
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 2

Financial
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Financial Toolbox User’s Guide
 COPYRIGHT 1995 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: October 1995 First printing
January 1998 Second printing Revised for 1.1
January 1999 Third printing Revised for 2.0 (Release 11)
November 2000 Fourth printing Revised for 2.1.2 (Release 12)

Contents
Preface

Introducing the Financial Toolbox . vi

Using This Guide . vii
Expected Background . vii
Organization of the Document . viii
Examples . viii

Related Products . ix
Prerequisites . x
Compatibility . x

Configuration Information . xi

Additional Resources . xii
Financial Demonstration Programs . xii
Finding Additional Information . xii

Typographical Conventions . xiii

1
Getting Started

Using Matrix Functions for Finance . 1-2
Key Definitions . 1-2
Referencing Matrix Elements . 1-2
Transposing Matrices . 1-4

Matrix Algebra Refresher . 1-5
Adding and Subtracting Matrices . 1-5
Multiplying Matrices . 1-6
i

ii Contents
Dividing Matrices . 1-11
Solving Simultaneous Linear Equations 1-11
Operating Element-by-Element . 1-14

Function Input/Output Arguments . 1-16
Input Arguments . 1-16
Function Output Arguments . 1-18
Interest Rate Arguments . 1-19

2
Tutorial

Handling and Converting Dates . 2-3
Date Formats . 2-3
Date Conversions . 2-4
Current Date and Time . 2-7
Determining Dates . 2-8

Formatting Currency . 2-11

Charting Financial Data . 2-12
High-Low-Close Chart Example . 2-12
Bollinger Chart Example . 2-13

Analyzing and Computing Cash Flows 2-15
Interest Rates/Rates of Return . 2-15
Present or Future Values . 2-16
Depreciation . 2-17
Annuities . 2-17

Pricing and Computing Yields for
Fixed-Income Securities . 2-19

Terminology . 2-19
SIA Framework . 2-21
SIA Default Parameter Values . 2-22
SIA Coupon Date Calculations . 2-25
SIA Semi-Annual Yield Conventions . 2-25

Pricing Functions . 2-26
Yield Functions . 2-26
Fixed-Income Sensitivities . 2-27
Term Structure of Interest Rates . 2-28

Pricing and Analyzing Equity Derivatives 2-31
Sensitivity Measures . 2-31
Analysis Models . 2-32

Analyzing Portfolios . 2-36
Portfolio Optimization Functions . 2-36
Portfolio Construction Examples . 2-38
Linear Constraint Equations . 2-46
Specifying Additional Constraints . 2-49

3
Solving Sample Problems

Common Problems in Finance . 3-2
Sensitivity of Bond Prices to Changes in Interest Rates 3-2
Constructing a Bond Portfolio to Hedge Against
Duration and Convexity . 3-5
Sensitivity of Bond Prices to Parallel Shifts in the
Yield Curve . 3-7
Constructing Greek-Neutral Portfolios of
European Stock Options . 3-11
Term Structure Analysis and Interest Rate Swap Pricing . . . 3-14

Producing Graphics with the Toolbox 3-18
Plotting an Efficient Frontier . 3-18
Plotting Sensitivities of an Option . 3-20
Plotting Sensitivities of a Portfolio of Options 3-22
iii

iv Contents
4
Function Reference

Functions - By Category . 4-2
Handling and Converting Dates . 4-2
Formatting Currency . 4-5
Charting Financial Data . 4-5
Analyzing and Computing Cash Flows . 4-6
Fixed-Income Securities . 4-7
Analyzing Portfolios . 4-9
Pricing and Analyzing Derivatives . 4-10
GARCH Processes . 4-10
Obsolete Bond Price and Yield Functions 4-11
Obsolete BDT Functions . 4-12

Functions - Alphabetical List . 4-13

A
Glossary

B
Bibliography

Bond Pricing and Yields . B-1
Term Structure of Interest Rates . B-1
Derivatives Pricing and Yields . B-2
Portfolio Analysis . B-2
Other References . B-2

Preface

Introducing the Financial Toolbox vi

Using This Guidevii
Expected Backgroundvii
Organization of the Document viii
Examples . viii

Related Products x
Prerequisites . x
Compatibility . x

Configuration Information xi

Additional Resources xii
Financial Demonstration Programs xii
Finding Additional Informationxii

Typographical Conventions xiii

 Preface

vi
Introducing the Financial Toolbox
MATLAB® and the Financial Toolbox provide a complete integrated computing
environment for financial analysis and engineering. The toolbox has
everything you need to perform mathematical and statistical analysis of
financial data and display the results with presentation-quality graphics. You
can quickly ask, visualize, and answer complicated questions.

In traditional or spreadsheet programming you must deal with all sorts of
housekeeping details: declaring, data typing, sizing, etc. MATLAB does all that
for you. You just write expressions the way you think of problems. There is no
need to switch tools, convert files, or rewrite applications.

With MATLAB and the Financial Toolbox, you can:

• Compute and analyze prices, yields, and sensitivities for derivatives and
other securities, and for portfolios of securities.

• Perform Securities Industry Association (SIA) compatible fixed-income
pricing, yield, and sensitivity analysis.

• Analyze or manage portfolios.

• Design and evaluate hedging strategies.

• Identify, measure, and control risk.

• Analyze and compute cash flows, including rates of return and depreciation
streams.

• Analyze and predict economic activity.

• Create structured financial instruments, including foreign-exchange
instruments.

• Teach or conduct academic research.

Using This Guide
Using This Guide
This guide helps you learn to use MATLAB and the Financial Toolbox for
financial analysis and engineering applications. After reading this manual,
you will understand Financial Toolbox concepts, content, functions, and uses.
You will have successfully executed several examples, and you will be able to
use the functions of choice.

Expected Background
In designing the Financial Toolbox and this manual, we assume your title is
similar to one of these:

• Analyst, quantitative analyst

• Risk manager

• Portfolio manager

• Fund manager, asset manager

• Economist

• Financial engineer

• Trader

• Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

• Finance, economics, perhaps accounting

• Engineering, mathematics, physics, other quantitative sciences

• Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

• Comfortable with probability, statistics, and algebra

• May understand linear or matrix algebra, calculus, and differential
equations

• Previously resigned to doing traditional programming (C, Fortran, etc.)

• May be responsible for instruments or analyses involving large sums of
money

• Perhaps new to MATLAB
vii

 Preface

vii
Organization of the Document
Chapter 1, “Getting Started” reviews key definitions and elementary matrix
operations and discusses the application of matrix algebra fundamentals in a
financial context.

Chapter 2, “Tutorial” describes the use of the Financial Toolbox to perform a
wide range of common financial tasks.

Chapter 3, “Solving Sample Problems” shows how the toolbox solves real-world
financial problems and how it produces presentation-quality graphics. If you
are already familiar with MATLAB, matrix algebra, and financial
computations, you can turn immediately to these examples.

Chapter 4, “Function Reference” groups the Financial Toolbox functions by
task, then describes each toolbox function in alphabetical order. Purpose,
syntax, arguments, description, examples, and related functions are given for
each function.

Appendix A “Glossary” defines the financial terms used in this manual.

Appendix B “Bibliography” provides references for the toolbox formulas and
concepts.

Examples
We encourage you to try the examples throughout the text. In addition, we
provide M-files of the longer common financial problems and graphics
examples in Chapter 3, “Solving Sample Problems.” The five common financial
problems are ftspex1.m through ftspex5.m; the three graphics examples are
ftgex1.m through ftgex3.m.
i

Related Products
Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Financial Toolbox.

For more information about any of these products, see either:

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend MATLAB’s
capabilities.

.

Product Description

Database Toolbox Exchange data with relational databases

Datafeed Toolbox Acquire real-time financial data from data
service providers

Excel Link Use MATLAB with Microsoft Excel

Financial Derivatives
Toolbox

Model and analyze fixed-income derivatives
and securities

Financial Time Series
Toolbox

Analyze and manage financial time series data

GARCH Toolbox Analyze financial volatility using univariate
GARCH models

MATLAB Compiler Convert MATLAB M-files to C and C++ code

MATLAB Web Server Use MATLAB with HTML Web applications
ix

 Preface

x

Prerequisites
The Financial Toolbox requires the Statistics and Optimization Toolboxes, but
you need not read those manuals before reading this one. Some examples use
functions in the Spline Toolbox, but that toolbox is not a prerequisite for the
Financial Toolbox.

Compatibility
The Financial Toolbox is compatible with Release 11 (MATLAB Version 5.3)
and later.

Optimization Toolbox Solve standard and large-scale optimization
problems

Simulink Report
Generator

Automatically generate documentation for
Simulink and Stateflow models

Statistics Toolbox Apply statistical algorithms and probability
models

Product Description

Configuration Information
Configuration Information
To determine whether the Financial Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

To install the Financial Toolbox, see the MATLAB Installation Guide for PC or
the MATLAB Installation Guide for UNIX.

Note For the most up-to-date information about system requirements, see
the system requirements page, available in the products area at the
MathWorks Web site (http://www.mathworks.com).
xi

 Preface

xii
Additional Resources

Financial Demonstration Programs
The MATLAB Financial Toolbox Exposition ships with a large number of
programs that illustrate many of the features of the toolbox, including
charting, options pricing, portfolio analysis, and others. Type help findemos
for a complete list of available financial demonstration programs.

Finding Additional Information
For additional information about MathWorks financial products and the
Financial Toolbox, visit our Web site

http://www.mathworks.com/products/industry/finance

or send e-mail to

finance@mathworks.com

Typographical Conventions
Typographical Conventions
This manual uses some or all of these conventions.

Item Convention to Use Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names/syntax Monospace font The cos function finds the
cosine of each array element.

Syntax line example is

MLGetVar ML_var_name

Keys Boldface with an initial
capital letter

Press the Return key.

Literal strings (in syntax
descriptions in Reference
chapters)

Monospace bold for
literals

f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables

Standard text font for
functions, operators, and
constants

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with

A =

 5

Menu names, menu items, and
controls

Boldface with an initial
capital letter

Choose the File menu.
xiii

 Preface

xiv
New terms Italics An array is an ordered
collection of information.

String variables (from a finite
list)

Monospace italics sysc = d2c(sysd, 'method')

Item Convention to Use Example

1

Getting Started

This chapter uses MATLAB to review the fundamentals of matrix algebra you
need for financial analysis and engineering applications. It contains these
sections:

• Using Matrix Functions for Finance

Reviews Key Definitions and some matrix algebra fundamentals, such as
Referencing Matrix Elements and Transposing Matrices.

• Matrix Algebra Refresher

Provides a brief refresher on using matrix functions in financial analysis and
engineering

• Function Input/Output Arguments

Describes acceptable formats for providing data to MATLAB and the
resulting output from computations on the supplied data.

This material explains some MATLAB concepts and operations using financial
examples to help get you started.

Using Matrix Functions for Finance 1-3
Key Definitions 1-3
Referencing Matrix Elements 1-3
Transposing Matrices 1-5

Matrix Algebra Refresher 1-6
Adding and Subtracting Matrices 1-6
Multiplying Matrices 1-7
Dividing Matrices 1-12
Solving Simultaneous Linear Equations 1-12
Operating Element-by-Element 1-15

Function Input/Output Arguments 1-17
Input Arguments 1-17
Function Output Arguments 1-19
Interest Rate Arguments 1-20

1 Getting Started

1-2
Using Matrix Functions for Finance
Many financial analysis procedures involve sets of numbers; for example, a
portfolio of securities at various prices and yields. Matrices, matrix functions,
and matrix algebra are the most efficient ways to analyze sets of numbers and
their relationships. Spreadsheets focus on individual cells and the
relationships between cells. While you can think of a set of spreadsheet cells (a
range of rows and columns) as a matrix, a matrix-oriented tool like MATLAB
manipulates sets of numbers more quickly, easily, and naturally.

Key Definitions

Matrix. A rectangular array of numeric or algebraic quantities subject to
mathematical operations; the regular formation of elements into rows and
columns. Described as an “m-by-n” matrix, with m the number of rows and n
the number of columns. The description is always “row-by-column.” For
example, here is a 2-by-3 matrix of two bonds (the rows) with different par
values, coupon rates, and coupon payment frequencies per year (the columns)
entered using MATLAB notation.

Bonds = [1000 0.06 2
 500 0.055 4]

Vector. A matrix with only one row or column. Described as a “1-by-n” or
“m-by-1” matrix. The description is always “row-by-column.” Here is a 1-by-4
vector of cash flows in MATLAB notation.

Cash = [1500 4470 5280 -1299]

Scalar. A 1-by-1 matrix; i.e., a single number.

Referencing Matrix Elements
To reference specific matrix elements use (row, column) notation. For example,

Bonds(1,2)

ans =

 0.06

Using Matrix Functions for Finance
Cash(3)

ans =

 5280.00

You can enlarge matrices using small matrices or vectors as elements. For
example,

AddBond = [1000 0.065 2];
Bonds = [Bonds; AddBond]

adds another row to the matrix and creates

Bonds =

 1000 0.06 2
 500 0.055 4
 1000 0.065 2

Likewise,

Prices = [987.50
475.00
995.00]

Bonds = [Prices, Bonds]

adds another column and creates

Bonds =

987.50 1000 0.06 2
475.00 500 0.055 4
995.00 1000 0.065 2
1-3

1 Getting Started

1-4
Finally, the colon (:) is important in generating and referencing matrix
elements. For example, to reference the par value, coupon rate, and coupon
frequency of the second bond.

BondItems = Bonds(2, 2:4)

BondItems =

500.00 0.055 4

Transposing Matrices
Sometimes matrices are in the wrong configuration for an operation. In
MATLAB, the apostrophe or prime character (') transposes a matrix: columns
become rows, rows become columns. For example,

Cash = [1500 4470 5280 -1299]'

produces

Cash =

 1500
 4470
 5280

-1299

Matrix Algebra Refresher
Matrix Algebra Refresher
Matrix algebra and matrix operations are fundamental to using MATLAB in
financial analysis and engineering. The topics discussed in this section include:

• “Adding and Subtracting Matrices” on page 1-5

• “Multiplying Matrices” on page 1-6

• “Dividing Matrices” on page 1-11

• “Solving Simultaneous Linear Equations” on page 1-11

• “Operating Element-by-Element” on page 1-14

These explanations should help refresh your skills.

William Sharpe’s Macro-Investment Analysis also provides an excellent
explanation of matrix algebra operations using MATLAB. It is available on the
Web at

http://www.stanford.edu/~wfsharpe/mia/mia.htm

Note When you are setting up a problem, it helps to “talk through” the units
and dimensions associated with each input and output matrix. In the example
under “Multiplying Matrices” below, one input matrix has “five days’ closing
prices for three stocks,” the other input matrix has “shares of three stocks in
two portfolios,” and the output matrix therefore has “five days’ closing values
for two portfolios.” It also helps to name variables using descriptive terms.

Adding and Subtracting Matrices
Matrix addition and subtraction operate element-by-element. The two input
matrices must have the same dimensions. The result is a new matrix of the
same dimensions where each element is the sum or difference of each
corresponding input element. For example, consider combining portfolios of
different quantities of the same stocks (“shares of stocks A, B, and C [the rows]
in portfolios P and Q [the columns] plus shares of A, B, and C in portfolios R
and S”).

Portfolios_PQ = [100 200
500 400
1-5

1 Getting Started

1-6
300 150];

Portfolios_RS = [175 125
200 200
100 500];

NewPortfolios = Portfolios_PQ + Portfolios_RS

NewPortfolios =

 275.00 325.00
 700.00 600.00
 400.00 650.00

Adding or subtracting a scalar and a matrix is allowed and also operates
element-by-element.

SmallerPortf = NewPortfolios-10

SmallerPortf =
 265.00 315.00
 690.00 590.00
 390.00 640.00

Multiplying Matrices
Matrix multiplication does not operate element-by-element. It operates
according to the rules of linear algebra. In multiplying matrices, it helps to
remember this key rule: the inner dimensions must be the same. That is, if the
first matrix is m-by-3, the second must be 3-by-n. The resulting matrix is
m-by-n. It also helps to “talk through” the units of each matrix, as mentioned
above.

Matrix multiplication also is not commutative; i.e., it is not independent of
order. A∗ B does not equal B∗ A. The dimension rule illustrates this property. If
A is 1-by-3 and B is 3-by-1, A∗ B yields a scalar (1-by-1) but B∗ A yields a 3-by-3
matrix.

Matrix Algebra Refresher
Multiplying Vectors
Vector multiplication follows the same rules and helps illustrate the principles.
For example, a stock portfolio has three different stocks and their closing prices
today are

ClosePrices = [42.5 15 78.875]

The portfolio contains these numbers of shares of each stock.

NumShares = [100
 500
 300]

To find the value of the portfolio, simply multiply the vectors

PortfValue = ClosePrices * NumShares

which yields

PortfValue =

 35412.50

The vectors are 1-by-3 and 3-by-1; the resulting vector is 1-by-1, a scalar.
Multiplying these vectors thus means multiplying each closing price by its
respective number of shares and summing the result.

To illustrate order dependence, switch the order of the vectors

Values = NumShares * ClosePrices

Values =

 4250.00 1500.00 7887.50
 21250.00 7500.00 39437.50
 12750.00 4500.00 23662.50

which shows the closing values of 100, 500, and 300 shares of each stock — not
the portfolio value, and meaningless for this example.
1-7

1 Getting Started

1-8
Computing Dot Products of Vectors
In matrix algebra, if X and Y are vectors of the same length

then the dot product

is the scalar product of the two vectors. It is an exception to the commutative
rule. To compute the dot product in MATLAB, use sum(X .* Y) or sum(Y .*
X). Just be sure the two vectors have the same dimensions. To illustrate, use
the previous vectors.

Value = sum(NumShares .* ClosePrices')

Value =

 35412.50

Value = sum(ClosePrices .* NumShares')

Value =

 35412.50

As expected, the value in these cases is exactly the same as the PortfValue
computed previously.

Multiplying Vectors and Matrices
Multiplying vectors and matrices follows the matrix multiplication rules and
process. For example, a portfolio matrix contains closing prices for a week. A
second matrix (vector) contains the stock quantities in the portfolio.

WeekClosePr = [42.5 15 78.875
42.125 15.5 78.75
42.125 15.125 79
42.625 15.25 78.875
43 15.25 78.625];

Y y1 y2 …, yn,,[]=

X x1 x2 …, xn,,[]=

X Y• x1y1 x2y2 … xnyn+ + +=

Matrix Algebra Refresher
PortQuan = [100
 500
 300];

To see the closing portfolio value for each day, simply multiply

WeekPortValue = WeekClosePr * PortQuan

WeekPortValue =

 35412.50
 35587.50
 35475.00
 35550.00
 35512.50

The prices matrix is 5-by-3, the quantity matrix (vector) is 3-by-1, so the
resulting matrix (vector) is 5-by-1.

Multiplying Two Matrices
Matrix multiplication also follows the rules of matrix algebra. In matrix
algebra notation, if A is an m-by-n matrix and B is an n-by-p matrix

then C = A∗ B is an m-by-p matrix; and the element cij in the ith row and jth
column of C is

To illustrate, assume there are two portfolios of the same three stocks above
but with different quantities.

Portfolios = [100 200
 500 400
 300 150];

A

a11 a12 … a1n

ai1 ai2 … ain

am1 am2 … amn

= B

b11 … b1j … b1p

b21 … b2j … b2p

bn1 bnj bnp

=,

…

… … …… … …

… …

cij ai1b1j ai2b2j … ainbnj+ + +=
1-9

1 Getting Started

1-1
Multiplying the 5-by-3 week’s closing prices matrix by the 3-by-2 portfolios
matrix yields a 5-by-2 matrix showing each day’s closing value for both
portfolios.

PortfolioValues = WeekClosePr * Portfolios

PortfolioValues =

 35412.50 26331.25
 35587.50 26437.50
 35475.00 26325.00
 35550.00 26456.25
 35512.50 26493.75

Monday’s values result from multiplying each Monday closing price by its
respective number of shares and summing the result for the first portfolio, then
doing the same for the second portfolio. Tuesday’s values result from
multiplying each Tuesday closing price by its respective number of shares and
summing the result for the first portfolio, then doing the same for the second
portfolio. And so on through the rest of the week. With one simple command,
MATLAB quickly performs many calculations.

Multiplying a Matrix by a Scalar
Multiplying a matrix by a scalar is an exception to the dimension and
commutative rules. It just operates element-by-element.

Portfolios = [100 200
 500 400
 300 150];

DoublePort = Portfolios * 2

DoublePort =
 200.00 400.00
 1000.00 800.00
 600.00 300.00
0

Matrix Algebra Refresher
Dividing Matrices
Matrix division is useful primarily for solving equations, and especially for
solving simultaneous linear equations (see the next section). For example, you
want to solve for X in A∗ X = B.

In ordinary algebra, you would simply divide both sides of the equation by A,
and X would equal B/A. However, since matrix algebra is not commutative
(A∗ X ≠ X∗ A), different processes apply. In formal matrix algebra, the solution
involves matrix inversion. MATLAB, however, simplifies the process by
providing two matrix division symbols, left and right (\ and /). In general,

X = A\B solves for X in A∗ X = B

X = B/A solves for X in X∗ A = B.

In general, matrix A must be a nonsingular square matrix; i.e., it must be
invertible and it must have the same number of rows and columns. (Generally,
a matrix is invertible if the matrix times its inverse equals the identity matrix.
To understand the theory and proofs, please consult a textbook on linear
algebra such as the one by Hill listed in the “Bibliography.”) MATLAB gives a
warning message if the matrix is singular or nearly so.

Solving Simultaneous Linear Equations
Matrix division is especially useful in solving simultaneous linear equations.
Consider this problem: given two portfolios of mortgage-based instruments,
each with certain yields depending on the prime rate, how do you weight the
portfolios to achieve certain annual cash flows? The answer involves solving
two linear equations.

A linear equation is any equation of the form

where a1, a2, and b are constants (with a1 and a2 not both zero), and x and y
are variables. (It’s a linear equation because it describes a line in the xy-plane.
For example the equation 2x + y = 8 describes a line such that if x = 2 then
y = 4.)

A system of linear equations is a set of linear equations that we usually want
to solve at the same time; i.e., simultaneously. A basic principle for exact
answers in solving simultaneous linear equations requires that there be as
many equations as there are unknowns. To get exact answers for x and y there

a1x a2y+ b=
1-11

1 Getting Started

1-1
must be two equations. For example, to solve for x and y in the system of linear
equations

there must be two equations, which there are. Matrix algebra represents this
system as an equation involving three matrices: A for the left-side constants, X
for the variables, and B for the right-side constants

where A∗ X = B.

Solving the system simultaneously simply means solving for X. Using
MATLAB,

A = [2 1
 1 −3];

B = [13
 −18];

X = A \ B

solves for X in A * X = B.

X = [3
 7]

So x = 3 and y = 7 in this example. In general, you can use matrix algebra to
solve any system of linear equations such as

by representing them as matrices

2x y+ 13=

x 3y– 18–=

A 2 1
1 3–

= X x
y

= B 13
18–

=

a11x1 a12x2 … a1nxn+ + + b1=

a21x1 a22x2 … a2nxn+ + + b2=

am1x1 am2x2 … amnxn+ + + bm=

…

2

Matrix Algebra Refresher
and solving for X in A∗ X = B.

To illustrate, consider this situation. There are two portfolios of
mortgage-based instruments, M1 and M2. They have current annual cash
payments of $100 and $70 per unit, respectively, based on today’s prime rate.
If the prime rate moves down one percentage point, their payments would be
$80 and $40. An investor holds 10 units of M1 and 20 units of M2. The
investor’s receipts equal cash payments times units, or R = C * U, for each
prime-rate scenario. As word equations,

As MATLAB matrices

Cash = [100 70
 80 40];

Units =[10
 20];

Receipts = Cash * Units

Receipts =

 2400.00
 1600.00

Now the investor asks the question: given these two portfolios and their
characteristics, how many units of each should I hold to receive $7000 if the

M1 M2

Prime flat: $100 * 10 units+ $70 * 20 units = $2400 receipts

Prime down: $80 * 10 units + $40 * 20 units = $1600 receipts

A

a11 a12 … a1n

a21 a22 … a2n

am1 am2 … amn

= X

x1

x2

xn

= B

b1

b2

bm

=…… … … ……
1-13

1 Getting Started

1-1
prime rate stays flat and $5000 if the prime drops one percentage point? Find
the answer by solving two linear equations.

In other words, solve for U (units) in the equation R (receipts) = C (cash) * U
(units). Using MATLAB left division

Cash = [100 70
 80 40];

Receipts = [7000
 5000];

Units = Cash \ Receipts
Units =

 43.75
 37.50

The investor should hold 43.75 units of portfolio M1 and 37.5 units of portfolio
M2 to achieve the annual receipts desired.

Operating Element-by-Element
Finally, element-by-element arithmetic operations are called array operations.
To indicate an array operation in MATLAB, precede the operator with a period
(.). Addition and subtraction, and matrix multiplication and division by a
scalar, are already array operations so no period is necessary. When using
array operations on two matrices, the dimensions of the matrices must be the
same. For example, given vectors of stock dividends and closing prices

Dividends = [1.90 0.40 1.56 4.50];
Prices = [25.625 17.75 26.125 60.50];

Yields = Dividends ./ Prices

Yields =

M1 M2

Prime flat: $100 * x units + $70 * y units = $7000 receipts

Prime down: $80 * x units + $40 * y units = $5000 receipts
4

Matrix Algebra Refresher
 0.0741 0.0225 0.0597 0.0744
1-15

1 Getting Started

1-1
Function Input/Output Arguments
MATLAB was designed to be a large-scale array (vector or matrix) processor.
In addition to its linear algebra applications, the general array-based
processing facility has the capability to perform repeated operations on
collections of data. When MATLAB code is written to operate simultaneously
on collections of data stored in arrays, the code is said to be vectorized.
Vectorized code is not only clean and concise, but is also efficiently processed
by the underlying MATLAB engine.

Input Arguments

Matrix Input
Because MATLAB can process vectors and matrices easily, most functions in
the Financial Toolbox allow vector or matrix input arguments, rather than just
single (scalar) values.

For example, the irr function computes the internal rate of return of a cash
flow stream. It accepts a vector of cash flows and returns a scalar-valued
internal rate of return. However, it also accepts a matrix of cash flow streams,
a column in the matrix representing a different cash flow stream. In this case,
irr returns a vector of internal rates of return, each entry in the vector
corresponding to a column of the input matrix. Many other toolbox functions
work similarly.

As an example, suppose you make an initial investment of $100, from which
you then receive by a series of annual cash receipts of $10, $20, $30, $40, and
$50. This cash flow stream may be stored in a vector

CashFlows = [-100 10 20 30 40 50]'

which MATLAB displays as

CashFlows =
 -100
 10
 20
 30
 40
 50
6

Function Input/Output Arguments
The irr function can compute the internal rate of return of this stream.

Rate = irr(CashFlows)

The internal rate of return of this investment is

Rate =

 0.1201

or 12.01%.

In this case, a single cash flow stream (written as an input vector) produces a
scalar output – the internal rate of return of the investment.

Extending this example, if you process a matrix of identical cash flow streams

Rate = irr([CashFlows CashFlows CashFlows])

you should expect to see identical internal rates of return for each of the three
investments.

Rate =

 0.1201 0.1201 0.1201

This simple example illustrates the power of vectorized programming. The
example shows how to collect data into a matrix and then use a toolbox function
to compute answers for the entire collection. This feature can be useful in
portfolio management, for example, where you might want to organize multiple
assets into a single collection. Place data for each asset in a different column or
row of a matrix, then pass the matrix to a Financial Toolbox function. MATLAB
performs the same computation on all of the assets at once.

Matrices of String Input
Enter strings in MATLAB surrounded by single quotes ('string').

Strings are stored as character arrays, one ASCII character per element. Thus
the date string

DateString = '9/16/2001'

is actually a 1-by-9 vector. Strings making up the rows of a matrix or vector all
must have the same length. To enter several date strings, therefore, use a
column vector and be sure all strings are the same length. Fill in with spaces
1-17

1 Getting Started

1-1
or zeros. For example, to create a vector of dates corresponding to irregular
cash flows

DateFields = ['01/12/2001'
 '02/14/2001'
 '03/03/2001'
 '06/14/2001'
 '12/01/2001'];

DateFields actually becomes a 5-by-10 character array.

Don’t mix numbers and strings in a matrix. If you do, MATLAB treats all
entries as characters. For example,

Item = [83 90 99 '14-Sep-1999']

becomes a 1-by-14 character array, not a 1-by-4 vector, and it contains

Item =

SZc14-Sep-1999

Function Output Arguments
Some functions return no arguments, some return just one, and some return
multiple arguments. Functions that return multiple arguments use the syntax

[A, B, C] = function(variables...)

to return arguments A, B, and C. If you omit all but one, the function returns
the first argument. Thus, for this example if you use the syntax

X = function(variables...)

function returns a value for A, but not for B or C.

Some functions that return vectors accept only scalars as arguments. Why
could such functions not accept vectors as arguments and return matrices,
where each column in the output matrix corresponds to an entry in the input
vector? The answer is that the output vectors can be variable length and thus
will not fit in a matrix without some convention to indicate that the shorter
columns are missing data.
8

Function Input/Output Arguments
Functions that require asset life as an input, and return values corresponding
to different periods over that life, cannot generally handle vectors or matrices
as input arguments. Those functions are

For example, suppose you have a collection of assets such as automobiles and
you want to compute the depreciation schedules for them. The function
depfixdb computes a stream of declining-balance depreciation values for an
asset. You might want to set up a vector where each entry is the initial value
of each asset. depfixdb also needs the lifetime of an asset. If you were to set up
such a collection of automobiles as an input vector, and the lifetimes of those
automobiles varied, the resulting depreciation streams would differ in length
according to the life of each automobile, and the output column lengths would
vary. A matrix must have the same number of rows in each column.

Interest Rate Arguments
One common argument, both as input and output, is interest rate. All Financial
Toolbox functions expect and return interest rates as decimal fractions. Thus
an interest rate of 9.5% is indicated as 0.095.

amortize Amortization

depfixdb Fixed declining-balance depreciation

depgendb General declining-balance depreciation

depsoyd Sum of years’ digits depreciation
1-19

1 Getting Started

1-2
0

2

Tutorial

The Financial Toolbox contains functions that perform many common financial
tasks, including:

• Handling and converting dates

Calendar functions convert dates among different formats (including Excel
formats), determine future or past dates, find dates of holidays and business
days, compute time differences between dates, find coupon dates and coupon
periods for coupon bonds, and compute time periods based on 360-, 365-, or
366-day years.

• Formatting currency

The toolbox includes functions for handling decimal values in bank
(currency) formats and as fractional prices.

• Charting financial data

Charting functions produce a variety of financial charts including Bollinger
bands, high-low-close charts, candlestick plots, point and figure plots, and
moving-average plots. The Financial Time Series Toolbox provides
additional charting functions. See the Financial Time Series Toolbox User’s
Guide for a description of these functions.

• Analyzing and computing cash flows

Cash-flow evaluation and financial accounting functions compute interest
rates, rates of return, payments associated with loans and annuities, future
and present values, depreciation, and other standard accounting
calculations associated with cash-flow streams.

• Pricing and computing yields for fixed-income securities; analyzing the term
structure of interest rates

Securities Industry Association (SIA) compliant fixed-income functions
compute prices, yields, accrued interest, and sensitivities for securities such
as bonds, zero-coupon bonds, and Treasury bills. They handle odd first and
last periods in price/yield calculations, compute accrued interest and

Handling and Converting Dates 2-4

Formatting Currency 2-12

Charting Financial Data 2-13

Analyzing and Computing Cash Flows 2-16

Pricing and Computing Yields for
Fixed-Income Securities 2-20

Pricing and Analyzing Equity Derivatives 2-32

Analyzing Portfolios 2-37

2 Tutorial

2-2
discount rates, and calculate convexity and duration. Another set of
functions analyzes term structure of interest rates, including pricing bonds
from yield curves and bootstrapping yield curves from market prices.

• Pricing and analyzing equity derivatives

Derivatives analysis functions compute prices, yields, and sensitivities for
derivative securities. They deal with both European and American options.

Black-Scholes functions work with European options. They compute delta,
gamma, lambda, rho, theta, and vega, as well as values of call and put
options.

Binomial functions work with American options, computing put and call
prices. The optional Simulink system provides powerful tools for
constructing simulation models for pricing these kinds of options.

• Analyzing portfolios

Portfolio analysis functions provide basic utilities to compute variances and
covariance of portfolios, find combinations to minimize variance, compute
Markowitz efficient frontiers, and calculate combined rates of return.

The toolbox also contains sets of functions for pricing and analyzing
option-embedded bonds and for modeling volatility in time series.

• Black-Derman-Toy functions work with both American and European
options to compute prices, discounts, and sensitivity measures for bonds with
embedded call or put options. See the “Function Reference” for additional
information.

• Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
functions model the volatility of univariate economic time series. (The
GARCH Toolbox provides a more comprehensive and integrated computing
environment. For information see the GARCH Toolbox User’s Guide or the
financial products Web page at
http://www.mathworks.com/products/finprod.)

Handling and Converting Dates
Handling and Converting Dates
Since virtually all financial data is dated or derives from a time series,
financial functions must have extensive date-handling capabilities. This
section discusses date handling in the Financial Toolbox, specifically the topics:

• “Date Formats” on page 2-3

• “Date Conversions” on page 2-4

• “Current Date and Time” on page 2-7

• “Determining Dates” on page 2-8

Note If you specify a two-digit year, MATLAB assumes that the year lies
within the 100-year period centered about the current year. See the function
datenum for specific information. MATLAB internal date handling and
calculations generate no ambiguous values. However, whenever possible,
programmers should use serial date numbers or date strings containing
four-digit years.

Date Formats
You most often work with date strings (14-Sep-1999) when dealing with dates.
The Financial Toolbox works internally with serial date numbers (e.g., 730377).
A serial date number represents a calendar date as the number of days that has
passed since a fixed base date. In MATLAB, serial date number 1 is January 1,
0000 A.D. MATLAB also uses serial time to represent fractions of days
beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So 6:00 pm
on 14-Sep-1999, in MATLAB, is date number 730377.75.

Many toolbox functions that require dates accept either date strings or serial
date numbers. If you are dealing with a few dates at the MATLAB
command-line level, date strings are more convenient. If you are using toolbox
functions on large numbers of dates, as in analyzing large portfolios or cash
flows, performance improves if you use date numbers.

The toolbox provides functions that convert date strings to serial date numbers,
and vice versa.
2-3

2 Tutorial

2-4
Date Conversions
Functions that convert between date formats are

Another function, datevec, converts a date number or date string to a date
vector whose elements are [Year Month Day Hour Minute Second]. Date
vectors are mostly an internal format for some MATLAB functions ; you would
not often use them in financial calculations.

Input Conversions
The datenum function is important for using the Financial Toolbox efficiently.
datenum takes an input string in any of several formats, with 'dd-mmm-yyyy',
'mm/dd/yyyy' or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. The input
string can have up to six fields formed by letters and numbers separated by any
other characters:

• The day field is an integer from 1 to 31.

• The month field is either an integer from 1 to 12 or an alphabetic string with
at least three characters.

• The year field is a nonnegative integer: if only two numbers are specified,
then the year is assumed to lie within the 100-year period centered about the
current year; if the year is omitted, the current year is used as the default.

• The hours, minutes, and seconds fields are optional. They are integers
separated by colons or followed by 'am' or 'pm'.

For example, if the current year is 1999, then these are all equivalent

'17-May-1999'
'17-May-99'

datedisp Displays a numeric matrix with date entries formatted as
date strings

datenum Converts a date string to a serial date number

datestr Converts a serial date number to a date string

m2xdate Converts MATLAB serial date number to Excel serial date
number

x2mdate Converts Excel serial date number to MATLAB serial date
number

Handling and Converting Dates
'17-may'
'May 17, 1999'
'5/17/99'
'5/17'

and both of these represent the same time.

'17-May-1999, 18:30'
'5/17/99/6:30 pm'

Note that the default format for numbers-only input follows the American
convention. Thus 3/6 is March 6, not June 3.

With datenum you can convert dates into serial date format, store them in a
matrix variable, then later pass the variable to a function. Alternatively, you
can use datenum directly in a function input argument list.

For example, consider the function bndprice that computes the price of a bond
given the yield-to-maturity. First set up variables for the yield-to-maturity,
coupon rate, and the necessary dates.

Yield = 0.07;
CouponRate = 0.08;
Settle = datenum('17-May-2000');
Maturity = datenum('01-Oct-2000');

Then call the function with the variables

bndprice(Yield, CouponRate, Settle, Maturity)

Alternatively, convert date strings to serial date numbers directly in the
function input argument list.

bndprice(0.07, 0.08, datenum('17-May-2000'),...
datenum('01-Oct-2000'))

bndprice is an example of a function designed to detect the presence of date
strings and make the conversion automatically. For these functions date
strings may be passed directly.

bndprice(0.07, 0.08, '17-May-2000', '01-Oct-2000')

The decision to represent dates as either date strings or serial date numbers is
often a matter of convenience. For example, when formatting data for visual
display or for debugging date-handling code, it is often much easier to view
2-5

2 Tutorial

2-6
dates as date strings because serial date numbers are difficult to interpret.
Alternatively, serial date numbers are just another type of numeric data, and
can be placed in a matrix along with any other numeric data for convenient
manipulation.

Remember that if you create a vector of input date strings, use a column vector
and be sure all strings are the same length. Fill with spaces or zeros. See
“Matrices of String Input” on page 1-17.

Output Conversions
The function datestr converts a serial date number to one of 19 different date
string output formats showing date, time, or both. The default output for dates
is a day-month-year string, e.g., 24-Aug-2000. This function is quite useful for
preparing output reports.

Format Description

01-Mar-2000
15:45:17

day-month-year hour:minute:second

01-Mar-2000 day-month-year

03/01/00 month/day/year

Mar month, three letters

M month, single letter

3 month

03/01 month/day

1 day of month

Wed day of week, three letters

W day of week, single letter

2000 year, four numbers

99 year, two numbers

Mar01 month year

Handling and Converting Dates
Current Date and Time
The functions today and now return serial date numbers for the current date,
and the current date and time, respectively.

today

ans =
 730693

now

ans =

730693.48

The MATLAB function date returns a string for today’s date.

date

ans =

26-Jul-2000

15:45:17 hour:minute:second

03:45:17 PM hour:minute:second AM or PM

15:45 hour:minute

03:45 PM hour:minute AM or PM

Q1-99 calendar quarter-year

Q1 calendar quarter

Format Description
2-7

2 Tutorial

2-8
Determining Dates
The toolbox provides many functions for determining specific dates, including
functions which account for holidays and other nontrading days.

For example, you schedule an accounting procedure for the last Friday of every
month. The lweekdate function returns those dates for 2000; the 6 specifies
Friday.

Fridates = lweekdate(6, 2000, 1:12);

Fridays = datestr(Fridates)

Fridays =

28-Jan-2000
25-Feb-2000
31-Mar-2000
28-Apr-2000
26-May-2000
30-Jun-2000
28-Jul-2000
25-Aug-2000
29-Sep-2000
27-Oct-2000
24-Nov-2000
29-Dec-2000

Or your company closes on Martin Luther King Jr. Day, which is the third
Monday in January. The nweekdate function determines those dates for 2001
through 2004.

MLKDates = nweekdate(3, 2, 2001:2004, 1);

MLKDays = datestr(MLKDates)

MLKDays =

15-Jan-2001
21-Jan-2002
20-Jan-2003
19-Jan-2004

Handling and Converting Dates
Accounting for holidays and other nontrading days is important when
examining financial dates. The toolbox provides the holidays function, which
contains holidays and special nontrading days for the New York Stock
Exchange between 1950 and 2030, inclusive. You can edit the holidays.m file
to customize it with your own holidays and nontrading days. In this example,
use it to determine the standard holidays in the last half of 2000.

LHHDates = holidays('1-Jul-2000', '31-Dec-2000');

LHHDays = datestr(LHHDates)

LHHDays =

04-Jul-2000
04-Sep-2000
23-Nov-2000
25-Dec-2000

Now use the toolbox busdate function to determine the next business day after
these holidays.

LHNextDates = busdate(LHHDates);

LHNextDays = datestr(LHNextDates)

LHNextDays =

05-Jul-2000
05-Sep-2000
24-Nov-2000
26-Dec-2000
2-9

2 Tutorial

2-1
The toolbox also provides the cfdates function to determine cash-flow dates for
securities with periodic payments. This function accounts for the coupons per
year, the day-count basis, and the end-of-month rule. For example, to
determine the cash-flow dates for a security that pays four coupons per year on
the last day of the month, on an actual/365 day-count basis, just enter the
settlement date, the maturity date, and the parameters.

PayDates = cfdates('14-Mar-2000', '30-Nov-2001', 4, 3, 1);

PayDays = datestr(PayDates)

PayDays =

31-May-2000
31-Aug-2000
30-Nov-2000
28-Feb-2001
31-May-2001
31-Aug-2001
30-Nov-2001
0

Formatting Currency
Formatting Currency
The Financial Toolbox provides several functions to format currency and chart
financial data. The currency formatting functions are

These examples show their use.

Dec = frac2cur('12.1', 8)

returns Dec = 12.125, which is the decimal equivalent of 12-1/8. The second
input variable is the denominator of the fraction.

Str = cur2str(-8264, 2)

returns the string ($8264.00). For this toolbox function, the output format is
a numerical format with dollar sign prefix, two decimal places, and negative
numbers in parentheses; e.g., ($123.45) and $6789.01. The standard
MATLAB bank format uses two decimal places, no dollar sign, and a minus
sign for negative numbers; e.g., -123.45 and 6789.01.

cur2frac Converts decimal currency values to fractional values

cur2str Converts a value to Financial Toolbox bank format

frac2cur Converts fractional currency values to decimal values
2-11

2 Tutorial

2-1
Charting Financial Data
The following toolbox financial charting functions plot financial data and
produce presentation-quality figures quickly and easily.

These functions work with standard MATLAB functions that draw axes,
control appearance, and add labels and titles. For users having additional
charting requirements, the Financial Time Series Toolbox provides a more
comprehensive set of charting functions.

Here are two plotting examples: a high-low-close chart of sample IBM stock
price data, and a Bollinger band chart of the same data. These examples load
data from an external file (ibm.dat), then call the functions using subsets of the
data. ibm is a six-column matrix where each row is a trading day’s data and
where columns 2, 3, and 4 contain the high, low, and closing prices,
respectively.

Note The data in ibm.dat is fictional and for illustrative use only.

High-Low-Close Chart Example
First load the data and set up matrix dimensions. load and size are standard
MATLAB functions.

load ibm.dat;
[ro, co] = size(ibm);

Open a figure window for the chart. Use the Financial Toolbox highlow
function to plot high, low, and close prices for the last 50 trading days in the
data file.

bolling Bollinger band chart

candle Candlestick chart

pointfig Point and figure chart

highlow High, low, open, close chart

movavg Leading and lagging moving averages chart
2

Charting Financial Data
figure;
highlow(ibm(ro−50:ro,2),ibm(ro−50:ro,3),ibm(ro−50:ro,4),[],'b');

Add labels and title, and set axes with standard MATLAB functions. Use the
Financial Toolbox dateaxis function to provide dates for the x-axis ticks.

xlabel('');
ylabel('Price ($)');
title('International Business Machines, 941231 - 950219');
axis([0 50 −inf inf]);
dateaxis('x',6,'31-Dec-1994')

MATLAB produces a figure similar to this. The plotted data and axes you see
may differ. Viewed online, the high-low-close bars are blue.

Bollinger Chart Example
Next the Financial Toolbox bolling function produces a Bollinger band chart
using all the closing prices in the same IBM stock price matrix. A Bollinger
band chart plots actual data along with three other bands of data. The upper
2-13

2 Tutorial

2-1
band is two standard deviations above a moving average; the lower band is two
standard deviations below that moving average; and the middle band is the
moving average itself. This example uses a 15-day moving average.

Assuming the previous IBM data is still loaded, simply execute the Financial
Toolbox function.

bolling(ibm(:,4), 15, 0);

Specify the axes, labels, and titles. Again, use dateaxis to add the x-axis dates.

axis([0 ro min(ibm(:,4)) max(ibm(:,4))]);
ylabel('Price ($)');
title(['International Business Machines']);
dateaxis('x', 6,'31-Dec-1994')

.

For help using MATLAB plotting functions, see “Creating Plots” in the
MATLAB documentation. See the MATLAB documentation for details on the
axis, title, xlabel, and ylabel functions.
4

Analyzing and Computing Cash Flows
Analyzing and Computing Cash Flows
The Financial Toolbox cash-flow functions compute interest rates, rates of
return, present or future values, depreciation streams, and annuities.

Some examples in this section use this income stream: an initial investment of
$20,000 followed by three annual return payments, a second investment of
$5,000, then four more returns. Investments are negative cash flows, return
payments are positive cash flows.

Stream = [-20000, 2000, 2500, 3500, -5000, 6500,...
9500, 9500, 9500];

Interest Rates/Rates of Return
Several functions calculate interest rates involved with cash flows. To compute
the internal rate of return of the cash stream, simply execute the toolbox
function irr

ROR = irr(Stream)

which gives a rate of return of 11.72%.

Note that the internal rate of return of a cash flow may not have a unique
value. Every time the sign changes in a cash flow, the equation defining irr
can give up to two additional answers. An irr computation requires solving a
polynomial equation, and the number of real roots of such an equation can
depend on the number of sign changes in the coefficients. The equation for
internal rate of return is

where Investment is a (negative) initial cash outlay at time 0, cfn is the cash
flow in the nth period, and n is the number of periods. Basically, irr finds the
rate r such that the net present value of the cash flow equals the initial
investment. If all of the cfns are positive there is only one solution. Every time
there is a change of sign between coefficients, up to two additional real roots
are possible. There is usually only one answer that makes sense, but it is
possible to get returns of both 5% and 11% (for example) from one income
stream.

cf1

1 r+()

cf2

1 r+()2
-------------------- …

cfn

1 r+()n
-------------------- Investment+ + + + 0=
2-15

2 Tutorial

2-1
Another toolbox rate function, effrr, calculates the effective rate of return
given an annual interest rate (also known as nominal rate or annual
percentage rate, APR) and number of compounding periods per year. To find
the effective rate of a 9% APR compounded monthly, simply enter

Rate = effrr(0.09, 12)

The answer is 9.38%.

A companion function nomrr computes the nominal rate of return given the
effective annual rate and the number of compounding periods.

Present or Future Values
The toolbox includes functions to compute the present or future value of cash
flows at regular or irregular time intervals with equal or unequal payments:
fvfix, fvvar, pvfix, and pvvar. The -fix functions assume equal cash flows
at regular intervals, while the -var functions allow irregular cash flows at
irregular periods.

Now compute the net present value of the sample income stream for which you
computed the internal rate of return. This exercise also serves as a check on
that calculation because the net present value of a cash stream at its internal
rate of return should be zero. Enter

NPV = pvvar(Stream, ROR)

which returns an answer very close to zero. The answer usually is not exactly
zero due to rounding errors and the computational precision of the computer.

Note Other toolbox functions behave similarly. The functions that compute a
bond’s yield, for example, often must solve a nonlinear equation. If you then
use that yield to compute the net present value of the bond’s income stream, it
usually does not exactly equal the purchase price — but the difference is
negligible for practical applications.
6

Analyzing and Computing Cash Flows
Depreciation
The toolbox includes functions to compute standard depreciation schedules:
straight line, general declining-balance, fixed declining-balance, and sum of
years’ digits. Functions also compute a complete amortization schedule for an
asset, and return the remaining depreciable value after a depreciation
schedule has been applied.

