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MATLAB’s collection of matrix manipulation routines has proved to be 
extremely useful to control engineers and system researchers in developing the 
software tools to do control system design in many different fields.

The Robust Control Toolbox is written in M-files using the matrix functions of 
the Control System Toolbox and MATLAB. It enables you to do “robust” 
multivariable feedback control system modeling, analysis and design based on 
the singular-value Bode plot. Many of the functions described in the Robust 
Control Toolbox User’s Guide incorporate theory originally developed at USC 
by the authors. The early version of the Robust Control Toolbox called LINF 
was distributed widely [2].

The Robust Control Toolbox includes tools which facilitate the following:

• Robust Analysis

Singular Values [12, 29].

Characteristic Gain Loci [25].

Structured Singular Values [31, 32, 13]. 

• Robust Synthesis

µ synthesis [33, 15].

LQG/LTR, Frequency-Weighted LQG [12, 29]. 

H2, H∞ [16, 34, 18, 36, 37, 28, 24, 19]. 

• Robust Model Reduction

Optimal Descriptor Hankel (with Additive Error Bound) [37]. 

Schur Balanced Truncation (with Additive Error Bound) [39]. 

Schur Balanced Stochastic Truncation (with Multiplicative Error Bound) 
[40].

•  Sampled-Data Robust Control [35, 38]

Useful features of the Robust Control Toolbox include the structured singular 
value (perron, psv, osborne, ssv), µ synthesis tools (fitd, augd) and an 
optional  system data structure (mksys, branch, tree) that simplifies user 
interaction and saves typing by enabling a system and related matrices to be 
represented by a single MATLAB variable. The function hinf has been 
improved in a number of ways, including more informative displays and more 
reliable algorithms. The function hinfopt automatically computes optimal H∞ 
control laws via the so-called “gamma-iteration.” 
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A demonstration M-file called rctdemo runs through the above features of the 
Robust Control Toolbox with a modern fighter aircraft and a large space 
structure design example. To start the demo, execute rctdemo from inside 
MATLAB. 
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Optional System Data Structure
This section introduces a useful feature of the Robust Control Toolbox — a 
hierarchical data structure that can simplify the user interaction with the 
toolbox. If this is your first time reading, you may skip this section and come 
back to it later.

Among the features of the Robust Control Toolbox is a set of M-files which 
permit data describing a system or collection of systems to be incorporated in, 
and extracted from, a single MATLAB variable called a “tree”, which can be 
created by the MATLAB function tree. The tree data structure simplifies 
MATLAB operations tremendously by allowing you to represent systems of 
matrices (and even systems of systems, ... of systems of matrices) by a single 
MATLAB variable. In particular, a single variable can be used to represent the 
matrices describing a plant, a controller or both, thereby vastly simplifying 
user interaction with MATLAB.

The following M-files have been developed to endow MATLAB with the 
hierarchical tree data structure. They are

These functions enable many matrices, along with their names and 
relationships to each other to be represented by a single tree variable. For 
example, a state-space system representation (A,B,C,D) is a special kind of 
tree. The following elaborate the use of this data structure.

mksys: This function can pack matrices describing a system into a single 
MATLAB variable. For example, 

ssg = mksys(ag,bg,cg,dg); 
TSS = mksys(A,B1,B2,C1,C2,D11,D12,D21,D22,'tss');

allows the four state-space system matrices (ag,bg,cg,dg) to be represented by 
ssg, and the two-port state-space system (A,B1,B2,...) to be packed into TSS. A 
variety of system types can be similarly handled via an identification variable 
at the end of the input arguments of the function mksys. For example, the 

mksys branch tree graft
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command desg = mksys(ag,bg,cg,dg,eg,'des'); packs a descriptor system 
into desg, etc.

branch: This function recovers the matrices packed in a system or tree variable 
selectively. For example,

[D11,C2] = branch(TSS,'d11,c2');

recovers the matrices D11 and C2 from the system TSS and

 ag = branch(ssg,'a');

recovers the matrix ag from the state-space system ssg.

To recover all the matrices from ssg at once, you may type

 [ag,bg,cg,dg] = branch(ssg);

Table 1-1:  

Type V1, V2, V3,…, Vn Description

'ss' (a,b,c,d,ty) Standard State-Space 
(default)

'des' (a,b,c,d,e,ty) Descriptor System

'tss' (a,b1,b2,c1,c2,d11,d12,d21,d2
2,e,ty)

Two-Port State-Space

'tdes' (a,b1,b2,c1,c2,d11,d12,d21,d2
2,e,ty)

Two-Port Descriptor

'gssv (sm,dimx,dimu,dimy,ty) General State-Space

'gdes' (e,sim,dimx,dimu,dimy,ty) General Descriptor

'gpsm' (psm,deg,dimx,dimu,dimy,ty) General Polynomial 
System Matrix

'tf' (num,den,ty) Transfer Function

'tfm' (num,den,m,n,ty) Transfer Function Matrix

'imp' (y,ts,nu,ny) Impulse Response
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tree: This function provides a general tool for creating hierarchical data 
structures containing matrices, strings and even other trees. It is used as a 
subroutine by mksys. For example, if you wish to keep track of the two-port 
plant (A,B1,B2,...), along with the controller (af,bf,cf,df), the frequency 
response [w;sv] along with the name Aircraft Design Data, you simply do the 
following

fr = tree('w,sv',w,sv); 
DesignData = ... 
tree('plant,controller,freq,name',TSS,ssf,fr,... 
'Aircraft Design Data');

Figure 1-1, Branch Structure of the tree Variable shows the branch structure 
of the tree variable DesignData. This tree variable has two levels, since the 
branches named plant, controller, and freq are themselves trees. However, 
there is in general no limit to the number of levels a tree can have. 

To recover the variable name from the first level of the tree DesignData, we 
type

name = branch(DesignData,'name') 
ans = 
Aircraft Design Data

The list of names of “root branches” of the tree is always stored in the tree as 
branch 0. For example, to find the names of the root branches in the tree 
variable DesignData, type the following

branch(DesignData,0) 
ans = 
plant,controller,freq,name

To recover the value of the matrix c1 in the branch plant of the second level of 
the tree DesignData, we type

 C1 = branch(DesignData,'plant/c1');
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Figure 1-1:  Branch Structure of the tree Variable

The M-files in the Robust Control Toolbox have been reinforced to optionally 
accept the system data structure to simplify user interaction and to reduce the 
amount of typing required. Whenever a Robust Control Toolbox function 
encounters a tree variable representing a system among it input arguments, it 
automatically checks to see if the variable is in fact a system. If it is a system, 
then the function automatically expands the input argument list, replacing the 
system variable by the matrices stored in it. For example, the following two 
commands perform the same computation.

hinf(TSS); 
hinf(A,B1,B2,C1,C2,D11,D12,D21,D22);

The latter, longer form illustrates the fact that the use of system variables is 
entirely optional in the Robust Control Toolbox. The traditional but 
cumbersome method of passing system matrices one at a time as multiple 
arguments to a function is still acceptable, thus ensuring compatibility with 
other MATLAB toolboxes and earlier versions of the Robust Control Toolbox. 
See the Reference chapter for details on mksys, branch, and tree. 

AircraftDesignDataw,svaf,bf,cf,dfa,b1,b2,...

namefreqcontrollerplant

DesignData
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Singular Values, H2 and H∞ Norms
The singular values of a rank r matrix , denoted  are the 
non-negative square-roots of  the eigenvalues of ordered such that

If r < p then there are p – r zero singular values, i.e., 

There exist two unitary matrices  and a diagonal 
matrix  such that

where ; this is called the singular-value decomposition 
(SVD) of matrix A. The greatest singular value  is sometimes denoted

If A is a square  matrix, then the n-th singular value (i.e., the least 
singular value) is denoted

Some useful properties of singular values are 

1

2

3 , where  denotes the i-th eigenvalue of A.

A Cm n×∈ σi
A*A

σ1 σ2 … σp≥ ≥ ≥ , p min m n,{ }

σr 1+ σr 2+ … σp 0= = = =

U Cm m×∈ , V Cm n×∈
Σ Rm n×∈

A U= ΣV∗ U=
Σr

0

0
0

V∗

Σr diag= σ1 σ2, …, σr,( )
σ1

σ A( ) = σ1

n n×

σ A( ) ∆
= σn

σ A( ) max=
Ax
x

------------x C∈ n

σ A( ) min=
Ax
x

------------x C∈ n

σ A( ) λi A( ) σ≤ ≤ A( ) λi
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4 If  exists, 

5 If  exists, 

6

7

8

9

10

11

12

Property 1 is especially important because it establishes the greatest singular 
value of a matrix A as the maximal “gain” of the matrix as the input vector “x” 
varies over all possible directions.

For stable Laplace transform matrices , define 
the H2-norm and the H∞-norm terms of the frequency-dependent singular 
values of :

H2-norm:

H∞-norm:

A 1– σ A( ) 1

σ A 1–( )
------------------=

A 1– σ A( ) 1

σ A 1–( )
------------------=

σ αA( ) α= σ A( )

σ A B+( ) σ≤ A( ) σ+ B( )

σ AB( ) σ≤ A( )σ B( )

σ A( ) σ– E( ) σ≤ A E+( ) σ≤ A( ) σ+ E( )

max σ A( ) σ, B( ){ } σ≤ AB[ ]( ) 2≤ max σ A( ) σ, B( ){ }

maxi j, ai j, σ≤ A( ) n≤ maxi j, ai j,

σi
2 

i 1=

n

∑  = Trace A*A( )

G s( ) Cm n×∈ , p min m n,{ }=

G jω( )

G 2
∆
= σi G jω( )( )( )

i 1=

p

∑
∞–

∞

∫ d2 ω
1
2
---

G ∞
∆

ω
= supσ G jω( )( )    sup:  the least upper bound( )
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The Robust Control Problem 
In the past two decades there have been great advances in the theory for the 
design of robustly uncertainty-tolerant multivariable feedback control systems 
[8, 9]. Many of the questions that created the much lamented “gap” of the 
1970’s between the theory and practice of control design have been resolved, at 
least partially, in the wake of the renewed concern of control theorists with 
such feedback issues such as stability margin, sensitivity, disturbance 
attenuation and so forth. Out of this renewed concern has emerged the singular 
value Bode plot as a key indicator of multivariable feedback system 
performance (e.g., [12, 29]). The singular value thus joins such previously used 
measures of multivariable feedback system performance as dominant pole 
locations (related to disturbance rejection bandwidth and transient response), 
transmission zeros (related to steady-state response and “internal models”) 
and rms error of control signals (from the L2 Wiener-Hopf/LQG optimal control 
theory, [1, 45, 46]).

The real problem in robust multivariable feedback control system design is to 
synthesize a control law which maintains system response and error signals to 
within prespecified tolerances despite the effects of uncertainty on the system. 
Uncertainty may take many forms but among the most significant are noise/
disturbance signals and transfer function modeling errors. Another source of 
uncertainty is unmodeled nonlinear distortion. Uncertainty in any form is no 
doubt the major issue in most control system designs. Consequently people 
have adopted a standard quantitative measure for the size of the uncertainty, 
viz., the H∞ norm.

The general robust control problem is described mathematically as follows (See 
Figure 1-2, Canonical Robust Control Problem):

Given a multivariable plant P(s), find a stabilizing controller F(s) such that the 
closed-loop transfer function  satisfies

where

Ty1u1

1
KM Ty1u1

jω( )( )
-------------------------------------- 1<

KM Ty1u1
( )def

inf
∆

σ ∆( )   det I Ty1u1
–( )∆( ) 0={ }=
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with 

Figure 1-2:  Canonical Robust Control Problem

The condition is “robustness criterion.” The quantity  
is “size” of the smallest uncertainty , as measured by the singular value at 
each frequency, that can destabilize the closed-loop system. The function  
is the so-called diagonally perturbed multivariable stability margin (MSM) 
introduced by Safonov and Athans [30, 32], the reciprocal of which is known as 
µ, the structured singular value (SSV) [13] —. i.e., . More precisely, 
when  is not present, this problem is called the robust stability problem. 
Doyle, Wall and Stein [14] introduced the extra uncertainty  to represent 
the performance specification  which, according to their robust 
performance theorem, is satisfied if and only if . Thus, the 
problem set-up in Figure 1-2, Canonical Robust Control Problem completely 
addresses the issues in robust control system design, i.e., robustness and 
performance.

∆ diag= ∆1 …, ∆n,( )

UNCERTAINTY

1. . .
n-1

2
u

1
u

2
y

1
y

CONTROLLER

F(s)

n

FICTITIOUS
UNCERTAINTY

22

PP

P P

11 12

21

PLANT

1 KM Ty1u1
jω( )( )⁄ 1< KM

∆
KM

KM
1
µ
---=

∆n
∆n

σ Ted jω( )( ) 1≤
1 KM Ty1u1

jω( )( )⁄ 1≤
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Unfortunately the computation of  involves a nonconvex 
optimization over  and so cannot, in general, be solved by the standard 
gradient-descent nonlinear programming techniques for which convexity of 
constraints and cost is required to assure convergence. Fortunately, 
computable upper bounds on  do exist and have provided simple 
alternatives for computing :

where denotes the Perron optimal scaling matrix [32], and := 
. Clearly,  is also an upper bound on 

, albeit possibly a very conservative one. If any of the upper bounds 
satisfies the robust performance constraints, it is sufficient to guarantee that 
µ, or , satisfies them as well. 

Therefore, from a robust control synthesis point of view, the problem is to find 
a stabilizing F(s) to “shape” the  function (or its upper bounds) in the 
frequency domain. On the other hand, from a robust control analysis point of 
view, the problem is to compute the MSM , (or its bounds).

Structured and Unstructured Uncertainty
Practically, each of the ’s (i = 1, …, n) may itself be a matrix and represent a 
different kind of physical uncertainty. Two types of uncertainty are defined in 
robust control — unstructured and structured. 

Unstructured uncertainty usually represents frequency-dependent elements 
such as actuator saturations and unmodeled structural modes in the high 
frequency range or plant disturbances in the low frequency range. Their 
relations to the nominal plant can be either additive 

or multiplicative

Both can be considered as norm bounded quantities, i.e., using H∞ norm 
. where r is a given positive number.

KM Ty1u1
( )

∆

1 KM⁄
KM

1
Km Ty1u1

( )
-------------------------- µ Ty1u1

( )= = inf
D D∈

DTy1u1
D 1–

∞= DpTy1u1
D 1–

p ∞

Dp D∈ D
diag d1I …, dnI,( )  di 0>{ } Ty1u1 ∞

1 KM⁄

KM

µ Ty1u1
( )

Km Ty1u1
( )

∆i

G G= ∆A+

G I ∆M+( )G=

∆ ∞ r<
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Figure 1-3, Additive and Multiplicative Unstructured Uncertainty shows the 
block diagrams of these two unstructured uncertainties.

Figure 1-3:  Additive and Multiplicative Unstructured Uncertainty

Structured Uncertainty represents parametric variations in the plant 
dynamics, for example:

1 Uncertainties in certain entries of state-space matrices (A, B, C, D), e.g., the 
uncertain variations in an aircraft’s stability and control derivatives.

2 Uncertainties in specific poles and/or zeros of the plant transfer function. 

3 Uncertainties in specific loop gains/phases.

M(s)

M(s)

+
+

+ ++

-
F G

TRUE PLANT G

TRUE PLANT G

M

A

GF
-
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The very general setup in Figure 1-2, Canonical Robust Control Problem 
allows a control system designer to capture all these uncertainties, both 
structured and unstructured, and formulate them into the design. The provides 
software tools for robustness analysis and robust control law synthesis within 
this very general framework.

Positive Real and Sector Uncertainty 
The setup of the robust control problem in Figure 1-2, Canonical Robust 
Control Problem handles much more than just the case of  satisfying 

. Using the sector transform [50, 28], this setup readily extends to 
admit transfer function matrix (s)’s and even nonlinear ’s satisfying a 
general, possibly frequency-dependent sector condition.

Definition: Given matrices A(s) and B(s) and let (s) be a stable transfer 
function matrix. If 

for all  and , then we say

More generally, if A11(s), S12(s), S21(s), S22(s) are stable transfer function 
matrices and if 

for all  and all , then we say 

For example, physically-dissipative force-velocity transfer function matrices 
such as those associated with mechanical structures having collocated 
actuators and sensors are positive real, i.e., inside sector[0, ∞], and the 
transformation

∆i jω( )
∆i ∞ 1≤

∆i ∆i

∆

Re y Ax–( )∗ y Bx–( )[ ] 0≤

s j= ω y ∆= jω( )x

∆ s( ) ⊂ A B,[ ]sector

Re S11 s( )x S12+ s( )y( )∗ S21 s( )x S22+ s( )y( )[ ] 0≤

s j= ω y ∆= jω( )x

∆ s( ) ⊂ S s( )[ ]sector

y y= u+

u y= u+
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transforms a positive-real relation  into an equivalent relation  
satisfying

The case of general A(s), B(s) matrices may be handled similarly.

The function sectf.m in the Robust Control Toolbox allows you to perform the 
sector transform in the state-space framework. See the Reference section for 
details.

Robust Control Analysis
The goal of robust analysis is to measure the Multivariable Stability Margin 
(MSM) “seen” by the uncertainties using a proper, nonconservative analytical 
tool. In other words, we are interested in finding out how big  can be before 
instability occurs.

Two tasks are involved in computing the MSM:

Task 1: Define the uncertainty model 

Task 2: Pull out the uncertainty channels (structured or unstructured) into a 
M-  form as shown in Figure 1-4, Robust Analysis M- Diagram.

Figure 1-4:  Robust Analysis M-  Diagram

u ∆= y ũ ∆̃ỹ=

∆̃ ∞ 1<

∆

∆

M(s)

.
.

.
1

43

2
1

...

SENSORS, CONTROLLER,...
 
SYSTEM WITH ACTUATORS,

∆
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Following are examples of modeling different types of uncertainties in the M-  
block diagram form.

Example 1: Modeling Unstructured Uncertainty. The following plant transfer function 
that represents a spacecraft’s rigid body dynamics and one boom structural 
mode (see the Case Studies section for more details).

If the nominal model is , then (see Figure 1-5, Bode Plots of Additive 

and Multiplicative Uncertainty)

Figure 1-5:  Bode Plots of Additive and Multiplicative Uncertainty

∆
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Example 2. Modeling Structured Uncertainty . This example shows how to pull out 
structured uncertainties from state-space A and B matrices.

The state-space model of the lateral-directional dynamics of a fighter aircraft 
is shown below [5].

where the “primed” derivatives with respect to are defined as

The aircraft is trimmed at degrees angle of attack, flying at sea level with a 
total velocity  of 334.9 ft/sec. The states to be stabilized are body-axis roll 
rate (p), yaw rate (r) and the velocity component along the y-axis (v). The 
variables to be controlled (tracked) are the roll-rate about the velocity vector 

and the sideslip angle (β). The control actuators whose dynamics are 
ignored in this analysis are aileron (δa)and rudder (δr).

∆M– G G–( )= G
1– s2 1+

s2 2+
---------------; =  M s( ) G= F I GF+( )

1–
–

p·

r·

v·

L′p L′r L′β VT⁄

N′p N′r N′β VT⁄

Yp Yr Yβ VT⁄

p
r
v

L′δa
L′δr

N′δa
N′δr

Yδa
Yδr

+
δa

δr

=

β

µ·app

180
π

----------=
0 0 1 VT⁄

αcos αsin 0

p
r
v

p r, β, δa, δr,( )

L′ L
Ixz
Ixx
-------+ N 

 =
IxxIzz

IxxIzz Ixz
2–

-----------------------------------

N′ N
Ixz
Ixx
-------+ L 

 =
IxxIzz

IxxIzz Ixz
2–

-----------------------------------

VT

µ·( )
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The plant data is

:=

The state-space set-up for the robustness evaluation can be formulated using 
the block diagram in Figure 1-6, Pulling Out Parametric Uncertainties.

Figure 1-6:  Pulling Out Parametric Uncertainties

A B1

C1 D1

1– 9953⋅ 0 7513⋅ 0.0299– 0.0906 0.0298
1– 0093⋅ 0– 1518⋅ 0.0060 0.0024– 0.0204–

39 8500⋅
0

------------------------
331– 90⋅

0
------------------------

0.1673–
0.1711–

---------------------
0.0204

0
------------------

0.2284
0

------------------

56 8927⋅ 6 7840⋅ 0 0 0

YU

+ +

++

+

+ +

A

1C
1

B

1
D

2C2D

2B
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The equations associated with the block diagram are

which lead to the perturbed state-space system

where matrices B2, C2 and D2 play the roles of putting the parametric 
uncertainty block ∆ into a diagonal structure.

If  and  are the perturbations for 
the A and B1 matrices respectively, then the associated ∆, B2 and C2 will have 
the following structure

x· Ax= B1+ u1 B2y2+

y1 C1x= D1u1+

y2 ∆C2x= ∆D2u1+

x· = 

 

( A +
 

B2∆C2

∆A

)x +
 

 (  B1 +

 

B2∆D2

∆B

) u1

 
         

L′p N′p, L′r, N′r, L′β, N′β, L′δa
L′δr

, N′δa
, N′δr

∆ diag= ∆L ′p
∆N ′p

, ∆L ′r
, ∆N ′r

, ∆L ′β
, ∆N ′β

, ∆L ′δa
, ∆N ′δa

, ∆L ′δr
, ∆N ′δr

,( )

B2

1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0

=

C2

1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0

T

=

D2
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1

T

=
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The overall augmented plant becomes

The linear fractional transformation lftf can be used to close the controller 
feedback loop F(s) around the plant from u1 to y1. Then, the transfer function 
M(s) “seen” by the uncertainty blocks is the transfer function from u2 to y2.

Example 3. Modeling Nonlinear Uncertainty. A saturation nonlinear element can be 
modeled as unstructured uncertainty sector bounded element inside 
sector[0,1]which, according to the nonlinear stability results of Sandberg and 
Zames [26, 50], may be effectively modeled as an uncertain linear 
time-invariant element whose Nyquist locus lies inside a complex disk of 
radius 0.5 centered on the real axis at 0.5 (See Figure 1-7, Modeling 
Nonlinearity as Unstructured Uncertainty). This uncertain linear 
time-invariant element may thus be decomposed as  where the 

P s( )
A B1 B2

C1 D1 0

C2 D2 0

=

0.5 ∆A+
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additive uncertainty ∆A is bounded by . For robust stability 
.

Figure 1-7:  Modeling Nonlinearity as Unstructured Uncertainty

Robust Analysis — Classical Approach 
First, let’s recall classical definitions of SISO stability margin (robustness). 
Consider the following block diagram (Figure 1-8, Classical Gain/Phase 
Margins). The gain margin can be defined as the variation of real(∆), and the 
phase margin can be defined as the variation of imag(∆). On the Nyquist plot 
they are simply the intersections of loop transfer function on unit circle (phase 
margin) and real-axis (gain margin).

∆A ∞ 0.5<
M ∞ ∆ ∞ 1< , M ∞ 2<

-2 -1

Infinity Norm = 0.5

A

YX

YX

21
-0.5

0.5
+ +

0.5

1

1
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Figure 1-8:  Classical Gain/Phase Margins

A simple example shown in Figure 1-9, Gain/Phase Margins ¼ Robustness 
reveals immediately that classical SISO gain/phase margins DO NOT 
represent system robustness. This is because you can have infinite gain margin 
and 90 degree phase margin as shown in Figure 1-9, Gain/Phase Margins ¼ 
Robustness but still be very close to instability (-1 critical point). In other 
words, classical gain/phase margins cannot capture simultaneous variations in 
both quantities.

: PHASE MARGIN

: GAIN MARGIN

PHASE MARGIN: IMAGINARY

GAIN MARGIN: REAL-

+
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Figure 1-9:  Gain/Phase Margins ≠ Robustness

For MIMO systems, classical gain/phase margins computed one-loop-at-a-time 
obviously ignore the effects of simultaneous variations in several loops and the 
cross coupling between them. In 1978, Doyle [11] described an interesting 
example showing how classical gain/phase margins can be dangerously 
optimistic in predicting system stability (robustness). Figure 1-10, MIMO 
Robustness vs. Gain/Phase Margin shows the system block diagram and 
stability hyperplanes in 2-D parameter space. Clearly, when , 
then the loop transfer function in each of the two feedback loops is . So 
each individual loop has gain-margin  and phase-margin 

. But simultaneous variations in ∆1 and ∆2 quickly lead to 
system instability.

British control theorist A. G. J. MacFarlane introduced a sophisticated 
analysis tool called Characteristic Gain Loci to measure the system robustness 
(e.g., [25]). The idea was to compute the gain/phase margins of each eigenvalue 
of the loop transfer function L(s), then determine the MIMO system robust 
stability based on the Generalized Nyquist Stability Theorem:

A system is stable if and only if the Nyquist loci of the eigenvalues of the loop 
transfer function encircle “-1” once counterclockwise for each unstable pole of 
L(s). 

However, characteristic gain loci may give too optimistic a result as shown in 
the following example.

NOT ROBUST !

PHASE MARGIN: 90 DEG

GAIN MARGIN: INFINITY

-1

∆1 ∆2 0= =
1 s⁄

GM ∞±=
ΦM 90 deg±=
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Figure 1-10:  MIMO Robustness vs. Gain/Phase Margin

Example: [11]
Let’s consider the  plant transfer function matrix

with modal decomposition 
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A stabilizing feedback controller is

The characteristic gain loci containing in  seem to imply that the system 
has infinite gain margin and  degree phase margin in each feedback loop. 
However, if you slightly perturb the gains K1 and K2 to  and 

 simultaneously, the system becomes unstable.

This is not surprising from a numerical linear algebra viewpoint, because 
computing eigenvectors is a numerically sensitive process in that a small 
variation in one matrix element can result huge changes in the eigenvectors.

Robust Analysis — Modern Approach
In the late 1970’s, people started to realize [29, 12] that, by using the singular 
value and its related robustness tests, it would be possible to substantially 
overcome the difficulties associated with the classical methods.

A standard Singular-Value Stability Robustness Theorem was established 
based on the Sandberg-Zames’ Small Gain Theorem [26, 50]:

The M- ∆ system is stable for any stable ∆(s) satisfying

for all 

Several important practical considerations in applying the Theorem follow:

1 A small change in ∆ never produces a large change in  or vice versa (i.e., 
singular values are better than eigenvalues for robust analysis). 

2 Although the theorem gives only, sufficient condition for robust stability, 
these conditions are also necessary for stability in the weakened sense that 

K
K1 0

0 K2

= 1 0
0 1

=

Λ s( )
180±

K1 0.13+
K2 0.12–

σ ∆ jω( )( ) 1
σ M jω( )[ ]
--------------------------<

ω R∈ or ∆ ∞
1

M ∞
--------------< 

 

σ ∆( )
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there exists some ∆ with  such that the closed-loop system is 
not asymptotically stable.

Figure 1-11:  Singular Value vs. Characteristic Gain Loci

Revisiting the Characteristic Gain Loci example, you can predict system 
robustness accurately using this Singular Value Stability Robustness 
Theorem. See Figure 1-11, Singular Value vs. Characteristic Gain Loci.

Applying the Small Gain Theorem, the resonance peak of the maximum 
singular value   ( ) predicts accurately that the multiplicative 
uncertainty can only be as large as  = 6.15% before instability occurs.

Now we can formally introduce the concept of Multivariable Stability Margin 
(MSM). Recall MSM is defined as

where . 

∆ ∞ 1 M ∞⁄=
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Properties of KM and µ

1 KM is the smallest  which can destabilize the system . 

2 If no ∆ exists such that . 

3 KM is a function of M and the structure of ∆. 

4 , for any scalar α. 

5 , where ρ is the spectral radius. 

6 If , then . 

7 If  full matrix, . 

8 , where is U the set of all unitary matrices with 
the same (block) diagonal structure as ∆. This is a nonconvex optimization 
problem, which is impractical to solve exactly as mentioned earlier. 

9 Generalized Small-Gain Theorem: If nominal M(s) is stable, then the 
perturbed system  is stable for all stable  if 
and only if  for all .

Diagonal Scaling 
In 1981, Safonov [31] introduced the concept of diagonal scaling to compute the 
upper bounds of MSM. See Figure 1-12, The Concept of Diagonal Scaling

σ ∆( ) I M∆–( ) 1–

det I M– ∆( ) 0= ,  Km ∞=

µ αM( ) α= µ M( )

ρ M( ) µ≤ M( ) σ≤ M( )

∆ δ= I for some  δ C∈ µ M( ) ρ= M( )

∆ Cn n×⊂ µ M( ) σ= M( )

max
U U∈  ρ MU( ) µ= M( )

I M– ∆( ) 1– ∆i for which ∆i ∞ 1≤
Km M jω( )( ) 1> ω R∈
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Figure 1-12:  The Concept of Diagonal Scaling

The idea is as follows: If ∆ and D are diagonal matrices, , but 
 can be much smaller than . This fact leads to the following 

KM upper bounds which much more accurately predict MIMO system 
robustness 

where  denotes the Perron optimal scaling matrix [31, 32] and 
. Clearly, the “unscaled” Singular Value 

Stability Robustness Theorem uses the most conservative upper bound on KM 
to predict system MSM, whereas the scaled singular value can be much more 
accurate.

In the Robust Control Toolbox, several functions are provided to compute 
various upper bounds on a multivariable system’s Structured Singular Value 
(SSV) :

•  Singular value: sigma.m, dsigma.m 

NEW M --> DMD
-1
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-1

DD M

D D

.
.
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1

∆ ∞ D 1– ∆D ∞=
DMD 1–

∞ M ∞

1
KM
--------- µ= M( ) inf

D D∈
≤ DMD 1–

∞ DpMD
1–

p ∞
≤

Dp D∈
D:  diag d1  I, …,  dnI,( )  di 0>{ }=
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• Perron diagonal scaling: psv.m, ssv.m 

• Osborne diagonal scaling: osborne.m, ssv.m 

• Multiplier scaling: muopt.m, ssv.m 

• Characteristic gain loci: cgloci.m dcgloci.m

A comparison of the available upper bounds on the structured singular value 
reveals that some are much easier to compute than others and some can be 
more conservative than others. See Table 1-2,  and the example.

