
Embedded Target for Motorola® MPC555

 For Use with Real-Time Workshop ®

Modeling

Simulation

Implementation

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for Motorola MPC555 User’s Guide
 COPYRIGHT 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Motorola is a registered trademark and MPC555 is a trademark of Motorola, Inc.
Metrowerks and CodeWarrior are registered trademarks of Metrowerks Corporation.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: March 2002 Online only Version 1.0 (Release 12.1+)
July 2002 Online only Version 1.0.1 (Release 13)

i

Contents

Preface

Installing the Embedded Target for Motorola MPC555 vi

Using This Guide . vii

Embedded Target for Motorola MPC555 Demos viii

Related Products . x

Typographical Conventions . xii

1
Product Overview

Prerequisites . 1-2

Introduction to the Embedded Target for Motorola

MPC555 . 1-3
Feature Summary . 1-3
Applications for the Embedded Target
for Motorola MPC555 . 1-6

Hardware and Software Requirements 1-9
Host Platform . 1-9
Hardware Requirements . 1-9
Software Requirements . 1-9

Setting Up and Verifying Your Installation 1-11

Setting Up Your Target Hardware . 1-12

ii Contents

Setting Target Preferences . 1-15
MATLAB Commands for Working
with Target Preferences . 1-15
Editing Target Preferences via the
Property Inspector Window . 1-19

Setting Up Your Installation with
Diab Cross-Compiler and SingleStep Debugger 1-20

Installing SingleStep Debugger . 1-21
Configuring SingleStep and Downloading
Boot Code . 1-22

Setting Up Your Installation with Metrowerks
CodeWarrior . 1-31

2
PIL Cosimulation

Overview of PIL Cosimulation . 2-2
Why Use Cosimulation? . 2-2
How Cosimulation Works . 2-3

Tutorial 1: Building and Running a PIL Cosimulation 2-5
Before You Begin . 2-5
Hardware Connections . 2-5
The Demo Model . 2-5
Setting Up the Model . 2-8
Building PIL and Simulation Components 2-11
Using the Demo Model In a PIL Cosimulation 2-14

Tutorial 2: Modifying and Rebuilding the Controller 2-17
Modifying the Controller . 2-17
Rebuilding the Controller and Cosimulating 2-19

Tutorial 3: Using the Demo Model In Simulation 2-21

PIL Target Summary . 2-22

iii

Code Generation Options . 2-22
Build Process Files and Directories . 2-23
Restrictions . 2-24

3
Generating Stand-Alone Real-Time Applications

Introduction . 3-2
Deploying Generated Code . 3-2

Tutorial: Creating a New Application 3-4
Before You Begin . 3-4
The Example Model . 3-6
Using the Pass-Through Option in Simulation 3-9
Generating Code . 3-10
Downloading the Application to RAM
via SingleStep/BDM . 3-13
Downloading the Application to RAM via CAN 3-19

Downloading Boot and Application Code 3-23
RAM vs. Flash Memory . 3-23
Overview of Memory Organization
and the Boot Process . 3-24
Downloading Boot Code . 3-25
Downloading Application Code . 3-27
Downloading Boot or Application Code via CAN
Without Manual CPU Reset . 3-32
Boot Code Parameters for CAN Download 3-33

Generating ASAP2 Files . 3-35
Requirements and Limitations . 3-35
ASAP2 File Generation Procedure . 3-36
Data Acquisition (DAQ) List Configuration 3-38

Summary of the Real-Time Target . 3-40
Code Generation Options . 3-40
Requirements and Restrictions . 3-42

iv Contents

4
Algorithm Export and Code Analysis Reporting

Algorithm Export Target . 4-2

Code Analysis Reporting . 4-3

Algorithm Export Target Summary . 4-5
Code Generation Options . 4-5
Restrictions . 4-5

5
Block Reference

The Embedded Target for Motorola MPC555 Block
Libraries . 5-2

Using Block Reference Pages . 5-2

Blocks Organized by Libraries . 5-4
Embedded Target for Motorola MPC555 Library 5-4
Data Type Support and Scaling for
Device Driver Blocks . 5-6
Configuration Class Blocks . 5-8
CAN Message Blocks and CAN Drivers Libraries 5-9

Alphabetical List of Blocks . 5-11

1

1.

Preface

This section includes the following topics:

Installing the Embedded Target for
Motorola MPC555 (p. vi)

Installation of the product.

Using This Guide (p. vii) Suggested path through this document to get you up and
running quickly with the Embedded Target for Motorola
MPC555.

Embedded Target for Motorola
MPC555 Demos (p. viii)

Hyperlinks to demo models that illustrate product
features and how to use them.

Related Products (p. x) Products required when using the Embedded Target for
Motorola MPC555; also products that are especially
relevant to the kinds of tasks you can perform with the
Embedded Target for Motorola MPC555.

Typographical Conventions (p. xii) Formatting conventions used in this document.

 Preface

vi

Installing the Embedded Target for Motorola MPC555
Your platform-specific MATLAB Installation guide provides all of the
information you need to install the Embedded Target for Motorola MPC555.

Prior to installing the Embedded Target for Motorola MPC555, you must
obtain a License File or Personal License Password from The MathWorks. The
License File or Personal License Password identifies the products you are
permitted to install and use.

As the installation process proceeds, it displays a dialog similar to the one
below, letting you indicate which products to install.

Using This Guide

vii

Using This Guide
We suggest the following path to get acquainted with the Embedded Target for
Motorola MPC555 and gain hands-on experience with the features most
relevant to your interests:

• Read Chapter 1, “Product Overview” in its entirety, paying particular
attention to “Setting Up and Verifying Your Installation” on page 1-11.

• If you are interested in processor-in-the-loop (PIL) cosimulation, read
Chapter 2, “PIL Cosimulation” to learn about the Embedded Target for
Motorola MPC555 PIL target. Work through the “Tutorial 1: Building and
Running a PIL Cosimulation” on page 2-5.

• If you are interested in using the device driver blocks supplied with
Embedded Target for Motorola MPC555 and in deploying stand-alone,
real-time applications on the MPC555, read Chapter 3, “Generating
Stand-Alone Real-Time Applications.” Work through the “Tutorial: Creating
a New Application” on page 3-4.

• Then, for in-depth information about the device drivers and other blocks
supplied with Embedded Target for Motorola MPC555, see Chapter 5, “Block
Reference.” It is particularly important to read “MPC555 Resource
Configuration” on page 5-47, as the MPC555 Resource Configuration block is
required to use most of the device driver blocks.

• See also “Embedded Target for Motorola MPC555 Demos” below.

 Preface

viii

Embedded Target for Motorola MPC555 Demos
We have provided a number of demos to help you become familiar with features
of the Embedded Target for Motorola MPC555.

If you are reading this document online in the MATLAB® Help browser, you
can launch the demos by clicking on the links in the Command column of the
following table.

Alternatively, you can access the demo suite by typing commands from the
Command column of the table, at the MATLAB command prompt, as in this
example:

mpc555rt_led

Embedded Target for Motorola MPC555 Demos

 Command Demo Topic

mpc555pil_fuelsys Model configured for building a Configurable Subsystem for use in
PIL cosimulation. See “Tutorial 1: Building and Running a PIL
Cosimulation” on page 2-5.

mpc555rt_led Simple model demonstrating use of device driver blocks provided
with the Embedded Target for Motorola MPC555 real-time target.
See “Tutorial: Creating a New Application” on page 3-4.

mpc555rt_io and

mpc555rt_iohost

Demonstration of MPC555 I/O device driver blocks and CAN support.
A subsystem of the mpc555rt_io model runs on target hardware. The
subsystem code communicates, via a CAN channel, with the
mpc555rt_iohost model, running in Simulink®. This demo requires
Vector-Informatik CAN hardware and drivers. See the instructions in
the demo models

Note: you can also use the mpc555rt_io model alone in simulation;
this demonstrates the use of the pass-through feature of the device
driver blocks.

Embedded Target for Motorola MPC555 Demos

ix

mpc555rt_ccp Demonstrates use of the CAN Calibration Protocol. See “CAN
Calibration Protocol” on page 5-12.

mpc555dd_fuelsys This model demonstrates the use of MPC555 I/O device driver blocks
in simulation, software-in-the-loop simulation, and PIL cosimulation.
Input and output signals are conditioned (with respect to data type
and scaling) appropriately for use with the device driver blocks.

Embedded Target for Motorola MPC555 Demos

 Command Demo Topic

 Preface

x

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Embedded Target for Motorola
MPC555. They are listed in the table below.

The Embedded Target for Motorola MPC555 requires these products:

• MATLAB® 6.5 (Release 13)

• Simulink® 5.0 (Release 13)

• Stateflow® 5.0(Release 13) and Stateflow Coder

• Real-Time Workshop® 5.0 (Release 13)

• Real-Time Workshop Embedded Coder 3.0 (Release 13)

For more information about any of these products, see either

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the
capabilities of Simulink.

Product Description

Fixed-Point Blockset Design and simulate fixed-point systems

MATLAB The Language of Technical Computing

Real-Time Workshop Generate C code from Simulink models

Real-Time Workshop
Embedded Coder

Generate production code for embedded
systems

Related Products

xi

Simulink Design and simulate continuous- and
discrete-time systems

Stateflow Design and simulate event-driven systems

Stateflow Coder Generate C code from Stateflow charts

Product Description

 Preface

xii

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1
Product Overview

This section contains the following topics:

Prerequisites (p. 1-2) What you need to know before using the Embedded
Target for Motorola® MPC555.

Introduction to the Embedded Target
for Motorola MPC555 (p. 1-3)

Overview of the product and the use of the Embedded
Target for Motorola MPC555 in the development process.

Hardware and Software Requirements
(p. 1-9)

Hardware platforms supported by the product;
development tools (e.g. compilers, debuggers) required for
use with the product.

Setting Up and Verifying Your
Installation (p. 1-11)

Overview of setting up your development tools and
hardware to work with the Embedded Target for
Motorola MPC555, and verifying correct operation.

Setting Up Your Target Hardware
(p. 1-12)

Port connections and jumper settings.

Setting Target Preferences (p. 1-15) Configuring environmental settings and preferences
associated with the Embedded Target for Motorola
MPC555.

Setting Up Your Installation with Diab
Cross-Compiler and SingleStep
Debugger (p. 1-20)

Configuring the Embedded Target for Motorola MPC555
for use with the Diab development tools.

Setting Up Your Installation with
Metrowerks CodeWarrior (p. 1-31)

Configuring the Embedded Target for Motorola MPC555
for use with the Metrowerks CoderWarrior development
tools.

1 Product Overview

1-2

Prerequisites
This document assumes you are experienced with MATLAB®, Simulink®,
Stateflow®, Real-Time Workshop®, and the Real-Time Workshop Embedded
Coder.

Minimally, you should read the following from the “Basic Concepts and
Tutorials” section of the Real-Time Workshop documentation:

• “Basic Real-Time Workshop Concepts.” This section introduces general
concepts and terminology related to Real Time Workshop.

• “Quick Start Tutorials.” This section provides several hands-on exercises
that demonstrate the Real-Time Workshop user interface, code generation
and build process, and other essential features.

You should also familiarize yourself with the Real-Time Workshop Embedded
Coder documentation.

In addition, if you want to understand and use the device driver blocks in the
the Embedded Target for Motorola MPC555 library, you should have at least a
basic understanding of the architecture of the MPC555. The Motorola MPC555
Users Guide is required reading. We recommend that you read the introduction
to the processor and familiarize yourself with all the major subsystems of the
MPC555.You can find this document at the following URL:
http://e-www.motorola.com/webapp/sps/library/prod_lib.jsp.