This example depreciates an automobile worth $15,000 over five years with a
salvage value of $1,500. It computes the general declining balance using two
different depreciation rates: 50% (or 1.5), and 100% (or 2.0, also known as
double declining balance). Enter

Decline1 = depgendb(15000, 1500, 5, 1.5)
Decline2 = depgendb(15000, 1500, 5, 2.0)

which returns

Decline1 =
 4500.00 3150.00 2205.00 1543.50 2101.50
Decline2 =
 6000.00 3600.00 2160.00 1296.00 444.00

These functions return the actual depreciation amount for the first four years
and the remaining depreciable value as the entry for the fifth year.

Annuities
Several toolbox functions deal with annuities. This first example shows how to
compute the interest rate associated with a series of loan payments when only
the payment amounts and principal are known. For a loan whose original value
was $5000.00 and which was paid back monthly over four years at
$130.00/month

Rate = annurate(4*12, 130, 5000, 0, 0)

The function returns a rate of 0.0094 monthly, or approximately 11.28%
annually.
2-17

2 Tutorial

2-1
The next example uses a present-value function to show how to compute the
initial principal when the payment and rate are known. For a loan paid at
$300.00/month over four years at 11% annual interest

Principal = pvfix(0.11/12, 4*12, 300, 0, 0)

The function returns the original principal value of $11,607.43.

The final example computes an amortization schedule for a loan or annuity.
The original value was $5000.00 and was paid back over 12 months at an
annual rate of 9%.

[Prpmt, Intpmt, Balance, Payment] = ...
amortize(0.09/12, 12, 5000, 0, 0);

This function returns vectors containing the amount of principal paid,

Prpmt = [402.76 405.78 408.82 411.89 414.97 418.09
421.22 424.38 427.56 430.77 434.00 437.26]

the amount of interest paid,

Intpmt = [34.50 31.48 28.44 25.37 22.28 19.17
16.03 12.88 9.69 6.49 3.26 0.00]

the remaining balance for each period of the loan,

Balance = [4600.24 4197.49 3791.71 3382.89 2971.01
2556.03 2137.94 1716.72 1292.34 864.77
 434.00 0.00]

and a scalar for the monthly payment.

Payment = 437.26
8

Pricing and Computing Yields for Fixed-Income Securities
Pricing and Computing Yields for Fixed-Income Securities
The Securities Industry Association (SIA) has established conventions
regarding bond pricing, yield calculation and quotation, time factors and
accrued interest, coupon and quasi-coupon dates, and duration and convexity
sensitivity measures. The Financial Toolbox includes SIA-compliant functions
to compute accrued interest, determine prices and yields, as well as calculate
convexity and duration of fixed-income securities. It also includes a set of
functions to generate and analyze term structure of interest rates.

SIA-compliant functions can be used with U.S. Treasury bills, bonds, and
notes; corporate bonds; and municipal bonds. Bonds can have long, normal or
short first or last coupon periods.

The “Function Reference” identifies SIA-compliant functions. These functions
have been thoroughly tested against the benchmarks found in Jan Mayle’s
Standard Securities Calculation Methods document listed in the
“Bibliography.”

Terminology
Since terminology varies among texts on this subject, here are some basic
definitions that apply to these Financial Toolbox functions. The “Glossary”
contains additional definitions.

The settlement date of a bond is the date when money first changes hands; i.e.,
when a buyer pays for a bond. It need not coincide with the issue date, which is
the date a bond is first offered for sale.

The first coupon date and last coupon date are the dates when the first and last
coupons are paid, respectively. Although bonds typically pay periodic annual or
semi-annual coupons, the length of the first and last coupon periods may differ
from the standard coupon period. The toolbox includes price and yield functions
that handle these odd first and/or last periods.

Successive quasi-coupon dates determine the length of the standard coupon
period for the fixed income security of interest, and do not necessarily coincide
with actual coupon payment dates. The toolbox includes functions that
calculate both actual and quasi-coupon dates for bonds with odd first and/or
last periods.

Fixed-income securities can be purchased on dates that do not coincide with
coupon payment dates. In this case, the bond owner is not entitled to the full
2-19

2 Tutorial

2-2
value of the coupon for that period. When a bond is purchased between coupon
dates, the buyer must compensate the seller for the pro-rata share of the
coupon interest earned from the previous coupon payment date. This pro-rata
share of the coupon payment is called accrued interest. The purchase price, the
price actually paid for a bond, is the quoted market price plus accrued interest.

The maturity date of a bond is the date when the issuer returns the final face
value, also known as the redemption value or par value, to the buyer. The
yield-to-maturity of a bond is the nominal compound rate of return that equates
the present value of all future cash flows (coupons and principal) to the current
market price of the bond.

The period of a bond refers to the frequency with which the issuer of a bond
makes coupon payments to the holder.

The basis of a bond refers to the basis or day-count convention for a bond. Basis
is normally expressed as a fraction in which the numerator determines the
number of days between two dates, and the denominator determines the
number of days in the year. For example, the numerator of actual/actual
means that when determining the number of days between two dates, count
the actual number of days; the denominator means that you use the actual

Table 2-1: Period of a Bond

Period Value Payment Schedule

0 No coupons. (Zero coupon bond.)

1 Annual

2 Semi-annual

3 Tri-annual

4 Quarterly

6 Bi-monthly

12 Monthly
0

Pricing and Computing Yields for Fixed-Income Securities
number of days in the given year in any calculations (either 365 or 366 days
depending on whether or not the given year is a leap year).

The end-of-month rule affects a bond's coupon payment structure. When the
rule is in effect, a security that pays a coupon on the last actual day of a month
will always pay coupons on the last day of the month. This means, for example,
that a semi-annual bond that pays a coupon on February 28 in nonleap years
will pay coupons on August 31 in all years and on February 29 in leap years.

SIA Framework
Many of the fixed-income related functions in the Financial Toolbox comply
with the Securities Industry Association (SIA) conventions. Although not all
SIA-compliant functions require the same input arguments, they all accept the
following common set of input arguments.

Table 2-2: Basis of a Bond

Basis Value Meaning

0 (default) actual/actual

1 30/360

2 actual/360

3 actual/365

Table 2-3: End-of-Month Rule

End of Month Rule
Value

Meaning

1 (default) Rule in effect.

0 Rule not in effect.
2-21

2 Tutorial

2-2
Of the common input arguments, only Settle and Maturity are required. All
others are optional. They will be set to the default values if you do not explicitly
set them. Note that, by default, the FirstCouponDate and LastCouponDate are
nonapplicable. In other words, if you do not specify FirstCouponDate and
LastCouponDate, the bond is assumed to have no odd first or last coupon
periods. In this case, the bond is simply a standard bond with a coupon
payment structure based solely on the maturity date.

SIA Default Parameter Values
To illustrate the use of default values in SIA-compliant functions, consider the
cfdates function, which computes actual cash flow payment dates for a
portfolio of fixed income securities regardless of whether the first and/or last
coupon periods are normal, long, or short.

The complete calling syntax with the full input argument list is

CFlowDates = cfdates(Settle, Maturity, Period, Basis, ...
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

while the minimal calling syntax requires only settlement and maturity dates

CFlowDates = cfdates(Settle, Maturity)

Table 2-4: SIA Common Input Arguments

Input Meaning

Settle Settlement date

Maturity Maturity date

Period Coupon payment period

Basis Day-count basis

EndMonthRule End-of-month payment rule

IssueDate Bond issue date

FirstCouponDate First coupon payment date

LastCouponDate Last coupon payment date
2

Pricing and Computing Yields for Fixed-Income Securities
Single Bond Example
As an example, suppose you have a bond with these characteristics

Settle = '20-Sep-1999'
Maturity = '15-Oct-2007'
Period = 2
Basis = 0
EndMonthRule = 1
IssueDate = NaN
FirstCouponDate = NaN
LastCouponDate = NaN

Note that Period, Basis, and EndMonthRule are set to their default values, and
IssueDate, FirstCouponDate, and LastCouponDate are set to NaN.

Formally, a NaN is an IEEE arithmetic standard for Not-a-Number and is used
to indicate the result of an undefined operation (e.g., zero divided by zero).
However, NaN is also a very convenient placeholder. In the SIA functions of the
Financial Toolbox, NaN indicates the presence of a nonapplicable value. It tells
the SIA fixed-income functions to ignore the input value and apply the default.
Setting IssueDate, FirstCouponDate, and LastCouponDate to NaN in this
example tells cfdates to assume that the bond has been issued prior to
settlement and that no odd first or last coupon periods exist.

Having set these values, all these calls to cfdates produce the same result.

cfdates(Settle, Maturity)
cfdates(Settle, Maturity, Period)
cfdates(Settle, Maturity, Period, [])
cfdates(Settle, Maturity, [], Basis)
cfdates(Settle, Maturity, [], [])
cfdates(Settle, Maturity, Period, [], EndMonthRule)
cfdates(Settle, Maturity, Period, [], NaN)
cfdates(Settle, Maturity, Period, [], [], IssueDate)
cfdates(Settle, Maturity, Period, [], [], IssueDate, [], [])
cfdates(Settle, Maturity, Period, [], [], [], [],LastCouponDate)
cfdates(Settle, Maturity, Period, Basis, EndMonthRule, ...
IssueDate, FirstCouponDate, LastCouponDate)

Thus, leaving a particular input unspecified has the same effect as passing an
empty matrix ([]) or passing a NaN – all three tell cfdates (and other
2-23

2 Tutorial

2-2
SIA-compliant functions) to use the default value for a particular input
parameter.

Bond Portfolio Example
Since the previous example included only a single bond, there was no difference
between passing an empty matrix or passing a NaN for an optional input
argument. For a portfolio of bonds, however, using NaN as a placeholder is the
only way to specify default acceptance for some bonds while explicitly setting
nondefault values for the remaining bonds in the portfolio.

Now suppose you have a portfolio of two bonds.

Settle = '20-Sep-1999'
Maturity = ['15-Oct-2007'; '15-Oct-2010']

These calls to cfdates all set the coupon period to its default value
(Period = 2) for both bonds.

cfdates(Settle, Maturity, 2)
cfdates(Settle, Maturity, [2 2])
cfdates(Settle, Maturity, [])
cfdates(Settle, Maturity, NaN)
cfdates(Settle, Maturity, [NaN NaN])
cfdates(Settle, Maturity)

The first two calls explicitly set Period = 2. Since Maturity is a 2-by-1 vector
of maturity dates, cfdates knows you have a two-bond portfolio.

The first call specifies a single (i.e., scalar) 2 for Period. Passing a scalar tells
cfdates to apply the scalar-valued input to all bonds in the portfolio. This is an
example of implicit scalar-expansion. Note that the settlement date has been
implicit scalar-expanded as well.

The second call also applies the default coupon period by explicitly passing a
two-element vector of 2’s. The third call passes an empty matrix, which
cfdates interprets as an invalid period, for which the default value will be
used. The fourth call is similar, except that a NaN has been passed. The fifth call
passes two NaN’s, and has the same effect as the third. The last call passes the
minimal input set.
4

Pricing and Computing Yields for Fixed-Income Securities
Finally, consider the following calls to cfdates for the same two-bond portfolio.

cfdates(Settle, Maturity, [4 NaN])
cfdates(Settle, Maturity, [4 2])

The first call explicitly sets Period = 4 for the first bond and implicitly sets the
default Period = 2 for the second bond. The second call has the same effect as
the first but explicitly sets the periodicity for both bonds.

The optional input Period has been used for illustrative purpose only. The
default-handling process illustrated in the examples applies to any of the
optional input arguments.

SIA Coupon Date Calculations
Calculating coupon dates, either actual or quasi dates, is notoriously
complicated. The Financial Toolbox follows the SIA conventions in coupon date
calculations.

The first step in finding the coupon dates associated with a bond is to
determine the reference, or synchronization date (the sync date). Within the
SIA framework, the order of precedence for determining the sync date is (1) the
first coupon date, (2) the last coupon date, and finally (3) the maturity date.

In other words, an SIA-compliant function in the Financial Toolbox first
examines the FirstCouponDate input. If FirstCouponDate is specified, coupon
payment dates and quasi-coupon dates are computed with respect to
FirstCouponDate; if FirstCouponDate is unspecified, empty ([]), or NaN, then
the LastCouponDate is examined. If LastCouponDate is specified, coupon
payment dates and quasi-coupon dates are computed with respect to
LastCouponDate. If both FirstCouponDate and LastCouponDate are
unspecified, empty ([]), or NaN, the Maturity (a required input argument)
serves as the sync date.

SIA Semi-Annual Yield Conventions
Within the SIA framework, all yields and time factors for price-to-yield
conversion are quoted on a semi-annual bond basis (see bndprice, bndyield,
and cfamounts) regardless of the period of the bond’s coupon payments
(including zero-coupon bonds). In addition, any yield-related sensitivity (i.e.,
duration and convexity), when quoted on a periodic basis, assumes
semi-annual coupon periods. (See bndconvp, bndconvy, bnddurp, and bnddury).
2-25

2 Tutorial

2-2
Pricing Functions
This example shows how easily you can compute the price of a bond with an odd
first period using the SIA-compliant function bndprice. Assume you have a
bond with these characteristics

Settle = '11-Nov-1992';
Maturity = '01-Mar-2005';
IssueDate = '15-Oct-1992';
FirstCouponDate = '01-Mar-1993';
CouponRate = 0.0785;
Yield = 0.0625;

Allow coupon payment period (Period = 2), day-count basis (Basis = 0), and
end-of-month rule (EndMonthRule = 1) to assume the default values. Also,
assume there is no odd last coupon date and that the face value of the bond is
$100. Calling the function

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, ...
Maturity, [], [], [], IssueDate, FirstCouponDate)

returns a price of $113.60 and accrued interest of $0.59.

Similar functions compute prices with regular payments, odd first and last
periods, as well as prices of Treasury bills and discounted securities such as
zero-coupon bonds.

Note bndprice and other SIA-compliant functions use nonlinear formulas to
compute the price of a security. For this reason, the Financial Toolbox uses
Newton’s method when solving for an independent variable within a formula.
See any elementary numerical methods textbook for the mathematics
underlying Newton’s method.

Yield Functions
To illustrate toolbox yield functions, compute the yield of a bond that has odd
first and last periods and settlement in the first period. First set up variables
for settlement, maturity date, issue, first coupon, and a last coupon date.

Settle = '12-Jan-2000';
Maturity = '01-Oct-2001';
6

Pricing and Computing Yields for Fixed-Income Securities
IssueDate = '01-Jan-2000';
FirstCouponDate = '15-Jan-2000';
LastCouponDate = '15-Apr-2000';

Assume a face value of $100. Specify a purchase price of $95.70, a coupon rate
of 4%, quarterly coupon payments, and a 30/360 day-count convention (Basis
= 1).

Price = 95.7;
CouponRate = 0.04;
Period = 4;
Basis = 1;
EndMonthRule = 1;

Calling the function

Yield = bndyield(Price, CouponRate, Settle, Maturity, Period,...
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

returns

Yield = 0.0659 (6.60%).

Fixed-Income Sensitivities
The toolbox includes SIA-compliant functions to perform sensitivity analysis
such as convexity and the Macaulay and modified durations for fixed-income
securities. The Macaulay duration of an income stream, such as a coupon bond,
measures how long, on average, the owner waits before receiving a payment. It
is the weighted average of the times payments are made, with the weights at
time T equal to the present value of the money received at time T. The modified
duration is the Macaulay duration discounted by the per-period interest rate;
i.e., divided by (1+rate/frequency).

To illustrate, the following example computes the annualized Macaulay and
modified durations, and the periodic Macaulay duration for a bond with
settlement (12-Jan-2000) and maturity (01-Oct-2001) dates as above, a 5%
coupon rate, and a 4.5% yield to maturity. For simplicity, any optional input
arguments assume default values (i.e., semi-annual coupons, and day-count
basis = 0 (actual/actual), coupon payment structure synchronized to the
maturity date, and end-of-month payment rule in effect).

CouponRate = 0.05;
2-27

2 Tutorial

2-2
Yield = 0.045;

[ModDuration, YearDuration, PerDuration] = bnddury(Yield,...
CouponRate, Settle, Maturity)

The durations are

ModDuration = 1.6107 (years)
YearDuration = 1.6470 (years)
PerDuration = 3.2940 (semi-annual periods)

Note that the semi-annual periodic Macaulay duration (PerDuration) is twice
the annualized Macaulay duration (YearDuration).

Term Structure of Interest Rates
The toolbox contains several functions to derive and analyze interest rate
curves, including data conversion and extrapolation, bootstrapping, and
interest-rate curve conversion functions.

One of the first problems in analyzing the term structure of interest rates is
dealing with market data reported in different formats. Treasury bills, for
example, are quoted with bid and asked bank-discount rates. Treasury notes
and bonds, on the other hand, are quoted with bid and asked prices based on
$100 face value. To examine the full spectrum of Treasury securities, analysts
must convert data to a single format. Toolbox functions ease this conversion.
This brief example uses only one security each; analysts often use 30, 100, or
more of each.

First, capture Treasury bill quotes in their reported format

% Maturity Days Bid Ask AskYield
TBill = [datenum('12/26/2000') 53 0.0503 0.0499 0.0510];

then capture Treasury bond quotes in their reported format

% Coupon Maturity Bid Ask AskYield
TBond = [0.08875 datenum(2001,11,5) 103+4/32 103+6/32 0.0564];

and note that these quotes are based on a November 3, 2000 settlement date.

Settle = datenum('3-Nov-2000');
8

Pricing and Computing Yields for Fixed-Income Securities
Next use the toolbox tbl2bond function to convert the Treasury bill data to
Treasury bond format.

TBTBond = tbl2bond(TBill)

TBTBond =
 0 730846 99.26 99.27 0.05

(The second element of TBTBond is the serial date number for December 26,
2000.)

Now combine short-term (Treasury bill) with long-term (Treasury bond) data
to set up the overall term structure.

TBondsAll = [TBTBond; TBond]

TBondsAll =
 0 730846 99.26 99.27 0.05
 0.09 731160 103.13 103.19 0.06

The toolbox provides a second data-preparation function,tr2bonds, to convert
the bond data into a form ready for the bootstrapping functions. tr2bonds
generates a matrix of bond information sorted by maturity date, plus vectors of
prices and yields.

[Bonds, Prices, Yields] = tr2bonds(TBondsAll);

With this market data, you are now ready to use one of the toolbox
bootstrapping functions to derive an implied zero curve. Bootstrapping is a
process whereby you begin with known data points and solve for unknown data
points using an underlying arbitrage theory. Every coupon bond can be valued
as a package of zero-coupon bonds which mimic its cash flow and risk
characteristics. By mapping yields-to-maturity for each theoretical
zero-coupon bond, to the dates spanning the investment horizon, you can create
a theoretical zero-rate curve. The toolbox provides two bootstrapping functions:
zbtprice derives a zero curve from bond data and prices, and zbtyield derives
a zero curve from bond data and yields. Using zbtprice

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle)

ZeroRates =

 0.05
2-29

2 Tutorial

2-3
 0.06

CurveDates =

 730846
 731160

CurveDates gives the investment horizon.

datestr(CurveDates)

ans =

26-Dec-2000
05-Nov-2001

Additional toolbox functions construct discount, forward, and par yield curves
from the zero curve, and vice versa.

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...
Settle);
[FwdRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, Settle);
[PYldRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle);
0

Pricing and Analyzing Equity Derivatives
Pricing and Analyzing Equity Derivatives
These toolbox functions compute prices, sensitivities, and profits for portfolios
of options or other equity derivatives. They use the Black-Scholes model for
European options and the binomial model for American options. Such
measures are useful for managing portfolios and for executing collars, hedges,
and straddles.

Sensitivity Measures
There are six basic sensitivity measures associated with option pricing: delta,
gamma, lambda, rho, theta, and vega — the “greeks.” The toolbox provides
functions for calculating each sensitivity and for implied volatility.

Delta
Delta of a derivative security is the rate of change of its price relative to the
price of the underlying asset. It is the first derivative of the curve that relates
the price of the derivative to the price of the underlying security. When delta is
large, the price of the derivative is sensitive to small changes in the price of the
underlying security.

Gamma
Gamma of a derivative security is the rate of change of delta relative to the
price of the underlying asset; i.e., the second derivative of the option price
relative to the security price. When gamma is small, the change in delta is
small. This sensitivity measure is important for deciding how much to adjust a
hedge position.

Lambda
Lambda, also known as the elasticity of an option, represents the percentage
change in the price of an option relative to a 1% change in the price of the
underlying security.

Rho
Rho is the rate of change in option price relative to the risk-free interest rate.
2-31

2 Tutorial

2-3
Theta
Theta is the rate of change in the price of a derivative security relative to time.
Theta is usually very small or negative since the value of an option tends to
drop as it approaches maturity.

Vega
Vega is the rate of change in the price of a derivative security relative to the
volatility of the underlying security. When vega is large the security is
sensitive to small changes in volatility. For example, options traders often
must decide whether to buy an option to hedge against vega or gamma. The
hedge selected usually depends upon how frequently one rebalances a hedge
position and also upon the variance of the price of the underlying asset (the
volatility). If the variance is changing rapidly, balancing against vega is
usually preferable.

Implied Volatility
The implied volatility of an option is the variance that makes a call option price
equal to the market price. It helps determine a market estimate for the future
volatility of a stock and provides the input volatility (when needed) to the other
Black-Scholes functions.

Analysis Models
Toolbox functions for analyzing equity derivatives use the Black-Scholes model
for European options and the binomial model for American options. The
Black-Scholes model makes several assumptions about the underlying
securities and their behavior. The binomial model, on the other hand, makes
far fewer assumptions about the processes underlying an option. For further
explanation, please see the book by John Hull listed in the Bibliography.

Black-Scholes Model
Using the Black-Scholes model entails several assumptions:

• The prices of the underlying asset follow an Ito process. (See Hull, 196 - 198)

• The option can be exercised only on its expiration date (European option).

• Short selling is permitted.

• There are no transaction costs.

• All securities are divisible and pay no dividends.
2

Pricing and Analyzing Equity Derivatives
• There is no riskless arbitrage.

• Trading is a continuous process.

• The risk-free interest rate is constant and remains the same for all
maturities.

If any of these assumptions is untrue, Black-Scholes may not be an appropriate
model.

To illustrate toolbox Black-Scholes functions, this example computes the call
and put prices of a European option and its delta, gamma, lambda, and implied
volatility. The asset price is $100.00, the exercise price is $95.00, the risk-free
interest rate is 10%, the time to maturity is 0.25 years, the volatility is 0.50,
and the dividend rate is 0. Simply executing the toolbox functions

[OptCall, OptPut] = blsprice(100, 95, 0.10, 0.25, 0.50, 0);
[CallVal, PutVal] = blsdelta(100, 95, 0.10, 0.25, 0.50, 0);
GammaVal = blsgamma(100, 95, 0.10, 0.25, 0.50, 0);
VegaVal = blsvega(100, 95, 0.10, 0.25, 0.50, 0);
[LamCall, LamPut] = blslambda(100, 95, 0.10, 0.25, 0.50, 0);

yields:

• The option call price OptCall = $13.70

• The option put price OptPut = $6.35

• delta for a call CallVal = 0.6665 and delta for a put PutVal = −0.3335

• gamma GammaVal = 0.0145

• vega VegaVal = 18.1843

• lambda for a call LamCall = 4.8664 and lambda for a put LamPut = –5.2528

Now as a computation check, find the implied volatility of the option using the
call option price from blsprice.

Volatility = blsimpv(100, 95, 0.10, 0.25, OptCall);

The function returns an implied volatility of 0.500, the original blsprice input.

Binomial Model
The binomial model for pricing options or other equity derivatives assumes
that the probability over time of each possible price follows a binomial
distribution. The basic assumption is that prices can move to only two values,
2-33

2 Tutorial

2-3
one up and one down, over any short time period. Plotting the two values, and
then the subsequent two values each, and then the subsequent two values
each, and so on over time, is known as “building a binomial tree.” This model
applies to American options, which can be exercised any time up to and
including their expiration date.

This example prices an American call option using a binomial model. Again,
the asset price is $100.00, the exercise price is $95.00, the risk-free interest
rate is 10%, and the time to maturity is 0.25 years. It computes the tree in
increments of 0.05 years, so there are 0.25/0.05 = 5 periods in the example. The
volatility is 0.50, this is a call (flag = 1), the dividend rate is 0, and it pays a
dividend of $5.00 after three periods (an ex-dividend date). Executing the
toolbox function

[StockPrice, OptionPrice] = binprice(100, 95, 0.10, 0.25,...
0.05, 0.50, 1, 0, 5.0, 3);

returns the tree of prices of the underlying asset

StockPrice =

100.00 111.27 123.87 137.96 148.69 166.28
 0 89.97 100.05 111.32 118.90 132.96

0 0 81.00 90.02 95.07 106.32
0 0 0 72.98 76.02 85.02
0 0 0 0 60.79 67.98
0 0 0 0 0 54.36

and the tree of option values.

OptionPrice =

12.10 19.17 29.35 42.96 54.17 71.28
0 5.31 9.41 16.32 24.37 37.96
0 0 1.35 2.74 5.57 11.32
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The output from the binomial function is a binary tree. Read the StockPrice
matrix this way: column 1 shows the price for period 0, column 2 shows the up
and down prices for period 1, column 3 shows the up-up, up-down, and
down-down prices for period 2, etc. Ignore the zeros. The OptionPrice matrix
4

Pricing and Analyzing Equity Derivatives
gives the associated option value for each node in the price tree. Ignore the
zeros that correspond to a zero in the price tree.
2-35

2 Tutorial

2-3
Analyzing Portfolios
Portfolio managers concentrate their efforts on achieving the best possible
trade-off between risk and return. For portfolios constructed from a fixed set of
assets, the risk/return profile varies with the portfolio composition. Portfolios
that maximize the return, given the risk, or, conversely, minimize the risk for
the given return, are called optimal. Optimal portfolios define a line in the
risk/return plane called the efficient frontier.

A portfolio may also have to meet additional requirements to be considered.
Different investors have different levels of risk tolerance. Selecting the
adequate portfolio for a particular investor is a difficult process. The portfolio
manager can hedge the risk related to a particular portfolio along the efficient
frontier with partial investment in risk-free assets. The definition of the capital
allocation line, and finding where the final portfolio falls on this line, if at all,
is a function of:

• The risk/return profile of each asset

• The risk-free rate

• The borrowing rate

• The degree of risk aversion characterizing an investor

The Financial Toolbox includes a set of portfolio optimization functions
designed to find the portfolio that best meets investor requirements.

Portfolio Optimization Functions
The portfolio optimization functions assist portfolio managers in constructing
portfolios that optimize risk and return.

Capital Allocation

portalloc Computes the optimal risky portfolio on the efficient frontier,
based on the risk-free rate, the borrowing rate, and the
investor's degree of risk aversion. Also generates the capital
allocation line, which provides the optimal allocation of funds
between the risky portfolio and the risk-free asset.
6

Analyzing Portfolios
Efficient Frontier Computation

frontcon Computes portfolios along the efficient frontier for a given
group of assets. The computation is based on sets of
constraints representing the maximum and minimum weights
for each asset, and the maximum and minimum total weight
for specified groups of assets.

portopt Computes portfolios along the efficient frontier for a given
group of assets. The computation is based on a set of
user-specified linear constraints. Typically, these constraints
are generated using the constraint specification functions
described below.

Constraint Specification

portcons Generates the portfolio constraints matrix for a portfolio of
asset investments using linear inequalities. The inequalities
are of the type A*Wts' <= b, where Wts is a row vector of
weights. The capabilities of portcons are also provided
individually by the following functions.

pcalims Asset minimum and maximum allocation.
Generates a constraint set to fix the minimum and
maximum weight for each individual asset.

pcgcomp Group-to-group ratio constraint. Generates a
constraint set specifying the maximum and
minimum ratios between pairs of groups.
2-37

2 Tutorial

2-3
Portfolio Construction Examples
The efficient frontier computation functions require information about each
asset in the portfolio. This data is entered into the function via two matrices:
an expected return vector and a covariance matrix. The expected return vector
contains the average expected return for each asset in the portfolio. The
covariance matrix is a square matrix representing the interrelationships
between pairs of assets. This information can be directly specified or can be
estimated from an asset return time series with the function ewstats.

Efficient Frontier Example
This example computes the efficient frontier of portfolios consisting of three
different assets using the function frontcon. To visualize the efficient frontier
curve clearly, consider 10 different evenly spaced portfolios.

Assume that the expected return of the first asset is 10%, the second is 20%,
and the third is 15%. The covariance is defined in the matrix ExpCovariance.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004;
 -0.010 0.040 -0.002;
 0.004 -0.002 0.023];

NumPorts = 10;

Since there are no constraints, you can call frontcon directly with the data you
already have. If you call frontcon without specifying any output arguments,
you get a graph representing the efficient frontier curve.

frontcon (ExpReturn, ExpCovariance, NumPorts);

pcglims Asset group minimum and maximum allocation.
Generates a constraint set to fix the minimum and
maximum total weight for each defined group of
assets.

pcpval Total portfolio value. Generates a constraint set to
fix the total value of the portfolio.
8

Analyzing Portfolios
Calling frontcon while specifying the output arguments returns the
corresponding vectors and arrays representing the risk, return, and weights for
each of the 10 points computed along the efficient frontier.

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts)
PortRisk =
 0.0392
 0.0445
 0.0559
 0.0701
 0.0858
 0.1023
 0.1192
 0.1383
 0.1661
 0.2000

PortReturn =
2-39

2 Tutorial

2-4
 0.1231
 0.1316
 0.1402
 0.1487
 0.1573
 0.1658
 0.1744
 0.1829
 0.1915
 0.2000

PortWts =

 0.7692 0.2308 0.0000
 0.6667 0.2991 0.0342
 0.5443 0.3478 0.1079
 0.4220 0.3964 0.1816
 0.2997 0.4450 0.2553
 0.1774 0.4936 0.3290
 0.0550 0.5422 0.4027
 0 0.6581 0.3419
 0 0.8291 0.1709
 0 1.0000 0.0000

The output data is represented row-wise. Each portfolio’s risk, rate of return,
and associated weights are identified as corresponding rows in the vectors and
matrix.

For example, you can see from these results that the second portfolio has a risk
of 0.0445, an expected return of 13.16%, and allocations of about 67% in the
first asset, 30% in the second, and 3% in the third.

Portfolio Selection and Risk Aversion
One of the factors to consider when selecting the optimal portfolio for a
particular investor is degree of risk aversion. This level of aversion to risk can
be characterized by defining the investor’s indifference curve. This curve
consists of the family of risk/return pairs defining the trade-off between the
expected return and the risk. It establishes the increment in return that a
particular investor will require in order to make an increment in risk
worthwhile. Typical risk aversion coefficients range between 2.0 and 4.0, with
0

Analyzing Portfolios
the higher number representing lesser tolerance to risk. The equation used to
represent risk aversion in the Financial Toolbox is

U = E(r) 0.005*A*sig^2

where:

U is the utility value.

E(r) is the expected return.

A is the index of investor’s aversion.

sig is the standard deviation.

Optimal Risky Portfolio Example
This example computes the optimal risky portfolio on the efficient frontier
based upon the risk-free rate, the borrowing rate, and the investor's degree of
risk aversion. You do this with the function portalloc.
2-41

2 Tutorial

2-4
First generate the efficient frontier data using either portopt or frontcon.
This example uses portopt and the same asset data from the previous
example.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004;
 -0.010 0.040 -0.002;
 0.004 -0.002 0.023];

This time consider 20 different points along the efficient frontier.

NumPorts = 20;

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, NumPorts);

As with frontcon, calling portopt while specifying output arguments returns
the corresponding vectors and arrays representing the risk, return, and
weights for each of the portfolios along the efficient frontier. Use them as the
first three input arguments to the function portalloc.

Now find the optimal risky portfolio and the optimal allocation of funds
between the risky portfolio and the risk-free asset, using these values for the
risk-free rate, borrowing rate and investor’s degree of risk aversion.

RisklessRate = 0.08
BorrowRate = 0.12
RiskAversion = 3

Calling portalloc without specifying any output arguments gives a graph
displaying the critical points.

portalloc (PortRisk, PortReturn, PortWts, RisklessRate,...
BorrowRate, RiskAversion);
2

Analyzing Portfolios
Calling portalloc while specifying the output arguments returns the variance
(RiskyRisk), the expected return (RiskyReturn), and the weights (RiskyWts)
allocated to the optimal risky portfolio. It also returns the fraction
(RiskyFraction) of the complete portfolio allocated to the risky portfolio, and
the variance (OverallRisk) and expected return (OverallReturn) of the
optimal overall portfolio. The overall portfolio combines investments in the
risk-free asset and in the risky portfolio. The actual proportion assigned to each
of these two investments is determined by the degree of risk aversion
characterizing the investor.

[RiskyRisk, RiskyReturn, RiskyWts,RiskyFraction, OverallRisk,...
OverallReturn] = portalloc (PortRisk, PortReturn, PortWts,...
RisklessRate, BorrowRate, RiskAversion)

RiskyRisk = 0.1288
RiskyReturn = 0.1791
RiskyWts = 0.0057 0.5879 0.4064
RiskyFraction = 1.1869
OverallRisk = 0.1529
OverallReturn = 0.1902
2-43

2 Tutorial

2-4
The value of RiskyFraction exceeds 1 (100%), implying that the risk tolerance
specified allows borrowing money to invest in the risky portfolio, and that no
money will be invested in the risk-free asset. This borrowed capital is added to
the original capital available for investment. In this example the customer will
tolerate borrowing 18.69% of the original capital amount.

Constraint Specification Example
This example computes the efficient frontier of portfolios consisting of three
different assets, INTC, XON, and RD, given a list of constraints. The expected
returns for INTC, XON, and RD are respectively as follows.

ExpReturn = [0.1 0.2 0.15];

The covariance matrix is

ExpCovariance = [0.005 -0.010 0.004;
 -0.010 0.040 -0.002;
 0.004 -0.002 0.023];

Constraint 1. Allow short selling up to 10% of the portfolio value in any asset but
limit the investment in any one asset to 110% of the portfolio value.

Constraint 2. Consider two different sectors, technology and energy, with the
table below indicating the sector each asset belongs to.

Constrain the investment in the Energy sector to 80% of the portfolio value,
and the investment in the Technology sector to 70%.

To solve this problem, use frontcon, passing in a list of asset constraints.
Consider eight different portfolios along the efficient frontier.

NumPorts = 8;

To introduce the asset bounds constraints specified in Constraint 1, create the
matrix AssetBounds, where each column represents an asset. The upper row
represents the lower bounds, and the lower row represents the upper bounds.

AssetBounds = [-0.10, -0.10, -0.10;

Asset INTC XON RD

Sector Technology Energy Energy
4

Analyzing Portfolios
 1.10, 1.10, 1.10];

Constraint 2 needs to be entered in two parts, the first part defining the groups,
and the second part defining the constraints for each group. Given the
information above, you can build a matrix of 1s and 0s indicating whether a
specific asset belongs to a group. Each column represents an asset, and each
row represents a group. This example has two groups: the technology group,
and the energy group. Create the matrix Groups as follows.

Groups = [0 1 1;
1 0 0];

The GroupBounds matrix allows you to specify an upper and lower bound for
each group. Each row in this matrix represents a group. The first column
represents the minimum allocation, and the second column represents the
maximum allocation to each group. Since the investment in the Energy sector
is capped at 80% of the portfolio value, and the investment in the Technology
sector is capped at 70%, create the GroupBounds matrix using this information.

GroupBounds = [0 0.80;
0 0.70];

Now use frontcon to obtain the vectors and arrays representing the risk,
return, and weights for each of the eight portfolios computed along the efficient
frontier.

[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts, [], AssetBounds, Groups, GroupBounds)

PortRisk =

 0.0416
 0.0499
 0.0624
 0.0767
 0.0920
 0.1100
 0.1378
 0.1716

PortReturn =
2-45

2 Tutorial

2-4
 0.1279
 0.1361
 0.1442
 0.1524
 0.1605
 0.1687
 0.1768
 0.1850

PortWts =

 0.7000 0.2582 0.0418
 0.6031 0.3244 0.0725
 0.4864 0.3708 0.1428
 0.3696 0.4172 0.2132
 0.2529 0.4636 0.2835
 0.2000 0.5738 0.2262
 0.2000 0.7369 0.0631
 0.2000 0.9000 -0.1000

The output data is represented row-wise, where each portfolio’s risk, rate of
return, and associated weight is identified as corresponding rows in the vectors
and matrix.

Linear Constraint Equations
While frontcon allows you to enter a fixed set of constraints related to
minimum and maximum values for groups and individual assets, you often
need to specify a larger and more general set of constraints when finding the
optimal risky portfolio. The function portopt addresses this need, by accepting
an arbitrary set of constraints as an input matrix.

The auxiliary function portcons can be used to create the matrix of
constraints, with each row representing an inequality. These inequalities are
of the type A*Wts' <= b, where A is a matrix, b is a vector, and Wts is a row
vector of asset allocations. The number of columns of the matrix A, and the
length of the vector Wts correspond to the number of assets. The number of
rows of the matrix A, and the length of vector b correspond to the number of
constraints. This method allows you to specify any number of linear
inequalities to the function portopt.
6

Analyzing Portfolios
In actuality, portcons is an entry point to a set of functions that generate
matrices for specific types of constraints. portcons allows you to specify all the
constraints data at once, while the specific portfolio constraint functions allow
you to build the constraints incrementally. These constraint functions are
pcpval, pcalims, pcglims, and pcgcomp.

Consider an example to help understand how to specify constraints to portopt
while bypassing the use of portcons. This example requires specifying the
minimum and maximum investment in various groups.

Note that the minimum and maximum exposure in Asia is the same. This
means that you require a fixed exposure for this group.

Also assume that the portfolio consists of three different funds. The
correspondence between funds and groups is shown in Table 2-6.

Using the information in these two tables, build a mathematical
representation of the constraints represented. Assume that the vector of

Table 2-5: Maximum and Minimum Group Exposure

Group Minimum Exposure Maximum Exposure

North America 0.30 0.75

Europe 0.10 0.55

Latin America 0.20 0.50

Asia 0.50 0.50

Table 2-6: Group Membership

Group Fund 1 Fund 2 Fund 3

North America X X

Europe X

Latin America X

Asia X X
2-47

2 Tutorial

2-4
weights representing the exposure of each asset in a portfolio is called
Wts = [W1 W2 W3].

Specifically

Since you need to represent the information in the form A*Wts <= b, multiply
equations 1, 3 and 5 by –1. Also turn equation 7 into a set of two inequalities:
W2 + W3 ≥ 0.50 and W2 + W3 ≤ 0.50 (The intersection of these two inequalities
is the equality itself.). Thus

1. W1 + W2 ≥ 0.30

2. W1 + W2 ≤ 0.75

3. W3 ≥ 0.10

4. W3 ≤ 0.55

5. W1 ≥ 0.20

6. W1 ≤ 0.50

7. W2 + W3 = 0.50

1. -W1 - W2 ≤ -0.30

2. W1 + W2 ≤ 0.75

3. -W3 ≤ -0.10

4. W3 ≤ 0.55

5. -W1 ≤ -0.20

6. W1 ≤ 0.50

7. -W2 - W3 ≤ -0.50

8. W2 + W3 ≤ 0.50
8

Analyzing Portfolios
Bringing these equations into matrix notation gives

A = [-1 -1 0;
1 1 0;
0 0 -1;
0 0 1;
-1 0 0;
1 0 0;
0 -1 -1;
0 1 1]

b = [-0.30;
0.75;
-0.10;
0.55;
-0.20;
0.50;
-0.50;
0.50]

Build the constraint matrix ConSet by concatenating the matrix A to the vector
b.

ConSet = [A, b]

Specifying Additional Constraints
The example above defined a constraints matrix that specified a set of typical
scenarios. It defined groups of assets, specified upper and lower bounds for
total allocation in each of these groups, and it set the total allocation of one of
the groups to a fixed value. Constraints like these are common occurrences.
The function portcons was created to simplify the creation of the constraint
matrix for these and other common portfolio requirements. portcons takes as
input arguments a list of constraint-specifier strings, followed by the data
necessary to build the constraint specified by the strings.

Assume that you need to add more constraints to the previous example.
Specifically, add a constraint indicating that the sum of weights in any
portfolio should be equal to 1, and another set of constraints (one per asset)
indicating that the weight for each asset must greater than 0. This translates
into five more constraint rows: two for the new equality, and three indicating
that each weight must be greater or equal to 0. The total number of inequalities
2-49

2 Tutorial

2-5
in the example is now 13. Clearly, creating the constraint matrix can turn into
a tedious task.

To create the new constraint matrix using portcons, use two separate
constraint-specifier strings:

• 'Default', which indicates that each weight is greater than 0 and that the
total sum of the weights adds to 1.

• 'GroupLims', which defines the minimum and maximum allocation on each
group.

The only data requirement for the constraint-specifier string 'Default' is
NumAssets (the total number of assets). The constraint-specifier string
'GroupLims' requires three different arguments: a Groups matrix indicating
the assets that belong to each group, the GroupMin vector indicating the
minimum bounds for each group, and the GroupMax vector indicating the
maximum bounds for each group. Based on Table 2-6, Group Membership,
build the Group matrix, with each row representing a group, and each column
representing an asset.

Group = [1 1 0;
 0 0 1;
 1 0 0;
 0 1 1]

Table 2-5, Maximum and Minimum Group Exposure, has the information to
build GroupMin and GroupMax.

GroupMin = [0.30 0.10 0.20 0.50];
GroupMax = [0.75 0.55 0.50 0.50];

Given that the number of assets is three, build the constraint matrix by calling
portcons.

ConSet = portcons('Default', 3, 'GroupLims', Group, GroupMin,...
GroupMax);

In most cases, portcons('Default') returns the minimal set of constraints
required for calling portopt. If ConSet is not specified in the call to portopt,
the function calls portcons passing 'Default' as its only specifier.

Now use portopt to obtain the vectors and arrays representing the risk,
return, and weights for the portfolios computed along the efficient frontier.
0

Analyzing Portfolios
[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], [], ConSet)

PortRisk = 0.0586
Port Return = 0.1375
PortWts = 0.5 0.25 0.25

In this case the constraints allow only one optimum portfolio.
2-51

2 Tutorial

2-5
2

3

Solving Sample Problems

This section shows how Financial Toolbox functions solve real-world problems.
The examples ship with the toolbox as M-files. Try them by entering the
commands directly or by executing the M-files.

This chapter contains two major topics:

• Common Problems in Finance

Shows how the toolbox solves real-world financial problems, specifically:

- “Sensitivity of Bond Prices to Changes in Interest Rates” on page 3-2

- “Constructing a Bond Portfolio to Hedge Against Duration and Convexity”
on page 3-5

- “Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve” on
page 3-7

- “Constructing Greek-Neutral Portfolios of European Stock Options” on
page 3-11

- “Term Structure Analysis and Interest Rate Swap Pricing” on page 3-14

• Producing Graphics with the Toolbox

Shows how the toolbox produces presentation-quality graphics by solving
these problems:

- “Plotting an Efficient Frontier” on page 3-18

- “Plotting Sensitivities of an Option” on page 3-20

- “Plotting Sensitivities of a Portfolio of Options” on page 3-22

Common Problems in Finance 3-3
Sensitivity of Bond Prices to Changes in Interest Rates . . . 3-3
Constructing a Bond Portfolio to Hedge Against Duration

and Convexity 3-6
Visualizing the Sensitivity of a Bond Portfolio’s Price to

Parallel Shifts in the Yield Curve 3-8
Constructing Greek-Neutral Portfolios of European

Stock Options 3-12
Term Structure Analysis and Interest Rate Swap Pricing . . 3-15

Producing Graphics with the Toolbox 3-19
Plotting an Efficient Frontier 3-19
Plotting Sensitivities of an Option 3-21
Plotting Sensitivities of a Portfolio of Options 3-23

3 Solving Sample Problems

3-2
Common Problems in Finance

Sensitivity of Bond Prices to Changes in Interest
Rates
Macaulay and modified duration measure the sensitivity of a bond’s price to
changes in the level of interest rates. Convexity measures the change in
duration for small shifts in the yield curve, and thus measures the second-order
price sensitivity of a bond. Both measures can gauge the vulnerability of a bond
portfolio’s value to changes in the level of interest rates.

Alternatively, analysts can use duration and convexity to construct a bond
portfolio that is partly hedged against small shifts in the term structure. If you
combine bonds in a portfolio whose duration is zero, the portfolio is insulated,
to some extent, against interest rate changes. If the portfolio convexity is also
zero, this insulation is even better. However, since hedging costs money or
reduces expected return, you need to know how much protection results from
hedging duration alone compared with hedging both duration and convexity.

This example demonstrates a way to analyze the relative importance of
duration and convexity for a bond portfolio using some of the SIA-compliant
bond functions in the Financial Toolbox. Using duration, it constructs a
first-order approximation of the change in portfolio price to a level shift in
interest rates. Then, using convexity, it calculates a second-order
approximation. Finally it compares the two approximations with the true price
change resulting from a change in the yield curve. The example M-file is
ftspex1.m.

Step 1. Define three bonds using values for the settlement date, maturity date,
face value, and coupon rate. For simplicity, accept default values for the coupon
payment periodicity (semi-annual), end-of-month payment rule (rule in effect),
and day-count basis (actual/actual). Also, synchronize the coupon payment
structure to the maturity date (no odd first or last coupon dates). Any inputs
for which defaults are accepted are set to empty matrices ([]) as placeholders
where appropriate.

Settle = '19-Aug-1999';
Maturity = ['17-Jun-2010'; '09-Jun-2015'; '14-May-2025'];
Face = [100; 100; 1000];
CouponRate = [0.07; 0.06; 0.045];

Common Problems in Finance
Also, specify the yield curve information.

Yields = [0.05; 0.06; 0.065];

Step 2. Use Financial Toolbox functions to calculate the price, modified
duration in years, and convexity in years of each bond.

The true price is quoted (clean) price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields, CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity, 2,
0,... [], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle, Maturity,2,
0,... [], [], [], [], [], Face);

Prices = CleanPrice + AccruedInterest;

Step 3. Choose a hypothetical amount by which to shift the yield curve (here,
0.2 percentage point or 20 basis points).

dY = 0.002;

Weight the three bonds equally, and calculate the actual quantity of each bond
in the portfolio, which has a total value of $100,000.

PortfolioPrice = 100000;
PortfolioWeights = ones(3,1)/3;
PortfolioAmounts = PortfolioPrice * PortfolioWeights ./ Prices;

Step 4. Calculate the modified duration and convexity of the portfolio. Note
that the portfolio duration or convextity is a weighted average of the durations
or convexities of the individual bonds. Calculate the first- and second-order
approximations of the percent price change as a function of the change in the
level of interest rates.

PortfolioDuration = PortfolioWeights' * Durations;
PortfolioConvexity = PortfolioWeights' * Convexities;
PercentApprox1 = -PortfolioDuration * dY * 100;

PercentApprox2 = PercentApprox1 + ...
3-3

3 Solving Sample Problems

3-4
PortfolioConvexity*dY^2*100/2.0;

Step 5. Estimate the new portfolio price using the two estimates for the percent
price change.

PriceApprox1 = PortfolioPrice + ...
PercentApprox1 * PortfolioPrice/100;

PriceApprox2 = PortfolioPrice + ...
PercentApprox2 * PortfolioPrice/100;

Step 6. Calculate the true new portfolio price by shifting the yield curve.

[CleanPrice, AccruedInterest] = bndprice(Yields + dY,...
CouponRate, Settle, Maturity, 2, 0, [], [], [], [], [],...
Face);

NewPrice = PortfolioAmounts' * (CleanPrice + AccruedInterest);

Step 7. Compare the results. The analysis results are as follows (verify these
results by running the example M-file ftspex1.m):

• The original portfolio price was $100,000.

• The yield curve shifted up by 0.2 percentage point or 20 basis points.

• The portfolio duration and convexity are 10.3181 and 157.6346, respectively.
These will be needed below for “Constructing a Bond Portfolio to Hedge
Against Duration and Convexity”.

