signed integer with a word size given by TotalBits.

sint is automatically called when a signed integer is specified in a block dialog
box.

The default radix point for this data type is assumed to lie to the right of all
bits.

Example Define a 16-bit signed integer data type:

a = sint(16)
a =
 Class: 'INT'
 IsSigned: 1
 MantBits: 16

See Also float, sfix, sfrac, ufix, ufrac, uint
8-42

ufix
8ufixPurpose Create a MATLAB structure describing an unsigned generalized fixed-point
data type

Syntax a = ufix(TotalBits)

Description ufix(TotalBits) returns a MATLAB structure that describes the data type of
an unsigned generalized fixed-point data type with a word size given by
TotalBits.

ufix is automatically called when an unsigned generalized fixed-point data
type is specified in a block dialog box.

Note The default radix point is not included in this data type description.
Instead, the scaling must be explicitly defined in the block dialog box.

Example Define a 16-bit unsigned generalized fixed-point data type:

a = ufix(16)
a =
 Class: 'FIX'
 IsSigned: 0
 MantBits: 16

See Also float, sfix, sfrac, sint, ufrac, uint
8-43

ufrac
8ufracPurpose Create a MATLAB structure describing an unsigned fractional data type

Syntax a = ufrac(TotalBits)
a = ufrac(TotalBits, GuardBits)

Description ufrac(TotalBits) returns a MATLAB structure that describes the data type
of an unsigned fractional number with a word size given by TotalBits.

ufrac(TotalBits, GuardBits) returns a MATLAB structure that describes
the data type of an unsigned fractional number. The total word size is given by
TotalBits with GuardBits bits located to the left of the radix point.

ufrac is automatically called when an unsigned fractional data type is
specified in a block dialog box.

The default radix point for this data type is assumed to lie immediately to the
left of all bits. If guard bits are specified, then they lie to the left the default
radix point.

Example Define an 8-bit unsigned fractional data type with 4 guard bits. Note that the
range of this number is from 0 to (1 – 2-8).24 = 15.9375:

a = ufrac(8,4)
a =
 Class: 'FRAC'
 IsSigned: 0
 MantBits: 8
 GuardBits: 4

See Also float, sfix, sfrac, sint, ufix, uint
8-44

uint
8uintPurpose Create a MATLAB structure describing an unsigned integer data type

Syntax a = uint(TotalBits)

Description uint(TotalBits) returns a MATLAB structure that describes the data type of
an unsigned integer with a word size given by TotalBits.

uint is automatically called when an unsigned integer is specified in a block
dialog box.

The default radix point for this data type is assumed to lie to the right of all
bits.

Example Define a 16-bit unsigned integer:

a = uint(16)
a =
 Class: 'INT'
 IsSigned: 0
 MantBits: 16

See Also float, sfix, sfrac, sint, ufix, ufrac
8-45

uint
8-46

9

Block Reference

Blocks—By Category (p. 9-2) Tables of Fixed-Point Blockset blocks by category

Overview of the Block Reference Pages
(p. 9-12)

An overview of the types of information presented in each
Fixed-Point Blockset block’s reference page

The Block Dialog Box (p. 9-15) An introduction to the types of information presented in
each Fixed-Point Blockset block’s dialog box

Common Block Features (p. 9-16) A discussion of the features and functionalities common to
most or all Fixed-Point Blockset blocks

9 Block Reference

9-2
Blocks—By Category
The Fixed-Point Blockset blocks are divided into the following sublibraries:

“Bits” on page 9-3 Blocks that manipulate the bits of a signal

“Calculus” on page 9-3 Blocks that perform calculus functions

“Data Type” on page 9-5 Blocks that manipulate or convert the data
type of a signal

“Delays & Holds” on
page 9-5

Blocks that delay or hold a signal

“Edge Detect” on page 9-7 Blocks that detect a change in a signal or a
signal edge

“Filters” on page 9-7 Blocks that filter a signal

“Logic & Comparison” on
page 9-8

Blocks that perform logic and comparison
functions

“LookUp” on page 9-8 Blocks that implement lookup tables

“Math” on page 9-9 Blocks that perform math functions

“Nonlinear” on page 9-10 Blocks that limit or truncate a signal

“Select” on page 9-10 Blocks that select which input or which part of
an input gets passed on

“Sources” on page 9-11 Blocks that create a signal

Blocks—By Category
Bits

Calculus

Bit Clear Set the specified bit of the stored integer to zero

Bit Set Set the specified bit of the stored integer to one

Bitwise Operator Perform the specified bitwise operation on the
inputs

Shift Arithmetic Arithmetically shift the bits and/or the radix point
of a signal

Accumulator Compute a cumulative sum

Accumulator Resettable Compute a cumulative sum with external Boolean
reset

Accumulator Resettable
Limited

Compute a limited cumulative sum with external
Boolean reset

Derivative Compute a discrete time derivative

Difference Calculate the change in a signal over one time step

Integrator Backward Perform discrete-time integration of a signal using
the backward method

Integrator Backward
Resettable

Perform discrete-time integration of a signal using
the backward method, with external Boolean reset

Integrator Backward
Resettable Limited

Perform discrete-time limited integration of a
signal using the backward method, with external
Boolean reset

Integrator Forward Perform discrete-time integration of a signal using
the forward method

Integrator Forward
Resettable

Perform discrete-time integration of a signal using
the forward method, with external Boolean reset

Integrator Forward
Resettable Limited

Perform discrete-time limited integration of a
signal using the forward method, with external
Boolean reset
9-3

9 Block Reference

9-4
Integrator Trapezoidal Perform discrete-time integration of a signal using
the trapezoidal method

Integrator Trapezoidal
Resettable

Perform discrete-time integration of a signal using
the trapezoidal method, with external Boolean
reset

Integrator Trapezoidal
Resettable Limited

Perform discrete-time limited integration of a
signal using the trapezoidal method, with external
Boolean reset

Sample Rate Probe Output weighted sample rate

Sample Time Add Add the input signal to weighted sample time

Sample Time Divide Divide the input signal by weighted sample time

Sample Time Multiply Multiply the input signal by weighted sample time

Sample Time Probe Output weighted sample time

Sample Time Subtract Subtract weighted sample time from the input
signal

Blocks—By Category
Data Type

Delays & Holds

Conversion Convert from one Fixed-Point Blockset data type
to another

Conversion Inherited Convert from one Fixed-Point Blockset data type
to another, and inherit the data type and scaling

Data Type Duplicate Set all inputs to the same data type

Data Type Propagation Configure the data type and scaling of the
propagated signal based on information from the
reference signals

Gateway In Convert a Simulink data type to a Fixed-Point
Blockset data type

Gateway In Inherited Convert a Simulink data type to a Fixed-Point
Blockset data type, and inherit the data type and
scaling

Gateway Out Convert a Fixed-Point Blockset data type to a
Simulink data type

Scaling Strip Remove scaling and map to a built in integer

Integer Delay Delay a signal N sample periods

Tapped Delay Delay a scalar signal multiple sample periods and
output all the delayed versions

Unit Delay Delay a signal one sample period

Unit Delay Enabled Delay a signal one sample period, if the external
enable signal is on

Unit Delay Enabled
External IC

Delay a signal one sample period, if the external
enable signal is on, with an external initial
condition

Unit Delay Enabled
Resettable

Delay a signal one sample period, if the external
enable signal is on, with an external Boolean reset
9-5

9 Block Reference

9-6
Unit Delay Enabled
Resettable External IC

Delay a signal one sample period, if the external
enable signal is on, with an external Boolean reset
and initial condition

Unit Delay External IC Delay a signal one sample period, with an external
initial condition

Unit Delay Resettable Delay a signal one sample period, with an external
Boolean reset

Unit Delay Resettable
External IC

Delay a signal one sample period, with an external
Boolean reset and initial condition

Unit Delay With Preview
Enabled

Output the signal and the signal delayed by one
sample period, if the external enable signal is on

Unit Delay With Preview
Enabled Resettable

Output the signal and the signal delayed by one
sample period, if the external enable signal is on,
with an external Boolean reset

Unit Delay With Preview
Enabled Resettable
External RV

Output the signal and the signal delayed by one
sample period, if the external enable signal is on,
with an external RV reset

Unit Delay With Preview
Resettable

Output the signal and the signal delayed by one
sample period, with an external Boolean reset

Unit Delay With Preview
Resettable External RV

Output the signal and the signal delayed by one
sample period, with an external RV reset

Zero-Order Hold Implement a zero-order hold of one sample period

Blocks—By Category
Edge Detect

Filters

Detect Change Detect a change in a signal’s value

Detect Decrease Detect a decrease in a signal’s value

Detect Fall Negative Detect a falling edge when the signal’s value
decreases to a strictly negative value, and its
previous value was nonnegative

Detect Fall Nonpositive Detect a falling edge when the signal’s value
decreases to a nonpositive value, and its previous
value was strictly positive

Detect Increase Detect an increase in a signal’s value

Detect Rise Nonnegative Detect a rising edge when a signal’s value
increases to a nonnegative value, and its previous
value was strictly negative

Detect Rise Positive Detect a rising edge when a signal’s value
increases to a strictly positive value, and its
previous value was nonpositive

Filter Direct Form I Implement a Direct Form I realization of a filter

Filter Direct Form I Time
Varying

Implement a time varying Direct Form I
realization of a filter

Filter Direct Form II Implement a Direct Form II realization of a filter

Filter Direct Form II
Time Varying

Implement a time varying Direct Form II
realization of a filter

Filter First Order Implement a discrete-time first order filter

Filter Lead or Lag Implement a discrete-time lead or lag filter

Filter Real Zero Implement a discrete time filter that has a real
zero and no pole
9-7

9 Block Reference

9-8
Logic & Comparison

LookUp

FIR Implement a fixed-point finite impulse response
(FIR) filter

State-Space Implement discrete-time state space

Compare to Constant Determine if a signal is equal to the specified
constant

Compare To Zero Determine if a signal is equal to zero

Interval Test Determine if a signal is in a specified interval

Interval Test Dynamic Determine if a signal is in a specified interval

Logical Operator Perform the specified logical operation on the
inputs

Relational Operator Perform the specified relational operation on the
inputs

Cosine Implement a cosine function in fixed-point using a
lookup table approach that exploits quarter wave
symmetry

Look-Up Table Approximate a one-dimensional function using a
selected lookup method

Look-Up Table Dynamic Provide a region of zero output

Look-Up Table (2-D) Approximate a two-dimensional function using a
selected lookup method

Sine Implement a sine function in fixed-point using a
lookup table approach that exploits quarter wave
symmetry

Blocks—By Category
Math
Abs Output the absolute value of the input

Add Add two inputs

Decrement Real World Decrease the real world value of the signal by one

Decrement Stored
Integer

Decrease the stored value of a signal by one

Decrement Time To Zero Decrease the real world value of the signal by the
sample time, but only to zero

Decrement To Zero Decrease the real world value of a signal by one,
but only to zero

Divide Divide the first input by the second input

Dot Product Generate the dot product of two input vectors

Gain Multiply the input by a constant

Increment Real World Increase the real world value of the signal by one

Increment Stored Integer Increase the stored integer value of a signal by one

Matrix Gain Multiply the input by a constant matrix

MinMax Determine the minimum or maximum input value

MinMax Running
Resettable

Determine the minimum or maximum of a signal
over time

Multiply Multiply two inputs

Multiply Matrix Multiply two input matrices

Product Multiply or divide inputs

Product of Elements Collapse the input vector by multiplying all
elements

Product of Elements
Inverted

Collapse the input vector by dividing all elements

Subtract Subtract the second input from the first input

Sum Add or subtract inputs
9-9

9 Block Reference

9-1
Nonlinear

Select

Sum of Elements Collapse the input vector by adding all elements

Sum of Elements
Negated

Collapse the input vector by subtracting all
elements

Unary Minus Negate the input

Dead Zone Provide a region of zero output

Dead Zone Dynamic Set the input within the bounds to zero

Rate Limiter Limit the rising and falling rates of the signal

Rate Limiter Dynamic Limit the rising and falling rates of the signal

Relay Switch output between two constants

Saturation Bound the range of the input

Saturation Dynamic Bound the range of the input

Sign Indicate the sign of the input

Wrap To Zero Set output to zero if input is above threshold

Index Vector Output the element of the input vector that
corresponds to the value of the control input

Multi-Port Switch Switch output between different inputs based on
the value of the first input

Switch Switch output between the first input and the
third input based on the value of the second input
0

Blocks—By Category
Sources
Constant Generate a constant value

Counter Free Count up and overflow back to zero after the
maximum value possible is reached for the
specified number of bits

Counter Limited Count up, and wrap back to zero after outputting
the specified upper limit

Repeating Sequence
Interpolated

Output a discrete-time sequence and repeat,
interpolating between data points

Repeating Sequence
Stair

Output a discrete time sequence and repeat
9-11

9 Block Reference

9-1
Overview of the Block Reference Pages
To open the main Fixed-Point library, type

fixpt

at the MATLAB prompt. This opens the main library window as shown below.

The main library contains twelve sublibraries. To open a sublibrary,
double-click on its icon. These tables describe how the Fixed-Point Blockset
blocks are grouped into the sublibraries:

• “Bits” on page 9-3

• “Calculus” on page 9-3

• “Data Type” on page 9-5

• “Delays & Holds” on page 9-5

• “Edge Detect” on page 9-7

• “Filters” on page 9-7
2

Overview of the Block Reference Pages
• “Logic & Comparison” on page 9-8

• “LookUp” on page 9-8

• “Math” on page 9-9

• “Nonlinear” on page 9-10

• “Select” on page 9-10

• “Sources” on page 9-11

Fixed-Point Blockset block reference pages appear in alphabetical order and
contain some or all of this information:

• The block name and icon

• The purpose of the block

• A description of the block

• Additional remarks about block usage

• The data types and numeric type (complex or real) accepted and generated
by the block

• The block parameter dialog box, including a brief description of each
parameter

• The rules for some or all of these topics, as they apply to the block:

- Converting block parameters from double precision numbers to
Fixed-Point Blockset data types

- Converting the input data type(s) to the output data type

- Performing block operations between inputs and parameters

• An example using the block

• The block characteristics, including some or all of these, as they apply to the
block:

- Input Port(s)—the data type(s) accepted by the block and whether the
inputs can be a scalar or vector

- Output Port(s)—the data type(s) produced by the block and whether the
outputs can be a scalar or vector

- Dimensionalized—whether the block accepts and/or generates
multidimensional signal arrays. For more information, see “Signal Basics”
in the Using Simulink documentation.
9-13

9 Block Reference

9-1
- Direct Feedthrough—whether the block or any of its ports has direct
feedthrough

- Sample Time—how the block’s sample time is determined, whether by the
block itself or inherited from the block that drives it or is driven by it

- Scalar Expansion—whether or not scalars are expanded to vectors

- States—the number of discrete states

- Vectorized—whether or not the block accepts and/or generates vector
signals

- Zero Crossing—whether the block detects zero-crossing events. For more
information, see “Zero Crossing Detection” in the Using Simulink
documentation.
4

The Block Dialog Box
The Block Dialog Box
You configure Fixed-Point Blockset blocks with a parameter dialog box. The
parameter dialog box provides you with

• The name and block type at the top of the dialog box

• A brief description of the block’s behavior below the title

• Zero or more editable parameter fields, check boxes, or parameter lists below
the description. You specify the parameter values using valid MATLAB
expressions.

• A row of four buttons labeled OK, Cancel, Help, and Apply at the bottom of
the dialog box. The OK button sets the current parameter values and closes
the dialog box. The Cancel button reverts all the parameter values back to
their values at the time the dialog box was opened, losing any changes you
made. The Help button displays the HTML-based reference information for
the block. The Apply button sets the current parameter values, but does not
close the dialog box.

Simulink stores the strings entered in these fields and passes them to
MATLAB for evaluation when a simulation is started. If MATLAB variables
are used, the simulation uses the values that exist in the workspace at the start
of the simulation. These variables are not necessarily the same as when the
variables are entered into the dialog box fields. If a simulation is running when
a parameter is changed, MATLAB evaluates the parameter as soon as you click
the OK or Apply button.
9-15

9 Block Reference

9-1
Common Block Features
For convenience, the following sections describe common block features:

• “Block Parameters” on page 9-16

• “Block Icon Labels” on page 9-20

• “Port Data Type Display” on page 9-21

Block Parameters
Many Fixed-Point Blockset blocks use the same parameters, which you
configure through the block dialog box. Some common block parameters are
associated with these blockset features:

• Parameter and output data type selection

• Parameter and output scaling selection

• Autoscaling

• Rounding

• Overflow handling

Block-specific parameters are described in the block reference pages.

Selecting the Data Type and Scaling
For many fixed-point blocks, you need to associate data type and scaling
information with numerical parameters and output signals. Fixed-Point
Blockset blocks often provide you with the option of inheriting information
from an input signal, from the next block downstream, or by an internal rule.
Alternatively, you can often specify the data type and scaling yourself in the
dialog. You control this option with the Output data type mode and
Parameter data type mode parameters. These drop-down lists often support
one or more of the following four choices:

• Specify via dialog—You explicitly specify the output data type and scaling
with the Output data type and Output scaling value parameters, or the
parameter data type and scaling with the Parameter data type and
Parameter scaling value parameters.

• Inherit via back propagation—Specified data type and scaling
information is inherited by backpropagation from the next block
downstream. In many cases, you will find that the Data Type Propagation
6

Common Block Features
block provides you with the most flexibility when back propagating the data
type.

• Inherit via internal rule—The specified data type information is
inherited from the input(s). The goal of the inheritance rule is to select the
“natural” data type and scaling for the output. The specific rule that is used
depends on the block operation.

For example, if you are multiplying two signed 16-bit signals, the Product
block produces the natural output of a signed 32-bit data type. An
“unnatural” output is produced if the inputs have different signs and
different sizes. In this case, some trial and error may be required to achieve
satisfactory results.

If you are adding signals, two natural choices for the output data type and
scaling are possible: to preserve the precision or to prevent overflow.
However, blocks only support one rule. For example, the Sum block
preserves precision. If your goal is to prevent overflow, then you should
manually configure the data type and scaling.

• Same as input—The output data type and scaling are the same as the input
signal.

In addition, the Output data type mode and Parameter data type mode
parameters often include built-in data types in their drop-down lists for easy
selection. Built-in data types can also be entered into the Output data type or
Parameter data type parameter if Specify via dialog is selected for the
Output data type mode or Parameter data type mode parameter.

The supported fixed-point data types that may be entered into the Output data
type or Parameter data type parameter and their default scalings are shown
below.

Output Data Types and Default Scaling

Data Type Description Default Scaling

float Floating-point number None

sfix Signed generalized fixed-point number None

sfrac Signed fractional number Right of the sign bit
9-17

9 Block Reference

9-1
In the Fixed-Point Blockset, the word size in bits of fixed-point data types is
given as an argument to the data type. For example, sfix(16) specifies a 16-bit
signed generalized fixed-point number. Word sizes from 1 to 128 bits are
supported in simulation.

Floating-point data types are IEEE-style and are specified as
float('single') for single-precision numbers and float('double') for
double-precision numbers. Nonstandard IEEE-style numbers are specified as
float(TotalBits,ExpBits) where TotalBits is the total number of physical
bits and ExpBits is the number of exponent bits.

For more information about supported fixed-point data types and their default
scaling, refer to Chapter 3, “Data Types and Scaling.”

If you select Specify via dialog for the Output data type mode or
Parameter data type mode parameter, you must also explicitly specify the
output or parameter scaling with the Output scaling value or Parameter
scaling value parameter. The supported scaling modes for generalized

sint Signed integer Right of the least
significant bit

ufix Unsigned generalized fixed-point
number

None

uint Unsigned integer Right of the least
significant bit

ufrac Unsigned fractional number Left of the most
significant bit

Output Data Types and Default Scaling

Data Type Description Default Scaling
8

Common Block Features
fixed-point data types are given below. Default scaling is used for all other
fixed-point data types.

Note that some blocks provide a form of radix point-only scaling for constant
vectors and constant matrices. Refer to “Example: Constant Scaling for Best
Precision” on page 3-11 for more information.

Locking the Output Scaling
If the Lock output scaling against changes by the autoscaling tool check
box is selected, then the automatic scaling tool autofixexp will not change the
Output scaling value parameter. Otherwise, the automatic scaling tool is free
to adjust the scaling. You can run autofixexp directly from the command line,
or through the Fixed-Point Settings interface, fxptdlg.

Scaling Modes for Generalized Fixed-Point Data Types

Scaling Mode Description

Radix point-only Specify radix point-only (powers-of-two) scaling. For
example, a scaling of 2^ 10 (or pow2(10)) places the
radix point at a location 10 places to the left of the least
significant bit.

[Slope Bias] Specify [Slope Bias] scaling. For example, a scaling of
[5/9 10] specifies a slope of 5/9 and a bias of 10. When
using this mode, you must specify a positive slope.
9-19

9 Block Reference

9-2
Rounding
You can choose the rounding mode for the block operation with the Round
integer calculations toward parameter list. The available rounding modes
are shown below.

Handling Overflows
Overflow handling for fixed-point numbers is specified with the Saturate on
integer overflow check box. If selected, fixed-point overflow results saturate.
Otherwise, overflow results wrap. Whenever a result saturates, a warning is
displayed.

Block Icon Labels
Many Fixed-Point Blockset icons look like those of built-in Simulink blocks. In
fact, many Simulink blocks with fixed-point capabilities appear in the
Fixed-Point Blockset libraries. For this reason, all blocks that belong only to
the Fixed-Point Blockset have an “F” on their icons.

The Gateway In, Gateway In Inherited, and Gateway Out blocks have
additional labels, which reflect how the input and output signals are treated.
If the block input or output is treated as a real-world value, then a “V” appears
next to the relevant port on the block icon. If the block input or output is treated
as a stored integer, then an “I” appears next to the relevant port on the block
icon.

Rounding Modes

Rounding Mode Description

Zero Round the output towards zero.

Nearest Round the output towards the nearest representable
number, with the exact midpoint rounded towards
positive infinity.

Ceiling Round the output towards positive infinity.

Floor Round the output towards negative infinity.
0

Common Block Features
Port Data Type Display
To display the data types of ports in your model, select Port data types from
the Simulink Format menu.

The port display for fixed-point signals consists of three parts: the data type,
the number of bits, and the scaling. The data type and number of bits reflect
the block’s Output data type parameter value or the data type that is
inherited from the driving block or through backpropagation. The scaling
reflects the block’s Output scaling value parameter value or the scaling that
is inherited from the driving block or through backpropagation.

For example, the model below displays its port data types:

The data type display associated with the In 1 block in the model indicates that
the output data type is sfix(16) (a signed, 16-bit, generalized fixed-point
number) with [Slope Bias] scaling of [0.2 10]. Note that this scaling is not the
block’s default scaling. The data type display associated with the In 2 block
indicates that the output data type is sfix(16) with radix point-only scaling of
2^-6.

The following table provides a key for various symbols that may appear in the
port data type display for Fixed-Point Blockset blocks.

Port Data Type Display Symbols

Symbol Description

uint unsigned integer fixed-point data type

sint signed integer fixed-point data type

summed signal

multiplied signal

2 rad/s

1 rad/s

Sum

Sine Wave1

Sine Wave

Scope

Product

Out

Out 2

Out

Out 1

In

In 2

In

In 1

sfix16_En6

sfix16_En2

sfix16_En8

double

double

double

double

sfix16_Sp2_B10
9-21

9 Block Reference

9-2
For more information on Fixed-Point Blockset data types, refer to “Fixed-Point
Data Type Parameters” on page 3-9.

For more information on [Slope Bias] and radix point-only scaling, refer to
“Scaling” on page 3-5.

ufrac unsigned fraction fixed-point data type

sfrac signed fraction fixed-point data type

ufix unsigned generalized fixed-point data type

sfix signed generalized fixed-point data type

fltu doubles-override of an unsigned fixed-point data type

flts doubles-override of a signed fixed-point data type

B bias

E 2^

e 10^

F fractional slope

n negative

p decimal point

S slope

Port Data Type Display Symbols

Symbol Description
2

Alphabetical List of Blocks

9-23

Alphabetical List of Blocks 9

The following pages contain the reference sheets for the Fixed-Point Blockset
blocks in alphabetical order.