Introduction to the Embedded Target for Motorola MPC555

1-3

Introduction to the Embedded Target for Motorola MPC555
The Embedded Target for Motorola MPC555 is an add-on product for use with
the Real-Time Workshop Embedded Coder. It provides a complete and unified
set of tools for developing embedded applications for the Motorola MPC555
processor.

Used in conjunction with Simulink, Stateflow, and the Real-Time Workshop
Embedded Coder, the Embedded Target for Motorola MPC555 lets you

• Design and model your system and algorithms.

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for the MPC555.

• Use cosimulation and rapid prototyping techniques to evaluate performance
and validate results obtained from generated code running on the target
hardware.

• Deploy production code on the target hardware.

Feature Summary

Simulation and Cosimulation

• Automatic S-function generation lets you validate your generated code in
software-in-the-loop (SIL) simulation.

• Processor-in-the-loop (PIL) cosimulation lets you integrate generated code,
running on the target processor, into your simulation.

• SIL and PIL code components are generated by the Real-Time Workshop
Embedded Coder. These simulation components are in the same compact
and efficient format as the production code generated for final deployment.

Production Code Generation

• The Real-Time Workshop Embedded Coder generates production code for
use on the target MPC555 microcontroller.

• The Real-Time Workshop Embedded Coder generates project or makefiles
for popular cross-development systems:

- Wind River Systems Diab cross-compiler

1 Product Overview

1-4

- Metrowerks® CodeWarrior®

• Debugger support:

- Wind River Systems SingleStep debugger

- Metrowerks CodeWarrior debugger

Code and Performance Analysis
Web-viewable code generation report includes

• Analysis of RAM/ROM usage and other variables

• Analysis of code generation options used, with optimization suggestions

• Hyperlinks to all generated code files

• Hyperlinks from generated code to source model in Simulink

Applications Development and Rapid Prototyping

• Generation of real-time, stand-alone code for MPC555

• Scheduler and time functions for single- rate or multirate real-time
operation

• CAN-based loader for download of generated code to RAM or flash memory

• CAN-based host-target communications for non-real-time retrieval of data
on host computer

Device Driver Support

• The Embedded Target for Motorola MPC555 Library provides device driver
blocks that let your applications access on-chip resources. The I/O blocks
support the following features of the MPC555:

- Pulse width modulation (PWM) generation via the Modular Input/Output
Subsystem (MIOS) PWM unit.

- Analog input via the Queued Analog-to-Digital Converter (QADC64)

- Digital input and output via the MIOS

- Digital input via the QADC64

- Frequency and pulse width measurement via the MIOS Double Action
Submodule (MDASM)

Introduction to the Embedded Target for Motorola MPC555

1-5

- Transmit or receive Controller Area Network (CAN) messages via the
MPC555 TouCAN modules

- Utility blocks such as a watchdog timer

• Device driver blocks support a pass-through option. The pass-through option
lets you leave your device driver blocks in your model during simulation. You
can then provide a Simulink signal to use in place of the actual device driver
signal.

CAN Support

• Transmit or receive CAN messages via the MPC555 TouCAN modules.

• CAN Drivers (Vector) library provides blocks for configuring and connecting
to Vector-Informatik CAN hardware and drivers.

• The CAN Message Blocks library includes blocks for transmitting, receiving,
decoding, and formatting CAN messages. It also supports message
specification via the Vector-Informatik CANdb standard.

Code Validation and Performance Analysis

Code Validation. Since signal data is available to Simulink during each sample
interval in a PIL simulation, you can observe signal data on Scope blocks or
other Simulink signal viewing blocks. You can also store signal data to
MAT-files via To File blocks. To validate the results obtained by the generated
code running on the target processor, you can compare these files to results
obtained using a normal Simulink plant/controller simulation.

Determining Code Size. In control design it is critical to ensure that the size of the
generated code does not exceed physical limitations of RAM and ROM. The
Embedded Target for Motorola MPC555 automatically produces a code
generation report that displays the RAM usage and ROM size of the generated
code.

This capability is useful when selecting which code generation optimizations
will be used. After determining the size of the required RAM and ROM, you can
consider which code generation optimizations to use, and consider
modifications to the modeling style.

1 Product Overview

1-6

Applications for the Embedded Target
for Motorola MPC555
The Embedded Target for Motorola MPC555 provides targets that support
three application scenarios.

• Processor-in-the-loop cosimulation (PIL) target

• Real-time execution and rapid prototyping (RT) target

• Algorithm export (AE) target

In the sections that follow, we summarize typical applications and the tasks
you will need to perform for each; we also provide links to the relevant
documentation.

Processor-in-the-Loop
The processor-in-the-loop (PIL) target lets you run a cosimulation of a
closed-loop Simulink model for the purpose of code validation and analysis.
When running a PI cosimulation, you use a closed-loop model with two major
components: a plant model and a controller. The plant model may contain any
Simulink blocks including a combination of continuous-time and discrete-time
blocks. The controller must not include any continuous-time blocks, since this
component is used for code generation in the Embedded-C format of the
Real-Time Workshop Embedded Coder.

To get started with the PIL target, see “Tutorial 1: Building and Running a PIL
Cosimulation” on page 2-5. The tutorial covers the following topics:

• Target preferences setup

• Creating the controller subsystem

• Connecting the plant model to the controller

• Selecting the PIL target

• Generating the ERT S-function and the corresponding library block

• Inserting the S-function back into the closed-loop model

• Automatic downloading of generated code with

- SingleStep debugger and a Background Debug Mode (BDM) port
connector

- CodeWarrior and a BDM connector

• Running a PIL cosimulation

Introduction to the Embedded Target for Motorola MPC555

1-7

You may also be interested in generating code analysis information from your
PIL target build. See “Code Analysis Reporting” on page 4-3 for details.

Real-Time Execution and Rapid Prototyping
The Embedded Target for Motorola MPC555 real-time target enables you to
use your controller block diagram in real time to perform embedded control.
With this target, you can add I/O blocks for the MPC555 to your controller
subsystem, generate and build code, download to the target, and run the
generated C code.

When you first begin using the RT target, see “Tutorial: Creating a New
Application” on page 3-4, which demonstrates the following topics through the
use of a simple model with a device driver:

• Toolchain setup using target preferences

• Creating the controller subsystem

• Connecting the plant model to the controller

• Adding the MPC555 Resource Configuration block to your subsystem

• Adding I/O device drivers from the Embedded Target for Motorola MPC555
library

• Selecting the RT target

• Generating code for real-time

• Downloading code with

- SingleStep debugger and a BDM connector

- CAN

• Running the generated in real-time code

You may also be interested in generating code analysis information from your
RT target build. See “Code Analysis Reporting” on page 4-3 for details.

Algorithm Export
The Embedded Target for Motorola MPC555 algorithm export (AE) target
enables you generate code for your controller subsystem and build the code as
a stand-alone executable for use on the MPC555. The difference between the
AE and the PIL target is that the AE target eliminates all extraneous code
(such as serial communications code) used for cosimulation, and also
eliminates any real-time interrupts. The AE target therefore generates code

1 Product Overview

1-8

only for the basic controller subsystem (e.g. algorithm code). You can then
modify or customize this code for your own special purposes.

In contrast, the RT target provides turnkey code including interrupt service
routines, driver code, and underlying initialization code for the MPC555.
Depending upon your particular application, you may find it more valuable to
begin with the AE target baseline, and extend this environment for your own
use.

The AE target is documented in “Algorithm Export Target” on page 4-2.

Like the PIL and RT targets, the AE target supports generation of code
analysis information. See “Code Analysis Reporting” on page 4-3 for details.

Hardware and Software Requirements

1-9

Hardware and Software Requirements

Host Platform
The Embedded Target for Motorola MPC555 supports only the PC platform.

Hardware Requirements
Programs generated by the Embedded Target for Motorola MPC555 can run on
any Electronic Control Unit (ECU) that is based on the MPC555 processor.

In this document, however, we assume that you are working with the Phytec
phyCORE-MPC555 development board, and we document specific settings and
procedures for use with the Phytec phyCORE-MPC555 board, in conjunction
with specific cross-development environments.

If you use a different development board, you may need to adapt these settings
and procedures for your development board.

Software Requirements
See “Related Products” for information on MathWorks products required to use
Embedded Target for Motorola MPC555.

In addition to the required MathWorks software, a supported
cross-development environment is required. The Embedded Target for
Motorola MPC555 currently supports the cross-development tools listed below;
please read carefully the limitations noted:

• Wind River Systems Diab cross-compiler, and Wind River Systems
SingleStep debugger (version 7.6.2)

The full feature set (PIL, RT, and AE targets) is supported when used with
the Diab cross-compiler and SingleStep debugger.

• Metrowerks CodeWarrior for Embedded PowerPC (version 6.0 or later)

Due to current limitations of the Embedded Target for Motorola MPC555,
(not of Metrowerks CodeWarrior), only the PIL and AE targets are supported
for use with Metrowerks CodeWarrior. The RT target is not currently
supported for use with Metrowerks CodeWarrior.

1 Product Overview

1-10

Before using the Embedded Target for Motorola MPC555 with any of the above
cross-development tools, please be sure to read and follow the instructions in
“Setting Up and Verifying Your Installation” on page 1-11.

Setting Up and Verifying Your Installation

1-11

Setting Up and Verifying Your Installation
The next sections describe how to configure your development environment
(compiler, debugger, etc.) for use with the Embedded Target for Motorola
MPC555 and verify correct operation. The initial configuration steps are
described in the following sections:

• “Setting Up Your Target Hardware” on page 1–12

• “Setting Target Preferences” on page 1–15

After completing these steps, proceed to the section appropriate to your
development environment:

• If you are using the Diab cross-compiler, see “Setting Up Your Installation
with Diab Cross-Compiler and SingleStep Debugger” on page 1–20.

• If you are using the Metrowerks CodeWarrior Integrated Development
Environment (IDE), see “Setting Up Your Installation with Metrowerks
CodeWarrior” on page 1–31.

1 Product Overview

1-12

Setting Up Your Target Hardware
In this document, we assume that you are working with the Phytec
phyCORE-MPC555 development board. This section describes the required
connections and jumper settings for the board.

Phytec Communications Ports
Before you begin working with the Embedded Target for Motorola MPC555,
you should set up your phyCORE-MPC555 board and connect it to your host
computer. The hardware setup is described in the phyCORE-MPC555
Quickstart Instructions manual on your Phytec Spectrum CD. See the
“Interfacing the phyCORE-MPC555 to a Host PC” section of the “Getting
Started” chapter.

In this document, we assume that you have connected your phyCORE-MPC555
board to the same serial (COM1) and parallel (LPT1) ports described in the
phyCORE-MPC555 Quickstart Instructions.

Phytec Jumper Settings
The Embedded Target for Motorola MPC555 (PIL and RT targets) has been
tested by the MathWorks with the Phytec phyCORE-MPC555 board, using the
jumper settings indicated in the table below.

For jumper locations and pin numbers, see the phyCORE-MPC555 Quickstart
Instructions manual.

The following tables summarizes the correct jumper settings to use when your
host PC is connected to the on-board BDM port, or via Wiggler, Raven, or
Blackbird devices.