• The first-order approximation, based on modified duration, predicts the new
portfolio price (PriceApprox1) will be $97,936.37.

• The second-order approximation, based on duration and convexity, predicts
the new portfolio price (PriceApprox2) will be $97,967.90.

• The true new portfolio price (NewPrice) for this yield curve shift is
$97,967.51.

• The estimate using duration and convexity is quite good (at least for this
fairly small shift in the yield curve), but only slightly better than the
estimate using duration alone. The importance of convexity increases as the
magnitude of the yield curve shift increases. Try a larger shift (dY) to see this
effect.

Common Problems in Finance
The approximation formulas in this example consider only parallel shifts in the
term structure, because both formulas are functions of dY, the change in yield.
The formulas are not well-defined unless each yield changes by the same
amount. In actual financial markets, changes in yield curve level typically
explain a substantial portion of bond price movements. However, other
changes in the yield curve, such as slope, may also be important and are not
captured here. Also, both formulas give local approximations whose accuracy
deteriorates as dY increases in size. You can demonstrate this by running the
program with larger values of dY.

Constructing a Bond Portfolio to Hedge Against
Duration and Convexity
This example constructs a bond portfolio to hedge the portfolio of “Sensitivity
of Bond Prices to Changes in Interest Rates.” It assumes a long position in
(holding) the portfolio, and that three other bonds are available for hedging. It
chooses weights for these three other bonds in a new portfolio so that the
duration and convexity of the new portfolio match those of the original
portfolio. Taking a short position in the new portfolio, in an amount equal to
the value of the first portfolio, partially hedges against parallel shifts in the
yield curve.

Recall that portfolio duration or convexity is a weighted average of the
durations or convexities of the individual bonds in a portfolio. As in the
previous example, this example uses modified duration in years and convexity
in years. The hedging problem therefore becomes one of solving a system of
linear equations, which is very easy to do in MATLAB. The M-file for this
example is ftspex2.m.

Step 1. Define three bonds available for hedging the original portfolio. Specify
values for the settlement date, maturity date, face value, and coupon rate. For
simplicity, accept default values for the coupon payment periodicity
(semi-annual), end-of-month payment rule (rule in effect), and day-count basis
(actual/actual). Also, synchronize the coupon payment structure to the
maturity date (i.e., no odd first or last coupon dates). Set any inputs for which
defaults are accepted to empty matrices ([]) as placeholders where
appropriate. The intent is to hedge against duration and convexity as well as
constrain total portfolio price.

Settle = '19-Aug-1999';
Maturity = ['15-Jun-2005'; '02-Oct-2010'; '01-Mar-2025'];
3-5

3 Solving Sample Problems

3-6
Face = [500; 1000; 250];
CouponRate = [0.07; 0.066; 0.08];

Also, specify the yield curve for each bond.

Yields = [0.06; 0.07; 0.075];

Step 2. Use Financial Toolbox functions to calculate the price, modified
duration in years, and convexity in years of each bond.

The true price is quoted (clean price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,CouponRate,...
Settle, Maturity, 2, 0, [], [], [], [], [], Face);

Durations = bnddury(Yields, CouponRate, Settle, Maturity,...
2, 0, [], [], [], [], [], Face);

Convexities = bndconvy(Yields, CouponRate, Settle,...
Maturity, 2, 0, [], [], [], [], [], Face);

Prices = CleanPrice + AccruedInterest;

Step 3. Set up and solve the system of linear equations whose solution is the
weights of the new bonds in a new portfolio with the same duration and
convexity as the original portfolio. In addition, scale the weights to sum to 1;
that is, force them to be portfolio weights. You can then scale this unit portfolio
to have the same price as the original portfolio. Recall that the original portfolio
duration and convexity are 10.3181 and 157.6346, respectively. Also, note that
the last row of the linear system ensures the sum of the weights is unity.

A = [Durations'
 Convexities'
 1 1 1];

b = [10.3181
 157.6346
 1];

Weights = A\b;

Common Problems in Finance
Step 4. Compute the duration and convexity of the hedge portfolio, which
should now match the original portfolio.

PortfolioDuration = Weights' * Durations;
PortfolioConvexity = Weights' * Convexities;

Step 5. Finally, scale the unit portfolio to match the value of the original
portfolio and find the number of bonds required to insulate against small
parallel shifts in the yield curve.

PortfolioValue = 100000;
HedgeAmounts = Weights ./ Prices * PortfolioValue;

Step 6. Compare the results. (Verify the analysis results by running the
example M-file ftspex2.m.)

• As required, the duration and convexity of the new portfolio are 10.3181 and
157.6346, respectively.

• The hedge amounts for bonds 1, 2, and 3 are -57.37, 71.70, and 216.27,
respectively.

Notice that the hedge matches the duration, convexity, and value ($100,000) of
the original portfolio. If you are holding that first portfolio, you can hedge by
taking a short position in the new portfolio.

Just as the approximations of the first example are appropriate only for small
parallel shifts in the yield curve, the hedge portfolio is appropriate only for
reducing the impact of small level changes in the term structure.

Sensitivity of Bond Prices to Parallel Shifts in the
Yield Curve
Often bond portfolio managers want to consider more than just the sensitivity
of a portfolio’s price to a small shift in the yield curve, particularly if the
investment horizon is long. This example shows how MATLAB can visualize
the price behavior of a portfolio of bonds over a wide range of yield curve
scenarios, and as time progresses toward maturity.

This example uses the Financial Toolbox bond pricing functions to evaluate the
impact of time-to-maturity and yield variation on the price of a bond portfolio.
It plots the portfolio value and shows the behavior of bond prices as yield and
time vary. This example M-file is ftspex3.m.
3-7

3 Solving Sample Problems

3-8
Step 1. Specify values for the settlement date, maturity date, face value,
coupon rate, and coupon payment periodicity of a four-bond portfolio. For
simplicity, accept default values for the end-of-month payment rule (rule in
effect) and day-count basis (actual/actual). Also, synchronize the coupon
payment structure to the maturity date (no odd first or last coupon dates). Any
inputs for which defaults are accepted are set to empty matrices ([]) as
placeholders where appropriate.

Settle = '15-Jan-1995';
Maturity = datenum(['03-Apr-2020'; '14-May-2025'; ...
 '09-Jun-2019'; '25-Feb-2019']);
Face = [1000; 1000; 1000; 1000];
CouponRate = [0; 0.05; 0; 0.055];
Periods = [0; 2; 0; 2];

Also, specify the points on the yield curve for each bond.

Yields = [0.078; 0.09; 0.075; 0.085];

Step 2. Use Financial Toolbox functions to calculate the true bond prices as the
sum of the quoted price plus accrued interest.

[CleanPrice, AccruedInterest] = bndprice(Yields,...
CouponRate,Settle, Maturity, Periods,...
[], [], [], [], [], [], Face);

Prices = CleanPrice + AccruedInterest;

Step 3. Assume the value of each bond is $25,000, and determine the quantity
of each bond such that the portfolio value is $100,000.

BondAmounts = 25000 ./ Prices;

Step 4. Compute the portfolio price for a rolling series of settlement dates over
a range of yields. The evaluation dates occur annually on January 15,
beginning on 15-Jan-1995 (settlement) and extending out to 15-Jan-2018.
Thus, this step evaluates portfolio price on a grid of time of progression (dT) and
interest rates (dY).

dy = -0.05:0.005:0.05; % Yield changes

D = datevec(Settle); % Get date components
dt = datenum(D(1):2018, D(2), D(3)); % Get evaluation dates

Common Problems in Finance
[dT, dY] = meshgrid(dt, dy); % Create grid

NumTimes = length(dt); % Number of time steps
NumYields = length(dy); % Number of yield changes
NumBonds = length(Maturity); % Number of bonds

% Preallocate vector
Prices = zeros(NumTimes*NumYields, NumBonds);

Now that the grid and price vectors have been created, compute the price of
each bond in the portfolio on the grid one bond at a time.

for i = 1:NumBonds

[CleanPrice, AccruedInterest] = bndprice(Yields(i)+...
dY(:), CouponRate(i), dT(:), Maturity(i), Periods(i),...
[], [], [], [], [], [], Face(i));

Prices(:,i) = CleanPrice + AccruedInterest;

end

Scale the bond prices by the quantity of bonds.

Prices = Prices * BondAmounts;

Reshape the bond values to conform to the underlying evaluation grid.

Prices = reshape(Prices, NumYields, NumTimes);

Step 5. Plot the price of the portfolio as a function of settlement date and a
range of yields, and as a function of the change in yield (dY). This plot
illustrates the interest rate sensitivity of the portfolio as time progresses (dT),
under a range of interest rate scenarios. With the following graphics
commands, you can visualize the three-dimensional surface relative to the
current portfolio value (i.e., $100,000).

figure % Open a new figure window
surf(dt, dy, Prices) % Draw the surface

Add the base portfolio value to the existing surface plot.

hold on % Add the current value for reference
3-9

3 Solving Sample Problems

3-1
basemesh = mesh(dt, dy, 100000*ones(NumYields, NumTimes));

Make it transparent, plot it so the price surface shows through, and draw a box
around the plot.

set(basemesh, 'facecolor', 'none');
set(basemesh, 'edgecolor', 'm');
set(gca, 'box', 'on');

Plot the x-axis using two-digit year (YY format) labels for ticks.

dateaxis('x', 11);

Add axis labels and set the three-dimensional viewpoint. MATLAB produces
the figure.

xlabel('Evaluation Date (YY Format)');
ylabel('Change in Yield');
zlabel('Portfolio Price');
hold off
view(-25,25);
0

Common Problems in Finance
MATLAB’s three-dimensional graphics allow you to visualize the interest rate
risk experienced by a bond portfolio over time. This example assumed parallel
shifts in the term structure, but it might similarly have allowed other
components to vary, such as the level and slope.

Constructing Greek-Neutral Portfolios of European
Stock Options
The option sensitivity measures familiar to most option traders are often
referred to as the greeks: delta, gamma, vega, lambda, rho, and theta. Delta is
the price sensitivity of an option with respect to changes in the price of the
underlying asset. It represents a first-order sensitivity measure analogous to
duration in fixed income markets. Gamma is the sensitivity of an option’s delta
to changes in the price of the underlying asset, and represents a second-order
price sensitivity analogous to convexity in fixed income markets. Vega is the
price sensitivity of an option with respect to changes in the volatility of the
underlying asset. See “Pricing and Analyzing Equity Derivatives” on page 2-31
or the “Glossary” for other definitions.
3-11

3 Solving Sample Problems

3-1
The greeks of a particular option are a function of the model used to price the
option. However, given enough different options to work with, a trader can
construct a portfolio with any desired values for its greeks. For example, to
insulate the value of an option portfolio from small changes in the price of the
underlying asset, one trader might construct an option portfolio whose delta is
zero. Such a portfolio is then said to be “delta neutral.” Another trader may
wish to protect an option portfolio from larger changes in the price of the
underlying asset, and so might construct a portfolio whose delta and gamma
are both zero. Such a portfolio is both delta and gamma neutral. A third trader
may wish to construct a portfolio insulated from small changes in the volatility
of the underlying asset in addition to delta and gamma neutrality. Such a
portfolio is then delta, gamma, and vega neutral.

Using the Black-Scholes model for European options, this example creates an
equity option portfolio that is simultaneously delta, gamma, and vega neutral.
The value of a particular greek of an option portfolio is a weighted average of
the corresponding greek of each individual option. The weights are the
quantity of each option in the portfolio. Hedging an option portfolio thus
involves solving a system of linear equations, an easy process in MATLAB.
This example M-file is ftspex4.m.

Step 1. Create an input data matrix to summarize the relevant information.
Each row of the matrix contains the standard inputs to the Financial Toolbox
Black-Scholes suite of functions: column 1 contains the current price of the
underlying stock; column 2 the strike price of each option; column 3 the time
to-expiry of each option in years; column 4 the annualized stock price volatility;
and column 5 the annualized dividend rate of the underlying asset. Note that
rows 1 and 3 are data related to call options, while rows 2 and 4 are data related
to put options.

DataMatrix = [100.000 100 0.2 0.3 0 % Call
 119.100 125 0.2 0.2 0.025 % Put
 87.200 85 0.1 0.23 0 % Call
 301.125 315 0.5 0.25 0.0333] % Put

Also, assume the annualized risk-free rate is 10 percent and is constant for all
maturities of interest.

RiskFreeRate = 0.10;

For clarity, assign each column of DataMatrix to a column vector whose name
reflects the type of financial data in the column.
2

Common Problems in Finance
StockPrice = DataMatrix(:,1);
StrikePrice = DataMatrix(:,2);
ExpiryTime = DataMatrix(:,3);
Volatility = DataMatrix(:,4);
DividendRate = DataMatrix(:,5);

Step 2. Based on the Black-Scholes model, compute the prices, as well as the
delta, gamma, and vega sensitivity greeks of each of the four options. Note that
the functions blsprice and blsdelta have two outputs, while blsgamma and
blsvega have only one. The price and delta of a call option differ from the price
and delta of an otherwise equivalent put option, in contrast to the gamma and
vega sensitivities, which are valid for both calls and puts.

[CallPrices, PutPrices] = blsprice(StockPrice, StrikePrice,...
RiskFreeRate, ExpiryTime, Volatility, DividendRate);

[CallDeltas, PutDeltas] = blsdelta(StockPrice,...
StrikePrice, RiskFreeRate, ExpiryTime, Volatility,...
DividendRate);

Gammas = blsgamma(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';

Vegas = blsvega(StockPrice, StrikePrice, RiskFreeRate,...
ExpiryTime, Volatility , DividendRate)';

Extract the prices and deltas of interest to account for the distinction between
call and puts.

Prices = [CallPrices(1) PutPrices(2) CallPrices(3)...
PutPrices(4)];

Deltas = [CallDeltas(1) PutDeltas(2) CallDeltas(3)...
PutDeltas(4)];

Step 3. Now, assuming an arbitrary portfolio value of $17,000, set up and solve
the linear system of equations such that the overall option portfolio is
simultaneously delta, gamma, and vega-neutral. The solution computes the
value of a particular greek of a portfolio of options as a weighted average of the
corresponding greek of each individual option in the portfolio. The system of
3-13

3 Solving Sample Problems

3-1
equations is solved using the backslash (\) operator discussed in “Solving
Simultaneous Linear Equations” on page 1-11.

A = [Deltas; Gammas; Vegas; Prices];
b = [0; 0; 0; 17000];
OptionQuantities = A\b; % Quantity (number) of each option.

Step 4. Finally, compute the market value, delta, gamma, and vega of the
overall portfolio as a weighted average of the corresponding parameters of the
component options. The weighted average is computed as an inner product of
two vectors.

PortfolioValue = Prices * OptionQuantities;
PortfolioDelta = Deltas * OptionQuantities;
PortfolioGamma = Gammas * OptionQuantities;
PortfolioVega = Vegas * OptionQuantities;

The example ftspex4.m performs these computations and displays the output
on the screen.

Option Price Delta Gamma Vega Quantity
 1 6.3441 0.5856 0.0290 17.4293 22332.6131
 2 6.6035 -0.6255 0.0353 20.0347 6864.0731
 3 4.2993 0.7003 0.0548 9.5837 -15654.8657
 4 22.7694 -0.4830 0.0074 83.5225 -4510.5153

Portfolio Value: $17000.00
Portfolio Delta: 0.00
Portfolio Gamma: -0.00
Portfolio Vega : 0.00

You can verify that the portfolio value is $17,000 and that the option portfolio
is indeed delta, gamma, and vega neutral, as desired. Hedges based on these
measures are effective only for small changes in the underlying variables.

Term Structure Analysis and Interest Rate Swap
Pricing
This example illustrates some of the term-structure analysis functions found
in the Financial Toolbox. Specifically, it illustrates how to derive implied zero
(spot) and forward curves from the observed market prices of coupon-bearing
4

Common Problems in Finance
bonds. The zero and forward curves implied from the market data are then
used to price an interest rate swap agreement.

In an interest rate swap, two parties agree to a periodic exchange of cash flows.
One of the cash flows is based on a fixed interest rate held constant throughout
the life of the swap. The other cash flow stream is tied to some variable index
rate. Pricing a swap at inception amounts to finding the fixed rate of the swap
agreement. This fixed rate, appropriately scaled by the notional principle of the
swap agreement, determines the periodic sequence of fixed cash flows.

In general, interest rate swaps are priced from the forward curve such that the
variable cash flows implied from the series of forward rates and the periodic
sequence of fixed-rate cash flows have the same present value. Thus, interest
rate swap pricing and term structure analysis are intimately related.

Step 1. Specify values for the settlement date, maturity dates, coupon rates,
and market prices for 10 U.S. Treasury Bonds. This data allows us to price a
five-year swap with net cash flow payments exchanged every six months. For
simplicity, accept default values for the end-of-month payment rule (rule in
effect) and day-count basis (actual/actual). To avoid issues of accrued interest,
assume that all Treasury Bonds pay semi-annual coupons and that settlement
occurs on a coupon payment date.

Settle = datenum('15-Jan-1999');

BondData = {'15-Jul-1999' 0.06000 99.93
 '15-Jan-2000' 0.06125 99.72
 '15-Jul-2000' 0.06375 99.70
 '15-Jan-2001' 0.06500 99.40
 '15-Jul-2001' 0.06875 99.73
 '15-Jan-2002' 0.07000 99.42
 '15-Jul-2002' 0.07250 99.32
 '15-Jan-2003' 0.07375 98.45
 '15-Jul-2003' 0.07500 97.71
 '15-Jan-2004' 0.08000 98.15};

BondData is an instance of a MATLAB cell array, indicated by the curly braces
({}).

Next assign the date stored in the cell array to Maturity, CouponRate, and
Prices vectors for further processing.
3-15

3 Solving Sample Problems

3-1
Maturity = datenum(strvcat(BondData{:,1}));
CouponRate = [BondData{:,2}]';
Prices = [BondData{:,3}]';
Period = 2; % semi-annual coupons

Step 2. Now that the data has been specified, use the term structure function
zbtprice to bootstrap the zero curve implied from the prices of the
coupon-bearing bonds. This implied zero curve represents the series of
zero-coupon Treasury rates consistent with the prices of the coupon-bearing
bonds such that arbitrage opportunities will not exist.

ZeroRates = zbtprice([Maturity CouponRate], Prices, Settle);

The zero curve, stored in ZeroRates, is quoted on a semi-annual bond basis (the
periodic, six-month, interest rate is simply doubled to annualize). The first
element of ZeroRates is the annualized rate over the next six months, the
second element is the annualized rate over the next 12 months, and so on.

Step 3. From the implied zero curve, find the corresponding series of implied
forward rates using the term structure function zero2fwd.

ForwardRates = zero2fwd(ZeroRates, Maturity, Settle);

The forward curve, stored in ForwardRates, is also quoted on a semi-annual
bond basis. The first element of ForwardRates is the annualized rate applied to
the interval between settlement and six months after settlement, the second
element is the annualized rate applied to the interval from six months to 12
months after settlement, and so on. This implied forward curve is also
consistent with the observed market prices such that arbitrage activities will
be unprofitable. Since the first forward rate is also a zero rate, the first element
of ZeroRates and ForwardRates are the same.

Step 4. Now that you have derived the zero curve, convert it to a sequence of
discount factors with the term structure function zero2disc.

DiscountFactors = zero2disc(ZeroRates, Maturity, Settle);

Step 5. From the discount factors, compute the present value of the variable
cash flows derived from the implied forward rates. For plain interest rate
swaps, the notional principle remains constant for each payment date and
cancels out of each side of the present value equation. The next line assumes
unit notional principle.
6

Common Problems in Finance
PresentValue = sum((ForwardRates/Period) .* DiscountFactors);

Step 6. Compute the swap’s price (the fixed rate) by equating the present value
of the fixed cash flows with the present value of the cash flows derived from the
implied forward rates. Again, since the notional principle cancels out of each
side of the equation, it is simply assumed to be 1.

SwapFixedRate = Period * PresentValue / sum(DiscountFactors);

The example ftspex5.m performs these computations and displays the output
on the screen.

 Zero Rates Forward Rates
 0.0614 0.0614
 0.0642 0.0670
 0.0660 0.0695
 0.0684 0.0758
 0.0702 0.0774
 0.0726 0.0846
 0.0754 0.0925
 0.0795 0.1077
 0.0827 0.1089
 0.0868 0.1239

 Swap Price (Fixed Rate) = 0.0845

All rates are in decimal format. The swap price, 8.45%, would likely be the
mid-point between a market-maker’s bid/ask quotes.
3-17

3 Solving Sample Problems

3-1
Producing Graphics with the Toolbox
The Financial Toolbox and MATLAB graphics functions work together to
produce presentation quality graphics, as these examples show. The examples
ship with the toolbox as M-files. Try them by entering the commands directly
or by executing the M-files. For help using MATLAB plotting functions, see
“Creating Plots” in the MATLAB documentation.

Plotting an Efficient Frontier
This example plots the efficient frontier of a hypothetical portfolio of three
assets. It illustrates how to specify the expected returns, standard deviations,
and correlations of a portfolio of assets, how to convert standard deviations and
correlations into a covariance matrix, and how to compute and plot the efficient
frontier from the returns and covariance matrix. The example also illustrates
how to randomly generate a set of portfolio weights, and how to add the random
portfolios to an existing plot for comparison with the efficient frontier. The
example M-file is ftgex1.m.

First, specify the expected returns, standard deviations, and correlation matrix
for a hypothetical portfolio of three assets. Note the symmetry of the
correlation matrix.

Returns = [0.1 0.15 0.12];
STDs = [0.2 0.25 0.18];

Correlations = [1 0.8 0.4
 0.8 1 0.3
 0.4 0.3 1];

Convert the standard deviations and correlation matrix into a
variance-covariance matrix with the Financial Toolbox function corr2cov.

Covariances = corr2cov(STDs, Correlations);

Evaluate and plot the efficient frontier at 20 points along the frontier, using the
function portopt and the expected returns and corresponding covariance
matrix. Although rather elaborate constraints can be placed on the assets in a
portfolio, for simplicity accept the default constraints and scale the total value
of the portfolio to 1 and constrain the weights to be positive (no short-selling).

portopt(Returns, Covariances, 20)
8

Producing Graphics with the Toolbox
Now that the efficient frontier is displayed, randomly generate the asset
weights for 1000 portfolios starting from the MATLAB initial state.

rand('state', 0)
Weights = rand(1000, 3);

The previous line of code generates three columns of uniformly distributed
random weights, but does not guarantee they sum to 1. The following code
segment normalizes the weights of each portfolio so that the total of the three
weights represent a valid portfolio.

Total = sum(Weights, 2); % Add the weights
Total = Total(:,ones(3,1)); % Make size-compatible matrix
Weights = Weights./Total; % Normalize so sum = 1

Given the 1000 random portfolios just created, compute the expected return
and risk of each portfolio associated with the weights.

[PortRisk, PortReturn] = portstats(Returns, Covariances, ...
 Weights);

Finally, hold the current graph, and plot the returns and risks of each portfolio
on top of the existing efficient frontier for comparison. After plotting, annotate
the graph with a title and return the graph to default holding status (any
subsequent plots will erase the existing data). The efficient frontier appears in
blue, while the 1000 random portfolios appear as a set of red dots on or below
the frontier.

hold on
plot (PortRisk, PortReturn, '.r')
title('Mean-Variance Efficient Frontier and Random Portfolios')
hold off
3-19

3 Solving Sample Problems

3-2
Plotting Sensitivities of an Option
This example creates a three-dimensional plot showing how gamma changes
relative to price for a Black-Scholes option. Recall that gamma is the second
derivative of the option price relative to the underlying security price. The plot
shows a three-dimensional surface whose z-value is the gamma of an option as
price (x-axis) and time (y-axis) vary. It adds yet a fourth dimension by showing
option delta (the first derivative of option price to security price) as the color of
the surface. This example M-file is ftgex2.m.

First set the price range of the options, and set the time range to one year
divided into half-months and expressed as fractions of a year.

Range = 10:70;
Span = length(Range);
j = 1:0.5:12;
Newj = j(ones(Span,1),:)'/12;
0

Producing Graphics with the Toolbox
For each time period create a vector of prices from 10 to 70 and create a matrix
of all ones.

JSpan = ones(length(j),1);
NewRange = Range(JSpan,:);
Pad = ones(size(Newj));

Call the toolbox gamma and delta sensitivity functions. Exercise price is $40,
risk-free interest rate is 10%, and volatility is 0.35 for all prices and periods.
Gamma is the z-axis, delta is the color.

ZVal = blsgamma(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);
Color = blsdelta(NewRange, 40*Pad, 0.1*Pad, Newj, 0.35*Pad);

Draw the surface as a mesh, add axis labels and a title. The axes range from
10 to 70, 1 to 12, and -∞ to ∞.

mesh(Range, j, ZVal, Color);
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
title('Call Option Sensitivity Measures');
axis([10 70 1 12 −inf inf]);

Finally add a box around the whole plot, annotate the colors with a bar, and
label the colorbar.

set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
3-21

3 Solving Sample Problems

3-2
Plotting Sensitivities of a Portfolio of Options
This example plots gamma as a function of price and time for a portfolio of 10
Black-Scholes options. The plot shows a three-dimensional surface. For each
point on the surface, the height (z-value) represents the sum of the gammas for
each option in the portfolio weighted by the amount of each option. The x-axis
represents changing price, and the y-axis represents time. The plot adds a
fourth dimension by showing delta as surface color. This example M-file is
ftgex3.m.

First set up the portfolio with arbitrary data. Current prices range from $20 to
$90 for each option. Set corresponding exercise prices for each option.

Range = 20:90;
PLen = length(Range);
ExPrice = [75 70 50 55 75 50 40 75 60 35];
2

Producing Graphics with the Toolbox
Set all risk-free interest rates to 10%, and set times to maturity in days. Set
all volatilities to 0.35. Set the number of options of each instrument, and
allocate space for matrices.

Rate = 0.1*ones(10,1);
Time = [36 36 36 27 18 18 18 9 9 9];
Sigma = 0.35*ones(10,1);
NumOpt = 1000*[4 8 3 5 5.5 2 4.8 3 4.8 2.5];
ZVal = zeros(36, PLen);
Color = zeros(36, PLen);

For each instrument, create a matrix (of size Time by PLen) of prices for each
period.

for i = 1:10
Pad = ones(Time(i),PLen);
NewR = Range(ones(Time(i),1),:);

Create a vector of time periods 1 to Time; and a matrix of times, one column for
each price.

T = (1:Time(i))';
NewT = T(:,ones(PLen,1));

Call the toolbox gamma and delta sensitivity functions to compute gamma and
delta.

ZVal(36−Time(i)+1:36,:) = ZVal(36−Time(i)+1:36,:) ...
+ NumOpt(i) * blsgamma(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

Color(36−Time(i)+1:36,:) = Color(36−Time(i)+1:36,:) ...
+ NumOpt(i) * blsdelta(NewR, ExPrice(i)*Pad, ...
Rate(i)*Pad, NewT/36, Sigma(i)*Pad);

end

Draw the surface as a mesh, set the viewpoint, and reverse the x-axis because
of the viewpoint. The axes range from 20 to 90, 0 to 36, and -∞ to ∞.

mesh(Range, 1:36, ZVal, Color);
view(60,60);
set(gca, 'xdir','reverse');
axis([20 90 0 36 −inf inf]);
3-23

3 Solving Sample Problems

3-2
Add a title and axis labels and draw a box around the plot. Annotate the colors
with a bar and label the colorbar.

title('Call Option Sensitivity Measures');
xlabel('Stock Price ($)');
ylabel('Time (months)');
zlabel('Gamma');
set(gca, 'box', 'on');
colorbar('horiz');
a = findobj(gcf, 'type', 'axes');
set(get(a(2), 'xlabel'), 'string', 'Delta');
4

4

Function Reference

Functions - By Category 4-2
Handling and Converting Dates 4-2
Formatting Currency 4-5
Charting Financial Data 4-5
Analyzing and Computing Cash Flows 4-6
Fixed-Income Securities 4-7
Analyzing Portfolios 4-9
Pricing and Analyzing Derivatives4-10
GARCH Processes 4-10
Obsolete Bond Price and Yield Functions 4-11
Obsolete BDT Functions 4-12

Functions - Alphabetical List 4-13

4 Function Reference

4-2
Functions - By Category
This chapter contains detailed descriptions of all the functions in the Financial
Toolbox. The categories of functions described are:

• “Handling and Converting Dates”

• “Formatting Currency”

• “Charting Financial Data”

• “Analyzing and Computing Cash Flows”

• “Fixed-Income Securities”

• “Analyzing Portfolios”

• “Pricing and Analyzing Derivatives”

• “GARCH Processes”

• “Obsolete Bond Price and Yield Functions”

• “Obsolete BDT Functions”

Handling and Converting Dates

Note The date functions datenum, datestr, datevec, eomday, now, and
weekday now ship with basic MATLAB. They originally shipped only with the
Financial Toolbox. Their descriptions remain in this manual for your
convenience.

Current Time and Date

Date and Time Components

Date Conversion

now Current date and time.

today Current date.

datefind Indices of date numbers in matrix.

datevec Date components.

day Day of month.

eomdate Last date of month.

eomday Last day of month.

hour Hour of date or time.

lweekdate Date of last occurrence of weekday in month.

minute Minute of date or time.

month Month of date.

months Number of whole months between dates.

nweekdate Date of specific occurrence of weekday in month.

second Second of date or time.

weekday Day of the week.

year Year of date.

yeardays Number of days in year.

datedisp Display date entries.

datenum Create date number.

datestr Create date string.

m2xdate MATLAB serial date number to Excel serial date number.

x2mdate Excel serial date number to MATLAB serial date number.
4-3

4 Function Reference

4-4
Financial Dates

Coupon Bond Dates

busdate Next or previous business day.

datemnth Date of day in future or past month.

datewrkdy Date of future or past workday.

days360 Days between dates based on 360-day year.

days365 Days between dates based on 365-day year.

daysact Actual number of days between dates.

daysdif Days between dates for any day-count basis.

fbusdate First business date of month.

holidays Holidays and non-trading days.

isbusday True for dates that are business days.

lbusdate Last business date of month.

wrkdydif Number of working days between dates.

yearfrac Fraction of year between dates.

accrfrac SIAa Fraction of coupon period before settlement.

cfamounts SIA Cash flow and time mapping for bond portfolio.

cfdates SIA Cash flow dates for a fixed-income security with periodic
payments.

cfport Portfolio form of cash flow amounts.

cftimes SIA Time factors corresponding to bond cash flow dates.

cpncount SIA Coupon payments remaining until maturity.

cpndaten SIA Next coupon date after settlement date.

cpndatenq SIA Next quasi coupon date for fixed income security.

cpndatep SIA Previous coupon date before settlement date.

cpndatepq SIA Previous quasi coupon date for fixed income security.

Formatting Currency

Charting Financial Data
The Financial Toolbox provides a set of functions that create several of the
most commonly-used types of financial charts. The Financial Time Series
Toolbox provides additional charting capabilities. Using time series data as
input, the Financial Time Series Toolbox can compute the value of various
financial indicators and plot the results. Complete information may be found
in the Financial Time Series User’s Guide.

cpndaysn SIA Number of days between settlement date and next coupon
date.

cpndaysp SIA Number of days between previous coupon date and
settlement date.

cpnpersz SIA Number of days in coupon period containing settlement
date.

a. The Securities Industry Association acronym, SIA, identifies SIA-compliant
functions.

cur2frac Decimal currency value to fractional value.

cur2str Bank formatted text.

frac2cur Fractional currency value to decimal value.

bolling Bollinger band chart.

candle Candlestick chart.

dateaxis Convert serial-date axis labels to calendar-date axis labels.

highlow High, low, open, close chart.

movavg Leading and lagging moving averages chart.

pointfig Point and figure chart.
4-5

4 Function Reference

4-6
Analyzing and Computing Cash Flows

Annuities

Amortization and Depreciation

Present Value

Future Value

Payment Calculations

annurate Periodic interest rate of annuity.

annuterm Number of periods to obtain value.

amortize Amortization.

depfixdb Fixed declining-balance depreciation.

depgendb General declining-balance depreciation.

deprdv Remaining depreciable value.

depsoyd Sum of years’ digits depreciation.

depstln Straight-line depreciation.

pvfix Present value with fixed periodic payments.

pvvar Present value of varying cash flow.

fvdisc Future value of discounted security.

fvfix Future value with fixed periodic payments.

fvvar Future value of varying cash flow.

payadv Periodic payment given number of advance payments.

payodd Payment of loan or annuity with odd first period.

payper Periodic payment of loan or annuity.

payuni Uniform payment equal to varying cash flow.

Rates of Return

Cash Flow Sensitivities

Fixed-Income Securities

Accrued Interest

Prices

Term Structure of Interest Rates

effrr Effective rate of return.

irr Internal rate of return.

mirr Modified internal rate of return.

nomrr Nominal rate of return.

taxedrr After-tax rate of return.

xirr Internal rate of return for nonperiodic cash flow.

cfconv Cash flow convexity.

cfdur Cash flow duration and modified duration.

acrubond Accrued interest of security with periodic interest
payments.

acrudisc Accrued interest of discount security paying at maturity.

bndprice SIA Price a fixed income security from yield to maturity.

prdisc Price of discounted security.

prmat Price with interest at maturity.

prtbill Price of Treasury bill.

disc2zero Zero curve given a discount curve.

fwd2zero Zero curve given a forward curve.
4-7

4 Function Reference

4-8
prbyzero Price bonds in a portfolio by a set of zero curves.

pyld2zero Zero curve given a par yield curve.

tbl2bond Treasury bond parameters given Treasury bill parameters.

tr2bonds Term-structure parameters given Treasury bond
parameters.

zbtprice Zero curve bootstrapping from coupon bond data given price.

zbtyield Zero curve bootstrapping from coupon bond data given
yield.

zero2disc Discount curve given a zero curve.

zero2fwd Forward curve given a zero curve.

zero2pyld Par yield curve given a zero curve.

Yields

Interest Rate Sensitivities

Analyzing Portfolios

Portfolio Analysis

beytbill Bond equivalent yield for Treasury bill.

bndyield SIA Yield to maturity for fixed income security.

discrate Bank discount rate of a money market security.

ylddisc Yield of discounted security.

yldmat Yield of security with interest at maturity.

yldtbill Yield of Treasury bill.

bndconvp SIA Bond convexity given price.

bndconvy SIA Bond convexity given yield.

bnddurp SIA Bond duration given price.

bnddury SIA Bond duration given yield.

corr2cov Convert standard deviation and correlation to covariance.

cov2corr Convert covariance to standard deviation and correlation
coefficient.

ewstats Expected return and covariance from return time series.

frontcon Mean-variance efficient frontier.

pcalims Linear inequalities for individual asset allocation.

pcgcomp Linear inequalities for asset group comparison constraints.

pcglims Linear inequalities for asset group minimum and maximum
allocation.

pcpval Linear inequalities for fixing total portfolio value.

portalloc Optimal capital allocation.
4-9

4 Function Reference

4-1
Pricing and Analyzing Derivatives

Option Valuation and Sensitivity

GARCH Processes
The Financial Toolbox provides these representative functions to help you
familiarize yourself with Generalized Autoregressive Conditional

portcons Portfolio constraints.

portopt Portfolios on constrained efficient frontier.

portrand Randomized portfolio risks, returns, and weights.

portstats Portfolio expected return and risk.

portsim Random simulation of correlated asset returns.

portvrisk Portfolio value at risk

ret2tick Price tick series from incremental returns and initial price.

tick2ret Incremental return series from a tick price series.

binprice Binomial put and call pricing.

blkimpv Black’s implied volatility

blkprice Black’s option pricing.

blsdelta Black-Scholes sensitivity to underlying price change.

blsgamma Black-Scholes sensitivity to underlying delta change.

blsimpv Black-Scholes implied volatility.

blslambda Black-Scholes elasticity.

blsprice Black-Scholes put and call pricing.

blsrho Black-Scholes sensitivity to interest rate change.

blstheta Black-Scholes sensitivity to time-until-maturity change.

blsvega Black-Scholes sensitivity to underlying price volatility.

opprofit Option profit.
0

Heteroskedasticity (GARCH) in the MATLAB context. The GARCH Toolbox
provides a more comprehensive and integrated computing environment that
includes maximum likelihood parameter estimation, volatility forecasting,
Monte Carlo simulation, diagnostic and hypothesis testing, graphical analysis,
and data manipulation. For information see the GARCH Toolbox User’s Guide
or the financial products Web page at
http://www.mathworks.com/products/finprod/.

Univariate GARCH Processes

Obsolete Bond Price and Yield Functions
The functions listed in this table are obsolete, and their descriptions have been
removed from the documentation. They have been replaced with the
SIA-compliant functions bndprice and bndyield. For compatibility purposes,
the obsolete functions remain in the product. Type help function_name at the
MATLAB command line for a description.

ugarch GARCH parameter estimation.

ugarchllf Log-likelihood objective function.

ugarchpred Forecast conditional variance.

ugarchsim Simulate GARCH process.
4-11

4 Function Reference

4-1
Obsolete Functions

Obsolete BDT Functions
The functions bdtbond and bdttrans are obsolete, and their descriptions have
been removed from the documentation. These functions have been replaced by
BDT functions in the Financial Derivatives Toolbox. For compatibility
purposes, the obsolete functions remain in the product. Type
help function_name at the MATLAB command line for a description.

prbond Price of security with regular periodic interest payments.

proddf Price with odd first period.

proddfl Price with odd first and last periods and settlement in first
period.

proddl Price with odd last period.

yldbond Yield to maturity of bond.

yldoddf Yield of security with odd first period.

yldoddfl Yield of security with odd first and last periods and settlement
in first period.

yldoddl Yield of security with odd last period.
2

Functions - Alphabetical List
Functions - Alphabetical List 4

accrfrac . 4-17
acrubond . 4-20
acrudisc . 4-21
amortize . 4-22
annurate . 4-24
annuterm . 4-25
beytbill . 4-26
binprice . 4-27
blkimpv . 4-29
blkprice . 4-30
blsdelta . 4-32
blsgamma . 4-33
blsimpv . 4-34
blslambda . 4-36
blsprice . 4-37
blsrho . 4-39
blstheta . 4-40
blsvega . 4-41
bndconvp . 4-42
bndconvy . 4-45
bnddurp . 4-48
bnddury . 4-51
bndprice . 4-54
bndyield . 4-57
bolling . 4-60
busdate . 4-61
candle . 4-62
cfamounts . 4-63
cfconv . 4-68
cfdates . 4-69
cfdur . 4-72
cfport . 4-73
cftimes . 4-76
corr2cov . 4-78
cov2corr . 4-79
4-13

4

4-1
cpncount . 4-80
cpndaten . 4-83
cpndatenq . 4-86
cpndatep . 4-90
cpndatepq . 4-93
cpndaysn . 4-97
cpndaysp . 4-100
cpnpersz . 4-103
cur2frac . 4-106
cur2str . 4-107
dateaxis . 4-108
datedisp . 4-110
datefind . 4-111
datemnth . 4-112
datenum . 4-114
datestr . 4-117
datevec . 4-120
datewrkdy . 4-122
day . 4-123
days360 . 4-124
days365 . 4-125
daysact . 4-126
daysdif . 4-127
depfixdb . 4-128
depgendb . 4-129
deprdv . 4-130
depsoyd . 4-131
depstln . 4-132
disc2zero . 4-133
discrate . 4-136
effrr . 4-137
eomdate . 4-138
eomday . 4-139
ewstats . 4-140
fbusdate . 4-142
frac2cur . 4-143
frontcon . 4-144
4

Functions - Alphabetical List
fvdisc . 4-147
fvfix . 4-148
fvvar . 4-149
fwd2zero . 4-151
highlow . 4-155
holidays . 4-156
hour . 4-157
irr . 4-158
isbusday . 4-159
lbusdate . 4-160
lweekdate . 4-162
m2xdate . 4-164
minute . 4-166
mirr . 4-167
month . 4-168
months . 4-169
movavg . 4-170
nomrr . 4-171
now . 4-172
nweekdate . 4-173
opprofit . 4-175
payadv . 4-176
payodd . 4-177
payper . 4-178
payuni . 4-179
pcalims . 4-180
pcgcomp . 4-183
pcglims . 4-185
pcpval . 4-188
pointfig . 4-190
portalloc . 4-191
portcons . 4-194
portopt . 4-198
portrand . 4-201
portsim . 4-202
portstats . 4-204
portvrisk . 4-206
4-15

4

4-1
prbyzero . 4-208
prdisc . 4-212
prmat . 4-213
prtbill . 4-215
pvfix . 4-216
pvvar . 4-217
pyld2zero . 4-219
ret2tick . 4-223
second . 4-225
taxedrr . 4-226
tbl2bond . 4-227
tick2ret . 4-229
today . 4-231
tr2bonds . 4-232
ugarch . 4-235
ugarchllf . 4-237
ugarchpred . 4-239
ugarchsim . 4-242
weekday . 4-247
wrkdydif . 4-249
x2mdate . 4-250
xirr . 4-252
year . 4-254
yeardays . 4-255
yearfrac . 4-256
ylddisc . 4-257
yldmat . 4-258
yldtbill . 4-260
zbtprice . 4-261
zbtyield . 4-266
zero2disc . 4-271
zero2fwd . 4-274
zero2pyld . 4-278
6

accrfrac
4accrfracPurpose Fraction of coupon period before settlement (SIA compliant)

Syntax Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-17

accrfrac
Vector arguments must have consistent dimensions, or they must be scalars.

Description Fraction = accrfrac(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns the
fraction of the coupon period before settlement. This function is used for
computing accrued interest.

Examples Given data for three bonds

Settle = '14-Mar-1997';
Maturity = ['30-Nov-2000'
 '31-Dec-2000'
 '31-Jan-2001'];
Period = 2;
Basis = 0;
EndMonthRule = 1;

Execute the function.

Fraction = accrfrac(Settle, Maturity, Period, Basis,...
 EndMonthRule)
Fraction =
 0.5714
 0.4033
 0.2320

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.
4-18

accrfrac
See Also cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq,
cpndaysn, cpndaysp, cpnpersz
4-19

acrubond
4acrubondPurpose Accrued interest of security with periodic interest payments

Syntax AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face,
CouponRate, Period, Basis)

Arguments

Description AccruInterest = acrubond(IssueDate, Settle, FirstCouponDate, Face,
CouponRate, Period, Basis) returns the accrued interest for a security with
periodic interest payments. This function computes the accrued interest for
securities with standard, short, and long first coupon periods.

Note cfamounts or accrfrac is recommended when calculating accrued
interest beyond the first period.

Examples AccruInterest = acrubond('31-jan-1983', '1-mar-1993', ...
 '31-jul-1983', 100, 0.1, 2, 0)

AccruInterest =
 0.8011

See Also accrfrac, acrudisc, bndprice, bndyield, cfamounts, datenum

IssueDate Enter as serial date number or date string.

Settle Enter as serial date number or date string.

FirstCouponDate Enter as serial date number or date string.

Face Redemption (par, face) value.

CouponRate Enter as decimal fraction.

Period (Optional) Coupons per year. An integer. Default = 2.

Basis (Optional) Day-count basis: 0 = actual/actual (default), 1 =
30/360, 2 = actual/360, 3 = actual/365.
4-20

acrudisc
4acrudiscPurpose Accrued interest of discount security paying at maturity

Syntax AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period,
Basis)

Arguments

Description AccruInterest = acrudisc(Settle, Maturity, Face, Discount, Period,
Basis) returns the accrued interest of a discount security paid at maturity.

Examples AccruInterest = acrudisc('05/01/1992', '07/15/1992', ...
 100, 0.1, 2, 0)

AccruInterest =
 2.0604 (or $2.06)

See Also acrubond, prdisc, prmat, ylddisc, yldmat

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.
Formula D.

Settle Enter as serial date number or date string. Settle must be earlier
than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the security. Enter as decimal fraction.

Period (Optional) Coupons per year. An integer. Default = 2.

Basis (Optional) Day-count basis: 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.
4-21

amortize
4amortizePurpose Amortization schedule

Syntax [Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods,
PresentValue, FutureValue, Due)

Arguments

Description [Principal, Interest, Balance, Payment] = amortize(Rate, NumPeriods,
PresentValue, FutureValue, Due) returns the principal and interest
payments of a loan, the remaining balance of the original loan amount, and the
periodic payment.

Examples A $500 loan paid in six installments at an annual interest rate of 9%

[Principal, Interest, Balance, Payment] = amortize(0.09/6, 6,...
500)

Principal =
 80.26 81.47 82.69 83.93 85.19 86.47

Interest =
 7.50 6.3 5.07 3.83 2.57 1.30

Balance =
 419.74 338.27 255.58 171.65 86.47 0.00

Rate Interest rate per period, as a decimal fraction.

NumPeriods Number of payment periods.

PresentValue Present value of the loan.

FutureValue (Optional) Future value of the loan. Default = 0.

Due (Optional) When payments are due: 0 = end of period
(default), or 1 = beginning of period.

Principal Principal paid in each period. A 1-by-NumPeriods vector.

Interest Interest paid in each period. A 1-by-NumPeriods vector.

Balance Remaining balance of the loan in each payment period. A
1-by-NumPeriods vector.

Payment Payment per period. A scalar.
4-22

amortize
Payment =
 87.76

See Also annurate, annuterm, payadv, payodd, payper
4-23

annurate
4annuratePurpose Periodic interest rate of annuity

Syntax Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue, Due)

Arguments

Description Rate = annurate(NumPeriods, Payment, PresentValue, FutureValue,
Due) returns the periodic interest rate paid on a loan or annuity.

Examples Find the periodic interest rate of a four-year, $5000 loan with a $130 monthly
payment made at the end of each month.

Rate = annurate(4*12, 130, 5000, 0, 0)

Rate =
 0.0094

(Rate multiplied by 12 gives an annual interest rate of 11.32% on the loan.)

See Also amortize, annuterm, bndyield, irr

NumPeriods Number of payment periods.

Payment Payment per period.

PresentValue Present value of the loan or annuity.

FutureValue (Optional) Future value of the loan or annuity. Default = 0.

Due (Optional) When payments are due: 0 = end of period
(default), or 1 = beginning of period.
4-24

annuterm
4annutermPurpose Number of periods to obtain value

Syntax NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue, Due)

Arguments

Description NumPeriods = annuterm(Rate, Payment, PresentValue, FutureValue,
Due) calculates the number of periods needed to obtain a future value. To
calculate the number of periods needed to pay off a loan, enter the payment or
the present value as a negative value.

Examples A savings account has a starting balance of $1500. $200 is added at the end of
each month and the account pays 9% interest, compounded monthly. How
many years will it take to save $5,000?

NumPeriods = annuterm(0.09/12, 200, 1500, 5000, 0)

NumPeriods =
 15.68 months or 1.31 years.

See Also annurate, amortize, fvfix, pvfix

Rate Interest rate per period, as a decimal fraction.

Payment Payment per period.

PresentValue Present value.

FutureValue (Optional) Future value. Default = 0.

Due (Optional) When payments are due: 0 = end of period
(default), or 1 = beginning of period.
4-25

beytbill
4beytbillPurpose Bond equivalent yield for Treasury bill

Syntax Yield = beytbill(Settle, Maturity, Discount)

Arguments

Description Yield = beytbill(Settle, Maturity, Discount) returns the bond
equivalent yield for a Treasury bill.

Examples The settlement date of a Treasury bill is February 11, 2000, the maturity date
is August 7, 2000, and the discount rate is 5.77%. The bond equivalent yield is

Yield = beytbill('2/11/2000', '8/7/2000', 0.0577)

Yield =
 0.0602

See Also datenum, prtbill, yldtbill

Settle Enter as serial date number or date string. Settle must be earlier
than or equal to Maturity.

Maturity Enter as serial date number or date string.