The following example reveals that singular values can be excessively 
conservative in predicting the MSM when you know more about ∆.

Example: Given a system having nominal loop transfer function

Table 1-2:  

Method Property Computation Reference

Optimal Diagonal
Scaling

n = 3, exact KM

n > 3, ∃ 15 % gap

demanding Doyle [11]
Safonov [31}

Diagonal Scaling
psv.m, 
osborne.m, ssv.m

very close to 
optimal
diagonal scaling

easy Safonov 
[31,32]

Singular Value
sigma.m, 
dsigma.m

can be very
conservative

easy Safonov [28]
Doyle [11]

Multiplier Scaling
muopt.m, ssv.m

allow mixed real
and complex
uncertainties

demanding Safonov et al. 
[44]

G s( ) 1

s2 12s 32+ +
----------------------------------=

4s 32+ 0

12s2 64s+ 8s 32+
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with multiplicative uncertainty ∆ at its input, find the SSV of the transfer 
function  “seen” by ∆ as a feedback wrapped around it.

To compute the result shown in Figure 1-13, SSV (Perron Upper Bound) vs. 
Singular Value, simply execute the following commands.

num = [0 4 32; 12 64 0; 0 0 0; 0 8 32]; 
den = [1 12 32]; m = 2; n = 2; 
tfm = mksys(num,den,m,n,'tfm'); 
ssg = tfm2ss(tfm); 
w = logspace(-3,3); 
perron = 20*log10(ssv(ssg,w));
svmax=10*log10(max(sigma(ssg,w)));
semilogx(w,svmax,'k:',w,perron,'k-')
ylabel('DB'); xlabel('Rad/Sec');
legend('Singular Value','Perron',3)

More details about the algorithm associated with each method can be found in 
the Reference section under psv, osborne and ssv.

Figure 1-13:  SSV (Perron Upper Bound) vs. Singular Value 
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Robust Control Synthesis 
The recently developed H∞, frequency-weighted LQG, LQG loop transfer 
recovery (LQG/LTR) and µ synthesis theories have made multivariable loop 
shaping a routine matter. The H∞ theory provides a direct, reliable procedure 
for synthesizing a controller which optimally satisfies singular value loop 
shaping specifications. The frequency-weighted LQG optimal synthesis theory 
(also known as the “H2 theory” and “Wiener-Hopf Theory”) and LQG/LTR lead 
to somewhat less direct, but nonetheless highly effective iterative procedures 
for massaging singular value Bode plots to satisfy singular value loop shaping 
specifications. On the other hand, the µ synthesis technique puts both “robust 
analysis” and “robust synthesis” problems in a single framework in which you 
shape the function µ (or KM); this offers the maximum flexibility as a general 
robust control system design tool. Table 1-3,  summarizes the techniques 
available in the as well as the advantages and shortcomings of each

Table 1-3:  

Methods Advantages Disadvantages

LQR
(lqr.m)

• Guaranteed stability margin

• Pure gain controller

Need full-state feedback
Need accurate model
Possibly many iterations

LQG
(lqg.m)

• Uses available noise data No stability margin guaranteed
Need accurate model
Possibly many iterations

LQG/LTR
(ltru.m,
ltry.m)

• Guaranteed stability margin

• Systematic design procedure

High gain controller
Possibly many iterations
Design focus on one point

H2

(h2lqg.m)
• Addresses stability and 

sensitivity

• Almost exact loop shaping

• Closed-loop always stable

Possibly many iterations
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Figure 1-14:  Small Gain Problem

A number of methods are available in the Robust Control Toolbox to design a 
robust stabilizing feedback control law such that the robustness inequality 

 is satisfied:

• LQG loop transfer recovery (use lqr, then ltru or ltry). 

• H2 optimal control synthesis (use h2lqg). 

• H∞ optimal control synthesis (use hinf, hinfopt or linf).

Figure 1-14, Small Gain Problem shows a general set-up, and the problem of 
making  is also called the small-gain problem.

LQG and Loop Transfer Recovery
The regular LQG-based design problem can be solved via the M-file lqg based 
on the separation principle, which is explained in the Reference section of this 
toolbox.

H∞ • Addresses stability and 
sensitivity

• Exact loop shaping

• Direct one-step procedure

Requires special attention
to the plant parametric
robustness

µ synthesis
(musyn.m)

• Combines structured/
unstructured uncertainty in 
design

Problem is nonconvex.
Controller size is huge (2n to 3n).

Table 1-3:  

Methods Advantages Disadvantages

F(s)

2

1 P(s)
u
1

y1
yu2

Ty1u1
1<

Ty1u1 ∞ 1≤
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The loop transfer recovery procedure (ltru, ltry) developed by Doyle and Stein 
is documented in the Reference section. A multivariable fighter example is also 
included. 

H2 and H∞ Synthesis
The methods of H2 and H∞ synthesis are especially powerful tools for designing 
robust multivariable feedback control systems to achieve singular value loop 
shaping specifications. The Robust Control Toolbox functions h2lqg, hinf and 
hinfopt compute continuous-time H2 and H∞ control laws; their discrete-time 
counterparts are dh2lqg, dhinf and dhinfopt.

The H2 or H∞ design problem can be formulated as follows: Given a state-space 
realization of an “augmented plant” P(s) (e.g., as in Figure 1-14, Small Gain 
Problem)

find a stabilizing feedback control law

such that the norm of the closed-loop transfer function matrix

is small. Three such problems addressed by the Robust Control Toolbox are

H2 Optimal Control: 

H∞ Optimal Control: 

Standard H∞ Control: 

The standard H∞ control problem is sometimes also called the H∞ small gain 
problem. Both H2 and H∞ synthesis are often used together, with H2 synthesis 
being used as a first cut to get a sense for what level of performance is 
achievable. Then, an H∞ performance criterion is selected based on the outcome 

P s( ) :

A B1 B2

C1 D11 D12

C2 D21 D22

,=

u2 s( ) F= s( )y2 s( )

Ty1u1 P11= s( ) P12+ s( ) I F s( )P22 s( )–( ) 1– F s( )P21 s( )

min Ty1u1 2

min Ty1u1 ∞

min Ty1u1 2
1≤( )
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of the first cut H2 design, and the H∞ synthesis theory is used to do the final 
design work.

The entire design procedure is simple and requires only “one-parameter” 
-iteration following path I then path II of the flow-chart in Figure 1-15, H2/

H• g-Iteration.

Figure 1-15:  H2/H∞ γ-Iteration

Properties of H∞ Controllers
There are several important properties of H∞ controllers worth mentioning 
(see, for example, [3]):

Property 1: The H∞ optimal control cost function  is all-pass, i.e., 
 for all R.
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 Property 2: An H∞ “sub-optimal” controller produced by the standard 
state-space algorithm hinf.m has the same number of state variables as the 
augmented plant (n-states). An optimal H∞ l controller such as produced by 
hinfopt.m has at most (n – 1) states — at least one of the states goes away (e.g., 
[20]).

Property 3: In the weighted mixed sensitivity problem formulation, the H∞ 
controller always cancels the stable poles of the plant with its transmission 
zeros [4].

Property 4: In the weighted mixed sensitivity problem formulation [34], any 
unstable pole of the plant inside the specified control bandwidth will be shifted 
approximately to its -axis mirror image once the feedback loop is closed with 
an H∞ (or H2) controller. The H∞ mixed-sensitivity problem is described in the 
next section.

Property 1 means that designers can ultimately achieve very precise 
frequency-domain loop-shaping via suitable weighting strategies. For example, 
you may augment the plant with frequency dependent weights W1, and W3 as 
shown in Figure 1-19. Then, if there exists a feasible controller that meets the 
frequency domain constraints, the software hinf will find one that ultimately 
“shapes” the signals to the inverse of the weights. This remarkable property 
enables H∞ to achieve the best results — allowing much more precise 
manipulation of singular-value Bode plots than other loop-shaping tools such 
as LQG/LTR or H2.

Several design case studies are provided in the next section.

Existence of H∞ Controllers
If you impose overly demanding design requirements then the minimal 
achievable H∞ norm may be greater than one, in which case no solution exists 
to the standard H∞control problem. The H∞ theory gives the following four 
necessary and sufficient conditions for the existence of a solution to the 
standard H∞ control problem [42]:

1 D11 Small Enough. There must exist a constant feedback control law F(s) = 
“constant matrix” such that the closed-loop D matrix satisfies .

2 Control Riccati P ≥ 0. The H∞ full-state feedback control Riccati equation 
must have a real, positive semidefinite solution P. The software ascertains 
existence of the Riccati solution by checking that the associated 

jω

σ D( ) 1<
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Hamiltonian matrix does not have any -axis eigenvalues. Positive 
semidefiniteness of the solution is verified by checking, equivalently, that 
the H∞ full-state feedback control-law is asymptotically stabilizing [42]; this 
circumvents numerical instabilities inherent in directly checking positive 
semidefiniteness.

3 Observer Riccati S ≥ 0. The Riccati equation associated with the observer 
dual of the H∞ full-state feedback control problem must have a real, positive 
semidefinite solution S. Again the results of [42] are used to avoid numerical 
instabilities.

4 The greatest eigenvalue of the product of the two Riccati 
equation solutions must be less than one.

All four conditions must hold for there to exist a feedback control law which 
solves the standard H∞ control problem. The functions hinf and hinfopt 
automatically check each of these four conditions and produce displays 
indicating which, if any, of the conditions fail. Typical output displays for hinf 
and hinfopt are shown in Table 1-2,  and Table 1-3,  in the Case Studies 
section.

Singular-Value Loop-Shaping: Mixed-Sensitivity Approach
Consider the multivariable feedback control system shown in Figure 1-16, 
Block Diagram of the Multivariable Feedback Control System. In order to 
quantify the multivariable stability margins and performance of such systems, 
you can use the singular values of the closed-loop transfer function matrices 
from r to each of the three outputs e, u and y, viz.

jω

λmax PS( ) 1<

S s( ) def I L s( )+( ) 1–
=

R s( ) def F s( ) I L s( )+( ) 1–
=

T s( ) def L s( ) I L s( )+( ) 1– I S s( )–= =
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where . 

Figure 1-16:  Block Diagram of the Multivariable Feedback Control System

The two matrices S(s) and T(s) are known as the sensitivity function and 
complementary sensitivity function, respectively. The matrix R(s) has no 
common name. The singular value Bode plots of each of the three transfer 
function matrices S(s), R(s), and T(s) play an important role in robust 
multivariable control system design. The singular values of the loop transfer 
function matrix L(s) are important because L(s) determines the matrices S(s) 
and T(s).

The singular values of S(jω) determine the disturbance attenuation since S(s) 
is in fact the closed-loop transfer function from disturbance d to plant output y 
— see Figure 1-16, Block Diagram of the Multivariable Feedback Control 
System. Thus a disturbance attenuation performance specification may be 
written as

where is the desired disturbance attenuation factor. Allowing

 to depend on frequency ω enables you to specify a different 
attenuation factor for each frequency ω.

The singular value Bode plots of R(s) and of T(s) are used to measure the 
stability margins of multivariable feedback designs in the face of additive plant 
perturbations  and multiplicative plant perturbations , respectively. See 
Figure 1-17, Additive/Multiplicative Uncertainty. 

Let us consider how the singular value Bode plot of complementary sensitivity 
T(s) determines the stability margin for multiplicative perturbations . The 

L s( ) G= s( )F s( )
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σ S jω( )( ) W1
1– jω( )≤
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multiplicative stability margin is, by definition, the “size” of the smallest stable 
(s) which destabilizes the system in Figure 1-17, Additive/Multiplicative 
Uncertainty with .

Figure 1-17:  Additive/Multiplicative Uncertainty

Taking  to be the definition of the “size” of , you have the 
following stability theorem:

Robustness Theorem 1: Suppose the system in Figure 1-17, Additive/
Multiplicative Uncertainty is stable with both  and  being zero. Let 

. Then the size of the smallest stable (s) for which the system becomes 
unstable is

(2-1)

The smaller is , the greater will be the size of the smallest 
destabilizing multiplicative perturbation, and hence the greater will be the 
stability margin.

A similar result is available for relating the stability margin in the face of 
additive plant perturbations (s) to R(s). Let us take  to be our 
definition of the “size” of  at frequency ω. Then, you have the following 
stability theorem.

Robustness Theorem 2: Suppose the system in Figure 1-17, Additive/
Multiplicative Uncertainty is stable when  and  are both zero. Let 

. Then the size of the smallest stable (s) for which the system becomes 
unstable is

∆A 0=

PERTURBED PLANT

-

+
I + (s)F(s) G(s)

++

(s)
A

M

σ ∆M jω( )( ) ∆M jω( )

∆A ∆M
∆A 0= ∆M

σ ∆M jω( )( ) 1
σ T jω( )( )
------------------------=
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As a consequence of Theorems 1 and 2, it is common to specify the stability 
margins of control systems via singular value inequalities such as

(1-1)

(1-2)

where  and  are the respective sizes of the largest 
anticipated additive and multiplicative plant perturbations.

It is common practice to lump the effects of all plant uncertainty into a single 
fictitious multiplicative perturbation , so that the control design 
requirements may be written

as shown in Figure 1-18, Singular Value Specifications on S and T.

It is interesting to note that in the upper half of Figure 1-18, Singular Value 
Specifications on S and T (above the zero db line)

while in the lower half of Figure 1-18, Singular Value Specifications on S and 
T below the zero db line

This results from the fact that

σ ∆A jω( )( ) 1
σ R jω( )( )
------------------------=

σ R jω{ }( ) W2
1– jω( )≤

σ T jω{ }( ) W3
1– jω( )≤

W2 jω( ) W3 jω( )

∆M

1
σi S jω( )( )
-------------------------- W1 jω( )≥ ; σi T jω[ ]( ) W3

1– jω( )≤

σ L jω( )( ) 1
σ S jω( )( )
------------------------≈

σ L jω( )( ) σ≈ T jω( )( )
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Figure 1-18:  Singular Value Specifications on S and T

Thus, it is not uncommon to see specifications on disturbance attenuation and 
multiplicative stability margin expressed directly in terms of forbidden regions 
for the Bode plots of  as “singular value loop shaping” requirements. 
See Figure 1-18, Singular Value Specifications on S and T.

An important point to note in choosing design specifications W1 and W3 is that 
the 0 db crossover frequency the Bode plot of W1must be sufficiently below the 
0 db crossover frequency of or the performance requirements (2-1) and 
(1-2) will not be achievable; more precisely, we require

(1-3)

Guaranteed Gain/Phase Margins in MIMO Systems
For those who are more comfortable with classical single-loop concepts, there 
are the important connections between the multiplicative stability margins 

S s( )def I L s( )+( ) 1–
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predicted by and those predicted by  classical M-circles, as found on the 
Nichols chart. Indeed in the single-input-single-output case

which is precisely the quantity you obtain from Nichols chart M-circles. Thus, 
 is a multiloop generalization of the closed-loop resonant peak magnitude 

which, as classical control experts will recognize, is closely related to the 
damping ratio of the dominant closed-loop poles. Also, it turns out that you may 
relate ,  to the classical gain margin GM and phase margin  in each 
feedback loop of the multivariable feedback system of Figure 1-16, Block 
Diagram of the Multivariable Feedback Control System via the formulae [22]:

1

2

3

4

These formula are valid provided  and  are larger than one, as is 
normally the case. The margins apply even when the gain perturbations or 
phase perturbations occur simultaneously in several feedback channels.

The infinity norms of S and T also yield gain reduction tolerances. The gain 
reduction tolerance gm is defined to be the minimal amount by which the gains 
in each loop would have to be decreased in order to destabilize the system. 
Upper bounds on gm are:

5

6

σ T( )

σ T jω( )( ) L jω( )
1 L jω( )+
-------------------------=

T ∞

T ∞ S ∞ θM

GM 1≥ 1
T ∞

------------+

GM 1≥ 1
1 1– S ∞⁄
-----------------------------+

θM 2 1
2 T ∞
---------------- 

 1–
sin≥

θM 2 1
2 S ∞
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 1–
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For the Characteristic Gain Loci Example, you can compute the guaranteed 
stability margins using the formulae given above 

which clearly predict the poor robustness of the system. These guaranteed 
stability margins provide a tolerance such that you can vary both gain and 
phase simultaneously in all the feedback loops.

Significance of the Mixed-Sensitivity Approach
The Mixed-Sensitivity approach of the robust control system design is a direct 
and effective way of achieving multivariable loop shaping, although it is a 
special case of the canonical robust control problem set-up described earlier.

In the mixed-sensitivity problem formulation, nominal disturbance 
attenuation specifications and stability margin specifications equations (2-1) 
and (1-2) are combined into a single infinity norm specification of the form

(1-4)

where

(1-5)

The left side of equation (1-4) is the mixed-sensitivity cost function, so called 
because it penalizes both sensitivity S(s) and complementary sensitivity T(s).

Note that if you augment the plant G(s) with the weights W1(s) and W3(s) as 
shown in Figure 1-19, Weighted Mixed Sensitivity Problem, then wrap the 
feedback F(s) from output channel y2 back to input channel u2, the resulting 
nominal (i.e., ) closed-loop transfer function is precisely the Ty1u1 (s) 
given by (1-5). The Robust Control Toolbox functions augtf and augss perform 
this plant augmentation.

Guaranteed GM 1=
1

T ∞
------------± 0.94= to 1.062

Guaranteed PM 2 1– 1
2 T ∞
---------------- 3.52 deg±=sin±=

Ty1u1 ∞ 1≤

Ty1u1

def W1S
W3T

=

∆M 0=
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Figure 1-19:  Weighted Mixed Sensitivity Problem

Figure 1-20:  Robust Sensitivity Problem 

The mixed sensitivity cost function has the attractive property that, it provides 
a much simplified, and nearly equivalent, alternative to the canonical robust 
control problem for the case of the robust sensitivity problem (cf. Figure 1-20, 
Robust Sensitivity Problem). It turns out that if (1-4) is strengthened very 
slightly to 

then robust sensitivity performance can be guaranteed; that is,

 for every multiplicative uncertainty ∆M satisfying
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This is because in this case the Ty1u1 associated with the corresponding 
canonical robust control problem (cf. Figure 1-2, Canonical Robust Control 
Problem) becomes simply

For any S(s) and T(s), it may be shown that [3]

This relationship guarantees that H∞ synthesis for the mixed sensitivity setup 
depicted in Figure 1-19, Weighted Mixed Sensitivity Problem is — to within 3 
db  — the same as the KM synthesis (or µ synthesis) for the system in 
Figure 1-20, Robust Sensitivity Problem. This is a major simplification since, in 
general, H∞ synthesis is much easier and more transparent to the designer 
than KM synthesis. The numerical computations for H∞ synthesis are much 
more straightforward too, so that the design computations can be carried out 
significantly more quickly than with synthesis KM.

This relationship tremendously simplifies the robust control (KM or µ) 
synthesis problem. Instead, it replaces it with an easy-to-solve, 
easy-to-understand mixed sensitivity synthesis problem. By achieving a mixed 
sensitivity design with the transfer function matrix

having its L∞-norm less than , you have achieved , i.e., the “real” 
robust performance.

Ty1u1

W1S
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= I, I–[ ]
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µ Synthesis 
The objective of µ synthesis is to find a stabilizing controller F(s) and a diagonal 
scaling matrix D(s) such that

where Ty1u1 is as shown in Figure 1-2, Canonical Robust Control Problem. 
Since  as an upper bound of the

structured singular value, , having the infinity norm of Ty1u1 less 
than one is sufficient to ensure robust stability and/or robust performance. 

A conceptual procedure for µ synthesis described in [33, 15] goes as follows (see 
Figure 1-21, m Synthesis D-K Iteration):

1 Let D(s) = I and use the H∞ control method (hinf.m) to find a F(s) which 
minimizes the cost function . 

2 Fix F(s), then use ssv.m to find a cost-minimizing diagonal matrix D(s). 

3 Using a curve fitting method (fitd.m), find a low order rational 
approximation to the optimal D(s) obtained in step 2. 

4 If the cost function is less than one, stop; otherwise, go to step 1.

DTy1u1D 1–
∞ 1<

Ty1u1 ∞

µdef 1
Km
--------=

DTy1u1D 1–
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Figure 1-21:  µ Synthesis D-K Iteration

This method essentially integrates two optimization problems and solves them 
by alternately fixing either the variable F(s) or the variable D(s), and 
minimizing over the other variable until the µ bound (i.e., cost function) 

 is sufficiently small. For a fixed D, it becomes the standard
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H∞ synthesis problem solved by hinfopt. And, for a fixed F(s), it becomes the 
problem suboptimally addressed by ssv, psv, perron, and muopt of finding a 
stable and minimum phase D(s) that minimizes the cost function at each 
frequency. This method has the potential of solving the overall Robust Control 
Problem.

Following is the input for a simple synthesis problem.

 PLANT DATA:

a=2; b1=[.1,-1]; b2=-1;
c1=[1;.01]; d11=[.1,.2;.01,.01]; d 12=[1; 0];
c2=1; d21=[0,1]; d22=3;

tss=mksys(a,b1,b2,c1,c2,d11,d12,d21,d22,'tss'); 
w=logspace(-2,1);
H-INFINITY OPTIMAL DESIGN: 
[gam0,sscp0,sscl0]=hinfopt(tss); 
[mu0,logd0]=ssv(sscl0,w);

MU SYNTHESIS ITERATION NO. 1 (CONSTANT D):
[ssd1,logd1]=fitd(logd0,w);
[gam1,sscp1,sscl1]=hinfopt(augd(tss,ssd1)); 
[mu1,deltalogd]=ssv(sscl1,w);

MU SYNTHESIS ITERATION NO. 2 (FIRST ORDER D):
[ssd2,logd2]=fitd(logd1+deltalogd,w,1);
[gam2,sscp2,sscl2]=hinfopt(augd(tss,ssd2));

DISPLAY OPTIMAL SIGMA AND SSV PLOTS:
loglog(w,max(sigma(sscl2,w))/gam2,w,.. 
ssv(sscl2,w)/gam2);

 The foregoing example illustrates the basic µ synthesis iteration. In practice, 
you will generally prefer to use a constant, zeroth order diagonal scaling matrix 
D(s) because it leads to a much lower order control law. It may also be 
necessary to experiment with the frequency range ω, adjusting it so that it 
coincides roughly with the frequency range over which the value of mu returned 
by ssv is unacceptably large.

A more detailed µ synthesis example is provided in the “Case Studies” section.
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Bilinear Transform and Robust Control Synthesis
A simple bilinear transform bilin.m has been found to be extremely useful 
when used with robust control synthesis techniques. It can:

1 Remove the ill-conditioning inherent in some augment plants. 

2 Provide direct control of the location of dominant closed-loop poles.

In the H∞ mixed-sensitivity problem formulation, if the augmented plant has 
-axis poles or zeros, the H∞ controller, if it could be reliably computed, would 

have marginally stable closed-loop poles at the corresponding -axis locations 
[35]. A similar problem arises in more general situations in which either P12(s) 
or P21(s) have -axis zeros, including zeros at ∞ that occur when you have a 
rank deficient matrix D12 or D21 in the state-space realization of P(s). In 
practice, the foregoing situations lead to singularities in the equations which 
determine the state-space realization of the H∞ control law. The Robust 
Control Toolbox routines hinf and dhinf produce warning messages in these 
situations.

Using the bilinear transform changes this situation immediately. Problems 
with -axis poles and zeros or with rank-deficiency D12 or D21 can be removed 
by the transformation. Then, after the computation, you can transform back 
the controller using the inverse transform. The resultant control law will then 
be a suboptimal solution to the original H∞ control problem. Combining 
thebilinear transform and H∞ synthesis is also a direct and powerful way of 
controlling closed-loop system performance (in terms of rise time, damping 
ratio, settling time, etc.) [5, 6]. This will become clear after we discuss some 
details of the bilinear transform.

The bilinear transform can be formulated as a -axis pole shifting 
transformation

(1-6)

where the numbers –p1 and –p2 are the end-points of the diameter of a circle in 
the left s-plane (see Figure 1-22, Bilinear Transform for Axis Pole Shifting) 
that is mapped by (1-6) onto the -axis in the -plane. The inverse of such a 
bilinear transform is

jω
jω

jω

jω

jω

s s̃ p+ 1

s̃
p2
------ 1+
----------------=

jω̃ s̃



The Robust Control Problem

1-49

(1-7)

Figure 1-22, Bilinear Transform for Axis Pole Shifting also shows how the 
various regions designated “A”, “B” and “C” in -planes are transformed by 
the mappings (1-6) and (1-7):

•  The boundary of the s-plane circle  is mapped onto -axis in the -plane.

• The s-plane -axis is mapped onto a circle  in the right -plane, which is 
an exactly mirror image of the s-plane circle . 

• Areas “A”, “B” and “C” are mapped to their -plane counterparts.

Figure 1-22:  Bilinear Transform for Axis Pole Shifting

Both forward and inverse multivariable bilinear transforms are special cases 
of the transform  and can be realized by the state-space formula [3]

Other important transforms that map continuous transfer functions to the 
discrete domain such as Tustin, prewarped Tustin, backward/forward 
rectangular transforms, etc. can also be handled with this state-space formula. 
They are discussed in the Reference section under bilin.
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Now, if a plant has poles on the jω-axis in s-plane, the bilinear transform will 
map these poles onto a circle  in -plane centered at  

Property 4 of H∞ controllers will ensure the closed-loop poles are placed inside 
the circle “A” in -plane of Figure 1-22, Bilinear Transform for Axis Pole Shifting 
at positions which are the “shifted RHP” mirror images of the open-loop poles 
outside the region “A” in -plane. Therefore, the parameter “p1” in bilinear 
transform turns out to be the key parameter in placing the dominant 
closed-loop poles at the desired locations in s-plane, thereby satisfying the 
performance specification.

A simple design procedure can be formulated as follows:

1 Pull out the uncertainty blocks from the system block diagram to formulate 
an H∞ robust control problem. 

2 Map the plant from s-plane to -plane via the bilinear pole shifting 
transform (1-6). 

3 Compute the H∞ optimal controller for the transformed plant  (i.e., solve 
)

4 Map the controller  back to s-plane via the inverse bilinear pole shifting 
transform (1-7). 

5 Go back to step 1 and iterate the parameter p1 of the bilinear transform until 
the design specifications are met.

A benchmark problem proposed by Wie and Bernstein [49] has been solved 
successfully via this method. See the Case Studies section for details.

Robustness with Mixed Real and Complex 
Uncertainties
One of the drawbacks associated with the complex KM (or µ) analysis/synthesis 
is that it treats each uncertainty as being bounded by a complex disc, which can 
lead to conservativeness if the parameter is real. A generalized Popov 
multiplier theory overcomes this conservativeness and provides a precise 
analysis and synthesis treatment of the “robust control problem”. In this 
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section, we will introduce this concept on the design and analysis of systems 
with mixed real and complex uncertainties.

Real KM Analysis
In robust analysis, the idea of diagonal scaling introduced in the earlier section 
is to find a diagonal D matrix to scale the “size” of the transfer functions seen 
by the (block) diagonal complex structured uncertainties such that a much less 
conservative measure of the multivariable stability margin of the system can 
be predicted as compared to the worst-case tool singular values that assumes 
a complete complex uncertainty matrix with no structure at all. With the real 
uncertainty embedded inside the diagonal structure, one can build a 
“shift-and-enlarge” process on top of the existing diagonal scaling structure (as 
shown in Figure 1-23, Shift-and-Enlarge Process of Real Uncertainty Analysis) 
to capture the real parametric uncertainty. The idea of “shift-and-enlarge” is 
the following: If the real uncertainty is bounded inside a complex unit circle, 
evidently the unit circle is too conservative for a parameter that only varies on 
the real line. Shifting the circle along the imaginary axis and enlarging the unit 
circle radius to  still covers the same real parametric variation on 
the real line, but the new multivariable stability margin seen by this “larger” 
uncertainty circle can be much smaller. By using convex nonlinear 
programming methods, the shift may be optimized to obtain less conservative 
bounds on the real structured singular value.

1 C2
+( )

1 2⁄
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Figure 1-23:  Shift-and-Enlarge Process of Real Uncertainty Analysis

Mathematically, we have the following optimization problem to solve

This optimization problem can be solved via a special bilinear transform — the 
sector transform (sectf.m) that maps the circles shown in Figure 1-23, 
Shift-and-Enlarge Process of Real Uncertainty Analysis to halfplanes that are 
bounded on left by lines passing through the origin in the new domain (also, 

). The problem is then shifted to the following (see Figure 1-24, 
Real Analysis):
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Find the optimal multiplier to maximize such that

where the multipliers are chosen to be in the class M defined to be the set of all 
diagonal transfer function matrices

satisfying  and  or .

If such a multiplier exists, the value γ is a lower bound on the size of the 
smallest destabilizing real uncertainties. 

Figure 1-24:  Real Analysis 

Now, without loss of generality, we may restrict attention to polynomial 
multipliers; such multipliers ; may be convexly parametrized as 

where X, Y are diagonal polynomial matrices and . 

We call the multipliers in the class M generalized Popov multipliers. They 
have the following special properties.