Abs
9AbsPurpose Output the absolute value of the input

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case, the
behavior of the block is controlled by the Saturate on integer overflow check
box. If selected, the absolute value of the data type saturates to the most
positive value. If not selected, the absolute value of the most negative value
represented by the data type has no effect.

For example, suppose the block input is an 8-bit signed integer. The range of
this data type is from -128 to 127, and the absolute value of -128 is not
representable. If the Saturate on integer overflow check box is selected, then
the absolute value of -128 is 127. If it is not selected, then the absolute value of
-128 remains at -128.

Data Type
Support

An Abs block accepts a real- or complex-valued input of any data type and
outputs a real value of the same data type as the input.

Parameters
and Dialog Box

Saturate on integer overflow
When selected, the block maps signed integer input elements
corresponding to the most negative value of that data type to the most
positive value of that data type.

• For 8-bit integers, -128 is mapped to 127.

• For 16-bit integers, -32768 maps to 32767.

|u|

Abs
9-24

Abs
• For 32-bit integers, -2147483648 maps to 2147483647.

When not selected, the block does not act on signed integer input elements
corresponding to the most negative value of that data type.

• For 8-bit integers, -128 remains -128.

• For 16-bit integers, -32768 remains -32768.

• For 32-bit integers, -2147483648 remains -2147483648.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Zero Crossing No, unless Enable zero crossing detection is
selected
9-25

Accumulator
9AccumulatorPurpose Compute a cumulative sum

Library Calculus

Description At time step n, the Accumulator block computes a cumulative sum of all input
values u up to time n and outputs the sum.

Parameters
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Port Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-26

Accumulator Resettable
9Accumulator ResettablePurpose Compute a cumulative sum with external Boolean reset

Library Calculus

Description The Accumulator Resettable block computes a cumulative sum, based on the
values of an external Boolean reset signal.

The block can reset its state based on an external reset signal R. The block has
two input ports, one for the input signal u, and another for the reset signal R.
When the reset is false at time n, the block adds the current value of the input
signal u to the sum at time n-1. When the reset is true at time n, the block
resets the sum to the value of the Initial condition for previous output
parameter, and outputs the sum.

Parameters
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-27

Accumulator Resettable
Characteristics

See Also Accumulator

Input Ports Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Of the input and reset source ports

Scalar Expansion Of inputs and gain
9-28

Accumulator Resettable Limited
9Accumulator Resettable LimitedPurpose Compute a limited cumulative sum with external Boolean reset

Library Calculus

Description The Accumulator Resettable Limited block computes a cumulative sum, based
on the values of an external Boolean reset signal.

The block can reset its state based on an external reset signal R. When the
cumulative sum reaches one of the limits given by the Upper limit and Lower
limit parameters, the sum saturates to that limit.

The block has two input ports, one for the input signal u, and another for the
reset signal R. When the reset R is false at time n, the block adds the current
value of the input signal u to the sum at time n-1. When the cumulative sum is
outside the limits given by the Upper limit and Lower limit parameters, the
sum saturates to one of the bounds.

When the reset R is true at time n, the block resets the sum to the value of the
Initial condition for previous output parameter, and outputs the sum.

Parameters
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Upper limit
The upper limit for saturation of the cumulative sum.
9-29

Accumulator Resettable Limited
Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Accumulator

Input Ports Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Of the input and reset source ports

Scalar Expansion Of inputs and gain
9-30

Add
9AddPurpose Add or subtract inputs

Library Math

Description The Add block is an implementation of the Sum block. See “Sum” on page 9-216
for more information.

Add
9-31

Bit Clear
9Bit ClearPurpose Set the specified bit of the stored integer to zero

Library Bits

Description The Bit Clear block is a masked block that sets the specified bit, given by its
index, of the stored integer to zero. Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter, where
bit zero is the least significant bit.

True floating-point data types are not supported.

Parameters
and Dialog Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of constants
2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100 01000 10000].
With bit 2 set to 0, the result is [00001 00010 00000 01000 10000], which is
represented in decimal as [1 2 0 8 16].

Characteristics Input Port Any data type supported by the blockset, except a
true floating-point data type

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-32

Bit Set
9Bit SetPurpose Set the specified bit of the stored integer to one

Library Bits

Description The Bit Set block is a masked block that sets the specified bit of the stored
integer to one. Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter, where
bit zero is the least significant bit.

True floating-point data types are not supported.

Parameters
and Dialog Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of constants
2.^[0 1 2 3 4] is represented in binary as [00001 00010 00100 01000 10000].
With bit 2 set to 1, the result is [00101 00110 00100 01100 10100], which is
represented in decimal as [5 6 4 12 20].

Characteristics

See Also Bit Clear

Input Port Any data type supported by the blockset, except a
true floating-point data type

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-33

Bitwise Operator
9Bitwise OperatorPurpose Perform the specified bitwise operation on the inputs

Library Bits

Description The Bitwise Operator block is a masked S-function that performs the specified
bitwise operation on its operands.

Unlike the logic operations performed by the Logical Operator block, bitwise
operations treat the operands as a vector of bits rather than a single number.
You select the bitwise Boolean operation with the Operator parameter list.
The supported operations are given below.

Unlike the Simulink Bitwise Logical Operator block, the Bitwise Operator
block does not support shift operations. Refer to “Shifts” on page 4-41 to learn
how to perform shift operations with the Fixed-Point Blockset.

The size of the output depends on the number of inputs, their vector size, and
the selected operator:

• The NOT operator accepts only one input, which can be a scalar or a vector.
If the input is a vector, the output is a vector of the same size containing the
bitwise logical complements of the input vector elements.

• For a single vector input, the block applies the operation (except the NOT
operator) to all elements of the vector. If a bit mask is not specified, then the
output is a scalar. If a bit mask is specified, then the output is a vector.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is TRUE

NAND TRUE if at least one of the corresponding bits is FALSE

NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are TRUE

NOT TRUE if the input is FALSE (available only for single input)
9-34

Bitwise Operator
• For two or more inputs, the block performs the operation between all of the
inputs. If the inputs are vectors, the operation is performed between
corresponding elements of the vectors to produce a vector output.

When configured as a multi-input XOR gate, this block performs an addition-
modulo-two operation as mandated by the IEEE Standard for Logic Elements.

If the Use bit mask check box is not selected, then the block can accept multiple
inputs. You select the number of input ports with the Number of input ports
parameter. The input data types must be identical.

If the Use bit mask check box is selected, then a single input is associated with
the bit mask you specify with the Bit Mask parameter. You specify the bit
mask using any valid MATLAB expression. For example, you can specify the
bit mask 00100101 as 2^5+2^2+2^0. Alternatively, you can use strings to
specify a hexadecimal bit mask such as {'FE73','12AC'}. If the bit mask is
larger than the input signal data type, then it is ignored.

Note The output data type, which is inherited from the driving block, should
represent zero exactly. Data types that satisfy this condition include signed
and unsigned integers and any floating-point data type.

The Treat mask as parameter list controls how the mask is treated. The
possible values are Real World Value and Stored Integer. In terms of the
general encoding scheme described in “Scaling” on page 3-5, Real World Value
treats the mask as V = SQ + B where S is the slope and B is the bias. Stored
Integer treats the mask as a stored integer, Q. For more information about
this parameter list, refer to the Gateway In block.

Remarks You can use the bit mask to perform a bit set or a bit clear on the input. To
perform a bit set, you configure the Operator parameter list to OR and create a
bit mask with a 1 for each corresponding input bit that you want to set to 1. To
perform a bit clear, you configure the Operator parameter list to AND and
create a bit mask with a 0 for each corresponding input bit that you want to set
to 0.

For example, suppose you want to perform a bit set on the fourth bit of an 8-bit
input vector. The bit mask would be 00010000, which you can specify as 2^4 in
9-35

Bitwise Operator
the Bit mask parameter. To perform a bit clear, the bit mask would be
11101111, which you can specify as 2^7+2^6+2^5+2^3+2^2+2^1+2^0 in the Bit
mask parameter.

Parameters
and Dialog Box

Operator
The bitwise logical operator associated with the specified operands.

Use bit mask
Specify if the bit mask is used (single input only).

Number of input ports
The number of inputs.

Bit Mask
The bit mask to associate with a single input.

Treat mask as
Treat the mask as a real-world value or as an integer.

Conversions The Bit Mask parameter is converted from a double to the input data type
offline using round-to-nearest and saturation. Refer to “Parameter
Conversions” on page 4-27 for more information about parameter conversions.
9-36

Bitwise Operator
Examples To help you understand the Bitwise Operator block logic operations, consider
the fixed-point model shown below.

The Constant blocks are configured to output an 8-bit unsigned integer
(uint(8)). The results for all logic operations are shown below.

Characteristics

Operation Binary Value Decimal Value

AND 00101000 40

OR 11111101 253

NAND 11010111 215

NOR 00000010 2

XOR 11111000 248

NOT N/A N/A

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Scalar Expansion Of inputs
9-37

Compare To Constant
9Compare To ConstantPurpose Determine if a signal is equal to the specified constant

Library Logic & Comparison

Description The Compare To Constant block is a masked block that determines if a signal
is equal to the specified constant where:

• The output is true (not 0) when the input signal is equal to the specified
constant.

• The output is false (equal to 0) when the input signal is not equal to the
specified constant.

You enter the constant with the Constant value parameter.

Parameters
and Dialog Box

Operator
Specify how the input is compared to the constant value.

Constant value
Specify the constant value that the input is compared with.

Characteristics

See Also Compare to Zero

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes
9-38

Compare To Zero
9Compare To ZeroPurpose Determine if a signal is equal to zero

Library Logic & Comparison

Description The Compare To Zero block is a masked block that determines if a signal is
equal to zero where:

• The output is true (not 0) when the input signal is equal to zero.

• The output is false (equal to 0) when the input signal is not equal to zero.

Parameters
and Dialog Box

Operator
Specify how the input is compared to zero.

Characteristics

See Also Compare To Constant

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes
9-39

Constant
9ConstantPurpose Generate a constant value

Library Simulink Sources and Fixed-Point Blockset Sources

Description The Constant block generates a real or complex constant value. The block
generates a scalar, vector, or matrix output, depending on the dimensionality
of the Constant value parameter and the setting of the Interpret vector
parameters as 1-D parameter.

The output of the block has the same dimensions and elements of the Constant
value parameter. If you specify a vector for this parameter, and you want the
block to interpret it as 1-D, select the Interpret vector parameters as 1-D
parameter.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type
Support

By default, a Constant block outputs a signal whose data type and complexity
is the same as that of the block’s Constant value parameter. However, you can
specify the output to be any supported data type.

Parameters
and Dialog Box

Constant value
Constant value output by the block. It can be a scalar, vector, or matrix.

1

Constant

0.0

Constant
9-40

Constant
Interpret vector parameters as 1-D
If selected, a vector specified for the Constant value parameter results in
a 1-D signal.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.

Output data type mode
Specify how the data type of the output is designated. The data type can be
inherited through backpropagation, or can be designated in the Constant
value parameter; for example int8(29). You can also choose a built-in
data type from the drop-down list. Lastly, if you choose Specify via
dialog, the Output data type, Output Scaling Mode, and Output scaling
value parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.
9-41

Constant
Output Scaling Mode
Specify how the scaling of the output is designated. The output can be
automatically scaled to maintain best vector-wise precision without
overflow, or you can choose to specify the scaling in the dialog via the
Output scaling value parameter. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter, and if Use specified scaling is selected for
the Output Scaling Mode parameter.

Conversions
and Operations

The Constant value parameter is converted from its data type to the specified
output data type offline using round-to-nearest and saturation. Refer to
“Parameter Conversions” on page 4-27 for more information about parameter
conversions.

Characteristics Dimensionalized Yes

Direct Feedthrough No

Sample Time Constant

Scalar Expansion No

Zero Crossing No
9-42

Conversion
9ConversionPurpose Convert from one Fixed-Point Blockset data type to another

Library Data Type

Description The Conversion block is a masked S-function that converts from one
Fixed-Point Blockset data type to another.

This block requires that you specify the data type and scaling for the
conversion. If you want to inherit this information from an input signal, you
should use the Conversion Inherited block.

For a detailed description of all block parameters, refer to “Block Parameters”
on page 9-16. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-27.

Parameters
and Dialog Box

Input and Output to have equal
Specify the type of value of the input and output that are to be equal.
9-43

Conversion
Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling via backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Conversion Inherited

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes
9-44

Conversion Inherited
9Conversion InheritedPurpose Convert from one Fixed-Point Blockset data type to another, and inherit the
data type and scaling

Library Data Type

Description The Conversion Inherited block is a masked S-function that forces dissimilar
data types to be the same. The first (top) input is used as the reference signal
and the second (bottom) input is converted to the reference type by inheriting
the data type and scaling information. Either input will be scalar expanded
such that the output has the same width as the widest input.

If you want to specify the data type and scaling when converting from one
Fixed-Point Blockset data type to another, you should use the Conversion
block.

For a detailed description of all block parameters, refer to “Block Parameters”
on page 9-16. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-27.

Remarks Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.

• It allows you to create new fixed-point models with less effort since you can
avoid the detail of specifying the associated parameters.

Parameters
and Dialog Box
9-45

Conversion Inherited
Input and Output to have equal
Specify the type of value of the input and output that are to be equal.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Conversion

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes
9-46

Cosine
9CosinePurpose Implement a cosine function in fixed-point using a lookup table approach that
exploits quarter wave symmetry

Library LookUp

Description The Cosine block implements a cosine function using a lookup table that
exploits quarter wave symmetry. The output is normally a signed 16 bit
number with 14 bits to the right of the radix point.

Parameters
and Dialog Box

Number of data points for lookup table
The number of data points in the lookup table

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes
9-47

Counter Free
9Counter FreePurpose Count up and overflow back to zero after the maximum value possible is
reached for the specified number of bits

Library Sources

Description The Counter Free block is a masked block that counts up until the maximum
possible value, 2Nbits - 1, is reached, where Nbits is the number of bits. Then
the counter overflows to zero, and restarts counting up. The counter is always
initialized to zero.

You can specify the number of bits with the Number of Bits parameter.

You can specify the sample time with the Sample time parameter.

The output is an unsigned integer. If the global doubles override is selected, the
Counter Free does not wrap back to zero.

Parameters
and Dialog Box

Number of Bits
Specified number of bits.

Sample time
Sample time.

Characteristics Output Port Unscaled integer or a floating-point data type

Scalar Expansion No

Vectorized No
9-48

Counter Limited
9Counter LimitedPurpose Count up and wrap back to zero after outputting the specified upper limit

Library Sources

Description The Counter Limited block is a masked block that counts up until the specified
upper limit is reached. Then the counter wraps back to zero, and restarts
counting up. The counter is always initialized to zero.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A Sample
time of -1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest number
of bits needed to represent the upper limit.

Parameters
and Dialog Box

Upper limit
Upper limit.

Sample time
Sample time.

Characteristics

See Also Counter Free

Output Port Unscaled integer or a floating-point data type

Scalar Expansion No

Vectorized No
9-49

Data Type Duplicate
9Data Type DuplicatePurpose Force all inputs to the same data type

Library Data Type

Description The Data Type Duplicate block is a masked S-function that forces all inputs to
have exactly the same data type. Other attributes of input signals, such as
dimension, complexity, and sample time, are completely independent.

You can use the Data Type Duplicate block to check for consistency of data
types among blocks. If all signals do not have the same data type, the block
returns an error message.

The Data Type Duplicate block is typically used such that one signal to the
block controls the data type for all other blocks. The other blocks are set to
inherit their data types via backpropagation.

The block is also used in a user created library. These library blocks can be
placed in any model, and the data type for all library blocks are configured
according to the usage in the model. To create a library block with more
complex data type rules than duplication, use the Data Type Propagation
block.

Parameters
and Dialog Box

Number of input ports
Number of input ports.
9-50

Data Type Duplicate
Characteristics

Input Port Any data type supported by the blockset

Scalar Expansion Yes

States 0

Vectorized Yes
9-51

Data Type Propagation
9Data Type PropagationPurpose Set the data type and scaling of the propagated signal based on information
from the reference signals

Library Data Type

Description The Data Type Propagation block allows you to control the data type and
scaling of signals in your model. You can use this block in conjunction with
fixed-point blocks that have their Specify data type and scaling parameter
configured to Inherit via back propagation.

The block has three inputs: Ref1 and Ref2 are the reference inputs, while the
Prop input back propagates the data type and scaling information gathered
from the reference inputs. This information is then passed on to other
fixed-point blocks.

The block provides you with many choices for propagating data type and
scaling information. For example, you can:

• Use the number of bits from the Ref1 reference signal, or use the number of
bits from widest reference signal.

• Use the range from the Ref2 reference signal, or use the range of the
reference signal with the greatest range.

• Use a bias of zero, regardless of the biases used by the reference signals.

• Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the Propagated
data type parameter list. If the parameter list is configured as Specify via
dialog, then you manually specify the data type via the Propagated data type
edit field. Refer to “Selecting the Data Type and Scaling” on page 9-16 to learn
how to specify the data type. If the parameter list is configured as Inherit via
propagation rule, then you must use the parameters described in “Inheriting
Data Type Information” on page 9-55.

You specify how scaling information is propagated with the Propagated
scaling parameter list. If the parameter list is configured as Specify via
dialog, then you manually specify the scaling via the Propagated scaling edit
field. Refer to “Selecting the Data Type and Scaling” on page 9-16 to learn how
to specify the scaling. If the parameter list is configured as Inherit via
propagation rule, then you must use the parameters described in “Inheriting
Scaling Information” on page 9-57.
9-52

Data Type Propagation
Remarks After you use the information from the reference signals, you can apply a
second level of adjustments to the data type and scaling by using individual
multiplicative and additive adjustments. This flexibility has a variety of uses.
For example, if you are targeting a DSP, then you can configure the block so
that the number of bits associated with a MAC (multiply and accumulate)
operation is twice as wide as the input signal, and has a certain number of
guard bits added to it.

The Data Type Propagation block also provides a mechanism to force the
computed number of bits to a useful value. For example, if you are targeting a
16-bit micro, then the target C compiler is likely to support sizes of only 8 bits,
16 bits, and 32 bits. The block will force these three choices to be used. For
example, suppose the block computes a data type size of 24 bits. Since 24 bits
is not directly usable by the target chip, the signal is forced up to 32 bits, which
is natively supported.

There is also a method for dealing with floating-point reference signals. This
makes it easier to create designs that are easily retargeted from fixed-point
chips to floating-point chips or visa versa.

The Data Type Propagation block allows you to set up libraries of useful
subsystems that will be properly configured based on the connected signals.
Without this data type propagation process, a subsystem that you use from a
library will almost certainly not work as desired with most integer or
fixed-point signals, and manual intervention to configure the data type and
scaling would be required. This block can eliminate the manual intervention in
many situations.

Precedence Rules
The precedence of the dialog box parameters decreases from top to bottom.
Additionally:

• Double-precision reference inputs have precedence over all other data types.

• Single-precision reference inputs have precedence over integer and
fixed-point data types.

• Multiplicative adjustments are carried out before additive adjustments.

• The number of bits is determined before the precision or positive range is
inherited from the reference inputs.
9-53

Data Type Propagation
Parameters
and Dialog Box
9-54

Data Type Propagation
Propagated data type
Use the parameter list to propagate the data type via the dialog box, or
inherit the data type from the reference signals. Use the edit field to specify
the data type via the dialog box.

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box, or
inherit the scaling from the reference signals. Use the edit field to specify
the scaling via the dialog box.

Inheriting Data Type Information
If the Propagated data type parameter is Inherit via propagation rule,
then these dialog box parameters are available to you.

The If any reference input is single, output is parameter list can be single
or double. This parameter makes it easier to create designs that are easily
retargeted from fixed-point chips to floating-point chips or visa versa.

The Is-Signed parameter list specifies the sign of Prop. The parameter values
are described below.

Parameter
Value

Description

IsSigned1 Prop is a signed data type if Ref1 is a signed data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed data type.

IsSigned1 or
IsSigned2

Prop is a signed data type if either Ref1 or Ref2 are signed
data types.
9-55

Data Type Propagation
For example, if the Ref1 signal is ufix(16), the Ref2 signal is sfix(16), and
the Is-Signed parameter is IsSigned1 or IsSigned2, then Prop is forced to be
a signed data type.

The Number-of-bits: base parameter list specifies the number of bits used by
Prop for the base data type. The parameter values are described below.

Refer to “Targeting an Embedded Processor” on page 5-3 for more information
about the base data type.

The Number-of-bits: Multiplicative adjustment parameter allows you to
adjust the number of bits used by Prop by including a multiplicative
adjustment. For example, suppose you want to guarantee that the number of
bits associated with a multiply and accumulate (MAC) operation is twice as
wide as the input signal. To do this, you configure this parameter to the value 2.

TRUE Ref1 and Ref2 are ignored, and Prop is always a signed
data type.

FALSE Ref1 and Ref2 are ignored, and Prop is always an
unsigned data type.

Parameter Value Description

NumBits1 The number of bits for Prop is given by the number
of bits for Ref1.

NumBits2 The number of bits for Prop is given by the number
of bits for Ref2.

max([NumBits1
NumBits2])

The number of bits for Prop is given by the
reference signal with largest number of bits.

min([NumBits1
NumBits2])

The number of bits for Prop is given by the
reference signal with smallest number of bits.

NumBits1+NumBits2 The number of bits for Prop is given by the sum of
the reference signal bits.

Parameter
Value

Description
9-56

Data Type Propagation
The Number-of-bits: Additive adjustment parameter allows you to adjust the
number of bits used by Prop by including an additive adjustment. For example,
if you are performing multiple additions during a MAC operation, the result
may overflow. To prevent overflow, you can associate guard bits with the
propagated data type. To associate four guard bits, you specify the value 4.

The Number-of-bits: Allowable final values parameter allows you to force the
computed number of bits used by Prop to a useful value. For example, if you are
targeting a processor that supports only 8, 16, and 32 bits, then you configure
this parameter to [8,16,32]. The block always propagates the smallest
specified value that fits. If you want to allow all fixed-point data types, you
would specify the value 1:128.

Inheriting Scaling Information
If the Propagated scaling parameter is Inherit via propagation rule, then
these dialog box parameters are available to you.

The Slope: Base parameter list specifies the slope used by Prop for the base
data type. The parameter values are described below.

Parameter Value Description

Slope1 The slope of Prop is given by the slope of Ref1.

Slope2 The slope of Prop is given by the slope of Ref2.

max([Slope1
Slope2])

The slope of Prop is given by the maximum slope
of the reference signals.
9-57

Data Type Propagation
You control the precision of Prop with Slope1 and Slope2, and you control the
range of Prop with PosRange1 and PosRange2. Additionally, PosRange1 and
PosRange2 are one bit higher than the maximum positive range of the
associated reference signal.

The Slope: Multiplicative adjustment parameter allows you to adjust the
slope used by Prop by including a multiplicative adjustment. For example, if
you want 3 bits of additional precision (with a corresponding decrease in
range), the multiplicative adjustment is 2^-3.

The Slope: Additive adjustment parameter allows you to adjust the slope
used by Prop by including an additive adjustment. An additive slope
adjustment is often not needed. The most likely use is to set the multiplicative
adjustment to 0, and set the additive adjustment to force the final slope to a
specified value.

min([Slope1
Slope2])

The slope of Prop is given by the minimum slope
of the reference signals.

Slope1*Slope2 The slope of Prop is given by the product of the
reference signal slopes.

Slope1/Slope2 The slope of Prop is given by the ratio of the Ref1
slope to the Ref2 slope.

PosRange1 The range of Prop is given by the range of Ref1.

PosRange2 The range of Prop is given by the range of Ref2.

max([PosRange1
PosRange2])

The range of Prop is given by the maximum
range of the reference signals.

min([PosRange1
PosRange2])

The range of Prop is given by the minimum range
of the reference signals.

PosRange1*PosRange2 The range of Prop is given by the product of the
reference signal ranges.

PosRange1/PosRange2 The range of Prop is given by the ratio of the Ref1
range to the Ref2 range.

Parameter Value Description
9-58

Data Type Propagation
The Bias: Base parameter list specifies the bias used by Prop for the base data
type. The parameter values are described below.

The Bias: Multiplicative adjustment parameter allows you to adjust the bias
used by Prop by including a multiplicative adjustment.