Discount Discount rate of the Treasury bill. Enter as decimal fraction.
4-26

binprice
4binpricePurpose Binomial put and call pricing

Syntax [AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time,
Increment, Volatility, Flag, DividendRate, Dividend, ExDiv)

Arguments

Description [AssetPrice, OptionValue] = binprice(Price, Strike, Rate, Time,
Increment, Volatility, Flag, DividendRate, Dividend, ExDiv) prices
an option using the Cox-Ross-Rubinstein binomial pricing model.

Price Underlying asset price. A scalar.

Strike Option exercise price. A scalar.

Rate Risk-free interest rate. A scalar. Enter as a decimal fraction.

Time Option’s time until maturity in years. A scalar.

Increment Time increment. A scalar. Increment is adjusted so that the
length of each interval is consistent with the maturity time of
the option. (Increment is adjusted so that Time divided by
Increment equals an integer number of increments.)

Volatility Asset’s volatility. A scalar.

Flag Specifies whether the option is a call (Flag = 1) or a put
(Flag = 0). A scalar.

DividendRate (Optional) The dividend rate, as a decimal fraction. A scalar.
Default = 0. If you enter a value for DividendRate, set
Dividend and ExDiv = 0 or do not enter them. If you enter
values for Dividend and ExDiv, set DividendRate = 0.

Dividend (Optional) The dividend payment at an ex-dividend date,
ExDiv. A row vector. For each dividend payment, there must be
a corresponding ex-dividend date. Default = 0. If you enter
values for Dividend and ExDiv, set DividendRate = 0.

ExDiv (Optional) Ex-dividend date, specified in number of periods. A
row vector. Default = 0.
4-27

binprice
Examples For a put option, the asset price is $52, option exercise price is $50, risk-free
interest rate is 10%, option matures in 5 months, volatility is 40%, and there is
one dividend payment of $2.06 in 3-1/2 months.

[Price, Option] = binprice(52, 50, 0.1, 5/12, 1/12, 0.4, 0, 0,...
2.06, 3.5)

returns the asset price and option value at each node of the binary tree.

Price =

 52.0000 58.1367 65.0226 72.7494 79.3515 89.0642
 0 46.5642 52.0336 58.1706 62.9882 70.6980
 0 0 41.7231 46.5981 49.9992 56.1192
 0 0 0 37.4120 39.6887 44.5467
 0 0 0 0 31.5044 35.3606
 0 0 0 0 0 28.0688
Option =

 4.4404 2.1627 0.6361 0 0 0
 0 6.8611 3.7715 1.3018 0 0
 0 0 10.1591 6.3785 2.6645 0
 0 0 0 14.2245 10.3113 5.4533
 0 0 0 0 18.4956 14.6394
 0 0 0 0 0 21.9312

See Also blkprice, blsprice

References Cox, J.; S. Ross; and M. Rubenstein, “Option Pricing: A Simplified Approach”,
Journal of Financial Economics 7, Sept. 1979, pp. 229 - 263

Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter 14.
4-28

blkimpv
4blkimpvPurpose Black’s implied volatility

Syntax Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice,
MaxIterations, Tolerance)

Arguments

Description Volatility = blkimpv(Price, Strike, Rate, Time, CallPrice,
MaxIterations, Tolerance) returns the implied volatility of an underlying
asset using Black’s model.

Rate and Time must be consistent, e.g., if Rate is an annualized rate, Time must
be expressed in years.

Examples Compute the implied volatility of a future with spot price of $104.125, call
option strike price of $104.00, risk-free interest rate of 6.33% annually, time to
expiration of 66 days, and call option price of $1.515625.

Vol = blkimpv(104.125, 104, 0.0633, 66/365, 1.515625)

Vol =
0.0833

See Also blkprice, blsimpv, blsprice

References Chriss, Black-Scholes and Beyond: Option Pricing Models, Chapters 4 and 8.

Hull, Options, Futures, and Other Derivative Securities, 2nd edition,
pages 259 - 264.

Price Future spot price.

Strike Future call option strike price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to option expiration.

CallPrice Future call option price.

MaxIterations (Optional) Maximum number of iterations used in solving for
Volatility. Default = 50.

Tolerance (Optional) Tolerance (+/-) for convergence. Default = 1e-6.
4-29

blkprice
4blkpricePurpose Black’s option pricing

Syntax [Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time, Volatility)

Arguments

Description [Call, Put] = blkprice(ForwardPrice, Strike, Rate, Time,
Volatility) uses Black’s model to value an option and returns the Call and
Put option prices.

Note This function uses normcdf, the normal cumulative distribution
function in the Statistics Toolbox.

Examples The forward price of a bond is $95, the exercise price of the option is $98, the
risk-free interest rate is 11%, the time to maturity of the option is 3 years, and
the volatility of the bond price is 2.5%.

ForwardPrice Forward price of underlying asset at time zero. Must be
greater than 0. You can extend Black’s model to interest-rate
derivatives (call and put options embedded in bonds) by
calculating the forward price from the equation

f = (B - I) * exp(r*t)

where B is the face value of the bond, I is the present value of
the coupons during the life of the option, r is the risk-free
interest rate, and t is the time until maturity.

Strike Strike or exercise price of the options. Must be greater than 0.

Rate Risk-free interest rate (plus storage costs less any
convenience yield). Must be greater than or equal to 0.

Time Time until maturity of option in years. Must be greater than
0.

Volatility Volatility of the price of the underlying asset. Must be greater
than or equal to 0.
4-30

blkprice
[Call, Put] = blkprice(95, 98, 0.11, 3, 0.025)

Call =
 0.4162 (or $0.42)

Put =
 2.5729 (or $2.57)

See Also binprice, blsprice

References Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Formulas
15.7 and 15.8.

Black, “The Pricing of Commodity Contracts,” Journal of Financial Economics,
March 3, 1976, pp. 167-179.
4-31

blsdelta
4blsdeltaPurpose Black-Scholes sensitivity to underlying price change

Syntax [CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time,
Volatility, DividendRate)

Arguments

Description [CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time,
Volatility, DividendRate) returns delta, the sensitivity in option value to
change in the underlying security price. Delta is also known as the hedge ratio.

Note This function uses normcdf, the normal cumulative distribution
function in the Statistics Toolbox.

Examples [CallDelta, PutDelta] = blsdelta(50, 50, 0.1, 0.25, 0.3, 0)

CallDelta =
 0.5955

PutDelta =
 -0.4045

See Also blsgamma, blslambda, blsprice, blsrho, blstheta, blsvega

References Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter
13.

Price Current stock price.

Strike Exercise price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to maturity of the option, in years.

Volatility Standard deviation of the annualized continuously compounded
rate of return of the stock, also known as volatility.

DividendRate (Optional) Dividend rate or foreign interest rate where
applicable. Enter as a decimal fraction. Default = 0.
4-32

blsgamma
4blsgammaPurpose Black-Scholes sensitivity to underlying delta change

Syntax Gamma = blsgamma(Price, Strike, Rate, Time, Volatility,
DividendRate)

Arguments

Description Gamma = blsgamma(Price, Strike, Rate, Time, Volatility,
DividendRate) returns gamma, the sensitivity of delta to change in the
underlying security price.

Note This function uses normpdf, the normal probability density function in
the Statistics Toolbox.

Examples Gamma = blsgamma(50, 50, 0.12, 0.25, 0.3, 0)

Gamma =
 0.0512

See Also blsdelta, blslambda, blsprice, blsrho, blstheta, blsvega

References Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter
13.

Price Current stock price.

Strike Exercise price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to maturity of the option in years.

Volatility Standard deviation of the annualized continuously
compounded rate of return of the stock (also known as the
volatility).

DividendRate (Optional) Enter as a decimal fraction. Default = 0.
4-33

blsimpv
4blsimpvPurpose Black-Scholes implied volatility

Syntax Volatility = blsimpv(Price, Strike, Rate, Time, Call, MaxIterations,
DividendRate, Tolerance)

Arguments

Description Volatility = blsimpv(Price, Strike, Rate, Time, Call, MaxIterations,
DividendRate, Tolerance) returns the implied volatility of an underlying
asset.

Rate and Time must be consistent, e.g., if Rate is an annualized rate, Time must
be expressed in years.

Examples An asset has a current price of $100, an exercise price of $95, the risk free
interest rate is 7.5%, the time to maturity of the option is 0.25 years, and the
call option has a value of $10.00.

Vol = blsimpv(100, 95, 0.075, 0.25, 10)

Vol =
 0.3130 (or 31.3%)

See Also blsprice

References Bodie, Kane, and Marcus, Investments, page 681.

Price Current asset price.

Strike Exercise price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to maturity.

Call Call option value.

MaxIterations (Optional) Maximum number of iterations used in solving for
Volatility. Default = 50.

DividendRate (Optional) Dividend rate for dividend-paying securities.
Enter as a decimal fraction. Default = 0.

Tolerance (Optional) Tolerance (+/-) for convergence. Default = 1e-6.
4-34

blsimpv
Chriss, Black-Scholes and Beyond: Option Pricing Models, Chapters 4 and 8.
4-35

blslambda
4blslambdaPurpose Black-Scholes elasticity

Syntax [CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility,
DividendRate)

Arguments

Description [CallEl, PutEl] = blslambda(Price, Strike, Rate, Time, Volatility,
DividendRate) returns the elasticity of an option. CallEl is the call option
elasticity or leverage factor, and PutEl is the put option elasticity or leverage
factor. Elasticity (the leverage of an option position) measures the percent
change in an option price per one percent change in the underlying stock price.

Note This function uses normcdf, the normal cumulative distribution
function in the Statistics Toolbox.

Examples [CallEl, PutEl] = blslambda(50, 50, 0.12, 0.25, 0.3)

CallEl =
 8.1274
PutEl =
 -8.6466

See Also blsdelta, blsgamma, blsprice, blsrho, blstheta, blsvega

References Daigler, Advanced Options Trading, Chapter 4.

Price Current stock price.

Strike Exercise price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to maturity of the option in years.

Volatility Standard deviation of the annualized continuously
compounded rate of return of the stock (also known as the
volatility).

DividendRate (Optional) Dividend rate. Enter as a decimal fraction.
Default = 0.
4-36

blsprice
4blspricePurpose Black-Scholes put and call pricing

Syntax [CallPrice, PutPrice] = blsprice(Price, Strike, Rate, Time,
Volatility, DividendRate)

Arguments

Description [CallPrice, PutPrice] = blsprice(Price, Strike, Rate, Time,
Volatility, DividendRate)) returns the value of call and put options using
the Black-Scholes pricing formula.

Note This function uses normcdf, the normal cumulative distribution
function in the Statistics Toolbox.

Examples The current price of an asset is $100, the exercise price of the option is $95, the
risk-free interest rate is 10%, the time to maturity of the option is 0.25 years,
and the standard deviation of the asset is 50%.

[CallPrice, PutPrice] = blsprice(100, 95, 0.1, 0.25, 0.5)

CallPrice =
 13.70
PutPrice =
 6.35

Price Current asset price.

Strike Exercise price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to maturity of the option in years.

Volatility Standard deviation of the annualized continuously
compounded rate of return of the asset (also known as the
volatility).

DividendRate (Optional) Dividend rate of the asset. Enter as a decimal
fraction. Default = 0.
4-37

blsprice
See Also blkprice, blsdelta, blsgamma, blsimpv, blslambda, blsrho, blstheta,
blsvega

References Bodie, Kane, and Marcus, Investments, page 681.
4-38

blsrho
4blsrhoPurpose Black-Scholes sensitivity to interest rate change

Syntax [CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility,
DividendRate)

Arguments

Description [CallRho, PutRho]= blsrho(Price, Strike, Rate, Time, Volatility,
DividendRate) returns the call option rho CallRho, and the put option rho
PutRho. Rho is the rate of change in value of derivative securities with respect
to interest rates.

Note This function uses normcdf, the normal cumulative distribution
function in the Statistics Toolbox.

Examples [CallRho, PutRho] = blsrho(50, 50, 0.12, 0.25, 0.3, 0)

CallRho =
 6.6686
PutRho =
 -5.4619

See Also blsdelta, blsgamma, blslambda, blsprice, blstheta, blsvega

References Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter
13.

Price Current security price.

Strike Exercise or strike price.

Rate Interest rate. Enter as a decimal fraction.

Time Time to maturity of the option in years.

Volatility Standard deviation of the annualized continuously compounded
rate of return of the security (also known as the volatility).

DividendRate (Optional) Dividend rate of the security. Enter as a decimal
fraction. Default = 0.
4-39

blstheta
4blsthetaPurpose Black-Scholes sensitivity to time-until-maturity change

Syntax [CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time,
Volatility, DividendRate)

Arguments

Description [CallTheta, PutTheta] = blstheta(Price, Strike, Rate, Time,
Volatility, DividendRate) returns the call option theta CallTheta, and the
put option theta PutTheta. Theta is the sensitivity in option value with respect
to time.

Note This function uses normpdf, the normal probability density function
and normcdf, the normal cumulative distribution function in the Statistics
Toolbox.

Examples [CallTheta, PutTheta] = blstheta(50, 50, 0.12, 0.25, 0.3, 0)

CallTheta =
 -8.9630
PutTheta =
 -3.1404

See Also blsdelta, blsgamma, blslambda, blsprice, blsrho, blsvega

References Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter
13.

Price Current stock price.

Strike Exercise price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to maturity of the option in years.

Volatility Standard deviation of the annualized continuously
compounded rate of return of the stock (also known as the
volatility).

DividendRate (Optional) Enter as a decimal fraction. Default = 0.
4-40

blsvega
4blsvegaPurpose Black-Scholes sensitivity to underlying price volatility

Syntax Vega = blsvega(Price, Strike, Rate, Time, Volatility, DividendRate)

Arguments

Description Vega = blsvega(Price, Strike, Rate, Time, Volatility, DividendRate)
returns vega, the rate of change of the option value with respect to the volatility
of the underlying asset.

Note This function uses normpdf, the normal probability density function in
the Statistics Toolbox.

Examples Vega = blsvega(50, 50, 0.12, 0.25, 0.3, 0)

Vega =
 9.6035

See Also blsdelta, blsgamma, blslambda, blsprice, blsrho, blstheta

References Hull, Options, Futures, and Other Derivative Securities, 2nd edition, Chapter
13.

Price Current stock price.

Strike Exercise price.

Rate Risk-free interest rate. Enter as a decimal fraction.

Time Time to maturity of the option in years.

Volatility Standard deviation of the annualized continuously
compounded rate of return of the stock (also known as the
volatility).

DividendRate (Optional) Enter as a decimal fraction. Default = 0.
4-41

bndconvp
4bndconvpPurpose Bond convexity given price (SIA compliant)

Syntax [YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Price Clean price (excludes accrued interest).

CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-42

bndconvp
All specified arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix
([]) as a placeholder for an optional argument. Fill unspecified entries in input
vectors with NaN. Dates can be serial date numbers or date strings.

Description [YearConvexity, PerConvexity] = bndconvp(Price, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face) computes the convexity of NUMBONDS
fixed income securities given a clean price for each bond. This function
determines the convexity for a bond whether or not the first or last coupon
periods in the coupon structure are short or long (i.e., whether or not the
coupon structure is synchronized to maturity). This function also determines
the convexity of a zero coupon bond.

YearConvexity is the yearly (annualized) convexity; PerConvexity is the
periodic convexity reported on a semi-annual bond basis (in accordance with
SIA convention). Both outputs are NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
4-43

bndconvp
Examples Find the convexity of three bonds given their prices.

Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;

[YearConvexity, PerConvexity] = bndconvp(Price,...
CouponRate,Settle, Maturity, Period, Basis)

YearConvexity =

 21.4447
 21.0363
 20.8951

PerConvexity =

 85.7788
 84.1454
 83.5803

See Also bndconvy, bnddurp, bnddury, cfconv, cfdur
4-44

bndconvy
4bndconvyPurpose Bond convexity given yield (SIA compliant)

Syntax [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Yield Yield to maturity on a semi-annual basis.

CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-45

bndconvy
All specified arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix
([]) as a placeholder for an optional argument. Fill unspecified entries in input
vectors with NaN. Dates can be serial date numbers or date strings.

Description [YearConvexity, PerConvexity] = bndconvy(Yield, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face) computes the convexity of NUMBONDS
fixed income securities given the yield to maturity for each bond. This function
determines the convexity for a bond whether or not the first or last coupon
periods in the coupon structure are short or long (i.e., whether or not the
coupon structure is synchronized to maturity). This function also determines
the convexity of a zero coupon bond.

YearConvexity is the yearly (annualized) convexity; PerConvexity is the
periodic convexity reported on a semi-annual bond basis (in accordance with
SIA convention). Both outputs are NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
4-46

bndconvy
Examples Find the convexity of a bond at three different yield values.

Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;

[YearConvexity, PerConvexity]=bndconvy(Yield, CouponRate,...
Settle, Maturity, Period, Basis)

YearConvexity =

 21.4825
 21.0358
 20.8885

PerConvexity =

 85.9298
 84.1434
 83.5541

See Also bndconvp, bnddurp, bnddury, cfconv, cfdur
4-47

bnddurp
4bnddurpPurpose Bond duration given price (SIA compliant)

Syntax [ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Price Clean price (excludes accrued interest).

CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-48

bnddurp
All specified arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix
([]) as a placeholder for an optional argument. Fill unspecified entries in input
vectors with NaN. Dates can be serial date numbers or date strings.

Description [ModDuration, YearDuration, PerDuration] = bnddurp(Price,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
computes the duration of NUMBONDS fixed income securities given a clean price
for each bond. This function determines the Macaulay and modified duration
for a bond whether or not the first or last coupon periods in the coupon
structure are short or long (i.e., whether or not the coupon structure is
synchronized to maturity). This function also determines the Macaulay and
modified duration for a zero coupon bond.

ModDuration is the modified duration in years; YearDuration is the Macaulay
duration in years; PerDuration is the periodic Macaulay duration reported on
a semi-annual bond basis (in accordance with SIA convention.) Outputs are
NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
4-49

bnddurp
Examples Find the duration of three bonds given their prices.

Price = [106; 100; 98];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;

[ModDuration, YearDuration, PerDuration] = bnddurp(Price,...
CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

 4.2400
 4.1925
 4.1759

YearDuration =

 4.3275
 4.3077
 4.3007

PerDuration =

 8.6549
 8.6154
 8.6014

See Also bndconvp, bndconvy, bnddury
4-50

bnddury
4bndduryPurpose Bond duration given yield (SIA compliant)

Syntax [ModDuration, YearDuration, PerDuration] = bnddury(Yield,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)

Arguments Yield Yield to maturity on a semi-annual basis.

CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-51

bnddury
All specified arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalar arguments. Use an empty matrix
([]) as a placeholder for an optional argument. Fill unspecified entries in input
vectors with NaN. Dates can be serial date numbers or date strings.

Description [ModDuration, YearDuration, PerDuration] = bnddury(Yield,
CouponRate, Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate, Face)
computes the Macaulay and modified duration of NUMBONDS fixed income
securities given yield to maturity for each bond. This function determines the
duration for a bond whether or not the first or last coupon periods in the coupon
structure are short or long (i.e., whether or not the coupon structure is
synchronized to maturity). This function also determines the Macaulay and
modified duration for a zero coupon bond.

ModDuration is the modified duration in years; YearDuration is the Macaulay
duration in years; PerDuration is the periodic Macaulay duration reported on
a semi-annual bond basis (in accordance with SIA convention). Outputs are
NUMBONDS-by-1 vectors.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
4-52

bnddury
Examples Find the duration of a bond at three different yield values.

Yield = [0.04; 0.055; 0.06];
CouponRate = 0.055;
Settle = '02-Aug-1999';
Maturity = '15-Jun-2004';
Period = 2;
Basis = 0;

[ModDuration,YearDuration,PerDuration]=bnddury(Yield,...
CouponRate, Settle, Maturity, Period, Basis)

ModDuration =

 4.2444
 4.1924
 4.1751

YearDuration =

 4.3292
 4.3077
 4.3004

PerDuration =

 8.6585
 8.6154
 8.6007

See Also bndconvp, bndconvy, bnddurp
4-53

bndprice
4bndpricePurpose Price a fixed income security from yield to maturity (SIA compliant)

Syntax [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity)
[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity,

Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)

Arguments Required and optional inputs can be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can
also be passed as empty matrices ([]) or omitted at the end of the argument
list. The value NaN in any optional input invokes the default value for that
entry. Dates can be serial date numbers or date strings.

Yield Bond yield to maturity on a semi-annual basis.

CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.
4-54

bndprice
Description [Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face) given bonds with SIA date parameters
and semi-annual yields to maturity, returns the clean prices and accrued
interest due.

Price is the clean price of the bond (current price without accrued interest).

AccruedInt is the accrued interest payable at settlement.

Price and Yield are related by the formula

Price + Accrued_Interest = sum(Cash_Flow*(1+Yield/2)^(-Time))

where the sum is over the bonds’ cash flows and corresponding times in units
of semi-annual coupon periods.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
4-55

bndprice
Examples Price a treasury bond at three different yield values.

Yield = [0.04; 0.05; 0.06];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,...
Maturity, Period, Basis)

Price =

 104.8106
 99.9951
 95.4384

AccruedInt =

 0.4945
 0.4945
 0.4945

See Also cfamounts, bndyield
4-56

bndyield
4bndyieldPurpose Yield to maturity for a fixed income security (SIA compliant)

Syntax Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Arguments Required and optional inputs can be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalar arguments. Optional inputs can
also be passed as empty matrices ([]) or omitted at the end of the argument
list. The value NaN in any optional input invokes the default value for that
entry. Dates can be serial date numbers or date strings.

Price Clean price of the bond (current price without accrued
interest).

CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.
4-57

bndyield
Description Yield = bndyield(Price, CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face) given NUMBONDS bonds with SIA date parameters and clean
prices (excludes accrued interest), returns the bond equivalent yields to
maturity.

Yield is a NUMBONDS-by-1 vector of the bond equivalent yields to maturity with
semi-annual compounding.

Price and Yield are related by the formula

Price + Accrued_Interest = sum(Cash_Flow*(1+Yield/2)^(-Time))

where the sum is over the bonds’ cash flows and corresponding times in units
of semi-annual coupon periods.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
4-58

bndyield
Examples Compute the yield of a treasury bond at three different price values.

Price = [95; 100; 105];
CouponRate = 0.05;
Settle = '20-Jan-1997';
Maturity = '15-Jun-2002';
Period = 2;
Basis = 0;

Yield = bndyield(Price, CouponRate, Settle,...
Maturity, Period, Basis)

Yield =

 0.0610
 0.0500
 0.0396

See Also bndprice, cfamounts
4-59

bolling
4bollingPurpose Bollinger band chart

Syntax bolling(Asset, Samples, Alpha)
[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha)

Description bolling(Asset, Samples, Alpha) plots Bollinger bands for given Asset
data. Samples specifies the number of samples to use in computing the moving
average. Alpha is the exponent used to compute the element weights of the
moving average. This form of the function does not return any data.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, Samples, Alpha)
returns Movavgv with the moving average of the Asset data, UpperBand with
the upper band data, and LowerBand with the lower band data. This form of the
function does not plot any data.

Examples If Asset is a column vector of closing stock prices

bolling(Asset, 20, 1)

plots linear 20-day moving average Bollinger bands based on the stock prices.

[Movavgv, UpperBand, LowerBand] = bolling(Asset, 20, 1)

returns Movavgv, UpperBand, and LowerBand as (N-19)-by-1 vectors containing
the moving average, upper band, and lower band data, without plotting the
data.

See Also candle, dateaxis, highlow, movavg, pointfig
4-60

busdate
4busdatePurpose Next or previous business day

Syntax Busday = busdate(Date, Direction, Holiday)

Arguments

Description Busday = busdate(Date, Direction, Holiday) returns the serial date
number of the next or previous business day from the reference date.

Use the function datestr to convert serial date numbers to formatted date
strings.

Examples Busday = busdate('3-Jul-2001', 1, holidays)
Busday =

 731037

datestr(Busday)

ans =

05-Jul-2001

See Also holidays, isbusday

Date Reference date. Enter as serial date number or date string.

Direction (Optional) Direction. 1 = next (default) or -1 = previous business
day.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates
in Holiday must be the same format: either serial date numbers or
date strings. (Using serial date numbers improves performance.)
The holidays function supplies the default vector.
4-61

candle
4candlePurpose Candlestick chart

Syntax candle(High, Low, Close, Open, Color)

Arguments

Description candle(High, Low, Close, Open, Color) plots a candlestick chart given
column vectors with the high, low, closing, and opening prices of a security.

If the closing price is greater than the opening price, the body (the region
between the opening and closing price) is unfilled.

If the opening price is greater than the closing price, the body is filled.

Examples Given High, Low, Close, and Open as equal-size vectors of stock price data

candle(High, Low, Close, Open, 'cyan')

plots a candlestick chart with cyan candles.

See Also bolling, dateaxis, highlow, movavg, pointfig

High High prices for a security. A column vector.

Low Low prices for a security. An column vector.

Close Closing prices for a security. A column vector.

Open Opening prices for a security. A column vector.

Color (Optional) Candlestick color. A string. MATLAB supplies a default
color if none is specified. The default color differs depending on the
background color of the figure window. See ColorSpec in the
MATLAB documentation for color names.
4-62

cfamounts
4cfamountsPurpose Cash flow and time mapping for bond portfolio (SIA compliant)

Syntax [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] =
cfamounts(CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Arguments CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-63

cfamounts
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] =
cfamounts(CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face) returns matrices of cash flow amounts, cash flow dates,
time factors, and cash flow flags for a portfolio of NUMBONDS fixed income
securities. The elements contained in the cash flow matrix, time factor
matrix, and cash flow flag matrix correspond to the cash flow dates for each
security. The first element of each row in the cash flow matrix is the accrued
interest payable on each bond. This is zero in the case of all zero coupon bonds.
This function determines all cash flows and time mappings for a bond whether
or not the coupon structure contains odd first or last periods. All output
matrices are padded with NaNs as necessary to ensure that all rows have the
same number of elements.

CFlowAmounts is the cash flow matrix of a portfolio of bonds. Each row
represents the cash flow vector of a single bond. Each element in a column
represents a specific cash flow for that bond.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.

Face (Optional) Face or par value. Default = 100.
4-64

cfamounts
CFlowDates is the cash flow date matrix of a portfolio of bonds. Each row
represents a single bond in the portfolio. Each element in a column represents
a cash flow date of that bond.

TFactors is the matrix of time factors for a portfolio of bonds. Each row
corresponds to the vector of time factors for each bond. Each element in a
column corresponds to the specific time factor associated with each cash flow of
a bond. Time factors are useful in determining the present value of a stream of
cash flows. The term “time factor” refers to the exponent TF in the discounting
equation

PV = CF / (1 + z/2)TF

where:

CFlowFlags is the matrix of cash flow flags for a portfolio of bonds. Each row
corresponds to the vector of cash flow flags for each bond. Each element in a
column corresponds to the specific flag associated with each cash flow of a bond.
Flags identify the type of each cash flow (e.g., nominal coupon cash flow, front
or end partial or “stub” coupon, maturity cash flow). Possible values are shown
in the table.

PV = present value of a cash flow

CF = the cash flow amount

 z = the risk-adjusted annualized rate or yield corresponding to given
cash flow. The yield is quoted on a semi-annual basis.

TF = time factor for a given cash flow. Time is measured in semi-annual
periods from the settlement date to the cash flow date.

Flag Cash Flow Type

0 Accrued interest due on a bond at settlement.

1 Initial cash flow amount smaller than normal due to “stub” coupon
period. A stub period is created when the time from issue date to
first coupon is shorter than normal.

2 Larger than normal initial cash flow amount because first coupon
period is longer than normal.
4-65

cfamounts
Examples Consider a portfolio containing a corporate bond paying interest quarterly and
a treasury bond paying interest semi-annually. Compute the cash flow
structure and the time factors for each bond.

Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, Period, Basis)

CFlowAmounts =

 -0.7667 1.5000 1.5000 1.5000 1.5000 101.5000
 -1.8989 2.5000 2.5000 2.5000 102.5000 NaN

3 Nominal coupon cash flow amount.

4 Normal maturity cash flow amount (face value plus the nominal
coupon amount).

5 End “stub” coupon amount (last coupon period abnormally short
and actual maturity cash flow is smaller than normal).

6 Larger than normal maturity cash flow because last coupon period
longer than normal.

7 Maturity cash flow on a coupon bond when the bond has less than
one coupon period to maturity.

8 Smaller than normal maturity cash flow when bond has less than
one coupon period to maturity.

9 Larger than normal maturity cash flow when bond has less than
one coupon period to maturity.

10 Maturity cash flow on a zero coupon bond.

Flag Cash Flow Type
4-66

cfamounts
CFlowDates =

728234 728278 728368 728460 728552 728643
728234 728278 728460 728643 728825 NaN

TFactors =

0 0.2404 0.7403 1.2404 1.7403 2.2404
0 0.2404 1.2404 2.2404 3.2404 NaN

CFlowFlags =

0 3 3 3 3 4
0 3 3 3 4 NaN

See Also accrfrac, cfdates, cpncount, cpndaten, cpndatenq, cpndatep, cpndatepq,
cpndaysn, cpndaysp, cpnpersz
4-67

cfconv
4cfconvPurpose Cash flow convexity

Syntax CFlowConvexity = cfconv(CashFlow, Yield)

Arguments

Description CFlowConvexity = cfconv(CashFlow, Yield) returns the convexity of a cash
flow in periods.

Examples Given a cash flow of nine payments of $2.50 and a final payment $102.50, with
a periodic yield of 2.5%

CashFlow = [2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

Convex = cfconv(CashFlow, 0.025)

Convex =

 90.4493 (periods)

See Also bndconvp. bndconvy, bnddurp, bnddury, cfdur

CashFlow A vector of real numbers.

Yield Periodic yield. A scalar. Enter as a decimal fraction.
4-68

cfdates
4cfdatesPurpose Cash flow dates for a fixed-income security (SIA compliant)

Syntax CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-69

cfdates
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Any input can contain multiple values, but if so, all other inputs must contain
the same number of values or a single value that applies to all. For example, if
Maturity contains N dates, then Settle must contain N dates or a single date.

Description CFlowDates = cfdates(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate) returns a
matrix of cash flow dates for a bond or set of bonds. cfdates determines all cash
flow dates for a bond whether or not the coupon payment structure is normal
or the first and/or last coupon period is long or short.

CFlowDates is an N-row matrix of serial date numbers, padded with NaNs as
necessary to ensure that all rows have the same number of elements. Use the
function datestr to convert serial date numbers to formatted date strings.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.
4-70

cfdates
Note The cash flow flags for a portfolio of bonds were formerly available as
the cfdates second output argument, CFlowFlags. You can now use
cfamounts to get these flags. If you specify a CFlowFlags argument, cfdates
displays a message directing you to use cfamounts.

 Examples CFlowDates = cfdates('14 Mar 1997', '30 Nov 1998', 2, 0, 1)
CFlowDates =
 729541 729724 729906 730089
datestr(CFlowDates)
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998

Given three securities with different maturity dates and the same default
arguments

Maturity = ['30-Sep-1997'; '31-Oct-1998'; '30-Nov-1998'];
CFlowDates = cfdates('14-Mar-1997', Maturity)
CFlowDates =
 729480 729663 NaN NaN
 729510 729694 729875 730059
 729541 729724 729906 730089

Look at the cash-flow dates for the last security.

datestr(CFlowDates(3,:))
ans =
31-May-1997
30-Nov-1997
31-May-1998
30-Nov-1998

See Also accrfrac, cfamounts, cftimes, cpncount, cpndaten, cpndatenq, cpndatep,
cpndatepq, cpndaysn, cpndaysp, cpnpersz

4-71

cfdur
4cfdurPurpose Cash-flow duration and modified duration

Syntax [Duration, ModDuration] = cfdur(CashFlow, Yield)

Arguments

Description [Duration, ModDuration] = cfdur(CashFlow, Yield) calculates the
duration and modified duration of a cash flow in periods.

Examples Given a cash flow of nine payments of $2.50 and a final payment $102.50, with
a periodic yield of 2.5%

CashFlow=[2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 102.5];

[Duration, ModDuration] = cfdur(CashFlow, 0.025)

Duration =
 8.9709 (periods)

ModDuration =
 8.7521 (periods)

See Also bndconvp, bndconvy, bnddurp, bnddury, cfconv

CashFlow A vector of real numbers.

Yield Periodic yield. A scalar. Enter as a decimal fraction.
4-72

cfport
4cfportPurpose Portfolio form of cash flow amounts

Syntax [CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts,
CFlowDates, TFactors)

Arguments

Description [CFBondDate, AllDates, AllTF, IndByBond] = cfport(CFlowAmounts,
CFlowDates, TFactors) computes a vector of all cash flow dates of a bond
portfolio, and a matrix mapping the cash flows of each bond to those dates. Use
the matrix for pricing the bonds against a curve of discount factors.

CFBondDate is a NUMBONDS by number of dates (NUMDATES) matrix of cash flows
indexed by bond and by date in AllDates. Each row contains a bond's cash flow
values at the indices corresponding to entries in AllDates. Other indices in the
row contain zeros.

AllDates is a NUMDATES-by-1 list of all dates that have any cash flow from the
bond portfolio.

AllTF is a NUMDATES-by-1 list of time factors corresponding to the dates in
AllDates. If TFactors is not entered, AllTF contains the number of days from
the first date in AllDates.

IndByBond is a NUMBONDS-by-NUMCFS matrix of indices. The ith row contains a
list of indices into AllDates where the ith bond has cash flows. Since some
bonds have more cash flows than others, the matrix is padded with NaNs.

 Examples Use cfamounts to calculate the cash flow amounts, cash flow dates, and time
factors for each of two bonds. Then use cfplot to plot the cash flow diagram.

CFlowAmounts Number of bonds (NUMBONDS) by number of cash flows
(NUMCFS) matrix with entries listing cash flow amounts
corresponding to each date in CFlowDates.

CFlowDates NUMBONDS-by-NUMCFS matrix with rows listing cash flow
dates for each bond and padded with NaNs.

TFactors (Optional) NUMBONDS-by-NUMCFS matrix with entries
listing the time between settlement and the cash flow
date measured in semi-annual coupon periods.
4-73

cfport
Settle = '03-Aug-1999';
Maturity = ['15-Aug-2000';'15-Dec-2000'];
CouponRate= [0.06; 0.05];
Period = [3;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors] = cfamounts(CouponRate,...
Settle, Maturity, Period, Basis);
cfplot(CFlowDates,CFlowAmounts)
xlabel('Numeric Cash Flow Dates')
ylabel('Bonds')
title('Cash Flow Diagram')

Finally, call cfport to map the cash flow amounts to the cash flow dates.

Each row in the resultant CFBondDate matrix represents a bond. Each column
represents a date on which one or more of the bonds has a cash flow. A 0 means
the bond did not have a cash flow on that date. The dates associated with the
columns are listed in AllDates. For example, the first bond had a cash flow of
2.000 on 730347. The second bond had no cash flow on this date.
4-74

cfport
For each bond, IndByBond indicates the columns of CFBondDate, or dates in
AllDates, for which a bond has a cash flow.

[CFBondDate, AllDates, AllTF, IndByBond] = ...
cfport(CFlowAmounts, CFlowDates, TFactors)

CFBondDate =

 -1.8000 2.0000 2.0000 2.0000 0 102.0000 0
 -0.6694 0 2.5000 0 2.5000 0 102.5000

AllDates =

 730335
 730347
 730469
 730591
 730652
 730713
 730835

AllTF =

 0
 0.0663
 0.7322
 1.3989
 1.7322
 2.0663
 2.7322

IndByBond =

 1 2 3 4 6
 1 3 5 7 NaN

See Also cfamounts
4-75

cftimes
4cftimesPurpose Time factors corresponding to bond cash flow dates (SIA compliant)

Syntax TFactors = cftimes(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. (Time factors are
computed on an actual/actual basis. Basis is included
here as an input argument to maintain interface
consistency with other coupon functions.)

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-76

cftimes
Description TFactors = cftimes(Settle, Maturity, Period, Basis, EndMonthRule,
IssueDate, FirstCouponDate, LastCouponDate, StartDate) determines
the time factors corresponding to the cash flows of a bond or set of bonds. The
time factor of a cash flow is the difference between the settlement date and the
cash flow date in units of semi-annual coupon periods.

Examples Settle = '15-Mar-1997';
Maturity = '01-Sep-1999';
Period = 2;
TFactors = cftimes(Settle, Maturity, Period)

TFactors =

 0.9239 1.9239 2.9239 3.9239 4.9239

See Also accrfrac, cfdates, cfamounts, cpncount, cpndaten, cpndatenq, cpndatep,
cpndatepq, cpndaysn, cpndaysp, cpnpersz

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.
4-77

corr2cov
4corr2covPurpose Convert standard deviation and correlation to covariance

Syntax ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

Arguments

Description corr2cov converts standard deviation and correlation to covariance.

ExpCovariance is an n-by-n covariance matrix, where n is the number of
processes.

ExpCov(i,j) = ExpCorrC(i,j)*(ExpSigma(i)*ExpSigma(j)

Examples ExpSigma = [0.5 2.0];

ExpCorrC = [1.0 -0.5
 -0.5 1.0];

ExpCovariance = corr2cov(ExpSigma, ExpCorrC)

 Expected results:

ExpCovariance =

 0.2500 -0.5000
 -0.5000 4.0000

See Also corrcoef, cov, cov2corr, ewstats, std

ExpSigma Vector of length n with the standard deviations of each
process. n is the number of random processes.

ExpCorrC (Optional) n-by-n correlation coefficient matrix. If ExpCorrC is
not specified, the processes are assumed to be uncorrelated,
and the identity matrix is used.
4-78

cov2corr
4cov2corrPurpose Convert covariance to standard deviation and correlation coefficient

Syntax [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

Arguments

Description [ExpSigma, ExpCorrC] = cov2corr(ExpCovariance) converts covariance to
standard deviations and correlation coefficients.

ExpSigma is a 1-by-n vector with the standard deviation of each process.

ExpCorrC is an n-by-n matrix of correlation coefficients.

ExpSigma(i) = sqrt(ExpCovariance(i,i))
ExpCorrC(i,j) = ExpCovariance(i,j)/(ExpSigma(i)*ExpSigma(j))

Examples ExpCovariance = [0.25 -0.5
 -0.5 4.0];

[ExpSigma, ExpCorrC] = cov2corr(ExpCovariance)

Expected results:

 ExpSigma =

 0.5000 2.0000

ExpCorrC =

 1.0000 -0.5000
 -0.5000 1.0000

See Also corr2cov, corrcoef, cov, ewstats, std

ExpCovariance n-by-n covariance matrix, e.g., from cov or ewstats. n is
the number of random processes.
4-79

cpncount
4cpncountPurpose Coupon payments remaining until maturity (SIA compliant)

Syntax NumCouponsRemaining = cpncount(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-80

cpncount
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description NumCouponsRemaining = cpncount(Settle, Maturity, Period, Basis,
EndMonthRule) returns the whole number of coupon payments between the
settlement and maturity dates for a coupon bond or set of bonds.

Examples NumCouponsRemaining = cpncount('14 Mar 1997', '30 Nov 2000',...
2, 0, 0)

n =
 8

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.
4-81

cpncount
Given three coupon bonds with different maturity dates and the same default
arguments

Maturity = ['30 Sep 2000'; '31 Oct 2001'; '30 Nov 2002'];

NumCouponsRemaining = cpncount('14 Sep 1997', Maturity)

NumCouponsRemaining =

 7
 9
 11

See Also accrfrac, cfamounts, cfdates, cftimes, cpndaten, cpndatenq, cpndatep,
cpndatepq, cpndaysn, cpndaysp, cpnpersz
4-82

cpndaten
4cpndatenPurpose Next coupon date for fixed-income security (SIA compliant)

Syntax NextCouponDate = cpndaten(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.
4-83

cpndaten
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description NextCouponDate = cpndaten(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) returns
the next coupon date after the settlement date. This function finds the next
coupon date whether or not the coupon structure is synchronized with the
maturity date.

NextCouponDate is returned as a serial date number. The function datestr
converts a serial date number to a formatted date string.

Examples NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 0);

datestr(NextCouponDate)

ans =

30-May-1997
4-84

cpndaten
NextCouponDate = cpndaten('14 Mar 1997', '30 Nov 2000', 2, 0, 1);

datestr(NextCouponDate)

ans =

31-May-1997

Maturity = ['30 Sep 2000'; '31 Oct 2000'; '30 Nov 2000'];

NextCouponDate = cpndaten('14 Mar 1997', Maturity);

datestr(NextCouponDate)

ans =

31-Mar-1997
30-Apr-1997
31-May-1997

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndatenq, cpndatep,
cpndatepq, cpndaysn, cpndaysp, cpnpersz
4-85

cpndatenq
4cpndatenqPurpose Next quasi coupon date for fixed income security (SIA compliant)

Syntax NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.
4-86

cpndatenq
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices. Fill unspecified entries in input vectors with the value NaN. Dates can
be serial date numbers or date strings.

Description NextQuasiCouponDate = cpndatenq(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
determines the next quasi coupon date for a portfolio of NUMBONDS fixed income
securities whether or not the first or last coupon is normal, short, or long. For
zero coupon bonds cpndatenq returns quasi coupon dates as if the bond had a
semi-annual coupon structure. Successive quasi coupon dates determine the
length of the standard coupon period for the fixed income security of interest
and do not necessarily coincide with actual coupon payment dates.

Outputs are NUMBONDS-by-1 vectors.

If Settle is a coupon date, this function never returns the settlement date. It
returns the quasi coupon date strictly after settlement.

NextQuasiCouponDate is returned as a serial date number. The function
datestr converts a serial date number to a formatted date string.

Examples Given a pair of bonds with the characteristics

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

Compute NextCouponDate for this pair of bonds.

NextCouponDate = cpndaten(Settle, Maturity);

datestr(NextCouponDate)

ans =

31-May-1997
10-Jun-1998

Compute the next quasi coupon dates for these two bonds.
4-87

cpndatenq
NextQuasiCouponDate = cpndatenq(Settle, Maturity);

datestr(NextQuasiCouponDate)

ans =

31-May-1997
10-Jun-1998

Because no FirstCouponDate has been specified, the results are identical.

Now supply an explicit FirstCouponDate for each bond.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');

Compute the next coupon dates.

NextCouponDate = cpndaten(Settle, Maturity, 2, 0, 1, [],...
FirstCouponDate);

datestr(NextCouponDate)

ans =

30-Nov-1997
10-Dec-1998

The next coupon dates are identical to the specified first coupon dates.

Now recompute the next quasi coupon dates.

NextQuasiCouponDate = cpndatenq(Settle, Maturity, 2, 0, 1, [],...
FirstCouponDate);

datestr(NextQuasiCouponDate)

ans =

31-May-1997
10-Jun-1998

These results illustrate the distinction between actual coupon payment dates
and quasi coupon dates. FirstCouponDate (and LastCouponDate, as well),
4-88

cpndatenq
when specified, is associated with an actual coupon payment and also serves as
the synchronization date for determining all quasi coupon dates. Since each
bond in this example pays semi-annual coupons, and the first coupon date
occurs more than six months after settlement, each will have an intermediate
quasi coupon date before the actual first coupon payment occurs.

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatep,
cpndatepq, cpndaysn, cpndaysp, cpnpersz
4-89

cpndatep
4cpndatepPurpose Previous coupon date for fixed-income security (SIA compliant)

Syntax PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.
4-90

cpndatep
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description PreviousCouponDate = cpndatep(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate) returns
the previous coupon date on or before settlement for a portfolio of bonds. This
function finds the previous coupon date whether or not the coupon structure is
synchronized with the maturity date.

For zero coupon bonds the previous coupon date is the issue date, if available.
However, if the issue date is not supplied, the previous coupon date for zero
coupon bonds is the previous quasi coupon date calculated as if the frequency
is semi-annual.

PreviousCouponDate is returned as a serial date number. The function
datestr converts a serial date number to a formatted date string.
4-91

cpndatep
Examples PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',...
2, 0, 0);

datestr(PreviousCouponDate)

ans =

30-Dec-1996

PreviousCouponDate = cpndatep('14 Mar 1997', '30 Jun 2000',...
2, 0, 1);

datestr(PreviousCouponDate)

ans =

31-Dec-1996

Maturity = ['30 Apr 2000'; '31 May 2000'; '30 Jun 2000'];
PreviousCouponDate = cpndatep('14 Mar 1997', Maturity);

datestr(PreviousCouponDate)

ans =

31-Oct-1996
30-Nov-1996
31-Dec-1996

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq,
cpndatepq, cpndaysn, cpndaysp, cpnpersz
4-92

cpndatepq
4cpndatepqPurpose Previous quasi coupon date for fixed income security (SIA compliant)

Syntax PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.
4-93

cpndatepq
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices. Fill unspecified entries in input vectors with the value NaN. Dates can
be serial date numbers or date strings.

Description PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate)
determines the previous quasi coupon date on or before settlement for a set of
NUMBONDS fixed income securities. This function finds the previous quasi coupon
date for a bond with a coupon structure in which the first or last period is either
normal, short, or long (whether or not the coupon structure is synchronized to
maturity). For zero coupon bonds this function returns quasi coupon dates as
if the bond had a semi-annual coupon structure.

The term “previous quasi coupon date” refers to the previous coupon date for a
bond calculated as if no issue date were specified. Although the issue date is
not actually a coupon date, when issue date is specified, the previous actual
coupon date for a bond is normally calculated as being either the previous
coupon date or the issue date, whichever is greater. This function always
returns the previous quasi coupon date regardless of issue date. If the
settlement date is a coupon date, this function returns the settlement date.

PreviousQuasiCouponDate is returned as a serial date number. The function
datestr converts a serial date number to a formatted date string.

Examples Given a pair of bonds with the characteristics

Settle = char('30-May-1997','10-Dec-1997');
Maturity = char('30-Nov-2002','10-Jun-2004');

With no FirstCouponDate explicitly supplied, compute the
PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity);

datestr(PreviousCouponDate)

ans =

30-Nov-1996
4-94

cpndatepq
10-Dec-1997

Note that since the settlement date for the second bond is also a coupon date,
cpndatep returns this date as the previous coupon date.

Now establish a FirstCouponDate and IssueDate for this pair of bonds.

FirstCouponDate = char('30-Nov-1997','10-Dec-1998');
IssueDate = char('30-May-1996', '10-Dec-1996');

Recompute the PreviousCouponDate for this pair of bonds.

PreviousCouponDate = cpndatep(Settle, Maturity, 2, 0, 1, ...
IssueDate, FirstCouponDate);

datestr(PreviousCouponDate)

ans =

30-May-1996
10-Dec-1996

Since both of these bonds settled before the first coupon had been paid,
cpndatep returns the IssueDate as the PreviousCouponDate.
4-95

cpndatepq
Using the same data, compute PreviousQuasiCouponDate.

PreviousQuasiCouponDate = cpndatepq(Settle, Maturity, 2, 0, 1,...
IssueDate, FirstCouponDate);

datestr(PreviousQuasiCouponDate)

ans =

30-Nov-1996
10-Dec-1997

For the first bond the settlement date is not a normal coupon date. The
PreviousQuasiCouponDate is the coupon date prior to or on the settlement
date. Since the coupon structure is synchronized to FirstCouponDate, the
previous quasi coupon date is 30-Nov-1996. PreviousQuasiCouponDate
disregards IssueDate and FirstCouponDate in this case. For the second bond
the settlement date (10-Dec-1997) occurs on a date when a coupon would
normally be paid in the absence of an explicit FirstCouponDate. cpndatepq
returns this date as PreviousQuasiCouponDate.

 See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq,
cpndatep, cpndaysn, cpndaysp, cpnpersz
4-96

cpndaysn
4cpndaysnPurpose Number of days to next coupon date (SIA compliant)

Syntax NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-97

cpndaysn
Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description NumDaysNext = cpndaysn(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns the number of days from the settlement date to the next
coupon date for a bond or set of bonds. For zero coupon bonds coupon dates are
computed as if the bonds have a semi-annual coupon structure.