Jumper Description Raven
or Blackbird

Wiggler On-Board
BDM

JP13 CAN A bus termination Closed (apply
120 Ohm
termination)

as Raven as Raven

JP14 CAN B bus termination Closed (apply
120 Ohm
termination)

as Raven as Raven

Setting Up Your Target Hardware

1-13

JP15 Select boot memory 1+2 (boot from
internal flash
memory)

as Raven as Raven

JP3 Connect push button to different
reset signals

1+2 (/HRESIN
connected to
push button)

as Raven as Raven

JP18 Connect interrupt to push button Default 1+2 as Raven as Raven

JP17 Connect /HRESET or /SRESET to
external BDM interface logic

1+2 (/HRESET
connected to
BDM interface
logic)

as Raven as Raven

JP1 On-board BDM reset signal
connection

Open as Raven 3+4
closed

JP5,JP6,JP7,
JP8,JP9

Jumpers relating to on-board
BDM

Open as Raven All closed

JP2 Power supply for external BDM Open (unless
BDM device
requires supply
voltage from
development
board)

1+2 closed 1+2 closed

JP10 Connect one of the LEDs to supply
voltage

Closed as Raven as Raven

JP11 Connect 5V supply voltage Closed as Raven as Raven

JP12 Connect 3V3 supply voltage Closed as Raven as Raven

Jumper Description Raven
or Blackbird

Wiggler On-Board
BDM

1 Product Overview

1-14

Note The MPC555 flash memory has a limited lifetime, which is shortened
each time the flash memory is programmed. To extend product life, Motorola
recommends using flash programming only when necessary.

After setting up your phyCORE-MPC555 board, you must set environment
variables associated with the Embedded Target for Motorola, as described in
the next section.

JP4 Programming of Internal MPC555
Flash internal memory enabled

Closed as Raven as Raven

JP16 Use J5 as source of
Hard-Reset-Configuration

Open as Raven as Raven

Jumper Description Raven
or Blackbird

Wiggler On-Board
BDM

Setting Target Preferences

1-15

Setting Target Preferences
This section describes environmental settings associated with the Embedded
Target for Motorola MPC555. These settings, which persist across MATLAB
sessions and different models, are referred to as target preferences. Target
preferences let you specify the location of your MPC555 cross-compiler, the
communications port to be used for downloading code, and other parameters
affecting the generation, building, and downloading of code.

Target preferences are stored in data objects called target preference objects.
These objects let you create different named objects for different sets of
preferences. We provide a “factory” preference object with a default
configuration. Table 1-1, Target Preferences Summary, summarizes the
preference parameters and their defaults.

At any time, only one active target preference object exists. We will refer to this
as the active target preferences. You can instantiate as many target preference
objects as you require, but only the active target preferences influence the
operation of the Embedded Target for Motorola MPC555.

Note Until you have invoked settargetprefs, there are no active target
preferences. See “settargetprefs Command” on page 1-16.

MATLAB Commands for Working
with Target Preferences
You can create, modify, activate, or examine target preference objects via
several MATLAB commands.

gettargetprefs Command
The gettargetprefs command retrieves the currently active target
preferences. Note that until you have invoked settargetprefs, there are no
active target preferences. If there are no active target preferences,
gettargetprefs returns the factory default values.

The following example retrieves the active preferences into the target
preference object tpObj:

>> tpObj = gettargetprefs('mpc555dk')

1 Product Overview

1-16

tpObj =

target.mpc555dkprefs

settargetprefs Command
The settargetprefs command lets you create, clear, or modify your target
preference settings. Until you have invoked settargetprefs, there are no
active target preferences.Valid syntax for the settargetprefs command is
shown below.

To reset to the factory default values for the target preferences:

settargetprefs('mpc555dk','factory')

To make a target preference object active:

settargetprefs('mpc555dk',tpObj)

To modify a property value for the target preferences:

settargetprefs('mpc555dk','PropertyName','PropertyValue')

To clear the currently active target preferences:

settargetprefs('mpc555dk',[])

In the sample MATLAB session below. the target preferences are set to the
factory default values. The target preferences are then returned to an object,
tpObj:

>> settargetprefs('mpc555dk','factory')
>> tpObj = gettargetprefs('mpc555dk')

tpObj =

target.mpc555dkprefs

Setting Target Preferences

1-17

display Command
The target preference object implements the display method. The display
command allows you to retrieve a target preference structure from a target
preference object. When the target preference object is already defined in your
workspace, you can use the display command to view your current settings, as
shown in the following example:

>> display(tpObj)

tpObj =

 TargetCompiler: 'CodeWarrior'
 TargetCompilerPath: 'D:\Applications\Metrowerks\CodeWarrior\Bin'
 CommTimeout: '4'
 TargetDebugger: 'SingleStep'
 TargetDebuggerExe: 'D:\Applications\SingleStep\sds762\cmd\bdmp58.exe'
 CommHostPort: 'COM1'
 CommTargetPort: 'COM1'
 CommBaudRate: '57600'
 PlugInIncludes: ' '
 PlugInLibs: ' '
 PlugInTLCIncludes: ' '

1 Product Overview

1-18

Table 1-1: Target Preferences Summary

Preference
Name

Description Default
Value

TargetCompiler Choice of MPC555
cross-development system: 'Diab'
or 'CodeWarrior'

'Diab'

TargetCompilerPath Path to your MPC555
cross-development system.

You must localize
this to suit your
PC.

CommTimeout Timeout value (in seconds) for the
serial communications port.

4

CommHostPort Host serial port for host/target
communications

'COM1'

CommTargetPort Target board serial port for
host/target communications

'COM1'

CommBaudRate Baud rate (in bps) for host/target
communications

57600

TargetDebugger Debugger to be invoked by PIL
target. Currently used only when
TargetCompiler = 'Diab';
ignored when TargetCompiler =
'CodeWarrior'

'SingleStep'

TargetDebuggerExe Fully qualified path and name for
the debugger executable. The
drive designated in the path must
be either an actual hard drive on
your PC, or a mapped drive. Do
not use a UNC. Note: this field is
ignored when TargetCompiler =
'CodeWarrior'

You must localize
this to suit your
PC.

Setting Target Preferences

1-19

Editing Target Preferences via the
Property Inspector Window
The Property Inspector window provides a graphical user interface for
editing Target Preferences objects. The Property Inspector window does not
have Apply or Save buttons, so you must still use the commands described in
“Setting Target Preferences” on page 1-15 to make changes to target
preferences persistent.

To edit the target preferences via the Property Inspector window:

1 Retrieve the target preferences to an object:

tpObj = gettargetprefs('mpc555dk')

2 Invoke the edit method of the object.

edit(tpObj)

The edit method opens the Property Inspector window, as shown below.

3 Modify the fields you want to change.

4 Make your changes persistent by using the object to set your active
preferences.

settargetprefs('mpc555dk',tpObj)

1 Product Overview

1-20

Setting Up Your Installation with
Diab Cross-Compiler and SingleStep Debugger

To use the Embedded Target for Motorola MPC555 with the Diab
cross-compiler, you need the following:

• Configurable Subsystem block phyCORE-MPC555 Rapid Development
Target, including the phyCORE-MPC555 development board, DB-25 parallel
printer port cable, serial cable, and AC to DC adapter.

• Wind River Systems Diab cross-compiler

• Wind River Systems SingleStep debugger (version 7.6.2).

Install Diab Cross-Compiler
If you have not already done so, install the Diab cross-compiler, following the
installation instructions provided by Wind River Systems. When the installer
prompts for Components, select Diab C Compiler. When the installer prompts
for a Target, select PowerPC and all related components.

You do not need to set a default processor or other compiler defaults. During
the code generation and build process, the Embedded Target for Motorola
MPC555 will generate a makefile that sets the correct options.

You will need to note the path to the installed compiler in order to configure
your target preferences (see “Set Target Preferences for Diab and SingleStep”
on page 1-21).

Install SingleStep Debugger
The SingleStep debugger, in conjunction with the Embedded Target for
Motorola MPC555, lets you download, run and debug generated code.
Installing and configuring SingleStep for this purpose is a somewhat elaborate
procedure, so we have documented it in a separate section, “Installing
SingleStep Debugger” on page 1-21.

You will need to note the path to the installed SingleStep debugger in order to
configure your target preferences (see “Set Target Preferences for Diab and
SingleStep” on page 1-21).

Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger

1-21

Set Target Preferences for Diab and SingleStep
After installing your development tools, the next step is to configure your
target preferences for the Diab cross-compiler and SingleStep debugger.
(Please read “Setting Target Preferences” on page 1–15, if you have not yet
done so.) The default target preferences are configured for Diab and
SingleStep, so set your preferences to the “factory” values as follows:

settargetprefs('mpc555dk','factory')

Then, change TargetCompilerPath and TargetDebuggerExe to the appropriate
paths to your Diab and SingleStep installations. For example:

settargetprefs('mpc555dk','TargetCompilerPath','D:\Apps\Diab\4.3g\win32\bin')
settargetprefs('mpc555dk','TargetDebuggerExe',...
'D:\Apps\singlestep\sds762\cmd\bdmp58.exe')

For most purposes, the other target preferences fields can be left at their
defaults.

Installing SingleStep Debugger
The next sections describe how to install and configure the SingleStep for use
with the Embedded Target for Motorola MPC555, and how to use SingleStep to
download boot load code into flash memory on a Phytec phyCORE-MPC555
board.

SingleStep Installation
If you have not already done so, you should install the SingleStep debugger and
confirm its operation with your phyCORE-MPC555 board before proceeding
with this section. You should select the SStep Professional Suite (MPC5xx)
option during installation. If necessary, please consult your SingleStep
documentation.

For SingleStep 7.6.2, you must obtain the following files from Wind River
Systems and apply the updates they contain:

• pcflash11_29_00.zip

Apply this update first. See the accompanying file, pcflash11_29_00.txt.
• pcflash3_15_01.zip

 Apply this update second. See the accompanying file, pcflash3_15_01.txt.

1 Product Overview

1-22

Configuring SingleStep and Downloading
Boot Code
The following sections explain how to configure the SingleStep debugger and
download boot load code into flash memory. After configuring SingleStep, you
will also be able to use the debugger directly to debug generated programs.

Purpose of Flash Memory Boot Code
When reading this section, you may want to refer to the internal memory map
of the MPC555 in section 1.3 of the MPC555 Users Guide. You can find this
document at the following URL.
http://e-www.motorola.com/webapp/sps/library/prod_lib.jsp

To run generated code from the flash memory, you must load the first 32K flash
sector with boot code. The primary purpose of the boot code is to load and start
application code when the board is powered on or reset. The boot code also acts
as a download agent that downloads generated code into flash memory via
CAN.

You will use SingleStep debugger to load the boot code. Once the boot code is
loaded into flash memory, you can download code to the processor entirely over
a CAN network without needing to use SingleStep or a BDM connection.

For more information on downloading generated code into flash memory via
CAN see “Downloading Boot and Application Code” on page 3-23.

Note The SingleStep options and user interface screens discussed below are
based on SingleStep version 7.6.2 and may differ from your installed version
of SingleStep, or with future versions of SingleStep. The MathWorks provides
the configuration information below only as a convenience. To resolve
questions or difficulties with SingleStep, refer to the SingleStep
documentation, or contact Wind River Systems.

Configure Shortcuts to SingleStep
In order to start SingleStep with the proper options, we recommend that you
configure two shortcuts to SingleStep as follows.

1 The SingleStep installer will have installed a shortcut named SingleStep
On Chip (MPC5xx) in your system’s Start/Programs/SingleStep 7.6.2

Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger

1-23

menu. Locate this shortcut file and make a copy of it on your desktop.
Rename the copy to SingleStep On Chip (MPC5xx) for Flash.