The Bias: Additive adjustment parameter allows you to adjust the bias used
by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is zero, you should
configure both the multiplicative adjustment and the additive adjustment to 0.

Parameter Value Description

Bias1 The bias of Prop is given by the bias of Ref1.

Bias2 The bias of Prop is given by the bias of Ref2.

max([Bias1 Bias2]) The bias of Prop is given by the maximum bias of
the reference signals.

min([Bias1 Bias2]) The bias of Prop is given by the minimum bias of
the reference signals.

Bias1*Bias2 The bias of Prop is given by the product of the
reference signal biases.

Bias1/Bias2 The bias of Prop is given by the ratio of the Ref1
bias to the Ref2 bias.

Bias1+Bias2 The bias of Prop is given by the sum of the
reference biases.

Bias1-Bias2 The bias of Prop is given by the difference of the
reference biases.
9-59

Data Type Propagation
If the Propagated scaling parameter is Obtain via best precision, then the
following dialog box parameters are available to you.

You specify any values, such as the upper and lower limits on the propagated
input, for the Values used to determine best precision scaling, which
constrains the precision chosen to apply to those limits. Based on the data type,
the scaling will automatically be selected such that these values can be
represent with no overflow error and minimum quantization error.

Characteristics Input Ports Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes
9-60

Dead Zone
9Dead ZonePurpose Provide a region of zero output

Library Nonlinear

Description The Dead Zone block is a masked S-function that generates zero output within
a specified region, called its dead zone. The lower limit of the dead zone is
specified with the Start of dead zone parameter, while the upper limit of the
dead zone is specified with the End of dead zone parameter. The block output
depends on the input and dead zone:

• If the input is within the dead zone (greater than the lower limit and less
than the upper limit), the output is zero.

• If the input is greater than or equal to the upper limit, the output is the input
minus the upper limit.

• If the input is less than or equal to the lower limit, the output is the input
minus the lower limit.

Parameters
and Dialog Box

Start of dead zone
The lower limit of the dead zone.

End of dead zone
The upper limit of the dead zone.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-61

Dead Zone
Examples Consider the model shown below, which compares a fixed-point signal and the
output generated by the Dead Zone block. The signal source is a sine wave with
unit amplitude.

The Start of dead zone parameter is configured to -0.5 and the End of dead
zone parameter is configured to 0.5.

The resulting output is shown below.

Characteristics

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Dead Zone signal

Original fixed-point signal

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes, of parameters
9-62

Dead Zone Dynamic
9Dead Zone DynamicPurpose Set inputs within the bounds to zero

Library Nonlinear

Description The Dead Zone Dynamic block is a masked block that dynamically bounds the
range of the input signal, providing a region of zero output. The bounds change
according to the upper and lower limit input signals where

• The input within the bounds is set to zero.

• The input below the lower limit is shifted down by the lower limit.

• The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is
the lo port.

Parameters
and Dialog Box

Characteristics

See Also Dead Zone

up

u

lo

y

Dead Zone
Dynamic

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-63

Decrement Real World
9Decrement Real WorldPurpose Decrease the real world value of the signal by one

Library Math

Description The Decrement Real World block is a masked block that decreases the real
world value of the signal by one. Overflows always wrap.

Parameters
and Dialog Box

Characteristics

See Also Decrement Stored Integer, Decrement Time To Zero, Decrement To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
9-64

Decrement Stored Integer
9Decrement Stored IntegerPurpose Decrease the stored integer value of a signal by one

Library Math

Description The Decrement Stored Integer block is a masked block that decreases the
stored integer value of a signal by one.

Floating-point signals are also decreased by one, and overflows always wrap.

Parameters
and Dialog Box

Characteristics

See Also Decrement Real World, Decrement Time To Zero, Decrement To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
9-65

Decrement Time To Zero
9Decrement Time To ZeroPurpose Decrease the real-world value of the signal by the sample time, but only to zero.

Library Math

Description The Decrement Time To Zero block is a masked S-function that decreases the
real-world value of the signal by the sample time, Ts. The output will never go
below zero. This block only works with fixed sample rates.

Parameters
and Dialog Box

Characteristics

See Also Decrement Real World, Decrement Stored Integer, Decrement To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
9-66

Decrement To Zero
9Decrement To ZeroPurpose Decreases the real-world value of a signal by one, but only to zero.

Library Math

Description The Decrement To Zero block is a masked block that decreases the real-world
value of the signal by one. The output will never go below zero.

Parameters
and Dialog Box

Characteristics

See Also Decrement Real World, Decrement Stored Integer, Decrement Time To Zero

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
9-67

Derivative
9DerivativePurpose Compute a discrete time derivative

Library Calculus

Description The Derivative block computes a discrete time derivative, by subtracting the
input value at the previous time step from the current value, and dividing by
the sample time.

Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous weighted input K*u/Ts
Set the initial condition for the previous scaled input.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-68

Derivative
Characteristics Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-69

Detect Change
9Detect ChangePurpose Detect a change in a signal’s value

Library Edge Detect

Description The Detect Change block is a masked block that determines if an input does
not equal its previous value where

• The output is true (not 0), when the input signal does not equal its previous
value.

• The output is false (equal to 0), when the input signal equals its previous
value.

Parameters
and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Characteristics

See Also Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-70

Detect Decrease
9Detect DecreasePurpose Detect a decrease in a signal’s value

Library Edge Detect

Description The Detect Decrease block is a masked block that determines if an input is
strictly less than its previous value where

• The output is true (not 0), when the input signal is less than its previous
value.

• The output is false (equal to 0), when the input signal is greater than or equal
to its previous value.

Parameters
and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Characteristics

See Also Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect Increase,
Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-71

Detect Fall Negative
9Detect Fall NegativePurpose Detect a falling edge when the signal’s value decreases to a strictly negative
value, and its previous value was nonnegative

Library Edge Detect

Description The Detect Fall Negative block is a masked block that determines if the input
is less than zero, and its previous value was greater than or equal to zero where

• The output is true (not 0), when the input signal is less than zero, and its
previous value was greater than or equal to zero.

• The output is false (equal to 0), when the input signal is greater than or equal
to zero, or if the input signal is nonnegative, its previous value was positive
or zero.

Parameters
and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z < 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect Increase,
Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-72

Detect Fall Nonpositive
9Detect Fall NonpositivePurpose Detect a falling edge when the signal’s value decreases to a nonpositive value,
and its previous value was strictly positive

Library Edge Detect

Description The Detect Fall Nonpositive block is a masked block that determines if the
input is less than or equal to zero, and its previous value was positive where

• The output is true (not 0), when the input signal is less than or equal to zero,
and its previous value was greater than zero.

• The output is false (equal to 0), when the input signal is greater than zero,
or if it is nonpositive, its previous value was nonpositive.

Parameters
and Dialog Box

Initial condition
Set the initial condition of the boolean expression U/z <= 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase, Detect
Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-73

Detect Increase
9Detect IncreasePurpose Detect an increase in a signal’s value

Library Edge Detect

Description The Detect Increase block is a masked block that determines if an input is
strictly greater than its previous value where

• The output is true (not 0), when the input signal is greater than its previous
value.

• The output is false (equal to 0), when the input signal is less than or equal to
its previous value.

Parameters
and Dialog Box

Initial condition
Set the initial condition for the previous input U/z.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-74

Detect Rise Nonnegative
9Detect Rise NonnegativePurpose Detect a rising edge when a signal’s value increases to a nonnegative value,
and its previous value was strictly negative

Library Edge Detect

Description The Detect Rise Nonnegative block is a masked block that determines if the
input is greater than or equal to zero, and its previous value was less than zero
where

• The output is true (not 0), when the input signal is greater than or equal to
zero, and its previous value was less than zero.

• The output is false (equal to 0), when the input signal is less than zero, or if
nonnegative, its previous value was greater than or equal to zero.

Parameters
and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Positive

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-75

Detect Rise Positive
9Detect Rise PositivePurpose Detect a rising edge when a signal’s value increases to a strictly positive value,
and its previous value was nonpositive

Library Edge Detect

Description The Detect Rise Positive block is a masked block that determines if the input
is strictly positive, and its previous value was nonpositive where

• The output is true (not 0), when the input signal is greater than zero, and its
previous value was less than zero.

• The output is false (equal to 0), when the input is negative or zero, or if the
input is positive, its previous value was also positive.

Parameters
and Dialog Box

Initial condition
Set the initial condition of the Boolean expression U/z > 0.

Characteristics

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Nonnegative

Input Port Any data type supported by the blockset

Output Port An 8-bit unsigned integer

Direct Feedthrough Yes

Scalar Expansion Yes

Vectorized Yes
9-76

Difference
9DifferencePurpose Calculate the change in a signal over one time step

Library Calculus

Description The Difference block outputs the current input value minus the previous input
value.

Parameters
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-77

Difference
Characteristics Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-78

Divide
9DividePurpose Multiply or divide inputs

Library Math

Description The Divide block is an implementation of the Product block. See “Product” on
page 9-173 for more information.

Divide
9-79

Dot Product
9Dot ProductPurpose Generate the dot product

Library Math

Description The Dot Product block is a masked S-function that generates the dot product of
its two input vectors. The scalar output, y, is equal to the MATLAB operation

y = sum(conj(u1).* u2)

where u1 and u2 represent the inputs. If both inputs are vectors, they must be
the same length.

For a detailed description of all block parameters, refer to “Block Parameters”
on page 9-16. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-27.

Parameters
and Dialog Box

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.
9-80

Dot Product
Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes
9-81

Filter Direct Form I
9Filter Direct Form IPurpose Implement a Direct Form I realization of a filter

Library Filters

Description The Filter Direct Form I block implements a Direct Form I realization of the
filter specified by the Numerator coefficients and the Denominator
coefficients excluding lead parameters. The block only supports single
input-single output filters.

The block automatically selects the data types and scalings of the output, the
coefficients, and any temporary variables.

Parameters
and Dialog Box
9-82

Filter Direct Form I
Numerator coefficients
Coefficients for the numerator of the filter.

Denominator coefficients excluding lead
Coefficients for the denominator of the filter, excluding the leading
coefficient, which must be 1.0.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form I Time Varying, FIR

Input Ports Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-83

Filter Direct Form I Time Varying
9Filter Direct Form I Time VaryingPurpose Implement a time varying Direct Form I realization of a filter

Library Filters

Description The Filter Direct Form I Time Varying block implements a Direct Form I
realization of the specified filter. The block only supports single input-single
output filters.

The block automatically selects the data types and scalings of the output, the
coefficients, and any temporary variables.

Parameters
and Dialog Box

Initial condition for previous output
Set the initial condition for the previous output.
9-84

Filter Direct Form I Time Varying
Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form I, FIR

Input Port u Any data type supported by the blockset—it must be
a scalar

Input Port Num Any data type supported by the blockset—it must be
a scalar

Input Port Den No
Lead

Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-85

Filter Direct Form II
9Filter Direct Form IIPurpose Implement a Direct Form II realization of a filter

Library Filters

Description The Filter Direct Form II block implements a Direct Form II realization of the
filter specified by the Numerator coefficients and the Denominator
coefficients excluding lead parameters. The block only supports single
input-single output filters.

The block automatically selects the data types and scalings of the output, the
coefficients, and any temporary variables.

Parameters
and Dialog Box
9-86

Filter Direct Form II
Numerator coefficients
Coefficients for the numerator of the filter.

Denominator coefficients excluding lead
Coefficients for the denominator of the filter, excluding the leading
coefficient, which must be 1.0.

Initial condition
Set the initial condition.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form II Time Varying, FIR

Input Ports Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-87

Filter Direct Form II Time Varying
9Filter Direct Form II Time VaryingPurpose Implement a time varying Direct Form II realization of a filter

Library Filters

Description The Filter Direct Form II Time Varying block implements a Direct Form II
realization of the specified filter. The block only supports single input-single
output filters.

The block automatically selects the data types and scalings of the output, the
coefficients, and any temporary variables.

Parameters
and Dialog Box

Initial condition
Set the initial condition.

Round toward
Rounding mode for the fixed-point output.
9-88

Filter Direct Form II Time Varying
Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Filter Direct Form II, FIR

Input Port u Any data type supported by the blockset—it must be
a scalar

Input Port Num Any data type supported by the blockset—it must be
a scalar

Input Port Den No
Lead

Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-89

Filter First Order
9Filter First OrderPurpose Implement a discrete-time first order filter

Library Filters

Description The Filter First Order block implements a discrete-time first order filter of the
input. The filter has a unity DC gain.

Parameters
and Dialog Box

Pole of filter (in Z plane)
Set the pole of the filter.

Initial condition for previous output
Set the initial condition for the previous output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-90

Filter First Order
Characteristics

See Also FIR

Input Ports Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-91

Filter Lead or Lag
9Filter Lead or LagPurpose Implement a discrete-time lead or lag filter

Library Filters

Description The Filter Lead or Lag block implements a discrete-time lead or lag filter of the
input. The instantaneous gain of the filter is one, and the DC gain is equal to
(1-z)/(1-p), where z is the zero and p is the pole of the filter.

The block implements a lead filter when 0 < z < p < 1, and implements a lag
filter when 0 < p < z < 1.

Parameters
and Dialog Box

Pole of filter (in Z plane)
Set the pole of the filter.

Zero of filter (in Z plane)
Set the zero of the filter.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous input
Set the initial condition for the previous input.
9-92

Filter Lead or Lag
Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also FIR

Input Ports Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-93

Filter Real Zero
9Filter Real ZeroPurpose Implement a discrete-time filter that has a real zero and no pole

Library Filters

Description The Filter Real Zero block implements a discrete-time filter that has a real zero
and effectively has no pole.

Parameters
and Dialog Box

Zero of filter (in Z plane)
Set the zero of the filter.

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-94

Filter Real Zero
Characteristics

See Also FIR

Input Ports Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-95

FIR
9FIRPurpose Implement a fixed-point finite impulse response (FIR) filter

Library Filters

Description The FIR block is a masked S-function that samples and holds the N most recent
inputs, multiplies each input by a specified value (its FIR coefficient), and
stacks them in a vector. This block supports both single-input/single-output
(SISO) and single-input/multi-output (SIMO) modes.

For the SISO mode, the FIR coefficients parameter is specified as a row
vector. For the SIMO mode, the FIR coefficients are specified as a matrix
where each row corresponds to a separate output.

The Initial condition parameter provides the initial values for all times
preceding the start time in the FIR realization. You specify the time interval
between samples with the Sample time parameter.

You can choose whether or not to specify the data type and scaling of the FIR
coefficients in the dialog with the Gain data type and scaling parameter. If
you select Specify via dialog for this parameter, the Parameter data type
and Parameter scaling parameters become visible.

You can specify the scaling for the FIR coefficients with the Parameter scaling
parameter. Note that there are two dialog box parameters that control the FIR
coefficient scaling: one associated with an edit field, and one associated with a
parameter list. If Parameter data type is a generalized fixed-point number
such as sfix(16), the Parameter scaling list provides you with these scaling
modes:

• Use Specified Scaling—This mode uses the [Slope Bias] or radix
point-only scaling specified for the editable Parameter scaling parameter
(for example, 2^-10).

• Best Precision: Element-wise—This mode produces radix points such
that the precision is maximized for each element of the FIR coefficients
parameter.

• Best Precision: Row-wise—This mode produces a common radix point for
each element of the FIR coefficients row based on the best precision for the
largest value of that row.
9-96

FIR
• Best Precision: Column-wise—This mode produces a common radix point
for each element of the FIR coefficients column based on the best precision
for the largest value of that column.

• Best Precision: Matrix-wise—This mode produces a common radix point
for each element of the FIR coefficients matrix based on the best precision
for the largest value of the matrix.

If the FIR coefficients are specified as a row vector, then scaling element-wise
and column-wise produce the same result, while scaling matrix-wise and
row-wise produce the same result.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-16.

Parameters
and Dialog Box
9-97

FIR
FIR coefficients
FIR coefficients. One row per output.

Initial condition
Initial values for all times preceding the start time.

Sample time
Sample time.

Gain data type and scaling
Choose whether to specify the data type of the FIR coefficients via the
dialog or via an internal rule. If Specify via dialog is selected, the
Parameter data type and Parameter scaling parameters become visible.

Parameter data type
Any data type supported by the Fixed-Point Blockset. This parameter is
only visible if Specify via dialog is selected for the Gain data type and
scaling parameter.

Parameter scaling
Set the parameter scaling using radix point-only or [Slope Bias] scaling.
Additionally, the FIR coefficients vector or matrix can be scaled using the
constant vector or constant matrix scaling modes for maximizing precision.
These scaling modes are available only for generalized fixed-point data
types. This parameter is only visible if Specify via dialog is selected for
the Gain data type and scaling parameter.

Parameter scaling
This drop-down list enables you to specify the parameter scaling in the
dialog or by an inherited rule. This parameter is only visible if Specify via
dialog is selected for the Gain data type and scaling parameter.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.
9-98

FIR
Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Conversions
and Operations

The FIR coefficients parameter is converted from doubles to the specified data
type offline using round-to-nearest and saturation.The Initial condition
parameter is converted from doubles to the input data type offline using
round-to-nearest and saturation. Refer to “Parameter Conversions” on
page 4-27 for more information about parameter conversions.

The FIR block first multiplies its inputs by the FIR coefficients parameter,
converts those results to the output data type using the specified rounding and
overflow modes, and then carries out the summation. Refer to “Rules for
Arithmetic Operations” on page 4-30 for more information about the rules this
block adheres to when performing operations.

Examples Suppose you want to configure this block for two outputs (SIMO mode) where
the first output is given by

the second output is given by

and the initial values of u(k – 1) and u(k – 2) are given by ic1 and ic2,
respectively. To configure the FIR block for this situation, you must specify the
FIR coefficient parameter as [a1 b1 c1; a2 b2 c2] where c2 = 0, and the
Initial condition parameter as [ic1 ic2].

y1 k() a1 u k() b1 u k 1�() c1 u k 2�()⋅+⋅+⋅=

y2 k() a2 u k() b2 u k 1�()⋅+⋅=
9-99

FIR
Characteristics Input Ports Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-100

Gain
9GainPurpose Multiply the input by a constant

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Gain block multiplies the input by a constant value (gain). The input and
the gain can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The Multiplication
parameter lets you specify element-wise or matrix multiplication. For matrix
multiplication, this parameter also lets you indicate the order of the
multiplicands.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type
Support

The input and gain of the Gain block can be a real or complex scalar, vector, or
matrix of any data type except boolean. If the input is real and the gain is
complex, the output is complex.

Parameters
and Dialog Box

Gain
Specify the value by which to multiply the input. The gain may be a scalar,
vector, or matrix.

Multiplication
Specify the multiplication mode:

1

Gain

1.0

Gain
9-101

Gain
• Element-wise(K*u)—Each element of the input is multiplied by each
element of the gain. The block performs expansions, if necessary, so that the
input and gain have the same dimensions.

• Matrix(K*u)—The input and gain are matrix multiplied with the input as
the second operand.

• Matrix(u*K)—The input and gain are matrix multiplied with the input as
the first operand.

• Matrix(K*u)(u vector)—The input and gain are matrix multiplied with the
input as the second operand, and the input is a vector. The input and the
output are required to be vectors and their lengths are determined by the
dimensions of the gain.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
9-102

Gain
Parameter data type mode
Set the data type and scaling of the gain to be the same as that of the input,
or to be inherited via an internal rule. Alternatively, choose to specify the
data type and scaling of the gain through the Parameter data type,
Parameter scaling mode, and Parameter scaling parameters in the
dialog.

Parameter data type
Set the gain data type. This parameter is only visible if Specify via
dialog is selected for the Parameter data type mode parameter.

Parameter scaling mode
Set the mode to determine the scaling of the gain.

• Use specified scaling—This mode allows you to set the scaling of the gain
in the Parameter scaling parameter.
9-103

Gain
• Best Precision: Element-wise—This mode sets radix points for the
elements of the gain such that the precision of each element is maximized.

• Best Precision: Row-wise—This mode sets a common radix point within
each row of the gain such that the largest element of each row has the best
possible precision.

• Best Precision: Column-wise—This mode sets a common radix point
within each column of the gain such that the largest element of each column
has the best possible precision.

• Best Precision: Matrix-wise—This mode sets a common radix point for
all the elements of the gain such that the largest element has the best
possible precision.

This parameter is only visible if Specify via dialog is selected for the
Parameter data type mode parameter.

Parameter scaling
Set the gain scaling using either radix point-only or [Slope Bias] scaling.
This parameter is only visible if Specify via dialog is selected for the
Parameter data type mode parameter, and if Use specified scaling is
selected for the Parameter scaling mode parameter.

Output data type mode
Set the data type and scaling of the output to be the same as that of the
input, or to be inherited via an internal rule or by backpropagation.
Alternatively, choose to specify the data type and scaling of the output
through the Output data type and Output scaling value parameters in
the dialog.

If you select Inherit via internal rule for this parameter, Simulink
chooses a combination of output scaling and data type that requires the
smallest amount of memory consistent with accommodating the output
range and maintaining the output precision of the block. If the Production
hardware characteristics parameter on the Advanced pane of the
Simulation Parameters dialog is set to Unconstrained integer sizes,
Simulink chooses the output data type without regard to hardware
constraints. If the parameter is set to Microprocessor, Simulink chooses
the smallest available hardware data type capable of meeting the range
and precision constraints. For example, if the block multiplies an input of
type int8 by a gain of int16 and Unconstrained integer sizes is
9-104

Gain
specified, the output data type is sfix24. If Microprocessor is specified
and the microprocessor supports 8-bit, 16-bit, and 32-bit words, the output
data type is int32. If none of the word lengths provided by the target
microprocessor can accommodate the output range, Simulink displays an
error message in the Simulink Diagnostic Viewer.

Output data type
Set the output data type. This parameter is only visible if Specify via
dialog is selected for the Output data type mode parameter.

Output scaling value
Set the output scaling using either radix point-only or [Slope Bias] scaling.
This parameter is only visible if Specify via dialog is selected for the
Output data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions
and Operations

The gain is converted from doubles to the specified data type offline using
round-to-nearest and saturation. Refer to “Parameter Conversions” on
page 4-27 for more information about parameter conversions. The input and
gain are then multiplied, and the result is converted to the output data type
using the specified rounding and overflow modes. Refer to “Rules for
Arithmetic Operations” on page 4-30 for more information about the rules this
block adheres to when performing operations.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block
9-105

Gain
Scalar Expansion Of input and Gain parameter for Element-wise
multiplication

Zero Crossing No
9-106

Gateway In
9Gateway InPurpose Convert a Simulink data type to a Fixed-Point Blockset data type

Library Data Type

Description The Gateway In block is a masked S-function that converts a built-in Simulink
data type to a Fixed-Point Blockset data type.

The Input and Output to have equal parameter list controls how the input is
processed. The possible values are Real World Value and Stored Integer. In
terms of the general encoding scheme described in “Scaling” on page 3-5, Real
World Value treats the input as V = SQ + B where S is the slope and B is the
bias. V is used to produce Q = (V - B)/S, which is stored in the output. Stored
Integer treats the input as a stored integer, Q. The value of Q is directly used
to produce the output. In this mode, the input and output are identical except
that the input is a raw integer lacking proper scaling information. In both
modes, the output data type includes the scaling information needed to
correctly interpret the signal as a real-world value.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-16.

Parameters
and Dialog Box
9-107

Gateway In
Input and Output to have equal
Specify the type of value that the input and output are to have equal.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Examples This example uses the Gateway In block to help you understand the difference
between a real-world value and a stored integer. Consider the two fixed-point
models shown below.
9-108

Gateway In
In the top model, the Gateway In block treats the input as a real-world value,
and maps that value to an 8-bit signed generalized fixed-point data type with
a scaling of 2-2. If the value is output from the Gateway Out block as a
real-world value, then the scaling and data type information is retained and
the output value is 001111.00, or 15. If the value is output from the Gateway
Out block as a stored integer, then the scaling and data type information is not
retained and the stored integer is interpreted as 00111100, or 60.

In the bottom model, the Gateway In block treats the input as a stored integer,
and the data type and scaling information is not applied. If the value is output
from the Gateway Out block as a real-world value, then the scaling and data
type information is applied to the stored integer, and the output value is
000011.11, or 3.75. If the value is output from the Gateway Out block as a
stored integer, then you get back the original input value of 15.