Properties of the Generalized Popov Multiplier

1 Positive Real: . 

2 For real ∆,  if and only if . 

Re M jω( )T̃ jω( )( ) 0> ω∀, ,   i.e., M sector 0 ∞,( ) positive real;⊂( )

M s( ) diag= m1 s( ) m2, s( ) …, mn, s( )( )

1
2
--- M jω( ) M∗ jω( )+( ) 0≥ , ω∀ mi jω( ) ri= j+ pi

π–
2

------ mi
π
2
---< <

T

21

(-1,1)-->(0,INF)

Gamma-Iteration

~

 1
Y

~

 1
U

 1
Y

 1
U

MM Sectf

M s( ) ∈ M

M s( ) X= s2( ) s+ Y s2( )

X ω2( ) X*+ ω2( ) 0≥ ω∀,

 hermitian M s( )( )  1
2
---= M s( ) M*+ s( )( ) 0    s∀,≥ jω=

de

M∆ 0 ∞,( )⊂ ∆ 0 ∞,( )⊂



1 Tutorial

1-54

3 , where  and  are stable and 
minimum phase (i.e., no poles or zeros in the right-half complex s-plane). 

Note that the classical Popov multiplier  is in M. It can be shown 
that the diagonal scaling D(s) used in evaluating the complex structured 
singular value is equivalent to using real diagonal multipliers 

; that is, . Thus, the 
case of mixed real and complex uncertainty is handled in the multiplier 
optimization framework by simply imposing the additional restriction that the 
multipliers corresponding to each complex uncertainty be real. The functions 
muopt and ssv invoke a simple nonlinear programming routine to compute the 
optimal multiplier. The optimization is both smooth and convex, so global 
convergence of the algorithm is assured.

To find such a multiplier, one needs to invoke a nonlinear programming 
technique, which is beyond this tutorial (see muopt in the reference section for 
more details).

Real KM Synthesis 
After understanding the analysis approach, one can formulate and solve the 
real KM synthesis problem as follows (see Figure 1-25, Real KM Synthesis):

Find the greatest real number γ such that for some optimal generalized Popov 
multiplier M(s) the infinity norm of the cost function  is less than or equal 
to one, i.e.

M s( ) M2= s–( ) T– M1 s( ) M2
T– s–( )  M1, s( ) M1

* s( )

1 qs+ 0=

M jω( ) M∗= jω( ) D∗= jω( )D jω( ) M1 jω( ) M2= jω( ) D= jω( )

T
ỹ1
˜ ũ1˜

max
M∗2( ) 1–

M1 M∈ γ,

T
ỹ1˜ ũ1˜ ∞

1≤
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Figure 1-25:  Real KM Synthesis

A possible iterative procedure for solving the real KM control synthesis problem 
is listed as follows (see Figure 1-25, Real KM Synthesis): 

1 Solve the conventional H∞ optimal control problem of finding the maximal γ 
such that .

2 Compute SSV to get the regular diagonal scaling D(s). Initialize 
. 

3 Apply the sectf function to transform the original sector(–1, 1) to sector (0, 
∞). 

4 Solve the convex optimization problem of computing an improved X(s2) and 
Y(s2) to maximize the margin of  positive definiteness of the 
Hermitian part of, thereby ensuring that the inverse transformed  is 
strictly less than one with some margin so that γ can be further increased. 

5 Remove F(s) from  and let  with the optimal multiplier 
absorbed in, go back to step 1 for a larger γ.
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The foregoing real KM synthesis procedure is not optimal and has not been 
automated in the Robust Control Toolbox. Of course, like complex µ synthesis, 
it is only a suboptimal procedure, and many possibly more effective variants of 
the procedure can be conceived. We only mention this to provide some 
indication of what is possible—and of what future developments are likely to 
emerge as the theory of robust control advances.
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Case Studies
In this section, several design case studies using H2, H∞ and µ synthesis 
techniques are illustrated. Most of the designs are also included in a demo 
program rctdemo.

Classical Loop-Shaping vs. H∞ Synthesis
Given a plant G(s) which is 2nd order with damping 0.05 at 20 rad/sec, find a 
controller to meet frequency response Bode plot specification depicted by the 
solid line in Figure 1-26, Second Order Open-Loop Plant (z: 0.05, 0.5) and the 
L (s) Spec: Below 50 rad/sec we wish to have the compensated loop transfer 
function singular values above the solid line for good disturbance attenuation. 
Above 200 rad/sec we wish to have the singualar values below the solid line for 
good stability margin.

Figure 1-26:  Second Order Open-Loop Plant (ζ: 0.05, 0.5) and the L (s) Spec

A classical design might be decomposed into the following (see Figure 1-27, 
Classical Loop-Shaping Block Diagram): 
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1 Rate feedback to improve damping. 

2 Design high frequency (phase margin, BW, roll-off, etc.). 

3 Design low frequency (DC gain, disturbance rejection, etc.).

Figure 1-27:  Classical Loop-Shaping Block Diagram

The classical result is shown in Figure 1-28, Classical Loop Shaping. Now, let’s 
see how H∞approaches the problem.

PLANTLEAD-LAG

(s+2)(s+599)

235(s+20)(s+40)

K s

RATE FEEDBACK: K = 28

(0.05 @ 20 r/s)
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Figure 1-28:  Classical Loop Shaping

H∞ Problem Formulation
We solve the so-called H∞ small-gain problem using the numerically robust 
descriptor 2-Riccati formulae of [42]. In our example, the frequency domain 
specification can be represented by the two weights 

as shown (for γ=1) in Figure 1-29, H• Weighting Strategy for Second Order 
Problem.

The results are shown in Figure 1-30, H• Results for Second Order System for 
several different γ’s. Clearly, in the limit (as γ increases to the optimal value γ 
= 3.16) the cost function becomes “all-pass”. The parameter γ of W1is the only 
parameter on which we iterate for design; the Robust Control Toolbox 
script-file hinfopt.m automates this iteration.
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Figure 1-29:  H∞ Weighting Strategy for Second Order Problem
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Figure 1-30:  H∞ Results for Second Order System 

To do such an H∞ control design with the Robust Control Toolbox is relatively 
simple:

nug = 400; dng = [1 2 400]; 
[ag,bg,cg,dg] = tf2ss(nug,dng); 
ssg = mksys(ag,bg,cg,dg); 
w1 = [2.5e-5 1.e-2 1;0.01*[4.e-2 4.e-1 1]]; 
w2 = [ ]; w3 = [1 0 0;0 0 40000]; 
TSS = augtf(ssg,w1,w2,w3); 
[ssf,sscl] = hinf(TSS);
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Table 1-4,  shows the output which appears on the screen for a successful run 
of hinf.m. This corresponds to the computation of the H∞ control law for γ = 1.

To compute that optimal H∞ control law, you would replace 
[ssf,sscl] = hinf(TSS); with

 [rhoopt,ssf,sscl] = hinfopt(TSS,1);

Table 1-4:  

 << H-inf Optimal Control Synthesis >>
 
            Computing the 4-block H-inf optimal controller 
          using the S-L-C loop-shifting/descriptor formulae 
  
     Solving for the H-inf controller F(s) using U(s) = 0 (default)
     Solving Riccati equations and performing H-infinity
     existence tests:
        1.  Is D11 small enough?                       OK
        2.  Solving state-feedback (P) Riccati ...
             a.  No Hamiltonian jw-axis roots?         OK
             b.  A-B2*F stable (P >= 0)?               OK
        3.  Solving output-injection (S) Riccati ...
             a.  No Hamiltonian jw-axis roots?         OK
             b.  A-G*C2 stable (S >= 0)?               OK
        4.  max eig(P*S) < 1 ?                         OK
    -------------------------------------------------------
       all tests passed -- computing H-inf controller ...
                         DONE!!!
    -------------------------------------------------------
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Table 1-5,  shows the output which appears on the screen for the result of 
γ-iteration.

Fighter H2 & H∞ Design Example 

Plant Description 
The longitudinal dynamics of an aircraft trimmed at 25000 ft and 0.9 Mach are 
unstable and have two right half plane phugoid modes. The linear model has 
state-space realization  where

Table 1-5:  

 
                   << H-Infinity Optimal Control Synthesis >>
 
  No     Gamma    D11<=1   P-Exist   P>=0   S-Exist   S>=0   lam(PS)<1    C.L.
 ------------------------------------------------------------------------------
   1 1.0000e+000    OK       OK       OK      OK       OK        OK       STAB
   2 2.0000e+000    OK       OK       OK      OK       OK        OK       STAB
   3 4.0000e+000    OK       OK      FAIL     OK       OK        OK       UNST
   4 3.0000e+000    OK       OK       OK      OK       OK        OK       STAB
   5 3.5000e+000    OK       OK      FAIL     OK       OK        OK       UNST
   6 3.2500e+000    OK       OK      FAIL     OK       OK        OK       UNST
   7 3.1250e+000    OK       OK       OK      OK       OK        OK       STAB
   8 3.1875e+000    OK       OK      FAIL     OK       OK        OK       UNST
   9 3.1562e+000    OK       OK       OK      OK       OK        OK       STAB
 
      Iteration no. 9 is your best answer under the tolerance:   0.0100 .

G s( ) C Is A–( ) 1– B=
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 :=

The control variables are elevon and canard actuators (δe and δc). The output 
variables are angle of attack (α) and attitude angle (θ). 

A
C

 B
D

0.0226– 36.6170– 18.8970– 32.0900– 3.2509 0.7626– 0 0
0.0001 1.8997– 0.9831 0.0007– 0.1708– 0.0050– 0 0
0.0123 11.7200 2.6316– 0.0009 31.6040– 22.3960 0 0

0 0 1.0000 0 0 0 0 0
0 0 0 0 30.0000– 0 30 0
0 0 0 0 0 30.0000– 0 30
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
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This fighter model is the same as that in [29, 34] (see Figure 1-31, Aircraft 
Configuration and Vertical Plane Geometry).

Figure 1-31:  Aircraft Configuration and Vertical Plane Geometry

Design Specifications
The singular value design specifications are:

1 Robustness Spec.: –40 db/decade roll-off and at least –20 db at 100 rad/sec

2 Performance Spec.: Minimize the sensitivity function as much as possible.

Design Procedure

1 Augment the plant G(s) with weighting functions W1(s) and W3(s) (design 
specifications) to form an “augmented plant” P(s) as shown in Figure 1-19, 
Weighted Mixed Sensitivity Problem. Then, find a state-space realization of 
P(s): 
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a Sensitivity function S(s) specification: 

γ is 1 for the first try, then can be increased or decreased accordingly later. 

b Complementary sensitivity function (I – S) specification: 

where r = 0.5msec is selected such that both channels are penalized 
equally up to  rad/sec. Note that because W3(s) is an improper 
transfer function (i.e., has more zeros than poles), it cannot be realized in 
state-space form. But, W3(s)G(s) is proper and, hence, W3(s)G(s) has a 
state-space realization. This ensures that the D12 matrix of the 
augmented plant P(s) is full rank as required by hinf and linf [35]. 
(Another way to ensure a full rank would be to include a small third 
weight  – see the documentation for augtf). Because W3(s) 
has no state-space realization, the M-file augtf can be directly employed 
here [34]. 

2 Find a stabilizing controller F(s) such that the infinity norm of transfer 
function  is minimized and is less than or equal to one (see Figure 1-19, 
Weighted Mixed Sensitivity Problem). We will start with H2 synthesis first 
then apply H∞ to see the actual design limit (use h2lqg, hinf). 

3 The  singular value Bode plot associated with each design will indicate 
how close the design is to the specifications. For most design problems, you 
need to iterate on the parameter γ in step 1 several times until a suitable 
design is obtained. The Robust Control Toolbox function hinfopt automates 
this iteration. 

W1 s( ): γ=
s 100+( )

100s 1+( )
---------------------------

0

0
s 100+( )

100s 1+( )
---------------------------

W3 s( )
s2

1000
-------------

0

0

s2 rs 1+( )
1000

--------------------------
=

1 r⁄

W2 s( ) εI=

Ty1u1

Ty1u1
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Result 
The results are summarized in Figures 1-32 through 1-34.

Figure 1-32:  Cost Function 

As shown in Figure 1-32, Cost Function, the cost function gets pushed to the 
“all-pass limit” (i.e., to 0 db), the sensitivity function S gets pushed down more 
and more, consequently the complementary sensitivity function T approaches 
to its associated weighting function . 

The final H∞ controller is stable and has 8 states which is the same as the 
augmented plant.

A complete flight control design case study for a supermaneuverable fighter 
flying the Herbst maneuver has been documented in [7]. A fixed 8-state 
H∞ controller not only stabilizes the entire maneuver, but also maintains 
“robust performance” throughout in the presence of all the anticipated 
structured, unstructured certainties, nonlinearities. 
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Large Space Structure H∞ Design Example
This design example is taken from [38, 43].

Figure 1-33:  Sensitivity Function and W1
-1 Weighting 

Plant Description
The large space structure (LSS) model was generated by the NASTRAN finite 
element program by TRW Space Technology Group. The model consists of 58 
vibrational modes with frequencies ranging from 0.4 Hz to 477 Hz. The 
damping ratio is 0.3 for the first two modes and 0.002 for the rest of the modes. 
The structure is controlled by 18 actuators commanded by one central 
computer with a sampling frequency of 3000 Hz. The actuators are grouped in 
three locations: 6 are at the primary mirror, 6 at the secondary mirror, and 6 
on structural members as shown in Figure 1-35, Large space structure.. 
Twelve disturbances are acting on the top and the bottom of the structure to 
simulate the real environmental vibration source. There are 20 sensors located 
at various locations in the structure. The most important sensors are the two 
Line-Of-Sight (LOS) sensors as indicated on the singular value Bode plot of the 
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open-loop plant shown in the Reference section. The remaining 18 sensors are 
collocated with the 18 control actuators.

Figure 1-34:  Complementary Sensitivity Function and W3
-1 

This leads to a state-space representation of the form

where , and 

Design Specifications
The LSS design specification requires the LOS error to be attenuated at least 
100:1 at frequencies from 0 to 15 Hz after the feedback control loop is closed. 
Allowing for a 30 db per decade roll-off beyond 15 Hz places the control loop 
bandwidth of roughly 300 Hz (  rad/sec). In terms of inequalities to be 
satisfied by the open-loop singular value Bode plot, these specifications are as 
depicted in Figure 1-36, Singular Value Specifications (Weighting Functions). 
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For our H∞ synthesis, these specification lead to the following weighting 
functions (note that they satisfy inequality (5)):

1 Robustness Spec.: –20 db/decade roll-off 2000 above rad/sec:

Figure 1-35:  Large space structure.

2 Performance Spec.: Minimize the sensitivity function.
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where in our design γ goes from one to 1.5. As with the fighter example, we use 
the trick of “absorbing” the improper weight W3 into the strictly proper plant 
G(s) so that the augmented plant has a non-zero D12 matrix, so that the 
resultant control law will be realizable in the required state-space form.

Figure 1-36:  Singular Value Specifications (Weighting Functions)

Control Actions 
Our design strategy for the LSS’s LOS loops is as follows: 

1 Use collocated rate feedback to damp out the structural modes (inner loops) 
and to make it possible to use the six primary mirror actuators to control the 
two LOS outputs (outer loops). 

2 Use model reduction (aiming at a 4-state reduced order model from the 
116-state original plant model). 

3 Augment the plant with W1 and W3 as above, then use the H∞ control design 
method to increase the system bandwidth and to push down the sensitivity. 
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4 Digitize the MIMO control law for implementation using bilin to compute 
the “shifted Tustin transform” of the controller.

Model Reduction
The model reduction algorithms in the toolbox (bstschmr, slowfast, ohklmr, 
obalreal) were used to find a reduced 4-state model that satisfies the 
“robustness criterion” (see “The Robust Control Problem” on page 1-10). The 
4-state approximation of the plant with “square-down” filter is 

 where

After augmentation with W1 and W3, the reduced plant model has eight states. 

Results 
The H∞ controller achieves the specifications in 2 iterations on the parameter 
γ (Gam). The results are shown in Figures 1-37 to 1-39.

G s( ) C Is A–( ) 1– B=

A

0.990– 0.0005 0.4899 1.9219
0.0009 0.9876– 1.9010 0.4918–

04.961– 1.9005– 311.7030– 4.9716
1.9215– 0.4907 7.7879– 398.3118–

= ; B

0.7827 0.6140–

0.6130 0.7826
0.7835 0.5960
0.6069 0.7878–

=

C 0.7829 0.6128 0.7816– 0.6061–

0.6144– 0.7820 0.5984– 0.7884
=
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Figure 1-37:  Cost Function
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The final H∞ controller is stable and has 8 states.

Figure 1-38:  Sensitivity Function and Weighting

H∞ Synthesis for a Double-Integrator Plant
A class of plants that is often encountered in modern control applications 
consists of those containing a double-integrator, for example:

• Rigid body dynamics of a spacecraft ignoring structural effects. 

• Laser pointing device mounted on a shaft controlled by motor.

Regardless of the specific application, a double-integrator plant can be 
stabilized with a robust mixed sensitivity H∞ controller. However, one special 
feature of the H∞ mixed sensitivity approach prevents us from meeting our goal 
easily:

The plant is not allowed to have jω-axis poles and/or zeros! 

But this does not mean we can not deal with the situation. The following design 
procedure circumvents the difficulty nicely:
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1 Transform the double-integrator plant  via a 

Figure 1-39:  Complementary Sensitivity Function and W 3 
–1

 

special bilinear transform 

where the circle points p2 = ∞, and p1 < 0. This is equivalent to simply shifting 
the -axis by p1 units to the left

2 Find a standard mixed-sensitivity H∞ controller  for the shifted 
problem. 
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3 Shift back the controller  to F(s) 

This -axis shifting also guarantees that the controller is proper.

Example: The rotational dynamics of a spacecraft rigid body can be modeled 
as

where J = 5700 denotes the polar moment of inertia. The design goal is to find 
a stabilizing controller F(s) that has a control loop bandwidth 10 rad/sec.

A mixed sensitivity problem can be formulated as follows

and the problem of -axis plant poles can be solved via axis shifting 
technique. But there are still two plant zeros at infinity, which are also on the 

-axis. This can be taken care via a clever W3 weighting

where the double-differentiator makes the plant full rank at infinity, but also 
serves as the complementary sensitivity weighting function and limits the 
control the system bandwidth to 10 rad/sec. The nonproper weight W3 can be 
absorbed into the plant via routine augtf.m.

The parameters of a second order W1 weighting serve as our “design knobs”

Suitable values for the parameters are

: DC gain of the filter (controls the disturbance rejection) 

F s̃( ) acp bcp, ccp, dcp,( )=

acp acp← p1*I.+

jω

G s( ) 1
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---------=

min
F s( )
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∞
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: high frequency gain (controls the response peak overshoot) 

: filter cross-over frequency 

: damping ratios of the corner frequencies.

The following commands lead to a robust mixed-sensitivity controller for the 
double integrator plant (or try dintdemo.m).

[ag,bg,cg,dg] = tf2ss(1/5700,[1 0 0]); 
% Shift the JW-Axis to the left by 0.1 unit: 
ag0 = ag + 0.1*eye(size(ag)); 
w2 = []; w3 = [1 0 0;0 0 100]; 
beta = 100; alfa = 2/3; w1c = 3; 
zeta1=0.7; zeta2=0.7;
w1 =[beta*[alfa 2*zeta1*w1c*sqrt(alfa) w1c*w1c]; 
[beta 2*zeta2*w1c*sqrt(beta) w1c*w1c]]; 
ssg = mksys(ag0,bg,cg,dg); 
TSS = augtf(ssg,w1,w2,w3); 
[sscp,sscl,hinfo] = hinf(TSS); 
[acp,bcp,ccp,dcp] = branch(sscp); 
[acl,bcl,ccl,dcl] = branch(sscl); 
% Shift the JW-Axis to the right by 0.1 unit: 
acp = acp - 0.1*eye(size(acp)); 
dinteva % computing the time and frequency responses 
dintplt % plotting

The resulting plot shown in Figure 1-40, Results of H• Synthesis for 
Double-Integrator Plant

α 2
3
---=

ωc 3=

ζ1 ζ2, 0.7=
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Figure 1-40:  Results of H∞ Synthesis for Double-Integrator Plant

Bilinear Transform + H∞ on ACC Benchmark 
Problem
The benchmark problem described by Wie and Bernstein [49] (see Figure 1-41, 
The Benchmark Problem) was solved via the bilinear transform and 
H∞technique.

Figure 1-41:  The Benchmark Problem
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where the masses m1, m2, and the spring constant k take the value 1.0 as 
nominal, but can be uncertain. In addition, the measurement variable z (picked 
up by the sensor) is not collocated with the actuator signal u, which introduces 
extra phase lag into the system and makes it much harder to control. If we were 
fortunate enough to have a collocated actuator/sensor set-up, the system would 
have been “passive” (i.e., not more than  phase shift at any frequency) 
and therefore guaranteed stable with at least 90deg phase margin for any pure 
gain negative feedback. However, this is not the case and the plant actually has 
very large phase lags—this is why the problem is challenging.

Figure 1-42:  The Robust Control Problem Formulation
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2 Has an impulse response settling time (Ts) of the second mass 
approximately 15 sec, and 

3 Has reasonable control energy.

We form the problem as shown in Figure 1-42, The Robust Control Problem 
Formulation. The nominal value of the spring constant k was set to 1.25 and 
the uncertainty  is scaled by a parameter γ. In parallel, we penalize 
the control signal by another parameter ρ. Then, we formulate an H∞ 
small-gain problem.

The objective here is to maximum the robustness level γ with minimum control 
energy 1/ρ. As control energy is allowed to increase by decreasing 1/ρ, the 
maximal achievable robustness level γ increases. The trade-off is shown 
inFigure 1-43, Trade-off Between Robustness and Control Energy 

Figure 1-43:  Trade-off Between Robustness and Control Energy 
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The system settling time Ts was controlled naturally by the bilinear transform 
parameter p1. For this design, the parameter p1 of bilinear transform was 
selected via a simple rule-of-thumb in classical control [8]

where Tsettling = 15 sec and the real part of the dominant closed-loop poles is 
. Parameter p2 = –100 was selected to have large magnitude 

(i.e., much greater than the control bandwidth).

Figures 1-44 through 1-46 show a design with  and 
. As indicated, this design has met all three requirements. 

Notice that γ = 0 in this case is all we need to satisfy the robustness require 
“real” parameter uncertainty. 

Figure 1-44:  Impulse Response (Settling Time  Seconds)
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variations subject to a settling time constraint Tsettling = 15 sec. This falls 
naturally into the framework of µ synthesis.

First, a direct H∞ design was formulated with additive uncertainties in M1, M2 
and k pulled out and penalized as an H∞ Small-Gain problem. Using the 
γ-iteration procedure hinfopt, an “optimal” H∞ controller was found. The 
structured-singular-value routine ssv then computed the cost function (MSM) 
in -plane as well as the 3 × 3 diagonal scaling D(s) (see Figures 1-47 and 
1-48). The second step is to curve-fit the diagonal scaling D(s) using the toolbox 
function fitd and absorb it into the plant for another H∞ design iteration (see 
Figure 1-48, Diagonal Scaling D(s) and Curve Fitting for the curve-fitting). The 
design was pushed to the limit after one cycle µ of synthesis, i.e., no more 
improvement can be squeezed out of the problem formulation.

Figure 1-45:  Impulse Response (Settling Time  Seconds)

Figure 1-49, Impulse Response (Settling Time Seconds) shows the impulse 
response excited at Mass 1. The design parameters were chosen to be p1 = –0.4 
and p2 = –100. The settling time specification of Mass 2 is met (≈ 15 sec). The 
system is robust against ±23% simultaneous plant variations in (M1, M2, k) as 
well as high frequency sensor noise (0.001sin(100t)).
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Figure 1-46:  Controller and Loop Transfer Function

Figure 1-47:  Structured Singular Values (2 iterations)
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Figure 1-48:  Diagonal Scaling D(s) and Curve Fitting

Figure 1-49:  Impulse Response (Settling Time  Seconds)
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Model Reduction for Robust Control
In the design of controllers for complicated systems, model reduction arises in 
several places:

1 It is desirable to simplify the best available model in light of the purpose to 
which the model is to be used — namely, to design a control system to meet 
certain specifications. 

2 In using certain design methods (including the H∞ method implemented in 
linf), fictitious unobservable/uncontrollable states are generated by the 
algorithms which must be stripped away by a reliable model reduction 
algorithm. 

3 Finally, if a modern control method such as LQG or H∞ (see h2lqg or hinf) 
is employed for which the complexity of the control law is not explicitly 
constrained, the order of the resultant control law is likely to be considerably 
greater than is truly needed. A good model reduction algorithm applied to 
the control law can sometimes significantly reduce control law complexity 
with little change in control system performance.

However, a good model reduction routine has to be both numerically robust and 
be able to address the closed-loop “robustness” issues.

The Robust Control Toolbox model reduction routines schmr, ohklmr and 
reschmr all possess the following special features:

1 They bypass the ill-conditioned balancing transformation balreal, hence, 
they can easily deal with the “nonminimal” systems. 

2 They employ Schur decomposition to robustly compute the orthogonal bases 
for eigenspaces required in intermediate steps. 

3 They have an H∞-norm error bound. The infinity norm of either the relative 
error or the absolute error of the reduced order model is bounded by a 
precomputable positive real number for all frequency.

Achievable Bandwidth vs. H∞ Modeling Error 
 In modeling, the validity of a given model always depends on the intended use 
for the model. In doing model reduction for control purposes, singular value 
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Bode plots of the reduced plant model and the model’s error provide the 
information needed to assure a given reduced model is sufficiently accurate to 
be used in the design of a control system with a prescribed bandwidth. Using 
the H∞ error-bound, it is possible to associate a “robust frequency”  
with a reduced model such that the model may be reliably used for any control 
design whose bandwidth does not exceed the robust frequency. The remainder 
of this section elaborates on this point.

Additive Model Reduction
Let  be a “true” plant transfer function matrix and its 
reduced model, respectively. Then, the additive modeling error is defined as 
(see Figure 1-50, Additive Plant Uncertainty)

Figure 1-50:  Additive Plant Uncertainty

Definition: Given G,  and  as above, the additive robust frequency is

Loosely speaking, the bandwidth  of a control system is the frequency range 
where the loop transfer function is “big”, i.e.,
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significance of the robust frequency in the context of model reduction is that, if 
 were the only information available about the modeling error, then 

the robust frequency  is an upper bound on the bandwidth of any 
multivariable control system that can be designed without causing the 
sufficient condition for stability

(1-8)

to be violated at some frequency within the bandwidth. Notice that for , 
you have

Thus you have the following Additive Error robustness Criterion: [38] 

If  for  and if  is open-loop stable, then the closed-loop 
system will not be destabilized by  provided that the control bandwidth is 
less than . (Note: This is only sufficient, not necessary.) 

Of course, since the bandwidth is only defined in terms of the fuzzy “much 
greater” ( ) inequality, this is not a theorem in a rigorous mathematical sense.

The implication is that to achieve the bandwidth of, say 2000 rad/sec, it suffices 
to use any reduced model whose robustness frequency  > 2000 rad/sec. Note 
that our “robustness criterion” requires that G be square; this assumption 
cannot be relaxed. Accordingly, the nonsquare plant must be “squared down” 
with a suitable pre-compensator before we can apply the “robustness criterion”.

Additive Model Reduction Methods 
Four methods are available to do the additive error model reduction:

1 Ordered balanced realization (obalreal). 

2 Truncated balanced model reduction (balmr). 

3 Schur balanced model reduction (schmr). 
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4 Optimal Hankel approximation without balancing (ohklmr).

The regular balanced realization (obalreal) is known to be ill-conditioned 
when the model is nonminimal. The popular truncated version of square-root 
balancing (balmr) can be ill-conditioned when the system has some modes that 
are strongly controllable but weakly observable, or vice versa. The most 
numerically robust methods are schmr and ohklmr. All four methods are 
discussed further in the Reference section.

Each of the above methods possess the same infinity-norm error bound for a 
k-th order reduced order model  of an m-th order system :

where , called the Hankel singular values, are computed from the 
observability-reachability grammians of  as described in the Reference 
section under obalreal.

Multiplicative Model Reduction 

The quantity in equation (9) is a crude measure of the relative 

(multiplicative) error of a plant G defined as (see Figure 1-51, Multiplicative 
Plant Uncertainty)

A slightly less conservative sufficient condition for stability than (9) is

(1-9)
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Loosely speaking, the bandwidth  of a control system is the frequency range 
where the loop transfer function is “big”, i.e.,

Figure 1-51:  Multiplicative Plant Uncertainty 

The significance of the robust frequency in the context of model reduction is 
that, if  were the only information available about the modeling 
error, then the robust frequency  is an upper bound on the bandwidth of 
any multivariable control system that can be designed without causing the 
sufficient condition for stability to be violated at any frequency within the 
bandwidth. Notice that for  where the inequality (1-9) is satisfied, you 
have

(1-10)

Thus when a bound on the relative error  is available, you can 
strengthen the Additive Error Robustness Criterion to the following 
Multiplicative Error Robustness Criterion:

If  for  and if  is open-loop stable, then the closed-loop 
system will not be destabilized by  provided that the control bandwidth is 
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While (1-10) implies that the size of the relative error (viz., ) must be less 
than one throughout the specified control loop bandwidth (viz., ), it is 
interesting to note that it is not very important how much less than one the 
relative error bound is. It makes little difference whether the size of the 
relative error is 0.5 or 0.0005; it only matters that the relative error is less than 
one.

 Note that you can easily show using the properties of singular values that

Hence, you always have that ; that is, the multiplicative error 
robustness criterion is always less conservative than the additive error 
robustness 

Multiplicative Model Reduction Method 
A relevant result of balanced stochastic truncation (BST) combined with 
relative error bound (REM) has achieved the “optimal” solution for robust 
model reduction. Reschmr implements the Schur version of the BST-REM 
theory and enjoys the following “relative-error” and “multiplicative-error” 
bounds [47, 48]:

and

where

(1-11)
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Example: Let’s compare the model reduction methods via the plant

If we truncate the system to three states, the results show that the Schur-BST 
algorithm (bstschmr) is much superior to optimal Hankel model reduction 
(ohklmr) and Schur balanced truncation (balmr, schmr) — see Figure 1-52, 
Schur BST-REM vs. Schur BT and Hankel. The relative error bound (1-11) 
equals 20.781.