Examples NumDaysNext = cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 0)

NumDaysNext =

 107

NumDaysNext = cpndaysn('14 Sep 2000', '30 Jun 2001', 2, 0, 1)

NumDaysNext =

 108

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.
4-98

cpndaysn
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysNext = cpndaysn('14 Sep 2000', Maturity)

NumDaysNext =

 47
 77
 108

See Also accrfrac, cfamounts, cftimes, cfdates, cpncount, cpndaten, cpndatenq,
cpndatep, cpndatepq, cpndaysp, cpnpersz
4-99

cpndaysp
4cpndayspPurpose Number of days since previous coupon date (SIA compliant)

Syntax NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-100

cpndaysp
Required arguments must be a number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description NumDaysPrevious = cpndaysp(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns the number of days between the previous coupon date and
the settlement date for a bond or set of bonds. When the coupon frequency is 0
(a zero coupon bond), the previous coupon date is calculated as if the frequency
were semi-annual.

Examples NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 0)

NumDaysPrevious =

 75

NumDaysPrevious = cpndaysp('14 Mar 2000', '30 Jun 2001', 2, 0, 1)

NumDaysPrevious =

 74

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.
4-101

cpndaysp
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysPrevious = cpndaysp('14 Mar 2000', Maturity)

NumDaysPrevious =

 135
 105
 74

See Also accrfrac, cfamounts, cfdates, cftimes, cpncount, cpndaten, cpndatenq,
cpndatep, cpndatepq, cpndaysn, cpnpersz
4-102

cpnpersz
4cpnperszPurpose Number of days in coupon period (SIA compliant)

Syntax NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.
4-103

cpnpersz
Required arguments must be a number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must be
either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars, or empty
matrices.

Description NumDaysPeriod = cpnpersz(Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate) returns the number of days in the coupon period containing the
settlement date. For zero coupon bonds coupon dates are computed as if the
bonds have a semi-annual coupon structure.

Examples NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 0)

NumDaysPeriod =

 183

NumDaysPeriod = cpnpersz('14 Sep 2000', '30 Jun 2001', 2, 0, 1)

NumDaysPeriod =

 184

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and will be followed only by
the bond’s maturity cash flow date.

StartDate (Future implementation; optional) Date when a bond
actually starts (the date from which a bond’s cash flows
can be considered). To make an instrument
forward-starting, specify this date as a future date. If
StartDate is not explicitly specified, the effective start
date is the settlement date.
4-104

cpnpersz
Maturity = ['30 Apr 2001'; '31 May 2001'; '30 Jun 2001'];

NumDaysPeriod = cpnpersz('14 Sep 2000', Maturity)

NumDaysPeriod =

 184
 183
 184

See Also accrfrac, cfamounts, cfdates, cpncount, cpndaten, cpndatenq, cpndatep,
cpndatepq, cpndaysn, cpndaysp
4-105

cur2frac
4cur2fracPurpose Decimal currency values to fractional values

Syntax Fraction = cur2frac(Decimal, Denominator)

Description Fraction = cur2frac(Decimal, Denominator) converts decimal currency
values to fractional values. Fraction is returned as a string.

Examples Fraction = cur2frac(12.125, 8)

returns Fraction = 12.1, a string.

See Also cur2str, frac2cur
4-106

cur2str
4cur2strPurpose Bank formatted text

Syntax String = cur2str(Value, Digits)

Description String = cur2str(Value, Digits) returns the given value in bank format.
By default, Digits = 2. A negative Digits rounds the value to the left of the
decimal point. String is returned as a string with a leading dollar sign ($).
Negative numbers are displayed in parentheses.

Examples String = cur2str(−8264, 2)

returns String = ($8264.00)

See Also cur2frac, frac2cur
4-107

dateaxis
4dateaxisPurpose Convert serial-date axis labels to calendar-date axis labels

Syntax dateaxis(Aksis, DateForm, StartDate)

Arguments

Description dateaxis(Aksis, DateForm, StartDate) replaces axis tick labels with date
labels on a graphic figure.

See the MATLAB set command for information on modifying the axis tick
values and other axis parameters.

Aksis (Optional) Determines which axis tick labels—x, y, or z—to
replace. Enter as a string. Default = 'x'.

DateForm (Optional) Specifies which date format to use. Enter as an
integer from 0 to 17. If no DateForm argument is entered,
this function determines the date format based on the span
of the axis limits. For example, if the difference between the
axis minimum and maximum is less than 15, the tick labels
are converted to three-letter day-of-the-week abbreviations
(DateForm = 8). See DateForm format descriptions below.

StartDate (Optional) Assigns the date to the first axis tick value. Enter
as a string. The tick values are treated as serial date
numbers. The default StartDate is the lower axis limit
converted to the appropriate date number. For example, a
tick value of 1 is converted to the date 01-Jan-0000.
Entering StartDate as '06-apr-1999' assigns the date
April 6, 1999 to the first tick value and the axis tick labels
are set accordingly.

DateForm Format Description

0 01-Mar-1999 15:45:17 day-month-year hour:minute:second

1 01-mar-1999 day-month-year

2 03/01/99 month/day/year

3 Mar month, three letters
4-108

dateaxis
Examples dateaxis('x') or dateaxis

converts the x-axis labels to an automatically determined date format.

dateaxis('y', 6)

converts the y-axis labels to the month/day format.

dateaxis('x', 2, '03/03/1999')

converts the x-axis labels to the month/day/year format. The minimum x-tick
value is treated as March 3, 1999.

See Also bolling, candle, datenum, datestr, highlow, movavg, pointfig

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 Wed day of week, three letters

9 W day of week, single letter

10 1999 year, four digits

11 99 year, two digits

12 Mar99 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:minute

16 03:45 PM hour:minute AM or PM

17 95/03/01 year month day

DateForm Format Description
4-109

datedisp
4datedispPurpose Display date entries

Syntax datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

Arguments

Description datedisp(NumMat, DateForm) displays a matrix with the serial dates
formatted as date strings, using a matrix with mixed numeric entries and
serial date number entries. Integers between datenum('01-Jan-1900') and
datenum('01-Jan-2200') are assumed to be serial date numbers, while all
other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is
assigned, the function prints the array to the display.

Examples NumMat = [730730, 0.03, 1200 730100;
 730731, 0.05, 1000 NaN]

NumMat =

 1.0e+05 *

 7.3073 0.0000 0.0120 7.3010
 7.3073 0.0000 0.0100 NaN

datedisp(NumMat)

01-Sep-2000 0.03 1200 11-Dec-1998
02-Sep-2000 0.05 1000 NaN

See Also datestr

NumMat Numeric matrix to display

DateForm (Optional) Date format. See datestr for available and default
format flags.
4-110

datefind
4datefindPurpose Indices of date numbers in matrix

Syntax Indices = datefind(Subset, Superset, Tolerance)

Arguments

Description Indices = datefind(Subset, Superset, Tolerance) returns a vector of
indices to the date numbers in Superset that are present in Subset, plus or
minus the Tolerance. If no date numbers match, Indices = [].

Although this function was designed for use with sequential date numbers, you
can use it with any nonrepeating integers.

Examples Superset = datenum(1999, 7, 1:31);

Subset = [datenum(1999, 7, 10); datenum(1999, 7, 20)];

Indices = datefind(Subset, Superset, 1)

Indices =

 9
 10
 11
 19
 20
 21

See Also datenum

Subset Subset matrix of date numbers used to find matching date
numbers in Superset. These date numbers must be a
nonrepeating subset of those in Superset.

Superset Superset matrix of nonrepeating date numbers whose elements
are sought.

Tolerance (Optional) Tolerance (+/-) for matching the date numbers in
Superset. A positive integer. Default = 0.
4-111

datemnth
4datemnthPurpose Date of day in future or past month

Syntax TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis,
EndMonthRule)

Arguments

Any input can contain multiple values, but if so, all other inputs must contain
the same number of values or a single value that applies to all. For example, if
StartDate is an n-row character array of date strings, then NumberMonths must
be an n-by-1 vector of integers or a single integer. TargetDate is then an n-by-1
vector of date numbers.

Description TargetDate = datemnth(StartDate, NumberMonths, DayFlag, Basis,
EndMonthRule) returns the serial date number of the target date in the future
or past.

Use datestr to convert serial date numbers to formatted date strings.

StartDate Enter as serial date numbers or date strings.

NumberMonths Vector containing number of months in future (positive) or past
(negative). Values must be in integer form.

DayFlag (Optional) Vector containing values that specify how the actual
day number for the target date in future or past month is
determined. 0 (default) = day number should be the day in the
future or past month corresponding to the actual day number of
the start date. 1 = day number should be the first day of the
future or past month. 2 = day number should be the last day of
the future or past month.

This flag has no effect if EndMonthRule is set to 1.

Basis (Optional) Day-count basis: 0 = actual/actual (default), 1 =
30/360, 2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. 1 = rule in effect,
meaning that if you are beginning on the last day of a month, and
the month has 30 or fewer days, you will end on the last actual
day of the future or past month regardless of whether that month
has 28, 29, 30 or 31 days)

0 = rule off (default), meaning that the rule is not in effect.
4-112

datemnth
Examples Day = datemnth('3 jun 2001', 6, 0, 0, 0)
Day =
 731188
datestr(Day)
ans =
03-Dec-2001

Day = datemnth('3 jun 2001', 6, 1, 0, 1); datestr(Day)
ans =
01-Dec-2001

Day = datemnth('31 jan 2001', 5, 0, 0, 0); datestr(Day)
ans =
30-Jun-2001

Day = datemnth('31 jan 2001', 5, 1, 0, 0); datestr(Day)
ans =
01-Jun-2001

Day = datemnth('31 jan 2001', 5, 1, 0, 1); datestr(Day)
ans =
30-Jun-2001

Day = datemnth('31 jan 2001', 5, 2, 0, 1); datestr(Day)
ans =
30-Jun-2001

Months = [1; 3; 5; 7; 9];
Day = datemnth('31 jan 2001', Months); datestr(Day)
ans =
28-Feb-2001
30-Apr-2001
30-Jun-2001
31-Aug-2001
31-Oct-2001

See Also datestr, datevec, days360, days365, daysact, daysdif, wrkdydif
4-113

datenum
4datenumPurpose Create date number

Syntax DateNumber = datenum(DateString)
DateNumber = datenum(DateString, Pivot)
DateNumber = datenum(Year, Month, Day)
DateNumber = datenum(Year, Month, Day, Hour, Minute, Second)

Description DateNumber = datenum(DateString) returns a serial date number given a
date string. Date numbers are the number of days that has passed since a base
date. In MATLAB, date number 1 is January 1, 0000 A.D. If the input includes
time components, the date number includes a fractional component. If the
input is only a time component, the date number is only a fractional time
component.

The date string can be any of several forms.

'19-may-1999'
'may 19, 1999'
'19-may-99'
'19-may' (current year assumed)
'5/19/99'
'5/19' (current year assumed)
'19-may-1999, 18:37'
'19-may-1999, 6:37 pm'
'5/19/99/18:37'
'5/19/99/6:37 pm'
'18:37'

Unless you specify a pivot year, date strings with two-character years, e.g.,
12-june-12, are assumed to lie within the 100-year period centered about the
current year.

DateNumber = datenum(DateString, Pivot) assumes that two-character
years lie within the 100-year period beginning with the pivot year. The default
pivot year is the current year minus 50 years.
4-114

datenum
DateNumber = datenum(Year, Month, Day) returns a serial date number
given year, month, and day integers.

DateNumber = datenum(Year, Month, Day, Hour, Minute, Second)
returns a serial date number given year, month, day, hour, minute, and second
integers.

Note This function now ships with basic MATLAB. It originally shipped only
with the Financial Toolbox. This description remains here for your
convenience.

Examples DateNumber = datenum('19-may-1999')
DateNumber = 730259

DateNumber = datenum('5/19/99')
DateNumber = 730259

DateNumber = datenum('19-may-1999, 6:37 pm')
DateNumber = 730259.78

DateNumber = datenum('5/19/99/18:37')
DateNumber = 730259.78

DateNumber = datenum('6:37 pm')
DateNumber = 0.78

DateNumber = datenum(1999, 5, 19)
DateNumber = 730259

DateNumber = datenum(1999, 1:6, 19)
DateNumber = [730139 730170 730198 730229 730259 730290]

DateNumber = datenum(1999, 5, 19, 18, 37, 0)
DateNumber = 730259.78

DateNumber = datenum(730259)
DateNumber = 730259
4-115

datenum
The next example demonstrates the use of the pivot year in interpreting date
strings with two-character years.

DateNumber = datenum('12-june-12)
DateNumber =

735032
datestr(735032)
ans =
12-Jun-2012

DateNumber = datenum('12-june-12 ,1900)
DateNumber =

698507
datestr(698507)
ans =
12-Jun-1912

See Also datedisp, datestr, datevec, daysact, now, today
4-116

datestr
4datestrPurpose Create date string

Syntax DateString = datestr(Date, DateForm)
DateString = datestr(Date, DateForm, Pivot)
DateString = datestr(Date)

Description DateString = datestr(Date, DateForm) converts a date number or a date
string to a date string. DateForm specifies the format of DateString. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

DateString = datestr(Date, DateForm, Pivot) assumes that
two-character years lie within the 100-year period beginning with the pivot
year. The default pivot year is the current year minus 50 years.

Note MATLAB’s internal date handling and calculations generate no
ambiguous values. However, whenever possible, programmers should use date
strings containing four-digit years or serial date numbers.

DateString = datestr(Date) assumes DateForm is 1, 16, or 0 depending on
whether the date number Date contains a date, time, or both, respectively. If
Date is a date string, the function assumes DateForm is 1.

DateForm Format Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000
15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01
4-117

datestr
7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1 01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000
15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY Q1-2001

28 'mmmyyyy' Mar2000

DateForm Format Example
4-118

datestr
Note This function now ships with basic MATLAB. It originally shipped only
with the Financial Toolbox. This description remains here for your
convenience.

Examples DateString = datestr(730123, 1)
DateString = 03-Jan-1999

DateString = datestr(730123, 2)
DateString = 01/03/99

DateString = datestr(730123, 12)
DateString = Jan99

DateString = datestr(730123.776, 0)
DateString = 03-Jan-1999 18:37:26

DateString = datestr('1/03', 1) (assuming the current year is 1999)
DateString = 03-Jan-1999

DateString = datestr(730123)
DateString = 03-Jan-1999

DateString = datestr([730123 730154 730182 730213 730243 730274])
DateString =
03-Jan-1999
03-Feb-1999
03-Mar-1999
03-Apr-1999
03-May-1999
03-Jun-1999

DateString = datestr('1/03')
DateString = 03-Jan-1999 (assuming the current year is 1999)

See Also dateaxis, datedisp, datenum, datevec, daysact, now, today
4-119

datevec
4datevecPurpose Date components

Syntax DateVector = datevec(Date)
DateVector = datevec(Date, Pivot)
[Year, Month, Day, Hour, Minute, Second] = datevec(Date)

Description DateVector = datevec(Date) converts a date number or a date string to a
date vector whose elements are [Year Month Day Hour Minute Second]. The
first five elements are integers, the sixth is a floating-point number. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

DateVector = datevec(Date, Pivot) assumes that two-character years lie
within the 100-year period beginning with the pivot year. The default pivot
year is the current year minus 50 years.

Note MATLAB’s internal date handling and calculations generate no
ambiguous values. However, whenever possible, programmers should use date
strings containing four-digit years or serial date numbers.

[Year, Month, Day, Hour, Minute, Second] = datevec(Date) converts a
date number or a date string to a date vector and returns the components of the
date vector as individual variables.

Note This function now ships with basic MATLAB. It originally shipped only
with the Financial Toolbox. This description remains here for your
convenience.

Examples DateVec = datevec('28-Jul-00')
DateVec =
 2000 7 28 0 0 0

DateVec = datevec(730695)
DateVec =
 2000 7 28 0 0 0
4-120

datevec
DateVec = datevec(730695.776)

DateVec =
 2000 7 28 18 37 26.4

[Year, Month, Day, Hour, Minute, Second] = datevec(730695.776)

Year =
 2000

Month =
 7

Day =
 28

Hour =
 18

Minute =
 37

Second =
 26.4

[Year, Month, Day] = datevec(730695:730697)

Year =
 2000 2000 2000

Month =
 7 7 7

Day =
 28 29 30

See Also datenum, datestr, now, today
4-121

datewrkdy
4datewrkdyPurpose Date of future or past workday

Syntax EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)

Arguments

Any input can contain multiple values, but if so, all other inputs must contain
the same number of values or a single value that applies to all. For example, if
StartDate is an n-row character array of date strings, then NumberWorkDays
must be an n-by-1 vector of integers or a single integer. EndDate is then an
n-by-1 vector of date numbers.

Description EndDate = datewrkdy(StartDate, NumberWorkDays, NumberHolidays)
returns the serial number of the date a given number of workdays before or
after the start date.

Use datestr to convert serial date numbers to formatted date strings.

Examples Workday = datewrkdy('12-dec-2000', 16, 2);
datestr(Workday)
ans =
04-Jan-2001
NumDays = [16; 20; 44];
Workdays = datewrkdy('12-dec-2000', NumDays, 2);
datestr(Workdays)
ans =
4-Jan-2001
10-Jan-2001
13-Feb-2001

See Also busdate, holidays, isbusday, wrkdydif

StartDate Start date vector. Enter as serial date numbers or date
strings.

NumberWorkDays Vector containing number of work or business days in
future (positive) or past (negative), including the starting
date.

NumberHolidays Vector containing values for the number of holidays
within NumberWorkDays. NumberHolidays and
NumberWorkDays must have the same sign.
4-122

day
4dayPurpose Day of month

Syntax DayMonth = day(Date)

Description DayMonth = day(Date) returns the day of the month given a serial date
number or date string.

Examples DayMonth = day(730544)

or

DayMonth = day('2/28/00')

returns DayMonth = 28

See Also datevec, eomday, month, year
4-123

days360
4days360Purpose Days between dates based on 360-day year

Syntax NumDays = days360(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the
same number of values or a single value that applies to all. For example, if
StartDate is an n-row character array of date strings, then EndDate must be
an n-by-1 vector of integers or a single integer. NumDays is then an n-by-1 vector
of date numbers.

Description NumDays = days360(StartDate, EndDate) returns the number of days
between StartDate and EndDate based on a 360-day year (i.e., all months
contain 30 days). If EndDate is earlier than StartDate, NumDays is negative.

Examples NumDays = days360('15-jan-2000', '15-mar-2000')

NumDays =

 60

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days360('15-jan-2000', MoreDays)

NumDays =

 60
 90
 150

See Also days365, daysact, daysdif, wrkdydif, yearfrac

References Addendum to Securities Industry Association, Standard Securities Calculation
Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2,
Spring 1995.

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.
4-124

days365
4days365Purpose Days between dates based on 365-day year

Syntax NumDays = days365(StartDate, EndDate)

Arguments

Either input can contain multiple values, but if so, the other must contain the
same number of values or a single value that applies to all. For example, if
StartDate is an n-row character array of date strings, then EndDate must be
an n-by-1 vector of integers or a single integer. NumDays is then an n-by-1 vector
of date numbers.

Description NumDays = days365(StartDate, EndDate) returns the number of days
between dates StartDate and EndDate based on a 365-day year. (All months
contain their actual number of days. February always contains 28 days.) If
EndDate is earlier than StartDate, NumDays is negative. Enter dates as serial
date numbers or date strings.

Examples NumDays = days365('15-jan-2000', '15-mar-2000')

NumDays =

 59

MoreDays = ['15-mar-2000'; '15-apr-2000'; '15-jun-2000'];

NumDays = days365('15-jan-2000', MoreDays)

NumDays =

 59
 90
 151

See Also days360, daysact, daysdif, wrkdydif, yearfrac

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.
4-125

daysact
4daysactPurpose Actual number of days between dates

Syntax NumDays = daysact(StartDate, EndDate)

Arguments

Either input argument can contain multiple values, but if so, the other input
must contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings, then
EndDate must be an n-row character array of date strings or a single date.
NumDays is then an n-by-1 vector of numbers.

Description NumDays = daysact(StartDate, EndDate) returns the actual number of days
between two dates. Enter dates as serial date numbers or date strings.
NumDays is negative if EndDate is earlier than StartDate.

NumDays = daysact(StartDate) returns the actual number of days between
the MATLAB base date and StartDate. In MATLAB, the base date 1 is
1-Jan-0000 A.D. See datenum for a similar function.

Examples NumDays = daysact('7-sep-2002', '25-dec-2002')
NumDays =
 109

NumDays = daysact('9/7/2002')
NumDays =
 731466

MoreDays = ['09/07/2002'; '10/22/2002'; '11/05/2002'];
NumDays = daysact(MoreDays, '12/25/2002')
NumDays =
 109
 64
 50

See Also datenum, datevec, days360, days365, daysdif

StartDate Enter as serial date numbers or date strings.

EndDate (Optional) Enter as serial date numbers or date strings.
4-126

daysdif
4daysdifPurpose Days between dates for any day-count basis

Syntax NumDays = daysdif(StartDate, EndDate, Basis)

Arguments

Any input argument can contain multiple values, but if so, the other inputs
must contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings, then
EndDate must be an n-row character array of date strings or a single date.
NumDays is then an n-by-1 vector of numbers.

Description NumDays = daysdif(StartDate, EndDate, Basis) returns the number of
days between dates StartDate and EndDate using the given day-count basis.
Enter dates as serial date numbers or date strings.

This function is a helper function for the bond pricing and yield functions. It is
designed to make the code more readable and to eliminate redundant calls
within if statements.

Examples NumDays = daysdif('3/1/99', '3/1/00', 1)
NumDays =
 360

MoreDays = ['3/1/2001'; '3/1/2002'; '3/1/2003'];
NumDays = daysdif('3/1/98', MoreDays)
NumDays =
 1096
 1461
 1826

See Also datenum, days360, days365, daysact, wrkdydif, yearfrac

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-127

depfixdb
4depfixdbPurpose Fixed declining-balance depreciation schedule

Syntax Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)

Arguments

Description Depreciation = depfixdb(Cost, Salvage, Life, Period, Month)
calculates the fixed declining-balance depreciation for each period.

Examples A car is purchased for $11,000 with a salvage value of $1500 and a lifetime of
eight years. To calculate the depreciation for the first five years

Depreciation = depfixdb(11000, 1500, 8, 5)

returns

Depreciation =
 2425.08 1890.44 1473.67 1148.78 895.52

See Also depgendb, deprdv, depsoyd, depstln

Cost Initial value of the asset.

Salvage Salvage value of the asset.

Life Life of the asset in years.

Period Number of years to calculate.

Month (Optional) Number of months in the first year of asset life.
Default = 12.
4-128

depgendb
4depgendbPurpose General declining-balance depreciation schedule

Syntax Depreciation = depgendb(Cost, Salvage, Life, Factor)

Arguments

Description Depreciation = depgendb(Cost, Salvage, Life, Factor) calculates the
declining-balance depreciation for each period.

Examples A car is purchased for $11,000 and is to be depreciated over five years. The
estimated salvage value is $1000. Using the double-declining-balance method,
the function calculates the depreciation for each year and returns the
remaining depreciable value at the end of the life of the car.

Depreciation = depgendb(11000, 1000, 5, 2)

returns

Depreciation =
 4400.00 2640.00 1584.00 950.40 425.60

See Also depfixdb, deprdv, depsoyd, depstln

Cost Cost of the asset.

Salvage Estimated salvage value of the asset.

Life Number of periods over which the asset is depreciated.

Factor Depreciation factor. Factor = 2 uses the
double-declining-balance method.
4-129

deprdv
4deprdvPurpose Remaining depreciable value

Syntax Value = deprdv(Cost, Salvage, Accum)

Arguments

Description Value = deprdv(Cost, Salvage, Accum) returns the remaining depreciable
value for an asset.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value is
$1000. First find the accumulated depreciation with the straight-line
depreciation function, depstln. Then find the remaining depreciable value
after six years.

Accum = depstln(13000, 1000, 10) * 6

Accum =
 7200.00

Value = deprdv(13000, 1000, 7200)

Value =
 4800.00

See Also depfixdb, depgendb, depsoyd, depstln

Cost Cost of the asset.

Salvage Salvage value of the asset.

Accum Accumulated depreciation of the asset for prior periods.
4-130

depsoyd
4depsoydPurpose Sum of years’ digits depreciation

Syntax Sum = depsoyd(Cost, Salvage, Life)

Arguments

Description Sum = depsoyd(Cost, Salvage, Life) calculates the depreciation for an
asset using the sum of years’ digits method. Sum is a 1-by-Life vector of
depreciation values with each element corresponding to a year of the asset’s
life.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value of the
asset is $1000.

Sum = depsoyd(13000, 1000, 10)'

returns

Sum =
 2181.82
 1963.64
 1745.45
 1527.27
 1309.09
 1090.91
 872.73
 654.55
 436.36
 218.18

See Also depfixdb, depgendb, deprdv, depstln

Cost Cost of the asset.

Salvage Salvage value of the asset.

Life Depreciable life of the asset in years.
4-131

depstln
4depstlnPurpose Straight-line depreciation schedule

Syntax Depreciation = depstln(Cost, Salvage, Life)

Arguments

Description Depreciation = depstln(Cost, Salvage, Life) calculates straight-line
depreciation for an asset.

Examples The cost of an asset is $13,000 with a life of 10 years. The salvage value of the
asset is $1000.

Depreciation = depstln(13000, 1000, 10)

returns

Depreciation =
 1200

See Also depfixdb, depgendb, deprdv, depsoyd

Cost Cost of the asset.

Salvage Salvage value of the asset.

Life Depreciable life of the asset in years.
4-132

disc2zero
4disc2zeroPurpose Zero curve given a discount curve

Syntax [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle,
OutputCompounding, OutputBasis)

Arguments DiscRates Column vector of discount factors, as decimal fractions. In
aggregate, the factors in DiscRates constitute a discount
curve for the investment horizon represented by
CurveDates.

CurveDates Column vector of maturity dates (as serial date numbers)
that correspond to the discount factors in DiscRates.

Settle Serial date number that is the common settlement date for
the discount rates in DiscRates.

OutputCompounding (Optional) Output compounding. A scalar that sets the
compounding frequency per year for annualizing the
output zero rates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

OutputBasis (Optional) Output day-count basis for annualizing the
output zero rates. Allowed values are:

0 actual/actual (default)

1 30/360

2 actual/360

3 actual/365
4-133

disc2zero
Description [ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates, Settle,
OutputCompounding, OutputBasis) returns a zero curve given a discount
curve and its maturity dates.

Examples Given discount factors DiscRates over a set of maturity dates CurveDates, and
a settlement date Settle

DiscRates = [0.9996
 0.9947
 0.9896
 0.9866
 0.9826
 0.9786
 0.9745
 0.9665
 0.9552
 0.9466];

CurveDates = [datenum('06-Nov-2000')
 datenum('11-Dec-2000')
 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Set daily compounding for the output zero curve, on an actual/365 basis.

ZeroRates Column vector of decimal fractions. In aggregate, the rates in
ZeroRates constitute a zero curve for the investment horizon
represented by CurveDates. The zero rates are the yields to
maturity on theoretical zero-coupon bonds.

CurveDates Column vector of maturity dates (as serial date numbers) that
correspond to the zero rates. This vector is the same as the input
vector CurveDates.
4-134

disc2zero
OutputCompounding = 365;
OutputBasis = 3;

Execute the function

[ZeroRates, CurveDates] = disc2zero(DiscRates, CurveDates,...
Settle, OutputCompounding, OutputBasis)

which returns the zero curve ZeroRates at the maturity dates CurveDates.

ZeroRates =
 0.0487
 0.0510
 0.0523
 0.0524
 0.0530
 0.0526
 0.0530
 0.0532
 0.0549
 0.0536

CurveDates =
 730796
 730831
 730866
 730887
 730914
 730943
 730971
 731027
 731098
 731167

For readability, DiscRates and ZeroRates are shown here only to the basis
point. However, MATLAB computed them at full precision. If you enter
DiscRates as shown, ZeroRates may differ due to rounding.

See Also zero2disc and other functions for Term Structure of Interest Rates
4-135

discrate
4discratePurpose Bank discount rate of a money market security

Syntax DiscRate = discrate(Settle, Maturity, Face, Price, Basis)

Arguments

Description DiscRate = discrate(Settle, Maturity, Face, Price, Basis) finds the
bank discount rate of a security. The bank discount rate normalizes by the face
value of the security (e.g., U. S. Treasury Bills) and understates the true yield
earned by investors.

Examples DiscRate = discrate('12-jan-2000', '25-jun-2000', 100, 97.74, 0)

returns

DiscRate =

 0.0501

a discount rate of 5.01%.

See Also acrudisc, fvdisc, prdisc, ylddisc

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.
Formula 1.

Settle Enter as serial date number or date string. Settle must be
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Price of the security.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-136

effrr
4effrrPurpose Effective rate of return

Syntax Return = effrr(Rate, NumPeriods)

Arguments

Description Return = effrr(Rate, NumPeriods) calculates the annual effective rate of
return. Compounding continuously returns Return equivalent to (e^Rate-1).

Examples Find the effective annual rate of return based on an annual percentage rate of
9% compounded monthly.

Return = effrr(0.09, 12)

returns

Return =

 0.0938 or 9.38%

See Also nomrr

Rate Annual percentage rate. Enter as a decimal fraction.

NumPeriods Number of compounding periods per year, an integer.
4-137

eomdate
4eomdatePurpose Last date of month

Syntax DayMonth = eomdate(Year, Month)

Description DayMonth = eomdate(Year, Month) returns the serial date number of the last
date of the month for the given year and month. Enter Year as a four-digit
integer; enter Month as an integer from 1 to 12.

Either input argument can contain multiple values, but if so, the other input
must contain the same number of values or a single value that applies to all.
For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n
vector of integers or a single integer. DayMonth is then a 1-by-n vector of date
numbers.

Use the function datestr to convert serial date numbers to formatted date
strings.

Examples DayMonth = eomdate(2001, 2)
DayMonth =
 730910
datestr(DayMonth)

ans =
28-Feb-2001

Year = [2002 2003 2004 2005];
DayMonth = eomdate(Year, 2)
DayMonth =
 731275 731640 732006 732371

datestr(DayMonth)

ans =
28-Feb-2002
28-Feb-2003
29-Feb-2004
28-Feb-2005

See Also day, eomday, lbusdate, month, year
4-138

eomday
4eomdayPurpose Last day of month

Syntax Day = eomday(Year, Month)

Description Day = eomday(Year, Month) returns the last day of the month for the given
year and month. Enter Year as a four-digit integer; enter Month as an integer
from 1 to 12.

Either input argument can contain multiple values, but if so, the other input
must contain the same number of values or a single value that applies to all.
For example, if Year is a 1-by-n vector of integers, then Month must be a 1-by-n
vector of integers or a single integer. Day is then a 1-by-n vector of days.

Note This function now ships with basic MATLAB. It originally shipped only
with the Financial Toolbox. This description remains here for your
convenience.

Examples Day = eomday(2000, 2)

Day =

 29

See Also day, eomdate, month
4-139

ewstats
4ewstatsPurpose Expected return and covariance from return time series

Syntax [ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries,
DecayFactor, WindowLength)

Arguments

Description [ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries,
DecayFactor, WindowLength) computes estimated expected returns,
estimated covariance matrix, and the number of effective observations.

ExpReturn is a 1-by-NASSETS vector of estimated expected returns.

ExpCovariance is an NASSETS-by-NASSETS estimated covariance matrix. The
standard deviations of the asset return processes are given by

 STDVec = sqrt(diag(ExpCovariance))

The correlation matrix is

 CorrMat = ExpCovariance./(STDVec*STDVec')

NumEffObs is the number of effective observations =
(1-DecayFactor^WindowLength)/(1-DecayFactor).

A smaller DecayFactor or WindowLength emphasizes recent data more strongly
but uses less of the available data set.

RetSeries Return Series: number of observations (NUMOBS) by number
of assets (NASSETS) matrix of equally spaced incremental
return observations. The first row is the oldest observation,
and the last row is the most recent.

DecayFactor (Optional) Controls how much less each observation is
weighted than its successor. The kth observation back in
time has weight DecayFactor^k. DecayFactor must lie in
the range: 0 < DecayFactor <= 1.

Default = 1, the equally weighted linear moving average
model (BIS).

WindowLength (Optional) Number of recent observations in the
computation. Default = NUMOBS.
4-140

ewstats
Examples RetSeries = [0.24 0.08
 0.15 0.13
 0.27 0.06
 0.14 0.13];

DecayFactor = 0.98;

[ExpReturn, ExpCovariance] = ewstats(RetSeries, DecayFactor)

ExpReturn =

 0.1995 0.1002

ExpCovariance =

 0.0032 -0.0017
 -0.0017 0.0010

See Also cov, mean
4-141

fbusdate
4fbusdatePurpose First business date of month

Syntax Date = fbusdate(Year, Month, Holiday)

Arguments

Description Date = fbusdate(Year, Month, Holiday) returns the serial date number for
the first business date of the given year and month. Holiday specifies
nontrading days.

Year and Month can contain multiple values. If one contains multiple values,
the other must contain the same number of values or a single value that applies
to all. For example, if Year is a 1-by-n vector of integers, then Month must be a
1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date
numbers.

Use the function datestr to convert serial date numbers to formatted date
strings.

Examples Date = fbusdate(2001, 11); datestr(Date)
ans =
01-Nov-2001

Year = [2002 2003 2004];
Date = fbusdate(Year, 11); datestr(Date)

ans =
01-Nov-2002
03-Nov-2003
01-Nov-2004

See Also busdate, eomdate, holidays, isbusday, lbusdate

Year Enter as four-digit integer.

Month Enter as integer from 1 to 12.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates
in Holiday must be the same format: either serial date numbers or
date strings. (Using date numbers improves performance.) The
holidays function supplies the default vector.
4-142

frac2cur
4frac2curPurpose Fractional currency value to decimal value

Syntax Decimal = frac2cur(Fraction, Denominator)

Description Decimal = frac2cur(Fraction, Denominator) converts a fractional
currency value to a decimal value. Fraction is the fractional currency value
input as a string, and Denominator is the denominator of the fraction.

Examples Decimal = frac2cur('12.1', 8)

returns

 Decimal =
 12.1250

See Also cur2frac, cur2str
4-143

frontcon
4frontconPurpose Mean-variance efficient frontier

Syntax [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,
ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups,
GroupBounds)

Arguments ExpReturn 1 by number of assets (NASSETS) vector specifying the
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of
asset returns.

NumPorts (Optional) Number of portfolios generated along the
efficient frontier. Returns are equally spaced between
the maximum possible return and the minimum risk
point. If NumPorts is empty (entered as [], frontcon
computes 10 equally spaced points. When entering a
target rate of return (PortReturn), enter NumPorts as an
empty matrix [].

PortReturn (Optional) Vector of length equal to the number of
portfolios (NPORTS) containing the target return values
on the frontier. If PortReturn is not entered or [],
NumPorts equally spaced returns between the minimum
and maximum possible values are used.

AssetBounds (Optional) 2-by-NASSETS matrix containing the lower and
upper bounds on the weight allocated to each asset in
the portfolio. Default lower bound = all 0s (no
short-selling). Default upper bound = all 1s (any asset
may constitute the entire portfolio).
4-144

frontcon
Description [PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,
ExpCovariance, NumPorts, PortReturn, AssetBounds, Groups,
GroupBounds) returns the mean-variance efficient frontier with user-specified
asset constraints, covariance, and returns. For a collection of NASSETS risky
assets, computes a portfolio of asset investment weights that minimize the risk
for given values of the expected return. The portfolio risk is minimized subject
to constraints on the asset weights or on groups of asset weights.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is a NPORTS-by-1 vector of the expected return of each portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset.
Each row represents a portfolio. The total of all weights in a portfolio is 1.

frontcon generates a plot of the efficient frontier if you invoke it without
output arguments.

The asset returns are assumed to be jointly normal, with expected mean
returns of ExpReturn and return covariance ExpCovariance. The variance of a
portfolio with 1-by-NASSETS weights PortWts is given by
PortVar = PortWts*ExpCovariance*PortWts'. The portfolio expected return
is PortReturn = dot(ExpReturn, PortWts).

Groups (Optional) Number of groups (NGROUPS)-by-NASSETS
matrix specifying NGROUPS asset groups or classes. Each
row specifies a group. Groups(i,j) = 1 (jth asset
belongs in the ith group). Groups(i,j) = 0 (jth asset
not a member of the ith group).

GroupBounds (Optional) NGROUPS-by-2 matrix specifying, for each
group, the lower and upper bounds of the total weights of
all assets in that group. Default lower bound = all 0s.
Default upper bound = all 1s.
4-145

frontcon
Examples Given three assets with expected returns of

ExpReturn = [0.1 0.2 0.15];

and expected covariance of

ExpCovariance = [0.0100 -0.0061 0.0042
-0.0061 0.0400 -0.0252
0.0042 -0.0252 0.0225];

compute the mean-variance efficient frontier for four points.

NumPorts = 4;
[PortRisk, PortReturn, PortWts] = frontcon(ExpReturn,...
ExpCovariance, NumPorts)

PortRisk =

 0.0426
 0.0483
 0.1089
 0.2000

PortReturn =

 0.1569
 0.1713
 0.1856
 0.2000

PortWts =

 0.2134 0.3518 0.4348
 0.0096 0.4352 0.5552
 0 0.7128 0.2872
 0 1.0000 0

See Also ewstats, portopt, portstats
4-146

fvdisc
4fvdiscPurpose Future value of discounted security

Syntax FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

Arguments

Description FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis) finds
the amount received at maturity for a fully vested security.

Examples Using this data

Settle = '02/15/2001';
Maturity = '05/15/2001';
Price = 100;
Discount = 0.0575;
Basis = 2;

FutureVal = fvdisc(Settle, Maturity, Price, Discount, Basis)

returns

FutureVal =
 101.44

See Also acrudisc, discrate, prdisc, ylddisc

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.

Settle Settlement date. Enter as serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Price Price (present value) of the security.

Discount Bank discount rate of the security. Enter as decimal fraction.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-147

fvfix
4fvfixPurpose Future value with fixed periodic payments

Syntax FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)

Arguments

Description FutureVal = fvfix(Rate, NumPeriods, Payment, PresentVal, Due)
returns the future value of a series of equal payments.

Examples A savings account has a starting balance of $1500. $200 is added at the end of
each month for 10 years and the account pays 9% interest compounded
monthly. Using this data

FutureVal = fvfix(0.09/12, 12*10, 200, 1500, 0)

returns

FutureVal =
 42379.89

See Also fvvar, pvfix, pvvar

rate Periodic interest rate, as a decimal fraction.

NumPeriods Number of periods.

Payment Periodic payment.

PresentVal (Optional) Initial value. Default = 0.

Due (Optional) When payments are due or made: 0 = end of
period (default), or 1 = beginning of period.
4-148

fvvar
4fvvarPurpose Future value of varying cash flow

Syntax FutureVal = fvvar(CashFlow, Rate, IrrCFDates)

Arguments

Description FutureVal = fvvar(CashFlow, Rate, IrrCFDates) returns the future value
of a varying cash flow.

Examples This cash flow represents the yearly income from an initial investment of
$10,000. The annual interest rate is 8%.

For the future value of this regular (periodic) cash flow

FutureVal = fvvar([−10000 2000 1500 3000 3800 5000], 0.08)

returns

FutureVal =

 2520.47

CashFlow A vector of varying cash flows. Include the initial investment as
the initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.

IrrCFDates (Optional) For irregular (nonperiodic) cash flows, a vector of
dates on which the cash flows occur. Enter dates as serial date
numbers or date strings. Default assumes CashFlow contains
regular (periodic) cash flows.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000
4-149

fvvar
An investment of $10,000 returns this irregular cash flow. The original
investment and its date are included. The periodic interest rate is 9%.

To calculate the future value of this irregular (nonperiodic) cash flow

CashFlow = [−10000, 2500, 2000, 3000, 4000];

IrrCFDates = ['01/12/2000'
 '02/14/2001'
 '03/03/2001'
 '06/14/2001'
 '12/01/2001'];

FutureVal = fvvar(CashFlow, 0.09, IrrCFDates)

returns

FutureVal =

 170.66

See Also fvfix, irr, payuni, pvfix, pvvar

Cash flow Dates

($10000) January 12, 2000

 $2500 February 14, 2001

 $2000 March 3, 2001

 $3000 June 14, 2001

 $4000 December 1, 2001
4-150

fwd2zero
4fwd2zeroPurpose Zero curve given a forward curve

Syntax [ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,
Settle, OutputCompounding, OutputBasis, InputCompounding,
InputBasis)

Arguments ForwardRates A number of bonds (NUMBONDS) by 1 vector of annualized
implied forward rates, as decimal fractions. In
aggregate, the rates in ForwardRates constitute an
implied forward curve for the investment horizon
represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the forward rates.

Settle A serial date number that is the common settlement
date for the forward rates.

OutputCompounding (Optional) Output compounding. A scalar that sets the
compounding frequency per year for annualizing the
output zero rates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

OutputBasis (Optional) Output day-count basis for annualizing the
output zero rates. Allowed values are:

0 actual/actual (default)

1 30/360

2 actual/360
4-151

fwd2zero
Description [ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,
Settle, OutputCompounding, OutputBasis, InputCompounding,
InputBasis) returns a zero curve given an implied forward curve and its
maturity dates.

Examples Given an implied forward curve ForwardRates over a set of maturity dates
CurveDates, and a settlement date Settle

ForwardRates = [0.0469
 0.0519
 0.0549
 0.0535
 0.0558
 0.0508
 0.0560
 0.0545
 0.0615
 0.0486];

3 actual/365

InputCompounding (Optional) A scalar that indicates the compounding
frequency per year used for annualizing the input
forward rates. Allowed values are the same as for
OutputCompounding. Default = OutputCompounding.

InputBasis (Optional) Input day-count basis used for annualizing
the forward rates. Allowed values are the same as for
OutputBasis. Default = OutputBasis.

ZeroRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the
rates in ZeroRates constitute a zero curve for the investment
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the zero rates in ZeroRates. This
vector is the same as the input vector CurveDates.
4-152

fwd2zero
CurveDates = [datenum('06-Nov-2000')
 datenum('11-Dec-2000')
 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Set daily compounding for the zero curve, on an actual/365 basis. The forward
curve was compounded annually on an actual/actual basis.

OutputCompounding = 365;
OutputBasis = 3;
InputCompounding = 1;
InputBasis = 0;

Execute the function

[ZeroRates, CurveDates] = fwd2zero(ForwardRates, CurveDates,...
Settle, OutputCompounding, OutputBasis, InputCompounding,...
InputBasis)

which returns the zero curve ZeroRates at the maturity dates CurveDates.

ZeroRates =

 0.0457
 0.0501
 0.0516
 0.0517
 0.0523
 0.0517
 0.0521
 0.0523
 0.0540
 0.0528
4-153

fwd2zero
CurveDates =

 730796
 730831
 730866
 730887
 730914
 730943
 730971
 731027
 731098
 731167

For readability, ForwardRates and ZeroRates are shown here only to the basis
point. However, MATLAB computed them at full precision. If you enter
ForwardRates as shown, ZeroRates may differ due to rounding.

See Also zero2fwd and other functions for Term Structure of Interest Rates
4-154

highlow
4highlowPurpose High, low, open, close chart

Syntax highlow(High, Low, Close, Open, Color)
Handles = highlow(High, Low, Close, Open, Color)

Arguments

Description highlow(High, Low, Close, Open, Color) plots the high, low, opening, and
closing prices of an asset. Plots are vertical lines whose top is the high, bottom
is the low, open is a short horizontal tick to the left, and close is a short
horizontal tick to the right.

Handles = highlow(High, Low, Close, Open, Color) plots the figure and
returns the handles of the lines.

Examples The high, low, and closing prices for an asset are stored in equal-length vectors
AssetHi, AssetLo, and AssetCl respectively

highlow(AssetHi, AssetLo, AssetCl, [], 'cyan')

plots the price data using cyan lines.

See Also bolling, candle, dateaxis, movavg, pointfig

High High prices for a security. A column vector.

Low Low prices for a security. A column vector.

Close Closing prices for a security. A column vector.

Open (Optional) Opening prices for a security. A column vector. To
specify Color when Open is unknown, enter Open as an empty
matrix [].

Color (Optional) Vertical line color. A string. MATLAB supplies a
default color if none is specified. The default color differs
depending on the background color of the figure window. See
ColorSpec in the MATLAB documentation for color names.
4-155

holidays
4holidaysPurpose Holidays and nontrading days

Syntax Holidays = holidays(StartDate, EndDate)

Arguments

Description Holidays = holidays(StartDate, EndDate) returns a vector of serial date
numbers corresponding to the holidays and nontrading days between
StartDate and EndDate, inclusive.

Holidays = holidays returns a vector of serial date numbers corresponding
to all holidays and nontrading days.

As shipped, this function contains all holidays and special nontrading days for
the New York Stock Exchange between 1950 and 2030, inclusive (681 dates).
You can edit the holidays.m file to contain your own holidays and nontrading
days. By definition, holidays and nontrading days are those that occur on
weekdays.

Examples Holidays = holidays('jan 1 2001', 'jun 23 2001')

returns
Holidays =

 730852
 730901
 730954
 730999

which are the serial date numbers for

01-Jan-2001 (New Year's Day)
19-Feb-2001 (President’s Day)
13-Apr-2001 (Good Friday)
28-May-2001 (Memorial Day)

See Also busdate, fbusdate, isbusday, lbusdate

StartDate Start date vector. Enter as serial date numbers or date strings.

EndDate End date vector. Enter as serial date numbers or date strings.
4-156

hour
4hourPurpose Hour of date or time

Syntax Hour = hour(Date)

Description Hour = hour(Date) returns the hour of the day given a serial date number or
a date string.

Examples Hour = hour(730473.5584278936)

or

Hour = hour('19-dec-1999, 13:24:08.17')

returns

Hour =
 13

See Also datevec, minute, second
4-157

irr
4irrPurpose Internal rate of return

Syntax Return = irr(CashFlow)

Description Return = irr(CashFlow) calculates the internal rate of return for a series of
periodic cash flows. CashFlow is the cash flow vector. The first entry in
CashFlow is the initial investment. If the cash flow payments are monthly,
multiply the resulting rate of return by 12 for the annual rate of return. This
function calculates only positive rates of return; for negative rates of return,
Return = NaN.

Examples This cash flow represents the yearly income from an initial investment of
$100,000:

To calculate the internal rate of return on the investment

Return = irr([−100000 10000 20000 30000 40000 50000])

returns

Return =

 0.1201 (12.01%)

See Also effrr, mirr, nomrr, taxedrr, xirr

References Brealey and Myers, Principles of Corporate Finance, Chapter 5

Year 1 $10,000

Year 2 $20,000

Year 3 $30,000

Year 4 $40,000

Year 5 $50,000
4-158

isbusday
4isbusdayPurpose True for dates that are business days

Syntax Busday = isbusday(Date, Holiday)

Arguments

Description Busday = isbusday(Date, Holiday) returns logical true (1) if Date is a
business day and logical false (0) otherwise.

Examples Busday = isbusday('16 jun 2001')

Busday =

 0

Date = ['15 feb 2001'; '16 feb 2001'; '17 feb 2001'];

Busday = isbusday(Date)

Busday =

 1
 1
 0

See Also busdate, fbusdate, holidays, lbusdate

Date Date(s) being checked. Enter as a serial date number or date
string. Date can contain multiple dates, but they must all be in the
same format.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates
in Holiday must be the same format: either serial date numbers or
date strings. (Using date numbers improves performance.) The
holidays function supplies the default vector.
4-159

lbusdate
4lbusdatePurpose Last business date of month

Syntax Date = lbusdate(Year, Month, Holiday)

Arguments

Description Date = lbusdate(Year, Month, Holiday) returns the serial date number for
the last business date of the given year and month. Holiday specifies
nontrading days.