The model shown below illustrates how a summation operation applies to
real-world values and stored integers, and how scaling information is dealt
with in generated code.
9-109

Gateway In
Note that the summation operation produces the correct result when the
Gateway Out block outputs a real-world value. This is because the specified
scaling information is applied to the stored integer value. However, when the
Gateway Out block outputs a stored integer value, then the summation
operation produces an unexpected result due to the absence of scaling
information.

If you generate code for the above model, then the code captures the
appropriate scaling information. The code for the Sum block is shown below.
The inputs to this block are tagged with the specified scaling information so
that the necessary shifts are performed for the summation operation.

/* Sum Block: <Root>/Sum
 *
 * y = u0 + u1
 *
 * Input0 Data Type: Fixed Point S16 2^-2
 * Input1 Data Type: Fixed Point S16 2^-4
 * Output0 Data Type: Fixed Point S16 2^-5
 *
9-110

Gateway In
 * Round Mode: Floor
 * Saturation Mode: Wrap
 *
 */
 sum = ((in1) << 3);
 sum += ((in2) << 1);

Characteristics

See Also Gateway In Inherited

Input Port Any built-in Simulink data type

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion No
9-111

Gateway In Inherited
9Gateway In InheritedPurpose Convert a Simulink data type to a Fixed-Point Blockset data type, and inherit
the data type and scaling

Library Data Type

Description The Gateway In Inherited block is a masked S-function that converts a built-in
Simulink data type to a Fixed-Point Blockset data type.

The block requires two inputs. The first (top) input provides the data type and
scaling information. The second (bottom) input passes through to the output,
and inherits the data type and scaling of the first input. If you want to explicitly
specify the output data type and scaling, use the Gateway In block.

The Input and Output to have equal parameter list controls how the input is
processed. The possible values are Real World Value and Stored Integer. In
terms of the general encoding scheme described in “Scaling” on page 3-5, Real
World Value treats the input as V = SQ + B where S is the slope and B is the
bias. Stored Integer treats the input as a stored integer, Q. For more
information about this parameter list, refer to the Gateway In block.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-16.

Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.

• It allows you to create new fixed-point models with less effort since you can
avoid the detail of specifying the associated parameters.
9-112

Gateway In Inherited
Parameters
and Dialog Box

Input and Output to have equal
Specify the type of value that the input and output are to have equal.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Gateway In

Input Port Any built-in Simulink data type

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion No
9-113

Gateway Out
9Gateway OutPurpose Convert a Fixed-Point Blockset data type to a Simulink data type

Library Data Type

Description The Gateway Out block is a masked S-function that converts any data type
supported by the Fixed-Point Blockset to a Simulink data type.

The Output and Input to have equal parameter list controls how the output
is treated. The possible values are Real World Value and Stored Integer. In
terms of the general encoding scheme described in “Scaling” on page 3-5, Real
World Value treats the output as V = SQ + B where S is the slope and B is the
bias. Stored Integer treats the output as a stored integer, Q. Selecting Stored
Integer may be useful in these circumstances:

• If you are generating code for a fixed-point processor, the resulting code only
uses integers and does not use floating-point operations.

• If you want to partition your model based on hardware characteristics. For
example, part of your model may involve simulating hardware that produces
integers as output.

Note If the fixed-point signal is a true integer such as sint(8) or uint(16),
then Real World Value and Stored Integer produce identical output values.

For more information about this parameter list, refer to the Gateway In block
description.

The Output data type parameter list specifies the Simulink data type to use
for the output. All built-in data types are supported as well as the boolean data
type. auto indicates the Fixed-Point Blockset data type is converted to
whatever data type Simulink back propagates.

Remarks The MATLAB built-in integer data types are limited to 32 bits. If you want to
output fixed-point numbers that range between 33 and 53 bits without loss of
precision or range, you should use the Gateway Out block to store the value
inside a double.
9-114

Gateway Out
If you want to output fixed-point numbers with more than 53 bits without loss
of precision or range, then you must break the number into pieces using the
Gain block, and then output the pieces using the Gateway Out block.

For example, suppose the original signal is an unsigned 128-bit value with
default scaling. You can break this signal into four pieces using four parallel
Gain blocks configured with the gain and output settings shown below.

For each Gain block, you must also configure the Round toward parameter to
Floor, and the Saturate to max or min when overflows occur check box
must be unselected.

Parameters
and Dialog Box

Piece Gain Output Data Type

1 2^0 uint(32) – Least significant 32 bits

2 2^-32 uint(32)

3 2^-64 uint(32)

4 2^-96 uint(32) – Most significant 32 bits
9-115

Gateway Out
Output and Input to have equal
Specify the type of value the input and output are to have equal.

Output data type
Any built-in data type supported by Simulink.

Round toward
Rounding mode for fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Gateway In

Input Ports Any data type supported by the blockset

Output Port Any built-in Simulink data type

Direct Feedthrough Yes

Scalar Expansion N/A
9-116

Increment Real World
9Increment Real WorldPurpose Increase the real world value of the signal by one

Library Math

Description The Increment Real World block is a masked block that increases the real
world value of the signal by one. Overflows always wrap.

Parameters
and Dialog Box

Characteristics

See Also Increment Stored Integer

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
9-117

Increment Stored Integer
9Increment Stored IntegerPurpose Increase the stored integer value of a signal by one

Library Math

Description The Increment Stored Integer block is a masked block that increases the stored
integer value of a signal by one.

Floating-point signals are also increased by one, and overflows always wrap.

Parameters
and Dialog Box

Characteristics

See Also Increment Real World

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion No
9-118

Index Vector
9Index VectorPurpose Switch output between different inputs based on the value of the first input

Library Select

Description The Index Vector block is an implementation of the Multi-Port Switch block.
See “Multi-Port Switch” on page 9-170 for more information.

Index
Vector
9-119

Integer Delay
9Integer DelayPurpose Delay a signal N sample periods

Library Delays & Holds

Description The Integer Delay block delays its input by N sample periods.

The block accepts one input and generates one output, both of which can be
scalar or vector. If the input is a vector, all elements of the vector are delayed
by the same sample period.

Parameters
and Dialog Box

Initial condition
The initial output of the simulation.

Sample time
Sample time.

Number of delays
The number of periods to delay the input signal.

Conversions The Initial condition parameter is converted from a double to the input data
type offline using round-to-nearest and saturation.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Scalar Expansion Of input or initial conditions
9-120

Integrator Backward
9Integrator BackwardPurpose Perform discrete-time integration of a signal using the backward method

Library Calculus

Description The Integrator Backward block performs a discrete-time integration of a signal
using the backward method. The block multiplies the input by the weighted
sample time and adds the result to the cumulative sum since time zero. The
block outputs the sum up to the nth time step at time n.

Remarks The output of the Integrator Backward block differs from the output of the
Integrator Forward block only by the first and last terms in the cumulative
sum.

Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
9-121

Integrator Backward
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward Resettable, Integrator Backward Resettable Limited,
Integrator Forward, Integrator Forward Resettable, Integrator Forward
Resettable Limited, Integrator Trapezoidal, Integrator Trapezoidal
Resettable, Integrator Trapezoidal Resettable Limited

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-122

Integrator Backward Resettable
9Integrator Backward ResettablePurpose Perform discrete-time integration of a signal using the backward method with
external Boolean reset

Library Calculus

Description The Integrator Backward Resettable block performs a discrete-time
integration of a signal using the backward method.

The block can reset its state based on an external reset signal R. When the
reset signal R is false, the block multiplies the input by the weighted sample
time and adds the result to the cumulative sum since time zero.

When the reset signal R is true, the block outputs the Initial condition for
previous output parameter.

Remarks The output of the Integrator Backward Resettable block differs from the output
of the Integrator Forward Resettable block only by the first and last terms in
the cumulative sum.

Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.
9-123

Integrator Backward Resettable
Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable Limited, Integrator
Forward, Integrator Forward Resettable, Integrator Forward Resettable
Limited, Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
9-124

Integrator Backward Resettable Limited
9Integrator Backward Resettable LimitedPurpose Perform discrete-time limited integration of a signal using the backward
method, with external Boolean reset

Library Calculus

Description The Integrator Backward Resettable Limited block performs a discrete-time
integration of a signal using the backward method.

The block can reset its state based on an external reset signal R. When the
cumulative sum reaches one of the limits given by the Upper limit and Lower
limit parameters, the sum saturates to that limit.

When the reset signal R is false, the block multiplies the input by the weighted
sample time and adds the result to the cumulative sum since time zero.

When the reset signal R is true, the block outputs the Initial condition for
previous output parameter.

Remarks The output of the Integrator Backward Resettable Limited block differs from
the output of the Integrator Forward Resettable Limited block only by the first
and last terms in the cumulative sum.
9-125

Integrator Backward Resettable Limited
Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Upper limit
The upper limit for saturation of the cumulative sum.

Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.
9-126

Integrator Backward Resettable Limited
Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Forward,
Integrator Forward Resettable, Integrator Forward Resettable Limited,
Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
9-127

Integrator Forward
9Integrator ForwardPurpose Perform discrete-time integration of a signal using the forward method

Library Calculus

Description The Integrator Forward block performs a discrete-time integration of a signal
using the forward method. The block multiplies the input by the weighted
sample time and adds the result to the cumulative sum since time zero. The
block outputs the sum up to the nth time step at time n+1. The first term of the
sum is the Initial condition for previous output parameter.

Remarks The output of the Integrator Forward block differs from the output of the
Integrator Backward block only by the first and last terms in the cumulative
sum.

Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Output data type and scaling
The options are:

- Specify via dialog
9-128

Integrator Forward
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward
Resettable Limited, Integrator Forward Resettable, Integrator Forward
Resettable Limited, Integrator Trapezoidal, Integrator Trapezoidal
Resettable, Integrator Trapezoidal Resettable Limited

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-129

Integrator Forward Resettable
9Integrator Forward ResettablePurpose Perform discrete-time integration of a signal using the forward method, with
external Boolean reset

Library Calculus

Description The Integrator Forward Resettable block performs a discrete-time integration
of a signal using the forward method. When the external reset signal R is false,
the block multiplies the input by the weighted sample time and adds the result
to the cumulative sum since time zero.

When the external reset signal R is true, the block outputs the Initial
condition for previous output parameter.

Remarks The output of the Integrator Forward Resettable block differs from the output
of the Integrator Backward Resettable block only by the first and last terms in
the cumulative sum.

Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.
9-130

Integrator Forward Resettable
Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward
Resettable Limited, Integrator Forward, Integrator Forward Resettable
Limited, Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-131

Integrator Forward Resettable Limited
9Integrator Forward Resettable LimitedPurpose Perform discrete-time limited integration of a signal using the forward method,
with external Boolean reset

Library Calculus

Description The Integrator Forward Resettable Limited block performs a discrete-time
integration of a signal using the forward method. When the cumulative sum
reaches one of the limits given by the Upper limit and Lower limit
parameters, the sum saturates to that limit.

When the external reset signal R is false, the block multiplies the input by the
weighted sample time and adds the result to the cumulative sum since time
zero.

When the external reset signal R is true, the block outputs the Initial
condition for previous output parameter.

The first term of the sum is the product of the weighted sample time and the
value of the Initial condition for previous input parameter.

Remarks The output of the Integrator Forward Resettable Limited block differs from the
output of the Integrator Backward Resettable Limited block only by the first
and last terms in the cumulative sum.
9-132

Integrator Forward Resettable Limited
Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Upper limit
The upper limit for saturation of the cumulative sum.

Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.
9-133

Integrator Forward Resettable Limited
Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward
Resettable Limited, Integrator Forward, Integrator Forward Resettable,
Integrator Trapezoidal, Integrator Trapezoidal Resettable, Integrator
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-134

Integrator Trapezoidal
9Integrator TrapezoidalPurpose Perform discrete-time integration of a signal using the trapezoidal method

Library Calculus

Description The Integrator Trapezoidal block performs a discrete-time integration of a
signal using the trapezoidal method. At time step k, the block computes the
average of the inputs at times k-1 and k, multiplies the average by the
weighted sample time, and adds the result to the cumulative sum since time
zero. The block outputs the sum up to the kth time step at time.

The block calculates the output at time k by the rule

where is the input at time k and

At the first time step, y(0) is set to the value of Initial condition for previous
output, and w(0) is set to the value of Initial condition for previous
weighted input K*Ts*u/2.

Parameters
and Dialog Box

y k() y k 1�() w k() w k 1�()+ +=

u k()

w k() K Ts⋅
2

---------------- u k()⋅=
9-135

Integrator Trapezoidal
Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous weighted input K*Ts*u/2
Set the initial condition for the previous weighted input.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward
Resettable Limited, Integrator Forward, Integrator Forward Resettable,
Integrator Forward Resettable Limited, Integrator Trapezoidal Resettable,
Integrator Trapezoidal Resettable Limited

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Of inputs and gain
9-136

Integrator Trapezoidal Resettable
9Integrator Trapezoidal ResettablePurpose Perform discrete-time integration of a signal using the trapezoidal method,
with external Boolean reset

Library Calculus

Description The Integrator Trapezoidal Resettable block performs a discrete-time
integration of a signal using the trapezoidal method.

The block can reset its state based on an external reset signal R. When the
reset signal R is false at time k, the block calculates the output at time k by the
rule

where is the input at time k and

When the reset signal R is true at time k, the block resets the output y(k) to the
value of the Initial condition for previous output parameter, and resets w(k)
to the value of the Initial condition for previous weighted input K*Ts*u/2
parameter.

Parameters
and Dialog Box

y k() y k 1�() w k() w k 1�()+ +=

u k()

w k() K Ts⋅
2

---------------- u k()⋅=
9-137

Integrator Trapezoidal Resettable
Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous weighted input K*Ts*u/2
Set the initial condition for the previous weighted input.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward
Resettable Limited, Integrator Forward, Integrator Forward Resettable,
Integrator Forward Resettable Limited, Integrator Trapezoidal, Integrator
Trapezoidal Resettable Limited

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
9-138

Integrator Trapezoidal Resettable Limited
9Integrator Trapezoidal Resettable LimitedPurpose Perform discrete-time limited integration of a signal using the trapezoidal
method, with external Boolean reset

Library Calculus

Description The Integrator Trapezoidal Resettable Limited block performs a discrete-time
integration of a signal using the trapezoidal method.

The block can reset its state based on an external reset signal R. When the
cumulative sum reaches one of the limits given by the Upper limit and Lower
limit parameters, the sum saturates to that limit.

When the reset signal R is false at time step k, the block calculates the output
at time k by the rule

where is the input at time k and

When the reset signal R is true at time k, the block resets the output y(k) to the
value of the Initial condition for previous output parameter. The block also
resets w(k) to the value of the Initial condition for previous weighted input
K*Ts*u/2 parameter.

y k() y k 1�() w k() w k 1�()+ +=

u k()

w k() K Ts⋅
2

---------------- u k()⋅=
9-139

Integrator Trapezoidal Resettable Limited
Parameters
and Dialog Box

Gain value
Specify the weight by which the sample time is multiplied.

Initial condition for previous output
Set the initial condition for the previous output.

Initial condition for previous weighted input K*Ts*u/2
Set the initial condition for the previous weighted input.

Upper limit
The upper limit for saturation of the cumulative sum.

Lower limit
The lower limit for saturation of the cumulative sum.

Output data type and scaling
The options are:

- Specify via dialog
- Inherit via internal rule
9-140

Integrator Trapezoidal Resettable Limited
- Inherit via back propagation

When Specify via dialog is selected, you can specify the Output data type
and Output scaling parameters.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also Integrator Backward, Integrator Backward Resettable, Integrator Backward
Resettable Limited, Integrator Forward, Integrator Forward Resettable,
Integrator Forward Resettable Limited, Integrator Trapezoidal, Integrator
Trapezoidal Resettable

Input Ports Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes, of the input and reset source ports

Scalar Expansion Of inputs and gain
9-141

Interval Test
9Interval TestPurpose Determine if a signal is in a specified interval

Library Logic & Comparison

Description The Interval Test block outputs TRUE if the input is between the values
specified by the Lower limit and Upper limit parameters. The block outputs
FALSE if the input is outside those values. The output of the block when the
input is equal to the Lower limit or the Upper limit is determined by whether
the boxes next to Interval closed on left and Interval closed on right are
selected in the dialog box.

Parameters
and Dialog Box

Interval closed on right
When the box is selected, the Upper limit is included in the interval for
which the block outputs TRUE.

Upper limit
The upper limit of the interval for which the block outputs TRUE.

Interval closed on left
When the box is selected, the Lower limit is included in the interval for
which the block outputs TRUE.

Lower limit
The lower limit of the interval for which the block outputs TRUE.
9-142

Interval Test
Characteristics

See Also Interval Test Dynamic

Input Ports Any data type supported by the blockset

Output Port Same data type as input

Direct Feedthrough Yes

Scalar Expansion Yes
9-143

Interval Test Dynamic
9Interval Test DynamicPurpose Determine if a signal is in a specified interval

Library Logic & Comparison

Description The Interval Test Dynamic block outputs TRUE if the input is between the
values of the external signals up and lo. The block outputs FALSE if the input
is outside those values. The output of the block when the input is equal to the
signal up or the signal lo is determined by whether the boxes next to Interval
closed on left and Interval closed on right are selected in the dialog box.

Parameters
and Dialog Box

Interval closed on right
When the box is selected, the Upper limit is included in the interval for
which the block outputs TRUE.

Interval closed on left
When the box is selected, the Lower limit is included in the interval for
which the block outputs TRUE.

Characteristics

See Also Interval Test

Input Ports Any data type supported by the blockset

Output Port Same data type as output

Direct Feedthrough Yes

Scalar Expansion Yes
9-144

Logical Operator
9Logical OperatorPurpose Perform the specified logical operation on the inputs

Library Simulink Math Operations and Fixed-Point Blockset Logic & Comparison

Description The Logical Operator block performs the specified logical operation on its
inputs. An input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero.

You select the Boolean operation connecting the inputs with the Operator
parameter list. The block icon updates to display the selected operator. The
supported operations are given below.

The number of input ports is specified with the Number of input ports
parameter. The output type is specified with the Output data type mode and/
or the Output data type parameters. An output value is 1 if TRUE and 0 if
FALSE.

Note The output data type should represent zero exactly. Data types that
satisfy this condition include signed and unsigned integers, and any
floating-point data type.

The size of the output depends on input vector size and the selected operator:

AND

Logical
Operator

Operation Description

AND TRUE if all inputs are TRUE

OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE

NOR TRUE when no inputs are TRUE

XOR TRUE if an odd number of inputs are TRUE

NOT TRUE if the input is FALSE
9-145

Logical Operator
• If the block has more than one input, any nonscalar inputs must have the
same dimensions. For example, if any input is a 2-by-2 array, all other
nonscalar inputs must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the nonscalar
inputs.

If the block has more than one input, the output has the same dimensions as
the inputs (after scalar expansion) and each output element is the result of
applying the specified logical operation to the corresponding input elements.
For example, if the specified operation is AND and the inputs are 2-by-2
arrays, the output is a 2-by-2 array whose top left element is the result of
applying AND to the top left elements of the inputs, etc.

• For a single vector input, the block applies the operation (except the NOT
operator) to all elements of the vector. The output is always a scalar.

• The NOT operator accepts only one input, which can be a scalar or a vector.
If the input is a vector, the output is a vector of the same size containing the
logical complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an addition-
modulo-two operation as mandated by the IEEE Standard for Logic Elements.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type
Support

A Logical Operator block accepts real or complex signals of any data type.
However, if the Output data type mode parameter is set to Logical, the
input may only be boolean or double.
9-146

Logical Operator
Parameters
and Dialog Box

Operator
The logical operator to be applied to the block inputs. Valid choices are the
operators listed previously.

Number of input ports
The number of block inputs. The value must be appropriate for the selected
operator.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
9-147

Logical Operator
Require all inputs and output to have same data type
Select to require all inputs and the output to have the same data type.

Output data type mode
Set the output data type to Boolean, or choose to specify the data type
through the Output data type parameter.

Alternatively, you can select Logical to have the output data type
determined by the Boolean Logic Signals parameter in the Advanced tab
of the Simulation Parameters interface. If you select Logical and Boolean
Logic Signals is on, then the output data type is always Boolean. If you
select Logical and Boolean Logic Signals is off, then the output data
type will match the input data type, which may be Boolean or double.

Logical output data type
Output data type. You should only use data types that represent zero
exactly. Data types that satisfy this condition include signed and unsigned
integers and any floating-point data type. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion Of inputs

Zero Crossing No
9-148

Look-Up Table
9Look-Up TablePurpose Approximate a one-dimensional function using the specified lookup method

Library Simulink Look-Up Tables and Fixed-Point Blockset LookUp

Description The Look-Up Table block computes an approximation to some function y=f(x)
given data vectors x and y.

Note To map two inputs to an output, use the Look-Up Table (2-D) block.

The length of the x and y data vectors provided to this block must match. Also,
the x data vector must be strictly monotonically increasing after conversion to
the input’s fixed-point data type, except in the following case. If the input x and
the output signal are both either single or double, and if the lookup method is
Interpolation-Extrapolation, then x may be monotonically increasing
rather than strictly monotonically increasing. Note that due to quantization,
the x data vector may be strictly monotonic in doubles format, but not so after
conversion to a fixed-point data type.

You define the table by specifying the Vector of input values parameter as a
1-by-n vector and the Vector of output values parameter as a 1-by-n vector.
The block generates output based on the input values using one of these
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs
linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

- If no value matches the block’s input, then the block performs linear
interpolation between the two appropriate elements of the table to
determine an output value. If the block input is less than the first or
greater than the last input vector element, then the block extrapolates
using the first two or last two points.

• Interpolation-Use End Values—This method performs linear
interpolation as described above but does not extrapolate outside the end
points of the input vector. Instead, the end-point values are used.

Look−Up
Table
9-149

Look-Up Table
• Use Input Nearest—This method does not interpolate or extrapolate.
Instead, the element in x nearest the current input is found. The
corresponding element in y is then used as the output.

• Use Input Below—This method does not interpolate or extrapolate. Instead,
the element in x nearest and below the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x below the current input, then the nearest element is found.

• Use Input Above—This method does not interpolate or extrapolate. Instead,
the element in x nearest and above the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x above the current input, then the nearest element is found.

To create a table with step transitions, repeat an input value with different
output values. For example, these input and output parameter values create
the input/output relationship described by the plot that follows:

Vector of input values: [-2 -1 -1 0 0 0 1 1 2]
Vector of output values: [-1 -1 -2 -2 1 2 2 1 1]

This example has three step discontinuities: at u = -1, 0, and +1.

When there are two points at a given input value, the block generates output
according to these rules:

• When the input signal u is less than zero, the output is the value connected
with the point first encountered when moving away from the origin in a
negative direction. In this example, when u is -1, y is -2, marked with a solid
circle.

The output value
9-150

Look-Up Table
• When u is greater than zero, the output is the value connected with the point
first encountered when moving away from the origin in a positive direction.
In this example, when u is 1, y is 2, marked with a solid circle.

• When u is at the origin and there are two output values specified for zero
input, the actual output is their average. In this example, if there were no
point at u = 0 and y = 1, the output would be 0, the average of the two points
at u = 0. If there are three points at zero, the block generates the output
associated with the middle point. In this example, the output at the origin is
1.

The Look-Up Table block icon displays a graph of the input vector versus the
output vector. When a parameter is changed on the block’s dialog box, the
graph is automatically redrawn when you click the Apply or Close button.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

To avoid parameter saturation errors, the automatic scaling script autofixexp
employs a special rule for the Look-Up Table block. autofixexp modifies the
scaling by using the output look-up values in addition to the logged minimum
and maximum simulation values. This prevents the data from being saturated
to different values. The look-up values are given by the Vector of output
values parameter (the YDataPoints variable).

Parameters
and Dialog Box
9-151

Look-Up Table
Vector of input values
Specify the vector of input values. The input values vector must be the
same size as the output values vector. Also, the input values vector must
be strictly monotonically increasing after conversion to the input’s
fixed-point data type, except in the following case. If the input values vector
and the output signal are both either single or double, and if the lookup
method is Interpolation-Extrapolation, then the input values vector
may be monotonically increasing rather than strictly monotonically
increasing. Note that due to quantization, the input values vector may be
strictly monotonic in doubles format, but not so after conversion to a
fixed-point data type.