G s( ) 0.05 s7 801s6 1024+ s5 599+ s4 451+ s3 119+ s2 49+ s 5.55++( )

s7 12.6+ s6 53.48+ s5 90.94+ s4 71.83+ s3 27.22+ s2 4.75+ s 0.3+
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Figure 1-52:  Schur BST-REM vs. Schur BT and Hankel
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Sampled-Data Robust Control
Nowadays, sampled-data control systems dominate the control industry. The 
Robust Control Toolbox includes the function bilin to support “singular-value 
loop shaping” and “robust model reduction” techniques for sampled-data 
control systems.

The frequency-domain bilinear transform

plays a role of bridging the gap between continuous H∞ control and H∞ model 
reduction theories and their discrete counterparts. The bilinear transform, 
which includes the popular Tustin transform

as a special case, can be used to transform discrete systems into equivalent 
continuous systems and back again. A key property of the Tustin transform is 
that it preserves the H∞ norm.

This toolbox implements a multivariable state-space version of the bilinear 
transform in bilin as [35]

Robust Control Synthesis
For stable discrete-time transfer functions matrices , 

, the H2-norm and the H∞-norm are defined in terms of the 
frequency-dependent singular values of :
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 Discrete H2-norm

Discrete H∞-norm

To design a digital H∞ control system, you can approach it in either of the 
following two ways (see Figure 1-53, Sample-Data Robust Control Synthesis): 

1 Design a control law F(s) in the s-domain using the synthesis methods 
supported by this toolbox, then map the controller into the z-plane via the 
Tustin transform

using bilin. Provided that the sampling frequency is several times higher 
than the design bandwidth, the resulting sampled-data system will perform 
about the same as the continuous s-plane design. 

2 Add the zero-order-hold and sampler to the sampled plant G(z), then map 
G(z) into the w-plane and proceed with the design methods in the toolbox as 
if it were in the s-plane (watch out for the extra nonminimum phase zero 
added by the Z.O.H). After the design is done, map the controller back into 
the z-plane via the inverse w-transform (use bilin). Then the controller can 
be implemented in the z-domain directly. The H∞ norm remains invariant 
under the Tustin transform, so no degradation of H∞ performance measures 
results in this case.

The Robust Control Toolbox functions dhinf and dhinfopt automate this 
procedure.

A discussion of how the function bilin was used in the design of a 
sampled-data H∞ controller for a large space structure may be found in [38, 43].
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Figure 1-53:  Sample-Data Robust Control Synthesis 

The bilinear transform (bilin) can be used equally well in “classical” digital 
control systems design, which we will leave to the users.
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Miscellaneous Algorithms
A number of algorithms are worth mentioning here:

1 Ordered Schur Decomposition (rschur, cschur). 

2 Descriptor to state-space form (des2ss) model conversion. 

3 Sector transformation (sectf).

Ordered Schur Decomposition
Schur decomposition plays a crucial role in numerical linear algebra, because 
of its special way of orthogonally triangularizing a square -dimensional real 
matrix as:

On the main diagonal are the eigenvalues of matrix A which may be ordered, 
e.g., by real part or by modulus in ascending or descending order (six types of 
ordering are available in cschur). Moreover, for any integer , the first 
k columns of the U matrix form an orthonormal basis for the span of the 
eigenvectors associated with the first k eigenvalues . Comparing to the 
regular eigenspace decomposition (eig), this method is numerically much more 
robust, especially when A is near to a matrix having Jordan blocks of size 
greater than one.

red Schur decomposition arises as a subroutine used by many of the functions 
in the Robust Control Toolbox:

1 Stable/unstable projection (stabproj). 

2 Slow/fast decomposition (slowfast). 

3 Algebraic Riccati solver (aresolv, lqrc). 

4 Model reduction via Schur balancing (schmr). 

UTAU T

λ11 … … ∗
0 λ22 … ∗

0 … 0 λnn

= = ............

1 k≤ n<

11 …, λk,



Miscellaneous Algorithms

1-97

5 Model reduction via Schur stochastic balancing (bstschml). 

6 Optimal control synthesis (h2lqg, hinf, hinfopt).

Descriptor System
In “modern” robust control computations, the descriptor system representation

has become increasingly important because it enables you to circumvent 
numerical ill-conditioning problems that are often unavoidable when you 
employ the less flexible state-space representation where E = I. However, even 
though the descriptor form may be preferable for numerical robustness inside 
algorithms, most users still prefer to have the final answer in state-space form. 
The function des2ss provides the conversion from descriptor form to 
state-space form. You can say that in the next few years, descriptor system type 
of operations will arise more and more often in control theory derivations and 
conceptual problem formulations.

Several functions in the Robust Control Toolbox make use of a descriptor form 
system representation internally then make use of des2ss as a final step to 
return answers in the more familiar state-space form. For example:

1 Optimal Hankel approximation without balancing (ohklmr). 

2 The “2-Riccati” H∞ control solution (hinf, hinfopt); these routines use 
des2ss to convert the final all-solution controller from the descriptor given 
in [42] to state-space form.

Sector Transform
In robust control theory, conic sector theory plays a key role in transforming 
one problem to another [50]. The function sectf enables you to convert from 
sector[a, b] to sector[0, ∞], or to sector[–1, 1], etc. These kinds of transformations 
can convert a positive real problem into a small-gain problem, or vice versa [36]. 
The small-gain problem can then be readily solved using the toolbox M-files 
hinf, linf, or h2lqg, etc.

Ex· Ax= Bu+

y Cx= Du+
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SVD System Realization 
A system identification method proposed by Kung in 1978 [21] is coded in 
function imp2ss. This function takes a discrete impulse response and forms the 
Hankel matrix Γ. Based on singular value decomposition of Γ, a discrete 
state-space realization can be created. Details are documented in the reference 
section under imp2ss. 
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Closing Remarks
This toolbox is the result of many years of research work, evolving into its 
present form as the authors were involved in several aerospace and industrial 
design studies using modern theories such as H∞, µ synthesis and balanced 
stochastic truncation model reduction for which commercial software did not 
previously exist. At the core of the toolbox are the robust model reduction 
algorithms, the structured singular values routines and the singular value loop 
shaping synthesis methods, e.g., loop transfer recovery, H2 synthesis and H∞ 

synthesis and curve fitting routines like fitd and fitgain which enable you to 
extend the H∞ methodology to do µ synthesis.

We have tried our best to ensure that the algorithms are numerically robust 
and are based on the best theory available. However, as with any other 
software package, mistakes and oversights are possible. We intend to update 
this toolbox periodically and welcome user feedback.

There are a number of people to whom we are deeply grateful. David Limebeer 
and Michael Green at Imperial College and Keith Glover at Cambridge 
University, and Wes Wang at MathWorks, Inc., and J. C. (Jerry) Juang at 
National Cheng Kung University we thank for their encouragement and 
suggestions. Jack Little at MathWorks, Inc., we thank for his foresight and 
patience while waiting to see this toolbox released. 

For technical questions or suggestions, we can be reached at 

University of Southern California 
Dept. of Electrical Engineering — Systems 
University Park 
Los Angeles, CA 90089-2563 
E-mail: richiang@ampere.usc.edu, msafonov@usc.edu
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Reference
This section contains detailed descriptions of the main functions in the Robust 
Control Toolbox. It begins with a listing of entries grouped by subject area and 
continues with the reference entries in alphabetical order. Information is also 
available through the on-line help facility.

For easy use, most functions have several default arguments. In a reference 
entry under Synopsis, we first list the function with all necessary input 
arguments and then with all possible input arguments. The functions can be 
used with any number of arguments between these extremes, the rule being 
that missing, trailing arguments are given default values, as defined in the 
manual.

As always in MATLAB, all output arguments of functions do not have to be 
specified, and are then not returned to the user. For functions with several 
output arguments, missing arguments are as a rule not computed in order to 
save time.
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Optional System Data Structure

branch Extract branches from a tree

graft Add a branch to a tree

issystem Identify a system variable

istree Identify a tree variable

mksys Build tree variable for system

tree Build a tree variable

vrsys Returns standard system variable names

Model Building

augss, augtf Plant augmentation (weights on ‘e’, ‘u’ and ‘y’)

interc General multivariable interconnected system
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Model Conversions

bilin Multivariable bilinear transform of frequency 
(s or z) — 7 options

des2ss Convert descriptor system to state-space via 
SVD

lftf Linear fractional transformation

sectf Sector transformation

stabproj Stable/antistable projection

slowfast Slow/fast decomposition

tfm2ss Convert transfer function matrix (MIMO) into 
state-space block-controller form

Utility

aresolv, daresolv Generalized continuous./discrete Riccati solver

riccond, driccond Continuous/discrete Riccati condition number

blkrsch Block ordered real Schur form via cschur

cschur Ordered complex Schur form via complex Givens 
rotation
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Multivariable Bode Plots

cgloci Continuous characteristic gain loci

dcgloci Discrete characteristic gain loci

dsigma Discrete singular-value Bode plot

muopt Multiplier scaling

osborne SSV upper bound via Osborne method

perron, psv Perron eigenstructure SSV

sigma Continuous singular-value Bode plot

ssv structured singular value Bode plot

Factorization Techniques

iofc Inner-outer factorization (column type)

iofr Inner-outer factorization (row type)

sfl Left spectral factorization

sfr Right spectral factorization
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Model Reduction Methods 

balmr Truncated balanced model reduction

bstschml, 
bstschmr

Relative error Schur model reduction

imp2ss Impulse response to state-space realization

obalreal Ordered balanced realization

ohkapp, 
ohklmr

Optimal Hankel minimum degree approximation

schmr Schur model reduction

Robust Control Synthesis Methods

h2lqg, dh2lqg Continuous/discrete H2 synthesis

hinf, dhinf, linf Continuous/discrete H∞ synthesis

hinfopt γ-iteration of H∞ synthesis

normhinf, normh2 H∞ and H2 norm

lqg LQG optimal control synthesis

ltru, ltry LQG loop transfer recovery

musyn, fitd, augd µ-synthesis

youla Youla parametrization
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Demonstration

accdemo Spring-mass benchmark problem

dintdemo H∞ design for double-integrator plant

hinfdemo H∞ & H2 design examples – fighter and large space 
structure

ltrdemo LQG/LTR design examples – fighter

mudemo, mudemo1 µ-synthesis examples

mrdemo Robust model reduction examples

rctdemo Robust Control Toolbox demo – main menu
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2aresolvPurpose Generalized continuous algebraic Riccati Solver.

Syntax [p1,p2,lamp,perr,wellposed,p] = aresolv(a,q,r)
[p1,p2,lamp,perr,wellposed,p] = aresolv(a,q,r,Type)

Description aresolv solves the continuous algebraic Riccati equation 

where P=p=p1/p2 is the solution for which the eigenvalues of A – RP have 
negative real parts. This solution exists and is unique provided that the 
associated Hamiltonian matrix has no -axis eigenvalues; otherwise, the flag 
wellposed is set to the string value ’FALSE’.

Two algorithms are available: 

Type = 'eigen' — eigenvector approach 

Type = 'Schur' — Schur vector approach

Type 'eigen' is selected by default, when the input argument Type is missing, 
provided that the associated Hamiltonian matrix is not defective (i.e., does not 
have a full set eigenvectors); otherwise the algorithm defaults to Type 'Schur'. 
If Type = 'Schur', then the Schur approach is taken directly.

The residual and closed loop eigenvalues are also returned in variables perr 
and lamp.

In game theory and H∞ applications, the weighting matrix R is usually 
indefinite. The program is coded to permit such cases.

Algorithm The eigenvector approach (Type = 'eigen') uses reig to find a real basis V1 for 
the stable eigenspace of the Hamiltonian H [1]

ATP P+ A PR– P Q+ 0=

jω

H A R–

Q– AT–
V= = Λ– 0

0 Λ
V 1–
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where  and

The first n columns (V1) of the matrix V that form the stable eigenspace of H 
also provide the desired solution of ARE:

where V21 = p2 and V11 = p1 respectively. This algorithm requires about 120n3 
flops.

The eigenvector approach can be numerically unstable when the Hamiltonian 
matrix is close to defective, as can occur some cases in which H is close to a 
matrix whose Jordan form has ones above its main diagonal. In this case, the 
matrix V11 will be ill-conditioned. However, the ill-conditioning of V11 is 
independent of the conditioning of the Riccati equation (ref. riccond, where six 
types of Riccati condition numbers are provided).

To circumvent the ill-conditioning problems associated with a defective 
Hamiltonian matrix, you can span the same stable eigenspace of Hamiltonian 
with Schur vectors [2]. In this approach the Hamiltonian H is orthogonally 
transformed into the ordered Schur form instead of modal form:

where eigenvalues of T11 are stable and those of T22 are unstable.

The orthogonal matrix U can be partitioned as 

where the first n column vectors span the same stable eigenspace as V1 matrix. 
It is proved in [2] that the desired solution of ARE is .

Λ diag= λ1 λ2, …, λn,( )

V V1  V2

V11 V12

V21 V22

= =

P V21= V11
1–

H U=
T11 T12

0 T22

UT

U
U11 U12

U21 U22

=

P U21U11
1–

=
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The Schur algorithm coded in aresolv first puts H in the ordered complex 
Schur form using cschur, then projects the complex basis into a real basis 
using the QR algorithm. The entire ordered Schur method takes about 75n3 
flops, which is less than the eigenvector approach.

However, the Schur method itself can also become numerically unstable, if the 
norm of certain matrices involved in the Riccati equation are much smaller 
than the norms of others [3]. Our experience has been that more often than not, 
the eigenvector method performs more reliably than the Schur method, with 
the notable exception of the case of a defective Hamiltonian mentioned above. 
In difficult cases in which both eigenvector and Schur methods produce a large 
residual error, Newton methods may be used to refine the result.

If A is stable, and weighting matrix Q is zero, P2 = 0 and P1 = I are returned 
without going through the eigenspace computations.

 If the sixth output P is not included, aresolv ignores its computation as well. 
This can avoid some possible singular cases occurring in computing the 
“optimal” H∞ controller. If P1 is singular or nearly so, the rank deficient P1 
matrix will be used to form the H∞ controller, but the null space of the 
descriptor is removed by des2ss at the final stage of the computation (see the 
reference pages des2ss and hinf for details). 

Limitations The Riccati equation is ill-posed if the Hamiltonian H has imaginary axis 
eigenvalues. In cases in which Q, R ≤ 0, it suffices for the system ((A, R, Q)) to 
be both stabilizable and detectable to avoid imaginary axis eigenvalues; in this 
case the unique stabilizing Riccati solution will be positive semidefinite. In any 
case, the output variable wellposed is returned with the value TRUE or FALSE 
to reflect the well-posedness of the problem.

See Also are, cschur, daresolv, lqrc, reig, riccond

References [1] J. E. Potter, “Matrix Quadratic Solutions,” SIAM J. Appl. Math., Vol. 14, pp. 
496-501, 1966.

[2] A. J. Laub, “A Schur Method for Solving Algebraic Riccati Equations,” IEEE 
Trans. Autom. Control, AC-24, pp. 913-921, 1979.

[3] P. Hr. Petkov, N. D. Christov, and M. M. Konstantinov, “On the Numerical 
Properties of Schur Approach for Solving the Matrix Riccati Equation,” 
Systems and Control Letters, 9, pp. 197-201, 1987.
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2augdPurpose Augment the two-port plant with diagonal scaling. 

Syntax [AD,BD1,BD2,CD1,CD2,DD11,DD12,DD21,DD22] = ... 
augd(a,b1,b2,c1,c2,d11,d12,d21,d22,ad,bd,cd,dd) 

[TSSD] = augd(TSS,ssd)

Description Augd augments the original two-port plant P(S) used in H∞ synthesis with the 
diagonal scaling matrix D(s) (see Figure 2-1, Augment with Diagonal Scaling.). 
ssd is a state-space realization of the optimal diagonal scaling that computes 
the structured singular value upper bound of P(s) 

The two-port plant P(s) after scaling becomes

Figure 2-1:  Augment with Diagonal Scaling.

See Also fitd, hinf, musyn, ssv

D s( )P s( )D s( ) 1– DP11D 1–

P21D 1–

DP12

P22
=

2
u

2
y

1
y1u -1

D

F

D
P
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2augss, augtfPurpose State-space or transfer function plant augmentation for use in weighted 
mixed-sensitivity H∞ and H2 design. 

Syntax [a,b1,b2,c1,c2,d11,d12,d21,d22] = ...
augss(ag,bg,…,aw1,bw1,…,aw2,bw2,…,aw3,bw3,…) 

[a,b1,b2,c1,c2,d11,d12,d21,d22] = ... 
augss(ag,bg,…,aw1,bw1,…,aw2,bw2,…,aw3,bw3,…,w3poly)

[a,b1,b2,c1,c2,d11,d12,d21,d22] = ...
augtf(ag,bg,cg,dg,w1,w2,w3)

[tss] = augss(ssg,ssw1,ssw2,ssw3,w3poly) 
[tss] = augtf(ssg,w1,w2,w3) 
[tss] = augss(ssg,ssw1,ssw2,ssw3)

augss computes a state-space model of an augmented plant P(s) with weighting 
functions W1(s), W2(s), and W3(s) penalizing the error signal, control signal and 
output signal respectively (see block diagram) so that the closed-loop transfer 
function matrix is the weighted mixed sensitivity

where S, R and T are given by

.

The matrices S(s) and T(s) are the sensitivity and complementary sensitivity, 
respectively

Ty1u1

W1S

W2R

W3T

∆=

S I GF+( ) 1–
=

R F I GF+( ) 1–
=

T GF I GF+( ) 1–
=
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Figure 2-2:  Plant Augmentation.

The transfer functions G(s), W1(s) and W3(s)G(s) must be proper, i.e., bounded 
as . However, W3(s) may be improper. Input data of augss are the 
state-space system matrices of G(s), W1(s), W2(s)and W3(s):

The possibly improper transfer function matrix

yue

AUGMENTED PLANT P(s)

W1

W 2

W 3G

F(s)

-

+
u
1

u

2

y

y

y

y

CONTROLLER

2

s ∞→

ssg :
Ag

Cg

Bg

Dg
= mksys= ag, bg, cg, dg( );

ssw1 :
AW1

CW1

BW1

DW1
mksys= = aw1 bw1 cw1 dw1, , ,( ) …; etc.

W3 s( ) CW3
= Is AW3

–( ) 1– BW3
DW3

Pn+ + sn … P1s P0+ + +
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is input to augss as 

If one of the weighting functions is absent, e.g., W2(s) = 0, then simply assign 
ssw2 = [ ]. 

augtf does the plant augmentation as well, except the weighting functions W1, 
W2 and W3 are input as diagonal transfer function matrices. The numerator 
and denominator of each diagonal entry of the transfer functions are entered 
as rows of the weighting matrix. For example, the weightings

used in the H∞fighter design presented in the Tutorial chapter are entered as

Algorithm The augmented plant P(s) produced by augss is

ssw3
AW3

CW3

BW3

DW3
mksys= = aw3 bw3 cw3 dw3, , ,( );

w3poly Pn …, P1, P0,[ ]=

W1 s( )

s 100+( )
100s 1+( )

--------------------------- 0

0 s 100+( )
100s 1+( )

---------------------------

= ; W2 [ ]= ; W3 s( )

s3

1000
------------- 0

0 s3 τs 1+( )
1000

--------------------------

=

W1

1 100
100 1

1 100
100 1

= ; W2 [ ]= ; W3

1 0 0 0
0 0 0 1000

tau 1 0 0
0 0 0 1000

;=

P s( )

W1 W1G–

0 W2

0 W3G

I G–

=
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with state-space realization

where

augtf calls augss internally after a series of transfer function to state-space 
transformations on W1, W2, and W3.

Limitations Note that if the augmented plant is to be used for H∞ synthesis via hinf or 
linf, then it is essential that the weights W1, W2, and W3 be selected so that 
the augmented plant has a “D12” matrix of full column rank. An easy way to 
ensure that this is the case is to choose a W2(s) with an invertible “D-matrix”, 
e.g.,  where ε is any non-zero number.

See Also h2lqg, hinf, hinfdemo, linf, linfdemo, dh2lqg, dhinf

P s( ) := 

A B1 B2

C1 D11 D12

C2 D21 D22

         =

AG 0 0 0 0 BG

BW1
CG– AW1

0 0 BW1
BW1

DG–

0 0 AW2
0 0 BW2

BW3
CG 0 0 AW3

0 BW3
DG

DW1
DG– CW1

0 0 DW1
DW1

DG–

0 0 CW2
0 0 DW2

C̃G DW3
CG+ 0 0 CW3

0 D̃G DW3
DG+

CG– 0 0 0 I DG–

C̃G P0= DG P1+ CGAG … Pn+ + CGAG
n BG

D̃G P0= DG P1+ CGBG … Pn+ + CGAG
n 1– BG

W2 s( ) ε= I
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2balmr, schmr Purpose Balanced model reduction via truncated and Schur methods.

Syntax [am,bm,cm,dm,totbnd,svh] = balmr(a,b,c,d,Type) 
[am,bm,cm,dm,totbnd,svh] = balmr(a,b,c,d,Type,aug)
[am,bm,cm,dm,totbnd,svh] = schmr(a,b,c,d,Type) 
[am,bm,cm,dm,totbnd,svh] = schmr(a,b,c,d,Type,aug) 
[ssm,totbnd,svh] = balmr(ss,Type,aug) 
[ssm,totbnd,svh] = schmr(ss,Type,aug)

Description Both balmr and schmr compute a kth order reduced model

of a possibly non-minimal and not necessarily stable, nth order system

such that 

The n-vector svh contains the Hankel singular values of the stable and 
antistable projections of G(jω), i.e., the square-roots of eigenvalues of their 
reachability and observability grammians.

 Three options are provided for both functions: 

1 Type = 1, aug = k, size of reduced order model. 

2 Type = 2, aug = tol, find a kth order reduced model such that the total 
error totbnd is less than tol. 

3 Type = 3, display svh and prompt for k. In this case, there is no need to 
assign a value for aug.

Gm s( ) Cm= Is Am+( ) 1– Bm Dm+

G s( ) C= Is A–( ) 1– B D+

G jω( ) Gm– jω( ) ∞ totbnd≤ ,

totbnd 2= svh

i k 1+=

n

∑ i( )
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Both balmr and schmr produce state-space realizations of the same transfer 
function Gm. The realization (Am, Bm, Cm, Dm) produced by balmr is balanced 
(see balreal or obalreal), whereas that produced by schmr algorithm is not. 
The schmr algorithm is numerically more robust than balmr and is thus to be 
preferred when the reduced model need not be balanced.

Algorithm Balmr and schmr employ the algorithms described in [3] for implementing the 
balanced truncation model reduction procedure of [2], but unlike the original 
Moore algorithm, these algorithms bypass the numerically delicate 
preliminary step of computing a balanced minimal realization of G(s).

Unstable systems are handled via the M-function stabproj which splits G(s) 
into the sum of stable and antistable parts.

See Also balreal, mrdemo, obalreal, ohklmr, bstschmr, bstschml

[1] A. J. Laub, M. T. Heath, C. C. Page, and R. C. Ward, “Computation of 
balancing transformations and other applications of simultaneous 
diagonalization algorithms,” IEEE Trans. on Automat. Contr., AC-32, pp. 
115-122, 1987.

[2] B. C. Moore, “Principal component analysis in linear systems: 
controllability, observability, and model reduction,” IEEE Trans. on Automat. 
Contr., AC-26, pp. 17-31, 1981.

[3] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model 
Reduction,” IEEE Trans. on Automat. Contr., vol. AC-34, no. 7, pp. 729-733, 
July 1989.
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2bilin Purpose Multivariable bilinear transform of frequency (s or z).

Syntax [ab,bb,cb,db] = bilin(a,b,c,d,ver,Type,aug)
[ssb] = bilin(ss,ver,Type,aug)

Description Bilin computes the effect on a system of the frequency-variable substitution,

The variable Ver denotes the transformation direction: 

Ver= 1, forward transform . 

Ver=-1, inverse transform .

This transformation maps lines and circles to circles and lines in the complex 
plane. People often use this transformation to do sampled-data control system 
design [1] or, in general, to do shifting of jω modes [2], [3], [4].

Bilin computes several state-space bilinear transformations such as Tustin, 
prewarped Tustin, etc., based on the Type you select: 

1 Type = 'Tustin', Tustin transform: 

 aug = T, the sampling period. 

2 Type = 'P_Tust', prewarped Tustin: 

 aug = [T ω0], ω0 is the prewarped frequency. 

3 Type = 'BwdRec', backward rectangular: 

aug = T, the sampling period. 

s αz δ+
γz β+
----------------=

s z→( )

z s→( )

s 2
T
----

z 1–
z 1+
------------ 

 =

s
ω0
ω0T( ) 2⁄( )tan

--------------------------------------=
z 1–
z 1+
------------ 

 

s z 1–
Tz

------------=
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4 Type = 'FwdRec', forward rectangular: 

aug = T, the sampling period. 

5 Type = 'S_Tust', shifted Tustin: 

aug = [T h], is the “shift” coefficient. 

6 Type = 'S_ftjw', shifted jω-axis bilinear: 

aug = [p2 p1]. 

7 Type = 'G_Bilin', general bilinear: 

aug = .

Examples Consider the following continuous-time plant (sampled at 20 Hz) 

s z 1–
T

------------=

s 2
T
----=

z 1–
z
h
--- 1+
-------------

 
 
 
 

s
z p1+

1 z p2⁄+
----------------------=

s αz δ+
γz β+
----------------=

α β γ δ[ ]

A 1– 1
0 2–

= , B 1 0
1 1

= , C 1 0
0 1

= , D 0 0
0 0

=
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Following is an example of four common “continuous to discrete” bilin 
transformations for the sampled plant:

ss = mksys(a,b,c,d); %use system data structure 
[sst] = bilin(ss,1,'Tustin',0.05); 
[ssp] = bilin(ss,1,'P_Tust',[0.05 40]);
[ssb] = bilin(ss,1,'BwdRec',0.05); 
[ssf] = bilin(ss,1,'FwdRec',0.05); 
w = logspace(-2,3,100) %frequency
svt = dsigma(sst,0.05,w); 
svp = dsigma(ssp,0.05,w); 
svb = dsigma(ssb,0.05,w); 
svf = dsigma(ssf,0.05,w);

.

Figure 2-3:  Comparison of 4 Bilinear Transforms.

you can generate the continuous and discrete singular value Bode plots as 
shown in the Figure 2-3, Comparison of 4 Bilinear Transforms..

Note that the Nyquist frequency is at 20π rad/sec.
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Algorithm bilin employs the state-space formulae in [3]:

See Also lftf, sectf

[1] G. F. Franklin and J. D. Powell, Digital Control of Dynamics System, 
Addison-Wesley, 1980.

[2]M. G. Safonov, R. Y. Chiang and H. Flashner, “H∞ Control Synthesis for a 
Large Space Structure,” AIAA J. Guidance, Control and Dynamics, 14, 3, pp. 
513-520, May/June 1991.

[3] M. G. Safonov, “Imaginary-Axis Zeros in Multivariable H∞Optimal 
Control”, in R. F. Curtain (editor), Modelling, Robustness and Sensitivity 
Reduction in Control Systems, pp. 71-81, Springer-Verlag, Berlin, 1987. Proc. 
NATO Advanced Research Workshop on Modeling, Robustness and Sensitivity 
Reduction in Control Systems, Groningen, The Netherlands, Dec. 1-5, 1986.

[4] R. Y. Chiang and M. G. Safonov, “H∞ Synthesis using a Bilinear Pole 
Shifting Transform,” AIAA, J. Guidance, Control and Dynamics, vol. 15, no. 5, 
pp. 1111-1117, September–October 1992.

Ab Bb
Cb Db
------------------ βA δ– I( ) αI γ+ A( ) 1–

C αI γ– A( ) 1–
-------------------------------------------------------

αβ γ– δ( ) αI γ– A( ) 1– B

D γ+ C αI γ– A( ) 1– B
-----------------------------------------------------------=
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2blkrsch, cschurPurpose Block ordered real Schur form. 

Ordered complex Schur form via complex Givens rotation.

Syntax [v,t,m] = blkrsch(a,Type,cut)
[v,t,m,swap] = cschur(a,Type)

Description Cschur computes a unitary similarity transformation V and a complex upper 
triangular matrix T for a real or complex matrix A such that 

where T has the eigenvalues λι(A) ordered on the diagonal according to the 
value of the variable Type: 

1 Type = 1 — . 

2 Type = 2 — . 

3 Type = 3 — eigenvalue real parts in descending order. 

4 Type = 4 — eigenvalue real parts in ascending order. 

5 Type = 5 — modulus of eigenvalues in descending order. 

6 Type = 6 — modulus of eigenvalues in ascending order.

 Variable swap records the number of Givens rotations swaps it takes and 
variable m returns the number of “stable” eigenvalues of A (see rsf2csf or 
cgivens).

Blkrsch computes a block ordered real Schur form such that the resulting T 
matrix has four blocks

VTAV T
T1 T12

0 T2

= =

Re λi T1( )( ) 0< , Re λi T2( )( ) 0>
Re λi T1( )( ) 0,> Re λi T2( )( ) 0<

VTAV T
B1 B12

0 B2

= =
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The input variable cut is the dimension of the square block B1. If Type is 1, cut 
is automatically set to m — the number of eigenvalues of A with negative real 
parts.

 Six options are available: 

1 Type = 1 — . 

2 Type = 2 — . 

3 Type = 3 — .

4 Type = 4 — . 

5 Type = 5 — . 

6 Type = 6 —.

Algorithm blkrsch and cschur, are M-files in the Robust Control Toolbox. cschur uses 
schur, rsf2csf and the complex Givens rotation [1] to iteratively swap two 
adjacent diagonal terms according the style you select. blkrsch projects the 
resulting complex subspace onto the real. 