Year and Month can contain multiple values. If one contains multiple values,
the other must contain the same number of values or a single value that applies
to all. For example, if Year is a 1-by-n vector of integers, then Month must be a
1-by-n vector of integers or a single integer. Date is then a 1-by-n vector of date
numbers.

Use the function datestr to convert serial date numbers to formatted date
strings.

Examples Date = lbusdate(2001, 5)

Date =

 731002

datestr(Date)

ans =

31-May-2001

Year Enter as four-digit integer.

Month Enter as integer from 1 to 12.

Holiday (Optional) Vector of holidays and nontrading-day dates. All dates
in Holiday must be the same format: either serial date numbers or
date strings. (Using date numbers improves performance.) The
holidays function supplies the default vector.
4-160

lbusdate
c
ans =

31-May-2001
31-May-2002
30-May-2003

See Also busdate, eomdate, fbusdate, holidays, isbusday
4-161

lweekdate
4lweekdatePurpose Date of last occurrence of weekday in month

Syntax LastDate = lweekdate(Weekday, Year, Month, NextDay)

Arguments

Any input can contain multiple values, but if so, all other inputs must contain
the same number of values or a single value that applies to all. For example, if
Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of
integers or a single integer. LastDate is then a 1-by-n vector of date numbers.

Description LastDate = lweekdate(Weekday, Year, Month, NextDay) returns the serial
date number for the last occurrence of Weekday in the given year and month
and in a week that also contains NextDay.

Use the function datestr to convert serial date numbers to formatted date
strings.

Weekday Weekday whose date you seek. Enter as an integer from 1
through 7:

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Year Year. Enter as a four-digit integer.

Month Month. Enter as an integer from 1 through 12.

NextDay (Optional) Weekday that must occur after Weekday in the same
week. Enter as an integer from 0 through 7, where 0 = ignore
(default) and 1 through 7 are as for Weekday.
4-162

lweekdate
Examples To find the last Monday in June 2001

LastDate = lweekdate(2, 2001, 6); datestr(LastDate)

ans =

25-Jun-2001

To find the last Monday in a week that also contains a Friday in June 2001

LastDate = lweekdate(2, 2001, 6, 6); datestr(LastDate)

ans =

25-Jun-2001

To find the last Monday in May for 2001, 2002, and 2003

Year = [2001:2003];

LastDate = lweekdate(2, Year, 5)

LastDate =

 730999 731363 731727
datestr(LastDate)

ans =

28-May-2001
27-May-2002
26-May-2003

See Also eomdate, lbusdate, nweekdate
4-163

m2xdate
4m2xdatePurpose MATLAB serial date number to Excel serial date number

Syntax DateNum = m2xdate(MATLABDateNumber, Convention)

Arguments

Vector arguments must have consistent dimensions.

Description DateNum = m2xdate(MATLABDateNumber, Convention) converts MATLAB
serial date numbers to Excel serial date numbers. MATLAB date numbers
start with 1 = January 1, 0000 A.D., hence there is a difference of 693961
relative to the 1900 date system, or 695422 relative to the 1904 date system.
This function is useful with MATLAB Excel Link.

Examples Given MATLAB date numbers for Christmas 2001 through 2004

DateNum = datenum(2001:2004, 12, 25)

DateNum =

 731210 731575 731940 732306

convert them to Excel date numbers in the 1904 system

ExDate = m2xdate(DateNum, 1)

ExDate =

 35788 36153 36518 36884

or the 1900 system

MATLABDateNumber A vector or scalar of MATLAB serial date numbers.

Convention (Optional) Excel date system. A vector or scalar. When
Convention = 0 (default), the Excel 1900 date system is
in effect. When Convention = 1, the Excel 1904 date
system in used.

In the Excel 1900 date system, the Excel serial date
number 1 corresponds to January 1, 1900 A.D. In the
Excel 1904 date system, date number 0 is January 1,
1904 A.D.
4-164

m2xdate
ExDate = m2xdate(DateNum)

ExDate =

 37250 37615 37980 38346

See Also datenum, datestr, x2mdate
4-165

minute
4minutePurpose Minute of date or time

Syntax Minute = minute(Date)

Description Minute = minute(Date) returns the minute given a serial date number or a
date string.

Examples Minute = minute(731204.5591223380)

or

Minute = minute('19-dec-2001, 13:25:08.17')

returns

 Minute =

 25

See Also datevec, hour, second
4-166

mirr
4mirrPurpose Modified internal rate of return

Syntax Return = mirr(CashFlow, FinRate, Reinvest)

Arguments

Description Return = mirr(CashFlow, FinRate, Reinvest) calculates the modified
internal rate of return for a series of periodic cash flows. This function
calculates only positive rates of return; for negative rates of return, Return = 0.

Examples This cash flow represents the yearly income from an initial investment of
$100,000. The finance rate is 9% and the reinvestment rate is 12%.

To calculate the modified internal rate of return on the investment

Return = mirr([−100000 20000 −10000 30000 38000 50000], 0.09,...
0.12)

returns

Return =
 0.0832 (8.32%)

See Also annurate, effrr, irr, nomrr, pvvar, xirr

References Brealey and Myers, Principles of Corporate Finance, Chapter 5

CashFlow Vector of cash flows. The first entry is the initial investment.

FinRate Finance rate for negative cash flow values. Enter as decimal
fraction.

Reinvest Reinvestment rate for positive cash flow values, as a decimal
fraction.

Year 1 $20,000

Year 2 ($10,000)

Year 3 $30,000

Year 4 $38,000

Year 5 $50,000
4-167

month
4monthPurpose Month of date

Syntax [MonthNum, MonthString] = month(Date)

Description [MonthNum, MonthString] = month(Date) returns the month in numeric
and string form given a serial date number or a date string.

Examples [MonthNum, MonthString] = month(730368)

or

[MonthNum, MonthString] = month('05-Sep-1999')

returns

MonthNum =

 9

MonthString =

Sep

See Also datevec, day, year
4-168

months
4monthsPurpose Number of whole months between dates

Syntax Months = months(StartDate, EndDate, EndMonthFlag)

Arguments

Description Months = months(StartDate, EndDate, EndMonthFlag) returns the number
of whole months between StartDate and EndDate. If EndDate is earlier than
StartDate, Months is negative. Enter dates as serial date numbers or date
strings.

Any input argument can contain multiple values, but if so, all other inputs
must contain the same number of values or a single value that applies to all.
For example, if StartDate is an n-row character array of date strings, then
EndDate must be an n-row character array of date strings or a single date.
Months is then an n-by-1 vector of numbers.

Examples Months = months('may 31 2000', 'jun 30 2000', 1)
Months =
 1

Months = months('may 31 2000','jun 30 2000', 0)
Months =
 0

Dates = ['mar 31 2002'; 'apr 30 2002'; 'may 31 2002'];
Months = months(Dates, 'jun 30 2002')
Months =
 3
 2
 1

See Also yearfrac

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

EndMonthFlag (Optional) end-of-month flag. If StartDate and EndDate are
end-of-month dates and EndDate has fewer days than
StartDate, EndMonthFlag = 1 (default) treats EndDate as the
end of a whole month, while EndMonthFlag = 0 does not.
4-169

movavg
4movavgPurpose Leading and lagging moving averages chart

Syntax movavg(Asset, Lead, Lag, Alpha)
[Short, Long] = movavg(Asset, Lead, Lag, Alpha)

Arguments

Description movavg(Asset, Lead, lag, Alpha) plots leading and lagging moving
averages.

[Short, Long] = movavg(Asset, Lead, lag, Alpha) returns the leading
Short and lagging Long moving average data without plotting it.

Examples If Asset is a vector of stock price data

movavg(Asset, 3, 20, 1)

plots linear three-sample leading and 20-sample lagging moving averages.

See Also bolling, candle, dateaxis, highlow, pointfig

Asset Security data, usually a vector of time-series prices.

Lead Number of samples to use in leading average calculation. A
positive integer. Lead must be less than or equal to Lag.

Lag Number of samples to use in the lagging average calculation. A
positive integer.

Alpha (Optional) Control parameter that determines the type of
moving averages. 0 = simple moving average (default),
0.5 = square root weighted moving average, 1 = linear moving
average, 2 = square weighted moving average, etc. To calculate
the exponential moving average, set Alpha ='e'.
4-170

nomrr
4nomrrPurpose Nominal rate of return

Syntax Return = nomrr(Rate, NumPeriods)

Arguments

Description Return = nomrr(Rate, NumPeriods) calculates the nominal rate of return.

Examples To find the nominal annual rate of return based on an effective annual
percentage rate of 9.38% compounded monthly

Return = nomrr(0.0938, 12)

returns

Return =
 0.0900 (9.0%)

See Also effrr, irr, mirr, taxedrr, xirr

Rate Effective annual percentage rate. Enter as a decimal fraction.

NumPeriods Number of compounding periods per year, an integer.
4-171

now
4nowPurpose Current date and time

Syntax Datenum = now

Description Datenum = now returns the current date and time as a serial date number.

Note This function now ships with basic MATLAB. It originally shipped only
with the Financial Toolbox. This description remains here for your
convenience.

Examples Datenum = now

Datenum =

 730695.5942469908 (on July 28, 2000 at 2:15 PM)

See Also date, datenum, today
4-172

nweekdate
4nweekdatePurpose Date of specific occurrence of weekday in month

Syntax Date = nweekdate(n, Weekday, Year, Month, Same)

Arguments

Description Date = nweekdate(n, Weekday, Year, Month, Same) returns the serial date
number for the specific occurrence of the weekday in the given year and month,
and in a week that also contains the weekday Same.

If n is larger than the last occurrence of Weekday, Date = 0.

Any input can contain multiple values, but if so, all other inputs must contain
the same number of values or a single value that applies to all. For example, if
Year is a 1-by-n vector of integers, then Month must be a 1-by-n vector of
integers or a single integer. Date is then a 1-by-n vector of date numbers.

Use the function datestr to convert serial date numbers to formatted date
strings.

n Nth occurrence of the weekday in a month. Enter as integer from 1
through 5.

Weekday Weekday whose date you seek. Enter as integer from 1 through 7.

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Year Year. Enter as a four-digit integer.

Month Month. Enter as an integer from 1 through 12.

Same (Optional) Weekday that must occur in the same week with
Weekday. Enter as an integer from 0 through 7, where 0 = ignore
(default) and 1 through 7 are as for Weekday.
4-173

nweekdate
Examples To find the first Thursday in May 2001

Date = nweekdate(1, 5, 2001, 5); datestr(Date)

ans =

03-May-2001

To find the first Thursday in a week that also contains a Wednesday in May
2001

Date = nweekdate(2, 5, 2001, 5, 4); datestr(Date)

ans =

10-May-2001

To find the third Monday in February for 2001, 2002, and 2003

Year = [2001:2003];

Date = nweekdate(3, 2, Year, 2)

Date =
 730901 731265 731629

datestr(Date)

ans =

19-Feb-2001
18-Feb-2002
17-Feb-2003

See Also fbusdate, lbusdate, lweekdate
4-174

opprofit
4opprofitPurpose Option profit

Syntax Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)

Arguments

Description Profit = opprofit(AssetPrice, Strike, Cost, PosFlag, OptType)
returns the profit of an option.

Examples Buying (going long on) a call option with a strike price of $90 on an underlying
asset with a current price of $100 for a cost of $4

Profit = opprofit(100, 90, 4, 0, 0)

returns

Profit =
 6.00

a profit of $6 if the option is exercised under these conditions.

See Also binprice, blsprice

AssetPrice Asset price.

Strike Strike or exercise price.

Cost Cost of the option.

PosFlag Option position. 0 = long, 1 = short.

OptType Option type. 0 = call option, 1 = put option.
4-175

payadv
4payadvPurpose Periodic payment given number of advance payments

Syntax Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue,
Advance)

Arguments

Description Payment = payadv(Rate, NumPeriods, PresentValue, FutureValue,
Advance) returns the periodic payment given a number of advance payments.

Examples The present value of a loan is $1000.00 and it will be paid in full in 12 months.
The annual interest rate is 10% and three payments are made at closing time.
Using this data

Payment = payadv(0.1/12, 12, 1000, 0, 3)

returns

Payment =

 85.94

for the periodic payment.

See Also amortize, payodd, payper

Rate Lending or borrowing rate per period. Enter as a decimal
fraction. Must be greater than or equal to 0.

NumPeriods Number of periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue Future value or target value to be attained after NumPeriods
periods.

Advance Number of advance payments. If the payments are made at
the beginning of the period, add 1 to Advance.
4-176

payodd
4payoddPurpose Payment of loan or annuity with odd first period

Syntax Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)

Arguments

Description Payment = payodd(Rate, NumPeriods, PresentValue, FutureValue, Days)
returns the payment for a loan or annuity with an odd first period.

Examples A two-year loan for $4000 has an annual interest rate of 11%. The first
payment will be made in 36 days. To find the monthly payment

Payment = payodd(0.11/12, 24, 4000, 0, 36)

returns

Payment =

 186.77

See Also amortize, payadv, payper

rate Interest rate per period. Enter as a decimal fraction.

NumPeriods Number of periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue Future value or target value to be attained after NumPeriods
periods.

Days Actual number of days until the first payment is made.
4-177

payper
4payperPurpose Periodic payment of loan or annuity

Syntax Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)

Arguments

Description Payment = payper(Rate, NumPeriods, PresentValue, FutureValue, Due)
returns the periodic payment of a loan or annuity.

Examples Find the monthly payment for a three-year loan of $9000 with an annual
interest rate of 11.75%

Payment = payper(0.1175/12, 36, 9000, 0, 0)

returns

Payment =

 297.86

See Also amortize, fvfix, payadv, payodd, pvfix

Rate Interest rate per period. Enter as a decimal fraction.

NumPeriods Number of payment periods in the life of the instrument.

PresentValue Present value of the instrument.

FutureValue (Optional) Future value or target value to be attained after
NumPeriods periods. Default = 0.

Due (Optional) When payments are due: 0 = end of period (default),
or 1 = beginning of period.
4-178

payuni
4payuniPurpose Uniform payment equal to varying cash flow

Syntax Series = payuni(CashFlow, Rate)

Arguments

Description Series = payuni(CashFlow, Rate) returns the uniform series value of a
varying cash flow.

Examples This cash flow represents the yearly income from an initial investment of
$10,000. The annual interest rate is 8%.

To calculate the uniform series value

Series = payuni([−10000 2000 1500 3000 3800 5000], 0.08)

returns

Series =

 429.63

See Also fvfix, fvvar, irr, pvfix, pvvar

CashFlow A vector of varying cash flows. Include the initial investment
as the initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000
4-179

pcalims
4pcalimsPurpose Linear inequalities for individual asset allocation

Syntax [A,b] = pcalims(AssetMin, AssetMax, NumAssets)

Arguments

Description [A,b] = pcalims(AssetMin, AssetMax, NumAssets) specifies the lower and
upper bounds of portfolio allocations in each of NumAssets available asset
investments.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a
1-by-NASSETS vector of asset allocations.

If pcalims is called with fewer than two output arguments, the function
returns A concatenated with b [A,b].

Examples Set the minimum weight in every asset to 0 (no short-selling), and set the
maximum weight of IBM to 0.5 and CSCO to 0.8, while letting the maximum
weight in INTC float.

AssetMin Scalar or NASSETS vector of minimum allocations in each
asset. NaN indicates no constraint.

AssetMax Scalar or NASSETS vector of maximum allocations in each
asset. NaN indicates no constraint.

NumAssets (Optional) Number of assets. Default = length of AssetMin or
AssetMax.

Asset IBM INTC CSCO

Min. Wt. 0 0 0

Max. Wt. 0.5 0.8
4-180

pcalims
AssetMin = 0
AssetMax = [0.5 NaN 0.8]
[A,b] = pcalims(AssetMin, AssetMax)

A =
 1 0 0
 0 0 1
 -1 0 0
 0 -1 0
 0 0 -1

b =

 0.5000
 0.8000
 0
 0
 0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

Set the minimum weight in every asset to 0 and the maximum weight to 1.

AssetMin = 0
AssetMax = 1
NumAssets = 3

Asset IBM INTC CSCO

Min. Wt. 0 0 0

Max. Wt. 1 1 1
4-181

pcalims
[A,b] = pcalims(AssetMin, AssetMax, NumAssets)

A =

 1 0 0
 0 1 0
 0 0 1
 -1 0 0
 0 -1 0
 0 0 -1

b =
 1
 1
 1
 0
 0
 0

Portfolio weights of 50% in IBM and 50% in INTC satisfy the constraints.

See Also pcgcomp, pcglims, pcpval, portcons, portopt
4-182

pcgcomp
4pcgcompPurpose Linear inequalities for asset group comparison constraints

Syntax [A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

Arguments

Description [A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB) specifies that the
ratio of allocations in one group to allocations in another group is at least
AtoBmin to 1 and at most AtoBmax to 1. Comparisons can be made between an
arbitrary number of group pairs NGROUPS comprising subsets of NASSETS
available investments.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a
1-by-NASSETS vector of asset allocations.

If pcgcomp is called with fewer than two output arguments, the function
returns A concatenated with b [A,b].

Examples

GroupA
GroupB

Number of groups (NGROUPS) by number of assets (NASSETS)
specifications of groups to compare. Each row specifies a group.
For a specific group, Group(i,j) = 1 if the group contains
asset j; otherwise, Group(i,j) = 0.

AtoBmin
AtoBmax

Scalar or NGROUPS-long vectors of minimum and maximum
ratios of allocations in GroupA to allocations in GroupB. NaN
indicates no constraint between the two groups. Scalar bounds
are applied to all group pairs. The total number of assets
allocated to GroupA divided by the total number of assets
allocated to GroupB is >= AtoBmin and <= AtoBmax.

Asset INTC XON RD

Region North America North America Europe

Sector Technology Energy Energy
4-183

pcgcomp
Make the North American energy sector compose exactly 20% of the North
American investment.

% INTC XON RD
GroupA = [0 1 0]; % North American Energy
GroupB = [1 1 0]; % North America

AtoBmin = 0.20;
AtoBmax = 0.20;

[A,b] = pcgcomp(GroupA, AtoBmin, AtoBmax, GroupB)

A =

 0.2000 -0.8000 0
 -0.2000 0.8000 0

b =

 0
 0

Portfolio weights of 40% for INTC, 10% for XON, and 50% for RD satisfy the
constraints.

See Also pcalims, pcglims, pcpval, portcons, portopt

Group Min. Exposure Max. Exposure

North America 0.30 0.75

Europe 0.10 0.55

Technology 0.20 0.50

Energy 0.20 0.80
4-184

pcglims
4pcglimsPurpose Linear inequalities for asset group minimum and maximum allocation

Syntax [A,b] = pcglims(Groups, GroupMin, GroupMax)

Arguments

Description [A,b] = pcglims(Groups, GroupMin, GroupMax) specifies minimum and
maximum allocations to groups of assets. An arbitrary number of groups,
NGROUPS, comprising subsets of NASSETS investments, is allowed.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a
1-by-NASSETS vector of asset allocations.

If pcglims is called with fewer than two output arguments, the function
returns A concatenated with b [A,b].

Examples

Groups Number of groups (NGROUPS) by number of assets (NASSETS)
specifications of which assets belong to which group. Each row
specifies a group. For a specific group, Group(i,j) = 1 if the
group contains asset j; otherwise, Group(i,j) = 0.

GroupMin
GroupMax

Scalar or NGROUPS-long vectors of minimum and maximum
combined allocations in each group. NaN indicates no constraint.
Scalar bounds are applied to all groups.

Asset INTC XON RD

Region North America North America Europe

Sector Technology Energy Energy

Group Min. Exposure Max. Exposure

North America 0.30 0.75

Europe 0.10 0.55

Technology 0.20 0.50

Energy 0.50 0.50
4-185

pcglims
Set the minimum and maximum investment in various groups.

% INTC XON RD
Groups = [1 1 0 ; % North America
 0 0 1 ; % Europe
 1 0 0 ; % Technology
 0 1 1]; % Energy

GroupMin = [0.30
 0.10
 0.20
 0.50];

GroupMax = [0.75
 0.55
 0.50
 0.50];

[A,b] = pcglims(Groups, GroupMin, GroupMax)

A =

 -1 -1 0
 0 0 -1
 -1 0 0
 0 -1 -1
 1 1 0
 0 0 1
 1 0 0
 0 1 1
4-186

pcglims
b =

 -0.3000
 -0.1000
 -0.2000
 -0.5000
 0.7500
 0.5500
 0.5000
 0.5000

Portfolio weights of 50% in INTC, 25% in XON, and 25% in RD satisfy the
constraints.

 See Also pcalims, pcgcomp, pcpval, portcons, portopt
4-187

pcpval
4pcpvalPurpose Linear inequalities for fixing total portfolio value

Syntax [A,b] = pcpval(PortValue, NumAssets)

Arguments

Description [A,b] = pcpval(PortValue, NumAssets) scales the total value of a portfolio
of NumAssets assets to PortValue. All portfolio weights, bounds, return, and
risk values except ExpReturn and ExpCovariance (see portopt) are in terms of
PortValue.

A is a matrix and b a vector such that A*PortWts' <= b, where PortWts is a
1-by-NASSETS vector of asset allocations.

If pcpval is called with fewer than two output arguments, the function returns
A concatenated with b [A,b].

Examples Scale the value of a portfolio of three assets to 1, so all return values are rates
and all weight values are in fractions of the portfolio.

PortValue = 1;
NumAssets = 3;

[A,b] = pcpval(PortValue, NumAssets)

A =

 1 1 1
 -1 -1 -1

b =

 1
 -1

PortValue Scalar total value of asset portfolio (sum of the allocations in
all assets). PortValue = 1 specifies weights as fractions of the
portfolio and return and risk numbers as rates instead of
value.

NumAssets Number of available asset investments.
4-188

pcpval
Portfolio weights of 40%, 10%, and 50% in the three assets satisfy the
constraints.

See Also pcalims, pcgcomp, pcglims, portcons, portopt
4-189

pointfig
4pointfigPurpose Point and figure chart

Syntax pointfig(Asset)

Description pointfig(Asset) plots a point and figure chart for a vector of price data
Asset. Upward price movements are plotted as X’s and downward price
movements are plotted as O’s.

See Also bolling, candle, dateaxis, highlow, movavg
4-190

portalloc
4portallocPurpose Optimal capital allocation

Syntax [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk,
OverallReturn] = portalloc(PortRisk, PortReturn, PortWts,
RisklessRate, BorrowRate, RiskAversion)

Arguments

Description [RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, OverallRisk,
OverallReturn] = portalloc(PortRisk, PortReturn, PortWts,
RisklessRate, BorrowRate, RiskAversion) computes the optimal risky
portfolio, and the optimal allocation of funds between the risky portfolio and
the risk-free asset.

RiskyRisk is the standard deviation of the optimal risky portfolio.

RiskyReturn is the expected return of the optimal risky portfolio.

RiskyWts is a 1-by-NASSETS vector of weights allocated to the optimal risky
portfolio. The total of all weights in the portfolio is 1.

RiskyFraction is the fraction of the complete portfolio allocated in the risky
portfolio.

OverallRisk is the standard deviation of the optimal overall portfolio.

OverallReturn is the expected rate of return of the optimal overall portfolio.

PortRisk Standard deviation of each portfolio. A number of portfolios
(NPORTS) by 1 vector.

PortReturn Expected return of each portfolio. An NPORTS-by-1 vector.

PortWts Weights allocated to each asset. An NPORTS by number of
assets (NASSETS) matrix of weights allocated to each asset.
Each row represents a different portfolio. Total of all
weights in a portfolio is 1.

RisklessRate Risk-free rate. A decimal number.

BorrowRate (Optional) Borrowing rate. A decimal number. If borrowing
is not desired, or not an option, set to NaN (default)

RiskAversion (Optional) Coefficient of investor's degree of risk aversion.
Higher numbers indicate greater risk aversion. Typical
coefficients range between 2.0 and 4.0 (Default = 3).
4-191

portalloc
Examples Generate the efficient frontier from the asset data.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004
-0.010 0.040 -0.002
0.004 -0.002 0.023];

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance);

Find the optimal risky portfolio and allocate capital. The risk free investment
return is 8%, and the borrowing rate is 12%.

RisklessRate = 0.08;
BorrowRate = 0.12;
RiskAversion = 3;

[RiskyRisk, RiskyReturn, RiskyWts, RiskyFraction, ...
OverallRisk, OverallReturn] = portalloc(PortRisk, PortReturn,...
PortWts, RisklessRate, BorrowRate, RiskAversion)

RiskyRisk =

 0.1283

RiskyReturn =

 0.1788

RiskyWts =

 0.0265 0.6023 0.3712

RiskyFraction =

 1.1898

OverallRisk =

 0.1527
4-192

portalloc
OverallReturn =

 0.1899

See Also frontcon, portrand, portstats

 References Bodie, Kane, and Marcus, Investments, Chapters 6 and 7.
4-193

portcons
4portconsPurpose Portfolio constraints

Syntax ConSet = portcons(varargin)

Description Using linear inequalities, portcons generates a matrix of constraints for a
portfolio of asset investments. The matrix ConSet is defined as
ConSet = [A b]. A is a matrix and b a vector such that A*PortWts' <= b sets
the value, where PortWts is a 1 by number of assets (NASSETS) vector of asset
allocations.

ConSet = portcons('ConstType', Data1, ..., DataN) creates a matrix
ConSet, based on the constraint type ConstType, and the constraint
parameters Data1, ..., DataN.

ConSet = portcons('ConstType1', Data11, ..., Data1N,'ConstType2',
Data21, ..., Data2N, ...) creates a matrix ConSet, based on the constraint
types ConstTypeN, and the corresponding constraint parameters DataN1, ...,
DataNN.

Constraint Type Description Values

Default All allocations are
>= 0; no short selling
allowed. Combined
value of portfolio
allocations normalized
to 1.

NumAssets (required).
Scalar representing
number of assets in
portfolio.

PortValue Fix total value of
portfolio to PVal.

PVal (required). Scalar
representing total value of
portfolio.

NumAssets (required).
Scalar representing
number of assets in
portfolio. See pcpval.
4-194

portcons
AssetLims Minimum and
maximum allocation
per asset.

AssetMin (required). Scalar
or vector of length NASSETS,
specifying minimum
allocation per asset.

AssetMax (required). Scalar
or vector of length NASSETS,
specifying maximum
allocation per asset.

NumAssets (optional). See
pcalims.

GroupLims Minimum and
maximum allocations
to asset group.

Groups (required).
NGROUPS-by-NASSETS matrix
specifying which assets
belong to each group.

GroupMin (required). Scalar
or a vector of length
NGROUPS, specifying
minimum combined
allocations in each group.

GroupMax (required). Scalar
or a vector of length
NGROUPS, specifying
maximum combined
allocations in each group.

 See pcglims.

Constraint Type Description Values
4-195

portcons
GroupComparison Group-to-group
comparison
constraints.

GroupA (required). GroupB
(required).
NGROUPS-by-NASSETS
matrices specifying groups
to compare.

AtoBmin (required). Scalar
or vector of length NGROUPS
specifying minimum ratios
of allocations in GroupA to
allocations in GroupB.

AtoBmax (required).
Scalar or vector of length
NGROUPS specifying
maximum ratios of
allocations in GroupA to
allocations in GroupB.

See pcgcomp .

Custom Custom linear
inequality constraints
A*PortWts' <= b.

A (required).
NCONSTRAINTS-by-NASSETS
matrix, specifying weights
for each asset in each
inequality equation.

b (required). Vector of
length NCONSTRAINTS
specifying the right hand
sides of the inequalities.

Constraint Type Description Values
4-196

portcons
Examples Constrain a portfolio of three assets:

NumAssets = 3;
PVal = 1; % Scale portfolio value to 1.
AssetMin = 0;
AssetMax = [0.5 0.9 0.8];
GroupA = [1 1 0];
GroupB = [0 0 1];
AtoBmax = 1.5 % Value of assets in Group A at most 1.5 times value

% in group B.

ConSet = portcons('PortValue', PVal, NumAssets,'AssetLims',...
AssetMin, AssetMax, NumAssets, 'GroupComparison',GroupA, NaN,...
AtoBmax, GroupB)

ConSet =

 1.0000 1.0000 1.0000 1.0000
 -1.0000 -1.0000 -1.0000 -1.0000
 1.0000 0 0 0.5000
 0 1.0000 0 0.9000
 0 0 1.0000 0.8000
 -1.0000 0 0 0
 0 -1.0000 0 0
 0 0 -1.0000 0
 1.0000 1.0000 -1.5000 0

Portfolio weights of 30% in IBM, 30% in CPQ, and 40% in XON satisfy the
constraints.

See Also pcalims, pcgcomp, pcglims, pcpval, portopt

Asset IBM CPQ XON

Group A A B

Min. Wt. 0 0 0

Max. Wt. 0.5 0.9 0.8
4-197

portopt
4portopt Purpose Portfolios on constrained efficient frontier

Syntax [PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,
NumPorts, PortReturn, ConSet)

Arguments

Description [PortRisk, PortReturn, PortWts] = portopt(ExpReturn, ExpCovariance,
NumPorts, PortReturn, ConSet) returns the mean-variance efficient
frontier with user-specified covariance, returns, and asset constraints
(ConSet). Given a collection of NASSETS risky assets, computes a portfolio of
asset investment weights that minimize the risk for given values of the
expected return. The portfolio risk is minimized subject to constraints on the
total portfolio value, the individual asset minimum and maximum allocation,
the asset group minimum and maximum allocation, or the asset
group-to-group comparison.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

PortWts is an NPORTS-by-NASSETS matrix of weights allocated to each asset.
Each row represents a portfolio. The total of all weights in a portfolio is 1.

ExpReturn 1 by number of assets (NASSETS) vector specifying the
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of
the asset returns.

NumPorts (Optional) Number of portfolios generated along the
efficient frontier. Returns are equally spaced between
the maximum possible return and the minimum risk
point. If NumPorts is empty (entered as []), computes 10
equally spaced points.

PortReturn (Optional) Expected return of each portfolio. A number of
portfolios (NPORTS) by 1 vector. If not entered or empty,
NumPorts equally spaced returns between the minimum
and maximum possible values are used.

ConSet (Optional) Constraint matrix for a portfolio of asset
investments, created using portcons. If not specified, a
default is created.
4-198

portopt
If portopt is invoked without output arguments, it returns a plot of the
efficient frontier.

 Examples Plot the risk-return efficient frontier of portfolios allocated among three assets.
Connect 20 portfolios along the frontier having evenly spaced returns. By
default, choose among portfolios without short-selling and scale the value of
the portfolio to 1.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004
-0.010 0.040 -0.002
0.004 -0.002 0.023];

NumPorts = 20;
portopt(ExpReturn, ExpCovariance, NumPorts)

Return the two efficient portfolios that have returns of 16% and 17%. Limit to
portfolios that have at least 20% of the allocation in the first asset, and cap the
total value in the first and third assets at 50% of the portfolio.
4-199

portopt
ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004
-0.010 0.040 -0.002
0.004 -0.002 0.023];

PortReturn = [0.16
 0.17];

NumAssets = 3;

AssetMin = [0.20 NaN NaN];

Group = [1 0 1];

GroupMax = 0.50;

ConSet = portcons('Default', NumAssets, 'AssetLims', AssetMin,...
NaN,'GroupLims', Group, NaN, GroupMax);

[PortRisk, PortReturn, PortWts] = portopt(ExpReturn,...
ExpCovariance, [], PortReturn, ConSet)

PortRisk =

 0.0919
 0.1138

PortReturn =

 0.1600
 0.1700

PortWts =

 0.3000 0.5000 0.2000
 0.2000 0.6000 0.2000

See Also ewstats, frontcon, portcons, portstats
4-200

portrand
4portrandPurpose Randomized portfolio risks, returns, and weights

Syntax [PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points)
portrand(Asset, Return, Points)

Arguments

Description [PortRisk, PortReturn, PortWts] = portrand(Asset, Return, Points)
returns the risks, rates of return, and weights of random portfolio
configurations.

portrand(Asset, Return, Points) plots the points representing each
portfolio configuration. It does not return any data to the MATLAB workspace.

See Also frontcon

References Bodie, Kane, and Marcus, Investments, Chapter 7.

Asset Matrix of time series data. Each row is an observation and
each column represents a single security.

Return (Optional) Row vector where each column represents the rate
of return for the corresponding security in Asset. By default,
Return is computed by taking the average value of each
column of Asset.

Points (Optional) Scalar that specifies how many random points
should be generated. Default = 1000.

PortRisk Points-by-1 vector of standard deviations.

PortReturn Points-by-1 vector of expected rates of return.

PortWts Points by number of securities matrix of asset weights. Each
row of PortWts is a different portfolio configuration.
4-201

portsim
4portsimPurpose Random simulation of correlated asset returns

Syntax RetSeries = portsim(ExpReturn, ExpCovariance, NumObs, RetIntervals,
NumSim)

Arguments

Description portsim simulates returns of NASSETS assets over consecutive observation
intervals. Returns are simulated as the increments of constant drift and
volatility Brownian processes.

RetSeries is a NUMOBS-by-NASSETS-by-NUMSIM array of incremental return
observations. The return over an interval of length DT is given by
ExpReturn*DT + ExpSigma*sqrt(DT)*randn, where randn provides a random
scalar whose value changes each time randn is referenced.

The returns realized from portfolios listed in PortWts are given by:
PortReturn = PortWts * RetSeries(:,:,1)', where PortWts is a matrix in
which each row contains the asset allocations of a portfolio. Each row of
PortReturn corresponds to one of the portfolios identified in PortWts, and each
column corresponds to one of the observations in RetSeries. See portopt and
portstats for portfolio specification and optimization.

ExpReturn 1 by number of assets (NASSETS) vector specifying the
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix of asset-asset covariances.
The standard deviations of the returns are:
ExpSigma = sqrt(diag(ExpCovariance)).

NumObs (Optional) Number of consecutive observations in the
return time series. If NumObs is entered as the empty
matrix [], the length of RetIntervals is used.

RetIntervals (Optional) Scalar or number of observations (NUMOBS) by 1
vector of interval times between observations. If
RetIntervals is not specified, all intervals are assumed
to have length 1.

NumSim (Optional) Number of separate simulations of the NUMOBS
observations to perform. Default = 1.
4-202

portsim
Examples Create sample returns for three stocks over 10 periods.

ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.005 -0.010 0.004
 -0.010 0.040 -0.002
 0.004 -0.002 0.023];

NumObs = 10;

RetSeries = portsim(ExpReturn, ExpCovariance, NumObs)

RetSeries =

 0.1429 0.2626 0.2365
 0.0821 0.1599 -0.1796
 0.0054 0.6126 0.1072
 0.1719 -0.0669 0.1913
 0.1518 -0.0843 0.0442
 0.0112 0.2709 0.1501
 0.0409 0.1683 0.1932
 0.1485 0.2522 0.2774
 0.0463 0.3222 0.0954
 0.1990 0.1024 0.3843

Note RetSeries is different each time this example is executed. The
portsim function uses random number generation.

See Also ewstats, portopt, portstats, randn, ret2tick
4-203

portstats
4portstatsPurpose Portfolio expected return and risk

Syntax [PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,
PortWts)

Arguments

Description [PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,
PortWts) computes the expected rate of return and risk for a portfolio of assets.

PortRisk is an NPORTS-by-1 vector of the standard deviation of each portfolio.

PortReturn is an NPORTS-by-1 vector of the expected return of each portfolio.

Examples ExpReturn = [0.1 0.2 0.15];

ExpCovariance = [0.0100 -0.0061 0.0042
-0.0061 0.0400 -0.0252
0.0042 -0.0252 0.0225];

PortWts=[0.4 0.2 0.4; 0.2 0.4 0.2];

[PortRisk, PortReturn] = portstats(ExpReturn, ExpCovariance,...
PortWts)

PortRisk =

 0.0560
 0.0550

ExpReturn 1 by number of assets (NASSETS) vector specifying the
expected (mean) return of each asset.

ExpCovariance NASSETS-by-NASSETS matrix specifying the covariance of
the asset returns.

PortWts (Optional) Number of portfolios (NPORTS) by NASSETS
matrix of weights allocated to each asset. Each row
represents a different weighting combination. Default =
1/NASSETS (equally weighted).
4-204

portstats
PortReturn =

 0.1400
 0.1300

See Also frontcon
4-205

portvrisk
4portvriskPurpose Portfolio value at risk

Syntax ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold,
PortValue)

Arguments

Description ValueAtRisk = portvrisk(PortReturn, PortRisk, RiskThreshold,
PortValue) returns the maximum potential loss in the value of a portfolio over
one period of time, given the loss probability level RiskThreshold.

ValueAtRisk is an NPORTS-by-1 vector of the estimated maximum loss in the
portfolio, predicted with a confidence probability of 1- RiskThreshold.

If PortValue is not given, ValueAtRisk is presented on a per-unit basis. A value
of 0 indicates no losses.

Examples This example computes ValueAtRisk on a per-unit basis.

PortReturn = 0.29/100;
PortRisk = 3.08/100;
RiskThreshold = [0.01;0.05;0.10];
PortValue = 1;
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)
ValueAtRisk =

 0.0688
 0.0478
 0.0366

PortReturn Number of portfolios (NPORTS) by 1 vector or scalar of the
expected return of each portfolio over the period.

PortRisk NPORTS-by-1 vector or scalar of the standard deviation of
each portfolio over the period.

RiskThreshold (Optional) NPORTS-by-1 vector or scalar specifying the loss
probability. Default = 0.05 (5%).

PortValue (Optional) NPORTS-by-1 vector or scalar specifying the total
value of asset portfolio. Default = 1.
4-206

portvrisk
This example computes ValueAtRisk with actual values.

PortReturn = [0.29/100;0.30/100];
PortRisk = [3.08/100;3.15/100];
RiskThreshold = 0.10;
PortValue = [1000000000;500000000];
ValueAtRisk = portvrisk(PortReturn,PortRisk,...
RiskThreshold,PortValue)
ValueAtRisk =

 1.0e+007 *
 3.6572
 1.8684

See Also frontcon, portopt
4-207

prbyzero
4prbyzeroPurpose Price bonds in a portfolio by a set of zero curves

Syntax BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

Arguments Bonds Coupon bond information used to compute prices. A number of
bonds (NUMBONDS) by 6 matrix where each row describes a bond.
The first two columns are required; the rest are optional but
must be added in order. All rows in Bonds must have the same
number of columns. Columns are
[Maturity CouponRate Face Period Basis EndMonthRule]
where:

Maturity Maturity date as a serial date number or date
string

CouponRate Decimal number indicating the annual
percentage rate used to determine the coupons
payable on a bond

Face (Optional) Face or par value of the bond.
Default = 100.

Period (Optional) Coupons per year of the bond.
Allowed values are 0,1, 2, 3, 4, 6, and 12.
Default = 2.

Basis (Optional) Day-count basis of the bond.
0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month rule. This rule applies
only when Maturity is an end-of-month date for
a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond’s coupon payment
date is always the same numerical day of the
month. 1 = set rule on (default), meaning that a
bond’s coupon payment date is always the last
actual day of the month.

Settle Serial date number of the settlement date.
4-208

prbyzero
Description BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)
computes the bond prices in a portfolio using a set of zero curves.

BondPrices is a NUMBONDS-by-NUMCURVES matrix of clean bond prices. Each
column is derived from the corresponding zero curve in ZeroRates.

Examples This example uses zbtprice to compute a zero curve given a portfolio of coupon
bonds and their prices. It then reverses the process, using the zero curve as
input to prbyzero to compute the prices.

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
 datenum('7/1/2000') 0.06 100 2 0 0;
 datenum('7/1/2000') 0.09375 100 6 1 0;
 datenum('6/30/2001') 0.05125 100 1 3 1;
 datenum('4/15/2002') 0.07125 100 4 1 0;
 datenum('1/15/2000') 0.065 100 2 0 0;
 datenum('9/1/1999') 0.08 100 3 3 0;
 datenum('4/30/2001') 0.05875 100 2 0 0;
 datenum('11/15/1999') 0.07125 100 2 0 0;
 datenum('6/30/2000') 0.07 100 2 3 1;
 datenum('7/1/2001') 0.0525 100 2 3 0;
 datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [99.375;
 99.875;
 105.75 ;
 96.875;
 103.625;
 101.125;
 103.125;
 99.375;
 101.0 ;
 101.25 ;

ZeroRates NUMDATES-by-NUMCURVES matrix of observed zero rates, as
decimal fractions. Each column represents a rate curve. Each
row represents an observation date.

ZeroDates NUMDATES-by-1 column of dates for observed zeros
4-209

prbyzero
 96.375;
 102.75];

Settle = datenum('12/18/1997');

Set semi-annual compounding for the zero curve, on an actual/365 basis.
Derive the zero curve within 50 iterations.

OutputCompounding = 2;
OutputBasis = 3;
MaxIterations = 50;

Execute zbtprice

[ZeroRates, ZeroDates] = zbtprice(Bonds, Prices, Settle,...
OutputCompounding, OutputBasis, MaxIterations)

which returns the zero curve at the maturity dates.

ZeroRates =

 0.0616
 0.0609
 0.0658
 0.0590
 0.0648
 0.0655
 0.0606
 0.0601
 0.0642
 0.0621
 0.0627

ZeroDates =

 729907
 730364
 730439
 730500
 730667
 730668
 730971
4-210

prbyzero
 731032
 731033
 731321
 731336

Now execute prbyzero

BondPrices = prbyzero(Bonds, Settle, ZeroRates, ZeroDates)

which returns

BondPrices =

 99.38
 98.80
 106.83
 96.88
 103.62
 101.13
 103.12
 99.36
 101.00
 101.25
 96.37
 102.74

In this example zbtprice and prbyzero do not exactly reverse each other.
Many of the bonds have the end-of-month rule off (EndMonthRule = 0). The rule
subtly affects the time factor computation. If you set the rule on
(EndMonthRule = 1) everywhere in the Bonds matrix, then prbyzero returns
the original prices, except when the two incompatible prices fall on the same
maturity date.

See Also tr2bonds, zbtprice
4-211

prdisc
4prdiscPurpose Price of discounted security

Syntax Price = prdisc(Settle, Maturity, Face, Discount, Basis)

Arguments

Description Price = prdisc(Settle, Maturity, Face, Discount, Basis) returns the
price of a security whose yield is quoted as a bank discount rate (e.g., U. S.
Treasury Bills).

Examples Using this data

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Discount = 0.087;
Basis = 2;

Price = prdisc(Settle, Maturity, Face, Discount, Basis)

returns

 Price =

 96.2783

See Also acrudisc, bndprice, discrate, prmat, ylddisc

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.
Formula 2.

Settle Enter as serial date number or date string. Settle must be
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Bank discount rate of the security. Enter as decimal fraction.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-212

prmat
4prmatPurpose Price with interest at maturity

Syntax [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,
CouponRate, Yield, Basis)

Arguments

Description [Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,
CouponRate, Yield, Basis) returns the price and accrued interest of a
security that pays interest at maturity. This function also applies to
zero-coupon bonds or pure discount securities by setting CouponRate = 0.

Examples Using this data

Settle = '02/07/2002';
Maturity = '04/13/2002';
Issue = '10/11/2001';
Face = 100;
CouponRate = 0.0608;
Yield = 0.0608;
Basis = 1;

[Price, AccruInterest] = prmat(Settle, Maturity, Issue, Face,...
CouponRate, Yield, Basis)

returns

Settle Enter as serial date number or date string. Settle must be
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Issue Enter as serial date number or date string.

Face Redemption (par, face) value.

CouponRate Enter as decimal fraction.

Yield Annual yield. Enter as decimal fraction.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-213

prmat
Price =

 99.9784

AccruInterest =

 1.9591

See Also acrubond, acrudisc, bndprice, prdisc, yldmat

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.
Formula 4.
4-214

prtbill
4prtbillPurpose Price of Treasury bill

Syntax Price = prtbill(Settle, Maturity, Face, Discount)

Arguments

Description Price = prtbill(Settle, Maturity, Face, Discount) returns the price
for a Treasury bill.

Examples The settlement date of a Treasury bill is February 10, 2002, the maturity date
is August 6, 2002, the discount rate is 3.77%, and the par value is $1000. Using
this data

Price = prtbill('2/10/2002', '8/6/2002', 1000, 0.0377)

returns

Price =
 981.4642

See Also beytbill, yldtbill

References Bodie, Kane, and Marcus, Investments, pages 41-43.

Settle Enter as serial date number or date string. Settle must be
earlier than or equal to Maturity.

Maturity Enter as serial date number or date string.

Face Redemption (par, face) value.

Discount Discount rate of the Treasury bill. Enter as decimal fraction.
4-215

pvfix
4pvfixPurpose Present value with fixed periodic payments

Syntax PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)

Arguments

Description PresentVal = pvfix(Rate, NumPeriods, Payment, ExtraPayment, Due)
returns the present value of a series of equal payments.

Examples $200 is paid monthly into a savings account earning 6%. The payments are
made at the end of the month for five years. To find the present value of these
payments

PresentVal = pvfix(0.06/12, 5*12, 200, 0, 0)

returns

PresentVal =

 10345.11

See Also fvfix, fvvar, payper, pvvar

rate Periodic interest rate, as a decimal fraction.

NumPeriods Number of periods.

Payment Periodic payment.

ExtraPayment (Optional) Payment received other than Payment in the last
period. Default = 0.

Due (Optional) When payments are due or made: 0 = end of
period (default), or 1 = beginning of period.
4-216

pvvar
4pvvarPurpose Present value of varying cash flow

Syntax PresentVal = pvvar(CashFlow, Rate, IrrCFDates)

Arguments

Description PresentVal = pvvar(CashFlow, Rate, IrrCFDates) returns the net present
value of a varying cash flow.

Examples This cash flow represents the yearly income from an initial investment of
$10,000. The annual interest rate is 8%.

To calculate the net present value of this regular cash flow

PresentVal = pvvar([−10000 2000 1500 3000 3800 5000], 0.08)

returns

PresentVal =

 1715.39

CashFlow A vector of varying cash flows. Include the initial investment as
the initial cash flow value (a negative number).

Rate Periodic interest rate. Enter as a decimal fraction.

IrrCFDates (Optional) For irregular (nonperiodic) cash flows, a vector of
dates on which the cash flows occur. Enter dates as serial date
numbers or date strings. Default assumes CashFlow contains
regular (periodic) cash flows.

Year 1 $2000

Year 2 $1500

Year 3 $3000

Year 4 $3800

Year 5 $5000
4-217

pvvar
An investment of $10,000 returns this irregular cash flow. The original
investment and its date are included. The periodic interest rate is 9%.

To calculate the net present value of this irregular cash flow

CashFlow = [−10000, 2500, 2000, 3000, 4000];

IrrCFDates = ['01/12/1987'
 '02/14/1988'
 '03/03/1988'
 '06/14/1988'
 '12/01/1988'];

PresentVal = pvvar(CashFlow, 0.09, IrrCFDates)

returns

PresentVal =

 142.16

See Also fvfix, fvvar, irr, payuni, pvfix

Cash flow Dates

($10000) January 12, 1987

 $2500 February 14, 1988

 $2000 March 3, 1988

 $3000 June 14, 1988

 $4000 December 1, 1988
4-218

pyld2zero
4pyld2zeroPurpose Zero curve given a par yield curve

Syntax [ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle,
OutputCompounding, OutputBasis, InputCompounding, InputBasis,
MaxIterations)

Arguments ParRates Column vector of annualized implied par yield rates, as
decimal fractions. (Par yields = coupon rates.) In
aggregate, the yield rates in ParRates constitute an
implied par yield curve for the investment horizon
represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date
numbers) that correspond to the par rates.

Settle A serial date number that is the common settlement
date for the par rates.