Vector of output values
Specify the vector of output values. The output values vector must be the
same size as the input values vector.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
9-152

Look-Up Table
Look-up method
Specify the lookup method. See “Description” on page 9-149 for a discussion
of the options for this parameter.

Output data type mode
You can set the output signal to a built-in data type from this drop-down
list, or you can choose the output data type and scaling to be the same as
the input. Alternatively, you can choose to inherit the output data type and
scaling by backpropagation. Lastly, if you choose Specify via dialog, the
Output data type, Output scaling value, and Lock output scaling
against changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions
and Operations

The Vector of input values parameter is converted from doubles to the input
data type. The Vector of output values parameter is converted from doubles
to the output data type. Both conversion are performed offline using
round-to-nearest and saturation. Refer to “Parameter Conversions” on
page 4-27 for more information about parameter conversions.
9-153

Look-Up Table
Examples

Suppose the Look-Up Table block in the above model is configured to use a
vector of input values given by [-5:5], and a vector of output values given by
sinh([-5:5]). The following results are generated.

Characteristics

See Also Look-Up Table Dynamic, Look-Up Table (2-D)

Look-Up Method Input Output Comment

Interpolation-
Extrapolation

1.4 2.153 N/A

5.2 83.59 N/A

Interpolation-
Use End Values

1.4 2.153 N/A

5.2 74.2 The value for sinh(5.0) was used.

Use Input
Above

1.4 3.627 The value for sinh(2.0) was used.

5.2 74.2 The value for sinh(5.0) was used.

Use Input
Below

1.4 1.175 The value for sinh(1.0) was used.

-5.2 -74.2 The value for sinh(-5.0) was used.

Use Input
Nearest

1.4 1.175 The value for sinh(1.0) was used.

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Zero Crossing No
9-154

Look-Up Table Dynamic
9Look-Up Table DynamicPurpose Approximate a one-dimensional function using a selected look-up method and
a dynamically specified table

Library LookUp

Description The Look-Up Table Dynamic block is a masked S-function that computes an
approximation to some function y=f(x) given x, y data vectors. The look-up
method can use interpolation, extrapolation, or the original values of the input.

The x data vector must be strictly monotonically increasing after conversion to
the input’s fixed-point data type. Note that due to quantization, the x data
vector may be strictly monotonic in doubles format, but not so after conversion
to a fixed-point data type.

Note Unlike the Look-Up Table block, the Look-Up Table Dynamic block
allows you to change the table data without stopping the simulation. For
example, you may want to automatically incorporate new table data if the
physical system you are simulating changes.

You define the look-up table by inputting the x and y table data to the block as
1-by-n vectors. To help reduce the ROM used by the code generated for this
block, you can use different data types for the x table data and the y table data.
However, these restrictions apply:

• The y table data and the output vector must have the same sign, the same
bias, and the same fractional slope.

• The x table data and the x data vector must have the same sign, the same
bias, and the same fractional slope. Additionally, the precision and range for
the x data vector must greater than or equal to the precision and range for
the x table data.

The block generates output based on the input values using one of these
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs
linear interpolation and extrapolation of the inputs.
9-155

Look-Up Table Dynamic
- If a value matches the block’s input, the output is the corresponding
element in the output vector.

- If no value matches the block’s input, then the block performs linear
interpolation between the two appropriate elements of the table to
determine an output value. If the block input is less than the first or
greater than the last input vector element, then the block extrapolates
using the first two or last two points.

• Interpolation-Use End Values—This method performs linear
interpolation as described above but does not extrapolate outside the end
points of the input vector. Instead, the end-point values are used.

• Use Input Nearest—This method does not interpolate or extrapolate.
Instead, the element in x nearest the current input is found. The
corresponding element in y is then used as the output.

• Use Input Below—This method does not interpolate or extrapolate. Instead,
the element in x nearest and below the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x below the current input, then the nearest element is found.

• Use Input Above—This method does not interpolate or extrapolate. Instead,
the element in x nearest and above the current input is found. The
corresponding element in y is then used as the output. If there is no element
in x above the current input, then the nearest element is found.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-16.
9-156

Look-Up Table Dynamic
Parameters
and Dialog Box

Look-Up Method
Look-up method.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-157

Look-Up Table Dynamic
Conversions The table data is converted from doubles to the x data type. This conversion is
performed offline using round-to-nearest and saturation. Refer to “Parameter
Conversions” on page 4-27 for more information about parameter conversions.

Examples For an example that illustrates the look-up methods supported by this block,
see the example included in the Look-Up Table block reference pages.

Characteristics

See Also Look-Up Table, Look-Up Table (2-D)

Input Port(s) Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion No
9-158

Look-Up Table (2-D)
9Look-Up Table (2-D)Purpose Approximate a two-dimensional function using a selected look-up method

Library Simulink Look-Up Tables and Fixed-Point Blockset LookUp

Description The Look-Up Table (2-D) block computes an approximation to some function
z=f(x,y) given x, y, z data points.

The Row index input values parameter is a 1-by-m vector of x data points, the
Column index input values parameter is a 1-by-n vector of y data points, and
the Matrix of output values parameter is an m-by-n matrix of z data points.
Both the row and column vectors must be monotonically increasing. These
vectors must be strictly monotonically increasing in the following cases:

• The input and output data types are both fixed-point.

• The input and output data types are different.

• The lookup method is not Interpolation-Extrapolation.

• The matrix of output values is complex.

• Minimum, maximum, and overflow logging is on.

The block generates output based on the input values using one of these
methods selected from the Look-up method parameter list:

• Interpolation-Extrapolation—This is the default method; it performs
linear interpolation and extrapolation of the inputs.

- If the inputs match row and column parameter values, the output is the
value at the intersection of the row and column.

- If the inputs do not match row and column parameter values, then the
block generates output by linearly interpolating between the appropriate
row and column values. If either or both block inputs are less than the first
or greater than the last row or column values, the block extrapolates using
the first two or last two points.

• Interpolation-Use End Values—This method performs linear
interpolation as described above but does not extrapolate outside the end
points of x and y. Instead, the end-point values are used.

• Use Input Nearest—This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest the current inputs are found. The
corresponding element in z is then used as the output.

2−D Lookup
Table

Look−Up
Table (2−D)
9-159

Look-Up Table (2-D)
• Use Input Below—This method does not interpolate or extrapolate. Instead,
the elements in x and y nearest and below the current inputs are found. The
corresponding element in z is then used as the output. If there are no
elements in x or y below the current inputs, then the nearest elements are
found.

• Use Input Above—This method does not interpolate or extrapolate. Instead,
the elements in x and y nearest and above the current inputs are found. The
corresponding element in z is then used as the output. If there are no
elements in x or y above the current inputs, then the nearest elements are
found.

To avoid parameter saturation errors, the automatic scaling script autofixexp
employs a special rule for the Look-Up Table (2-D) block. autofixexp modifies
the scaling by using the output look-up values in addition to the logged
minimum and maximum simulation values. The output look-up values are
converted to the specified output data type. This prevents the data from being
saturated to different values.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

Parameters
and Dialog Box

Row index input values
The row values for the table, entered as a vector. The vector values must
increase monotonically.
9-160

Look-Up Table (2-D)
Column index input values
The column values for the table, entered as a vector. The vector values
must increase monotonically.

Matrix of output values
The table of output values. The matrix size must match the dimensions
defined by the Row and Column parameters.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.

Look-up method
Specify the lookup method. See “Description” on page 9-159 for a discussion
of the options for this parameter.
9-161

Look-Up Table (2-D)
Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type mode
You can set the output signal to a built-in data type from this drop-down
list, or you can choose the output data type and scaling to be the same as
the input. Alternatively, you can choose to inherit the output data type and
scaling by backpropagation. Lastly, if you choose Specify via dialog, the
Output data type, Output scaling value, and Lock output scaling
against changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Examples In this example, the block parameters are defined as

Row: [1 2]
Column: [3 4]
Table: [10 20; 30 40]

The first figure shows the block outputting a value at the intersection of block
inputs that match row and column values. The first input is 1 and the second
9-162

Look-Up Table (2-D)
input is 4. These values select the table value at the intersection of the first row
(row parameter value 1) and second column (column parameter value 4).

In the second figure, the first input is 1.7 and the second is 3.4. These values
cause the block to interpolate between row and column values, as shown in the
table at the left. The value at the intersection (28) is the output value.

Characteristics

See Also Look-Up Table, Look-Up Table Dynamic

3 4

1 10 20

2 30 40

1

2

3 4

10 20

30 40

1.7 24 34

3.4

14

34

28

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Of one input if the other is a vector

Zero Crossing No
9-163

Matrix Gain
9Matrix GainPurpose Multiply input by a constant matrix

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Matrix Gain block is an implementation of the Gain block. See “Gain” on
page 9-101 for more information.

K*u

Matrix
Gain

K*uvec

Matrix
Gain
9-164

MinMax
9MinMaxPurpose Output the minimum or maximum input value

Library Math

Description The MinMax block is a masked S-function that outputs either the minimum or
the maximum element of the inputs. You can choose which function to apply
with the Function parameter list.

You specify the number of input ports with the Number of input ports
parameter. If the block has one input port, the input must be a scalar or a
vector. The block outputs a scalar equal to the minimum or maximum element
of the input vector.

If the block has multiple input ports, the non-scalar inputs must all have the
same dimensions. The block expands any scalar inputs to have the same
dimensions as the non-scalar inputs. The block outputs a signal having the
same dimensions as the input. Each output element equals the minimum or
maximum of the corresponding input elements.

For a detailed description of all other block parameters, refer to “Block
Parameters” on page 9-16.

Parameters
and Dialog Box
9-165

MinMax
Function
The function to apply to the input.

Number of input ports
The number of inputs to the block.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or inherit the
data type and scaling from the driving block or by backpropagation.

Output data type
Any data type supported by the Fixed-Point Blockset.

Output scaling
Set the output scaling using radix point-only or [Slope Bias] scaling. These
scaling modes are available only for generalized fixed-point data types.

Lock output scaling so autoscaling tool can’t change it
If selected, Output scaling is locked. This feature is available only for
generalized fixed-point output.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics

See Also MinMax Running Resettable

Input Ports Any data type supported by the blockset

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Yes
9-166

MinMax Running Resettable
9MinMax Running ResettablePurpose Determine the minimum or maximum of a signal over time

Library Math

Description The MinMax Running Resettable block outputs the minimum or maximum of
all past inputs u. You specify whether the block outputs the minimum or the
maximum with the Function parameter.

The block can reset its state based on an external reset signal R. When the
reset signal R is TRUE, the block resets the output to the value of the Initial
condition parameter.

Parameters
and Dialog Box

Function
Specify whether the block outputs the minimum or the maximum.

Initial condition
Initial condition.

Characteristics

See Also MinMax

Input Ports Any data type supported by the blockset

Output Port Same data type as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-167

Multiply
9MultiplyPurpose Multiply or divide inputs

Library Math

Description The Multiply block is an implementation of the Product block. See “Product” on
page 9-173 for more information.

Multiply
9-168

Multiply Matrix
9Multiply MatrixPurpose Multiply or divide inputs

Library Math

Description The Multiply Matrix block is an implementation of the Product block. See
“Product” on page 9-173 for more information.

Matrix
Multiply

Multiply
Matrix
9-169

Multi-Port Switch
9Multi-Port SwitchPurpose Choose between multiple block inputs

Library Simulink Signal Routing and Fixed-Point Blockset Select

Description The Multi-Port Switch block chooses between a number of inputs. The first
(top) input is called the control input, while the rest of the inputs are called
data inputs. The value of the control input determines which data input is
passed through to the output port.

If the control input is an integer value, then the specified data input is passed
through to the output. For example, suppose the Use zero-based indexing
parameter is not selected. If the control input is 1, then the first data input is
passed through to the output. If the control input is 2, then the second data
input is passed through to the output, and so on. If the control input is not an
integer value, the block first truncates the value to an integer by rounding to
floor. If the truncated control input is less than 1 or greater than the number
of input ports, an out-of-bounds error is returned.

You specify the number of data inputs with the Number of input ports
parameter. The data inputs can be scalar or vector. The block output is
determined by these rules:

• If you specify only one data input and that input is a vector, the block
behaves as an “index selector,” and not as a multi-port switch. The block
output is the vector element that corresponds to the value of the control
input.

• If you specify more than one data input, the block behaves like a multi-port
switch. The block output is the data input that corresponds to the value of
the control input. If at least one of the data inputs is a vector, the block
output is a vector. Any scalar inputs are expanded to vectors.

• If the inputs are scalar, the output is a scalar.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

The Index Vector block, also in the Fixed-Point Blockset Select library, is
another implementation of the Multi-Port Switch block that has different
default parameter settings.

Multiport
Switch
9-170

Multi-Port Switch
Data type
support

The control input of a Multi-Port Switch block can be a real-valued signal of
any data type, including fixed-point data types. The data inputs can of any
complexity and data type, including fixed-point data types.

Parameters
and Dialog Box

Number of input ports
Specify the number of data inputs to the block.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
9-171

Multi-Port Switch
Use zero based indexing
If selected, the block uses zero-based indexing. Otherwise, the block uses
one-based indexing.

Require all data port inputs to have same data type
Select to require all data port inputs to have the same data type.

Output data type mode
You can choose to inherit the output data type and scaling by
backpropagation or by an internal rule. The internal rule causes the output
of the block to have the same data type and scaling as the input with the
larger positive range.

Round integer calculations toward
Select the rounding mode for the fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

Zero Crossing No
9-172

Product
9ProductPurpose Multiply or divide inputs

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Product block performs multiplication or division of its inputs.

This block produces outputs using either element-wise or matrix
multiplication, depending on the value of the Multiplication parameter. You
specify the operations with the Number of inputs parameter. Multiply(*) and
divide(/) characters indicate the operations to be performed on the inputs:

• If there are two or more inputs, then the number of characters must equal
the number of inputs. For example, “*/*” requires three inputs. For this
example, if the Multiplication parameter is set to Element-wise, the block
divides the elements of the first (top) input by the elements of the second
(middle) input, and then multiplies by the elements of the third (bottom)
input. In this case, all nonscalar inputs to this block must have the same
dimensions.

If, however, the Multiplication parameter is set to Matrix, the block output
is the matrix product of the inputs marked “*” and the inverse of inputs
marked “/”, with the order of operations following the entry in the Number
of inputs parameter. The dimensions of the inputs must be such that the
matrix product is defined.

Note To perform a dot product on input vectors, use the Dot Product block.

• If only multiplication of inputs is required, then a numeric parameter value
equal to the number of inputs can be supplied instead of “*” characters. This
may be used in conjunction with either element-wise or matrix
multiplication.

• If a single vector is input and the Multiplication parameter is set to
Element-wise, then a single “*” will cause the block to output the scalar
product of the vector elements. A single “/” will cause the block to output the
inverse of the scalar product of the vector elements.

• If a single matrix is input and the Multiplication parameter is set to
Element-wise, then a single “*” or “/” will cause the block to error out. If,

Product

Product
9-173

Product
however, the Multiplication parameter is set to Matrix, then a single “*”
will cause the block to output the matrix unchanged, and a single “/” will
cause the block to output the inverse of the matrix.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

For your convenience, the Fixed-Point Blockset Math library contains the
following implementations of the Product block, each with different default
parameter settings:

• Multiply

• Divide

• Product of Elements

• Product of Elements Inverted

• Multiply Matrix

Data Type
Support

The Product block accepts signals of any complexity and data type, including
fixed-point data types. All input signals must be of the same data type.

Parameters
and Dialog Box

Number of inputs
Enter the number of inputs or a combination of “*” and “/” symbols. See
“Description” above for a complete discussion of this parameter.
9-174

Product
Multiplication
Specify element-wise or matrix multiplication. See “Description” above for
a complete discussion of this parameter.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.

Require all inputs to have same data type
Select this parameter to require that all inputs must have the same data
type.

Output data type mode
Specify the output data type and scaling to be the same as the first input,
or inherit the data type and scaling by an internal rule or by
backpropagation. You can also choose a built-in data type from the
drop-down list. Lastly, if you choose Specify via dialog, the Output
9-175

Product
data type, Output scaling value, and Lock output scaling against
changes by the autoscaling tool parameters become visible.

If you select Inherit via internal rule for this parameter, Simulink
chooses a combination of output scaling and data type that requires the
smallest amount of memory consistent with accommodating the output
range and maintaining the output precision (and avoiding underflow in the
case of division operations). If the Production hardware characteristics
parameter on the Advanced pane of the Simulation Parameters dialog is
set to Unconstrained integer sizes, Simulink chooses the data type
without regard to hardware constraints. If the parameter is set to
Microprocessor, Simulink chooses the smallest available hardware data
type capable of meeting range, precision, and underflow constraints. For
example, if the block multiplies inputs of type int8 and int16 and
Unconstrained integer sizes is specified, the output data type is
sfix24. If Microprocessor is specified and the microprocessor supports
8-bit, 16-bit, and 32-bit words, the output data type is int32. If none of the
word lengths provided by the target microprocessor can accommodate the
output range, Simulink displays an error message in the Simulink
Diagnostic Viewer.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
9-176

Product
If selected, overflows saturate.

Conversions
and Operations

The Product block first performs the specified multiply or divide operations on
the inputs, and then converts the results to the output data type using the
specified rounding and overflow modes. Refer to “Rules for Arithmetic
Operations” on page 4-30 for more information about the rules that this block
obeys when performing fixed-point operations.
9-177

Product
Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Zero Crossing No
9-178

Product of Elements
9Product of ElementsPurpose Multiply or divide inputs

Library Math

Description The Product of Elements block is an implementation of the Product block. See
“Product” on page 9-173 for more information.

Product of
Elements
9-179

Product of Elements Inverted
9Product of Elements InvertedPurpose Multiply or divide inputs

Library Math

Description The Product of Elements Inverted block is an implementation of the Product
block. See “Product” on page 9-173 for more information.

Product of
Elements
Inverted
9-180

Rate Limiter
9Rate LimiterPurpose Limit the rising and falling rates of the signal

Library Nonlinear

Description The Rate Limiter block is a masked block that limits the rising and falling rates
of the signal.

Use the Rising slew rate parameter to set the limit on the rising rate of the
signal.

Use the Falling slew rate parameter to set the limit on the falling rate of the
signal.

Parameters
and Dialog Box

Rising slew rate
Limit on the rising rate of the signal.

Falling slew rate
Limit on the falling rate of the signal.

Characteristics

See Also Rate Limiter Dynamic

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-181

Rate Limiter Dynamic
9Rate Limiter DynamicPurpose Limit the rising and falling rates of the signal

Library Nonlinear

Description The Rate Limiter Dynamic block is a masked block that limits the rising and
falling rates of the signal.

The external signal up sets the upper limit on the rising rate of the signal.

The external signal lo sets the lower limit on the falling rate of the signal.

Parameters
and Dialog Box

Characteristics

See Also Rate Limiter

Input Ports Any data type supported by the blockset

Output Port Same data type as input

Direct Feedthrough Yes

Scalar Expansion Yes
9-182

Relational Operator
9Relational OperatorPurpose Perform the specified relational operation on the inputs

Library Simulink Math Operations and Fixed-Point Blockset Logic & Comparison

Description The Relational Operator block performs the specified comparison of its two
inputs.

The relational operator connecting the two inputs is selected with the
Relational Operator parameter. The block icon updates to display the selected
operator. The supported operations are given below.

You can specify inputs as scalars, arrays, or a combination of a scalar and an
array:

• For scalar inputs, the output is a scalar.

• For array inputs, the output is an array of the same dimensions, where each
element is the result of an element-by-element comparison of the input
arrays.

• For mixed scalar/array inputs, the output is an array, where each element is
the result of a comparison between the scalar and the corresponding array
element.

The output data type is specified with the Output data type mode and Output
data type parameters. The output equals 1 for TRUE and 0 for FALSE.

<=

Relational
Operator

Operation Description

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second
input

>= TRUE if the first input is greater than or equal to the
second input

> TRUE if the first input is greater than the second input
9-183

Relational Operator
Note The output data type selected should represent zero exactly. Data types
that satisfy this condition include signed and unsigned integers and any
floating-point data type.

Data Type
Support

A Relational Operator block accepts real or complex signals of any data type.
However, if the Output data type mode parameter is set to Logical, the
input may only be boolean or double.

One input can be real and the other complex if the operator is == or !=.

Parameters
and Dialog Box

Relational Operator
Designate the relational operator used to compare the two inputs.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
9-184

Relational Operator
Require all inputs to have same data type
Select to require inputs to have the same data type.

Output data type mode
Set the output data type to boolean, or choose to specify the data type
through the Output data type parameter.

Alternatively, you can select Logical to have the output data type
determined by the Boolean Logic Signals parameter in the Advanced tab
of the Simulink Simulation Parameters interface. If you select Logical and
Boolean Logic Signals is on, then the output data type is always boolean.
If you select Logical and Boolean Logic Signals is off, then the output
data type will match the input data type, which is always double.

Output data type
Specify the output data type. You should only use data types that represent
zero exactly. Data types that satisfy this condition include signed and
unsigned integers and any floating-point data type. This parameter is only
visible if Specify via dialog is selected for the Output data type mode
parameter.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.
9-185

Relational Operator
Conversions
and Operations

The input with the smaller positive range is converted to the data type of the
other input offline using round-to-nearest and saturation. This conversion is
performed prior to comparison. Refer to “Parameter Conversions” on page 4-27
for more information about parameter conversions.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of inputs

Zero Crossing No, unless Enable zero crossing detection is
selected.
9-186

Relay
9RelayPurpose Switch output between two constants

Library Simulink Discontinuities and Fixed-Point Blockset Nonlinear

Description The Relay block allows its output to switch between two specified values. When
the relay is on, it remains on until the input drops below the value of the
Switch off point parameter. When the relay is off, it remains off until the
input exceeds the value of the Switch on point parameter. The block accepts
one input and generates one output.

The Switch on point value must be greater than or equal to the Switch off
point. Specifying a Switch on point value greater than the Switch off point
value models hysteresis, whereas specifying equal values models a switch with
a threshold at that value.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type
Support

This block supports any data type supported by the Fixed-Point Blockset.

Parameters
and Dialog Box

Relay
9-187

Relay
Switch on point
The “on” threshold for the relay.

Switch off point
The “off” threshold for the relay.

Output when on
The output when the relay is on.

Output when off
The output when the relay is off.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
9-188

Relay
Output data type mode
Specify the output data type and scaling to be the same as the inputs, or
inherit the data type and scaling by backpropagation. Lastly, if you choose
Specify via dialog, the Output data type, Output scaling value, and
Parameter Scaling parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.

Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter, and is only enabled if Use specified
scaling is selected for the Parameter Scaling parameter.

Parameter Scaling

• Use Specified Scaling—This mode allows you to specify the output scaling
in the Output scaling value parameter

• Best Precision: Vector-wise—This mode produces a common radix point
for each element of the output vector based on the best precision for the
largest value of the vector.

This parameter is only visible if Specify via dialog is selected for the
Output data type mode parameter.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Conversions
and Operations

The Switch on point and Switch off point parameters are converted to the
input data type offline using round-to-nearest and saturation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block
9-189

Relay
Scalar Expansion Yes

Zero Crossing No, unless Enable zero crossing detection is
selected
9-190

Repeating Sequence Interpolated
9Repeating Sequence InterpolatedPurpose Output discrete-time sequence and repeat, interpolating between data points

Library Sources

Description The Repeating Sequence Interpolated block outputs a discrete-time sequence
and then repeats it. Between data points, the block uses the method specified
by the Look-Up Method parameter to determine the output.

Parameters
and Dialog Box

Vector of output values
Column vector containing output values of the discrete time sequence.

Vector of time values
Column vector containing time values. The time values must be a strictly
increasing and the vector must have the same size as the vector of output
values.

Look-Up Method
Specify the lookup method to determine the output between data points.
9-191

Repeating Sequence Interpolated
Sample time
Sample time.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or by inheriting
the data type and scaling by backpropagation.

Output data type
Any data type supported by the blockset.

Output scaling
Select the scaling method using the specified scaling or using the best
precision.

Lock output scaling so autoscaling tool can’t change it
If the box is selected, output scaling is locked.