Limitations For blkrsch, the matrix A must have zero imaginary part.

See Also cgivens, rsf2csf, schur

References [1] Golub G. H. and C. F. Van Loan, Matrix Computations. Baltimore: Johns 
Hopkins University Press, 1983.

Re λi B1( )( ) 0< , Re λi B2( )( ) 0>
Re λi B1( )( ) 0> , Re λi B2( )( ) 0<

Re λi B1( )( ) 0> , Re λi B2( )( )
Re λi B1( )( ) 0< , Re λi B2( )( )
λi B1( ) λi B2( )>
λi B1( ) λi B2( )<
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2branchPurpose This function recovers the matrices packed in a mksys or tree variable 
selectively. 

Syntax  [b1,b2,…,bn] = branch(tr,PATH1,PATH2,…,PATHN)

Description Branch returns N sub-branches of a tree variable tr, if nargin = 1, the root 
branches are returned in sequence by numerical index; otherwise, the branches 
returned are determined by the paths PATH1, PATH2,…, PATHN. Each path is 
normally a string of the form

 PATH = '/name1/name2/…/namen';

where name1, name2, et cetera are the string names of the branches that define 
the path from the tree root to the sub-branch of interest.

Alternatively, you may substitute for any PATH a row vector containing the 
integer indices of the branches that define the PATH. For example, if 
S = tree('a,b,c','foo',[49 50],'bar'), then branch(S,'c') and 
branch(S,3) both return the value “bar”.

Examples See reference pages for tree and mksys.

See Also tree, mksys, graft, istree, issystem, vrsys
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2bstschml, bstschmrPurpose Relative error model reduction via Schur balanced stochastic truncation. 

Syntax [ared,bred,cred,dred,aug,svh] = bstschmr(A,B,C,D,Type)
[ared,bred,cred,dred,aug,svh] = bstschmr(A,B,C,D,Type,no)
[ared,bred,cred,dred,aug,svh] = bstschmr(A,B,C,D,Type,no,info)
[ssred,aug,svh] = bstschmr(SS,Type) 
[ssred,aug,svh] = bstschmr(SS,Type,no) 
[ssred,aug,svh] = bstschmr(SS,Type,no,info)

The same syntax applies to "bstschml"

Description  Given an nth order stable plant 

bstschmr computes a kth order reduced model

such that the multiplicative error between G(s) and is bounded as 
follows [9]

and the relative error of G(s) and  also enjoys the same error bound [6]:

where σi are the Hankel singular values of the all-pass phase matrix 
(W*(s))-1G(s), and 

is a minimum phase left spectral factor of .

G s( ) : A B
C D

=

G s( ) : Â B̂
C D

=

G s( )

G
1–

G G–( ) ∞ 2
σi

1 σi–
--------------

i k= 1+

n

∑≤

G s( )

G 1– G G–( ) ∞ 2
σi

1 σi–
--------------

i k= 1+

n

∑≤

W s( ) := 
AW BW
CW DW

Φ G= s( )GT s–( ) WT
= s–( )W s( )



bstschml, bstschmr

2-26

Three options are provided:

1 Type = 1, no = k, size of reduced order model. 

2 Type = 2, no = tol, a relative tolerance band in db such that the kth order 
reduced model  for all frequencies. 

3 Type = 3, display svh and prompt for k. In this case, no need to assign a 
value for no.

Variable aug(1,1) returns the number of states that have been removed, while 
aug(1,2) returns the relative error bound.

 Bstschml solves the “dual” problem of bstschmr with the same error bound

For a given discrete G(z), you can still apply the functions bstschmr and 
bstschml via bilinear transform bilin to get a reduced order  [8], i.e.,

The resultant reduced order model  enjoys the same relative and 
multiplicative error bound as the continuous case [7, 9]. A direct discrete BST/
REM algorithm without using the bilinear transform is not available at this 
time.

Algorithm bstschmr implements the BST model reduction algorithm of [1], but using the 
Schur method of [4] to bypass the numerical sensitive balancing step. The BST 
relative error bound is due to Wang and Safonov [6, 9]. The complete algorithm 
of bstschml and bstschmr is presented in [5].

G jω( ) G⊂ jω( ) tol±

Relative Error:  G G–( )G 1–
∞   ≤ 2

σi
1 σi–
--------------

i k 1+=

n

∑

Multiplicative Error:  G G–( )G
1–

∞    2≤
σi

1 σi–
--------------

i k 1+=

n

∑

G z( )

bilin
G z( ) G w( )→

bstschmr
→

bilin

G w( ) G z( )→

G z( )
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bstschmr computes the reachability grammian P of G(s) and the observability 
grammian Q of W(s) via the equations

A Schur algorithm, analogous to that in [4], is then applied to the product of 
the grammians PQ to reliably compute the BST reduced model . Note that 
the particular realization of , viz. (Ared, Bred, Cred, Dred), will not in 
general be stochastically balanced.

The BST model reduction procedure produces similar relative error bounds and 
is closely related to the optimal Hankel norm phase matching model results of 
[2] and [3].

Bstschml is completely analogous and simply applies the “dual” BST/REM 
theory. It can also be called by bstschmr with an additional input variable 
info= "left". 

Limitations The BST model reduction theory requires that D be full rank, for otherwise the 
Riccati solver fails. For any problem with strictly proper plant, you can shift 
the jω-axis via bilin such that BST/REM approximation can be achieved up to 
a particular frequency range of interest. Alternatively, you can attach a small 
but full rank D matrix to the original problem but remove the matrix of the 
reduced order model afterwards. As long as the size of D matrix is insignificant 
inside the control bandwidth, the reduced order model should be fairly close to 
the true model.

See Also balmr, mrdemo, ohklmr, schmr

References [1] U. B. Desai and D. Pal, “A Transformation Approach to Stochastic Model 
Reduction,” IEEE Trans. on Automat. Contr., AC-29, 12, 1984.

[2] K. Glover, “Multiplicative Approximation of Linear Systems with L  Error 
Bounds,” Proc. American Contr. Conf., Seattle, WA, June 18-20, 1986.

AP PAT B+ + BT 0=

BW PCT B+ DT
=

QA ATQ QBW CT
–( ) DDT

–( )
1–

QBW CT
–( )

T
0=+ +

G s( )
G s( )

∞
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[3] E. A. Jonckheere and R. Li, “L  Error Bound for Phase Matching 
Approximation — The One-Step-At-A-Time Hankel Norm Model Reduction,” 
Int. J. Control, Vol. 46, no. 4, pp. 1343-1354, 1987.

[4] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model 
Reduction,” IEEE Trans. on Automat. Contr., vol. AC-34, no. 7, pp. 729-733, 
July 1989.

[5] M. G. Safonov and R. Y. Chiang, “Model Reduction for Robust Control: A 
Schur Relative-Error Method,” Proc. American Contr. Conf., June 15-17, 1988. 

[6] W. Wang and M. G. Safonov, “A Tighter Relative-Error Bound for Balanced 
Stochastic Truncation,” Systems and Control Letters, 14, No. 4, pp. 307-317, 
1990.

[7] W. Wang and M. G. Safonov, “A Relative Error Bound for Discrete Balanced 
Stochastic Truncation,” Int. J. of Control, Vol. 54, No. 3, 1990.

[8] W. Wang and M. G. Safonov, “Comparison between Continuous and 
Discrete Balanced Stochastic Truncation Model Reduction,” Proc. of Contr. and 
Decision Conf., Honolulu, Hawaii, 1990.

[9] W. Wang and M. G. Safonov, “Multiplicative-Error Bound for Balanced 
Stochastic Truncation Model Reduction,” IEEE Trans. on Automat. Contr, vol. 
AC-37, no. 8, pp1265-1267, August 1992.

∞



cgloci, dcgloci

2-29

2cgloci, dcglociPurpose Continuous characteristic gain loci frequency response. 

Discrete characteristic gain loci frequency response.

Syntax [cg,ph,w] = (d)cgloci(a,b,c,d(,Ts)) 
[cg,ph,w] = (d)cgloci(a,b,c,d(,Ts),'inv') 
[cg,ph,w] = (d)cgloci(a,b,c,d(,Ts),w) 
[cg,ph,w] = (d)cgloci(a,b,c,d(,Ts),w,'inv')
[cg,ph,w] = (d)cgloci(ss,…)

Description cgloci computes the matrices cg and ph containing the characteristic gain and 
phase of the frequency response matrix  as a 
function of frequency, ω. The characteristic gain cg and phase ph vectors are 
defined as

When invoked without lefthand arguments, cgloci produces a characteristic 
gain and phase Bode plot on the screen. The frequency range is chosen 
automatically and incorporates more points where the plot is changing rapidly.

cgloci(a,b,c,d,'inv') plots the characteristic gain and phase loci of the 
inverse system G(s)-1.

When the frequency vector w is supplied, the vector w specifies the frequencies 
in radians/sec at which the char. loci will be computed. See logspace to 
generate frequency vectors that are equally spaced logarithmically in 
frequency.

When invoked with lefthand arguments,

 [ga,ph,w] = cgloci(…)

returns the gain, phase matrices and the frequency point in the vector w.

dcgloci computes the discrete version of the characteristic loci by replacing

G(jω) by . The variable Ts is the sampling period.

G jω( ) C= jωI A–( ) 1– B D+

cg : abs= eig G jω( )( )( )

ph : 180°

π
------------ 

  eig G jω( )( )∠=

G e
jωTs( )
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Cautionary 
Note

Nyquist loci and Bode plots of characteristic gain loci can produce a 
misleadingly optimistic picture of the stability margins multiloop systems. For 
this reason, it is usually a good idea when using cgloci to also examine the 
singular value Bode plots in assessing stability robustness. See sigma and 
dsigma.

Examples Let’s consider a 2 by 2 transfer function matrix of the plant [1]

with model decomposition 

The controller is a diagonal constant gain matrix

The characteristic gain loci containing in Λ(s) seem to imply that the system 
has infinity gain margin and ± 180 degree phase margin in each of the feedback 
loop. However, if you slightly perturb the gains K1 and K2 to K1 + 0.13 and 
K2 – 0.12 simultaneously, the system becomes unstable! 

On the other hand, the singular value Bode plot of the complementary 
sensitivity  (MATLAB command: sigma) easily 
predicts the system robustness (see Tutorial). See Figure 2-4, Singular Value 
vs. Characteristic Gain Loci..

The resonance peak of the maximum singular value (≈ 16.2695) predicts that

the multiplicative uncertainty can only be as large as  before 
instability occurs.

G s( )

47– s 2+
s 1+( ) s 2+( )

----------------------------------
56s

s 1+( ) s 2+( )
----------------------------------

42s–
s 1+( ) s 2+( )

----------------------------------
50s 2+

s 1+( ) s 2+( )
----------------------------------

=

G s( ) X= Λ s( )X 1– 7 8–

6– 7
=

1
s 1+
------------ 0

0 2
s 2+
------------

7 8
6 7

K
K1 0

0 K2

1 0
0 1

==

T s( ) G s( ) I G s( )+( ) 1–=

1
16.2695
--------------------- 6.15%=



cgloci, dcgloci

2-31

Figure 2-4:  Singular Value vs. Characteristic Gain Loci. 

Alternatively, you can compute guaranteed stability margins using the 
formulae given in Singular-Value Loop-Sharing: The Mixed-Sensitivity 
Approach [2]

which clearly predict the poor robustness of the system. These guaranteed 
stability margins provide a tolerance such that you can vary both gain and 
phase simultaneously in all the feedback loops.

See Also bode, dsigma, dbode, logspace, sigma

[1] J. C. Doyle, “Robustness of Multiloop Linear Feedback Systems,” Proc. 
IEEE Conf. on Decision and Control, San Diego, CA, Jan. 10-12, 1979

[2] N. A. Lehtomaki, N. R. Sandell, Jr., and M. Athans, “Robustness Results in 
Linear-Quadratic Gaussian Based Multivariable Control Designs,” IEEE 
Trans. on Automat. Contr., vol. AC-26, No. 1, pp. 75-92, Feb. 1981.

[3] I. Postlethwaite and A. G. J. MacFarlane, A Complex Variable Approach to 
the Analysis of Linear Multivariable Feedback Systems, Springer-Verlag, 1979.
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2daresolvPurpose Generalized discrete algebraic Riccati solver.

Syntax [p1,p2,lamp,perr,wellposed,p] = daresolv(a,b,q,r) 
[p1,p2,lamp,perr,wellposed,p] = daresolv(a,b,q,r,Type)

Description Daresolv solves the discrete algebraic Riccati equation 

where P = P2/P1 is the solution for which the eigenvalues of A – RP are inside 
the unit disk. This solution exists and is unique provided that the associated 
discrete Hamiltonian matrix

 

has no eigenvalues on the unit circle; otherwise, the flag wellposed is set to the 
string value 'FALSE'.

The input variables and output variables are otherwise identical to the 
continuous time case—see aresolv. If Type = 1 the eigenvector approach is 
used. If Type = 2 the Schur vector approach is used. The eigenvector approach 
is selected by default when no Type is specified, unless the Hamiltonian matrix 
is defective in which case the algorithm defaults to the Schur approach. The 
residual and closed loop eigenvalues are returned in variables perr and lamp.

Algorithm The algorithm is essentially the same as that employed for the continuous 
version of this function, save for the difference in the discrete Hamiltonian. The 
matrices P1 and P2 are computed such that the columns of 

form a basis for the stable eigenspace of the discrete Hamiltonian, i.e., the 
space spanned by the eigenvectors corresponding to eigenvalues in the unit 
disk. See aresolv.

ATPA P– AT– PB R BT+ PB( )
1–
BTPA Q+ 0=

H A BR 1– BTA T– Q+ BR 1– BTA T––

A T– Q– A T–
=

P1
P2
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Limitations The Riccati equation is ill-posed if the Hamiltonian H has eigenvalues on the 
unit circle. In cases in which , it suffices for the system (A,R,Q) to be 
both stabilizable and detectable to avoid eigenvalues on the unit circle; in this 
case, the unique stabilizing Riccati solution will be positive semidefinite.

See Also are, cschur, aresolv, lqrc, reig, driccond

References 1 A. J. Laub, “A Schur Method for Solving Algebraic Riccati Equations,” IEEE 
Trans. Autom. Control, AC-24, pp. 913-921, 1979.

Q R 0≥,
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2des2ssPurpose Convert descriptor system into SVD state-space form.

Syntax [aa,bb,cc,dd] = des2ss(a,b,c,d,E,k) 
[ss1] = des2ss(ss,E,k)

Description des2ss converts a descriptor system [1]

into state-space form G2(s):

via the singular value decomposition (SVD) of the matrix E (E may be singular 
with n – rank(E) = < n)

where 

G1 : Es– A+ B
C D

=

Is– Σ ½– A11 A12– A22
1– A21( )Σ ½–

+ Σ ½– B1 A12– A22
1– B2( )

C1 C2– A22
1– A21( )Σ ½– D C2– A22

1– B2

E U= Σ 0
0 0

VT U1 U2[ ]= Σ 0
0 0

V1
T

V2
T

k : dimension= of null space of the matrix E

A11 A12

A21 A22

U1
T

U2
T

= A V1 V2[ ]

B1

B2

U1
T

U2
T

B=

C1 C2[ ] C= V1 V2[ ]
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Algorithm Converting descriptor system into SVD coordinates can be carried out easily by 
applying a series of strict system equivalence (s.s.e.) transformations to the 
Rosenbrock system matrix [2].

See Also ohklmr, hinf, linf

References [1] D. G. Luenberger, “Dynamic Equations in Descriptor Form”, IEEE Trans. 
on Automat. Contr., AC-22, No. 3, Jun. 1977.

[2] M. G. Safonov, R. Y. Chiang, and D. J. N. Limebeer, “Hankel Model 
Reduction without Balancing -- A Descriptor Approach,” Proc. IEEE Conf. on 
Decision and Control, Los Angeles, CA, Dec. 9-11, 1987.
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2driccondPurpose Condition numbers of discrete algebraic Riccati equation.

Syntax [tot] = driccond(a,b,q,r,p1,p2)

Description driccond provides the condition numbers of discrete Riccati equation

where P = P2/P1 is the positive definite solution of ARE, and [P2; P1] spans 
the stable eigenspace of the Hamiltonian

where S = BR-1BT.

Several measurements are provided:

1 Frobenius norm of matrices A, Q, and BR-1BT (norA, norQ, norRc). 

2 condition number of R (conR). 

3 condition number of P1 (conP1). 

4 Byers’ condition number (conBey) [1]. 

5 residual of Riccati equation (res).

The output variable tot puts the above measurements in a column vector

tot= [norA,norQ,norRc,conR,conP1,conBey,res]'

For an ill-conditioned problem, one or more of the above measurements could 
become large. Together, they should give a general information of the Riccati 
problem.m

ATPA P– Q AT
–+ PB R BTPB+( )

1–
BTPA 0=

H A SA T– Q+ SA T–
–

A–
TQ A T–

=
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Algorithm Byers’ Riccati condition number is computed as [1]

where Acl = (In + SP)-1 A and

See Also are, aresolv, daresolv, riccond

[1] R. Byers, “Hamiltonian and Symplectic Algorithms for the Algebraic 
Riccati Equation,” Ph.D. dissertation, Dept. of Comp. Sci., Cornell University, 
Ithaca, NY, 1983.

conBey
Qc F 2+ Ac F

2 P F A F
2

+ S F P F

P F sep A′cl, Acl( )
------------------------------------------------------------------------------------------------=

sep Acl
T

, Acl( ) min
i

= σi Ac
T Ac

T⊗ I
n2–[ ]
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2dsigma, sigma Purpose Discrete singular value frequency response.

Continuous singular value frequency response.

Syntax [sv,w] = (d)sigma(a,b,c,d(,Ts)) 
[sv,w] = (d)sigma(a,b,c,d(,Ts),'inv') 
[sv,w] = (d)sigma(a,b,c,d(,Ts),w) 
[sv,w] = (d)sigma(a,b,c,d(,Ts),w,'inv') 
[sv,w] = (d)sigma(ss,..)

Description sigma computes the singular values of the complex matrix  
as a function of frequency, ω. The singular values are an extension of the Bode 
magnitude response for MIMO systems. When invoked without lefthand 
arguments, sigma produces a singular value Bode plot on the screen. The 
frequency range is chosen automatically and incorporates more points where 
the plot is changing rapidly.

For square systems, sigma(A, B, C, D,' inv') plots the singular values of the 
inverse complex matrix:

When supplied by the user, the vector w specifies the frequencies in radians/sec 
at which the singular value Bode plot will be calculated. See logspace to 
generate frequency vectors that are equally spaced logarithmically in 
frequency.

 When invoked with lefthand arguments,

 [sv,w] = sigma(A,B,C,D,..)

returns the magnitude of the singular values in matrix sv and the frequency 
points in w. No plot is drawn on the screen. Each column of the matrix sv 
contains the singular values, in decreasing order, for the corresponding 
frequency point in the vector w.

Dsigma computes the discrete version of the singular value Bode plot by 
substituting for G(jω). The variable Ts is the sampling period.

C jωI A–( ) 1– B D+

G 1– ω( ) D 1–
= C jωI A BD 1– C–( )–[ ]

1–
BD 1– D 1–

+

G ejωTs( )
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For robustness analysis, the singular values of particular transfer matrices are 
analyzed. The table below shows which input-output combinations and 
associated MATLAB commands achieve the desired transfer matrices:

The singular value response of a SISO system is identical to the Bode 
magnitude response of that system.

Examples Figure 2-5, Singular Value Bode Plot of LSS. shows the singular value Bode 
plot of the open loop large space structure in [1]. There are 58 vibrational 

-1 
(I+G(jw))

(I+G(jw))

-1
G(jw)

sigma(a,b,c,d,’inv’)

[a,b,c,d] = feedback(a,b,c,d,[],[],[],eye(d))

sigma(a,b,c,d,’inv’)

[a,b,c,d] = feedback([],[],[],eye(d),a,b,c,d)

sigma(a,b,c,d)

[a,b,c,d] = parallel(a,b,c,d,[],[],[],eye(d))

sigma(a,b,c,d,’inv’)

sigma(a,b,c,d)G(s)

G(s)

G(s)

G(s)

G(s)

-1

G(jw)

MATLAB CommandsBlock Diagram TF Matrix
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modes (116 states) with damping ratio 0.3 to 0.002 scattered in the frequency 
range from 0.4 Hz to 477 Hz, 18 control actuators and 20 sensors.

Figure 2-5:  Singular Value Bode Plot of LSS.

Algorithm Sigma and dsigma use the svd function in MATLAB.

See Also bode, cgloci, dcgloci, dbode, logspace

References [1] M. G. Safonov, R. Y. Chiang and H. Flashner, “H∞ Control Synthesis for a 
Large Space Structure,” AIAA J. Guidance, Control and Dynamics, 14, 3, pp. 
513-520, May/June 1991.
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2fitdPurpose State space realization for a given magnitude Bode plot.

Syntax [ad,bd,cd,dd,logdfit] = fitd(logd,w) 
[ad,bd,cd,dd,logdfit] = fitd(logd,w,n) 
[ad,bd,cd,dd,logdfit] = fitd(logd,w,n,blksz) 
[ad,bd,cd,dd,logdfit] = fitd(logd,w,n,blksz,flag) 
[ssd,logdfit] = fitd(…)

Description fitd produces a continuous stable minimum-phase state-space realization ssd 
of a diagonal transfer function matrix such that the diagonal elements’ 
magnitude Bode plots approximately fit Bode magnitude plot data given in the 
rows of the matrix logd.

Input variable logd is a matrix whose rows are logarithmic magnitude Bode 
plots evaluated at frequency vector w. 

Optional input variables:

n — vector containing orders of the state-space approximants of the diagonal 
scalings (default = 0)

blksz — a vector of the size of the diagonal blocks (default = 1 for each block). 
flag — set to “1” to display a Bode plot (default = 1).

fitd uses the stable routine yulewalk in the Signal Processing Toolbox to fit 
the continuous magnitude Bode plot. Bilin and polyfit are also used to 
pre-process the frequency axis shift from s-domain to z-domain. The final 
discrete realization is transformed back to s-domain via bilin.

fitd plays a crucial role in µ-synthesis design technique. The success of 
“D – F” iterations in µ-synthesis depends on the result of fitd. 

See Also bilin, fitgain, invfreqs, musyn, polyfit, yulewalk



fitgain

2-42

2fitgainPurpose State space realization for a given magnitude Bode plot.

Syntax [ad,bd,cd,dd,logfit] = fitgain(logd,w) 
[ad,bd,cd,dd,logfit] = fitgain(logd,w,n) 
[ad,bd,cd,dd,logfit] = fitgain(logd,w,n,wt) 
[ad,bd,cd,dd,logfit] = fitgain(logd,w,n,wt,flag) 
[ssd,logfit] = fitgain(…)

Description fitgain produces a stable and minimum-phase state-space realization of the 
given magnitude Bode plot logd.

The input variable logd is a vector containing the logarithmic magnitude Bode 
plot evaluated at frequency vector w. 

Optional input variables:

n — the size of the desired state-space approximant (default = 0) 

wt — a weighting vector contains the weight at each frequency point 

flag — set to “1” to display a Bode plot (default = 1).

fitgain uses the routine invfreqs in Signal Processing Toolbox to fit the 
continuous magnitude Bode plot. Three steps are involved:

1 Take the power spectrum density of the given magnitude data, i.e., 
. 

2 Use the error correction method (routine invfreqs) to fit the PSD data with 
a rational transfer function. 

3 Extract the stable and minimum phase part of the realization.

This method is not as numerically stable as fitd.

See Also fitd, invfreqs, yulewalk

G s( ) 2 G= s( )G s–( )
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2graftPurpose Adds root branch onto a tree.

Syntax TR = graft(TR1,B) 
TR = graft(TR1,B,NM)

Description graft adds root branch B onto a tree variable TR1 (previously created by tree 
or mksys). If TR1 has N branches, then the numerical index of the new branch 
is N+1; and the numerical indices of other root branches are unchanged.

The string name NM, if present, becomes the name of the new root branch.

See Also tree, mksys, branch, istree, issystem, vrsys
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2h2lqg, dh2lqgPurpose H2 optimal control synthesis (continuous and discrete). 

Syntax [acp,bcp,ccp,dcp,acl,bcl,ccl,dcl] = (d)h2lqg(A,B1,B2,…,D22) 
[acp,bcp,ccp,dcp,acl,bcl,ccl,dcl] = (d)h2lqg(A,B1,B2,…,D22,aretype) 
[sscp,sscl] = (d)h2lqg(TSS)
[sscp,sscl] = (d)h2lqg(TSS,aretype)

Description h2lqg solves H2 optimal control problem; i.e., find a stabilizing 
positive-feedback controller for an “augmented” system

such that the H2-norm of the closed-loop transfer function matrix  is 
minimized:

The stabilizing feedback law F(s) and the closed-loop transfer function  
are returned as

P s( ) :

A B1 B2

C1 D11 D12

C2 D21 D22

=

Ty1u1
s( )

min
F s( )

Ty1u1 2
: min

F s( )
=

1
π
--- trace

0

∞

∫ T∗y1u1
jω( )Ty1u1

jω( )( )dω 
  ½

Ty1u1
s( )

F s( ) : acp, bcp, ccp, dcp( )=

Ty1u1
s( ) : acl, bcl, ccl, dcl( )=
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Figure 2-6:  H2 Control Synthesis.

The optional input aretype determines the method used by ARE solver 
aresolv. It can be either "eigen" (default), or "Schur".

dh2lqg solves the discrete counterpart of the problem by directly forming two 
discrete ARE’s and solve them via daresolv. Note that in contrast to the H∞ 
case, the bilinear transform technique does not apply in the H2 case. This is 
because the H2 norm, unlike the H∞ norm, is not invariant under bilinear 
transformation.

Examples See the Tutorial chapter for design examples and demonstrations. Especially, 
see the comparison between H2 synthesis and H∞synthesis in the Fighter H2 

and H∞Design Example in the Tutorial section.

Algorithm H2lqg solves the H2-norm optimal control problem by observing that it is 
equivalent to a conventional Linear-Quadratic Gaussian optimal control 
problem involving cost 

F(s)

2

1 P(s)
u
1

y1
yu2
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1
T
---- y1

T

0

T

∫ y1dt
 
 
 
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with correlated white plant noise ξ and white measurement noise θ entering 
the system via the channel [B1 D21]T and having joint correlation function

The H2 optimal controller F(s) is thus realizable in the usual LQG manner as 
a full-state feedback Kc and a Kalman filter with residual gain matrix Kf. 

1 Kalman Filter

where Σ = ΣTand satisfies ARE 

2 Full-State Feedback 

where P = PT and satisfies ARE 

The final positive-feedback H2 optimal controller  has a familiar 
closed-form

E ξ t( )
θ t( )

ξ τ( ) θ τ( )[ ]T

 
 
  Ξ Nf

Nf
T Θ

=
B1

D21
B1

T D21
T δ t τ–( )=

B1B1
T B1D21

T

D21B1
T D21D21

T
= δ t τ–( )

x̂
·

A= x̂ B2+ u2 Kf+ y2 C2x̂ D22– u2–( )

Kf ΣC2
T Nf+( )= Θ 1– ΣC2

T B1D21
T

+( )= D21D21
T( )

1–

ΣAT A+ Σ ΣC2
T Nf+( )– Θ 1– C2Σ Nf

T
+( ) Ξ+ 0=

u2 Kcx̂=

Kc R 1–
= B2

TP Nc
T

+( ) D12
T D12( )

1–
= B2

TP D12
T

+ C1( )

ATP P+ A PB2 Nc+( )– R 1– B2
TP Nc

T
+( ) Q+ 0=

u2 F s( )y2=



h2lqg, dh2lqg

2-47

It can be easily shown that by letting  the H2-optimal LQG problem is 
essentially equivalent to LQ full-state feedback loop transfer recovery (see 
ltru). Dually, as  you obtain Kalman filter loop transfer recovery [1] 
(see ltry).

Limitations 1 (A, B2, C2) must be stabilizable and detectable. 

2 D11 must be zero, otherwise the H2 optimal control problem is ill-posed. If a 
nonzero D11 is given, the algorithm ignores it and computes the H2 optimal 
control as if D11 were zero. 

3 D12 and  must both have full column rank.

See Also hinf, dhinf, lqg, ltru, ltry, aresolv, daresolv

References [1] J. Doyle and G. Stein, “Multivariable Feedback Design: Concepts for a 
Classical/Modern Synthesis,” IEEE Trans. on Automat. Contr., AC-26, pp. 
4-16, 1981.

[2] J. Doyle, Advances in Multivariable Control. Lecture Notes at ONR/
Honeywell Workshop. Minneapolis, MN, Oct. 8-10, 1984.

[3] M. G. Safonov, A. J. Laub, and G. Hartmann, “Feedback Properties of 
Multivariable Systems: The Role and Use of Return Difference Matrix,” IEEE 
Trans. of Automat. Contr., AC-26, pp. 47-65, 1981.

[4] G. Stein and M. Athans, “The LQG/LTR Procedure for Multivariable 
Feedback Control Design,” IEEE Trans. on Automat. Contr., AC-32, pp. 
105-114, 1987.

F s( ) :
A KfC2 B2– Kc Kf+ D22Kc– Kf
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D21
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2hinf, dhinf, linf Purpose H∞ optimal control synthesis (continuous and discrete) 

Syntax linf 
Inputs: A, B1, B2, C1, C2, D11, D12, D21, D22 
Outputs: acp, bcp, ccp, dcp, acl, bcl, ccl, dcl 

[acp,…,acl,…,hinfo,ak,…,dk22] = (d)hinf(A,…,D22)
[acp,…,acl,…,hinfo,ak,…,dk22] = (d)hinf(A,…,D22,au,…,du)
[acp,…,acl,…,hinfo,ak,…,dk22] = ... 