OutputCompounding (Optional) Output compounding. A scalar that sets the
compounding frequency per year for annualizing the
output zero rates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

OutputBasis (Optional) Output day-count basis for annualizing the
output zero rates. Allowed values are:

0 actual/actual (default)

1 30/360

2 actual/360
4-219

pyld2zero
Description [ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates, Settle,
OutputCompounding, OutputBasis, InputCompounding, InputBasis,
MaxIterations) returns a zero curve given a par yield curve and its maturity
dates.

Examples Given a par yield curve over a set of maturity dates and a settlement date

ParRates = [0.0479
 0.0522
 0.0540
 0.0540
 0.0536
 0.0532
 0.0532
 0.0539
 0.0558
 0.0543];

3 actual/365

InputCompounding (Optional) A scalar that indicates the compounding
frequency per year used for annualizing the input par
rates. Allowed values are the same as for
OutputCompounding. Default = OutputCompounding.

InputBasis (Optional) Input day-count basis used for annualizing
the par rates. Allowed values are the same as for
OutputBasis. Default = OutputBasis.

MaxIterations (Optional) Maximum number of iterations for deriving
the zero rates in ZeroRates. A scalar. Default = 200. A
larger value may slow processing.

ZeroRates Column vector of decimal fractions. In aggregate, the rates in
ZeroRates constitute a zero curve for the investment horizon
represented by CurveDates.

CurveDates Column vector of maturity dates (as serial date numbers)
corresponding to the zero rates. This vector is the same as the
input vector CurveDates.
4-220

pyld2zero
CurveDates = [datenum('06-Nov-2000')
 datenum('11-Dec-2000')
 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Set monthly compounding for the zero curve, on an actual/365 basis. The par
yield curve was compounded annually on an actual/actual basis. Derive the
zero curve within 50 iterations.

OutputCompounding = 12;
OutputBasis = 3;
InputCompounding = 1;
InputBasis = 0;
MaxIterations = 50;

Execute the function

[ZeroRates, CurveDates] = pyld2zero(ParRates, CurveDates,...
Settle, OutputCompounding, OutputBasis, InputCompounding,...
InputBasis, MaxIterations)

which returns the zero curve ZeroRates at the maturity dates CurveDates.

ZeroRates =
 0.0461
 0.0498
 0.0519
 0.0520
 0.0510
 0.0510
 0.0508
 0.0520
 0.0543
 0.0530
4-221

pyld2zero
CurveDates =

 730796
 730831
 730866
 730887
 730914
 730943
 730971
 731027
 731098
 731167

For readability, ParRates and ZeroRates are shown only to the basis point.
However, MATLAB computes them at full precision. If you enter ParRates as
shown, ZeroRates may differ due to rounding.

See Also zero2pyld and other functions for Term Structure of Interest Rates
4-222

ret2tick
4ret2tickPurpose Price tick series from incremental returns and initial price

Syntax [TickSeries, TickTimes] = ret2tick(RetSeries, StartPrice,
RetIntervals, StartTime)

Arguments

Description ret2tick generates price values from the starting prices of NASSETS
investments and NUMOBS incremental return observations.

TickSeries is a NUMOBS+1-by-NASSETS matrix of prices of equity assets. The
first row is the starting price of the assets.

TickTimes is a NUMOBS+1-by-1 vector of tick observation times. The initial time
is zero unless specified in StartTime.

Examples Compute the price increase of two stocks over a year's time based on three
incremental return observations.

RetSeries = [0.10 0.12
 0.05 0.04
 -0.05 0.05];

RetIntervals = [182
 91
 92];

StartTime = datenum('18-Dec-2000');

RetSeries Number of observations (NUMOBS) by number of assets
(NASSETS) matrix of incremental return observations. The
i'th return is quoted for the period TickTimes(i) to
TickTimes(i+1) and is not scaled to a yearly return.

StartPrice (Optional) 1-by-NASSETS vector of initial asset prices. Prices
start at 1 if StartPrice is not specified.

RetIntervals (Optional) Scalar or NUMOBS-by-1 vector of interval times
between observations. If not specified, all intervals are
assumed to have length 1.

StartTime (Optional) Starting time for first observation.
4-223

ret2tick
[TickSeries,TickTimes] = ret2tick(RetSeries,[],RetIntervals,...
StartTime)

TickSeries =

 1.0000 1.0000
 1.1000 1.1200
 1.1550 1.1648
 1.0973 1.2230

TickTimes =

 730838
 731020
 731111
 731203

datestr(TickTimes)

ans =

18-Dec-2000
18-Jun-2001
17-Sep-2001
18-Dec-2001

See Also portsim, tick2ret
4-224

second
4secondPurpose Seconds of date or time

Syntax Seconds = second(Date)

Description Seconds = second(Date) returns the seconds given a serial date number or a
date string.

Examples Seconds = second(738647.558427893)

or

Seconds = second('06-May-2022, 13:24:08.17')

returns

Seconds =

 8.1700

See Also datevec, hour, minute
4-225

taxedrr
4taxedrrPurpose After-tax rate of return

Syntax Return = taxedrr(PreTaxReturn, TaxRate)

Arguments

Description Return = taxedrr(PreTaxReturn, TaxRate) calculates the after-tax rate of
return.

Examples An investment has a 12% nominal rate of return and is taxed at a 30% rate.
The after-tax rate of return is

Return = taxedrr(0.12, 0.30)

Return =
 0.0840

or 8.4%

See Also effrr, irr, mirr, nomrr, xirr

PreTaxReturn Nominal rate of return. Enter as a decimal fraction.

TaxRate Tax rate. Enter as a decimal fraction.
4-226

tbl2bond
4tbl2bondPurpose Treasury bond parameters given Treasury bill parameters

Syntax [TBondMatrix, Settle] = tbl2bond(TBillMatrix)

Arguments

Description [TBondMatrix, Settle] = tbl2bond(TBillMatrix) restates U.S. Treasury
bill market parameters in U.S. Treasury bond form as zero-coupon bonds. This
function makes Treasury bills directly comparable to Treasury bonds and
notes.

TBillMatrix Treasury bill parameters. An N-by-5 matrix where each row
describes a Treasury bill. N is the number of Treasury bills.
Columns are [Maturity DaysMaturity Bid Asked AskYield]
where:

Maturity Maturity date, as a serial date number. Use
datenum to convert date strings to serial date
numbers.

DaysMaturity Days to maturity, as an integer. Days to
maturity is quoted on a skip-day basis; the
actual number of days from settlement to
maturity is DaysMaturity + 1.

Bid Bid bank-discount rate: the percentage discount
from face value at which the bill could be bought,
annualized on a simple-interest basis. A decimal
fraction.

Asked Asked bank-discount rate, as a decimal fraction.

AskYield Asked yield: the bond-equivalent yield from
holding the bill to maturity, annualized on a
simple-interest basis and assuming a 365-day
year. A decimal fraction.
4-227

tbl2bond
Examples Given published Treasury bill market parameters for December 22, 1997

TBill = [datenum('jan 02 1998') 10 0.0526 0.0522 0.0530
 datenum('feb 05 1998') 44 0.0537 0.0533 0.0544
 datenum('mar 05 1998') 72 0.0529 0.0527 0.0540];

Execute the function.

TBond = tbl2bond(TBill)

TBond =
 0 729760 99.854 99.855 0.053
 0 729790 99.344 99.349 0.0544
 0 729820 98.942 98.946 0.054

(Example output has been formatted for readability.)

See Also tr2bonds and other functions for Term Structure of Interest Rates

TBondMatrix Treasury bond parameters. An N-by-5 matrix where each row
describes an equivalent Treasury (zero-coupon) bond. Columns
are [CouponRate Maturity Bid Asked AskYield] where

CouponRate Coupon rate, which is always 0.

Maturity Maturity date, as a serial date number. This
date is the same as the Treasury bill Maturity
date.

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity: the effective return
from holding the bond to maturity, annualized
on a compound-interest basis.
4-228

tick2ret
4tick2retPurpose Incremental return series from a tick price series

Syntax [RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)

Arguments

Description tick2ret computes the asset returns realized between NUMOBS observations of
prices of NASSETS assets.

RetSeries is a (NUMOBS-1)-by-NASSETS matrix of incremental return
observations. The i’th return is quoted for the period TickTimes(i) to
TickTimes(i+1) and is not scaled to a yearly return.

 RetSeries(i) = TickSeries(i+1)/TickSeries(i) - 1

RetIntervals is a (NUMOBS-1)-by-1 vector of interval times between
observations. If TickTimes is not specified, all intervals are assumed to have
length 1.

Examples Compute the periodic returns of two stocks observed in the first, second, third,
and fourth quarters.

TickSeries = [100 80
 110 90
 115 88
 110 91];

TickTimes = [0
 6
 9
 12];

TickSeries Number of observations (NUMOBS) by number of assets
(NASSETS) matrix of prices of equity assets. First row is oldest
observation. Last row is most recent.

TickTimes (Optional) NUMOBS-by-1 increasing vector of observation times.
Times are taken as serial date numbers (day units) or as
decimal numbers in arbitrary units (e.g., yearly).
4-229

tick2ret
[RetSeries, RetIntervals] = tick2ret(TickSeries, TickTimes)

RetSeries =

 0.1000 0.1250
 0.0455 -0.0222
 -0.0435 0.0341

RetIntervals =

 6
 3
 3

See Also ewstats, ret2tick
4-230

today
4todayPurpose Current date

Syntax Datenum = today

Description Datenum = today returns the current date as a serial date number.

Examples Datenum = today

returns

Datenum =

 730695

 on July 28, 2000.

See Also datenum, datestr, now
4-231

tr2bonds
4tr2bondsPurpose Term-structure parameters given Treasury bond parameters

Syntax [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)

Arguments

Description [Bonds, Prices, Yields] = tr2bonds(TreasuryMatrix, Settle)) returns
term-structure parameters (bond information, prices, and yields) sorted by
ascending maturity date, given Treasury bond parameters. The formats of the
output matrix and vectors meet requirements for input to the zbtprice and
zbtyield zero-curve bootstrapping functions.

TreasuryMatrix Treasury bond parameters. An n-by-5 matrix, where each
row describes a Treasury bond. Columns are
[CouponRate Maturity Bid Asked AskYield] where

CouponRate Coupon rate, as a decimal fraction.

Maturity Maturity date, as a serial date number. Use
datenum to convert date strings to serial date
numbers.

Bid Bid price based on $100 face value.

Asked Asked price based on $100 face value.

AskYield Asked yield to maturity, as a decimal fraction.

Settle (Optional) Date string or serial date number of the
settlement date for the analysis.
4-232

tr2bonds
Examples Given published Treasury bond market parameters for December 22, 1997

Matrix =[0.0650 datenum('15-apr-1999') 101.03125 101.09375 0.0564
 0.05125 datenum('17-dec-1998') 99.4375 99.5 0.0563
 0.0625 datenum('30-jul-1998') 100.3125 100.375 0.0560
 0.06125 datenum('26-mar-1998') 100.09375 100.15625 0.0546];

Execute the function.

[Bonds, Prices, Yields] = tr2bonds(Matrix)

Bonds Coupon bond information. An n-by-6 matrix where each row
describes a bond. Columns are
[Maturity CouponRate Face Period Basis EndMonthRule]
where:

Maturity Maturity date of the bond, as a serial date number.
Use datestr to convert serial date numbers to date
strings.

CouponRate Coupon rate of the bond, as a decimal fraction.

Face Redemption or face value of the bond, always 100.

Period Coupons per year of the bond, always 2.

Basis Day-count basis of the bond, always 0
(actual/actual).

EndMonthRule End-of-month flag, always 1, meaning that a bond’s
coupon payment date is always the last day of the
month.

Prices Prices. A column vector containing the price of each bond in bonds,
respectively. The number of rows (n) matches the number of rows in
bonds.

Yields Yields. A column vector containing the yield to maturity of each
bond in bonds, respectively. The number of rows (n) matches the
number of rows in bonds. If Settle is input, Yields is computed as
a semi-annual yield to maturity. If Settle is not input, the quoted
input yields will be used.
4-233

tr2bonds
Bonds =

 729840 0.06125 100 2 0 1
 729966 0.0625 100 2 0 1
 730106 0.05125 100 2 0 1
 730225 0.065 100 2 0 1

Prices =

 100.1563
 100.3750
 99.5000
 101.0938

Yields =

 0.0546
 0.056
 0.0563
 0.0564

(Example output has been formatted for readability.)

See Also tbl2bond, zbtprice, zbtyield, and other functions for Term Structure of
Interest Rates
4-234

ugarch
4ugarchPurpose Univariate GARCH(P,Q) parameter estimation with Gaussian innovations

Syntax [Kappa, Alpha, Beta] = ugarch(U, P, Q)

Arguments

Description [Kappa, Alpha, Beta] = ugarch(U, P, Q) computes estimated univariate
GARCH(P,Q) parameters with Gaussian innovations.

Kappa is the estimated scalar constant term (κ) of the GARCH process.

Alpha is a P-by-1 vector of estimated coefficients, where P is the number of lags
of the conditional variance included in the GARCH process.

Beta is a Q-by-1 vector of estimated coefficients, where Q is the number of lags
of the squared innovations included in the GARCH process.

The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, β represents Beta, and the
GARCH(P, Q) coefficients {κ, α, β} are subject to the following constraints.

U Single column vector of random disturbances, i.e., the residuals or
innovations (εt), of an econometric model representing a mean-zero,
discrete-time stochastic process. The innovations time series U is
assumed to follow a GARCH(P,Q) process.

P Non-negative, scalar integer representing a model order of the
GARCH process. P is the number of lags of the conditional variance.
P can be zero; when P = 0, a GARCH(0,Q) process is actually an
ARCH(Q) process.

Q Positive, scalar integer representing a model order of the GARCH
process. Q is the number of lags of the squared innovations.

σt
2 κ α iσt i–

2

i 1=

P

∑ βjεt j–
2

j 1=

Q

∑+ +=
4-235

ugarch
Note that U is a vector of residuals or innovations (εt) of an econometric model,
representing a mean-zero, discrete-time stochastic process.

Although σt
2 is generated using the equation above, εt and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Note ugarch corresponds generally to the GARCH Toolbox function
garchfit. The GARCH Toolbox provides a comprehensive and integrated
computing environment for the analysis of volatility in time series. For
information, see the GARCH Toolbox User’s Guide or the financial products
Web page at http://www.mathworks.com/products/finprod/.

Examples See ugarchsim for an example of a GARCH(P,Q) process.

See Also ugarchpred, ugarchsim, and the GARCH Toolbox function garchfit

References James D. Hamilton, Time Series Analysis, Princeton University Press, 1994

ai
i 1=

P

∑ βj
j 1=

Q

∑+ 1<

κ 0>

ai 0≥ i 1 2 … P, , ,=

βj 0≥ j 1 2 … Q, , ,=

εt σtvt=
4-236

ugarchllf
4ugarchllfPurpose Log-likelihood objective function of univariate GARCH(P,Q) processes with
Gaussian innovations

Syntax LogLikelihood = ugarchllf(Parameters, U, P, Q)

Arguments

Description LogLikelihood = ugarchllf(Parameters, U, P, Q) computes the
log-likelihood objective function of univariate GARCH(P,Q) processes with
Gaussian innovations.

LogLikelihood is a scalar value of the GARCH(P,Q) log-likelihood objective
function given the input arguments. This function is meant to be optimized via
the fmincon function of the Optimization Toolbox.

fmincon is a minimization routine. To maximize the log-likelihood function, the
LogLikelihood output parameter is actually the negative of what is formally
presented in most time series or econometrics references.

Parameters (1 + P + Q)- by-1 column vector of GARCH(P,Q) process
parameters. The first element is the scalar constant term κ of
the GARCH process; the next P elements are coefficients
associated with the P lags of the conditional variance terms;
the next Q elements are coefficients associated with the Q lags
of the squared innovations terms.

U Single column vector of random disturbances, i.e., the
residuals or innovations (εt), of an econometric model
representing a mean-zero, discrete-time stochastic process.
The innovations time series U is assumed to follow a
GARCH(P,Q) process.

P Nonnegative, scalar integer representing a model order of the
GARCH process. P is the number of lags of the conditional
variance. P can be zero; when P = 0, a GARCH(0,Q) process is
actually an ARCH(Q) process.

Q Positive, scalar integer representing a model order of the
GARCH process. Q is the number of lags of the squared
innovations.
4-237

ugarchllf
The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, and β represents Beta.

U is a vector of residuals or innovations (εt) representing a mean-zero, discrete
time stochastic process. Although σt

2 is generated via the equation above, εt
and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Since ugarchllf is really just a helper function, no argument checking is
performed. This function is not meant to be called directly from the command
line.

Note ugarchllf corresponds generally to the GARCH Toolbox function
garchllfn. The GARCH Toolbox provides a comprehensive and integrated
computing environment for the analysis of volatility in time series. For
information see the GARCH Toolbox User’s Guide or the financial products
Web page at http://www.mathworks.com/products/finprod/.

See Also ugarch, ugarchpred, ugarchsim, and the GARCH Toolbox function garchllfn

σt
2 κ α iσt i–

2

i 1=

P

∑ βjεt j–
2

j 1=

Q

∑+ +=

εt σtvt=
4-238

ugarchpred
4ugarchpredPurpose Forecast conditional variance of univariate GARCH(P,Q) processes

Syntax [VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta,
NumPeriods)

Arguments

Description [VarianceForecast, H] = ugarchpred(U, Kappa, Alpha, Beta,
NumPeriods) forecasts the conditional variance of univariate GARCH(P,Q)
processes.

VarianceForecast is a number of periods (NUMPERIODS)-by-1 vector of the
minimum mean-square error forecast of the conditional variance of the
innovations time series vector U (i.e., εt). The first element contains the
1-period-ahead forecast, the second element contains the 2-period-ahead
forecast, and so on. Thus, if a forecast horizon greater than 1 is specified
(NUMPERIODS > 1), the forecasts of all intermediate horizons are returned as
well. In this case, the last element contains the variance forecast of the
specified horizon, NumPeriods from the most recent observation in U.

H is a vector of the conditional variances (σt
2) corresponding to the innovations

vector U. It is inferred from the innovations U, and is a reconstruction of the

U Single column vector of random disturbances, i.e., the
residuals or innovations (εt), of an econometric model
representing a mean-zero, discrete-time stochastic process.
The innovations time series U is assumed to follow a
GARCH(P,Q) process.

Kappa Scalar constant term κ of the GARCH process.

Alpha P-by-1 vector of coefficients, where P is the number of lags of
the conditional variance included in the GARCH process.
Alpha can be an empty matrix, in which case P is assumed 0;
when P = 0, a GARCH(0,Q) process is actually an ARCH(Q)
process.

Beta Q-by-1 vector of coefficients, where Q is the number of lags of
the squared innovations included in the GARCH process.

NumPeriods Positive, scalar integer representing the forecast horizon of
interest, expressed in periods compatible with the sampling
frequency of the input innovations column vector U.
4-239

ugarchpred
“past” conditional variances, whereas the VarianceForecast output
represents the projection of conditional variances into the “future.” This
sequence is based on setting pre-sample values of σt

2 to the unconditional
variance of the {εt} process. H is a single column vector of the same length as the
input innovations vector U.

The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, β represents Beta, and the
GARCH(P,Q) coefficients {κ, α, β} are subject to the following constraints.

Note that U is a vector of residuals or innovations (εt) of an econometric model,
representing a mean-zero, discrete-time stochastic process.

Although σt
2 is generated using the equation above, εt and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

Note ugarchpred corresponds generally to the GARCH Toolbox function
garchpred. The GARCH Toolbox provides a comprehensive and integrated
computing environment for the analysis of volatility in time series. For
information see the GARCH Toolbox User’s Guide or the financial products
Web page at http://www.mathworks.com/products/finprod/.

σt
2 κ α iσt i–

2

i 1=

P

∑ βjεt j–
2

j 1=

Q

∑+ +=

ai
i 1=

P

∑ βj
j 1=

Q

∑+ 1<

κ 0>

ai 0≥ i 1 2 … P, , ,=

βj 0≥ j 1 2 … Q, , ,=

εt σtvt=
4-240

ugarchpred
Examples See ugarchsim for an example of forecasting the conditional variance of a
univariate GARCH(P,Q) process.

See Also ugarch, ugarchsim, and the GARCH Toolbox function garchpred
4-241

ugarchsim
4ugarchsimPurpose Simulate a univariate GARCH(P,Q) process with Gaussian innovations

Syntax [U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples)

Arguments

Description [U, H] = ugarchsim(Kappa, Alpha, Beta, NumSamples) simulates a
univariate GARCH(P,Q) process with Gaussian innovations.

U is a number of samples (NUMSAMPLES)-by-1 vector of innovations (εt),
representing a mean-zero, discrete-time stochastic process. The innovations
time series U is designed to follow the GARCH(P,Q) process specified by the
inputs Kappa, Alpha, and Beta.

H is a NUMSAMPLES-by-1 vector of the conditional variances (σt
2) corresponding

to the innovations vector U. Note that U and H are the same length, and form a
“matching” pair of vectors. As shown in the following equation, σt

2 (i.e., H(t))
represents the time series inferred from the innovations time series {εt} (i.e.,
U).

 The time-conditional variance, σt
2, of a GARCH(P,Q) process is modeled as

where α represents the argument Alpha, β represents Beta, and the
GARCH(P,Q) coefficients {κ, α, β} are subject to the following constraints.

Kappa Scalar constant term κ of the GARCH process.

Alpha P-by-1 vector of coefficients, where P is the number of lags of
the conditional variance included in the GARCH process.
Alpha can be an empty matrix, in which case P is assumed 0;
when P = 0, a GARCH(0,Q) process is actually an ARCH(Q)
process.

Beta Q-by-1 vector of coefficients, where Q is the number of lags of
the squared innovations included in the GARCH process.

NumSamples Positive, scalar integer indicating the number of samples of
the innovations U and conditional variance H (see below) to
simulate.

σt
2 κ α iσt i–

2

i 1=

P

∑ βjεt j–
2

j 1=

Q

∑+ +=
4-242

ugarchsim
Note that U is a vector of residuals or innovations (εt) of an econometric model,
representing a mean-zero, discrete-time stochastic process.

Although σt
2 is generated using the equation above, εt and σt

2 are related as

where {vt} is an independent, identically distributed (i.i.d.) sequence ~ N(0,1).

The output vectors U and H are designed to be steady-state sequences in which
transients have arbitrarily small effect. The (arbitrary) metric used by
ugarchsim strips the first N samples of U and H such that the sum of the GARCH
coefficients, excluding Kappa, raised to the Nth power, does not exceed 0.01.

 0.01 = (sum(Alpha) + sum(Beta))^N

Thus

 N = log(0.01)/log((sum(Alpha) + sum(Beta)))

Note ugarchsim corresponds generally to the GARCH Toolbox function
garchsim. The GARCH Toolbox provides a comprehensive and integrated
computing environment for the analysis of volatility in time series. For
information see the GARCH Toolbox User’s Guide or the financial products
Web page at http://www.mathworks.com/products/finprod/.

ai
i 1=

P

∑ βj
j 1=

Q

∑+ 1<

κ 0>

ai 0≥ i 1 2 … P, , ,=

βj 0≥ j 1 2 … Q, , ,=

εt σtvt=
4-243

ugarchsim
Examples This example simulates a GARCH(P,Q) process with P = 2 and Q = 1.

% Set the random number generator seed for reproducability.

randn('seed', 10)

% Set the simulation parameters of GARCH(P,Q) = GARCH(2,1) process.

Kappa = 0.25; %a positive scalar.
Alpha = [0.2 0.1]'; %a column vector of nonnegative numbers (P = 2).
Beta = 0.4; % Q = 1.
NumSamples = 500; % number of samples to simulate.

% Now simulate the process.

[U , H] = ugarchsim(Kappa, Alpha, Beta, NumSamples);

% Estimate the process parameters.

P = 2; % Model order P (P = length of Alpha).
Q = 1; % Model order Q (Q = length of Beta).
[k, a, b] = ugarch(U , P , Q);
disp(' ')
disp(' Estimated Coefficients:')
disp(' -----------------------')
disp([k; a; b])
disp(' ')

% Forecast the conditional variance using the estimated
% coefficients.

NumPeriods = 10; % Forecast out to 10 periods.
[VarianceForecast, H1] = ugarchpred(U, k, a, b, NumPeriods);
disp(' Variance Forecasts:')
disp(' ------------------')
disp(VarianceForecast)
disp(' ')

When the above code is executed, the screen output looks like the display
shown.
4-244

ugarchsim
%%%
Diagnostic Information

Number of variables: 4

Functions
Objective: ugarchllf
Gradient: finite-differencing
Hessian: finite-differencing (or Quasi-Newton)

Constraints
Nonlinear constraints: do not exist
Number of linear inequality constraints: 1
Number of linear equality constraints: 0
Number of lower bound constraints: 4
Number of upper bound constraints: 0
Algorithm selected
 medium-scale

%%%
End diagnostic information

 max Directional

 Iter F-count f(x) constraint Step-size derivative Procedure
 1 5 699.185 -0.125 1 -2.97e+006
 2 22 658.224 -0.1249 0.000488 -64.6
 3 28 610.181 0 1 -49.4
 4 35 590.888 0 0.5 -38.9
 5 42 583.961 -0.03317 0.5 -29.8
 6 49 583.224 -0.02756 0.5 -31.8
 7 57 582.947 -0.02067 0.25 -7.28
 8 63 578.182 0 1 -2.43
 9 71 578.138 -0.09145 0.25 -0.55
 10 77 577.898 -0.04452 1 -0.148
 11 84 577.882 -0.06128 0.5 -0.0488
 12 90 577.859 -0.07117 1 -0.000758
 13 96 577.858 -0.07033 1 -0.000305 Hessian modified
 14 102 577.858 -0.07042 1 -3.32e-005 Hessian modified
 15 108 577.858 -0.0707 1 -1.29e-006 Hessian modified
 16 114 577.858 -0.07077 1 -1.29e-007 Hessian modified
 17 120 577.858 -0.07081 1 -1.97e-007 Hessian modified
4-245

ugarchsim
Optimization Converged Successfully
Magnitude of directional derivative in search direction
 less than 2*options.TolFun and maximum constraint violation
 is less than options.TolCon
No Active Constraints

Estimated Coefficients:

0.2520
0.0708
0.1623
0.4000

Variance Forecasts:

1.3243
0.9594
0.9186
0.8402
0.7966
0.7634
0.7407
0.7246
0.7133
0.7054

See Also ugarch, ugarchpred, and the GARCH Toolbox function garchsim

References James D. Hamilton, Time Series Analysis, Princeton University Press, 1994
4-246

weekday
4weekdayPurpose Day of the week

Syntax [DayNum, DayString] = weekday(Date)

Description [DayNum, DayString] = weekday(Date) returns the day of the week in
numeric and string form given the date as a serial date number or date string.
The days of the week have these values.

Note This function now ships with basic MATLAB. It originally shipped only
with the Financial Toolbox. This description remains here for your
convenience.

DayNum DayString

1 Sun

2 Mon

3 Tue

4 Wed

5 Thu

6 Fri

7 Sat
4-247

weekday
Examples [DayNum, DayString] = weekday(730845)

or

[DayNum, DayString] = weekday('25-Dec-2000')

returns

DayNum =

 2

DayString =

Mon

See Also datenum, datestr, datevec, day
4-248

wrkdydif
4wrkdydifPurpose Number of working days between dates

Syntax Days = wrkdydif(StartDate, EndDate, Holidays)

Description Days = wrkdydif(StartDate, EndDate, Holidays) returns the number of
working days between dates StartDate and EndDate. Holidays is the number
of holidays between the given dates, an integer. Enter dates as serial date
numbers or date strings.

Examples Days = wrkdydif('9/1/2000', '9/11/2000', 1)

or

Days = wrkdydif(730730, 730740, 1)

returns

Days =

 6

See Also busdate, datewrkdy, days360, days365, daysact, daysdif, holidays,
yearfrac
4-249

x2mdate
4x2mdatePurpose Excel serial date number to MATLAB serial date number

Syntax MATLABDate = x2mdate(ExcelDateNumber, Convention)

Arguments

Vector arguments must have consistent dimensions.

Description DateNumber = x2mdate(ExcelDateNumber, Convention) converts Excel
serial date numbers to MATLAB serial date numbers. MATLAB date numbers
start with 1 = January 1, 0000 A.D., hence there is a difference of 693961
relative to the 1900 date system, or 695422 relative to the 1904 date system.
This function is useful with MATLAB Excel Link.

Examples Given Excel date numbers in the 1904 system

ExDates = [35423 35788 36153];

convert them to MATLAB date numbers

MATLABDate = x2mdate(ExDates, 1)

MATLABDate =

 730845 731210 731575

and then to date strings.

ExcelDateNumber A vector or scalar of Excel serial date numbers.

Convention (Optional) Excel date system. A vector or scalar. When
Convention = 0 (default), the Excel 1900 date system is
in effect. When Convention = 1, the Excel 1904 date
system in used.

In the Excel 1900 date system, the Excel serial date
number 1 corresponds to January 1, 1900 A.D. In the
Excel 1904 date system, date number 0 is January 1,
1904 A.D.
4-250

x2mdate
datestr(MATLABDate)

ans =

25-Dec-2000
25-Dec-2001
25-Dec-2002

See Also datenum, datestr, m2xdate
4-251

xirr
4xirrPurpose Internal rate of return for nonperiodic cash flow

Syntax Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations)

Arguments

Description Return = xirr(CashFlow, CashFlowDates, Guess, MaxIterations)
returns the internal rate of return for a schedule of nonperiodic cash flows.

Examples An investment of $10,000 returns this nonperiodic cash flow. The original
investment and its date are included.

To calculate the internal rate of return for this nonperiodic cash flow

CashFlow = [−10000, 2500, 2000, 3000, 4000];
CashFlowDates = ['01/12/2000'
 '02/14/2001'
 '03/03/2001'
 '06/14/2001'
 '12/01/2001'];

CashFlow A vector of nonperiodic cash flows. Include the initial
investment as the initial cash flow value (a negative
number).

CashFlowDates A vector of dates on which the cash flows occur. Enter dates
as serial date numbers or date strings.

Guess (Optional) Initial estimate of the expected return. Default
= 0.1 (10%).

MaxIterations (Optional) Number of iterations used by Newton’s method
to solve for Return. Default = 50.

Cash flow Dates

($10000) January 12, 2000

 $2500 February 14, 2001

 $2000 March 3, 2001

 $3000 June 14, 2001

 $4000 December 1, 2001
4-252

xirr
Return = xirr(CashFlow, CashFlowDates)

returns

Return =
 0.1009 (or 10.09%)

See Also fvvar, irr, mirr, pvvar

References Sharpe and Alexander, Investments, 4th edition, page 463.
4-253

year
4yearPurpose Year of date

Syntax Year = year(Date)

Description Year = year(Date) returns the year of a serial date number or a date string.

Examples Year = year(731798.776)

or

Year = year('05-Aug-2003')

returns

 Year =

 2003

See Also datevec, day, month, yeardays
4-254

yeardays
4yeardaysPurpose Number of days in year

Syntax Days = yeardays(Year)

Description Days = yeardays(Year) returns the actual number of days in the given year.
Enter Year as a four-digit integer.

Examples Days = yeardays(2000)

Days =

 366

See Also days360, days365, daysact, year, yearfrac
4-255

yearfrac
4yearfracPurpose Fraction of year between dates

Syntax Fraction = yearfrac(StartDate, EndDate, Basis)

Arguments

Description Fraction = yearfrac(StartDate, EndDate, Basis) returns a fraction
based on the number of days between dates StartDate and EndDate using the
given day-count basis. If EndDate is earlier than StartDate, YearFraction is
negative.

Examples Fraction = yearfrac('14 mar 01', '14 sep 01', 0)

Fraction =

 0.5041

Fraction = yearfrac('14 mar 01', '14 sep 01', 1)

Fraction =

 0.5000

See Also days360, days365, daysact, daysdif, months, wrkdydif, yeardays

StartDate Enter as serial date numbers or date strings.

EndDate Enter as serial date numbers or date strings.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-256

ylddisc
4ylddiscPurpose Yield of discounted security

Syntax Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

Arguments

Description Yield = ylddisc(Settle, Maturity, Face, Price, Basis) finds the yield
of a discounted security.

Examples Using the data

Settle = '10/14/2000';
Maturity = '03/17/2001';
Face = 100;
Price = 96.28;
Basis = 2;

Yield = ylddisc(Settle, Maturity, Face, Price, Basis)

returns

Yield =

 0.0903 (or 9.03%)

See Also acrudisc, bndprice, bndyield, prdisc, yldmat, yldtbill

References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.
Formula 1.

Settle Settlement date. Enter as serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Discounted price of the security.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-257

yldmat
4yldmatPurpose Yield with interest at maturity

Syntax Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate,
Basis)

Arguments

Description Yield = yldmat(Settle, Maturity, Issue, Face, Price, CouponRate,
Basis) returns the yield of a security paying interest at maturity.

Examples Using the data

Settle = '02/07/2000';
Maturity = '04/13/2000';
Issue = '10/11/1999';
Face = 100;
Price = 99.98;
CouponRate = 0.0608;
Basis = 1;

Yield = yldmat(Settle, Maturity, Issue, Face, Price,...
CouponRate, Basis)

returns

Yield =
 0.0607 (or 6.07%)

See Also acrubond, bndprice, bndyield, prmat, ylddisc, yldtbill

Settle Settlement date. Enter as serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Issue Issue date. Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Price of the security.

CouponRate Coupon rate. Enter as decimal fraction.

Basis (Optional) Day-count basis: 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.
4-258

yldmat
References Mayle, Standard Securities Calculation Methods, Volumes I-II, 3rd edition.
Formula 3.
4-259

yldtbill
4yldtbillPurpose Yield of Treasury bill

Syntax Yield = yldtbill(Settle, Maturity, Face, Price)

Arguments

Description Yield = yldtbill(Settle, Maturity, Face, Price) returns the yield for a
Treasury bill.

Examples The settlement date of a Treasury bill is February 10, 2000, the maturity date
is August 6, 2000, the par value is $1000, and the price is $981.36. Using this
data

Yield = yldtbill('2/10/2000', '8/6/2000', 1000, 981.36)

returns

Yield =

 0.0384 (or 3.84%)

See Also beytbill, bndyield, prtbill, yldmat

References Bodie, Kane, and Marcus, Investments, pages 41-43.

Settle Settlement date. Enter as serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. Enter as serial date number or date string.

Face Redemption (par, face) value.

Price Price of the Treasury bill.
4-260

zbtprice
4zbtpricePurpose Zero curve bootstrapping from coupon bond data given price

Syntax [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,
OutputCompounding, OutputBasis, MaxIterations)

Arguments Bonds Coupon bond information used to generate the zero
curve. An n-by-2 to n-by-6 matrix where each row
describes a bond. The first two columns are required;
the rest are optional but must be added in order. All
rows in Bonds must have the same number of columns.

Columns are
[Maturity CouponRate Face Period Basis
EndMonthRule] where

Maturity Maturity date of the bond, as a serial
date number. Use datenum to convert
date strings to serial date numbers.

CouponRate Coupon rate of the bond, as a decimal
fraction.

Face (Optional) Redemption or face value of
the bond. Default = 100.

Period (Optional) Coupons per year of the bond,
as an integer. Allowed values are 0, 1, 2,
3, 4, 6, and 12. Default = 2.

Basis (Optional) Day-count basis of the bond:
0 = actual/actual (default), 1 = 30/360, 2
= actual/360, 3 = actual/365.

EndMonthRule (Optional) End-of-month flag. This flag
applies only when Maturity is an
end-of-month date for a month having
30 or fewer days. 0 = ignore flag,
meaning that a bond’s coupon payment
date is always the same day of the
month. 1 = set flag (default), meaning
that a bond’s coupon payment date is
always the last day of the month.
4-261

zbtprice
Description [ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,
OutputCompounding, OutputBasis, MaxIterations) uses the bootstrap
method to return a zero curve given a portfolio of coupon bonds and their prices.
A zero curve consists of the yields to maturity for a portfolio of theoretical
zero-coupon bonds that are derived from the input Bonds portfolio. The
bootstrap method that this function uses does not require alignment among the
cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond

Prices A column vector containing the clean price (price
without accrued interest) of each bond in Bonds,
respectively. The number of rows (n) must match the
number of rows in Bonds.

Settle Settlement date, as a scalar serial date number. This
represents time zero for deriving the zero curve, and it
is normally the common settlement date for all the
bonds.

OutputCompounding (Optional) A scalar that sets the compounding
frequency per year for the output zero rates in
ZeroRates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

OutputBasis (Optional) Output day-count basis for mapping
cash-flow dates to years, in generating the output zero
rates in ZeroRates. A scalar. 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.

MaxIterations (Optional) Maximum number of iterations for deriving
the zero rates in ZeroRates. A scalar. Default = 50. A
value greater than 50 may slow processing.
4-262

zbtprice
arbitrage and yield interpolation to derive all zero rates. For best results, use
a portfolio of at least 30 bonds evenly spaced across the investment horizon.

Examples Given data and prices for 12 coupon bonds, two with the same maturity date;
and given the common settlement date

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
 datenum('7/1/2000') 0.06 100 2 0 0;
 datenum('7/1/2000') 0.09375 100 6 1 0;
 datenum('6/30/2001') 0.05125 100 1 3 1;
 datenum('4/15/2002') 0.07125 100 4 1 0;
 datenum('1/15/2000') 0.065 100 2 0 0;
 datenum('9/1/1999') 0.08 100 3 3 0;
 datenum('4/30/2001') 0.05875 100 2 0 0;
 datenum('11/15/1999') 0.07125 100 2 0 0;
 datenum('6/30/2000') 0.07 100 2 3 1;
 datenum('7/1/2001') 0.0525 100 2 3 0;
 datenum('4/30/2002') 0.07 100 2 0 0];

Prices = [99.375;
 99.875;
 105.75 ;
 96.875;
 103.625;
 101.125;
 103.125;

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero
rates for each point along the investment horizon represented
by CurveDates; m is the number of bonds of unique maturity
dates. In aggregate, the rates in ZeroRates constitute a zero
curve.

If more than one bond has the same maturity date, zbtprice
returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date
numbers) that correspond to the zero rates in ZeroRates; m is
the number of bonds of different maturity dates. These dates
begin with the earliest maturity date and end with the latest
maturity date Maturity in the Bonds matrix.
4-263

zbtprice
 99.375;
 101.0 ;
 101.25 ;
 96.375;
 102.75];

Settle = datenum('12/18/1997');

Set semi-annual compounding for the zero curve, on an actual/365 basis.
Derive the zero curve within 50 iterations.

OutputCompounding = 2;
OutputBasis = 3;
MaxIterations = 50;

Execute the function

[ZeroRates, CurveDates] = zbtprice(Bonds, Prices, Settle,...
OutputCompounding, OutputBasis, MaxIterations)

which returns the zero curve at the maturity dates. Note the mean zero rate for
the two bonds with the same maturity date*.

ZeroRates =

 0.0616
 0.0609
 0.0658
 0.0590
 0.0648
 0.0655*
 0.0606
 0.0601
 0.0642
 0.0621
 0.0627
4-264

zbtprice
CurveDates =

 729907 (serial date number for 01-Jun-1998)
 730364 (01-Sep-1999)
 730439 (15-Nov-1999)
 730500 (15-Jan-2000)
 730667 (30-Jun-2000)
 730668 (01-Jul-2000)*
 730971 (30-Apr-2001)
 731032 (30-Jun-2001)
 731033 (01-Jul-2001)
 731321 (15-Apr-2002)
 731336 (30-Apr-2002)

See Also zbtyield and other functions for Term Structure of Interest Rates

References Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi, Frank J.
and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed.
New York: Irwin Professional Publishing. 1995.

McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest
Rates.” Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. “Calculating Zero Coupon Rates.” Swap and Derivative
Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional
Publishing. 1994.
4-265

zbtyield
4zbtyieldPurpose Zero curve bootstrapping from coupon bond data given yield

Syntax [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,
OutputCompounding, OutputBasis, MaxIterations)

Arguments Bonds Coupon bond information used to generate the zero
curve. An n-by-2 to n-by-6 matrix where each row
describes a bond. The first two columns are required;
the rest are optional but must be added in order. All
rows in Bonds must have the same number of columns.
Columns are
[Maturity CouponRate Face Period Basis
EndMonthRule] where

Maturity Maturity date of the bond, as a serial
date number. Use datenum to convert
date strings to serial date numbers.

CouponRate Coupon rate of the bond, as a decimal
fraction.

Face (Optional) Redemption or face value of
the bond. Default = 100.

Period (Optional) Coupons per year of the
bond, as an integer. Allowed values are
0, 1, 2, 3, 4, 6, and 12. Default = 2.

Basis (Optional) Day-count basis of the bond:
0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.
4-266

zbtyield
EndMonthRule (Optional) End-of-month flag. This flag
applies only when Maturity is an
end-of-month date for a month having
30 or fewer days. 0 = ignore flag,
meaning that a bond’s coupon payment
date is always the same day of the
month. 1 = set flag (default), meaning
that a bond’s coupon payment date is
always the last day of the month.

Yields A column vector containing the yield to maturity of each
bond in Bonds, respectively. The number of rows (n)
must match the number of rows in Bonds.

Settle Settlement date, as a scalar serial date number. This
represents time zero for deriving the zero curve, and it
is normally the common settlement date for all the
bonds.

OutputCompounding (Optional) A scalar that sets the compounding
frequency per year for the output zero rates in
ZeroRates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

OutputBasis (Optional) Output day-count basis for mapping
cash-flow dates to years, in generating the output zero
rates in ZeroRates. A scalar. 0 = actual/actual (default),
1 = 30/360, 2 = actual/360, 3 = actual/365.

MaxIterations (Optional) Maximum number of iterations for deriving
the zero rates in ZeroRates. A scalar. Default = 50. A
value greater than 50 may slow processing.
4-267

zbtyield
Description [ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,
OutputCompounding, OutputBasis, MaxIterations) uses the bootstrap
method to return a zero curve given a portfolio of coupon bonds and their yields.
A zero curve consists of the yields to maturity for a portfolio of theoretical
zero-coupon bonds that are derived from the input Bonds portfolio. The
bootstrap method that this function uses does not require alignment among the
cash-flow dates of the bonds in the input portfolio. It uses theoretical par bond
arbitrage and yield interpolation to derive all zero rates. For best results, use
a portfolio of at least 30 bonds evenly spaced across the investment horizon.

Examples Given data and yields to maturity for 12 coupon bonds, two with the same
maturity date; and given the common settlement date

Bonds = [datenum('6/1/1998') 0.0475 100 2 0 0;
 datenum('7/1/2000') 0.06 100 2 0 0;
 datenum('7/1/2000') 0.09375 100 6 1 0;
 datenum('6/30/2001') 0.05125 100 1 3 1;
 datenum('4/15/2002') 0.07125 100 4 1 0;
 datenum('1/15/2000') 0.065 100 2 0 0;
 datenum('9/1/1999') 0.08 100 3 3 0;
 datenum('4/30/2001') 0.05875 100 2 0 0;
 datenum('11/15/1999') 0.07125 100 2 0 0;
 datenum('6/30/2000') 0.07 100 2 3 1;
 datenum('7/1/2001') 0.0525 100 2 3 0;

ZeroRates An m-by-1 vector of decimal fractions that are the implied zero
rates for each point along the investment horizon represented
by CurveDates; m is the number of bonds of different maturity
dates. In aggregate, the rates in ZeroRates constitute a zero
curve.

If more than one bond has the same maturity date, zbtyield
returns the mean zero rate for that maturity.

CurveDates An m-by-1 vector of unique maturity dates (as serial date
numbers) that correspond to the zero rates in ZeroRates; m is
the number of bonds of different maturity dates. These dates
begin with the earliest maturity date and end with the latest
maturity date Maturity in the Bonds matrix. Use datestr to
convert serial date numbers to date strings.
4-268

zbtyield
 datenum('4/30/2002') 0.07 100 2 0 0];

Yields = [0.048;
 0.06 ;
 0.089;
 0.053;
 0.069;
 0.064;
 0.078;
 0.059;
 0.071;
 0.069;
 0.057;
 0.068];

Settle = datenum('12/18/1997');

Set semi-annual compounding for the zero curve, on an actual/365 basis.
Derive the zero curve within 50 iterations.

OutputCompounding = 2;
OutputBasis = 3;
MaxIterations = 50;

Execute the function

[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle,...
OutputCompounding, OutputBasis, MaxIterations)

which returns the zero curve at the maturity dates. Note the mean zero rate for
the two bonds with the same maturity date*.

ZeroRates =

 0.0480
 0.0577
 0.0909
 0.0529
 0.0699
 0.0724*
 0.0584
 0.0716
4-269

zbtyield
 0.0696
 0.0526
 0.0687

CurveDates =

 729907 (serial date number for 01-Jun-1998)
 730364 (01-Sep-1999)
 730439 (15-Nov-1999)
 730500 (15-Jan-2000)
 730667 (30-Jun-2000)
 730668 (01-Jul-2000)*
 730971 (30-Apr-2001)
 731032 (30-Jun-2001)
 731033 (01-Jul-2001)
 731321 (15-Apr-2002)
 731336 (30-Apr-2002)

See Also zbtprice and other functions for Term Structure of Interest Rates

References Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi, Frank J.
and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed.
New York: Irwin Professional Publishing. 1995.

McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest
Rates.” Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. “Calculating Zero Coupon Rates.” Swap and Derivative
Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional
Publishing. 1994.
4-270

zero2disc
4zero2discPurpose Discount curve given a zero curve

Syntax [DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,
InputCompounding, InputBasis)

Arguments

Description [DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates, Settle,
InputCompounding, InputBasis) returns a discount curve given a zero curve
and its maturity dates.

ZeroRates A number of bonds (NUMBONDS) by 1 vector of annualized
zero rates, as decimal fractions. In aggregate, the rates
constitute an implied zero curve for the investment
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the zero rates.

Settle A serial date number that is the common settlement date
for the zero rates; i.e., the settlement date for the bonds
from which the zero curve was bootstrapped.

InputCompounding (Optional) A scalar that indicates the compounding
frequency per year used for annualizing the input zero
rates in ZeroRates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

InputBasis (Optional) Input day-count basis used for annualizing
the input zero rates. 0 = actual/actual (default), 1 =
30/360, 2 = actual/360, 3 = actual/365.
4-271

zero2disc
Examples Given a zero curve over a set of maturity dates and a settlement date

ZeroRates = [0.0464
 0.0509
 0.0524
 0.0525
 0.0531
 0.0525
 0.0530
 0.0531
 0.0549
 0.0536];

CurveDates = [datenum('06-Nov-2000')
 datenum('11-Dec-2000')
 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

 The zero curve was compounded daily on an actual/365 basis.

InputCompounding = 365;
InputBasis = 3;

DiscRates A NUMBONDS-by-1 vector of discount factors, as decimal
fractions. In aggregate, the factors in constitute a discount
curve for the investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the discount rates. This vector is
the same as the input vector CurveDates.
4-272

zero2disc
Execute the function

[DiscRates, CurveDates] = zero2disc(ZeroRates, CurveDates,...
Settle, InputCompounding, InputBasis)

which returns the discount curve DiscRates at the maturity dates CurveDates.

DiscRates =

 0.9996
 0.9947
 0.9896
 0.9866
 0.9826
 0.9787
 0.9745
 0.9665
 0.9552
 0.9466

CurveDates =

 730796
 730831
 730866
 730887
 730914
 730943
 730971
 731027
 731098
 731167

For readability, ZeroRates and DiscRates are shown here only to the basis
point. However, MATLAB computed them at full precision. If you enter
ZeroRates as shown, DiscRates may differ due to rounding.

See Also disc2zero and other functions for Term Structure of Interest Rates
4-273

zero2fwd
4zero2fwdPurpose Forward curve given a zero curve

Syntax [ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,
Settle, OutputCompounding, OutputBasis, InputCompounding,
InputBasis)

Arguments ZeroRates A number of bonds (NUMBONDS) by 1 vector of annualized
zero rates, as decimal fractions. In aggregate, the rates
constitute an implied zero curve for the investment
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the zero rates.

