Neural Network Toolbox | ![]() ![]() |
Update NNT 2.0 competitive layer
Syntax
Description
nnt2c(PR,W,KLR,CLR)
takes these arguments,
PR - R
x 2
matrix of min and max values for R
input elements.
W - S
x R
weight matrix.
KLR -
Kohonen learning rate, default = 0.01.
CLR -
Conscience learning rate, default = 0.001.
and returns a competitive layer.
Once a network has been updated, it can be simulated, initialized, or trained with sim, init
, adapt
, and train.
See Also
![]() | nncopy | nnt2elm | ![]() |