2 Right-click on the SingleStep On Chip (MPC5xx) for Flash shortcut file
and edit its Target property to read as follows
ssteproot\cmd\bdmp58.exe -P -r
matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\app_startup\memcfg.dbg -S
matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\app_startup\mw_flash.wsp

where ssteproot is the installed SingleStep directory and matlabroot is the
MATLAB root directory.

 You will use the SingleStep On Chip (MPC5xx) for Flash shortcut when
downloading boot or application code to flash memory via SingleStep.

3 Make a copy of the SingleStep On Chip (MPC5xx) for Flash shortcut file
you created in step 2 and rename it to SingleStep On Chip (MPC5xx) for
RAM. Edit its Target property to read as follows
ssteproot\cmd\bdmp58.exe -P -S
matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\app_startup\mw_ram.wsp

where ssteproot is the installed SingleStep directory and matlabroot is the
MATLAB root directory.

You will use this SingleStep On Chip (MPC5xx) for RAM shortcut when
downloading code to RAM via SingleStep.

Configure phyCORE-MPC555 Jumpers
Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page 1–12. The correct jumper
configuration is required when downloading to flash memory via the BDM port.
Any other jumper settings may cause downloading to flash memory to fail, or
cause other problems when operating with the Embedded Target for Motorola
MPC555. For additional information on jumper settings, consult the
phyCORE-MPC555 documentation and the SingleStep manual.

Configure SingleStep Parameters
The next step is to configure the SingleStep options as follows:

1 Product Overview

1-24

1 Start SingleStep using the SingleStep On Chip (MPC5xx) for Flash
shortcut you created previously. The Debug dialog box opens.

2 Click on the File tab. Select the Debug without a file check box, as shown.

3 Click on the Connection tab. Choose parallel port or network settings
appropriate to the physical connection you will be using between your PC
and PhyCORE-MPC555 board. In the figure below, connection options are
configured for the parallel port LPT1, with a Delay setting of 6.

Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger

1-25

Note Depending on the BDM probe you are using, you may need to
experiment with the Delay setting.

4 Click on the Processor tab. Confirm that the MPC555 is selected in the
Processor menu, as shown.

5 Click on the Options tab. Make sure that the Reset Target check box is
selected, as shown.

1 Product Overview

1-26

6 Click on the Target Configuration tab and select General from the
Category menu. Then select Internal Memory Mapping Register from the
Registers menu, as shown.

7 Click on the Show button to open the Internal Memory Mapping
Register dialog box. Confirm that the FLEN-flash enable check box is
selected as shown below.

8 Then click OK to close the Internal Memory Mapping Register dialog
box and return to the Debug dialog box.

Note Make sure to click OK, not Cancel, or SingleStep may use settings
other than those shown in the dialog box.

Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger

1-27

9 Click OK. SingleStep attempts to connect to the processor, and displays a
Debug Status window. This figure shows the Debug Status window after a
successful connection.

If you see error messages, consult the SingleStep documentation to
troubleshoot the connection, or contact Wind River Systems for technical
support.

10 Click Close to dismiss the Debug Status window.

Download Boot Code to Flash Memory
The next step is to download the boot code to flash memory, using the
SingleStep Flash Programmer dialog box.

Note Be sure to apply the SingleStep updates described in “SingleStep
Installation” on page 1–21. If you do not update SingleStep properly, the
Flash Programmer dialog box will not operate correctly.

1 Activate the main SingleStep window. If you do not see a Flash button in
the toolbar, select Tools from the ToolBars menu.

1 Product Overview

1-28

2 Click on the Flash button on the toolbar. The Flash Programmer dialog box
opens. Click on the Set Up tab. This figure shows the Set Up pane.

3 Enter the Session File Name as
matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\app_startup
\boot_flash.pts

4 Click the Load button. After a brief interval, a message box appears,
indicating that the load has completed. Click OK to dismiss the message box.

5 Click on the Program/Verify tab. On the Program/Verify pane of the
dialog, enter the S-Record or Binary Image File as
matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\bootcode\
bootcode_flash.bin

Also select the Auto Erase Before Programming and Auto Verify After
Programming options.

Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger

1-29

6 Click the Program button. The boot code is downloaded. During
downloading, a number of progress messages are displayed in the Status
panel at the bottom of the dialog box.

7 Upon completing the download process, SingleStep displays a message box
indicating successful completion. Click OK to dismiss the message box.
Then, close the Flash Programmer dialog box. Do not save changes to the
Flash Programmer when the Save dialog appears.

8 If flash programming fails, you should

- Check that all jumpers are set correctly as described in “Configure
phyCORE-MPC555 Jumpers” on page 1-23.

- Quit SingleStep and repeat the entire procedure “Configure SingleStep
Parameters” on page 1-23. Make sure, in step 8, that you click OK (not
Cancel) when closing the Internal Memory Mapping Register dialog
box. Otherwise, SingleStep may use settings other than those shown in the
dialog box.

1 Product Overview

1-30

Your PhyCORE-MPC555 board is now ready to receive application code via
CAN download. It is no longer necessary to download the code via the BDM
device. However, if you prefer to download the application via BDM, you can do
so as described in “Downloading the Application to RAM via SingleStep/BDM”
on page 3-13.

Setting Up Your Installation with Metrowerks CodeWarrior

1-31

Setting Up Your Installation with Metrowerks CodeWarrior
To use the Embedded Target for Motorola MPC555 with Metrowerks
CodeWarrior, you need the following:

• Configurable Subsystem block phyCORE-MPC555 Rapid Development
Target, including the phyCORE-MPC555 development board, DB-25 parallel
printer port cable, serial cable, AC to DC power adapter, and Configurable
Subsystem block Spectrum CD.

You do not need to install anything from the Configurable Subsystem block
Spectrum CD except the Blinky test program that you will use to verify your
installation.

• Metrowerks CodeWarrior for Embedded PowerPC (version 6.0 or later) CD
(or network access to the Metrowerks CodeWarrior for Embedded PowerPC
installer). Do not use a version of Metrowerks CodeWarrior for Embedded
PowerPC that is earlier than version 6.0.

Install Metrowerks CodeWarrior IDE
The first step is to install the Metrowerks CodeWarrior IDE:

1 If you have previously installed a version of Metrowerks CodeWarrior for
Embedded PowerPC that is earlier than version 6.0, uninstall it.

2 Install CodeWarrior for Embedded PowerPC version 6.0 using the setup
program provided on your Metrowerks CodeWarrior CD (or on your
network). Run Setup.exe and follow the prompts.

Configure Metrowerks CodeWarrior Debugger
The next step is to configure the CodeWarrior debugger to communicate with
the phyCORE-MPC555 board over the parallel port:

1 Start the Metrowerks CodeWarrior IDE. From the Edit menu, open the IDE
Preferences dialog box. In the IDE Preference Panels pane, click on the
plus sign next to Debugger.

2 A list of choices opens below Debugger. Select Remote Connections. The
Remote Connections panel is displayed on the right.

1 Product Overview

1-32

3 Select MPC555DK Wiggler from the list in the Remote Connections panel.

If no MPC555DK Wiggler configuration exists, create one as follows:

a Click the Add... button. The New Connection configuration dialog box
opens.

b Set the Name property to MPC555DK Wiggler.

c Set the Debugger property to EPPC MSI Wiggler.

d Set the Connection Type property to Parallel.

e Set the Connection Port property to match the port to which you have
connected your phyCORE-MPC555 board (the default is LPT1).

f Set the Speed property to 1.

g Set the FPU Buffer Address property to 0xFFF00000.

h Click OK and skip to step 5.

4 If a MPC555DK Wiggler exists, click the Change... button. The MPC555DK
Wiggler configuration dialog box opens. By default, the Parallel Port
property is set to LPT1. If you have connected your phyCORE-MPC555 board
to a different port, change the Parallel Port setting accordingly. Then click
OK to close the MSI Wiggler configuration dialog box.

5 Click Apply and close the IDE Preferences dialog box.

Set Target Preferences
The next step is to configure your target preferences for Metrowerks
CodeWarrior. (Please read “Setting Target Preferences” on page 1–15, if you
have not yet done so.) The relevant preferences are

• TargetCompiler: set to 'CodeWarrior'.

• TargetCompilerPath: change this to the appropriate path to your
CodeWarrior installation.

• Note that when using CodeWarrior, you do not have to specify the
TargetDebugger preference. When required, the build process will
automatically invoke the CodeWarrior debugger.

For most purposes, the other target preferences fields can be left at their
defaults.

Setting Up Your Installation with Metrowerks CodeWarrior

1-33

Run Test Program (Optional)
Optionally, to verify your CodeWarrior setup, you may want to download and
run a simple test program on the phyCORE-MPC555 board. We will use the
Blinky test program provided on the Configurable Subsystem block Spectrum
CD. The Blinky test program is described in the “Getting Started” chapter of
the phyCORE-MPC555 Quickstart Instructions manual.

1 Copy the directory /PhyBasic/pcMPC555/Demos/Blinky to your hard drive.
Open the /Blinky directory and open the project file Blinky.mcp.

2 CodeWarrior will prompt that the project is read-only and needs to be
converted to the current format. Click OK to allow conversion to proceed.

3 To set the debugger configuration of the project, select ram Settings... from
the Edit menu. A dialog box titled ram Settings is displayed. In the left
pane, click on the minus sign next to Debugger.

4 A list of choices opens below Debugger. Select Remote Debugging.The
Remote Debugging panel is displayed on the right.

5 Select MPC555DK Wiggler from the Connection pop-up menu in the right
pane.

6 Select EPPC Debugger Settings. The EPPC Debugger Settings panel is
displayed on the right.

7 Select the Use Target Initialization File check box in the right pane. Then
use the Browse button to select the following initialization file:
phytecCD\PhyBasic\pcMPC555\Tools\PowerPC_EABI_Support\Initialization_Files\Bdm\
phyCORE-MPC555_BDM_init.cfg.

8 Click Apply and then OK to close the dialog box.

9 The project code is already compiled and linked. To download and execute it
on the target system, select Debug from the Project menu. After the code
downloads, you should observe two LEDs blinking alternately on the
phyCORE-MPC555 board.

You can now break and resume execution, set breakpoints, single-step
through code, and perform other debugger functions.

1 Product Overview

1-34

10 When finished, select Kill from the Debug menu to terminate the program
on the target hardware.

You have now verified your installation and are ready to begin working with
the Embedded Target for Motorola MPC555. We suggest you now turn to
Chapter 2, “PIL Cosimulation” to get hands-on experience with
processor-in-the-loop simulation via the Embedded Target for Motorola
MPC555 and Metrowerks CodeWarrior.

2

PIL Cosimulation

This section includes the following topics:

Overview of PIL Cosimulation (p. 2-2) Basic concepts you will need to know to use cosimulation
effectively in your design process.

Tutorial 1: Building and Running a PIL
Cosimulation (p. 2-5)

A hands-on, step-by-step introduction to cosimulation
with the PIL target, using a plant/controller
demonstration model.

Tutorial 2: Modifying and Rebuilding
the Controller (p. 2-17)

This tutorial shows you how to use the PIL target’s
single-model development methodology to make iterative
changes to a controller subsystem.

Tutorial 3: Using the Demo Model In
Simulation (p. 2-21)

In addition to building code suitable for cosimulation, the
PIL target builds components you can use in closed-loop
and software-in-the-loop (SIL) simulations. This tutorial
shows you how to use these components.