(d)hinf(A,…,D22,au,…,du,verbose)
[sscp,sscl,hinfo,tssk] = (d)hinf(TSSP) 
[sscp,sscl,hinfo,tssk] = (d)hinf(TSSP,ssu,)
[sscp,sscl,hinfo,tssk] = (d)hinf(TSSP,ssu,verbose)

Description linf and hinf solve the small-gain infinity-norm robust control problem; i.e., 
find a stabilizing controller F(s) for a system

such that the closed-loop transfer function satisfies the infinity-norm 
inequality

Figure 2-7:  Particular F(s)

P s( ) :

A B1 B2

C1 D11 D12

C2 D21 D22

=

Ty1u1 ∞ sup
ω

σmax Ty1u1
jω( )( ) 1<

∆
=

F(s)

2

1 P(s)
u
1

y1
yu2
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State-space matrices for a particular solution F(s) and the corresponding 
 are returned as

linf finds the solution F(s) using the Hankel approximation algorithm 
outlined in [15], whereas hinf uses a more recent two-Riccati algorithm [18, 8, 
9, 3, 5, 6, 17].

In general, the solution to the infinity-norm optimal control problem is 
non-unique. Whereas linf computes only a particular F(s), hinf computes in 
addition the all- solution controller parameterization K(s) such that all 
solutions to the infinity-norm control problem are parameterized by a free 
stable contraction map U(s) constrained by  (see Figure 2-8, 
All-solution F(s)). By default hinf will set U(s) = 0, if no U(s) is supplied. But if 
you specify 

U(s) := (au, bu, cu, du) in advance, hinf will compute the corresponding F(s) as 
shown in Figure 2-8, All-solution F(s).

Figure 2-8:  All-solution F(s)

An important use of the infinity-norm control theory is for direct shaping of 
closed-loop singular value Bode plots of control systems. In such cases, the 
system P(s) will typically be the plant augmented with suitable loop-shaping 
filters — see augss and augtf.

Ty ui
s( )

F s( ) : acp bcp ccp dcp, , ,( )= or sscp

Ty1u1
s( ) : acl bcl ccl dcl, , ,( )= or sscl

U s( ) ∞ 1<( )
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1
u
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dhinf solves the discrete counterpart of the problem using bilinear transform 
bilin, since the infinity norm of a given discrete problem is preserved under 
such a transformation in the continuous domain. The resulting continuous H∞ 
controller is then transformed back to the discrete domain via the inverse 
bilinear transform inside program dhinf. The discrete time H∞ theory is 
documented nicely in [10].

Examples See the Tutorial chapter for H∞ design examples and their demonstrations in 
rctdemo. Also see the examples in hinfopt.

Algorithm linf implements the first generation state-space H∞ theory developed in 1984 
to 1987 ([2, 14, 1, 4]), which splits the H∞ problem into three phases: 

1 Plant augmentation (see augtf, augss). 

2 Youla parametrization (see youla). 

3 Interpolation via optimal anticausal descriptor Hankel approximation (see 
ohklmr).

The bottleneck of linf algorithm is the lengthy model reduction work required 
in step 3. However, successful results using linf have been reported in [12, 16].

 The 2-Riccati H∞ controller has been derived via two distinct approaches — 
game theory (in time domain) and all-pass embedding (in frequency domain). 
The game theory approach is conceptually abstract but leads to a much simpler 
derivation. In 1977 Mageirou and Ho [11] solved the full-state feedback case 
via game theory and others [7] later “rediscovered” it. Subsequently, Doyle et 
al.[3] extended the full-state feedback result into its observer dual and 
established a separation principle for H∞ (a counterpart of the LQG). A 
frequency domain derivation for the dynamical output feedback case was 
initiated by Limebeer, et al. [8, 9, 6] using Parrott’s all-pass embedding 
technique and the optimal Hankel norm theorem. Both approaches require a 
large effort and much algebraic manipulation to handle all but very special 
cases in which the plant “C” and “D” matrices satisfied certain conditions. 
Safonov et al. [17] developed a loop-shifting technique to simplify the 
derivations, introduced a descriptor matrix-pencil representation and 
improved existence conditions. The latter eliminated numerical instabilities 
that had plagued previous formulations of the H∞ control theory. A matrix 
pencil is an s-dependent matrix of the form As + B. The generalized eigenvalues 
of a regular square matrix pencil, denoted λi(As + B), are the values of  at s C∈



hinf, dhinf, linf

2-51

which the determinant of the pencil vanishes; numerically robust algorithms 
exist for computing the generalized eigenvalues and associated eigenspaces. 

hinf implements the loop-shifting “two-Riccati” formulae for the infinity-norm 
control [17]. The chief advantage of hinf over linf is that the lengthy 
numerically sensitive model reduction work is completely eliminated. Instead, 
hinf produces an H∞ controller with the same state dimension as the 
augmented plant P(s).

Limitations In contrast to the H2 problem, a solution to the infinity-norm control problem 
does not exist for every P(s). Error messages such as “Riccati solver fails” are 
possible indications that the augmented system P(s) arises from singular-value 
Bode plot specifications that are infeasible or, possibly, that certain other 
well-posedness conditions have been violated. In particular, the algorithms 
linf and hinf require that the following conditions hold: [13]

that is, D12 must be a “tall” matrix with full “column” rank.

that is, D21 must be a “fat” matrix with full “row” rank.

Careful problem formulations can avoid some numerically or physically 
ill-posed H∞ problems. For example,

1 Always include a proper control weighting W2 to ensure that D12 is a full 
column rank (ref. augtf) 

2 Form a standard mix-sensitivity problem with D21 square. This formulation 
has solved a lot of real world control problems (flight control, large space 
structure, spacecraft attitude control, etc.). 

3 Use some classical loop-shaping judgments to penalize your physical 
variables. 

4 If still no solution is found, try γ-Iteration hinfopt on the problem.

If you have exhausted all the above possibilities, you can always call the 
authors for help. 

rank D12( ) dim= u2( ) dim≤ y1( )

rank D21( ) dim= y2( ) dim≤ u1( )
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See Also augss, augtf, h2lqg, hinfdemo, linfdemo, lqg, ltru, ltry
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vol. 45, no. 3, pp. 817-842, 1987.

[15] M. G. Safonov, R. Y. Chiang, and D. J. N. Limebeer, “Hankel Model 
Reduction without Balancing – A Descriptor Approach,” Proc. IEEE Conf. on 
Decision and Control, Los Angeles, CA, Dec. 9-11, 1987.

[16] M. G. Safonov, R. Y. Chiang and H. Flashner, “H∞ Control Synthesis for a 
Large Space Structure,” AIAA J. Guidance, Control and Dynamics, 14, 3, pp. 
513-520, May/June 1991. 

[17] M. G. Safonov, D. J. N. Limebeer and R. Y. Chiang, “Simplifying the H∞ 
Theory via Loop Shifting, Matrix Pencil and Descriptor Concepts”, Int. J. 
Contr., vol. 50, no. 6, pp. 2467-2488, 1989.

[18] G. Stein, Lecture Notes, Tutorial Workshop on H∞ Control Theory, Los 
Angeles, CA, Dec. 7-8, 1987.
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2hinfoptPurpose H∞ optimal control synthesis via γ-iteration.

Syntax [gamopt,acp,…,dcp,acl,…,dcl] = hinfopt(A,…,D22) 
[gamopt,acp,…,dcp,acl,…,dcl] = hinfopt(A,…,D22,gamind)
[gamopt,acp,…,dcp,acl,…,dcl] = hinfopt(A,…,D22,gamind,aux) 
[gamopt,sscp,sscl] = hinfopt(tss) 
[gamopt,sscp,sscl] = hinfopt(tss,gamind) 
[gamopt,sscp,sscl] = hinfopt(tss,gamind,aux)

Description hinfopt does H∞ “γ-iteration” to compute the optimal H∞ controller using the 
loop-shifting two-Riccati formulae of hinf. The output gamopt is the optimal “γ” 
for which the cost function  can achieve under a preset tolerance

An optional input variable aux specifies the tolerance that stops the γ-iteration

where maxgam and mingam denotes a range for γ-iteration to be carried out. 
The default value of aux is [0.01 1 0]. Another optional input variable gamind 
specifies the indices of the cost function output channels (i.e.,rows) to be scaled 
by γ. Default for gamind is to scale all the output channels (gamind = 1: n).

Algorithm A binary search algorithm is coded in hinfopt to achieve the required 
γ-iteration. The iteration logic is based on the H∞ existence tests performed 
inside hinf and recorded in the output variable hinfo of hinf. The search of 
optimal γ stops whenever the γ relative error between two adjacent stable 
solutions is less than the tolerance specified. For most practical purposes, the 
tolerance can be set at 0.01 or 0.001.

Examples Following are three simple problems solved via hinfopt with the SISO plant 

Ty ui

γTy1u1
gamind :,( )

Ty1u1
otherind :,( )

∞

1≤

aux tol maxgam mingam[ ]=

G s( ) s 1–
s 2–
------------=
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Problem 1: Mixed-Sensitivity , no W3.

[ag,bg,cg,dg] = tf2ss([1 -1],[1 -2]); 
ssg = mksys(ag,bg,cg,dg); 
w1 = [0.1*[1 100];[100 1]]; w2 = [0.1;1]; w3 = []; 
[TSS] = augtf(ssg,w1,w2,w3); 
[gamopt,sscp,sscl] = hinfopt(TSS,[1:2],[0.001,1,0]);

In this case, γopt = 1.5146.

Problem 2: W1 is removed.

w1 = []; 
[TSS] = augtf(ssg,w1,w2,w3); 
[gamopt,sscp,sscl] = hinfopt(TSS,1,[0.001,1,0]);

In this case, γopt = 2.5, F(s) = –4/3.

Problem 3: , W2 is removed.

w1 = [1 1;10 1]; w2 = []; 
[TSS] = augtf(ssg,w1,w2,w3); 
[gamopt,sscp,sscl] = hinfopt(TSS,1,[0.001,1,0]);

For this problem, .

These three very simple problems can be also solved analytically using the 
interpolation technique of [1], augmented in the case of problem 1 with the 
“two-block to one-block” embedding technique of [2]. The results of hinfopt 
match the exact solutions very well.

See Also augss, augtf, hinf, linf

References [1] G. Zames and B. A. Francis, “Feedback, Minimax Sensitivity, and Optimal 
Robustness,” IEEE Trans. on Autom. Control, AC-28, 5, pp. 585-601, May 1983.

[2] M. Verma and E. A. Jonckheere, “L -Compensation with Mixed Sensitivity 
as a Broadband Matching Problem,” Systems and Control Letters, 4, pp. 
125-129, May 1984.

W1
0.1 s 1000+( )

100s 1+
----------------------------------- W2 0.1=,=

W1
s 1+

10s 1+
-------------------=

F s( ) ∞≈ , γopt 11 6⁄=

∞
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2imp2ssPurpose System realization via Hankel singular value decomposition.

Syntax [a,b,c,d,totbnd,svh] = imp2ss(y)
[a,b,c,d,totbnd,svh] = imp2ss(y,ts,nu,ny,tol) 
[ss,totbnd,svh] = imp2ss(imp) 
[ss,totbnd,svh] = imp2ss(imp,tol) 

Description The function imp2ss produces an approximate state-space realization of a 
given impulse response

 imp=mksys(y,t,nu,ny,'imp');

using the Hankel SVD method proposed by S. Kung [2]. A continuous-time 
realization is computed via the inverse Tustin transform (using bilin) if t is 
positive; otherwise a discrete-time realization is returned. In the SISO case the 
variable y is the impulse response vector; in the MIMO case y is a N+1-column 
matrix containing N + 1 time samples of the matrix-valued impulse response 
H0, …, HN of an nu-input, ny-output system stored row wise:

The variable tol bounds the H∞ norm of the error between the approximate 
realization (a, b, c, d) and an exact realization of y; the order, say n, of the 
realization (a, b, c, d) is determined by the infinity norm error bound specified 
by the input variable tol. The inputs ts, nu, ny, tol are optional; if not present 
they default to the values ts = 0, nu = 1, ny = (no. of rows of y)/nu, . 
The output  returns the singular values (arranged in 
descending order of magnitude) of the Hankel matrix:

y H0 :( )′ H2 :( )′ H3 :( )′ …;;; HN :( )′;[ ]=

tol 0.01σ1=
svh σ1, σ2 …,[ ]′=

Γ

H1 H2 H3 … HN

H2 H3 H4 … 0

H3 H4 H5 … 0

HN 0 … … 0s

=

......

...... ...
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Denoting by GN a high-order exact realization of y, the low-order approximate 
model G enjoys the H∞ norm bound

where 

Algorithm The realization (a, b, c, d) is computed using the Hankel SVD procedure 
proposed by Kung [2] as a method for approximately implementing the 
classical Hankel factorization realization algorithm. Kung’s SVD realization 
procedure was subsequently shown to be equivalent to doing balanced 
truncation (balmr) on an exact state space realization of the finite impulse 
response {y(1),….y(N)} [3]. The infinity norm error bound for discrete balanced 
truncation was later derived by Al-Saggaf and Franklin [1]. The algorithm is 
as follows: 

1 Form the Hankel matrix Γ from the data y. 

2 Perform SVD on the Hankel matrix 

where Σ1 has dimension n × n and the entries of Σ2 are nearly zero. U1 and V1 
have ny and nu columns, respectively. 

3 Partition the matrices U1 and V1 into three matrix blocks:

where  and . 

G GN– ∞ totbnd≤

totbnd 2= σi

i n= 1+

N

∑

Γ UΣV∗ U1U2[ ]= =
Σ1 0

0 Σ2

V∗1

V∗2

U1= Σ1V∗1

U1

U11

U12

U13

= ;

V11

V12

V13

U11, U13 C
ny n×∈ V11, V13 C

nu n×∈
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4 A discrete state-space realization is computed as

where 

5 If the sampling time t is greater than zero, then the realization is converted 
to continuous time via the inverse of the Tustin transform

otherwise, this step is omitted and the discrete-time realization calculated in 
Step 4 is returned.

See Also ohklmr, schmr, balmr, bstschmr

References [1] U. M. Al-Saggaf and G. F. Franklin, “An Error Bound for a Discrete Reduced 
Order Model of a Linear Multivariable System,” IEEE Trans. on Autom. Contr., 
AC-32, pp. 815-819, 1987.

[2] S. Y. Kung, “A New Identification and Model Reduction Algorithm via 
Singular Value Decompositions,” Proc.Twelth Asilomar Conf. on Circuits, 
Systems and Computers., pp. 705-714, November 6-8, 1978.

[3] L. M. Silverman and M. Bettayeb, “Optimal Approximation of Linear 
Systems,” Proc. American Control Conf., San Francisco, CA, 1980.

A Σ1
1 2⁄–

= UΣ1
1 2⁄

B Σ1
1 2⁄–

= V∗11

C U11Σ1
1 2⁄–

=

D H0=

U
U11

U12

′
=

U12

U13

s 2
t
---=

z 1–
z 1+
------------;
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2intercPurpose General multivariable interconnected system.

Syntax [acl,bcl,ccl,dcl] = interc(a,b,c,d,m,n,f) 

[sscl] = interc(ss,m,n,f)

Description interc computes state-space realization of a multivariable interconnected 
system closed loop, given system  and constant blocks 
M, N, and F representing the interconnections (see block diagram).

Figure 2-9:  General MIMO Interconnection.

The resulting system closed-loop is

where X = (I – DF)–1.

Examples Consider a system with three subsystems (G1, G2, G3) where each of the 
subsystems has its own state-space representation (Ax, Bx, Cx, Dx). If the 
overall system is interconnected as shown in the Figure 2-10, Example of 
MIMO Interconnection., then 

P s( ) : C= Is A–( ) 1– B D+

yu
+

F

NP(s)M
+

Acl Bcl

Ccl Dcl

: A BFXC+ B M FXDM+( )
NXC NXDM

=

P s( )
G1 s( ) 0 0

0 G2 s( ) 0

0 0 G3 s( ) 
 
 
 
 
 

=
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and the associated constant blocks M, N, F and for this problem are

Figure 2-10:  Example of MIMO Interconnection.

Using the following MATLAB commands, you can easily get a state-space 
realization of P(s) as

[AA,BB,CC,DD] = append(A1,B1,C1,D1,A2,B2,C2,D2); 
[AA,BB,CC,DD] = append(AA,BB,CC,DD,A3,B3,C3,D3);

Then, the state-space representation (Acl, Bcl, Ccl, Dcl) of the whole system 
from u → y is

 [Acl,Bcl,Ccl,Dcl] = interc(AA,BB,CC,DD,M,N,F);

Note that the resulting system is not necessarily minimal; for example, 
pole-zero cancellations that arise as a result of the interconnection lead to such 
a nonminimal state-space realization. Model reduction routines such as 

M
I
0
0

=

N I 0 0=

F
0 0 I
0 0 I
I I 0

=

3

2

1

+ +

+

+
u y

G

G

G
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minreal, schmr, ohklmr, or bstschmr can be helpful in removing any 
uncontrollable and/or unobservable modes. 

See Also append, feedback, lftf, sectf, tfm2ss
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2iofr, iofcPurpose Inner-outer factorization (row type). 

Inner-outer factorization (column type).

Syntax [ain,…,ainp,…,aout,…] = iofr(c)(a,bcd)
[ssin,ssinp,ssout] = iofr(c)(ss)

Description A square transfer function M(s) is outer if it is proper and stable and has an 
inverse that is also proper and stable. A transfer function  of dimension 
m by n is inner if it is stable and satisfies

or

When  has a complementary inner (or all-pass extension)  

such that  or  is square and inner.

Iofr computes an inner-outer factorization for a stable transfer function 
 for which m ≥ n such that 

θ s( )

θT s–( )θ s( ) I= , s∀ if m n≥ , row type( ),

θ s( )θT s–( ) I= , s∀ if m n≥ , column type( ),

m n≠ , θ s( ) θ⊥ s( )

θ s( ) θ⊥ s( )[ ]
θ s( )

θ⊥ s( )

G s( ) : A, B, C D,( )=

G θ θ⊥[ ]= M
0
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The output variables are defined as

iofc computes an inner-outer factorization for the case of m < n via duality by 
applying iofr to GT(s), then transposing the result.

Algorithm iofr implements the algorithm described in [1], where it is shown that 
inner-outer factorization relates closely to the standard optimal LQ control 
problem as follows:

Given a transfer function G(s) := (A, B, C, D) of dimension m × n (m ≥ n), the 
LQR optimal control u = –Fx = –R-1(XB + N)Tx stabilizes the system and 
minimizes the quadratic cost function

as , satisfies the algebraic Riccati equation

Moreover, the optimal return difference I + L(s) = I + F(Is – A) -1B satisfies the 
optimal LQ return difference equality:

ssin
∆ θ= s( ) :

Aθ Bθ

Cθ Dθ
=

ssimp
∆ θ⊥
= s( ) :

Aθ⊥ B⊥θ

Cθ⊥ Dθ⊥
=

ssout
∆ M s( )

0
= :

AM BM

CM DM

=

J 1
2
---= xT tf( )P1x tf( ) xTuT[ ]

t0

tf

∫+
Q N

NT R

x
u

dt
 
 
 

tf ∞→   where X XT
= 0>,

ATX X+ A XB N+( )– R 1– XB N+( )T Q+ 0=

I L+( )∗R I L+( ) Φ∗I[ ]=
Q N

NT R

Φ
I
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where , and 

It may be easily shown [1] that the return difference equality implies that an 
inner-outer factorization of G(s) is given by

and

The variables X and F are computed via the MATLAB command:

[F,X] = lqr(A,B,Q,R,N) = lqr(A,B,C'*C,D'*D,C'*D).

The matrix X-1 is a generalized inverse (e.g., a pseudoinverse). Although X may 
be singular,  is well defined since the left null-space of  
includes the left null-space of X [1].

Iofc applies iofr to GT(s), then transposes the result.

Limitations The inner-outer factorization requires the system G(s) to be stable and to have 
neither poles nor transmission zeros on the jω-axis or at ∞. In particular D 
must have full column rank for iofr or full row rank for iofc.

See Also sfl, sfr

References [1] J. Doyle, Advances in Multivariable Control. Lecture Notes at ONR/
Honeywell Workshop. Minneapolis, MN, Oct. 8-10, 1984.

[2] M. G. Safonov, E. A. Jonckheere, M. Verma and D. J. N. Limebeer, 
“Synthesis of Positive Real Multivariable Feedback Systems”, Int. J. Control, 
vol. 45, no. 3, pp. 817-842, 1987.

Φ s( ) Is A–( ) 1–
= B, Φ∗ s( ) ΦT

= s–( )

Q N

NT R

CT

DT
= C D[ ]

θ s( ) θ⊥ s( )[ ] A BF– BR 1 2⁄– X 1– CTD⊥
–

C DF– DR 1 2⁄– D⊥
=

M 1– s( ) A BF– BR 1 2⁄–

F– R 1 2⁄–
=

X 1– CTD⊥ CTD⊥
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2lftfPurpose Two-port or one-port state-space linear fractional transformation.

Syntax [a,b1,b2,c1,c2,d11,d12,d21,d22] = 
lftf(A,B1,B2,…,a,b1,b2,…) 
[aa,bb,cc,dd] = 
lftf(a,b1,b2,c1,c2,d11,d12,d21,d22,aw,bw,cw,dw) 
[aa,bb,cc,dd] = 
lftf(aw,bw,cw,dw,a,b1,b2,c1,c2,d11,d12,d21,d22) 
tss = lftf(tss1,tss2)
ss = lftf(tss1,ss2) 
ss = lftf(ss1,tss2)

Description lftf computes a state-space closed loop transfer function from input u1 to 
output (see Figure 2-11, Two-Port Linear Fractional Transformation.), given 
the open loop transfer function from u1 to y1

and the transfer function tss2 from u2 to y2

Either of the systems (tss1 or tss2) can be “one-port” state space or “two-port.” 
lftf also handles the case when some of the A, B or C matrices are empty.

The output variables will be returned in state-space form or, if the inputs are 
in the optional mksys form, then the returned outputs will likewise be in mksys 
form.

tss1 :

A B1 B2

C1 D11 D12

C2 D21 D22

=

tss2 :

a b1 b2

c1 d11 d12

d2 d21 d22

=



lftf

2-66

Figure 2-11:  Two-Port Linear Fractional Transformation.

Algorithm lftf implements the formulae in [1] for (aa, bb, cc, dd), when the second input 
system is a “one-port” :

where .

The formula for the other cases are similar.

See Also interc, sectf

References 1 M. G. Safonov, E. A. Jonckheere, M. Verma and D. J. N. Limebeer, 
“Synthesis of Positive Real Multivariable Feedback Systems,” Int. J. 
Control, vol. 45, no. 3, pp. 817-842, 1987.

2
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Ã, B̃ C̃ D̃,,
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2lqgPurpose LQG optimal control synthesis. 

Syntax [af,bf,cf,df] = lqg(A,B,C,D,W,V) 
[ssf] = lqg(ss,w,v)

Description lqg computes an optimal computes an optimal controller to stabilize the plant 
G(s)

and minimize the quadratic cost function

Figure 2-12:  LQG Synthesis.

The plant noise ξ and measurement noise θ are white and Gaussian with joint 
correlation function

x· Ax= Bu ξ+ +

y Cx= Du θ+ +

JLQG E
T ∞→
lim= xTuT[ ]

0

T

∫
Q Nc
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T R

x
u

dt

 
 
 
 
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 
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The input variables W and V are

The LQG controller is returned as F(s) := (af, bf, cf, df).

Algorithm The solution of the LQG problem is a combination of the solutions of Kalman 
filtering and full-state feedback problems based on the so-called separation 
principle. The individual problems are explained under lqe and lqr in the 
Control System Toolbox. The final negative-feedback controller  
has the form (e.g. [1])

Note that the sign of is minus that in the function h2lqg; this is because 
by convention lqg feedback is negative (i.e, ) while the h2lqg is 
positive (i.e, ). The lqg feedback can also be realized as a full-state 
feedback and Kalman filter:

See Also h2lqg, hinf, hinfdemo, linf, linfdemo, ltru, ltry

References [1] M. Athans, “The Role and Use of the Stochastic Linear-Quadratic-Gaussian 
Problem in Control System Design,” IEEE Trans. Automat. Contr., AC-16, pp. 
529-552, Dec. 1971.

W
Q Nc

Nc
T R

= ; V
Ξ Nf

Nf
T Θ

=

u F s( )y–=

F s( ) :
A KfC2 B2– Kc Kf+ D22Kc– Kf

Kc 0
=

F s( )
u F s( )y–=

u F s( )y=

u Kc–= x̂ (full-state feedback)

x̂
·

A= x̂ B+ u Kf+ y C– x̂ Du–( ) (Kalman feedback)
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2ltru, ltryPurpose LQG loop transfer recovery. 

Syntax [af,bf,cf,df,svl] = ltru(A,B,C,D,Kc,Xi,Th,r,w) 
[af,bf,cf,df,svl] = ltry(A,B,C,D,Kf,Q,R,q,w) 
[ssf,svl] = ltru(ss,Kc,Xi,Th,r,w,svk) 
[ssf,svl] = ltry(ss,Kf,Q,R,q,w,svk)

Description Given a plant with transfer function , ltru 
implements the Doyle-Stein procedure for recovering full-state-feedback loop 
transfer function 

via a Kalman-filter-reconstructed state feedback with fictitious plant noise. 
Singular-value Bode plots of the reconstructed-state loop transfer function 
matrix 

are computed and displayed for each value of the fictitious noise intensity 
parameter r, so that you can observe the loop-transfer recovery as r increases,

Input variables are: 

A,B,C,D := , (the plant) 

ss = optional system matrix form 

Kc — full-state feedback gain matrix 

Xi — nominal plant noise intensity 

Th — measurement noise intensity 

r — row vector of intensities of fictitious plant noise 

ω — frequencies for Bode plot

The row vector r contains a set of “recovery” gains (e.g., ). 
ltru will iteratively compute the singular-value Bode plot of the loop gain 
F(s)G(s) and plot the associated curves in front of the user, until the gain vector 
r runs out of its entries. 

G s( ) D= C+ Is A–( ) 1– B

L s( ) Kc= Is A–( ) 1– B

Lr s( ) F= s( )G s( ) Kc Is A– B+ Kc Kf+ C Kf– DKc( ) 1– Kf[ ]= G s( )

Lrr ∞→
lim jω( ) L= jω( )

A B
C D

1 1.e5… 1.e15,,[ ]
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The controller F(s) corresponding to the last value of r is returned in 
state-space (af,bf,cf,df). All the singular values (MIMO case) or the Nyquist 
loci (SISO case) will be returned in variable svl. The frequency response of 
L(jω) is stored in svk which can be passed into ltru as an optional input and 
displayed superimposed on the frequency plots of Lr(jω).

ltry does the “dual” problem, i.e., recovery of the observer loop transfer 
function 

Examples Consider the fighter design example in [2]. Apply the LTR procedure ltry to 
the plant model, and let the observer be a Kalman-Bucy filter.

The initial cost and recovery gains used in this example are

The singular value Bode plot is shown in Figure 2-13, Example of LQG/LTR at 
Plant Output..

The LQG/LTR loop transfer function converges in the limit (as q increases to 
∞) to C (Is – A)-1 Kf, which is the KBF loop transfer function.

Algorithm The controller F(s) is computed as

 

where, in ltru, the Kalman filter gain is  and Σ satisfies the 
Kalman filter Riccati equation

In ltry gain Kc is computed as  where P satisfies the full-state 
Riccati equation 

The theory is documented in [1].

Lq s( ) C= Is A–( ) 1– Kf

Ξ BBT
= , Θ I= , Q q= CTC R I,=,

q 1 1e5 1e10 1e15, , ,[ ]=

F s( ) Kc Is A– B+ Kc Kf+ C Kf– DKc( ) 1– Kf=

Kf ΣCTΘ 1–
=

0 Σ= AT A+ Σ Σ– CTΘ 1– CΣ Ξ rBBT
+ +

Kc R 1–
= BTP

0 P= A AT
+ P PBR 1–

– BTP Q qCT
+ + C
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Figure 2-13:  Example of LQG/LTR at Plant Output.

Limitations The ltru procedure may fail for nonminimum phase plants or for plants with 
number of control inputs exceeds the number of measurement outputs. The 
dual procedure ltry may fail for nonminimum phase plants or for plants with 
fewer inputs than outputs.

See Also h2lqg, hinf, hinfdemo, lqg, ltrdemo

References [1] J. Doyle and G. Stein “Multivariable Feedback Design: Concepts for a 
Classical/Modern Synthesis,” IEEE Trans. on Automat. Contr., AC-26, pp. 
4-16, 1981.

[2] M. G. Safonov, A. J. Laub, and G. Hartmann, “Feedback Properties of 
Multivariable Systems: The Role and Use of Return Difference Matrix,” IEEE 
Trans. of Automat. Contr., AC-26, pp. 47-65, 1981.
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2mksys, vrsys, issystemPurpose Create a single MATLAB variable containing all the matrices describing a 
system, their dimensions and their “standard” names (depending on the type 
of system). mksys implements the Robust Control Toolbox system data 
structure used to simplify user interaction with functions whose input or 
output variables include state-space systems, transfer function matrices, or 
other types of systems. 

Syntax S = mksys(a,b,c,d) 
S = mksys(v1,v2,v3,…vn, TY) 
[VARS,N] = vrsys(NAM)
[I,TY,N] = issystem(S)

Description mksys packs several matrices describing a system of type TY into a MATLAB 
variable S, under “standard” variable names determined by the value of the 
string TY as follows:

The value of TY is packed into S under the name ty.