Characteristics

See Also Repeating Sequence Stair

Output Port Any data type supported by the blockset

Scalar Expansion Yes
9-192

Repeating Sequence Stair
9Repeating Sequence Stair

Purpose Output and repeat the discrete time sequence

Library Sources

Description The Repeating Sequence Stair block is a masked block that outputs and
repeats a discrete time sequence.

You can specify the stair sequence with the Vector of output values
parameter. For example, the vector can be specified as [3 1 2 4 1]', producing
the stair sequence shown in the plot.

You can specify the sample time with the Sample time parameter.

You can select the output data type and scaling with the Output data type and
scaling parameter, and set the output data type with the Output data type
parameter.

For fixed-point data types, you can set the output scaling with the Output
scaling parameter, and, below that parameter, select the method for scaling
the output with the Output scaling parameter.

For a detailed description of all block parameters, refer to “Block Parameters”
on page 9-4. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-26.
9-193

Repeating Sequence Stair
Parameters
and Dialog Box

Vector of output values
Vector containing values of the repeating stair sequence.

Sample time
Sample time.

Output data type and scaling
Specify the output data type and scaling via the dialog box, or by inheriting
the data type and scaling by backpropagation.

Output data type
Any data type supported by the blockset.

Output scaling
Slope or [Slope Bias] scaling.

Lock output scaling so autoscaling tool can’t change it
If the box is selected, output scaling is locked.

Output scaling
Select the scaling method using the specified scaling or using the best
precision.
9-194

Repeating Sequence Stair
Characteristics

See Also Repeating Sequence Interpolated

Output Port Any data type supported by the blockset

Scalar Expansion No

Vectorized No
9-195

Sample Rate Probe
9Sample Rate ProbePurpose Support calculations involving sample time

Library Calculus

Description The Sample Rate Probe block is an implementation of the Sample Time
Multiply block. See “Sample Time Multiply” on page 9-199 for more
information.

1/Ts

Sample Rate
Probe
9-196

Sample Time Add
9Sample Time AddPurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Add block is an implementation of the Sample Time Multiply
block. See “Sample Time Multiply” on page 9-199 for more information.

u+Ts

Sample Time
Add
9-197

Sample Time Divide
9Sample Time DividePurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Divide block is an implementation of the Sample Time
Multiply block. See “Sample Time Multiply” on page 9-199 for more
information.

u/Ts

Sample Time
Divide
9-198

Sample Time Multiply
9Sample Time MultiplyPurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Multiply block is a masked S-function that adds, subtracts,
multiplies, or divides the input signal, u, by a weighted sample time Ts.

You specify the math operation with the Operation parameter. Additionally,
you can specify to use only the weight with either the sample time or its
inverse.

Enter the weighting factor with the Weight value. If the weight is 1, w is
removed from the equation.

For a detailed description of all block parameters, refer to “Block Parameters”
on page 9-4. For more information about converting from one Fixed-Point
Blockset data type to another, refer to “Signal Conversions” on page 4-26.

The Calculus library contains the following implementations, which are all
linked to the Sample Time Multiply block but have different parameter
settings:

• Sample Time Divide

• Sample Time Add

• Sample Time Subtract

• Sample Time Probe

• Sample Rate Probe
9-199

Sample Time Multiply
Parameters
and Dialog Box

Operation
Specify operation to use: +, -, *, /, Ts only, 1/Ts only.

Weight value
Enter weight of sample time.

Implement using
Specify online calculations or offline scaling adjustment.

Output data type and scaling
Specify whether the output data type and scaling are inherited by an
internal rule or by backpropagation.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.
9-200

Sample Time Multiply
Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough For all math operations options except Ts and 1/Ts

Scalar Expansion No, the weight is always a scalar
9-201

Sample Time Probe
9Sample Time ProbePurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Probe block is an implementation of the Sample Time
Multiply block. See “Sample Time Multiply” on page 9-199 for more
information.

Ts

Sample Time
Probe
9-202

Sample Time Subtract
9Sample Time SubtractPurpose Support calculations involving sample time

Library Calculus

Description The Sample Time Subtract block is an implementation of the Sample Time
Multiply block. See “Sample Time Multiply” on page 9-199 for more
information.

u−Ts

Sample Time
Subtract
9-203

Saturation
9SaturationPurpose Limit the range of a signal

Library Simulink Discontinuities and Fixed-Point Blockset Nonlinear

Description The Saturation block imposes upper and lower bounds on a signal. When the
input signal is within the range specified by the Lower limit and Upper limit
parameters, the input signal passes through unchanged. When the input
signal is outside these bounds, the signal is clipped to the upper or lower bound.

When the Lower limit and Upper limit parameters are set to the same value,
the block outputs that value.

Data Type
Support

A Saturation block accepts and outputs real signals of any data type, including
fixed-point data types. The output data type is the same as the input data type.

Parameters
and Dialog Box

Upper limit
Specify the upper bound on the input signal. When the input signal to the
Saturation block is above this value, the output of the block is clipped to
this value.

Lower limit
Specify the lower bound on the input signal. When the input signal to the
Saturation block is below this value, the output of the block is clipped to
this value.

Saturation
9-204

Saturation
Treat as gain when linearizing
Linearization commands in Simulink treat this block as a gain in state
space. Select this parameter to cause linearization commands to treat the
gain as 1; otherwise, the commands treat the gain as 0.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Conversions
and Operations

Both the Upper limit and Lower limit parameters are converted to the input
data type offline using round-to-nearest and saturation.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Of parameters and input

Zero Crossing No, unless Enable zero crossing detection is
selected
9-205

Saturation Dynamic
9Saturation DynamicPurpose Bound the range of the input

Library Nonlinear

Description The Saturation Dynamic block is a masked block that bounds the range of the
input signal to upper and lower saturation values. The input signal outside of
these limits saturates to one of the bounds where

• The input below the lower limit is set to the lower limit.

• The input above the upper limit is set to the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is
the lo port.

Parameters
and Dialog Box

Characteristics

See Also Saturation

Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-206

Scaling Strip
9Scaling StripPurpose Remove scaling and map to a built in integer

Library Data Type

Description The Scaling Strip block strips the scaling off a fixed point signal. It maps the
input data type to the smallest built in data type that has enough data bits to
hold the input. The stored integer value of the input is the value of the output.
The output always has nominal scaling (slope = 1.0 and bias = 0.0), so the
output does not make a distinction between real world value and stored integer
value.

Parameters
and Dialog Box

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-207

Shift Arithmetic
9Shift ArithmeticPurpose Shift the bits and/or radix point of a signal

Library Bits

Description The Shift Arithmetic block can be used to shift the bits or the radix point of a
signal, or both.

For example, the effects of radix point shifts two places to the right and two
places to the left on an input of data type sfix(8) are shown below.

This block performs arithmetic bit shifts on signed numbers. Therefore, the
most significant bit is recycled for each bit shift. The effects of bit shifts two
places to the right and two places to the left on an input of data type sfix(8)
follow.

Vy = Vu * 2^−8
Qy = Qu >> 8

Ey = Eu

Shift
Arithmetic Shift Operation Binary Value Decimal Value

No shift (original number) 11001.011 -6.625

Radix point shift right by 2 places 1100101.1 -26.5

Radix point shift left by 2 places 110.01011 -1.65625

Shift Operation Binary Value Decimal Value

No shift (original number) 11001.011 -6.625

Bit shift right by 2 places 11110.010 -1.75

Bit shift left by 2 places 00101.100 5.5
9-208

Shift Arithmetic
Parameters
and Dialog Box

Shift bits right how many places (negative is shift left)
The number of places the bits of the input signal is shifted. A positive value
indicates a shift right, while a negative value indicates a shift left.

Shift binary point right how many places (negative is shift left)
The number of places the radix point of the input signal is shifted. A
positive value indicates a shift right, while a negative value indicates a
shift left.

Characteristics Input Port Any data type supported by the blockset. Inputs may
be scalar or vector.

Output Port Any data type supported by the blockset. Output is
scalar if the input is scalar, and vector if the input is
vector.

Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion No

Vectorized Yes, accepts vector inputs
9-209

Sign
9SignPurpose Indicate the sign of the input

Library Simulink Math Operations and Fixed-Point Blockset Nonlinear

Description The Sign block indicates the sign of the input:

• The output is 1 when the input is greater than zero.

• The output is 0 when the input is equal to zero.

• The output is -1 when the input is less than zero.

Data Type
Support

The Sign block accepts signals of any data type including fixed-point data
types. The output is a signed data type with the same number of bits as the
input, and with nominal scaling (a slope of one and a bias of zero).

Parameters
and Dialog Box

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics

Sign

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion N/A

Zero Crossing No, unless Enable zero crossing detection is
selected
9-210

Sine
9SinePurpose Implement a sine wave in fixed-point using a lookup table approach that
exploits quarter wave symmetry

Library Lookup

Description The Sine block is a masked block that implements a sine wave in fixed-point
using a lookup table method that exploits quarter wave symmetry.

You can set the number of data points to retrieve from the lookup table with
the Number of data points for lookup table parameter.

Parameters
and Dialog Box

Number of data points for lookup table
Number of data points to retrieve from the lookup table.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough Yes

Scalar Expansion N/A
9-211

State-Space
9State-SpacePurpose Implement discrete-time state space

Library Filters

Description The State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

x(n+1) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations have the
same data type.

The matrices A, B, C and D have the following characteristics:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

In addition:

• The state x must be a n-by-1 vector

• The input u must be a m-by-1 vector

• The output y must be a r-by-1 vector

The block accepts one input and generates one output. The input vector width
is determined by the number of columns in the B and D matrices. The output
vector width is determined by the number of rows in the C and D matrices.
9-212

State-Space
Parameters
and Dialog Box

State Matrix A
Matrix of states.

Input Matrix B
Column vector of inputs.

Output Matrix C
Column vector of outputs.

Direct Feedthrough Matrix D
Matrix for direct feedthrough.

Initial condition for state
Initial condition for the state.

Data type for internal calculations
9-213

State-Space
Data type for internal calculations. Some examples are sfix(16), unit(8),
and float('single').

Scaling for State Equation AX+BU
Scaling for state equations.

Scaling for Output Equation CX+DU
Scaling for output equations.

Lock output scaling so autoscaling tool can’t change it
If the box is selected, the output scaling is locked.

Round toward
Rounding mode for the fixed-point output.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Ports Any data type supported by the blockset—it must be
a scalar

Output Port Any data type supported by the blockset

Direct Feedthrough Yes

Scalar Expansion Of initial conditions

Vectorized No
9-214

Subtract
9SubtractPurpose Add or subtract inputs

Library Math

Description The Subtract block is an implementation of the Sum block. See “Sum” on
page 9-216 for more information.

Subtract
9-215

Sum
9SumPurpose Add or subtract inputs

Library Simulink Math Operations and Fixed-Point Blockset Math

Description The Sum block performs addition or subtraction on its inputs. This block can
add or subtract scalar, vector, or matrix inputs. It can also collapse the
elements of a single input vector.

You specify the operations of the block with the List of Signs parameter. Plus
(+), minus (-), and spacer (|) characters indicate the operations to be performed
on the inputs:

• If there are two or more inputs, then the number of characters must equal
the number of inputs. For example, “+-+” requires three inputs and
configures the block to subtract the second (middle) input from the first (top)
input, and then add the third (bottom) input.

All nonscalar inputs must have the same dimensions. Scalar inputs will be
expanded to have the same dimensions as the other inputs.

• A spacer character creates extra space between ports on the block’s icon.

• If only addition of all inputs is required, then a numeric parameter value
equal to the number of inputs can be supplied instead of “+” characters.

• If only one vector is input, then a single “+” or “-” will collapse the vector
using the specified operation.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

For your convenience, the Fixed-Point Blockset Math library contains the
following implementations of the Sum block, each with different default
parameter settings:

• Add

• Subtract

• Sum of Elements

• Sum of Elements Negated

Sum
9-216

Sum
Data Type
Support

The Sum block accepts signals of any complexity and data type, including
fixed-point data types. The inputs may be of different data types unless the
Require all inputs to have same data type parameter is selected.

Parameters
and Dialog Box

Icon shape
Designate the icon shape of the block.

List of signs
Enter as many plus (+) and minus (-) characters as there are inputs.
Addition is the default operation, so if you only want to add the inputs,
enter the number of input ports. For a single vector input, “+” or “-” will
collapse the vector using the specified operation.

You can manipulate the positions of the input ports on the block icon by
inserting spacers (|) between the signs in the List of signs parameter. For
example, “++|--” creates an extra space between the second and third
input ports.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.
9-217

Sum
Require all inputs to have same data type
Select this parameter to require that all inputs must have the same data
type.

Output data type mode
Specify the output data type and scaling to be the same as the first input,
or inherit the data type and scaling from an internal rule or by
backpropagation. You can also choose a built-in data type from the
drop-down list. Lastly, if you choose Specify via dialog, the Output
data type, Output scaling value, and Lock output scaling against
changes by the autoscaling tool parameters become visible.

Output data type
Specify any data type, including fixed-point data types. This parameter is
only visible if Specify via dialog is selected for the Output data type
mode parameter.
9-218

Sum
Output scaling value
Set the output scaling using radix point-only or [Slope Bias] scaling. This
parameter is only visible if Specify via dialog is selected for the Output
data type mode parameter.

Lock output scaling against changes by the autoscaling tool
If selected, scaling of outputs is locked. This parameter is only visible if
Specify via dialog is selected for the Output data type mode
parameter.

Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Conversions
and Operations

The Sum block first converts the input data type(s) to the output data type
using the specified rounding and overflow modes, and then performs the
specified operations. Refer to “Rules for Arithmetic Operations” on page 4-30
for more information about the rules that this block obeys when performing
fixed-point operations.

Characteristics Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving blocks

Scalar Expansion Yes

States 0

Zero Crossing No
9-219

Sum of Elements
9Sum of ElementsPurpose Add or subtract inputs

Library Math

Description The Sum of Elements block is an implementation of the Sum block. See “Sum”
on page 9-216 for more information.

Sum of
Elements
9-220

Sum of Elements Negated
9Sum of Elements NegatedPurpose Add or subtract inputs

Library Math

Description The Sum of Elements Negated block is an implementation of the Sum block.
See “Sum” on page 9-216 for more information.

Sum of
Elements
Negated
9-221

Switch
9SwitchPurpose Switch output between the first input and the third input based on the value
of the second input

Library Simulink Signal Routing and Fixed-Point Blockset Select

Description The Switch block passes through the first (top) input or the third (bottom)
input based on the value of the second (middle) input. The first and third inputs
are called data inputs. The second input is called the control input.

You select the conditions under which the first input is passed with the
Criteria for passing first input parameter. You can make the block check
whether the control input is greater than or equal to the threshold value,
purely greater than the threshold value, or nonzero. If the control input meets
the condition set in the Criteria for passing first input parameter, then the
first input is passed. Otherwise, the third input is passed.

When the Show additional parameters check box is selected, some of the
parameters that become visible are common to many blocks. For a detailed
description of these parameters, refer to “Block Parameters” on page 9-16.

Data Type
Support

A Switch block accepts real- or complex-valued signals of any data type for data
and control inputs. The data type of the threshold is double.

Parameters
and Dialog Box

Switch
9-222

Switch
Criteria for passing first input
Select the conditions under which the first input is passed. You can make
the block check whether the control input is greater than or equal to the
threshold value, purely greater than the threshold value, or nonzero. If the
control input meets the condition set in this parameter, then the first input
is passed. Otherwise, the third input is passed.

Threshold
Assign the switch threshold that determines which input is passed to the
output.

Show additional parameters
If selected, additional parameters specific to implementation of the block
become visible as shown.

Require all data port inputs to have same data type
Select to require all data inputs to have the same data type.

Output data type mode
Choose to inherit the output data type and scaling by backpropagation or
by an internal rule. The internal rule causes the output of the block to have
the same data type and scaling as the input with the larger positive range.
9-223

Switch
Round integer calculations toward
Select the rounding mode for fixed-point output.

Saturate on integer overflow
If selected, overflows saturate.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see “Zero
Crossing Detection” in the Using Simulink documentation.

Characteristics

See Also Multi-Port Switch

Dimensionalized Yes

Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Zero Crossing No, unless Enable zero crossing detection is
selected
9-224

Tapped Delay
9Tapped DelayPurpose Delay a scalar signal multiple sample periods and output all the delayed
versions

Library Delays & Holds

Description The Tapped Delay block delays its input by the specified number of sample
periods, and outputs all the delayed versions.

This block provides a mechanism for discretizing a signal in time, or
resampling the signal at a different rate. You specify the time between samples
with the Sample time parameter. You specify the number of delays with the
Number of delays parameter. A value of -1 instructs the block to inherit the
number of delays by backpropagation. Each delay is equivalent to the z-1
discrete-time operator, which is represented by the Unit Delay block.

The block accepts one scalar input and generates an output for each delay. The
input must be a scalar. You specify the order of the output vector with the
Order output vector starting with parameter list. Oldest orders the output
vector starting with the oldest delay version and ending with the newest delay
version. Newest orders the output vector starting with the newest delay
version and ending with the oldest delay version.

The block output for the first sampling period is specified by the Initial
condition parameter. Careful selection of this parameter can minimize
unwanted output behavior.

Parameters
and Dialog Box
9-225

Tapped Delay
Initial condition
The initial output of the simulation.

Sample time
Sample time.

Number of delays
The number of discrete-time operators.

Order output vector starting with
Specify whether the oldest delay version is output first, or the newest delay
version is output first.

Conversions The Initial condition parameter is converted from a double to the input data
type offline using round-to-nearest and saturation.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input

Direct Feedthrough No

Scalar Expansion Yes—of initial conditions
9-226

Unary Minus
9Unary MinusPurpose Negate the input

Library Math

Description The Unary Minus block is a masked S-function that negates the input. The
block accepts only signed data types.

For signed data types, you cannot accurately negate the most negative value
since the result is not representable by the data type. In this case, the behavior
of the block is controlled by the Saturate to max or min when overflows
occur check box. If selected, the most negative value of the data type wraps to
the most positive value. If not selected, the operation has no effect. If an
overflow occurs, then a warning is returned to the MATLAB command line.

For example, suppose the block input is an 8-bit signed integer. The range of
this data type is from -128 to 127, and the negation of -128 is not representable.
If the Saturate to max or min when overflows occur check box is selected,
then the negation of -128 is 127. If it is not selected, then the negation of -128
remains at -128.

Parameters
and Dialog Box

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Input Port Any data type supported by the blockset

Output Port Same as the input (a nonzero bias is negated offline)

Direct Feedthrough No

Scalar Expansion Yes—of input or initial conditions
9-227

Unit Delay
9Unit DelayPurpose Delay a signal one sample period

Library Simulink Discrete and Fixed-Point Blockset Delays & Holds

Description The Unit Delay block delays its input by the specified sample period. This block
is equivalent to the z-1 discrete-time operator. The block accepts one input and
generates one output, which can be either both scalar or both vector. If the
input is a vector, all elements of the vector are delayed by the same sample
period.

You specify the block output for the first sampling period with the Initial
conditions parameter. Careful selection of this parameter can minimize
unwanted output behavior. The time between samples is specified with the
Sample time parameter. A setting of -1 means the sample time is inherited.

The Unit Delay block provides a mechanism for discretizing one or more
signals in time, or for resampling the signal at a different rate. If your model
contains multirate transitions, then you must add Unit Delay blocks between
the slow-to-fast transitions. The sample rate of the Unit Delay block must be
set to that of the slower block. For fast-to-slow transitions, use the Zero Order
Hold block. For more information about multirate transitions, refer to the
Simulink or the Real-Time Workshop documentation.

Note The Unit Delay block accepts continuous signals. When it has a
continuous sample time, the block is equivalent to the Simulink Memory
block.

Data Type
Support

The Unit Delay block accepts real or complex signals of any data type,
including fixed-point data types. If the data type of the input signal is
user-defined, the initial condition must be zero.

z

1

Unit Delay
9-228

Unit Delay
Parameters
and Dialog Box

Initial conditions
The output of the simulation for the first sampling period, during which the
output of the Unit Delay block is otherwise undefined.

Sample time
The time interval between samples. To inherit the sample time, set this
parameter to -1.

Conversions
and Operations

The Initial conditions parameter is converted from a double to the input data
type offline using round-to-nearest and saturation.

Characteristics

See Also Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled
Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External
IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay

Dimensionalized Yes

Direct Feedthrough No

Sample Time Discrete or continuous. When inheriting a continuous
signal, this block acts as a Simulink Memory block.

Scalar Expansion Of input or initial conditions

States Yes—inherited from driving block for nonfixed-point
data types.

Zero Crossing No
9-229

Unit Delay
With Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV
9-230

Unit Delay Enabled
9Unit Delay EnabledPurpose Delay a signal one sample period, if the external enable signal is on

Library Delays & Holds

Description The Unit Delay Enabled block is a masked block that delays a signal by one
sample period when the external enable signal E is on. While the enable is off,
the block is disabled. It holds the current state at the same value and outputs
that value. The enable signal is on when E is not 0, and off when E is 0.

You specify the block output for the first sampling period with the value Initial
condition parameter.

The output data type is the same as the input u data type. The data type of the
input u and the enable E can be any data type.

You input the sample time with the Sample time parameter. A setting of -1
means the Sample time is inherited.

Parameters
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.
9-231

Unit Delay Enabled
Characteristics

See Also Unit Delay, Unit Delay Enabled External IC, Unit Delay Enabled Resettable,
Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Output Port Same as the input u

Direct Feedthrough No

Scalar Expansion Yes
9-232

Unit Delay Enabled External IC
9Unit Delay Enabled External ICPurpose Delay a signal one sample period, if the external enable signal is on, with an
external initial condition

Library Delays & Holds

Description The Unit Delay Enabled External IC block is a masked block that delays a
signal by one sample period when the enable signal E is on. While the enable is
off, the block holds the current state at the same value and outputs that value.
The enable E is on when E is not 0, and off when E is 0.

The initial condition of this block is given by the signal IC.

The input u and IC data types must be the same, and are any data type. The
output data type is the same as u and IC. The enable E is any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

Parameters
and Dialog Box

Sample time
Sample time.
9-233

Unit Delay Enabled External IC
Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled Resettable, Unit Delay
Enabled Resettable External IC, Unit Delay External IC, Unit Delay
Resettable, Unit Delay Resettable External IC, Unit Delay With Preview
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough Yes, of the reset input port
No, of the enable input port
Yes, of the external IC port

Scalar Expansion Yes
9-234

Unit Delay Enabled Resettable
9Unit Delay Enabled ResettablePurpose Delay a signal one sample period, if the external enable signal is on, with an
external Boolean reset

Library Delays & Holds

Description The Unit Delay Enabled Resettable block combines the features of the Unit
Delay Enabled and Unit Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When the
enable signal E is on and the reset signal R is false, the block outputs the input
signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block resets
the current state to the initial condition, specified by the Initial condition
parameter, and outputs that state delayed by one sample period.

When the enable signal is off, the block is disabled, and the state and output do
not change except for resets. The enable signal is on when E is not 0, and off
when E is 0.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

Parameters
and Dialog Box

Initial condition
The initial output of the simulation.
9-235

Unit Delay Enabled Resettable
Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable External IC, Unit Delay External IC, Unit Delay
Resettable, Unit Delay Resettable External IC, Unit Delay With Preview
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Port Same as the input u

Direct Feedthrough No, of the input port
No, of the enable port
Yes, of the reset port

Scalar Expansion Yes
9-236

Unit Delay Enabled Resettable External IC
9Unit Delay Enabled Resettable External ICPurpose Delay a signal one sample period, if the external enable signal is on, with an
external Boolean reset and initial condition

Library Delays & Holds

Description The Unit Delay Enabled Resettable External IC block combines the features of
the Unit Delay Enabled, Unit Delay External IC, and Unit Delay Resettable
blocks.

The block can reset its state based on an external reset signal R. When the
enable signal E is on and the reset signal R is false, the block outputs the input
signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block resets
the current state to the initial condition given by the signal IC, and outputs
that state delayed by one sample period.

When the enable signal is off, the block is disabled, and the state and output do
not change except for resets. The enable signal is on when E is not 0, and off
when E is 0.