PIL Target Summary (p. 2-22) Summary of code generation options of the PIL target;
restrictions and limitations of the PIL target.

2 PIL Cosimulation

2-2

Overview of PIL Cosimulation
The Embedded Target for Motorola MPC555 supports processor-in-the-loop
(PIL) cosimulation, a technique that is designed to help you evaluate how well
a candidate control system operates on the actual target processor selected for
the application.

The Embedded Target for Motorola MPC555 (processor-in-the-loop) target is
an extended version of the embedded real-time (ERT) target configuration,
designed specifically for PIL cosimulation. We will refer to this target as the
PIL target.

Why Use Cosimulation?
PIL cosimulation is particularly useful for simulating, testing and validating a
controller algorithm in a system comprising a plant and a controller. In classic
closed-loop simulation, Simulink and Stateflow model such a system as two
subsystems and the signals transmitted between them, as shown in this block
diagram.

Your starting point in developing a plant/controller system is to model the
system as two subsystems in closed-loop simulation. As your design progresses,
you can use Simulink external mode with standard Real-Time Workshop
targets (such as GRT or ERT) to help you model the control system separately
from the plant.

However, these simulation techniques do not help you to account for
restrictions and requirements imposed by the hardware. When you finally
reach the stage of deploying controller code on the target hardware, you may
need to make extensive adjustments to the controller system. Once these

Overview of PIL Cosimulation

2-3

adjustments are made, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. The term “cosimulation” reflects a
division of labor in which Simulink models the plant, while code generated
from the controller subsystem runs on the actual target hardware. In a PIL
cosimulation, the target processor participates fully in the simulation loop —
hence the term “processor-in-the-loop.”

How Cosimulation Works
This figure illustrates how the plant (P) and controller (C) components interact
in a PIL cosimulation.

2 PIL Cosimulation

2-4

In a PIL cosimulation, the Real-Time Workshop Embedded Coder generates
efficient code for the control system. This code runs (in simulated time) on a
target board using the intended microcontroller. The plant model remains in
Simulink without the use of code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (Yout of the plant) to the target board
via a communications link. When the target processor receives signals from the
plant model, it executes the controller code for one sample step. The controller
returns its output signals (Yout of the controller) computed during this step to
Simulink, via the same communications link. At this point one sample cycle of
the simulation is complete and the plant model proceeds to the next sample
interval. The process repeats and the simulation progresses.

To learn about PIL cosimulation though hands-on experience, see “Tutorial 1:
Building and Running a PIL Cosimulation” on page 2-5.

Tutorial 1: Building and Running a PIL Cosimulation

2-5

Tutorial 1: Building and Running a PIL Cosimulation
In this tutorial, you will use a subsystem in a Simulink model as a component
in simulations on your host computer, and also in a PIL cosimulation running
on your phyCORE-MPC555 board.

Before You Begin
Before working with this tutorial, you should read and follow the procedures in
“Setting Up and Verifying Your Installation” on page 1-11. Make sure that the
target preferences are set up appropriately for your development system
(CodeWarrior or Diab) as described in “Setting Target Preferences” on
page 1-15

Hardware Connections
The PIL target requires both parallel and serial connections between your PC
and the phyCORE-MPC555 board. The parallel connection is required for
downloading code. The serial connection is required for host/target
communications during cosimulation.

We assume that you have made the following connections, as described in the
“Interfacing the phyCORE-MPC555 to a Host PC” section of the
phyCORE-MPC555 Quickstart Instructions manual:

• Host PC parallel (LPT1) port to the DB-25 connector (P1) on the
phyCORE-MPC555. (If you are using a Wiggler, connect LPT1 to the Wiggler
DB-25 connector, and connect the Wiggler to the internal BDM connector on
the phyCORE-MPC555 board.)

• Host PC serial (COM1) port to the RS232-1 (P2) connector on the
phyCORE-MPC555 board.

The Demo Model
We have provided a demo model for your use. The Fault-Tolerant Fuel Control
System model, shown in Figure 2-1, consists of a plant model with a controller
subsystem, the fuel rate controller subsystem.

2 PIL Cosimulation

2-6

Figure 2-1: Fault-Tolerant Fuel Control System Model

In the following sections, you will use the demo model and the PIL target to
generate the following:

• PIL code to run on the target board. The PIL target automatically invokes
the appropriate cross-development tools to compile, link, and (optionally)
download and run a target executable.

• A library containing

- The original fuel rate controller subsystem block for use in simulation.

- An S-function wrapper block, generated by the Real-Time Workshop
Embedded Coder, that implements the fuel rate controller subsystem
for use in software-in-the-loop (SIL) simulation.

- A subsystem block that implements the fuel rate controller
subsystem on the host side during cosimulation. This subsystem
communicates with generated PIL code running on the target board.

- A master Configurable Subsystem block that represents the above three
components. You will plug this block into a plant model and select each of
the three components in turn for use in a simulation.

Tutorial 1: Building and Running a PIL Cosimulation

2-7

This figure shows a library generated by the PIL target.

2 PIL Cosimulation

2-8

Once you start the build process, there is almost no manual intervention
required to build all these components.

After building the components, you will use them in normal simulation, SIL
simulation, and PIL cosimulation. You will monitor the results of each
simulation via the Scope blocks in the model.

Setting Up the Model
In this section you will make a local copy of the demo model and configure the
model as required by this exercise:

1 Make a local copy of the demo model, mpc555pil_fuelsys.mdl.

The model is located in the directory
matlabroot/toolbox/rtw/targets/mpc555dk/mpc555demos. Open
mpc555pil_fuelsys.mdl and save a copy of the model to your working
directory.

Next, check that the model is correctly configured for use with the Embedded
Target for Motorola MPC555.

2 From the Simulation menu, choose Simulation Parameters. The
Simulation Parameters dialog box opens. Click on the Real-Time
Workshop tab to activate the Real-Time Workshop pane.

Tutorial 1: Building and Running a PIL Cosimulation

2-9

3 Select Target configuration from the Category menu of the Real-Time
Workshop pane. The target configuration should be as shown in this figure.

4 If the target configuration settings are not as shown, click the Browse...
button to open the System Target File Browser, and select the Embedded
Target for Motorola MPC555 (processor-in-the-loop) target. Then click
OK to close the Browser and return to the Real-Time Workshop pane.

5 Select ERT code generation options(1)from the Category menu. Make
sure that the options are set to their defaults, as shown in this figure.

2 PIL Cosimulation

2-10

6 Select ERT code generation options (2) from the Category menu. Make
sure that the options are set as shown in this figure. Note that the Create
Simulink (S-Function) block option is selected. This is required to
generate a Real-Time Workshop Embedded Coder S-function wrapper block.

.

7 Select MPC555-DK (PIL) options from the Category menu.

Tutorial 1: Building and Running a PIL Cosimulation

2-11

8 Select Download_and_run from the Build action list. This option
automatically invokes the appropriate downloading/debugging utility for
your development environment, as specified in your target preferences.

9 Click Apply if you have changed any parameters. Then click OK to close the
Simulation Parameters dialog box. If needed, save the model to preserve
any changes you have made.

Building PIL and Simulation Components
In this section, you will build a library of simulation, SIL, and PIL components
from the fuel rate controller subsystem:

1 Right-click on the fuel rate controller subsystem. A context menu
appears. Select Build Subsystem from the Real-Time Workshop submenu
of the context menu.

2 The Build code for Subsystem window opens. This window displays
information about each variable (or data object) that is referenced as a block
parameter in the subsystem. The window lets you inline or set the storage
class of individual parameters. We will not be concerned with these features
in this exercise. Click the Build button to continue the code generation and
build process.

2 PIL Cosimulation

2-12

3 The build process displays status messages in the MATLAB command
window. Intermediate Simulink windows are displayed as the build process
creates various components.

4 When the code generation process completes, the PIL target automates the
process of compiling, downloading, and executing the generated PIL code
that is to run on the target hardware. To accomplish this, the PIL target
launches your cross-development system (Diab or CodeWarrior), compiles
and makes the executable, and invokes the appropriate downloading and
debugging utility (SingleStep or CodeWarrior debugger). You do not need to
intervene in this process.

5 At this point, the generated program is running on the target hardware and
waiting for communication to be established with Simulink on the host PC.

6 The build process has created and opened a library named fuel_lib, as
shown in this figure.

Tutorial 1: Building and Running a PIL Cosimulation

2-13

2 PIL Cosimulation

2-14

The library contains

• A copy of the original fuel rate controller subsystem.

• A Real-Time Workshop Embedded Coder generated S-function, labeled fuel
rate controller (SIL).

• A subsystem block that communicates with generated PIL code running on
the target board during cosimulation, labeled fuel rate controller (PIL).

• A master Configurable Subsystem referencing the other three blocks. The
default block choice for this subsystem is the original fuel rate controller
subsystem.

The Configurable Subsystem, when plugged into the model, lets you choose
which of the three library components will perform the controller functions in
the model. We will use the Configurable Subsystem in the following sections.

The library window also contains the following controls:

• A Help button that displays PIL target documentation in the MATLAB help
browser.

• A button that lets you replace the original (generating) subsystem in the
model with the generated Configurable Subsystem.

• A button that lets you do the inverse, i.e., remove the Configurable
Subsystem from the model from the original model and replace it with the
original (generating) subsystem from the library.

The library window documents the name of the original model/subsystem from
which the library was generated,

Using the Demo Model In a PIL Cosimulation
In this section, we will plug the Configurable Subsystem into the demo model,
select the PIL component, and use it in a PIL co- simulation:

1 Click on the fuel_lib library window to activate it. Double-click on the
button labeled Replace the original subsystem in the model with the
configurable subsystem from this library.

2 The mpc555pil_fuelsys model window is now the active window. The
original fuel rate controller subsystem has been deleted from the model.
It has been replaced by the Configurable Subsystem from the fuel_lib

Tutorial 1: Building and Running a PIL Cosimulation

2-15

library. The Configurable Subsystem is automatically connected to the same
signals that the original fuel rate controller subsystem was connected
to.

Note It is important to be aware that the insertion of the Configurable
Subsystem into the containing model establishes a link between the model,
mpc555pil_fuelsys, and the library, fuel_lib. The library has information
about the model and subsystem from which it was generated. The model, in
turn, has information about the library from which the Configurable
Subsystem comes. This linkage is based on the names of the library and the
model, and will be broken if either is renamed. To avoid errors, treat the model
and library as a single unit, and do not rename either.

3 Save the model.

4 Right-click on the Configurable Subsystem in the model. A context menu
appears. Select the Block choice menu item and observe the block choice
submenu. This figure shows the default block choice selection.

5 From the Block choice submenu of the context menu, select fuel rate
controller (PIL).

6 Open the model’s two Scope blocks, if they are not already opened.

7 Make sure that Simulink is in Normal mode.

8 You are now ready to run the cosimulation. To start the cosimulation, click
the Start simulation button in the Simulink toolbar.

The target system now starts executing the controller code. Observe that the
output signals computed on the target are displayed on the scopes. The

2 PIL Cosimulation

2-16

updating of the Scope blocks is slow, relative to a normal simulation,
because data is transmitted over the serial line on every model step.

Notice also that one of the green LEDs on the PhyCORE-MPC555 board
blinks while the cosimulation runs.

9 When the simulation completes, the LED stops blinking. The signals
displayed on the scopes should appear as shown in Figure 2-2.