Table 1-1  Table of System Names

Type V1, V2, …, Vn Description

'ss' (a,b,c,d,ty) Standard state-space (default)

'des' (a,b,c,d,e,ty) Descriptor system

'tss' (a,b1,b2,c1,c2,d11,d12,d21,d22,e,ty) Two port state-space

'tdes' (a,b1,b2,c1,c2,d11,d12,d21,d22,e,ty) Two-port descriptor

'gss' (sm,dimx,dimu,dimy,ty) General state-space

'gdes' (e,sm,dimx,dimu,dimy,ty) General descriptor

'gpsm' (psm,deg,dimx,dimu,dimy,ty) General polynomial system matrix

'tf' (num,den,ty) Transfer function

'tfm' (num,den,m,n,ty) Transfer function matrix

'imp' (y,ts,nu,ny) Impulse response
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The function branch recovers the individual matrices packed into the system 
S; e.g.,

 [a,b,c,d]=branch(ssg);

See branch and tree for further details.

vrsys returns a string VARS and an integer N where VARS contains the list 
(separated by commas) of the N names of the matrices associated with a system 
described by the string name NAM. Valid values for the string NAM are strings 
of the form

 [TY '_' SUF]

where SUF is a suffix string which is appended to the standard variable names 
determined from the table above by the string TY. For example, the MATLAB 
command [var,n] = vrsys('ss_g'); returns the following:

var 

= 'ag,bg,cg,dg' 

n 

= 4.

issystem returns a value for i of either 1 (true) or 0 (false) depending on 
whether or not the variable S is a system created by the function mksys. Also 
returned is the type of system TY and the number N of variable names 
associated with a system of type TY, except that if S is not a system then TY = 
[ ]; and N = 0.

Examples The following MATLAB commands pack and recover the state-space matrices 
of any system easily.

% Pack the state-space (ag,bg,cg,dg) into ssg: 
% (no need to specify ’ss' in this case) 
ssg = mksys(ag,bg,cg,dg); 
% Pack a massive two-port state-space into tss: 
tss = mksys(A,B1,B2,C1,C2,D11,D12,D21,D22,'tss''); 
% Pack the descriptor state-space (ag,bg,cg,dg,eg)
% into desg: 
desg = mksys(ag,bg,cg,dg,eg,'des');
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Now, you can extract any matrix or matrices out of the system variable using 
branch:

% Extract “ag, dg” out of system variable 
% “ss_g”:
[ag,dg] = branch(ssg,'ag,dg'); 

% Extract “D22,C1,C2” out of system variable 
% “tss_”: 
[D22,C1,C2] = branch(tss,'D22,C1,C2'); 
% Extract “ag,eg” out of system variable 
% “des_g”: 
[ag,eg] = branch(desg,'ag,eg');

See Also tree, branch, graft, issystem, istree, vrsys
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2muoptPurpose Compute an upper bound on the structured singular value using multiplier 
approach. 

Syntax [mu,ascaled,logm,x] = muopt(a) 
[mu,ascaled,logm,x] = muopt(a,k)

Description muopt(A) produces the scalar upper bound mu on the structured singular value 
(ssv) of a p×q matrix A having n real or complex uncertainty blocks using the 
optimal multiplier method.

The optional input k records the uncertainty block sizes with default value 
k = ones(p, 2). k can be an n by 1 or n by 2 matrix whose rows are the 
uncertainty block sizes for which the SSV is to be evaluated. If only the first 
column of k is given then each of the individual uncertainty blocks is taken to 
be square, as if k(:, 1) = k(:, 2). Real uncertainty (must be scalar) is indicated by 
multiplying the corresponding row of K by minus one, e.g., if the second 
uncertainty block is real then set K(2)=-1.

mu returns an upper bound on the real/complex structured singular value of A. 
The output ascaled returns the multiplier-scaled A-matrix

where = M½(µI – A)(µI + A)-1M -½* and M is the optimal diagonal 
generalized Popov multiplier scaling matrix. The output logm returns 

, a complex vector of length p. The multiplier matrix M is related 
to the D,G–scales of [3] by .

x returns a normalized eigenvector associated with the smallest eigenvalue of 
the positive semidefinite matrix .

Algorithm muopt is based on the optimal generalized Popov multiplier theory of Safonov 
and Lee [1] and uses the computational algorithm of Fan and Nekooie [2]. The 
upper bound of µ returned is found as the solution to the optimization

Ascaled µ I Ãscaled–( ) I Ãscaled+( )
1–

=

Ãscaled

og diag M½( )( )
M D jG+=

Ãscaled Ãscaled
*+

minM M∈    µ

subject to                     

         Ãscaled Ãscaled
* 0≥+( )
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where = M½(µI – A)(µI + A)-1M-½* and M is the set of block diagonal 
generalized Popov multiplier for the uncertainty structure determined by k. 
This results in the returned value of  satisfying . When 
µ=1, the Popov scaling matrix M is related to the D,G–scales of [3] by 

. 

Note that in the case in which all uncertainties are complex, the diagonal 
multiplier matrix M is real and  becomes simply . In 
this case the optimal µ is computed via the diagonally scaled singular value 
optimization .

Limitations The algorithm in general produces a smaller upper bound on µ than perron, 
psv and osborne, but muopt requires significantly greater computation time 
than these other functions.

See Also  perron, psv, osborne, ssv

References [1] M. G. Safonov, and Peng-Hin Lee, “A Multiplier Method for Computing 
Real Multivariable Stability Margins,’’ Proc. IFAC World Congress, Sydney, 
Australia, July 1993.

[2] M.K.H. Fan and B. Nekooie, “An Interior Point Method for Solving Linear 
Matrix Inequality Problems,” SIAM J. Contr. and Optim., to appear.

[3] M.K.H. Fan, A. Tits and J. Doyle, Robustness in the Present of Mixed 
Parametric Uncertainty and Unmodelled Dynamics, IEEE Trans. on Autom. 
Contr., vol. AC-36, no. 1, pp. 25-38, January 1991.

Ãscaled

Ascaled µ σ Ascaled( )=

M D jG+=

Ascaled Ascaled M½ AM ½–=

minM M∈    σ M½ AM ½ –(=
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2musynPurpose µ synthesis procedure.

Syntax [acp,…,dcp,mu,logd,ad,…,dd,gam] = musyn(A,B1,B2,…,D22,w) 
[acp,…,dcp,mu,logd,ad,…,dd,gam] = ...

musyn(A,B1,B2,…,D22,w,gammaind,aux,logd0,n,blksz,flag)
[sscp,mu,logd,ssd,gam] = musyn(tss,w) 
[sscp,mu,logd,ssd,gam] = ...

musyn(tss,w,gammaind,aux,logd0,n,blksz,flag)

Description Given a two-port plant state space (in its regular form mksys data form tss):

musyn automates the µ synthesis D – F iteration procedure that iteratively 
applies hinfopt and fitd to find a control law 

and a diagonal scaling matrix  that attempts 
to satisfy the robust performance objective

Here the identity matrices  are of dimensions determined by the input 
variable blksz described below.

The resulting structured singular value upper bound µ is returned together 
with the control law F(s) (sscp). The variable logd returns as its rows the log 
magnitude frequency response of the diagonal entries of the diagonal scaling 
matrix D(s). 

Also returned is a state-space realization of the D(s) used in the hinfopt 
portion of the last D – F iteration along with the corresponding optimal value 

P s( ) :

A B1 B2

C1 D11 D12

C2 D21 D22

=

F s( ) :
Acp Bcp

Ccp Dcp

=

D s( ) diag d1 s( )Ik1
…, dn, s( )Ikn

( )=

DTy1u1
D 1–

∞ 1<

Ik1
…, Ikn

,
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of γ (gam) from the hinfopt γ-iteration. See the documentation of hinfopt for 
further details.

The input variable w contains the frequency at which the structured singular 
value µ is to be evaluated. The remaining input variables gammaind, aux, logd0, 
n, blksz, and flag are optional. The variable logd0 allows you to specify an 
initial guess for logd (default D(s) = I). See the documentation for fitd for an 
explanation of n, blksz, and flag and their default values. The documentation 
for hinfopt explains the uses and defaults for the optional input variables 
gammaind and aux. If an optional variable is given as the empty matrix [ ], then 
it assumes its default value.

Examples Following are the MATLAB input commands for a simple µ−synthesis problem:

% PLANT DATA:
a=2; b1=[.1,-1]; b2=-1; 
c1=[1;.01]; d11=[.1,.2;.01,.01];d12=[1; 0]; 
c2=1; d21=[0,1]; d22=3; 

tss=mksys(a,b1,b2,c1,c2,d11,d12,d21,d22,'tss');
w = logspace(-2,1); % FREQUENCY VECTOR

% Starting µ Synthesis D-F Iterations: 
[sscp,mu,logd0] = musyn(tss,w);

% DISPLAY OPTIMAL MU PLOTS: 
loglog(w,mu);

% Now improve using frequency dependent D(s): 
[sscp,mu1,logd1] = musyn(tss,w,[ ],[ ],logd0,1);

% DISPLAY OPTIMAL MU PLOTS: 
loglog(w,mu,w,mu1);

The foregoing example illustrates the basic µ-synthesis iteration. In practice, 
you will generally prefer to use a constant (n = 0) diagonal scaling matrix D(s) 
because it leads to a much lower order control law. It may also be necessary to 
experiment with the frequency range w, adjusting it so that it coincides roughly 
with the frequency range over which the value of µ returned by ssv is 
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unacceptably large. In “Design Case Studies” of the Tutorial a more detailed 
µ-synthesis example is provided.

Algorithm The D – F iteration procedure is as follows [1, 2]:

Initialize: If the input variable logd0 is present, go to Step 3; otherwise set 
D(s) = I and continue.

1 Use the H∞ control method (hinf) to find an F(s) which minimizes the cost

function .

2 Use ssv to estimate the structured singular value Bode plot and the 
corresponding frequency response of logd. The function ssv computes an 
upper bound on the structured singular value µ and produces the 
corresponding D(s) by attempting, at each frequency ω, to solve the 
minimization .

3 If the cost is small enough stop; otherwise continue.

4 Using fitd, curve fit an order n rational approximation to each of the 
diagonal elements of the D(s) obtained in Step 2 and, using augd, augment 
the plant tss with the fitted D(s). Go to Step 1.

 See the Tutorial chapter “Design Case Studies” for further discussion.

The order of the µ-synthesis controller can be large when a frequency 
dependent D(s) is employed. The order in general is equal to the order of the 
plant plus twice the order of D(s). For example, if the plant tss has six states 
and D(s) has six states, then the order of the µ-synthesis control law will be18, 
i.e., three times the order of the original plant. This highly limits the potential 
of practical applications and hardware implementations. Therefore, it is 
desirable to use as low an order D(s) as is possible; preferably a constant D(s). 
The combined D – F iteration procedure is not convex, so in general the µ 
synthesis controller resulting from the D – F iteration is suboptimal.

See Also hinf, augd, fitd, fitgain, ssv

References [1] M. G. Safonov, “L∞ Optimization vs. Stability Margin,” Proc. IEEE Conf. on 
Decision and Control, San Antonio, TX, December 14-16, 1983.

[2] J. C. Doyle, “Synthesis of Robust Controllers and Filters,” Proc. IEEE Conf. 
on Decision and Control, San Antonio, TX, December 14-16, 1983.

DTy1u1
D 1–

∞

µ minD jω( )= σ D jω( )Ty1u1
jω( )D 1– jω( )( )
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2normhinf, normh2Purpose Compute the H∞ norm and H2 norm of a system.

Syntax [h2n] = normh2(a,b,c,d) 
[hinfn] = normhinf(a,b,c,d,aux) 
[hinfn] = normhinf(a,b,c,d) 
[h2n] = normh2(ss) 
[hinfn] = normhinf(ss,aux) 
[hinfn] = normhinf(ss)

Description Given a stable system , normh2 computes its H2 norm and 
normhinf computes its H∞ norm.

The computation of  requires a search, therefore an optional input 
variable of aux overrides default values for initializing the search

where tol terminates the search process (default=0.001), and gammax and 
gammin are initial guesses for upper and lower bounds on . Defaults for 
gammax and gammin are

where the ’s are the Hankel singular values of G(s). The bounds may be 
found among the results in [1, 2]. 

Algorithm Consider a strictly proper, stable . The two norm of G(s) is

where P is the controllability grammian of (A, B) and Q is the observability 
grammian of (C, A) computed by gram.

G s( ) : A B C D, , ,( )=

G ∞

aux tol gammax gammin[ ]=

G ∞

gammin max σ D( ) σH, G( )[ ]=

gammax σ D( ) 2 σHi
G( )

i 1=

n

∑+=

σHi
G( )

G s( ) : A B C 0, , ,( )=

G 2 = trace CPCT( ) trace= BTQB( )
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For computing the H∞ norm, consider the following fact:

Given a , if and only if the right spectral factorization (cf. sfr.m) 
Hamiltonian matrix

has no imaginary eigenvalues; here R = γ2I – DTD > 0.

normhinf uses a standard binary search to find the optimal γ similar to the 
algorithm used in hinfopt.

See Also gram, hinf, hinfopt

References [1] K. Glover, “All Optimal Hankel Norm Approximations of Linear 
Multivariable Systems, and Their L -Error Bounds,” Int. J. Control, vol. 39, 
no. 6, pp. 1145-1193, 1984.

[2] S. Boyd, V. Balakrishnan, and P. Kabamba, “In Computing the H  Norm 
of a Transfer Matrix,” Mathematics of Control, Signals, and Systems, 1988.

γ 0> , G ∞ γ<

Hγ
A BR 1–

+ DTC BR 1– BT
–

CT I DR 1–
+ DT( )C    A BR 1–

+ DTC( )
T

–

=

∞
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2obalrealPurpose Balanced realization via B. C. Moore’s algorithm. 

Syntax [abal,bbal,cbal,g,t] = obalreal(a,b,c)

Description This M-file does functionally the same thing as balreal, but the balanced 
reachability and observability grammians (P and Q) are ordered and 
P = Q = diag(g). The similarity transformations are accumulated in the 
variable t. Moore’s [1] kth-order reduced model Gk(s) can be simply extracted 
from the balanced state-space

obalreal is an M-file that implements the algorithm of [1]. Balreal uses the 
Cholesky decomposition to find the associated left and right eigenspaces of PQ. 
Obalreal is superior to the existing balreal M-file in two ways: 

1 Grammians are ordered. 

2 Transformations are carried out using reliable SVD’s.

What makes balanced realization important is not only its structure but also 
L∞ the norm error bound associated with its kth order reduced model ([2] and 
[3]):

Therefore, you can anticipate how big an error the reduced model will have 
before actually doing the model reduction.

Limitations The original system (A, B, C, D) has to be minimal, otherwise the balancing 
algorithm in either obalreal [1] or balreal [4] breaks down. See schmr and 
balmr for robust methods for computing Gk without balancing.

See Also balreal, balmr, schmr, schbal, ohklmr, ohkapp, reschmr

Ak Bk

Ck D
: Abal 1:k 1:k,( ) Bbal 1:k :,( )

Cbal : 1, :k( ) D
=

G s( ) Gk– s( ) ∞ 2≤ σi

i k= 1+

n

∑
 
 
 
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References [1] B. C. Moore, “Principal Component Analysis in Linear Systems: 
Controllability, Observability and Model Reduction,” IEEE Trans. on Automat. 
Contr., AC-26, pp. 17-31, February 1981.

[2] D. F. Enns, “Model Reduction with Balanced Realizations: An Error Bound 
and Frequency-Weighted Generalization,” Proc. IEEE Conf. on Decision and 
Control, Las Vegas, NV, Dec. 12-14, 1984.

[3] K. Glover, “All Optimal Hankel Norm Approximations of Linear 
Multivariable Systems, and Their L -error Bounds,” Int. J. Control, vol. 39, 
no. 6, pp. 1145-1193, 1984.

[4] A. J. Laub, M. T. Heath, C. C. Page, and R. C. Ward, “Computation of 
balancing transformations and other applications of simultaneous 
diagonalization algorithms,” IEEE Trans. on Automat. Contr., AC-32, pp. 
115-122, 1987.

[5] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model 
Reduction,” IEEE Trans. on Automat. Contr., vol. AC-34, no. 7, pp. 729-733, 
July 1989.
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2ohkapp, ohklmrPurpose Optimal Hankel minimum degree approximation without balancing.

Syntax [ax,bx,cx,dx,ay,by,cy,dy,aug] = ohkapp(a,b,c,d,Type)
[ax,bx,cx,dx,ay,by,cy,dy,aug] = ohkapp(a,b,c,d,Type,in)
[am,bm,cm,dm,totbnd,svh] = ohklmr(a,b,c,d,Type) 
[am,bm,cm,dm,totbnd,svh] = ohklmr(a,b,c,d,Type,in)
[ssx,ssy,…] = ohkapp(ss,…) 
[ssm,…] = ohklmr(ss,..)

Description ohkapp computes the kth order optimal Hankel minimum degree approximation 
(OHMDA)

of a possibly non-minimal nth order stable system

such that Gx is stable and

where  denote Hankel singular values of G(s), i.e., the square 
roots of eigenvalues of PQ, where P and Q are the reachability and 
observability grammians of (A, B, C, D). 

An anticausal Gy(s) is also returned in (Ay, By, Cy, Dy). Together Gx(s) and Gy(s) 
possess the following important property

[ax,bx,cx,dx,ay,by,cy,dy,aug] = ohkapp(a,b,c,d,1,0) computes the 
zeroth order OHMDA, i.e., the anticausal OHMDA of a stable system, which is 
an important intermediate step of the L∞ control synthesis.

Gx s( ) Cx= Is Ax–( ) 1– Bx Dx+

G s( ) C= Is A–( ) 1– B D+

G Gx– ∞ totbnd≤ ,

totbnd 2 σi

i k 1+=

n

∑=

σ1 σ2 … σn≥ ≥ ≥

G Gx– Gy– ∞ σk 1+≤
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Variable aug contains the following information: 

aug(1,1) = σ1
aug(1,2) = number of states removed 
aug(1,3) = totbnd 
aug(4:4+n-1) = [σ1, σ2, …, σn].

ohklmr also computes the kth order OHMDA, but allows the system to be 
unstable. It works by applying ohkapp to the stable and antistable parts of G(s) 
(obtained via stabproj), then applying addss. Totbnd returns the L  norm 
error bound of the approximation. Variable svh returns the Hankel singular 
values  of [G(s)]– (stable part) and  of [G(–s)]+ (reversed antistable 
part), i.e.,

where m denotes the number of stable roots, n– m denotes the number of 
unstable roots.

Both ohkapp and ohklmr provide three options: 

1 Type = 1, in = k, size of reduced order model. 

2 Type = 2, in = tol, find a kth order reduced model such that the total error 
totbnd is less than tol. 

3 Type = 3, display svh and prompt for k + 1. In this case, there is no need to 
assign a value for in.

Algorithm ohkapp and ohklmr employ the algorithm described in [3], which is a 
“basis-free” descriptor system implementation of the OHMDA. The descriptor 
formulae bypass the numerically ill-conditioned balanced realization step 
required by the earlier state-space formulae [1, 2].

ohklmr uses the M-function stabproj to split G(s) into the sum of stable and 
antistable parts, then applies ohkapp to each part.

See Also balmr, mrdemo, obalreal, bstschmr, schmr, stabproj

∞
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References [1] M. Bettayeb, L. M. Silverman and M. G. Safonov, “Optimal Approximation 
of Continuous Time Systems,” IEEE Conf. on Decision and Control, 
Albuquerque, NM, Dec. 10-12, 1981.

[2] K. Glover, “All Optimal Hankel Norm Approximation of Linear 
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6, pp. 1145-1193, 1984.
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2osbornePurpose Compute an upper bound on the structured singular value via the Osborne 
method.

Syntax [mu,ascaled,logd] = osborne(a) 
[mu,ascaled,logd] = osborne(a,k)

Description osborne computes a block-diagonal scaling that minimizes the Frobenius norm 
of a p by q matrix a. The maximum singular value of the scaled matrix is 
returned as mu; it is a scalar upper bound on the Structured Singular Value 
(SSV) of the matrix a.

Also returned are the diagonally scaled matrix ascaled and the logarithm of 
the Osborne diagonal scaling logd.

The optional input k records the uncertainty block sizes with default value 
k = ones(p, 2). The variable k can be an n by 1 or n by 2 matrix whose rows are 
the uncertainty block sizes for which the SSV is to be evaluated. If only the first 
column of k is given then each individual uncertainty block is taken to be 
square, as if k(:, 1) = k(:, 2).
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Algorithm The Osborne iteration algorithm is as follows: 

1 Partition the given matrix a according to its pre-determined uncertainty 
block size k. 

2 Form the n by n matrix F whose elements are the largest singular values of 
the blocks of the matrix A. 

3 Compute the diagonal scaling D that minimizes the Frobenius norm of 
DFD-1 via the following algorithm:

% Initialize D scaling
D = eye(n);
for i = 1 : n

while abs(D(i) – 1) < 1.e – 6
offrow(i) = sum(norm(off-diagonal terms of ith row));
offcol(i) = sum(norm(off-diagonal terms of ith column));
D(i) = offrow (i)/o f f col(i);
F(i, :) = F(i, :)/D(i);
F(:, i) = F(:, i * D(i);

end
end

Limitations The Osborne algorithm is ill-posed when the matrix F is reducible [1]; as 
sometimes is the case when some of the matrix’ entries are zero. This problem 
is solved in osborne by slightly perturbing the zero entries, to create a nearby 
irreducible matrix. 
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Examples Following are some simple examples of problems involving the difficult 
reducible case that are easily handled by the Robust Control Toolbox 
implementation of the osborne command:

% A reducible case as compared to sigma 
A = eye(10); A(1,10) = 100000; 
[mu,Ascaled,logd] = osborne(A); 
mu % Display answer mu

% Another reducible case as compared to sigma 
A = eye(8); 
A(1,3) = 100000; A(4,8) = 500000; 
[mu,Ascaled,logd] = osborne(A); 
mu % Display answer mu

See Also muopt, psv, perron, ssv, sigma

References [1] E. E. Osborne, “On Preconditioning of Matrices,” J. of Assoc. of Computing 
Machinery, vol. 7, pp. 338-345, March, 1960.
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2perron, psvPurpose Compute an upper bound on the structured singular value via the Perron 
eigenvector method.

Syntax [mu] = perron(a) 
[mu] = perron(a,k) 
[mu,ascaled,logd] = psv(a)
[mu,ascaled,logd] = psv(a,k)

 Description perron produces the Perron eigenvalue for a given real or complex p by q 
matrix. This value serves as a scalar upper bound “mu” on the Structured 
Singular Value (SSV). 

psv computes a tighter SSV upper bound mu via the formula

where Dp = diag(exp(logd)) is the Perron optimal diagonal scaling. In addition, 
psv returns the log magnitude of the optimal diagonal scaling logd in a column 
vector, and the scaled matrix  is returned in ascaled.

The optional input k records the uncertainty block sizes with default value
k = ones(q, 2) corresponding to 1 by 1 uncertainty blocks. k can be an n by 1 or 
n by 2 matrix whose rows are the uncertainty block sizes for which the SSV is 
to be evaluated. If only the first column of k is given, then each individual 
uncertainty block is taken to be square, as if k(:, 1) = k(:, 2).

Algorithm The values of mu and logd are found by examining the eigenvalues and 
eigenvectors of the n by n nonnegative square matrix F formed from by A 
replacing each block of A (as defined by the partitioning k) by its greatest 
singular value. For any given positive square matrix (i.e., matrix with positive 
entries), there exists a positive real eigenvalue λp of multiplicity one whose 
magnitude is greater than the real part of any other eigenvalue,:

This real eigenvalue λp is called the Perron eigenvalue of F, and its left and 
right eigenvectors, denoted as yp and xp respectively, are called Perron 
eigenvectors.

mu σ= Ascaled[ ] σ= DpADp
1–[ ]

Ascaled

λp max
i

= Re λi F( )( )
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In 1982, Safonov [1] showed that the Perron eigenvalue is a good upper bound 
on the structured singular value µ, i.e.,

is the Perron optimal scaling matrix

and

Moreover, the above inequalities become equalities when A = F so that, in the 
case in which A is a positive matrix and the uncertainty blocks are scalar, the 
Perron eigenvalue bound on µ is tight.

For reducible matrices the Perron optimal scaling matrix Dp can be singular, 
which would lead to numerical instability if corrective action were not taken. 
This problem is solved in psv (in the same fashion as it is in the function 
osborne) by very slightly perturbing the matrix F to a nearby irreducible 
matrix which has a slightly greater Perron eigenvalue. See osborne for further 
details and examples. Perturbation is not required with the perron function 
since Dp is not computed.

 As compared to Osborne or nonlinear programming techniques, Perron 
eigenvector algorithms implemented by perron and psv require no iteration 
and so tend to be faster.

µ A( ) inf
D D∈

≤ DAD 1–
∞ DpADp

1–
∞ λp≤ ≤ F( )

Dp D∈

Dp diag= d1, d2, …, dn( )

di

ypi

xpi

-------=
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Examples Several problems can be solved via the following psv commands, where most 
careless algorithms fail:

% An reducible case as compared to sigma 
A = eye(10); A(1,10) = 100000; 
[mu,Ascaled,logd] = psv(A); 
s1 = max(svd(A)); [s1, mu],

% Another reducible case as compared to sigma 
A = eye(8); 
A(1,3) = 100000; A(4,8) = 500000; 
[mu,Ascaled,logd] = psv(A); 
s1 = max(svd(A)); [s1, mu],

See Also muopt, osborne, ssv, sigma, dsigma

References [1] M. G. Safonov, “Stability Margins for Diagonally Perturbed Multivariable 
Feedback Systems,” IEE Proc., vol. 129, Part D, pp. 251-256, 1982.
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2reigPurpose Real and ordered eigenstructure decomposition.

Syntax [xr,d] = reig(a) 

[xr,d] = reig(a,Opt)

Description Reig produces a “real” and “ordered” eigenstructure decomposition such that 

where Xr is a set of “real” eigenvectors that span the same eigenspace as the 
complex ones. D is a real block diagonal matrix with real eigenvalue appearing 
as 1 × 1 block and/or complex eigenvalue a + jb appearing as a 2 × 2 block 

Two types of ordering are available

• Opt = 1 — eigenvalues are ordered by real parts (default). 

• Opt = 2 — eigenvalues are ordered by their magnitudes.

Algorithm The kth real eigenvector pair xr(:, k:k+1) is 

See Also eig, cschur

Xr
1– AXr D=

a b
b– a

xr : k, :k 1+( )  xr : k,( )( )real    xr : k,( )( ) imag[ ] =
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2riccondPurpose Condition numbers of continuous algebraic Riccati equation.

Syntax [tot] = riccond(a,b,qrn,p1,p2)

Description Riccond provides the condition numbers of continuous Riccati equation. The 
input variable qrn contains the weighting matrix

for the Riccati equation

where P = P2/P1 is the positive definite solution of ARE, and [P2; P1] spans the 
stable eigenspace of the Hamiltonian

Several measurements are provided:

• Frobenius norms norAc, norQc, norRc of matrices Ac, Qc, and Rc, 
respectively. 

• condition number conR of R. 

• condition number conP1 of P1. 

• Arnold and Laub’s Riccati condition number (conArn) [1]. 

• Byers condition number (conBey) [2]. 

• residual of Riccati equation (res).

The output variable tot puts the above measurements in a column vector

 tot= [norA,norQ,norRc,conR,conP1,conBey,res]'

For an ill-conditioned problem, one or more of the above measurements could 
become large. Together, these measurements give a general sense of the Riccati 
problem conditioning issues.

qrn Q N
N′ R

=

A′P P+ A PB N+( )– R 1– B′P N′+( ) Q+ 0=

H
Ac Rc–

Qc– A′c–

A BR 1–
– N′( ) BR 1–

– B′

Q NR 1–
– N′( )– A BR 1–

– N′( )–
= =
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Algorithm Arnold and Laub’s Riccati condition number is computed as follows [1]:

where Acl = Ac – RcP and

Byers’ Riccati condition number is computed as [2]

See Also are, aresolv, daresolv, driccond

References [1] W. F. Arnold, III and A. Laub, “Generalized Eigenproblem Algorithms and 
Software for Algebraic Riccati Equations,” Proceedings of the IEEE, Vol. 72, 
No. 12, Dec. 1984.

[2] R. Byers, “Hamiltonian and Symplectic Algorithms for the Algebraic Riccati 
Equation,” Ph.D. dissertation, Dept. of Comp. Sci., Cornell University, Ithaca, 
NY, 1983.

conArn
Qc F

P Fsep A′cl’ Acl–( )
-----------------------------------------------------=

sep A′cl’ Acl–( ) min
i

= σi In A′cl⊗ A′cl+ In⊗[ ]

conBye
Qc F 2 Ac F P F Rc F+ P F

2
+

P Fsep A′cl’ Acl–( )
--------------------------------------------------------------------------------------=
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2sectfPurpose State-space sector bilinear transformation.

Syntax [ag,bg1,…,dg22,at,bt1,…,dt21,dt22] = sectf(af,bf1,…,df22,secf,secg) 
[ag,bg,cg,dg,at,bt1,…,dt21,dt22] = sectf(af,bf,cf,df,secf,secg) 
[tssg,tsst] = sectf(tssf,secf,secg) 
[ssg,tsst] = sectf(ssf,secf,secg)

Description sectf may be used to transform conic-sector control system performance 
specifications into equivalent H∞-norm performance specifications. Given a 
two-port state-space system F(s) := tssf, sectf computes a 
linear-fractionally-transformed two-port state-space system G(s) := tssg such 
that the channel-one Input-Output (I/O) pairs (ug1, yg1) of G(s) are in sector 
secg if and only if the corresponding I/O pairs of F(s) are in secf. Also computed 
is a two-port system T(s) such that G(s) is obtained via the MATLAB command 
tssg=lftf(tsst,tssf).