The output data type is the same as the input u and the initial condition IC
data type, which can be any data type, but must be the same. The enable E and
reset R can be any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

Parameters
and Dialog Box
9-237

Unit Delay Enabled Resettable External IC
Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay External IC, Unit Delay Resettable, Unit
Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay
With Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With
Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough No, of the input port
No, of the enable port
Yes, of the enable port
Yes, of the external IC port

Scalar Expansion Yes
9-238

Unit Delay External IC
9Unit Delay External ICPurpose Delay a signal one sample period, with an external initial condition

Library Delays & Holds

Description The Unit Delay External IC block is a masked block that delays its input by one
sample period. This block is equivalent to the z-1 discrete-time operator. The
block accepts one input and generates one output, both of which can be scalar
or vector. If the input is a vector, all elements of the vector are delayed by the
same sample period.

The block’s output for the first sample period is equal to the signal IC.

The input u and initial condition IC data types must be the same, and are any
data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

Parameters
and Dialog Box

Sample time
Sample time.

Characteristics Input Port u Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough No, of the input port
Yes, of the external IC port

Scalar Expansion Yes
9-239

Unit Delay External IC
See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
Resettable, Unit Delay Resettable External IC, Unit Delay With Preview
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV
9-240

Unit Delay Resettable
9Unit Delay ResettablePurpose Delay a signal one sample period, with an external Boolean reset

Library Delays & Holds

Description The Unit Delay Resettable block delays a signal one sample period.

The block can reset its state based on an external reset signal R. The block has
two input ports, one for the input signal u and the other for the external reset
signal R. When the reset signal is false, the block outputs the input signal
delayed by one time step. When the reset signal is true, the block resets the
current state to the initial condition, specified by the Initial condition
parameter, and outputs that state delayed by one time step.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

Parameters
and Dialog Box

Initial condition
The initial output of the simulation.

Sample time
Sample time.
9-241

Unit Delay Resettable
Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable External IC, Unit Delay With Preview
Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Port Same as the input u

Direct Feedthrough No, of the input port
Yes, of the reset port

Scalar Expansion Yes
9-242

Unit Delay Resettable External IC
9Unit Delay Resettable External ICPurpose Delay a signal one sample period, with an external Boolean reset and initial
condition

Library Delays & Holds

Description The Unit Delay Resettable External IC block delays a signal one sample period.

The block can reset its state based on an external reset signal R. The block has
two input ports, one for the input signal u and the other for the reset signal R.
When the reset signal is false, the block outputs the input signal delayed by one
time step. When the reset signal is true, the block resets the current state to
the initial condition given by the signal IC and outputs that state delayed by
one time step.

The input u and initial condition IC must be the same data type, but can be any
data type. The output is the same data type as the inputs u and IC. The reset
R can be any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

Parameters
and Dialog Box

Sample time
Sample time.
9-243

Unit Delay Resettable External IC
Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable, Unit Delay With Preview Enabled, Unit
Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With
Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port IC Same as the input u

Output Port Same as the input u

Direct Feedthrough No, of the input port
Yes, of the reset port
Yes, of the external IC port

Sample Time Inherited

Scalar Expansion Yes
9-244

Unit Delay With Preview Enabled
9Unit Delay With Preview EnabledPurpose Output the signal and the signal delayed by one sample period, if the external
enable signal is on

Library Delays & Holds

Description The Unit Delay With Preview Enabled block supports calculations that have
feedback and depend on the current input.

The block has two output ports. When the external enable signal E is on, the
upper port outputs the signal and the lower port outputs the signal delayed by
one sample period. The block has two input ports, one for the input signal u and
the other for the enable signal E.

When the enable signal E is off, the block is disabled, and the state and output
values do not change, except for resets. The enable signal is on when E is not 0,
and off when E is 0.

The input u and initial condition IC must be the same data type, but can be any
data type. The output is the same data type as the inputs u and IC. The reset
R can be any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

Parameters
and Dialog Box
9-245

Unit Delay With Preview Enabled
Initial condition
Initial condition.

Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit
Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With
Preview Resettable External RV

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
9-246

Unit Delay With Preview Enabled Resettable
9Unit Delay With Preview Enabled ResettablePurpose Output the signal and the signal delayed by one sample period, if the external
enable signal is on, with an external Boolean reset

Library Delays & Holds

Description The Unit Delay With Preview Enabled Resettable block supports calculations
that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The block has
two output ports. When the external enable signal E is on and the reset R is
false, the upper port outputs the signal and the lower port outputs the signal
delayed by one sample period. The block has two input ports, one for the input
signal u and the other for the enable signal E.

When the enable signal E is on and the reset R is true, the block resets the
current state to the initial condition given by the Initial condition parameter.
The block outputs that state delayed by one sample time through the lower
output port, and outputs the state without a delay through the upper output
port.

When the Enable signal is off, the block is disabled, and the state and output
values do not change, except for resets. The enable signal is on when E is not 0,
and off when E is 0.

The input u and initial condition IC must be the same data type, but can be any
data type. The output is the same data type as the inputs u and IC. The reset
R can be any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.
9-247

Unit Delay With Preview Enabled Resettable
Parameters
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay

Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
9-248

Unit Delay With Preview Enabled Resettable
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable
External RV, Unit Delay With Preview Resettable, Unit Delay With Preview
Resettable External RV
9-249

Unit Delay With Preview Enabled Resettable External RV
9Unit Delay With Preview Enabled Resettable External RVPurpose Output the signal and the signal delayed by one sample period, if the external
enable signal is on, with an external RV reset

Library Delays & Holds

Description The Unit Delay With Preview Enabled Resettable External RV block supports
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The block has
two output ports. When the external enable signal E is on and the reset R is
false, the upper port outputs the signal and the lower port outputs the signal
delayed by one sample period. The block has two input ports, one for the input
signal u and the other for the enable signal E.

When the enable signal E is on and the reset R is true, the upper output signal
is forced to equal the external reset signal RV. The lower output signal is not
affected until one time step later, at which time it is equal to the external reset
signal RV at the previous time step. The block uses the internal Initial
condition only when the model starts or when a parent enabled subsystem is
used. The internal Initial condition only affects the lower output signal. The
first output is only affected through feedback.

When the Enable signal is off, the block is disabled, and the state and output
values do not change, except for resets. The enable signal is on when E is not 0,
and off when E is 0.

The input u and initial condition IC must be the same data type, but can be any
data type. The output is the same data type as the inputs u and IC. The reset
R can be any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.
9-250

Unit Delay With Preview Enabled Resettable External RV
Parameters
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics Input Port u Any data type supported by the blockset

Input Port E Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port RV Same as the input u

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
9-251

Unit Delay With Preview Enabled Resettable External RV
See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable,
Unit Delay With Preview Resettable, Unit Delay With Preview Resettable
External RV
9-252

Unit Delay With Preview Resettable
9Unit Delay With Preview ResettablePurpose Output the signal and the signal delayed by one sample period, with an
external Boolean reset

Library Delays & Holds

Description The Unit Delay With Preview Resettable block supports calculations that have
feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The block has
two output ports. When the reset R is false, the upper port outputs the signal
and the lower port outputs the signal delayed by one sample period.

When the reset R is true, the block resets the current state to the initial
condition given by the Initial condition parameter. The block outputs that
state delayed by one sample time through the lower output port, and outputs
the state without a delay through the upper output port.

The input u and initial condition IC must be the same data type, but can be any
data type. The output is the same data type as the inputs u and IC. The reset
R can be any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.
9-253

Unit Delay With Preview Resettable
Parameters
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable,

Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
9-254

Unit Delay With Preview Resettable
Unit Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable External RV
9-255

Unit Delay With Preview Resettable External RV
9Unit Delay With Preview Resettable External RVPurpose Output the signal and the signal delayed by one sample period, with an
external RV reset

Library Delays & Holds

Description The Unit Delay With Preview Resettable External RV block supports
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The block has
two output ports. When the external reset R is false, the upper port outputs the
signal and the lower port outputs the signal delayed by one sample period.

When the external reset R is true, the upper output signal is forced to equal the
external reset signal RV. The lower output signal is not affected until one time
step later, at which time it is equal to the external reset signal RV at the
previous time step. The block uses the internal Initial condition only when the
model starts or when a parent enabled subsystem is used. The internal Initial
condition only affects the lower output signal. The first output is only affected
through feedback.

The input u and initial condition IC must be the same data type, but can be any
data type. The output is the same data type as the inputs u and IC. The reset
R can be any data type.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.
9-256

Unit Delay With Preview Resettable External RV
Parameters
and Dialog Box

Initial condition
Initial condition.

Sample time
Sample time.

Characteristics Input Port u Any data type supported by the blockset

Input Port R Any data type supported by the blockset

Input Port RV Same as the input u

Output Ports Same as the input u

Direct Feedthrough Yes, to upper output port
No, to lower output port

Scalar Expansion Yes
9-257

Unit Delay With Preview Resettable External RV
See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit
Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable,
Unit Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable
9-258

Wrap To Zero
9Wrap To ZeroPurpose Set output to zero if input is above threshold

Library Nonlinear

Description The Wrap To Zero block sets the output to zero if the input is above the value
set by the Threshold parameter, and outputs the input if the input is less than
or equal to the Threshold.

Parameters
and Dialog Box

Threshold
When the input exceeds the threshold, the output is set to zero.

Characteristics Input Port Any data type supported by the blockset

Output Ports Same as the input

Direct Feedthrough Yes

Scalar Expansion Yes
9-259

Zero-Order Hold
9Zero-Order HoldPurpose Implement a zero-order hold of one sample period

Library Simulink Discrete and Fixed-Point Blockset Delays & Holds

Description The Zero-Order Hold block samples and holds its input for the specified sample
period. The block accepts one input and generates one output, both of which
can be scalar or vector. If the input is a vector, all elements of the vector are
held for the same sample period.

You specify the time between samples with the Sample time parameter. A
setting of -1 means the Sample time is inherited.

This block provides a mechanism for discretizing one or more signals in time,
or resampling the signal at a different rate. If your model contains multirate
transitions, you must add Zero-Order Hold blocks between the fast-to-slow
transitions. The sample rate of the Zero-Order Hold must be set to that of the
slower block. For slow-to-fast transitions, use the Unit Delay block. For more
information about multirate transitions, refer to the Simulink or the
Real-Time Workshop documentation.

Data Type
Support

The Zero-Order Hold block accepts real or complex signals of any data type,
including fixed-point data types.

Parameters
and Dialog Box

Sample time
Specify the time between samples. A value of -1 means the sample time is
inherited.

Characteristics

Zero−Order
Hold

Dimensionalized Yes

Direct Feedthrough Yes
9-260

Zero-Order Hold
Sample Time Discrete

Scalar Expansion No

Zero Crossing No
9-261

Zero-Order Hold
9-262

A

Code Generation

Overview (p. A-2) An overview of generating code from models using
Fixed-Point Blockset blocks

Code Generation Support (p. A-3) A discussion of the simulation features supported by code
generation in the Fixed-Point Blockset

Generating Pure Integer Code (p. A-5) Step-by-step instructions on generating pure integer code
with the Fixed-Point Blockset

Using the Simulink Accelerator
(p. A-11)

Information on using the Simulink accelerator to increase
the speed of some Fixed-Point Blockset models

Using External Mode or rsim Target
(p. A-12)

Information on errors that may occur when using the
Real-Time Workshop external mode or rapid simulation
target with Fixed-Point Blockset code generation

Customizing Generated Code (p. A-13) A discussion on customizing code generated with the
Fixed-Point Blockset by directly modifying the Target
Language Compiler file

A Code Generation

A-2
Overview
You can generate C code with the Fixed-Point Blockset using Real-Time
Workshop. The code generated from fixed-point blocks uses only integer types
and automatically includes all operations, such as shifts, needed to account for
differences in fixed-point locations. You can use the generated code on
embedded fixed-point processors or rapid prototyping systems even if they
contain a floating-point processor. The code is structured so that key operations
can be readily replaced by optimized target-specific libraries that you supply.
You can also use Target Language Compiler to customize the generated code.
For more information about code generation, refer to the Real-Time Workshop
and the Target Language Compiler documentation.

You can also generate code for testing on a rapid prototyping system such as
xPC, the Real-Time Windows Target, or dSPACE. The target compiler and
processor may support floating-point operations in software or in hardware. In
any case, the fixed-point blocks generate pure integer code and do not use
floating-point operations. This allows valid bit-true testing even on a
floating-point processor.

You can also generate code for nonreal-time testing. For example, you can
generate code to run in nonreal-time on computers running any supported
operating system. Even though the processors have floating-point hardware,
the code generated by fixed-point blocks is pure integer code. The Generic
Real-Time Target (GRT) and the Simulink Accelerator are examples of where
nonreal-time code is generated and run.

Code Generation Support
Code Generation Support
All fixed-point blocks support code generation, but not every simulation feature
is supported. The code generation support is described below.

Languages
• C support only

Storage Class of Variables
• Fixed-Point Blockset code generation handles variables that do not match

the target compiler sizes for char, short, int, or long data types. Code
generation supports any variable having a width less than or equal to a long,
either signed or unsigned. For example, the C40 compiler defines a long to
be 32 bits. Therefore, the allowable sizes for variables range between 1 and
32 bits. This capability is particularly useful if you want to

- Prototype on one target chip, but use a different target chip for production.

- Provide bit-true simulation in a rapid prototyping environment for odd
data type sizes used by FPGAs, ASICs, 24-bit DSPs, and so on.

• The Fixed-Point Blockset supports floating-point types, except for custom
floating-point types.

Storage Class of Parameters
• The Real-Time Workshop external mode support requires that parameters

be 1 to 32 bits, either signed or unsigned. The parameter size must also be
compatible with the target C compiler.

• No floating-point support

Rounding Modes
• All four rounding modes are supported.

• Rounding to floor generates the most efficient code for most cases.
A-3

A Code Generation

A-4
Overflow Handling
• Saturation mode is supported.

• Wrapping mode is supported and generates the most efficient code.

• Automatic exclusion of saturation code when hardware saturation is
available is currently not supported. Wrapping must be selected for
Real-Time Workshop to exclude saturation code.

Blocks
All blocks generate code for all operations with a few exceptions:

• The Look-Up Table, Look-Up Table (2D), and Dynamic Look-Up Table blocks
generate code for all look-up methods except extrapolation.

• A few combinations of scaling and operations lead to highly inefficient code.
These few cases are described in the next section.

Scaling
• Radix point-only scaling is supported.

• [Slope Bias] scaling is supported for all blocks except when it leads to highly
inefficient code. All blocks except four support all cases of [Slope Bias]
scaling. The Gain, Matrix Gain, and FIR blocks support matched
[Slope Bias] scaling where the block input signals and output signals have
the same slopes and biases, but not mismatched [Slope Bias] scaling. The
Product block supports mismatched slope, but not mismatched bias. For
more information about matched and mismatched [Slope Bias] scaling, refer
to “Signal Conversions” on page 4-27.

We generally recommend that signals with [Slope Bias] scaling (such as a
sensor input) are immediately converted to radix point-only scaling. This
typically produces more efficient code.

Generating Pure Integer Code
Generating Pure Integer Code
All blocks generate pure integer code except for the Gateway In, Gateway In
Inherited, and Gateway Out blocks. These blocks must generate floating-point
code when handling floating-point input or output. However, if the input or
output is an integer and the block is configured to treat the input or output as
a stored integer, then these blocks will also generate pure integer code.

Example: Generating Pure Integer Code
This example outlines the steps you should take when generating pure integer
code for your Fixed-Point Blockset model. The steps follow the description in
the fxpdemo_code_only demo, which includes the model shown below.

Note This example generates code using the Embedded C Real-Time Target
(ERT), which is available with Real-Time Workshop Production Coder. If your
version of Real-Time Workshop does not support ERT code generation, then
you may want to select the Generic Real-Time Target (GRT). Using GRT, all
Fixed-Point Blockset blocks (except the gateway blocks) will generate pure
integer code. However, the code related to the GRT infrastructure is not
generated to exclude floating-point operations. For example, GRT may decide
when to execute blocks based on a floating-point counter.

1 Copy the fixed-point portion of your model to a new model.

If your original model includes blocks that represent hardware, analog
systems, and other blocks not related to embedded software, then you must
A-5

A Code Generation

A-6
create a new model. This new model contains only the fixed-point portion,
which represents the software that will be running on the fixed-point
processor. For example, the digital controller subsystem shown above
contains the fixed-point blocks from the fxpdemo_feedback model used for
code generation.

2 Add root-level Inport and Outport blocks.

a Precede the blocks in your new model with root-level Inport blocks, and
configure the Inport blocks to use the appropriate data type and scaling.
For example, the Inport block shown above is configured to use the
sfix(8) data type and to have an output scaling of 2^-4.

b Follow the blocks in your new model with root-level Outport blocks.

3 Configure the simulation parameters.

a Open the Simulink Simulation Parameters dialog box by selecting
Simulation parameters under the Simulation menu.

b In the Solver window, configure Solver options to Fixed-step and
discrete (no continuous states), and configure Fixed step size to the
required value. The Solver window for this configuration is shown below.

c Select the Real-Time Workshop tab in the Simulation Parameters
dialog box. Select the Browse button in the Configuration panel to open
the System Target File Browser window. If it is available, select RTW
Embedded Coder as the system target file as shown below, and click OK.

Generating Pure Integer Code
Note that you may not have ERT code generation capability. If this is the
case, you should select the Generic Real-Time Target.

The Real-Time Workshop pane now appears as shown below.

d To configure the code generation parameters, select ERT code
generation options (1) from the Category parameter drop-down
menu. Select the Integer code only check box and any other options that
A-7

A Code Generation

A-8
you require. The ERT code generation options for this configuration are
shown below. If you are using GRT, the dialog box choices are slightly
different.

e Select ERT code generation options (2) from the Category parameter
drop-down menu. Select the Initialize floats and doubles to 0.0 check
box and any other options that you require, as shown below.

f Select General code generation options from the Category parameter
drop-down menu. Select the Generate HTML report check box and any
other options that you require, as shown below.

Generating Pure Integer Code
g Build the code by selecting the Generate code button.

HTML Report
When you select the Generate HTML report check box, Real-Time Workshop
creates a report containing information about the generated code. The report,
which is displayed in the Help browser, includes a table of the current code
generation options. The color of the values in the right column indicates how
the values affect code optimization. Values displayed in green are optimal for
code generation, while values displayed in red are less than optimal. If you see
a red value, change the corresponding setting in the Simulation Parameters
dialog box. Then select the Real-Time Workshop tab and click Generate Code
to generate new code. A screenshot of a report follows:
A-9

A Code Generation

A-1
The HTML report is contained in a subdirectory called HTML in your current
working directory.
0

Using the Simulink Accelerator
Using the Simulink Accelerator
You can use the Simulink Accelerator with your Fixed-Point Blockset model if
the model meets the code generation restrictions.

The Simulink Accelerator can drastically increase the speed of some
fixed-point models. This is especially true for models that execute at a very
large number of time steps. The time overhead to generate code for a
fixed-point model will generally be larger than the time overhead to set up a
model for simulation. As the number of time steps increases, the relative
importance of this overhead decreases.

Refer to the Simulink documentation for more information about the Simulink
Accelerator.
A-11

A Code Generation

A-1
Using External Mode or rsim Target
If you are using the Real-Time Workshop external mode or rapid simulation
(rsim) target, there are situations where you may get unexpected errors when
tuning block parameters.

These errors can arise when you use blocks that support constant scaling for
best precision and you use the Best precision scaling option. To avoid these
errors, you should use the Use specified scaling parameter value. Refer to
“Example: Constant Scaling for Best Precision” on page 3-11 for a description
of the constant scaling feature. Refer to Chapter 9, “Block Reference” for a
description of blocks that support this feature.

For more information about external mode or rapid simulation target, refer to
the Real-Time Workshop documentation.

External Mode
If you change a fixed-point block parameter by a sufficient amount
(approximately a factor of two), the radix point changes. If you change a
parameter such that the radix point moves during an external mode simulation
(or during graphical editing) and you reconnect to the target, a checksum error
occurs and you must rebuild the code.

For example, suppose a block has a parameter value of -2. You then build the
code and connect in external mode. While connected, you change the parameter
to -4. If the simulation is stopped and then restarted, this parameter change
causes a radix point change. In external mode, the radix point is kept fixed. If
you keep the parameter value of -4 and disconnect from the target, then when
you reconnect, a checksum error occurs and you must rebuild the code.

Rapid Simulation Target
If a parameter change is great enough, and you are using the best precision
mode for constant scaling, then you cannot use the rapid simulation target.

If you change a block parameter by a sufficient amount (approximately a factor
of two), the best precision mode changes the radix point. Any change in the
radix point requires the code to be rebuilt since the model checksum is changed.
This means that if best precision parameters are changed over a great enough
range, you cannot use the rapid simulation target and a checksum error
message occurs when you initialize the rsim executable.
2

Customizing Generated Code
Customizing Generated Code
You can customize generated code by directly modifying the Target Language
Compiler file fixpttarget.tlc, which is located in the fixpoint directory. The
two most important customizations are described below.

Macros Versus Functions
You can modify the TLC file to generate macros or C functions calls. With
macros, you can avoid the overhead of a function call. With function calls, you
can significantly reduce the overall code size for large routines. Additionally,
many debuggers will not allow you to single-step through macros. This is not
the case with function calls. The factory default setting is to generate macros.

Bit Sizes for Target C Compiler
You can modify the TLC file to accommodate custom target sizes by explicitly
specifying the number of bits defined for char, short, int, or long data types.

If you do not manually override these sizes, then the sizes for the MATLAB
host computer are automatically selected. For example, if you are running
MATLAB under the Windows operating system, then char, short, int, and
long default to 8, 16, 32, and 32 bits, respectively. Most other supported
operating systems use the same data type sizes. However DEC Alpha, for
example, defines a long as 64 bits.
A-13

A Code Generation

A-1
4

B

Selected Bibliography

[1] Burrus, C. S., J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer,
and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using
MATLAB, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[2] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition; Addison-Wesley Publishing Company, Reading,
Massachusetts, 1990.

[3] Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F.
Kaiser; John Wiley & Sons, Inc., New York, 1993.

[4] Hanselmann, H., “Implementation of Digital Controllers — A Survey,”
Automatica, vol. 23, no. 1, pp 7-32, 1987.

[5] Jackson, L.B., Digital Filters and Signal Processing, Second Edition,
Kluwer Academic Publishers, Seventh Printing, Norwell, Massachusetts,
1993.

[6] Middleton, R. and G. Goodwin, Digital Control and Estimation – A Unified
Approach, Prentice Hall, Englewood Clifs, New Jersey. 1990.

[7] Moler, C., "Floating points: IEEE Standard unifies arithmetic model,"
Cleve's Corner, The MathWorks, Inc., 1996. You can find this article at
http://www.mathworks.com/company/newsletter/clevescorner/cleve_toc
.shtml

[8] Ogata, K., Discrete-Time Control Systems, Second Edition, Prentice Hall,
Englewood Cliffs, New Jersey, 1995.

[9] Roberts, R.A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1987.Burrus, C. S., J.H.
McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W. Schuessler,
Computer-Based Exercises for Signal Processing Using MATLAB, Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

B Selected Bibliography

B-2
[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition; Addison-Wesley Publishing Company, Reading,
Massachusetts, 1990.

[2] Handbook For Digital Signal Processing, edited by S.K. Mitra and J.F.
Kaiser; John Wiley & Sons, Inc., New York, 1993.

[3] Hanselmann, H., “Implementation of Digital Controllers — A Survey,”
Automatica, vol. 23, no. 1, pp 7-32, 1987.

[4] Jackson, L.B., Digital Filters and Signal Processing, Second Edition,
Kluwer Academic Publishers, Seventh Printing, Norwell, Massachusetts,
1993.

[5] Middleton, R. and G. Goodwin, Digital Control and Estimation – A Unified
Approach, Prentice Hall, Englewood Clifs, New Jersey. 1990.

[6] Moler, C., "Floating points: IEEE Standard unifies arithmetic model,"
Cleve's Corner, The MathWorks, Inc., 1996. You can find this article at
http://www.mathworks.com/company/newsletter/clevescorner/cleve_toc
.shtml

[7] Ogata, K., Discrete-Time Control Systems, Second Edition, Prentice Hall,
Englewood Cliffs, New Jersey, 1995.

[8] Roberts, R.A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1987.