Figure 2-2: Signals Displayed at End of Simulation or Cosimulation

10 When the cosimulation has completed, or has stopped or paused, the target
code enters a wait state until it receives a command to start (or resume) from
the host. Restart the cosimulation by clicking the Start simulation button
again. You can start, stop, restart, pause, or continue a cosimulation exactly
as you would a normal simulation. Try each of these operations a few times.

11 Stop the cosimulation (or let it complete) and activate your
cross-development system. Terminate the program on the target system,
and exit your cross-development system.

Note that you can open the project and executable files, created by the PIL
target for your cross-development system, at any time. You can then reload and
run the target code, and run another cosimulation. See “Build Process Files
and Directories” on page 2-23 for information on the files and directories
created by the build process.

Tutorial 2: Modifying and Rebuilding the Controller

2-17

Tutorial 2: Modifying and Rebuilding the Controller
In this section, we will continue to use the Configurable Subsystem we built in
“Tutorial 1: Building and Running a PIL Cosimulation” on page 2-5.

In this tutorial, we will make a simple change to the original fuel rate
controller subsystem in our generated library, fuel_lib. We will then
rebuild the library components, and run another cosimulation, observing the
behavior of our modified controller. All of these steps will be accomplished
within the same model/library pair.

Note Before you begin the procedure below, make sure that you have stopped
the target program and exited your cross-development system.

Modifying the Controller
In this section, we add an output signal and port to the controller subsystem.
The changes we make to the controller subsystem in this section are for
demonstration purposes; they do not add useful functionality to the model:

1 Activate the fuel_lib library, and double-click on the original fuel rate
controller subsystem.

2 Add a Sum block, a Constant block, and an outport to the fuel rate
controller subsystem. Configure them such that an offset of 0.5 is summed
with the fuel rate signal.

2 PIL Cosimulation

2-18

3 Route the Sum block output to the new outport, and label the outport fuel
+ offset. The fuel rate controller subsystem should now resemble this
block diagram.

4 Close the fuel rate controller subsystem. Observe that, in the library
window, the fuel rate controller subsystem now has two outputs, but the
SIL and PIL blocks in the library do not. These components will not be
updated until the library is rebuilt.

Note You do not need to remove the Configurable Subsystem from the model
to rebuild the code for the SIL and PIL components.

5 Activate the mpc555pil_fuelsys model. Right-click on the Configurable
Subsystem in the model. A context menu appears. From the Block choice
submenu of the context menu, select fuel rate controller. Observe that
the Configurable Subsystem reflects the change in the corresponding
component of the library, showing two outports.

Tutorial 2: Modifying and Rebuilding the Controller

2-19

6 Add a Scope block to the model and connect it to the new fuel + offset
outport of the Configurable Subsystem. Label the scope fuel with offset.
The model should now resemble this block diagram.

Rebuilding the Controller and Cosimulating
You are now ready to rebuild the PIL code and library components. This time,
however, you will build from the Configurable Subsystem, which must be
linked back to the fuel rate controller subsystem in the library. Before
continuing, right-click on the Configurable Subsystem and make sure that, in
the Block choice submenu of the context menu, fuel rate controller is
selected. Do not select fuel rate controller (SIL) or fuel rate controller
(PIL).

To rebuild the PIL code and library components:

1 Right-click on the Configurable Subsystem, and select Build Subsystem
from the Real-Time Workshop submenu of the context menu.

2 The build process proceeds as described in the previous tutorial (see
“Building PIL and Simulation Components” on page 2-11 if necessary). At
the end of the build process, the fuel_lib library is again activated. Observe
that the rebuilt SIL and PIL components now have two outports, like the
original subsystem from which they were generated, as shown in this figure.

2 PIL Cosimulation

2-20

3 The PIL code has been downloaded to the target; you can now cosimulate
again with the rebuilt PIL code. As before, right-click on the Configurable
Subsystem in the model, and select fuel rate controller (PIL) from the
Block choice submenu of the context menu.

4 Open all the model’s Scope blocks, if they are not already opened.

5 Make sure that Simulink is in Normal mode.

6 Click the Start simulation button in the Simulink toolbar.

Observe the signals displayed on the scopes. The fuel with offset scope
and the Metered Fuel scope should display signals that are identical except
for their offsets. Otherwise, all signals should be identical to the signals
generated by the previous cosimulation.

7 Clean up by terminating the program on the target system, and exiting your
cross-development system. Save the model if desired.

In the next section, you will use the other components of the fuel_lib library
in simulations.

Tutorial 3: Using the Demo Model In Simulation

2-21

Tutorial 3: Using the Demo Model In Simulation
In this section, we will continue to use the Configurable Subsystem in the demo
model, using it first in a normal closed-loop simulation and then in a SIL
simulation.

Closed-Loop Simulation

1 Right-click on the Configurable Subsystem and select fuel rate
controller from the Block choice submenu of the subsystem block’s
context menu. This selects the controller subsystem that was used in the
original model.

2 Open the Scope blocks and start the simulation. When the simulation
completes (simulation time is set to 8 seconds), the signals displayed on the
scopes should appear identical to those displayed during the previous
cosimulation (see Figure 2-2 on page 2-16).

SIL Simulation

1 Right-click on the Configurable Subsystem and select fuel rate
controller (SIL) from the Block choice submenu of the subsystem block’s
context menu.

Selecting this option directs Simulink to call a generated wrapper S-function
that implements the controller algorithm in highly efficient Real-Time
Workshop Embedded Coder generated code. You can now run a SIL
simulation.

2 Start the simulation. You will notice that the simulation completes much
more quickly, due to the efficiency of the generated code. Also, observe that
the generated code displays results, on the scopes, that are identical to the
previous simulation and cosimulation (see Figure 2-2).

2 PIL Cosimulation

2-22

PIL Target Summary

Code Generation Options
The PIL target is an extension of the Real-Time Workshop Embedded Coder
embedded real-time (ERT) target configuration. The PIL target inherits the
code generation options of the ERT target, as well as the general code
generation options of the Real-Time Workshop. These options are available via
the Category menu of the Real-Time Workshop pane of the Simulation
Parameters dialog box; they are documented in the Real-Time Workshop
documentation and the Real-Time Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the PIL
target, and are either unsupported, or restricted in their operation, by the PIL
target. See “Restrictions” on page 2-24 for details.

Target-Specific Option
The the PIL target has one target-specific code generation option: Build
action. To view or change the setting of this option, select MPC555-DK (PIL)
options from the Category menu of the Real-Time Workshop pane of the
Simulation Parameters dialog box.

The Build action menu has two options that control what action the PIL target
takes after completing the code generation process:

PIL Target Summary

2-23

• Download_and_run: When this option is selected, the PIL target
automatically invokes the appropriate downloading/debugging utility for
your development environment, as specified in your target preferences. The
PIL target downloads the generated code to the target board and begins
execution of the code.

Before using this option, make sure that the TargetCompiler,
TargetCompilerPath, TargetDebugger, and TargetDebuggerExe target
preferences are set correctly.

• None: When this option is selected, the PIL target does not take any action
after code generation completes. To download and run your application, you
must do so manually, using your development tools.

Build Process Files and Directories
The PIL target creates the following in your working directory:

• A build directory, containing generated source code, object files, and a
makefile and other control files. The build directory also may contain
subdirectories used by Stateflow and by the HTML code generation report
generator (see “Code Analysis Reporting” on page 4-3).

The naming convention for the build directory is source_mpc555pil, where
source is the first word of the generating subsystem or model. For example,
the fuel rate controller subsystem used in the PIL tutorials generates
the build directory fuel_mpc555pil.

• The generated library, source_lib.mdl, and the.dll components that are
bound to the generated PIL and SIL blocks in the library. Note that if you
rebuild source_lib.mdl in the same working directory, a revision number is
appended to the source string. For example, building from the fuel rate
controller subsystem used in the PIL tutorials generates fuel_lib.mdl,
fuel1_lib.mdl, fuel2_lib.mdl... fueln_lib.mdl.

• Executable PIL code in a format suitable for downloading to the target and
execution by your development system (Diab or Metrowerks).

• Project files, debugging symbol files, link maps, and other files specific to
your development system (Diab and Metrowerks).

If you do not select the Download_and_run option when you generate code (or if
you want to rerun PIL code after it is built), you must manually download and

2 PIL Cosimulation

2-24

run the generated executable using your development system. The procedure
for doing this varies with your development system:

• Metrowerks CodeWarrior: The PIL target generates source.mcp, a
Metrowerks CodeWarrior project file, in the build directory.

• Diab compiler/SingleStep debugger: The PIL target generates
source_ram.scr, a control file to be used with SingleStep, in the build
directory. To invoke SingleStep and download and run PIL code, type the
following command at the MATLAB prompt (as one continuous line)

!start ssteproot\bdmp58.exe -P -S
matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\app_startup\mw_ram.wsp -r
source_mpc555pil\source_ram.scr

where ssteproot is the installed SingleStep directory, and matlabroot is
the MATLAB root directory.

Restrictions
Please note the following restrictions on the use of the PIL target:

• The PIL target does not currently support code generation from device driver
blocks from the Embedded Target for Motorola MPC555 block libraries. If
your model includes any such blocks, you can use them in pass-through mode
during simulation or cosimulation only.

• In a plant/controller simulation where the controller is built via the PIL
target, the plant model can contain any Simulink blocks, including a
combination of continuous-time and discrete-time blocks. However,
controller subsystem must not include any continuous-time blocks,. This
component is used for code generation in the Embedded-C format of the
Real-Time Workshop Embedded Coder; the Embedded-C format does not
support continuous blocks.

• Certain ERT code generation options are not supported by the PIL target. If
these options are selected, the PIL target either ignores the option or issues
an error message during the build process. Table 2-1 summarizes these
restricted options.

PIL Target Summary

2-25

Table 2-1: PIL Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process
proceeds

Generate ASAP2 file Ignored if selected; build process
proceeds

External mode Error if selected; build process
terminates

Generate an example
main program

This option should not be selected
for the PIL target. The PIL target
supplies a target-specific main
program, mpc555dk_main.c.

Generate reusable code Error if selected; build process
terminates

Target floating-point
math environment

Error if ISO_C menu option is
selected. Use only the ANSI_C
option (default).

2 PIL Cosimulation

2-26

3
Generating Stand-Alone
Real-Time Applications

This section includes the following topics:

Introduction (p. 3-2) An overview of the Embedded Target for Motorola
MPC555 real-time target, other components required to
generate stand-alone real-time applications, and the
process of deploying generated code on target hardware.

Tutorial: Creating a New Application
(p. 3-4)

A hands-on exercise in building an application from a
demo model, including downloading and executing
generated code on a target board.

Downloading Boot and Application
Code (p. 3-23)

A detailed discussion of the process of downloading code
to the MPC555 RAM and flash memory.

Generating ASAP2 Files (p. 3-35) How to generate ASAP2 files from your model.

Summary of the Real-Time Target
(p. 3-40)

Summary of the code generation options specific to the
real-time target, and requirements am restrictions that
apply to the current release.

3 Generating Stand-Alone Real-Time Applications

3-2

Introduction
This section describes how to generate a stand-alone real-time application for
the MPC555. The components required to generate stand-alone code are

• The Embedded Target for Motorola MPC555 real-time target

• The MPC555 Resource Configuration object provided in the Embedded
Target for Motorola MPC555 library

• I/O driver blocks provided in the Embedded Target for Motorola MPC555
library

• Utilities for downloading generated code to the target hardware

Using these, you can build a complete application. You do not need to
hand-write any C code to integrate the generated code into a final application.