Settle A serial date number that is the common settlement date
for the zero rates.

OutputCompounding (Optional) Output compounding. A scalar that sets the
compounding frequency per year for annualizing the
output forward rates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

OutputBasis (Optional) Output day-count basis for annualizing the
forward rates. 0 = actual/actual (default), 1 = 30/360, 2 =
actual/360, 3 = actual/365.
4-274

zero2fwd
Description [ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,
Settle, OutputCompounding, OutputBasis, InputCompounding,
InputBasis) returns an implied forward rate curve given a zero curve and its
maturity dates.

Examples Given a zero curve over a set of maturity dates and a settlement date

ZeroRates = [0.0458
 0.0502
 0.0518
 0.0519
 0.0524
 0.0519
 0.0523
 0.0525
 0.0541
 0.0529];

CurveDates = [datenum('06-Nov-2000')
 datenum('11-Dec-2000')
 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')

InputCompounding (Optional) A scalar that indicates the compounding
frequency per year used for annualizing the input zero
rates. Allowed values are the same as for
OutputCompounding. Default = OutputCompounding.

InputBasis (Optional) Input day-count basis used for annualizing
the input zero rates. Allowed values are the same as for
OutputBasis. Default = OutputBasis.

ForwardRates A NUMBONDS-by-1 vector of decimal fractions. In aggregate, the
rates in ForwardRates constitute a forward curve over the
dates in CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the forward rates in. This vector
is the same as the input vector CurveDates.
4-275

zero2fwd
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Set annual compounding for the forward curve, on an actual/actual basis. The
zero curve was compounded daily on an actual/365 basis.

OutputCompounding = 1;
OutputBasis = 0;
InputCompounding = 365;
InputBasis = 3;

Execute the function

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates,...
Settle, OutputCompounding, OutputBasis, InputCompounding,...
InputBasis)

which returns the forward rate curve ForwardRates at the maturity dates
CurveDates.

ForwardRates =

 0.0469
 0.0519
 0.0550
 0.0536
 0.0556
 0.0511
 0.0559
 0.0546
 0.0612
 0.0487
4-276

zero2fwd
CurveDates =

 730796
 730831
 730866
 730887
 730914
 730943
 730971
 731027
 731098
 731167

For readability, ZeroRates and ForwardRates are shown here only to the basis
point. However, MATLAB computed them at full precision. If you enter
ZeroRates as shown, ForwardRates may differ due to rounding.

See Also fwd2zero and other functions for Term Structure of Interest Rates
4-277

zero2pyld
4zero2pyldPurpose Par yield curve given a zero curve

Syntax [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates, Settle,
 OutputCompounding, OutputBasis, InputCompounding, InputBasis)

Arguments ZeroRates A number of bonds (NUMBONDS) by 1 vector of annualized
zero rates, as decimal fractions. In aggregate, the rates
constitute an implied zero curve for the investment
horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the zero rates.

Settle A serial date number that is the common settlement date
for the zero rates.

OutputCompounding (Optional) Output compounding. A scalar that sets the
compounding frequency per year for annualizing the
output forward rates. Allowed values are:

1 annual compounding

2 semi-annual compounding (default)

3 compounding three times per year

4 quarterly compounding

6 bimonthly compounding

12 monthly compounding

365 daily compounding

-1 continuous compounding

OutputBasis (Optional) Output day-count basis for annualizing the
forward rates. 0 = actual/actual (default), 1 = 30/360,
2 = actual/360, 3 = actual/365.
4-278

zero2pyld
Description [ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,
Settle,OutputCompounding, OutputBasis, InputCompounding,
InputBasis) returns a par yield curve given a zero curve and its maturity
dates.

Examples Given a zero curve over a set of maturity dates and a settlement date

ZeroRates = [0.0457
0.0487
 0.0506
 0.0507
0.0505
0.0504
0.0506
0.0516
0.0539
0.0530];

InputCompounding (Optional) A scalar that indicates the compounding
frequency per year used for annualizing the input zero
rates. Allowed values are the same as for
OutputCompounding. Default = OutputCompounding.

InputBasis (Optional) Input day-count basis used for annualizing the
input zero rates. Allowed values are the same as for
OutputBasis. Default = OutputBasis.

ParRates A NUMBONDS-by-1 vector of annualized par yields, as decimal
fractions. (Par yields = coupon rates.) In aggregate, the yield
rates in ParRates constitute a par yield curve for the
investment horizon represented by CurveDates.

CurveDates A NUMBONDS-by-1 vector of maturity dates (as serial date
numbers) that correspond to the par yield rates. This vector is
the same as the input vector CurveDates.
4-279

zero2pyld
CurveDates = [datenum('06-Nov-2000')
 datenum('11-Dec-2000')
 datenum('15-Jan-2001')
 datenum('05-Feb-2001')
 datenum('04-Mar-2001')
 datenum('02-Apr-2001')
 datenum('30-Apr-2001')
 datenum('25-Jun-2001')
 datenum('04-Sep-2001')
 datenum('12-Nov-2001')];

Settle = datenum('03-Nov-2000');

Set annual compounding for the par yield curve, on an actual/actual basis. The
zero curve was compounded monthly, on an actual/365 basis.

OutputCompounding = 1;
OutputBasis = 0;
InputCompounding = 12;
InputBasis = 3;

Execute the function

[ParRates, CurveDates] = zero2pyld(ZeroRates, CurveDates,...
Settle, OutputCompounding, OutputBasis, InputCompounding,...
InputBasis)

which returns the par yield curve at the maturity dates.

ParRates =

 0.0479
 0.0511
 0.0530
 0.0531
 0.0526
 0.0524
 0.0525
 0.0534
 0.0555
 0.0543
4-280

zero2pyld
CurveDates =

 730796
 730831
 730866
 730887
 730914
 730943
 730971
 731027
 731098
 731167

For readability, ZeroRates and ParRates are shown only to the basis point.
However, MATLAB computed them at full precision. If you enter ZeroRates as
shown, ParRates may differ due to rounding.

See Also pyld2zero and other functions for Term Structure of Interest Rates
4-281

zero2pyld
4-282

A

Glossary

American option - An option that can be exercised any time until its
expiration date. Contrast with European option.

Amortization - Reduction in value of an asset over some period for accounting
purposes. Generally used with intangible assets. Depreciation is the term used
with fixed or tangible assets.

Annuity - A series of payments over a period of time. The payments are usually
in equal amounts and usually at regular intervals such as quarterly,
semi-annually, or annually.

Arbitrage - The purchase of securities on one market for immediate resale on
another market in order to profit from a price or currency discrepancy.

Basis point - One hundredth of one percentage point, or 0.0001.

Beta - The price volatility of a financial instrument relative to the price
volatility of a market or index as a whole. Beta is most commonly used with
respect to equities. A high-beta instrument is riskier than a low-beta
instrument.

Binomial model - A method of pricing options or other equity derivatives in
which the probability over time of each possible price follows a binomial
distribution. The basic assumption is that prices can move to only two values
(one higher and one lower) over any short time period.

Black-Scholes model - The first complete mathematical model for pricing
options, developed by Fischer Black and Myron Scholes. It examines market
price, strike price, volatility, time to expiration, and interest rates. It is limited
to only certain kinds of options.

Bollinger band chart - A financial chart that plots actual asset data along
with three other bands of data: the upper band is two standard deviations
above a user-specified moving average; the lower band is two standard
deviations below that moving average; and the middle band is the moving
average itself.

A Glossary

A-2
Bootstrapping, bootstrap method - An arithmetic method for backing an
implied zero curve out of the par yield curve.

Building a binomial tree - For a binomial option model: plotting the two
possible short-term price-changes values, and then the subsequent two values
each, and then the subsequent two values each, and so on over time, is known
as “building a binomial tree.” See Binomial model.

Call - a. An option to buy a certain quantity of a stock or commodity for a
specified price within a specified time. See Put. b. A demand to submit bonds
to the issuer for redemption before the maturity date. c. A demand for payment
of a debt. d. A demand for payment due on stock bought on margin.

Callable bond - A bond that allows the issuer to buy back the bond at a
predetermined price at specified future dates. The bond contains an embedded
call option; i.e., the holder has sold a call option to the issuer. See Puttable
bond.

Candlestick chart - A financial chart usually used to plot the high, low, open,
and close price of a security over time. The body of the “candle” is the region
between the open and close price of the security. Thin vertical lines extend up
to the high and down to the low, respectively. If the open price is greater than
the close price, the body is empty. If the close price is greater than the open
price, the body is filled. See also High-low-close chart.

Cap - Interest-rate option that guarantees that the rate on a floating-rate loan
will not exceed a certain level.

Cash flow - Cash received and paid over time.

Collar - Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain upper level nor fall below a lower level. It is
designed to protect an investor against wide fluctuations in interest rates.

Convexity - A measure of the rate of change in duration; measured in time.
The greater the rate of change, the more the duration changes as yield changes.

Correlation - The simultaneous change in value of two random numeric
variables.

Correlation coefficient - A statistic in which the covariance is scaled to a
value between minus one (perfect negative correlation) and plus one (perfect
positive correlation).

Coupon - Detachable certificate attached to a bond that shows the amount of
interest payable at regular intervals, usually semi-annually.Originally
coupons were actually attached to the bonds and had to be cut off or “clipped”
to redeem them and receive the interest payment.

Coupon dates - The dates when the coupons are paid. Typically a bond pays
coupons annually or semi-annually.

Coupon rate - The nominal interest rate that the issuer promises to pay the
buyer of a bond.

Covariance - A measure of the degree to which returns on two assets move in
tandem. A positive covariance means that asset returns move together; a
negative covariance means they vary inversely.

Delta - The rate of change of the price of a derivative security relative to the
price of the underlying asset; i.e., the first derivative of the curve that relates
the price of the derivative to the price of the underlying security.

Depreciation - Reduction in value of fixed or tangible assets over some period
for accounting purposes. See Amortization.

Derivative - A financial instrument that is based on some underlying asset.
For example, an option is a derivative instrument based on the right to buy or
sell an underlying instrument.

Discount curve - The curve of discount rates vs. maturity dates for bonds.

Duration - The expected life of a fixed-income security considering its coupon
yield, interest payments, maturity, and call features. As market interest rates
rise, the duration of a financial instrument decreases. See Macaulay duration.

Efficient frontier - A graph representing a set of portfolios that maximizes
expected return at each level of portfolio risk. See Markowitz model.

Elasticity - See Lambda.

European option - An option that can be exercised only on its expiration date.
Contrast with American option.

Exercise price - The price set for buying an asset (call) or selling an asset (put).
The strike price.

Face value - The maturity value of a security. Also known as par value,
principal value, or redemption value.
A-3

A Glossary

A-4
Fixed-income security - A security that pays a specified cash flow over a
specific period. Bonds are typical fixed-income securities.

Floor - Interest-rate option that guarantees that the rate on a floating-rate
loan will not fall below a certain level.

Forward curve - The curve of forward interest rates vs. maturity dates for
bonds.

Forward rate - The future interest rate of a bond inferred from the term
structure, especially from the yield curve of zero-coupon bonds, calculated from
the growth factor of an investment in a zero held until maturity.

Future value - The value that a sum of money (the present value) earning
compound interest will have in the future.

Gamma - The rate of change of delta for a derivative security relative to the
price of the underlying asset; i.e., the second derivative of the option price
relative to the security price.

Greeks - Collectively, “greeks” refer to the financial measures delta, gamma,
lambda, rho, theta, and vega, which are sensitivity measures used in
evaluating derivatives.

Hedge - A securities transaction that reduces or offsets the risk on an existing
investment position.

High-low-close chart - A financial chart usually used to plot the high, low,
open, and close price of a security over time. Plots are vertical lines whose top
is the high, bottom is the low, open is a short horizontal tick to the left, and
close is a short horizontal tick to the right.

Implied volatility - For an option, the variance that makes a call option price
equal to the market price. Given the option price, strike price, and other
factors, the Black-Scholes model computes implied volatility.

Internal rate of return - a. The average annual yield earned by an investment
during the period held. b. The effective rate of interest on a loan. C.. The
discount rate in discounted cash flow analysis. d. The rate that adjusts the
value of future cash receipts earned by an investment so that interest earned
equals the original cost. See Yield to maturity.

Issue date - The date a security is first offered for sale. That date usually
determines when interest payments, known as coupons, are made.

Ito process - Statistical assumptions about the behavior of security prices. For
details, see the book by Hull listed in the “Bibliography”.

Lambda - The percentage change in the price of an option relative to a 1%
change in the price of the underlying security. Also known as Elasticity.

Long position - Outright ownership of a security or financial instrument. The
owner expects the price to rise in order to make a profit on some future sale.

Long rate - The yield on a zero-coupon Treasury bond.

Macaulay duration - A widely used measure of price sensitivity to yield
changes developed by Frederick Macaulay in 1938. It is measured in years and
is a weighted average-time-to-maturity of an instrument. The Macaulay
duration of an income stream, such as a coupon bond, measures how long, on
average, the owner waits before receiving a payment. It is the weighted
average of the times payments are made, with the weights at time T equal to
the present value of the money received at time T.

Markowitz model - A model for selecting an optimum investment portfolio,
devised by H. M. Markowitz. It uses a discrete-time, continuous-outcome
approach for modeling investment problems, often called the mean-variance
paradigm. See Efficient frontier.

Maturity date - The date when the issuer returns the final face value of a bond
to the buyer.

Mean - a. A number that typifies a set of numbers, such as a geometric mean
or an arithmetic mean. b. The average value of a set of numbers.

Modified duration - The Macaulay duration discounted by the per-period
interest rate; i.e., divided by (1+rate/frequency).

Monte-Carlo simulation - A mathematical modeling process. For a model that
has several parameters with statistical properties, pick a set of random values
for the parameters and run a simulation. Then pick another set of values, and
run it again. Run it many times (often 10,000 times) and build up a statistical
distribution of outcomes of the simulation. This distribution of outcomes is
then used to answer whatever question you are asking.

Moving average - A price average that is adjusted by adding other
parametrically determined prices over some time period.

Moving-averages chart - A financial chart that plots leading and lagging
moving averages for prices or values of an asset.
A-5

A Glossary

A-6
Normal (bell-shaped) distribution - In statistics, a theoretical frequency
distribution for a set of variable data, usually represented by a bell-shaped
curve symmetrical about the mean.

Odd first or last period - Fixed-income securities may be purchased on dates
that do not coincide with coupon or payment dates. The length of the first and
last periods may differ from the regular period between coupons, and thus the
bond owner is not entitled to the full value of the coupon for that period.
Instead, the coupon is pro-rated according to how long the bond is held during
that period.

Option - A right to buy or sell specific securities or commodities at a stated
price (exercise or strike price) within a specified time. An option is a type of
derivative.

Par value - The maturity or face value of a security or other financial
instrument.

Par yield curve - The yield curve of bonds selling at par, or face, value.

Point and figure chart - A financial chart usually used to plot asset price data.
Upward price movements are plotted as X's and downward price movements
are plotted as O's.

Present value - Today’s value of an investment that yields some future value
when invested to earn compounded interest at a known interest rate.; i.e., the
future value at a known period in time discounted by the interest rate over that
time period.

Principal value - See Par value.

Purchase price - Price actually paid for a security. Typically the purchase
price of a bond is not the same as the redemption value.

Put - An option to sell a stipulated amount of stock or securities within a
specified time and at a fixed exercise price. See Call.

Puttable bond - A bond that allows the holder to redeem the bond at a
predetermined price at specified future dates. The bond contains an embedded
put option; i.e., the holder has bought a put option. See Callable bond.

Quant - A quantitative analyst; someone who does numerical analysis of
financial information in order to detect relationships, disparities, or patterns
that can lead to making money.

Redemption value - See Par value.

Regression analysis - Statistical analysis techniques that quantify the
relationship between two or more variables. The intent is quantitative
prediction or forecasting, particularly using a small population to forecast the
behavior of a large population.

Rho - The rate of change in a derivative’s price relative to the underlying
security’s risk-free interest rate.

Sensitivity - The “what if” relationship between variables; the degree to which
changes in one variable cause changes in another variable. A specific synonym
is volatility.

Settlement date - The date when money first changes hands; i.e., when a buyer
actually pays for a security. It need not coincide with the issue date.

Short rate - The annualized one-period interest rate.

Short sale, short position - The sale of a security or financial instrument not
owned, in anticipation of a price decline and making a profit by purchasing the
instrument later at a lower price, and then delivering the instrument to
complete the sale. See Long position.

Spot curve, spot yield curve - See Zero curve.

Spot rate - The current interest rate appropriate for discounting a cash flow of
some given maturity.

Spread - For options, a combination of call or put options on the same stock
with differing exercise prices or maturity dates.

Standard deviation - A measure of the variation in a distribution, equal to the
square root of the arithmetic mean of the squares of the deviations from the
arithmetic mean; the square root of the variance.

Stochastic - Involving or containing a random variable or variables; involving
chance or probability.

Straddle - A strategy used in trading options or futures. It involves
simultaneously purchasing put and call options with the same exercise price
and expiration date, and it is most profitable when the price of the underlying
security is very volatile.

Strike - Exercise a put or call option.
A-7

A Glossary

A-8
Strike price - See Exercise price.

Swap - A contract between two parties to exchange cash flows in the future
according to some formula.

Swaption - A swap option; an option on an interest-rate swap. The option gives
the holder the right to enter into a contracted interest-rate swap at a specified
future date. See Swap.

Term structure - The relationship between the yields on fixed-interest
securities and their maturity dates. Expectation of changes in interest rates
affects term structure, as do liquidity preferences and hedging pressure. A
yield curve is one representation in the term structure.

Theta - The rate of change in the price of a derivative security relative to time.
Theta is usually very small or negative since the value of an option tends to
drop as it approaches maturity.

Treasury bill - Short-term U.S. government security issued at a discount from
the face value and paying the face value at maturity.

Treasury bond - Long-term debt obligation of the U.S. government that makes
coupon payments semi-annually and is sold at or near par value in $1000
denominations or higher. Face value is paid at maturity.

Variance - The dispersion of a variable. The square of the standard deviation.

Vega - The rate of change in the price of a derivative security relative to the
volatility of the underlying security. When vega is large the security is
sensitive to small changes in volatility.

Volatility - a. Another general term for sensitivity. b. The standard deviation
of the annualized continuously compounded rate of return of an asset. c. A
measure of uncertainty or risk.

Yield - a. Measure of return on an investment, stated as a percentage of price.
Yield can be computed by dividing return by purchase price, current market
value, or other measure of value. b. Income from a bond expressed as an
annualized percentage rate. c. The nominal annual interest rate that gives a
future value of the purchase price equal to the redemption value of the security.
Any coupon payments determine part of that yield.

Yield curve - Graph of yields (vertical axis) of a particular type of security
versus the time to maturity (horizontal axis). This curve usually slopes
upward, indicating that investors usually expect to receive a premium for

securities that have a longer time to maturity. The benchmark yield curve is
for U.S. Treasury securities with maturities ranging from three months to 30
years. See Term structure.

Yield to maturity - A measure of the average rate of return that will be earned
on a bond if held to maturity.

Zero curve, zero-coupon yield curve - A yield curve for zero-coupon bonds;
zero rates versus maturity dates. Since the maturity and duration (Macaulay
duration) are identical for zeros, the zero curve is a pure depiction of
supply/demand conditions for loanable funds across a continuum of durations
and maturities. Also known as spot curve or spot yield curve.

Zero-coupon bond, or Zero - A bond that, instead of carrying a coupon, is sold
at a discount from its face value, pays no interest during its life, and pays the
principal only at maturity.
A-9

A Glossary

A-1
0

B

Bibliography

For the well-known algorithms and formulas used in the Financial Toolbox
(such as how to compute a loan payment given principal, interest rate, and
length of the loan), no references are given here. The references here pertain to
less common formulas.

Bond Pricing and Yields
The pricing and yield formulas for fixed-income securities come from:

Mayle, Jan. Standard Securities Calculation Methods. New York: Securities
Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN 1-882936-01-9. Vol. 2,
1994, ISBN 1-882936-02-7.

In many cases these formulas compute the price of a security given yield, dates,
rates, and other data. These formulas are nonlinear, however; so when solving
for an independent variable within a formula, the Financial Toolbox uses
Newton’s method. See any elementary numerical methods textbook for the
mathematics underlying Newton’s method.

Term Structure of Interest Rates
The formulas and methodology for term structure functions come from:

Fabozzi, Frank J. “The Structure of Interest Rates.” Ch. 6 in Fabozzi, Frank J.
and T. Dessa Fabozzi, eds. The Handbook of Fixed Income Securities. 4th ed.
New York: Irwin Professional Publishing. 1995. ISBN 0-7863-0001-9.

McEnally, Richard W. and James V. Jordan. “The Term Structure of Interest
Rates.” Ch. 37 in Fabozzi and Fabozzi, ibid.

Das, Satyajit. “Calculating Zero Coupon Rates.” Swap and Derivative
Financing. Appendix to Ch. 8, pp. 219-225. New York: Irwin Professional
Publishing. 1994. ISBN 1-55738-542-4.

Bond Pricing and Yields B-2
Term Structure of Interest Rates B-2
Derivatives Pricing and Yields B-2
Portfolio Analysis B-3
Other References B-3

B Bibliography

B-2
Derivatives Pricing and Yields
The pricing and yield formulas for derivative securities come from:

Chriss, Neil A., “Black-Scholes and Beyond: Option Pricing Models,” Chicago:
Irwin Professional Publishing. 1997. ISBN 0-7863-1025-1.

Cox, J.; S. Ross; and M. Rubenstein, “Option Pricing: A Simplified Approach”,
Journal of Financial Economics 7, Sept. 1979, pp. 229 - 263

Hull, John, C. Options, Futures, and Other Derivative Securities. Englewood
Cliffs, NJ: Prentice-Hall. 2nd ed., 1993, ISBN 0-13-639014-5.

Portfolio Analysis
The Markowitz model is used for portfolio analysis computations. For a
discussion of this model see Chapter 7 of:

Bodie, Zvi, Alex Kane, and Alan J. Marcus. Investments. Burr Ridge, IL:
Irwin. 2nd. ed., 1993, ISBN 0-256-08342-8.

To solve the quadratic minimization problem associated with finding the
efficient frontier, the toolbox uses the fmincon function (finds the constrained
minimum of a function of several variables) in the MATLAB Optimization
Toolbox. See that toolbox documentation for more details.

Other References
Other references include:

Addendum to Securities Industry Association, Standard Securities Calculation
Methods: Fixed Income Securities Formulas for Analytic Measures, Vol. 2,
Spring 1995. This addendum explains and clarifies the end-of-month rule.

Brealey, Richard A., and Stewart C. Myers. Principles of Corporate Finance.
New York: McGraw-Hill. 4th ed., 1991, ISBN 0-07-007405-4.

Daigler, Robert T. Advanced Options Trading. Chicago: Probus Publishing
Co. 1994, ISBN 1-55738-552-1.

A Dictionary of Finance. Oxford: Oxford University Press. 1993, ISBN
0-19-285279-5.

Fabozzi, Frank J., and T. Dessa Fabozzi, eds. The Handbook of Fixed-Income
Securities. Burr Ridge, IL: Irwin. 4th ed., 1995, ISBN 0-7863-0001-9.

Fitch, Thomas P. Dictionary of Banking Terms. Hauppauge, NY: Barron’s.
2nd ed., 1993, ISBN 0-8120-1530-4.

Hill, Richard O., Jr. Elementary Linear Algebra. Orlando, FL: Academic
Press. 1986, ISBN 0-12-348460-X

Marshall, John F., and Vipul K. Bansal. Financial Engineering: A Complete
Guide to Financial Innovation. New York: New York Institute of Finance.
1992, ISBN 0-13-312588-2.

Sharpe, William F. Macro-Investment Analysis. An “electronic
work-in-progress” published on the World Wide Web, 1995, at
http://www.stanford.edu/~wfsharpe/mia/mia.htm.

Sharpe, William F., and Gordon J. Alexander. Investments. Englewood Cliffs,
NJ: Prentice-Hall. 4th ed., 1990, ISBN 0-13-504382-4.

Stigum, Marcia, with John Mann. Money Market Calculations: Yields,
Break-Evens, and Arbitrage. Burr Ridge, IL: Irwin. 1981, ISBN
0-87094-192-5.
B-3

B Bibliography

B-4

Index
Numerics
1900 date system 4-164, 4-250
1904 date system 4-164, 4-250
360-day year 4-124
365-day year 4-125

A
accrued interest 2-20, 4-20, 4-21

computing fractional period 4-18
acrubond 4-20
acrudisc 4-21
actual days

between dates 4-126
adding a scalar and a matrix 1-6
adding matrices 1-5
advance payments, periodic payment given 4-176
after-tax rate of return 4-226
algebra, linear 1-6, 1-11
American options 2-34
amortization 1-19, 2-17, 2-18, 4-22
amortize 4-22
analysis models for equity derivatives 2-32
analyzing

and computing cash flows 2-15
equity derivatives 2-31
portfolios 2-36

annuity 2-17
payment of with odd first period 4-177
periodic interest rate of 4-24
periodic payment of loan or 4-178

annurate 4-24
annuterm 4-25
apostrophe or prime character (') 1-4
arguments

function return 1-18
interest rate 1-19
matrices as, limitations 1-19
vectors as, limitations 1-19

array operations 1-14
ASCII character 1-17
asset covariance matrix with exponential weight-

ing 4-140
asset life 1-19
axis labels, converting 4-108

B
bank format 4-107
base date 4-114
basis 2-20
basis, day-count 4-127
beytbill 4-26
binomial

functions 2-2
model 2-33
put and call pricing 4-27
tree, building 2-34

binprice 4-27
Black’s option pricing 4-30
Black-Scholes

elasticity 4-36
functions 2-2
implied volatility 4-34
model 2-32
options 3-20, 3-22
put and call pricing 4-37
sensitivity to

interest rate change 4-39
time-until-maturity change 4-40
underlying delta change 4-33
underlying price change 4-32
underlying price volatility 4-41
I-1

Index

I-2
blkimpv 4-29
blkprice 4-30
blsdelta 4-32
blsgamma 4-33
blsimpv 4-34
blslambda 4-36
blsprice 4-37
blsrho 4-39
blstheta 4-40
blsvega 4-41
bndconvp 4-42
bndconvy 4-45
bnddurp 4-48
bnddury 4-51
bndprice 4-54
bndyield 4-57
bolling 4-60
Bollinger band chart 2-13
bond

convexity 3-2
duration 3-2
equivalent yield for Treasury bill 4-26
portfolio

constructing to hedge against duration and
convexity 3-5

visualizing sensitivity of price to parallel
shifts in the yield curve 3-7

sensitivity of prices to changes in interest rates
3-2

zero-coupon 4-262
bootstrapping 2-29, 4-232, 4-261, 4-266
building a binomial tree 2-34
busdate 4-61
business date

last of month 4-160
business day

next 2-9, 4-61
previous 4-61
business days 4-159

C
call and put pricing

Black-Scholes 4-37
candle 4-62
candlestick chart 4-62
capital allocation line 2-36
cash flow

analyzing and computing 2-15
convexity 4-68
dates 2-10, 4-69
duration 4-72
future value of varying 4-149
internal rate of return 4-158
internal rate of return for nonperiodic 4-252
irregular 4-149
modified internal rate of return 4-167
negative 2-15
portfolio form of amounts 4-73
present value of varying 4-217
sensitivity of 2-17
uniform payment equal to varying 4-179

cell array 3-15
cfamounts 4-63
cfconv 4-68
cfdates 4-69
cfdur 4-72
cfport 4-73
cftimes 4-76
character array

strings stored as 1-17
character, ASCII 1-17
chart

Bollinger band 2-13

Index
candlestick 4-62
high, low, open, close 4-155
leading and lagging moving averages 4-170
point and figure 4-190

charting financial data 2-11
colon (:) 1-4
commutative law 1-6, 1-11
computing

cash flows 2-15
dot products of vectors 1-8
yields for fixed-income securities 2-19

constraint functions 2-47
constraint matrix 2-49
constructing

a bond portfolio to hedge against duration and
convexity 3-5

greek-neutral portfolios of European stock op-
tions 3-11

conventions
SIA 2-19

conventions in our documentation (table) xiii
conversions

currency 2-11
date input 2-4
date output 2-6

converting
and handling dates 2-3
axis labels 4-108

convexity 3-2
cash flow 4-68
constructing a bond portfolio to hedge against

3-5
portfolio 3-3, 3-5

corr2cov 4-78
coupon bond

prices to zero curve 4-261
yields to zero curve 4-266

coupon date
after settlement date 4-83
days between 4-97, 4-100

coupon dates 2-25
coupon payments remaining until maturity 4-80
coupon period

containing settlement date 4-103
fraction of 4-17

coupons payable between dates 4-80
cov2corr 4-79
covariance matrix 2-38
covariance matrix with exponential weighting

4-140
cpncount 4-80
cpndaten 4-83
cpndatenq 4-86
cpndatep 4-90
cpndatepq 4-93
cpndaysn 4-97
cpndaysp 4-100
cpnpersz 4-103
cur2frac 4-106
cur2str 4-107
currency

converting 2-11
decimal 4-143
formatting 2-11
fractional 4-106, 4-143
values 4-106

current date 4-231
and time 2-7, 4-172

D
date

base 4-114
components 4-120
I-3

Index

I-4
conversions 2-4
current 2-7, 4-172, 4-231
end of month 4-138
first business, of month 4-142
formats 2-3
hour of 4-157
input conversions 2-4
last date of month 4-138
last weekday in month 4-162
maturity 2-20
minute of 4-166
number 2-3, 4-114

displaying as string 4-110
Excel to MATLAB 4-250
indices of in matrix 4-111
MATLAB to Excel 4-164

of day in future or past month 4-112
of future or past workday 4-122
output conversions 2-6
seconds of 4-225
starting, add month to 4-112
string 2-3, 4-117
vector 4-120
year of 4-254

date 2-7
date of specific weekday in month 4-173
date system

1900 4-164, 4-250
1904 4-164, 4-250

dateaxis 4-108
datedisp 4-110
datefind 4-111
datemnth 4-112
datenum 4-114
dates

actual days between 4-126
business days 4-159
cash-flow 2-10, 4-69
coupon 2-25
days between 4-124, 4-125, 4-126, 4-127
determining 2-8
first coupon 2-19
fraction of year between 4-256
handling and converting 2-3
investment horizon 2-29
issue 2-19
last coupon 2-19
number of months between 4-169
quasi-coupon 2-19
settlement 2-19
vector of 1-18
working days between 4-249

datestr 4-117
datevec 4-120
datewrkdy 4-122
day

date of specific weekday in month 4-173
of month 4-123
of month, last 4-139
of the week 4-247

day 4-123
day-count basis 4-127
day-count convention 2-20
days

between
coupon date and settlement date 4-100
dates 4-124, 4-125, 4-126, 4-127, 4-249
settlement date and next coupon date 4-97

business 4-159
holidays 4-156
in coupon period containing settlement date

4-103
last business date of month 4-160
last weekday in month 4-162

Index
nontrading 4-156
number of, in year 4-255

days360 4-124
days365 4-125
daysact 4-126
daysdif 4-127
decimal currency 4-143

to fractional currency 4-106
declining-balance depreciation

fixed 2-17, 4-128
general 2-17, 4-129

definitions 1-2
delta 2-31

change, Black-Scholes sensitivity to underlying
4-33

depfixdb 4-128
depgendb 4-129
deprdv 4-130
depreciable value, remaining 4-130
depreciation 2-17

fixed declining-balance 2-17, 4-128
general declining-balance 2-17, 4-129
straight-line 2-17, 4-132
sum of years’ digits 2-17, 4-131

depsoyd 4-131
depstln 4-132
derivatives

equity, pricing and analyzing 2-31
sensitivity measures for 2-31

determining dates 2-8
disc2zero 4-133
discount curve

from zero curve 4-271
to zero curve 4-133

discount rate of a security 4-136
discount security 4-21

future value of 4-147

price of 4-212
yield of 4-257

discrate 4-136
dividing matrices 1-11
dot products of vectors 1-8
duration

cash-flow and modified 4-72
constructing a bond portfolio to hedge against

3-5
for fixed-income securities 2-27
Macaulay 2-27
modified 2-27
portfolio 3-3, 3-5

E
effective rate of return 4-137
efficient frontier 2-38

plotting an 3-18
effrr 4-137
elasticity

Black-Scholes 4-36
element-by-element 1-5

operating 1-14
elements, referencing matrix 1-2
end-of-month rule 2-21
enlarging matrices 1-3
eomdate 4-138
eomday 4-139
equations

solving simultaneous linear 1-11
equity derivatives 2-31

analysis models for 2-32
European options 2-2

constructing greek-neutral portfolios of 3-11
ewstats 4-140
Excel date number
I-5

Index

I-6
from MATLAB date number 4-164
to MATLAB date number 4-250

exponential weighting of covariance matrix
4-140

F
fbusdate 4-142
financial data

charting 2-11
first business date of month 4-142
first coupon date 2-19
fixed declining-balance depreciation 2-17, 4-128
fixed periodic payments

future value with 4-148
fixed-income securities

cash-flow dates 4-69
Macaulay and modified durations for 2-27
pricing 2-26
pricing and computing yields for 2-19
terminology 2-19
yield functions for 2-26

fixed-income sensitivities 2-27
formats

bank 4-107
date 2-3

formatting currency and charting financial data
2-11

forward curve
from zero curve 4-274
to zero curve 4-151

forward price 4-30
frac2cur 4-143
fraction of

coupon period 4-17
year between dates 4-256

fractional currency 4-106, 4-143
frontcon 2-38, 4-144
frontier

plotting an efficient 3-18
frontier, efficient 2-38
function

return arguments 1-18
future month, date of day in 4-112
future value 2-16, 4-25

of discounted security 4-147
of varying cash flow 4-149
with fixed periodic payments 4-148

fvdisc 4-147
fvfix 4-148
fvvar 4-149
fwd2zero 4-151

G
gamma 2-31
general declining-balance depreciation 2-17,

4-129
generating and referencing matrix elements 1-4
graphics

producing 3-18
three-dimensional 3-11

greek-neutral portfolios, constructing 3-11
greeks 2-31

neutrality 3-11

H
handling and converting dates 2-3
hedging 3-2

a bond portfolio against duration and convexity
3-5

high, low, open, close chart 4-155
highlow 4-155

Index
holidays 2-9
holidays 4-156
holidays and nontrading days 4-156
hour 4-157
hour of date or time 4-157

I
identity matrix 1-11
implied volatility 2-32

Black-Scholes 4-34
indices

of date numbers in matrix 4-111
of nonrepeating integers in matrix 4-111

indifference curve 2-40
inner dimension rule 1-6
input

conversions 2-4
string 1-17

installing the Financial Toolbox xi
interest 4-22

accrued 4-20, 4-21
on loan 2-17

interest rate swap 3-15
interest rates

arguments 1-19
Black-Scholes sensitivity to change 4-39
of annuity, periodic 4-24
rate of return 2-15
risk-free 3-23
sensitivity of bond prices to changes in 3-2
term structure 2-2, 2-28

internal rate of return 4-158
for nonperiodic cash flow 4-252
modified 4-167

inversion, matrix 1-11
investment horizon 2-29

irr 4-158
isbusday 4-159
issue date 2-19
Ito process 2-32

L
lagging and leading moving averages chart 4-170
lambda 2-31
last

business date of month 4-160
date of month 4-138
day of month 4-139
weekday in month 4-162

last coupon date 2-19
lbusdate 4-160
leading and lagging moving averages chart 4-170
left division 1-14
leverage of an option 4-36
linear algebra 1-6, 1-11
linear equations 3-6

solving simultaneous 1-11
system of 1-11

loan
interest on 2-17
payment with odd first period 4-177
periodic payment of 4-178

lweekdate 4-162

M
m2xdate 4-164
Macaulay duration 3-2

for fixed-income securities 2-27
MATLAB

date number
from Excel date number 4-250
I-7

Index

I-8
to Excel date number 4-164
matrices

adding and subtracting 1-5
as arguments, limitations 1-19
dividing 1-11
enlarging 1-3
multiplying 1-6, 1-9
multiplying vectors and 1-8
of string input 1-17
singular 1-11
square 1-11
transposing 1-4

matrix 1-2
adding or subtracting a scalar 1-6
algebra refresher 1-5
covariance 4-140
elements

generating 1-4
referencing 1-2

identity 1-11
indices of date numbers 4-111
indices of integers in 4-111
inversion 1-11
multiplying by a scalar 1-10
numbers and strings in a 1-18

maturity
price with interest at 4-213
yield of a security paying interest at 4-258

maturity date 2-20
minute 4-166
minute of date or time 4-166
mirr 4-167
modified duration 3-2, 4-72

for fixed-income securities 2-27
modified internal rate of return 4-167
month

add, to starting date 4-112
date of specific weekday 4-173
day of 4-123
first business date of 4-142
last business date 4-160
last date of 4-138
last day of 4-139

month 4-168
months

last weekday in 4-162
number of months between dates 4-169

months 4-169
movavg 4-170
moving averages chart 4-170
multiplying

a matrix by a scalar 1-10
matrices 1-6
two matrices 1-9
vectors 1-7
vectors and matrices 1-8

N
names

variable 1-5
NaN 2-23
negative cash flows 2-15
Newton’s method 2-26
next

business day 2-9
coupon date after settlement date 4-83
or previous business day 4-61

nominal rate of return 4-171
nomrr 4-171
nontrading days 2-9, 4-156
normcdf 4-30, 4-32, ??–4-40
normpdf 4-33, 4-40, 4-41
notation 1-2

Index
row, column 1-2
now 4-172
number of

days in year 4-255
periods to obtain value 4-25
whole months between dates 4-169

numbers
and strings in a matrix 1-18
date 2-3

nweekdate 4-173

O
odd first period

payment of loan or annuity with 4-177
operating element-by-element 1-14
operations, array 1-14
opprofit 4-175
optimal portfolio 2-36
option

leverage of 4-36
plotting sensitivities of 3-20
plotting sensitivities of a portfolio of 3-22
pricing

Black’s model 4-30
profit 4-175

output conversions, date 2-6

P
par value 2-20
par yield curve

from zero curve 4-278
to zero curve 4-219

past month, date of day in 4-112
payadv 4-176
payment

of loan or annuity with odd first period 4-177
periodic, given number of advance payments

4-176
periodic, of loan or annuity 4-178
uniform, equal to varying cash flow 4-179

payodd 4-177
payper 4-178
payuni 4-179
pcalims 4-180
pcgcomp 4-183
pcglims 4-185
pcpval 4-188
period 2-20
periodic interest rate of annuity 4-24
periodic payment

future value with fixed 4-148
given advance payments 4-176
of loan or annuity 4-178
present value with fixed 4-216

pivot year 4-114
plotting

efficient frontier 3-18
sensitivities of a portfolio of options 3-22
sensitivities of an option 3-20

point and figure chart 4-190
pointfig 4-190
portalloc 2-41, 2-42, 4-191
portcons 2-47, 4-194
portfolio

convexity 3-3, 3-5
duration 3-3, 3-5
expected rate of return 4-204
of options, plotting sensitivities of 3-22
optimal 2-36
optimization 2-36
risks, returns, and weights

randomized 4-201
I-9

Index

I-10
selection 2-40
portfolios

analyzing 2-36
of European stock options

constructing greek-neutral 3-11
portopt 4-198
portrand 4-201
portsim 4-202
portstats 4-204
portvrisk 4-206
prbyzero 4-208
prdisc 4-212
present value 2-16

of varying cash flow 4-217
with fixed periodic payments 4-216

previous quasi coupon date 4-94
price

change, Black-Scholes sensitivity to underly-
ing 4-32

forward 4-30
of discounted security 4-212
of Treasury bill 4-215
volatility, Black-Scholes sensitivity to underly-

ing 4-41
with interest at maturity 4-213

pricing
and analyzing equity derivatives 2-31
and computing yields for fixed-income securi-

ties 2-19
fixed-income securities 2-26

principal 4-22
prmat 4-213
profit, option 4-175
prtbill 4-215
purchase price 2-20
put and call pricing

binomial 4-27
Black-Scholes 4-37
pvfix 4-216
pvvar 4-217
pyld2zero 4-219

Q
quasi coupon date

previous 4-94
quasi-coupon dates 2-19

R
randomized portfolio risks, returns, and weights

4-201
rate of a security, discount 4-136
rate of return 2-15

after-tax 4-226
effective 4-137
internal 4-158
internal for nonperiodic cash flow 4-252
modified internal 4-167
nominal 4-171
portfolio expected 4-204

redemption value 2-20
reference date 2-25
referencing matrix elements 1-2, 1-4
remaining depreciable value 2-17, 4-130
ret2tick 4-223
return arguments, function 1-18
rho 2-31
risk aversion 2-40
risk-free interest rates 3-23
risks

returns, and weights
randomized portfolio 4-201

row, column notation 1-2

Index
row-by-column 1-2

S
scalar 1-2

adding or subtracting 1-6
multiplying a matrix by 1-10

second 4-225
seconds of date or time 4-225
securities industry association 2-19
sensitivity

fixed-income 2-27
measures for derivatives 2-31
of a portfolio of options, plotting 3-22
of an option, plotting 3-20
of bond prices to changes in interest rates 3-2
of cash flow 2-17
to

interest rate change, Black-Scholes 4-39
to time-until-maturity change, Black-Scholes

4-40
to underlying delta change, Black-Scholes

4-33
to underlying price change, Black-Scholes

4-32
to underlying price volatility, Black-Scholes

4-41
visualizing to parallel shifts in the yield curve

3-7
settlement date 2-19

coupon period containing 4-103
days between previous coupon date and 4-100
days between, and coupon date 4-97
next coupon date after 4-83

SIA 2-19
compatibility 2-19
default parameter values 2-22

framework 2-21
order of precedence 2-25
use of nonlinear formulas 2-26

SIA conventions 2-19
single quotes 1-17
singular matrices 1-11
solving

sample problems with the toolbox 3-1
spreadsheets 1-2
square matrices 1-11
straight-line depreciation 2-17, 4-132
strings

and numbers in a matrix 1-18
date 2-3, 4-117
input, matrices of 1-17
stored as character array 1-17

subtracting
a scalar and a matrix 1-6
matrices 1-5

sum of years’ digits depreciation 2-17, 4-131
swap 3-15
synch date 2-25
synchronization date 2-25
system of linear equations 1-11

T
taxedrr 4-226
tbl2bond 4-227
term structure 2-2, 2-28, 3-2, 4-133, 4-151, 4-219,

4-227, 4-261, 4-266, 4-271, 4-274, 4-278
parameters from Treasury bond parameters

4-232
terminology, fixed-income securities 2-19
theta 2-32
three-dimensional graphics 3-11
tick labels 4-108
I-11

Index

I-12
tick2ret 4-229
time

current 2-7, 4-172
hour of 4-157
minute of 4-166
seconds of 4-225

time-until-maturity change
Black-Scholes sensitivity to 4-40

today 4-231
tr2bonds 4-232
transposing matrices 1-4
Treasury bill 2-28

bond equivalent yield for 4-26
parameters to Treasury bond parameters

4-227
price of 4-215
yield of 4-260

Treasury bond 2-28
parameters

from Treasury bill parameters 4-227
to term-structure parameters 4-232

U
ugarch 4-235
ugarchllf 4-237
ugarchpred 4-239
ugarchsim 4-242
uniform payment equal to varying cash flow

4-179

V
variable names 1-5
vector 1-2

date 4-120
of dates 1-18
vectors
as arguments, limitations 1-19
computing dot products of 1-8
multiplying 1-7
multiplying matrices and 1-8

vega 2-32
visualizing the sensitivity of a bond portfolio’s price

to parallel shifts in the yield curve 3-7
volatility

Black-Scholes implied 4-34
implied 2-32

W
week, day of 4-247
weekday

date of specific, in month 4-173
weekday 4-247
workday, date of future or past 4-122
working days between dates 4-249
wrkdydif 4-249

X
x2mdate 4-250
xirr 4-252

Y
year

fraction of between dates 4-256
number of days in 4-255
of date 4-254

year 4-254
yeardays 4-255
yearfrac 4-256
yield

Index
curve 3-2, 3-5
visualizing sensitivity of bond portfolio’s

price to parallel shifts in 3-7
for Treasury bill, bond equivalent 4-26
functions for fixed-income securities 2-26
of discounted security 4-257
of security paying interest at maturity 4-258
of Treasury bill 4-260

yields
for fixed-income securities, pricing and comput-

ing 2-19
yield-to-maturity 2-20
ylddisc 4-257
yldmat 4-258
yldtbill 4-260

Z
zbtprice 4-261
zbtyield 4-266
zero curve 4-232, 4-262, 4-268

from coupon bond prices 4-261
from coupon bond yields 4-266
from discount curve 4-133
from forward curve 4-151
from par yield curve 4-219
to discount curve 4-271
to forward curve 4-274
to par yield curve 4-278

zero2disc 4-271
zero2fwd 4-274
zero2pyld 4-278
zero-coupon bond 4-134, 4-262, 4-268
I-13

Index

I-14

	Preface
	Introducing the Financial Toolbox
	Using This Guide
	Expected Background
	Organization of the Document
	Examples

	Related Products
	Prerequisites
	Compatibility

	Configuration Information
	Additional Resources
	Financial Demonstration Programs
	Finding Additional Information

	Typographical Conventions

	Getting Started
	Using Matrix Functions for Finance
	Key Definitions
	Referencing Matrix Elements
	Transposing Matrices

	Matrix Algebra Refresher
	Adding and Subtracting Matrices
	Multiplying Matrices
	Dividing Matrices
	Solving Simultaneous Linear Equations
	Operating Element-by-Element

	Function Input/Output Arguments
	Input Arguments
	Function Output Arguments
	Interest Rate Arguments

	Tutorial
	Handling and Converting Dates
	Date Formats
	Date Conversions
	Current Date and Time
	Determining Dates

	Formatting Currency
	Charting Financial Data
	High-Low-Close Chart Example
	Bollinger Chart Example

	Analyzing and Computing Cash Flows
	Interest Rates/Rates of Return
	Present or Future Values
	Depreciation
	Annuities

	Pricing and Computing Yields for Fixed-Income Securities
	Terminology
	SIA Framework
	SIA Default Parameter Values
	SIA Coupon Date Calculations
	SIA Semi-Annual Yield Conventions
	Pricing Functions
	Yield Functions
	Fixed-Income Sensitivities
	Term Structure of Interest Rates

	Pricing and Analyzing Equity Derivatives
	Sensitivity Measures
	Analysis Models

	Analyzing Portfolios
	Portfolio Optimization Functions
	Portfolio Construction Examples
	Linear Constraint Equations
	Specifying Additional Constraints

	Solving Sample Problems
	Common Problems in Finance
	Sensitivity of Bond Prices to Changes in Interest Rates
	Constructing a Bond Portfolio to Hedge Against Duration and Convexity
	Sensitivity of Bond Prices to Parallel Shifts in the Yield Curve
	Constructing Greek-Neutral Portfolios of European Stock Options
	Term Structure Analysis and Interest Rate Swap Pricing

	Producing Graphics with the Toolbox
	Plotting an Efficient Frontier
	Plotting Sensitivities of an Option
	Plotting Sensitivities of a Portfolio of Options

	Function Reference
	Functions - By Category
	Handling and Converting Dates
	Formatting Currency
	Charting Financial Data
	Analyzing and Computing Cash Flows
	Fixed-Income Securities
	Analyzing Portfolios
	Pricing and Analyzing Derivatives
	GARCH Processes
	Obsolete Bond Price and Yield Functions
	Obsolete BDT Functions

	Functions - Alphabetical List

	Glossary
	Bibliography
	Bond Pricing and Yields
	Term Structure of Interest Rates
	Derivatives Pricing and Yields
	Portfolio Analysis
	Other References

	Index