Index
A
Abs block 9-24
accumulations

scaling recommendations 4-19
slope/bias encoding 4-19

Accumulator block 9-26
accumulator data types 5-3

feedback controller demo 6-9
Accumulator Resettable block 9-27
Accumulator Resettable Limited block 9-29
Add block 9-31
addition 9-216

blockset rules 4-30
scaling recommendations 4-17
slope/bias encoding 4-16

ALUs 4-30
arithmetic logic units (ALUs) 4-30
arithmetic shifts 4-41
autofixexp function 8-6
automatic scaling 8-32

autoscale safety margin 8-35
feedback controller demo 6-15
script 8-6

B
base data type 5-3

feedback controller demo 6-9
binary point 3-3
Bit Clear block 9-32
Bit Set block 9-33
bits 3-3

clear 9-35
hidden 3-17
mask 9-35
multipliers 3-7
set 9-35
shifts 4-41
Bitwise Operator block 9-34
block configurations 2-2

selecting a data type 2-3
selecting a scaling 2-5

block icon labels 9-20
block parameters 9-16
blocks

Abs 9-24
Accumulator 9-26
Accumulator Resettable 9-27
Accumulator Resettable Limited 9-29
Add 9-31
Bit Clear 9-32
Bit Set 9-33
Bitwise Operator 9-34
Compare To Constant 9-38
Compare To Zero 9-39
Constant 9-40
Conversion 9-43
Conversion Inherited 9-45
Cosine 9-47
Counter Free 9-48
Counter Limited 9-49
Data Type Duplicate 9-50
Data Type Propagation 9-52
Dead Zone 9-61
Dead Zone Dynamic 9-63
Decrement Real World 9-64
Decrement Stored Integer 9-65
Decrement Time To Zero 9-66
Decrement To Zero 9-67
Derivative 9-68
Detect Change 9-70
Detect Decrease 9-71
Detect Fall Negative 9-72
I-1

Index

I-2
Detect Fall Nonpositive 9-73
Detect Increase 9-74
Detect Rise Nonnegative 9-75
Detect Rise Positive 9-76
Difference 9-77
Divide 9-79
Dot Product 9-80
Filter Direct Form I 9-82
Filter Direct Form I Time Varying 9-84
Filter Direct Form II 9-86
Filter Direct Form II Time Varying 9-88
Filter First Order 9-90
Filter Lead or Lag 9-92
Filter Real Zero 9-94
FIR 9-96
Free Counter 9-101
Gain 9-101
Gateway In 9-107
Gateway In Inherited 9-112
Gateway Out 9-114
Increment Real World 9-117
Increment Stored Integer 9-118
Index Vector 9-119
Integer Delay 9-120
Integrator Backward 9-121
Integrator Backward Resettable 9-123
Integrator Backward Resettable Limited

9-125
Integrator Forward 9-128
Integrator Forward Resettable 9-130
Integrator Forward Resettable Limited 9-132
Integrator Trapezoidal 9-135
Integrator Trapezoidal Resettable 9-137
Integrator Trapezoidal Resettable Limited

9-139
Interval Test 9-142
Interval Test Dynamic 9-144
Logical Operator 9-145
Look-Up Table 9-149
Look-Up Table (2-D) 9-159
Look-Up Table Dynamic 9-155
Matrix Gain 9-164
MinMax 9-165
Multiply 9-168
Multiply Matrix 9-169
Multiport Switch 9-170
Product 9-173
Product of Elements 9-179
Product of Elements Inverted 9-180
Rate Limiter 9-181
Rate Limiter Dynamic 9-182
Relational Operator 9-183
Relay 9-187
Repeating Sequence Interpolated 9-191
Repeating Sequence Stair 9-193
Sample Rate Probe 9-196
Sample Time Add 9-197
Sample Time Divide 9-198
Sample Time Multiply 9-199
Sample Time Probe 9-202
Sample Time Subtract 9-203
Saturation 9-204
Saturation Dynamic 9-206
Scaling Strip 9-207
Shift Arithmetic 9-208
Sign 9-210
Sine 9-211
State-Space 9-212
Subtract 9-215
Sum 9-216
Sum of Elements 9-220
Sum of Elements Negated 9-221
Switch 9-222
Tapped Delay 9-225

Index
Unary Minus 9-227
Unit Delay

Unit Delay block 9-228
Unit Delay Enabled 9-231
Unit Delay Enabled External IC 9-233
Unit Delay Enabled Resettable 9-235
Unit Delay Enabled Resettable External IC

9-237
Unit Delay External IC 9-239
Unit Delay Resettable 9-241
Unit Delay Resettable External IC 9-243
Unit Delay With Preview Enabled 9-245
Unit Delay With Preview Enabled Resettable

9-247
Unit Delay With Preview Enabled Resettable

External RV 9-250
Unit Delay With Preview Resettable 9-253
Unit Delay With Preview Resettable External

RV 9-256
Wrap To Zero 9-259
Zero-Order Hold 9-260

Bode plots 6-6
boolean operations 9-145
broken links

restoring 8-27
built-in data types 1-15

C
ceil function 4-7
chopping 4-8
clearing bits 9-35
code generation A-2

multiplication 4-36
scaling 9-110
signal conversions 4-29
stored integer output 9-114

summation 4-32
Compare to Constant block 9-38
Compare To Zero block 9-39
computational noise 4-2

rounding 4-3
computational units 4-30
Constant block 9-40
constant scaling for best precision 3-11

limitations for code generation A-12
contiguous bits 3-16
Conversion block 9-43
Conversion Inherited block 9-45
conversions

parameter 4-27
signal 4-27
See also online conversion, offline conversion

converting
built-in data types to fixed-point 9-107
built-in models to fixed-point 8-10
fixed-point data types to built-in 9-114
old models 8-30

Cosine block 9-47
Counter Free block 9-48
Counter Limited block 9-49

D
Data Type Duplicate block 9-50
Data Type Propagation block 9-52
data types 2-3

built-in 1-15
display 9-21
fractional numbers 2-4
generalized fixed-point numbers 2-4
IEEE numbers 2-5
inherited 9-16
integers 2-4
I-3

Index

I-4
parameters 3-9
propagation 9-52
selecting 9-16

Dead Zone block 9-61
Dead Zone Dynamic block 9-63
Decrement Real World block 9-64
Decrement Stored Integer block 9-65
Decrement Time To Zero block 9-66
Decrement To Zero block 9-67
demos 2-15
denormalized numbers 3-21
Derivative block 9-68
Detect Change block 9-70
Detect Decrease block 9-71
Detect Fall Negative block 9-72
Detect Fall Nonpositive block 9-73
Detect Increase block 9-74
Detect Rise Nonnegative block 9-75
Detect Rise Positive block 9-76
development cycle 1-14
dialog box parameters 9-16

data type 9-16
lock output scaling 9-19
overflow handling 9-20
rounding 9-20

Difference block 9-77
digital controllers 6-7
digital filters 5-2
direct form realization 5-7

feedback controller demo 6-8
Divide block 9-79
division 9-173

blockset rules 4-39
scaling recommendations 4-23
slope/bias encoding 4-23

Dot Product block 9-80
double bits 4-35
double-precision formats 3-18

E
encapsulation 8-11
encoding schemes 3-5
eps function 3-20
examples

constant scaling for best precision 3-11
conversions and arithmetic operations 4-43
converting from doubles to fixed-point 2-10
division process 4-40
fixed-point format 3-7
fixed-point scaling 3-10
generating pure integer code A-5
limitations on precision and errors 4-10
limitations on range 4-15
maximizing precision 4-10
multiplication process 4-37
saturation and wrapping 4-13
selecting a measurement scale 1-4
summation process 4-32

exceptional arithmetic 3-21
exponents

IEEE numbers 3-17
external mode A-12

F
feedback designs 6-3
Filter Direct Form I block 9-82
Filter Direct Form I Time Varying block 9-84
Filter Direct Form II block 9-86
Filter Direct Form II Time Varying block 9-88
Filter First Order block 9-90
Filter Lead or Lag block 9-92
Filter Real Zero block 9-94

Index
filters
digital 5-2

FIR block 9-96
fix function 4-4
Fixed-Point Interface Tool 8-32
fixed-point numbers

general format 3-3
scaling 3-5

Fixed-Point Settings interface
feedback controller demo 6-10

fixpt_convert function 8-10
fixpt_convert_prep function 8-15
fixpt_interp1 function 8-16
fixpt_look1_func_approx function 8-17
fixpt_look1_func_plot function 8-25
fixpt_restore_links function 8-27
fixpt_set_all function 8-28
fixptbestexp function 8-8
fixptbestprec function 8-9
float function 8-29
floating-point numbers 3-17
floor function 4-8
fpupdate function 8-30
fraction

IEEE numbers 3-17
fractional numbers 2-4

guard bits 4-15
fractional slope 3-5
frame-based signals 1-17
Free Counter block 9-101
functions

autofixexp 8-6
fixpt_convert 8-10
fixpt_convert_prep 8-15
fixpt_interp1 8-16
fixpt_look1_func_approx 8-17
fixpt_look1_func_plot 8-25

fixpt_restore_links 8-27
fixpt_set_all 8-28
fixptbestexp 8-8
fixptbestprec 8-9
float 8-29
fpupdate 8-30
fxptdlg 8-32
num2fixpt 8-37
sfix 8-38
sfrac 8-39
showfixptsimerrors 8-40
showfixptsimranges 8-41
sint 8-42
ufix 8-43
ufrac 8-44
uint 8-45

fxptdlg function 8-32

G
gain

Matrix Gain block 9-164
scaling recommendations 4-22
using slope/bias encoding 4-21

Gain block 9-101
gateway

built-in to fixed-point 9-107
built-in to fixed-point, inherited 9-112
fixed-point to built-in 9-114

Gateway In block 9-107
Gateway In Inherited block 9-112
Gateway Out block 9-114
generalized fixed-point numbers 2-4
Generic Real-Time Target A-5
global overrides with doubles 6-13
guard bits 4-14
GUI
I-5

Index

I-6
block 8-32
See also Fixed-Point Interface Tool

H
help xii
hidden bits 3-17

I
icon labels 9-20
IEEE floating-point numbers

formats
double precision 3-18
exponent 3-17
fraction 3-17
nonstandard 3-19
sign bit 3-17
single precision 3-18

precision 3-20
range 3-19

Increment Real World block 9-117
Increment Stored Integer block 9-118
Index Vector block 9-119
infinity 3-22
inherited

built-in to fixed-point conversion 9-112
data types 9-16

by backpropagation 9-52
scaling

by backpropagation 9-52
installation xix
Integer Delay block 9-120
integers 2-4

code generation A-5
outputting large values 9-114

Integrator Backward Resettable block 9-123
Integrator Backward Resettable Limited block
9-125

Integrator Forward block 9-128
Integrator Forward Resettable block 9-130
Integrator Forward Resettable Limited block

9-132
Integrator Trapezoidal block 9-135
Integrator Trapezoidal Resettable block 9-137
Integrator Trapezoidal Resettable Limited block

9-139
Interval Test block 9-142
Interval Test Dynamic block 9-144

L
least significant bit (LSB) 3-3
licensing xiii
limit cycles 4-2

feedback controller demo 6-19
links

restoring broken 8-27
locking

output scaling 9-19
logging

large integer values 9-114
logical operations 9-145
Logical Operator block 9-145
logical shifts 4-41
Look-Up Table (1-D) block 9-149
Look-Up Table (2-D) block 9-159
Look-Up Table Dynamic block 9-155
LSB (least significant bit) 3-3

M
MACs 4-30

propagating data type information for 9-56

Index
masking bits 9-35
Matrix Gain block 9-164
matrix signals 1-18
maximum values 9-165
measurement scales 1-2
minimum values 9-165
MinMax block 9-165
modeling the system 1-14
most significant bit (MSB) 3-3
MSB (most significant bit) 3-3
multiplication 9-173

blockset rules 4-35
scaling recommendations 4-20
slope/bias encoding 4-20

multiply and accumulate units 4-30
Multiply block 9-168
Multiply Matrix block 9-169
Multiport Switch block 9-170

N
NaNs 3-22
nonstandard IEEE format 3-19
num2fixpt function 8-37

O
offline conversions 4-27

addition and subtraction 4-31
multiplication 4-36
signals 4-28

online conversions
addition and subtraction 4-31
multiplication 4-36
signals 4-28

online help xii
overflows 4-2

code generation A-4
handling by fixed-point blocks 9-20
saturation 6-11

overrides with doubles
global override 6-13

P
padding with trailing zeros 4-9

feedback controller demo 6-7
parallel form realization 5-13
parameter conversions 4-27

 See also conversions
Plot System Interface 8-35
port data type display 9-21
precision

best 8-8
fixed-point numbers 3-9
IEEE floating-point numbers 3-20
maximum 8-9

prerequisites xx
Product block 9-173
Product of Elements block 9-179
Product of Elements Inverted block 9-180
propagation of data types 9-52

Q
quantization 4-2

effects of fixed-point arithmetic 2-12
feedback controller demo 6-13
real-world value 3-6
rounding 4-3

R
radix point 3-3
I-7

Index

I-8
radix point-only scaling 3-6
range

fixed-point numbers 3-9
IEEE floating-point numbers 3-19

rapid simulation (rsim) target A-12
Rate Limiter block 9-181
Rate Limiter Dynamic block 9-182
realizations

design constraints 5-6
direct form 5-7
parallel form 5-13
series cascade form 5-10

Real-Time Workshop
external mode A-12
GRT A-5
Production Coder A-5
rapid simulation (rsim) target A-12
Target Language Compiler A-13

real-world values 3-5
block input 9-107

relational operations 9-183
Relational Operator block 9-183
Relay block 9-187
release information xii
Repeating Sequence Interpolated block 9-191
Repeating Sequence Stair block 9-193
round function 4-6
rounding modes 4-3

blocks 9-20
code generation A-3
toward ceiling 4-6
toward floor 4-7
toward nearest 4-5
toward zero 4-4

rsim target A-12
RTW Production Coder A-5
S
Sample Rate Probe block 9-196
Sample Time Add block 9-197
Sample Time Divide block 9-198
Sample Time Multiply block 9-199
Sample Time Probe block 9-202
Sample Time Subtract block 9-203
saturation 4-13
Saturation block 9-204
Saturation Dynamic block 9-206
scaling

accumulation 4-19
addition 4-16
code generation A-4
constant scaling for best precision 3-11
division 4-23
gain 4-21
locking 9-19
multiplication 4-20
output 2-5
radix point-only 3-6
slope/bias 3-6

Scaling Strip block 9-207
scientific notation 3-15
series cascade form realizations 5-10
setting bits 9-35
sfix function 8-38
sfrac function 8-39
Shift Arithmetic block 9-208
shifts 4-41
showfixptsimerrors function 8-40
showfixptsimranges function 8-41
sign

extension 4-15
input signal 9-210

sign bit for IEEE numbers 3-17
Sign block 9-210

Index
signal conversions 4-27
Simulink Accelerator A-11
Sine block 9-211
single-precision format 3-18
sint function 8-42
slope/bias scaling 3-6
State-Space block 9-212
stored integers 2-3

as block input 9-107
as block output 9-114

Subtract block 9-215
subtraction 9-216

 See also addition
Sum block 9-216
Sum of Elements block 9-220
Sum of Elements Negated block 9-221
Switch block 9-222

T
Tapped Delay block 9-225
Target Language Compiler A-13
targeting an embedded processor

design rules 5-4
operation assumptions 5-3
size assumptions 5-3

TLC file A-13
truncation 4-8
two’s complement 3-3
typographical conventions xx

U
ufix function 8-43
ufrac function 8-44
uint function 8-45
Unary Minus block 9-227

underflow 3-20
Unit Delay Enabled block 9-231
Unit Delay Enabled External IC block 9-233
Unit Delay Enabled Resettable block 9-235
Unit Delay Enabled Resettable External IC block

9-237
Unit Delay External IC block 9-239
Unit Delay Resettable block 9-241
Unit Delay Resettable External IC block 9-243
Unit Delay With Preview Enabled block 9-245
Unit Delay With Preview Enabled Resettable

block 9-247
Unit Delay With Preview Enabled Resettable

External RV block 9-250
Unit Delay With Preview Resettable block 9-253
Unit Delay With Preview Resettable External RV

block 9-256
updating old models 8-30

W
Wrap To Zero block 9-259
wrapping 4-13

Z
Zero-Order Hold block 9-260
I-9

Index

I-10

	Preface
	What Is the Fixed-Point Blockset?
	Exploring the Blockset

	How to Get Online Help
	System Requirements
	Licensing Information

	Related Products
	Using This Guide
	Expected Background
	If You Are a New User
	If You Are an Experienced User
	How This Book Is Organized

	Installation
	Typographical Conventions

	Introduction
	Overview
	Physical Quantities and Measurement Scales
	Selecting a Measurement Scale
	Example: Selecting a Measurement Scale

	Why Use Fixed-Point Hardware?
	Why Use the Fixed-Point Blockset?
	The Development Cycle
	Compatibility with Simulink Blocks
	Unified Simulink and Fixed-Point Blockset Blocks
	Frame-Based Signals
	Matrix Signals

	Getting Started with the Blockset
	Overview of Blockset Features
	Configuring Fixed-Point Blocks
	Additional Features and Capabilities

	Example: Converting from Doubles to Fixed-Point
	Block Descriptions
	Simulation Results

	Demos
	Basic Fixed-Point Blockset Demos
	Advanced Fixed-Point Blockset Demos

	Data Types and Scaling
	Overview
	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Radix Point Interpretation
	Scaling
	Quantization
	Range and Precision
	Example: Fixed-Point Scaling
	Example: Constant Scaling for Best Precision

	Floating-Point Numbers
	Scientific Notation
	The IEEE Format
	Range and Precision
	Exceptional Arithmetic

	Arithmetic Operations
	Overview
	Limitations on Precision
	Rounding
	Padding with Trailing Zeros
	Example: Limitations on Precision and Errors
	Example: Maximizing Precision

	Limitations on Range
	Saturation and Wrapping
	Guard Bits
	Example: Limitations on Range

	Recommendations for Arithmetic and Scaling
	Addition
	Accumulation
	Multiplication
	Gain
	Division
	Summary

	Parameter and Signal Conversions
	Parameter Conversions
	Signal Conversions

	Rules for Arithmetic Operations
	Computational Units
	Addition and Subtraction
	Multiplication
	Division
	Shifts

	Example: Conversions and Arithmetic Operations

	Realization Structures
	Overview
	Realizations and Data Types

	Targeting an Embedded Processor
	Size Assumptions
	Operation Assumptions
	Design Rules

	Canonical Forms
	Direct Form II
	Series Cascade Form
	Parallel Form

	Tutorial: Feedback Controller Simulation
	Overview
	Simulink Model of a Feedback Design
	Simulation Setup

	Idealized Feedback Design
	Digital Controller Realization
	Direct Form Realization

	Simulation Results
	1. Initial Guess at Scaling
	2. Data Type Override
	3. Automatic Scaling

	Tutorial: Producing Lookup Table Data
	Overview
	Worst Case Error for a Lookup Table
	Example: Square Root Function

	Creating Lookup Tables for a Sine Function
	Parameters for fixpt_look1_func_approx
	Setting Function Parameters for the Lookup Table
	Example 1: Using errmax with Unrestricted Spacing
	Example 2: Using nptsmax with Unrestricted Spacing
	Example 3: Using errmax with Even Spacing
	Example 4: Using nptsmax with Even Spacing
	Example 5: Using errmax with Power of Two Spacing
	Example 6: Using nptsmax with Power of Two Spacing
	Specifying Both errmax and nptsmax
	Comparing the Examples

	Summary: Using the Lookup Table Functions
	Effect of Spacing on Speed, Error, and Memory Usage
	Data ROM Required
	Determining Out-of-Range Inputs
	Determining Input Location
	Interpolation
	Conclusion

	Function Reference
	Functions—By Category
	Conversions
	Fixed-Point Settings Interface
	Global Changes
	Lookup Tables
	Data Type Structures
	Tools

	Alphabetical List of Functions
	autofixexp
	fixptbestexp
	fixptbestprec
	fixpt_convert
	fixpt_convert_prep
	fixpt_interp1
	fixpt_look1_func_approx
	fixpt_look1_func_plot
	fixpt_restore_links
	fixpt_set_all
	float
	fpupdate
	fxptdlg
	num2fixpt
	sfix
	sfrac
	showfixptsimerrors
	showfixptsimranges
	sint
	ufix
	ufrac
	uint

	Block Reference
	Blocks—By Category
	Bits
	Calculus
	Data Type
	Delays & Holds
	Edge Detect
	Filters
	Logic & Comparison
	LookUp
	Math
	Nonlinear
	Select
	Sources

	Overview of the Block Reference Pages
	The Block Dialog Box
	Common Block Features
	Block Parameters
	Block Icon Labels
	Port Data Type Display

	Alphabetical List of Blocks
	Abs
	Accumulator
	Accumulator Resettable
	Accumulator Resettable Limited
	Add
	Bit Clear
	Bit Set
	Bitwise Operator
	Compare To Constant
	Compare To Zero
	Constant
	Conversion
	Conversion Inherited
	Cosine
	Counter Free
	Counter Limited
	Data Type Duplicate
	Data Type Propagation
	Dead Zone
	Dead Zone Dynamic
	Decrement Real World
	Decrement Stored Integer
	Decrement Time To Zero
	Decrement To Zero
	Derivative
	Detect Change
	Detect Decrease
	Detect Fall Negative
	Detect Fall Nonpositive
	Detect Increase
	Detect Rise Nonnegative
	Detect Rise Positive
	Difference
	Divide
	Dot Product
	Filter Direct Form I
	Filter Direct Form I Time Varying
	Filter Direct Form II
	Filter Direct Form II Time Varying
	Filter First Order
	Filter Lead or Lag
	Filter Real Zero
	FIR
	Gain
	Gateway In
	Gateway In Inherited
	Gateway Out
	Increment Real World
	Increment Stored Integer
	Index Vector
	Integer Delay
	Integrator Backward
	Integrator Backward Resettable
	Integrator Backward Resettable Limited
	Integrator Forward
	Integrator Forward Resettable
	Integrator Forward Resettable Limited
	Integrator Trapezoidal
	Integrator Trapezoidal Resettable
	Integrator Trapezoidal Resettable Limited
	Interval Test
	Interval Test Dynamic
	Logical Operator
	Look-Up Table
	Look-Up Table Dynamic
	Look-Up Table (2-D)
	Matrix Gain
	MinMax
	MinMax Running Resettable
	Multiply
	Multiply Matrix
	Multi�-Port Switch
	Product
	Product of Elements
	Product of Elements Inverted
	Rate Limiter
	Rate Limiter Dynamic
	Relational Operator
	Relay
	Repeating Sequence Interpolated
	Repeating Sequence Stair
	Sample Rate Probe
	Sample Time Add
	Sample Time Divide
	Sample Time Multiply
	Sample Time Probe
	Sample Time Subtract
	Saturation
	Saturation Dynamic
	Scaling Strip
	Shift Arithmetic
	Sign
	Sine
	State-Space
	Subtract
	Sum
	Sum of Elements
	Sum of Elements Negated
	Switch
	Tapped Delay
	Unary Minus
	Unit Delay
	Unit Delay Enabled
	Unit Delay Enabled External IC
	Unit Delay Enabled Resettable
	Unit Delay Enabled Resettable External IC
	Unit Delay External IC
	Unit Delay Resettable
	Unit Delay Resettable External IC
	Unit Delay With Preview Enabled
	Unit Delay With Preview Enabled Resettable
	Unit Delay With Preview Enabled Resettable External RV
	Unit Delay With Preview Resettable
	Unit Delay With Preview Resettable External RV
	Wrap To Zero
	Zero-Order Hold

	Code Generation
	Overview
	Code Generation Support
	Languages
	Storage Class of Variables
	Storage Class of Parameters
	Rounding Modes
	Overflow Handling
	Blocks
	Scaling

	Generating Pure Integer Code
	Example: Generating Pure Integer Code
	HTML Report

	Using the Simulink Accelerator
	Using External Mode or rsim Target
	External Mode
	Rapid Simulation Target

	Customizing Generated Code
	Macros Versus Functions
	Bit Sizes for Target C Compiler

	Selected Bibliography
	Index