The tutorial “Tutorial: Creating a New Application” on page 3-4 uses two
blocks from the Embedded Target for Motorola MPC555 library. For complete
information on the Embedded Target for Motorola MPC555 library blocks, see
Chapter 5, “Block Reference.”

Before reading this section and using the Embedded Target for Motorola
MPC555 library, you should have at least a basic understanding of the
architecture of the MPC555. To learn about the MPC555, we suggest that you
study the MPC555 Users Manual. We recommend that you read the
introduction to the processor and familiarize yourself with all the major
subsystems of the MPC555.You can find this document at the following URL:
http://e-www.motorola.com/webby/asps/library/prod_lib.jsp.

Deploying Generated Code
You can load a generated program into the MPC555 flash memory for
permanent deployment. You can also load your code into external RAM (if
available on your development hardware).

Alternatively, you can use the automatic code generation process for rapid
prototyping and investigate a range of different design alternatives before
making a deployment decision.

Your generated program can run on any Electronic Control Unit (ECU) that is
based on the MPC555 processor. Your application can use any of the supported
MPC555 on-chip I/O devices. The supported devices include analog input,

Introduction

3-3

digital I/O, CAN and PWM input or output (see Chapter 5, “Block Reference”
for further information on the device driver blocks in the Embedded Target for
Motorola MPC555 library).

In addition to on-chip I/O resources, an ECU typically provides additional I/O
devices. If you want to access such custom I/O devices, you must write device
drivers and integrate them with the automatically generated code. See the
following documentation for details:

• Real-Time Workshop User’s Guide

• Real-Time Workshop Embedded Coder User’s Guide

• Writing S-Functions

Once the application has been programmed into memory on the target system,
you may need to monitor signals or tune parameters. The Embedded Target for
Motorola MPC555 supports signal monitoring and parameter tuning via the
CAN Calibration Protocol (CCP). To enable CCP, you must include a CAN
Calibration Protocol block in your model. The CAN Calibration Protocol block
implementation of CCP has been tested against CANape from
Vector-Informatik. See “CAN Calibration Protocol” on page 5-12 for further
information.

3 Generating Stand-Alone Real-Time Applications

3-4

Tutorial: Creating a New Application
In this tutorial, we will build a stand-alone real-time application from a model
incorporating blocks from the Embedded Target for Motorola MPC555 library.
We assume that you are already familiar with Simulink and with the
Real-Time Workshop code generation and build process.

In the following sections, we will

• Configure the model

• Use the pass-though feature in simulation

• Generate code from a subsystem

• Download code by one of the following methods:

- Download to target RAM via a CAN connection, using the Download
Control Panel utility (provided with the Embedded Target for Motorola
MPC555).

- Download to target RAM via a BDM connection, using Wind River
Systems SingleStep debugger.

• Execute the code on the target.

After you complete this tutorial, you may want to learn how to deploy
generated code into the MPC555 flash memory. See “Downloading Boot and
Application Code” on page 3-23 for that information.

Before You Begin
This tutorial requires the following specific hardware and software in addition
to the Embedded Target for Motorola MPC555:

• Phytec phyCORE-MPC555 development board

The tutorial model utilizes two LEDs on the phyCORE-MPC555 board.
These LEDs are connected to pins MPIO32B0 and MPIO32B1 on the MPC555
MIOS digital output pins. If you are using a different development board,
you may be able to obtain the same functionality by making similar
connections.

• If you want to download generated code to the target board via CAN, you will
need one of the following supported CAN cards, and the drivers supplied by
the manufacturer:

Tutorial: Creating a New Application

3-5

- Vector-Informatik CanAC2PCI

- Vector-Informatik CanAC2

- Vector-Informatik CanCardX

- Vector-Informatik CanPari

If you have not yet done so, install your Vector-Informatik CAN card and
drivers. See your Vector-Informatik documentation for instructions on
installation and verification. In addition, after installing the drivers from
Vector-Informatik, you must locate the vcand32.dll library, and add a path to
the location where vcand32.dll was installed to the Windows system path.

Note Please check the Vector Informatik Web site at
http://www.vector-informatik.com/
 to make sure you have drivers suitable for your PC operating system version.
Note that serious system problems can arise if you use drivers for the wrong
PC operating system version (e.g., installing drivers for Windows NT on a
Windows 2000 system).

• Wind River Systems Diab Data D-CC cross-compiler

Make sure that your target preferences are set correctly for the Diab
development tools:

- Set the TargetCompiler preference to 'Diab':
settargetprefs('mpc555dk','TargetCompiler','Diab')

- Set the TargetCompilerPath preference to the location of your Diab cross
compiler. For example:

settargetprefs('mpc555dk','TargetCompilerPath',...
'D:\Applications\diab\4.3g\WIN32\bin')

3 Generating Stand-Alone Real-Time Applications

3-6

• Wind River Systems SingleStep debugger (version 7.6.2)

If you have not yet done so, set the TargetDebuggerExe preference to the
location of SingleStep. For example:
settargetprefs('mpc555dk','TargetCompilerPath','D:\Apps\Diab\4.3g\win32\bin')
settargetprefs('mpc555dk','TargetDebuggerExe',...
'D:\Apps\singlestep\sds762\cmd\bdmp58.exe')

SingleStep is required to download boot code to the MPC555 flash memory.
Once the boot code is loaded into flash memory, you can download code to the
processor entirely over the CAN network as described later in this tutorial.
If you have not yet downloaded boot code to the MPC555 flash memory,
please read and follow the instructions in “Configuring SingleStep and
Downloading Boot Code” on page 1-22.

You can also use SingleStep to download and execute generated code in
MPC555 RAM, as described later in this tutorial.

The Example Model
In this tutorial we will use a simple example model, mpc555rt_led, from the
directory matlabroot/toolbox/rtw/targets/mpc555dk/mpc555demos.

This directory is on the default MATLAB path.

1 Open the model.

mpc555rt_led

2 Save a local copy to your working directory. We will work with this copy
throughout this exercise.

Figure 3-1 shows the example model at the root level. We will only use the
root model in simulation.

Figure 3-1: mpc555rt_led_demo Model, Root Level

Tutorial: Creating a New Application

3-7

3 Double-click on the TargetSystem subsystem block.

Figure 3-2 shows the TargetSystem subsystem, from which we will generate
code.

Figure 3-2: TargetSystem Subsystem

In the TargetSystem subsystem, two square wave signals are multiplexed and
routed to the MIOS Digital Out block. The MIOS Digital Out block accepts a
vector of numbers representing pins 0-15 on the MIOS 16-bit Parallel Port I/O
Submodule (MPIOSM) on the MPC555. As the square wave signals oscillate
between 0 and 1, the MIOS Digital Out block writes corresponding logic values
to the appropriate pin on the port.

This picture shows the parameters of the MIOS Digital Out block.

3 Generating Stand-Alone Real-Time Applications

3-8

The Bits field is set to the vector [0 1]. The block maps this vector to the
MPC555 MIOS digital output pins MPIO32B0 and MPIO32B1. When the
application runs, it will send a pulse signal to these output pins. On the
PhyCORE-MPC555 board, these signals are connected to two of the LEDs,
which will switch on and off at the frequency set in the respective pulse
generator blocks.

During simulation, the MIOS Digital Out block simply passes its input signal
through to its output, and the square waves can be viewed on the Scope block.

In addition to the Pulse Wave, Mux, MIOS Digital Out, and Output blocks, the
TargetSystem subsystem contains a MPC555 Resource Configuration object.
When building a model with driver blocks from the Embedded Target for
Motorola MPC555 library, you must always place a MPC555 Resource
Configuration object into the model (or the subsystem from which you want to
generate code) first.

The purpose of the MPC555 Resource Configuration object is to provide
information to other blocks in the model. Unlike conventional blocks, the
MPC555 Resource Configuration object is not connected to other blocks via
input or output ports. Instead, driver blocks (such as the MIOS Digital Out
block in the example model) query the MPC555 Resource Configuration object
for required information.

For example, a driver block may need to find the system clock speed that is
configured in the MPC555 Resource Configuration object. The MPC555 has a

Tutorial: Creating a New Application

3-9

number of clocked subsystems; to generate correct code, driver blocks need to
know the speeds at which the these clock busses will run.

The MPC555 Resource Configuration window lets you examine and edit the
MPC555 Resource Configuration settings. To open the MPC555 Resource
Configuration window, double-click on the MPC555 Resource Configuration
icon. This picture shows the MPC555 Resource Configuration window for the
TargetSystem subsystem.

In this tutorial, we will use the default MPC555 Resource Configuration
settings. Observe, but do not change, the parameters in the MPC555 Resource
Configuration window. To learn more about the MPC555 Resource
Configuration object, see “MPC555 Resource Configuration” on page 5-47.

Close the MPC555 Resource Configuration window before proceeding.

Using the Pass-Through Option in Simulation
Device driver blocks in the Embedded Target for Motorola MPC555 library
have a unique pass-through option. This option lets you provide a signal from
a device driver block for use in simulation.

Open the MIOS Digital Out block from the TargetSystem subsystem. Make
sure that the Enable pass through (show simulation input) option is
selected, as shown in this picture.

3 Generating Stand-Alone Real-Time Applications

3-10

When this option is enabled, an outport appears on the block. The block input
is passed through to the output during simulation. This option affects
simulation only.

To see the effect of pass-through in simulation:

1 Open the Scope block in the root model.

2 Start the simulation; observe the output signals from the TargetSystem
subsystem.

3 Stop the simulation manually (the simulation time is set to inf).

Generating Code
We will now generate application code:

1 Open the Simulation parameters dialog box and select the Real-Time
Workshop pane. Select Target configuration from the Category menu.

2 Click on the Browse button to open the System Target File Browser. In the
browser, select Embedded Target for Motorola MPC555 (real-time
target). Then click OK to close the browser and return to the Real-Time
Workshop pane.

Tutorial: Creating a New Application

3-11

3 The Target configuration settings should now be as shown below.

4 From the Category menu of the Real-Time Workshop pane, select
MPC555-DK (real-time) options. The RAM option should be selected from
the Target memory model menu. This option directs the Real-Time
Workshop to generate a code file in Motorola S-record format, which is
suitable for downloading and execution in RAM.

Leave the other options set to their defaults. The code generation options
should appear as shown below.

3 Generating Stand-Alone Real-Time Applications

3-12

5 You are now ready to build the application. Do this by clicking on the Build
button.

6 On successful completion of the build process, two files are created in the
working directory:

a Target_ram.srec: Code only, without symbols, suitable for execution on
the target system.

b Target_ram.out: Code and symbols, suitable for use with a symbolic
debugger such as Wind River SingleStep.

 You can download to RAM:

- Via the BDM port, using the Wind River SingleStep debugger, as
described in “Downloading the Application to RAM via SingleStep/BDM”
on page 3-13.

- Via CAN, using the Download Control Panel utility with
Vector-Informatik hardware, as described in “Downloading the
Application to RAM via CAN” on page 3-19.

Tutorial: Creating a New Application

3-13

Downloading the Application to RAM
via SingleStep/BDM
In this section, we will use the Wind River Systems SingleStep debugger to
download and start the generated Target_ram.out file to RAM on the target
system. Target_ram.out contains both code and symbols for use with the
debugger.

Do the following before you begin:

• Make sure that you have downloaded boot code to the flash memory of the
MPC555. See “Configuring SingleStep and Downloading Boot Code” on page
1–22.

• Connect the BDM port of your development board to parallel port LPT1 of
your host PC.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page 1–12.

• Cycle the power (or perform a hard reset) on your development board to clear
the RAM.