Input variables are: 

The open loop plant F(s)

tssf mksys(af,bf1,bf2,cf1,cf2,df11,df12,df21,df22,'tss'),

or

ssf mksys(af,bf,cf,df)

Conic sector specifications for F(s) and G(s), respectively, in one of the 
following forms:

secg, 
secf

secg, secf Sector inequality:

[-1,1] or [-1;1] 

[0,Inf] or 
[0;Inf]

[A,B] or [A;B]

[a,b] or [a;b] 

y 2 u 2≤

0 Re y∗u[ ]≤

0 Re≥ y Au–( )∗ y Bu–( )[ ]

0 Re≥ y diag a( )u–( )∗ y diag b( )u–( )[ ]
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where A,B are scalars in [–∞, ∞] or square matrices; a,b are vectors; S=[S11 
S12;S21,S22] is a square matrix whose blocks S11,S12,S21,S22 are either 
scalars or square matrices; tsss is a two-port system 
tsss=mksys(a,b1,b2,…,’tss’) with transfer function 

Output variables are: 

Here tssf, tsst, and tssg are two-port state-space representations of F(s), 
T(s), and G(s).

If the input F(s) is specified as a standard state-space system ssf, then the 
sector transformation is performed on all channels of F(s), so that the output 
G(s) will likewise be returned in standard state-space form ssg.

Examples The statement G(jω) inside sector[–1, 1] is equivalent to the H∞ inequality

Given a two-port open-loop plant P(s) := tssp1, the command 
tssp1 = sectf(tssp,[0,Inf],[-1,1]) computes a transformed P(s) := tssp1 
such that an H∞ feedback K(s), which places the closed-loop transformed 

S

tsss

The transformed plant G(s):

tssg mksys(ag,bg1,bg2,cg1,cg2,dg11,dg12,dg21,dg22,’tss’), 

or

ssg mksys(ag,bg,cg,dg)
The linear fractional transformation T(s):

tsst mksys(at,bt1,bt2,ct1,ct2,dt11,dt12,dt21,dt22,'tss')

0 Re≥ S11u S12+ y( )∗ S21u S22+ y( )[ ]

0 Re≥ S11u S12+ y( )∗ S21u S22+ y( )[ ]

S s( )
S11 s( ) S12 s( )

S21 s( ) S22 s( )
=

sup
ω

σ G jω( )( ) G ∞= 1≤
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system inside sector[–1, 1], also places the original system inside sector[0, ∞]. 
See Figure 2-14, Sector Transform Block Diagram..

Figure 2-14:  Sector Transform Block Diagram.

Here is a simple example of the sector transform.

You can compute this by simply executing the following commands:

[A,B,C,D] = tf2ss(1,[1 1]); 
[a,b,c,d] = sectf(A,B,C,D,[-1,1],[0,Inf]);

The Nyquist plots for this transformation are depicted in Figure 2-15, Example 
of Sector Transform.. The condition P1(s) inside [0, ∞] implies that P1(s) is 
stable and P1(jω) is positive real, i.e.,

sectf is a M-file in the Robust Control Toolbox that uses the generalization of 
the sector concept of [3] described by [1]. First the sector input data Sf= secf 
and Sg=secg is converted to two-port state-space form; non-dynamical sectors 
are handled with empty a, b1, b2, c1, c2 matrices. Next the equation 

is solved for the two-port transfer function T(s) from  to . Finally, 
the function lftf is used to compute G(s) via one of the following:

tssg=lftf(tsst,tssg) 
ssg=lftf(tsst,ssg).

K(s)

2

1 P(s)
u y1

yu2

P s( ) 1
s 1+
------------= tor 1 1,–[ ]sec∈ P1→ s( ) s 2+

s
------------= tor 0 ∞,[ ].sec∈

P∗1 jω( ) P1 jω( ) 0 ω∀≥+

Sg s( )
ug1

yg1

Sf= s( )
uf1

yf1

ug1
yf1

uf1
yg1
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Figure 2-15:  Example of Sector Transform.
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Limitations A well-posed conic sector must have  or .

Also, you must have  since sectors are only defined for 
square systems.

See Also lftf, hinf, system

References [1] M. G. Safonov, Stability and Robustness of Multivariable Feedback Systems. 
Cambridge, MA: MIT Press, 1980.

[2] M. G. Safonov, E. A. Jonckheere, M. Verma and D. J. N. Limebeer, 
“Synthesis of Positive Real Multivariable Feedback Systems,” Int. J. Control, 
vol. 45, no. 3, pp. 817-842, 1987.

[3] G. Zames, “On the Input-Output Stability of Time-Varying Nonlinear 
Feedback Systems ≥— Part I: Conditions Using Concepts of Loop Gain, 
Conicity, and Positivity,” IEEE Trans. on Automat. Contr., AC-11, pp. 228-238, 
1966.

det B A–( ) 0≠ det
s11 s12;

s21 s22 
 
 

0≠

dim uf1
( ) dim yf1

( )=
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2sfl, sfrPurpose Left and right spectral factorization.

Syntax [am,bm,cm,dm] = sfl(a,b,c,d)
[am,bm,cm,dm] = sfr(a,b,c,d) 
[ssm] = sfl(ss)
[ssm] = sfr(ss)

Description Given a stabilizable realization of a transfer function G(s) := (A, B, C, D) with 
, sfl computes a left spectral factor M(s) such that

where M(s) := (AM, BM, CM, DM) is outer (i.e., stable and minimum-phase).

Sfr computes a right spectral factor M(s) of G(s) such that

Algorithm Given a transfer function G(s) := (A, B, C, D), the LQR optimal control 
u = –Fx = –R–1(XB + N)Tx stabilizes the system and minimize the quadratic 
cost function

as  satisfies the algebraic Riccati equation

Moreover, the optimal return difference I + L(s) = I + F(Is – A) –1B satisfies the 
optimal LQ return difference equality:

G ∞ 1<

M* s( )M s( ) I= G*– s( )G s( )

M s( )M* s( ) I= G– s( )G* s( )

J 1
2
---= xT tf( )P1x tf( ) xT uT

t0

tf

∫+
Q N

NT R

x
u

dt
 
 
 

tf ∞→  where , X XT
=

ATX X+ A XB N+( )R 1–
– XB N+( )T Q+ 0=

I L+( )∗R I L+( ) Φ∗ I=
Q N

NT R

Φ
I
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where Φ(s) = (Is – A)–1B, and Φ*(s) = ΦT(–s). Taking

the return difference equality reduces to 

so that a minimum phase, but not necessarily stable, spectral factor is

where X and F can simply be obtained by the command:

[F,X] = lqr(A,B,Q,R,N) =
lqr(A,B,-C'*C,(I-D'*D),-C'*D).

Finally, to get the stable spectral factor, we take M(s) to be the inverse of the

outer factor of . The routine iofr is used to compute the outer factor.

Limitations The spectral factorization algorithm employed in sfl and sfr requires the 
system G(s) to have  and to have no -axis poles. If the condition 

 fails to hold, the Riccati subroutine (aresolv) will normally produce 
the message

WARNING: THERE ARE jω-AXIS POLES... 
RESULTS MAY BE INCORRECT !!

This happens because the Hamiltonian matrix associated with the LQR 
optimal control problem has jω-axis eigenvalues if and only if . An 
interesting implication is that you could use sfl or sfr to check whether 

 without the need to actually compute the singular value Bode plot of 
G(jω).

See Also iofc, iofr

Q N

NT R

0 0
0 I

= CT

DT
– C D ,

I L+( )∗R I L+( ) I= G∗– G

M̃ s( ) : R
1
2
---

= I L+( ) R
1
2
---

= I F+ Is A–( ) 1– B( )

M̃
1–

s( )

G ∞ 1< jω
G ∞ 1<

G ∞ 1<

G ∞ 1<
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2ssvPurpose Compute the structured singular value (multivariable stability margin) Bode 
plot.

Syntax [mu,logd] = ssv(a,b,c,d,w) 
[mu,logd] = ssv(a,b,c,d,w,k) 
[mu,logd] = ssv(a,b,c,d,w,k,opt)
[mu,logd] = ssv(ss,…)

Description ssv produces the row vector mu containing an upper bound on the structured 
singular value (SSV) of p × q a transfer function matrix 

evaluated at frequency points in vector ω. 

 Several methods are included via the following input options:

opt — options for method used in computing SSV: 

’osborne’ Osborne method 

’psv’ optimal diagonal scaled Perron eigenvalue (default) 

’perron’ Perron eigenvalue (if only mu output specified). 

’muopt’ Multiplier approach for pure real, pure complex and mixed real/
complex uncertainties. If there exists real uncertainty, ’muopt’ will be used 
(default for systems with mixed uncertainty). 

k — uncertainty block sizes (default: k=ones(q,2)); k can be an n × 1 or n × 2 
matrix whose rows are the uncertainty block sizes for which the SSV is to be 
evaluated. If only the first column of k is given, then the uncertainty blocks are 
taken to be square, as if k(:,1) = k(:,2). If a 1 × 1 uncertainty block is real (say, 
the ith block), then you should assign

 k(i,:) = [-1, -1];

and set the input argument opt to ’muopt’ to invoke the multiplier nonlinear 
programming algorithm to compute a less conservative SSV upper bound.

The output variables are: 

mu — the Bode plot of the SSV 

G jω( ) C= jωI A–( ) 1– B D+ B
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logd — the log Bode plot of the optimal diagonal scaling D(jω). When the 
uncertainties are all complex, then D(jω) is purely real; this is always the case 
for the opt = 'psv' or opt = 'muopt' options. If opt = 'muopt' and the 
uncertainty is of the mixed real/complex type, logd in general will be complex 
and will contain the log Bode plot of the squareroots of the optimal multiplier 
scalings.

Algorithm ssv performs its computation using either perron, psv, osborne, or muopt 
depending of the value of option. All of them can handle the irreducible special 
case where the standard algorithms fail. See the documentation for these 
functions for further details.

Examples This example compares all the methods available in the Robust Control 
Toolbox for a less conservative multivariable stability margin prediction. The 
transfer function  seen by the real uncertainties is the one established in 
ACC Benchmark problem [4], which can be extracted from the demo 
accdemo.m. As shown in Figure 2-16, Comparison of Robust Analysis Methods., 
the multiplier solution provides the least conservative result, as compared to 
Perron and Osborne.

Tyu
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Figure 2-16:  Comparison of Robust Analysis Methods. 

See Also muopt, perron, psv, osborne

References [1] E. E. Osborne, “On Preconditioning of Matrices,’’ J. of Assoc. of Computing 
Machinery, vol. 7, pp. 338-345, March 1960.

[2] M. G. Safonov, “Stability Margins for Diagonally Perturbed Multivariable 
Feedback Systems,’’ IEE Proc., vol. 129, Part D, pp. 251-256, 1982.

[3] M. G. Safonov, and Peng-Hin Lee, “A Multiplier Method for Computing Real 
Multivariable Stability Margins,’’ unpublished report, Electrical Eng. Dept., 
University of Southern Calif., Los Angeles, CA 90089-2563, July 1992; 
submitted to 1993 IFAC World Congress, Sydney, Australia.

[4] B. Wie and D. S. Bernstein, “A Benchmark Problem for Robust Controller 
Design,” Proc. American Control Conf., San Diego, CA May 23-25, 1990; also 
Boston, MA, June 26-28, 1991.
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Example from the benchmark problem (Chiang and Safonov,1991)

rad/sec

db

 o   : perron SSV 
 x   : multiplier bounds for the stability margins 

line : largest singular values

 MIXED REAL AND COMPLEX UNCERTAINTIES ( K=col[1,1,-1] )
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2stabproj, slowfastPurpose Stable and antistable projection.

Slow and fast modes decomposition.

Syntax [a1,b1,c1,d1,a2,b2,c2,d2,m] = stabproj(a,b,c,d) 
[a1,b1,c1,d1,a2,b2,c2,d2] = slowfast(a,b,c,d,cut) 
[ss1,ss2,m] = stabproj(ss) 
[ss1,ss2] = slowfast(ss,cut)

Description stabproj computes the stable and antistable projections of a minimal 
realization G(s) such that

where denotes the stable part of G(s), and

 denotes the antistable part. The variable m 
returns the number of stable eigenvalues of A.

Slowfast computes the slow and fast modes decompositions of a system G(s) 
such that

where  denotes the slow part of G(s), and 

denotes the fast part. The variable cut

denotes the index where the modes will be split.

Algorithm Both stabproj and slowfast employ the algorithm in [1] as follows:

Find an unitary matrix V via the ordered Schur decomposition routines blksch 
or rschur such that

Based on the style of ordered Schur form, you can get a stable  and an 
antistable  for the case of stabproj; for the case of 
slowfast.

G s( ) G s( )[ ]–= G s( )[ ]+ +

G s( )[ ]– : Â11, B̂1, Ĉ1, D̂1( )=

G s( )[ ]
+

: Â22, B̂2, Ĉ2, D̂2( )=

G s( ) G s( )[ ]s G s( )[ ]f+=

G s( )[ ]s : Â11, B̂1, Ĉ1, D̂1( )=

G s( )[ ]f : Â22, B̂2, Ĉ2, D̂2( )=

A VT
= AV Â11 Â12

0 Â22

=

Â11
Â22 λi Â11( ) λi Â22( )<
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Finally solving the matrix equation for X

you get the state-space projections 

where

and

See Also blkrsch, cschur, rschur, schur

References [1] M. G. Safonov, E. A. Jonckheere, M. Verma and D. J. N. Limebeer, 
“Synthesis of Positive Real Multivariable Feedback Systems”, Int. J. Control, 
vol. 45, no. 3, pp. 817-842, 1987.

Â11X X– Â22 Â12+ 0=

G s( )[ ]– or G s( )[ ]s : Â11 B̂1

C1 0
=

G s( )[ ]
+

or G s( )[ ]f : Â22 B̂2

C2 D
=

B̂1

B̂2

: I X–

0 I
= VB

Ĉ1 Ĉ2
: CVT
= I X

0 I
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2tfm2ssPurpose Convert a transfer function matrix (MIMO) into state-space form.

Syntax [a,b,c,d] = tfm2ss(num,den,r,c) 
[ss] = tfm2ss(tf,r,c)

Description Tfm2ss converts a transfer function matrix G(s) of dimension r by c into the 
block-controller form [1], where

and d(s) is the least common multiple of the denominators of the entries of G(s)

and the entry in the ith row, jth column of the numerator matrix

The input variables num and den are of the following forms

where .

A dual realization lock-observer form can simply be obtained by applying 
tfm2ss to GT(s), then taking the transpose of the resulting state-space system.

Note that the resulting system has n by c states and is not necessarily minimal. 
Model reduction routines such as minreal, schmr, ohklmr, or bstschmr can be 
helpful in removing any uncontrollable and unobservable modes. 

See Also minreal, obalreal, ohklmr, bstschmr, schmr, ss2tf, tf2ss

References [1] T. Kailath, Linear Systems, Prentice-Hall, 1980, pp. 346-349.

G s( ) 1
d s( )
-----------= N s( )r c×

d s( ) α0= sn α1+ sn 1– α2+ sn 2– … αn+ +

N s( )[ ]ij βij0
= sn βij1

+ sn 1– … βijn
+ +

num :

N11

Nr1

N1c

Nrc

=
...

...
...

den : α0α1α2…αn[ ]=

Nij βij0
βij1

, …, βijn
,[ ]=
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2tree, istreePurpose Pack all information and data from several matrices, vectors and/or strings 
into a single ‘tree’ variable. tree implements the Robust Control Toolbox 
hierarchical tree data structure. 

Syntax T = tree(nm,b1,b2,…,bn) 
[i] = istree(T) 
[i,b] = istree(T,path)

Description tree creates a data structure T, called a tree containing several variables and 
their names. This single variable contains all the data and dimension 
information from its branches b1, b2, b3,…, bn along with a numerical index 
and a string name for each branch. 

The input argument nm is a string containing a list of names (separated by 
commas) to be assigned to the respective branches b1,b2,…,bn

 nm = 'name1,name2,name3,…,nameN';

The names may be any valid variable names and must be separated by 
commas. If no names are to be assigned, set "nm = ";.

 The input arguments b1,b2,…,bn (called the root branches of the tree) may be 
matrices, vectors, strings, or even trees themselves, thus enabling the creation 
of a hierarchical tree data structure within the MATLAB framework.

istree checks whether a variable T is a tree or not.

 I = istree(T);

returns I=1 (true) if “T” is a tree variable created by the function tree; 
otherwise it returns I=0 (false). When the second input argument PATH is 
present, the function istree checks the existence of the branch specified by 
PATH. For example,

 [I,B] = istree(T,PATH);

returns “I = 1”, if both “T” is a tree variable and “PATH” is a valid path to a 
branch in the tree T. Otherwise, it returns “I = 0”. If the optional output 
argument “B” is present, then B returns the value of the branch specified by 
PATH, provided T is a tree and PATH is a valid path in T. 
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Related functions include the following:

branch: returns branches of a tree. 
branch(T,0): returns nm, the list of branch names. 
T(1): returns the number N of the root branches.

 Examples A hierarchical tree structure shown inFigure 2-17, Example of Tree Structure. 
can be built as follows

tree1 = tree('a,b,c',a,b,c); 
tree3 = tree('w,x',w,x); 
tree2 = tree('tree3,y,z',tree3,y,z); 
bigtree = tree('tree1,tree2',tree1,tree2);

Figure 2-17:  Example of Tree Structure.

To extract a variable from a tree, simply use the branch function:

[tree1,tree2] = branch(bigtree); 
% getting variable w: 
w = branch(bigtree,'tree2/tree3/w'); 
% getting several variables: 
[w,b] = branch(bigtree,'tree2/tree3/w,tree1/b');

Paths in a tree are also determined by the numerical indices of the branches 
which lead to the branch of interest. For example, the last line above is 
equivalent to

 [w,b] = branch(bigtree,'2/1/1,1/2');

See branch for further details.

See Also branch, mksys, graft, istree, issystem, vrsys

TREE2

zycba xw 

TREE3
TREE1

BIGTREE
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2youlaPurpose Parametrization of all realizable stable closed-loop systems for use in 
infinity-norm controller synthesis.

Syntax youla 
Inputs: A, B1, B2, C1, C2, D11, D12, D21, D22 
Outputs: at11, bt11, ct11, dt11 

at12, bt12, ct12, dt12, at1p, bt1p, ct1p, dt1p 
at21, bt21, ct21, dt21, at2p, bt2p, ct2p, dt2p 
kx, x, ky, y, f, h

Description youla is a script M-file used as a subroutine by the script M-file linf. Given an 
“augmented plant” P(s) having state-space matrices

youla computes an LQG controller K(s) such that the closed-loop system T(s) 
shown in Figure 2-18, Youla Parametrization. has the form 

with T12 and T21 inner, i.e.

Youla also computes complementary inner-factors  and  such 

that  and are square and inner. A realization for

 is returned as

A B1 B2

C1 D11 D12

C2 D21 D22

T s( ) :
T11 s( ) T12 s( )

T21 s( ) T22 s( )
=

T11 s( ) T12 s( )

T21 s( ) 0
≡

T12
T s–( )T12 s( ) I= , T21 s( )T21

T s–( ) I=

T12
⊥ T21

⊥

T12 s( ), T21
⊥ s( ) T21 s( )

T21
⊥ s( )

T11, T12, T12
⊥ , T21, T21

⊥

T11 s( ) : ss11= , T12 s( ): ss12= , T12
⊥ s( ): ss12p= ,

T21 s( ): ss21= , T21
⊥ s( ): ss21p=
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Figure 2-18:  Youla Parametrization.

The LQG controller has realization

The state-feedback Riccati solution and the Kalman-Bucy filter Riccati 
equation are returned as x and y respectively. Also returned are the associated 
gain matrices f and h.

As shown by [3], the closed-loop transfer function of the system in Figure 2-19, 
Q-Parametrization. is the Youla parameterization of the set of realizable stable 
closed-loop transfer functions, viz.,

T(s)

~

2y
2

2

1 P(s)
u

1
y1

yu2

K(s)

2

1 P(s)
u

1
y1

yu2

K(s)

u
~

x̂
·

A= x̂ B2+ u2 H– ỹ2

ỹ2 y2= C2– x̂ D22u2+

u2 F= x̂ ũ2+

Ty1u1
T11= s( ) T12+ s( )Q s( )T21 s( )
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where Q(s) is any stable transfer function matrix.

Figure 2-19:  Q-Parametrization.

Algorithm We employ the formulae of [2], as reported in the paper [4]:

where X–1 and Y–1 are pseudo inverses, and

0
12

T~ ~
11

21

Q(s)

u

u

y

y

1 1

22

T T

T11 T12 T12
⊥

T21 0 0

T21
⊥ 0 0

:=

A B̃2F+ B2– F B1 B̃2 X–
1– C1

TC12
⊥

0 A H+ C̃2 B1 H+ D̃21 0 0

C1 D̃12F+ D̃12F– D11 D̃12 D̃12
⊥

0 C̃2– D̃21– 0 0

0 D21
⊥ B1

TY 1– D21
⊥– 0 0

D̃12 D12= D12
T D12( )

½–
, D̃21 D21D21

T( )
½–

D21=

B̃2 B2= D12
T D12( )

½–
, C̃2 D21D21

T( )
½–

C2=
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and  and  are computed using ortc and ortr such that 

are both unitary. The variables f, x, h, y are computed as the solution of LQ 
optimal control problems via the MATLAB commands:

[kx,x] = lqrc(A,B2,C1'*C1,D12'*D12,C1'*D12);
[ky,y] = lqrc(A',C2',B1*B1',D21*D21',B1*D21'); 
f = -kx; 
h = -ky';

See Also h2lqg, hinf, hinfdemo, linf, linfdemo

References [1] C. A. Desoer, R. W. Liu, J. Murray and R. Saeks, “Feedback System Design: 
The Fractional Representation Approach to Analysis and Synthesis,” IEEE 
Trans. on Automat. Control, June, 1980.

[2] J. Doyle, Advances in Multivariable Control. Lecture Notes at ONR/
Honeywell Workshop. Minneapolis, MN, Oct. 8-10, 1984.

[3] C. N. Nett, C. A. Jacobson, and M. J. Balas, “A Connection Between 
State-Space and Doubly Coprime Fractional Representations,” IEEE Trans. on 
Automat. Control, AC-29, Sep. 1984.

[4] M. G. Safonov, E. A. Jonckheere, M. Verma and D. J. N. Limebeer, 
“Synthesis of Positive Real Multivariable Feedback Systems”, Int. J. Control, 
vol. 45, no. 3, pp. 817-842, 1987.

D12
⊥ D21

⊥

D12 D12
⊥ and

D21

D21
⊥



I-1

Index

A
ACC benchmark problem 1-50, 1-78
achievable bandwidth vs. H∞  Modeling Error 

1-85
additive and multiplicative unstructured 

uncertainty 1-12
additive error robustness criterion 1-87
additive model reduction methods 1-87
additive plant perturbations 1-37
algebraic Riccati Solver 2-8
all-pass embedding 2-50
aresolv 2-8
Arnold and Laub’s Riccati condition number 2-94
augd 2-11
augss 2-12
augtf 2-12

B
backward rectangular 2-18
balanced realization 2-82
balanced stochastic truncation 1-99, 2-25
balmr 2-16
bilin 2-18
bilinear transform 1-48
binary search algorithm 2-54
blkrsch 2-22
block ordered real Schur form 2-22
block-controller form 2-108
block-observer form 2-108
branch 2-24
bstschml 2-25
bstschmr 2-25
Byers’s condition number 2-36, 2-94

C
cgloci 2-29
characteristic gain loci 1-23, 2-29
classical loop-shaping 1-57
condition numbers of ARE 2-36, 2-94
conic-sector 2-96
continuous algebraic Riccati solver 1-36
cschur 2-22
curve fitting method 1-45

D
D – F iteration procedure 2-77
daresolv 2-32
dcgloci 2-29
des2ss 2-34
descriptor system 2-34
dh2lqg 2-44
dhinf 2-48
diagonal scaling 1-47, 2-41
diagonally perturbed multivariable stability 

margin 1-11
discrete H∞ -norm 1-94
discrete H2 -norm 1-94
disturbance attenuation 1-37
driccond 2-36
dsigma 2-38

E
existence of H∞  controllers 1-35

F
fitd 2-41
fitgain 2-42



Index

I-2

forward rectangular 2-19

G
gain margin 1-21
gain reduction tolerance 1-41
generalized Nyquist stability theorem 1-23
γ-iteration 1-2, 1-34, 1-63
graft 2-43
guaranteed gain/phase margins in MIMO 

systems 1-40

H
H∞  -norm 1-9, 2-96
H∞ optimal control synthesis 1-32
H∞ small gain problem 1-33
H2 -norm 1-9, 2-80
H2 optimal control synthesis 1-32
h2lqg 2-44
hierarchical data structure 1-4
hinf 2-48
hinfopt 2-54, 2-54

I
imp2ss 2-56
interc 2-59
iofc 2-62
iofr 2-62
issystem 2-72
istree 2-109

K
Km upper bounds 1-12, 1-27

L
lftf 2-65
linear fractional transformation 2-65
linear quadratic Gaussian optimal control 

synthesis 2-67
linf 2-48
loop transfer function matrix 1-37
lqg 2-67
LQG loop transfer recovery 1-31, 2-69
ltru 2-69
ltry 2-69

M
mixed-sensitivity approach 1-42
mksys 2-72
modeling nonlinear uncertainty 1-20
modeling unstructured uncertainty 1-16
µ-synthesis design technique 2-41
multiplicative error bound 2-26
multiplicative error robustness criterion 1-89
multiplicative plant perturbations 1-37
multiplicative uncertainty 1-43
multivariable interconnected system 2-59
multivariable loop shaping 1-31
multivariable stability margin 1-26, 2-103
muopt 2-75
musyn 2-77

N
normh2 2-80
normhinf 2-80

O
obalreal 2-82



Index

I-3

ohkapp 2-84
ohklmr 2-84
optimal Hankel approximation without balancing 

1-88, 1-97, 2-84
ordered balanced realization 1-87
ordered Schur decomposition 1-96
osborne 2-87
Osborne diagonal scaling 1-29, 2-87

P
pack matrices 1-4
perron 2-90
Perron diagonal scaling 1-29
Perron eigenvector method 2-90
Perron optimal scaling matrix 1-12, 2-91
phase margin 1-21
plant augmentation 2-12
prewarped Tustin 2-18
properties of H∞  controllers 1-34
properties of Km or µ 1-27
properties of singular values 1-8
psv 2-90
pull out the uncertainty channels 1-15

R
real and ordered eigenstructure decomposition 

2-93
reducible matrices 2-91
reig 2-93
relative error bound 2-26
return difference equality 2-63
riccond 2-94
robust analysis — classical approach 1-21
robust analysis — modern approach 1-25
robust control problem 1-10

robust performance 1-12
robust stability problem. 1-11
root branches 1-6

S
sampled-data robust control 1-93
Sandberg-Zames’ small gain theorem 1-25
schmr 2-16
Schur balanced model reduction 1-87
sectf 2-96
sector bilinear transformation 2-96
sector transform 1-14, 1-52, 1-97
sfl 2-101
sfr 2-101
shifted jw-axis bilinear 2-19
shifted Tustin 2-19
sigma 2-38
singular value frequency response 2-38
singular value loop shaping 1-31
singular-value decomposition 1-8
singular-value stability robustness theorem 1-25
slow and fast modes decomposition 2-106
slowfast 2-106
spectral factorization 2-101
ssv 2-103
stable and antistable projections 2-106
stabproj 2-106
structured singular value 1-11, 2-103
structured uncertainty 1-17
SVD system realization 1-98, 2-56
system data structure 2-72

T
tfm2ss 2-108
tree 2-109



Index

I-4

tree data structure 1-4, 2-109
truncated balanced model reduction 1-87
Tustin transform 2-18

U
uncertainty 1-14
uncertainty model 1-15
unstructured uncertainty 1-12

V
vrsys 2-72

W
weighted mixed sensitivity problem 1-43
Wiener-Hopf/LQG optimal control theory 1-10
w-transform 1-94

Y
youla 2-111
Youla parametrization 2-112


	Tutorial
	Optional System Data Structure
	Singular Values, H2 and H• Norms
	The Robust Control Problem
	Structured and Unstructured Uncertainty
	Positive Real and Sector Uncertainty
	Robust Control Analysis
	Robust Analysis — Classical Approach
	Robust Analysis — Modern Approach
	Robust Control Synthesis
	Robustness with Mixed Real and Complex Uncertainties

	Case Studies
	Classical Loop-Shaping vs. H• Synthesis
	Fighter H2 & H• Design Example
	Large Space Structure H• Design Example
	H• Synthesis for a Double-Integrator Plant
	Bilinear Transform + H• on ACC Benchmark Problem
	m Synthesis Design on ACC Benchmark Problem ACC Benchmark Problem

	Model Reduction for Robust Control
	Achievable Bandwidth vs. H• Modeling Error
	Additive Model Reduction
	Multiplicative Model Reduction

	Sampled-Data Robust Control
	Robust Control Synthesis

	Miscellaneous Algorithms
	Ordered Schur Decomposition
	Descriptor System
	Sector Transform
	SVD System Realization

	Closing Remarks
	References


	Reference
	Reference
	aresolv
	augd
	augss, augtf
	balmr, schmr
	bilin
	blkrsch, cschur
	branch
	bstschml, bstschmr
	cgloci, dcgloci
	daresolv
	des2ss
	driccond
	dsigma, sigma
	fitd
	fitgain
	graft
	h2lqg, dh2lqg
	hinf, dhinf, linf
	hinfopt
	imp2ss
	interc
	iofr, iofc
	lftf
	lqg
	ltru, ltry
	mksys, vrsys, issystem
	muopt
	musyn
	normhinf, normh2
	obalreal
	ohkapp, ohklmr
	osborne
	perron, psv
	reig
	riccond
	sectf
	sfl, sfr
	ssv
	stabproj, slowfast
	tfm2ss
	tree, istree
	youla

	Index
	title_pg_7x9.pdf
	User’s Guide