To download the generated Target_ram.out file to RAM:

1 Start SingleStep using the SingleStep On Chip (MPC5xx) for RAM shortcut
you created previously (see “Configure Shortcuts to SingleStep” on page 1–
22). The Debug dialog opens. Clear the Debug without a file option. Click
on the File tab. Then, use the Browse button to locate the Target_ram.out
file.

3 Generating Stand-Alone Real-Time Applications

3-14

2 Click on the Processor tab. Confirm that the MPC555 is selected in the
Processor list, as shown.

3 Click on the Options tab. Make sure that the Reset Target and Load
Application Image options are selected, as shown.

4 Click on the Connection tab. Choose parallel port or network settings
appropriate to the physical connection you will be using between your PC
and PhyCORE-MPC555 board. In the picture below, connection options are
configured for the parallel port LPT1, with a Delay setting of 6.

Tutorial: Creating a New Application

3-15

Note We have found that a Delay setting of at least 6 (shown) works best.

5 Click on the Target Configuration tab and select General from the
Category menu. Then select Internal Memory Mapping Register from the
Registers menu, as shown.

6 Click on the Show button to open the Internal Memory Mapping
Register dialog. Clear the FLEN-flash enable option, as shown below.

3 Generating Stand-Alone Real-Time Applications

3-16

7 Click OK to return to the Target Configuration pane, and select
Base/Option Register 1 from the Registers menu, as shown.

Note Be sure to click OK, not Cancel, when closing the Internal Memory
Mapping Register dialog box. Otherwise, SingleStep may use different
parameter values than those displayed in the dialog box.

8 Click on the Show button to open the Base/Option Register 1 dialog. Set
the BA-Base address field to 0x00000000, as shown below.

Tutorial: Creating a New Application

3-17

9 Click OK to return to the Target Configuration pane.

10 In the Target Configuration pane, click OK. SingleStep attempts to
connect to the processor, and displays a Debug Status window. This picture
shows the Debug Status window after a successful connection and
download.

3 Generating Stand-Alone Real-Time Applications

3-18

If you see error messages, consult the SingleStep documentation to
troubleshoot the connection, or contact Wind River Systems for technical
support.

11 Click Close to dismiss the Debug Status window.

12 At this point, the application code is in RAM, and SingleStep has established
a debugging session. To execute the program, click on the green Go button
in the SingleStep Debug panel. Observe that the red and green LEDs on the
target board are blinking, indicating that the program is running.

13 You can now stop, restart, and otherwise exercise the target program via
SingleStep.

Note Do not reset or cycle power on the board while the target program is
running; doing so will hang SingleStep. You must stop the target program
before exiting SingleStep.

Tutorial: Creating a New Application

3-19

Downloading the Application to RAM via CAN
The Download Control Panel utility can be used to download application code
to MPC555 RAM or to MPC555 flash memory.

In this section, we will use the Download Control Panel utility to download the
generated Target_ram.srec file to RAM on the target system.

Do the following before you begin:

• Make sure that your Vector-Informatik CAN card and drivers are installed
and are operating properly. Make sure that the desired CAN port on the PC
card is connected to the CAN A port on the target hardware. See your
Vector-Informatik documentation for instructions on installation and
verification.

In addition, after installing the drivers from Vector-Informatik, you must
locate the vcand32.dll library, and add a path to the location where
vcand32.dll was installed to the Windows system path.

• Make sure that you have set up SingleStep and downloaded boot code to the
flash memory of the MPC555, as described in “Configuring SingleStep and
Downloading Boot Code” on page 1–22.

• Make sure that nothing is connected to the BDM port of your development
board.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page 1–12.

• Cycle the power (or perform a hard reset) on your development board, to
clear the RAM.

To download the generated Target_ram.srec file to RAM:

1 Type the following command at the MATLAB command prompt:

candnload

2 The Download Control Panel window opens.

3 Generating Stand-Alone Real-Time Applications

3-20

3 Select RAM application code from the Download type menu.

4 Enter the name of the file to be downloaded into the Filename field.
Alternatively, you can use the Browse... button to navigate to the desired
file. The Download Control Panel should now appear as shown in this
picture.

5 Click on the CAN Options tab. If necessary, select an appropriate card and
port from the CAN hardware pop-up menu. The default settings for the
other parameters are appropriate for most cases. This picture shows the
CAN Options configured for a Vector-Informatik CANAC2pci card, channel
1.

Tutorial: Creating a New Application

3-21

6 Click on the Download tab. Then click on the Download button, and
immediately press the reset button on your PhyCORE-MPC555 board.

Downloading commences, and the Download button caption changes to
Stop.

7 While downloading proceeds, numerous messages are displayed in the
MATLAB command window. A successful download ends with the following
messages:

send_connect()
send_program_prepare()
send_dnload(0)
STOP

After the download, the Stop button caption changes back to Download.

If the download does not succeed, reset your development board and return
to step 6.

8 Close the Download Control Panel window.

9 A few seconds after a successful download, the boot code transfers control to
the application program. At this point, you should see two LEDs (red and
green) blinking on the target board. This indicates that the program is
operating correctly.

3 Generating Stand-Alone Real-Time Applications

3-22

Note that you can monitor the progress of the flash download using a program
such as CANalyzer. Alternatively, you can use the btest32 utility supplied
with the Vector Informatik driver software. You can invoke the btest32 utility
from the PC command prompt. The following example runs btest32 with a
baud rate of 500000:

btest32 500000

Downloading Boot and Application Code

3-23

Downloading Boot and Application Code

RAM vs. Flash Memory
The Embedded Target for Motorola MPC555 (real-time target) writes a file
containing the application executable code that must be programmed onto the
MPC555. It also writes a file of symbolic information suitable for use with a
debugger. The files are written to your working directory.

The format of the code and symbol files depends on your selection from the
Target memory model menu in the MPC555-DK (real-time) options category
of the Real-Time Workshop pane, as follows:

• If you select the FLASH option, files in a format suitable for downloading into
on-chip flash memory are generated. The naming convention for these files
is model_flash.bin (code only), and model_flash.out (debugging symbols).
You can download code to flash memory via the CAN bus, or via the
MPC555’s BDM port.

• If you select the RAM option, files in a format suitable for downloading into
RAM are generated. The naming convention for these files is
model_ram.srec (code only), and model_ram.out (code plus debugging
symbols). You can download code to RAM via the CAN bus, or via the
MPC555’s BDM port.

There are advantages and disadvantages to each memory model.

Loading the application code into RAM is faster than loading it into flash
memory. In addition, by using RAM you can avoid using up the programming
cycles of the flash memory; this lengthens the usable lifetime of the flash
memory. Running the application from RAM is a good option for initial testing
of the application.

To program applications into RAM, your target hardware must have additional
RAM external to the MPC555 on-chip RAM. The Embedded Target for
Motorola MPC555 does not support downloading of code to the MPC555
on-chip RAM, because the MPC555 has only 26K of on-chip RAM.

For final deployment, or to load code onto a test board for use at a test site, you
will generally want to program your code into the nonvolatile flash memory.
416K of flash memory is available for application code. Code programmed into
flash memory is persistent and restarts when the board is powered on.

3 Generating Stand-Alone Real-Time Applications

3-24

To download code to flash memory, you must first load a binary boot code file
into the flash memory. The Embedded Target for Motorola MPC555 provides
the boot code file. You must load the boot code into flash memory in order to
run application code from flash memory; the boot code is also required if you
want to program the MPC555 via CAN.

To understand the download process, it is first necessary to review the memory
organization on the MPC555 and the operation of the boot code. This is
described in “Overview of Memory Organization and the Boot Process” on
page 3-24. If you just want to get started without reading about how the
process works, you can jump ahead to the section “Downloading Boot Code” on
page 3-25.

Overview of Memory Organization
and the Boot Process

Memory Organization
The MPC555 has a total of 448K of on-chip flash memory. This memory is
organized into 14 banks of 32K each. The first bank is always used to store the
boot code and the remaining 416K is available for application code. When using
the Embedded Target for Motorola MPC555, the on-chip flash memory is
located at absolute address 0x0000 in the MPC555 address space.

Figure 3-3: Organization of Flash Memory

Boot Code

Application
Code

OxOOOO

Ox8OOO

Ox7OOOO

Downloading Boot and Application Code

3-25

To run a stand-alone application on the MPC555, it is first necessary to
program the boot code into the first bank of flash memory.

The Boot Process
The boot code is executed following power on or reset (except if a probe is
connected to the BDM port). Normally, the boot code performs basic hardware
initialization and then branches to the application code. Once the application
code is running, there is no way to return to the boot code except by performing
a reset.

One of the important functions of the boot code is to serve as agent that allows
program code to be downloaded over CAN. There are two methods of initiating
a program download over CAN:

• The default method for initiating a flash download is to send a special CAN
message during a short window of time while the boot code is executing. In
the supplied boot code, this window is set to 40ms. If this special message is
received during the window while the boot code is executing, a program
download sequence commences and a new application can be programmed
into flash memory. See “Downloading Application Code to Flash Memory via
CAN” on page 3-29 for details.

• Alternatively, it is possible to commence a flash download over CAN while
application code is running on the target. To initiate a download over CAN,
you must include a special Simulink block in your Simulink model. See
“Downloading Boot or Application Code via CAN Without Manual CPU
Reset” on page 3-32 for details.

Downloading Boot Code
The Embedded Target for Motorola MPC555 provides the boot code in the file
bootcode_flash.bin, located in the directory

matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\bootcode

Normally, you will only need to program the boot code into flash memory once.
After this is done, new application code can be downloaded as often as required
without any changes to the boot code.

The first time you program the boot code into the target hardware, you must
download it via the BDM port. However, if existing boot code is already
programmed into flash memory and must be replaced (for example, with a

3 Generating Stand-Alone Real-Time Applications

3-26

newer or modified version) it is possible to download over CAN. In this case the
boot code actually replaces itself.

Downloading Boot Code via BDM
A variety of proprietary tools are available for flash programming the MPC555
over the BDM port. In the section “Configuring SingleStep and Downloading
Boot Code” on page 1-22, we describe how to program the flash memory using
the Wind River Systems SingleStep debugger.

Downloading Boot Code via CAN
You can use the Download Control Panel to download new boot code to the
MPC555, providing that existing boot code is already programmed onto the
target hardware. (Recall that the first time boot code is programmed, it must
be downloaded via BDM). Normally, you would not need to replace existing
boot code unless there is an upgrade to the boot code supplied with this product.

To replace existing boot code:

1 Type the following command at the MATLAB command prompt:

candnload

2 The Download Control Panel window opens.

3 Select Flash boot code from the Download type menu.

4 In the Filename field, enter the name of the boot code image file that you
want to download. Alternatively, you can use the Browse... button to
navigate to the desired file.

5 Click the CAN Options tab. If necessary, select an appropriate card and port
from the CAN hardware pop-up menu. The default settings for the other
parameters are appropriate for most cases.

6 The next step is to download code. The default method for download over
CAN requires that you manually reset the target processor in order for the
download process to begin. However, under the following conditions, you do
not have to reset the target processor manually:

a There is an application currently running on the target.

Downloading Boot and Application Code

3-27

b The application running on the target implements the CAN Calibration
Protocol (as described in “Downloading Boot or Application Code via CAN
Without Manual CPU Reset” on page 3-32).

If both these conditions are met, click on the Download tab, and then click
on the Download button. Then skip to Step 8.

7 If the conditions a and b given in Step 6 are not met, you must download by
the default method. Click on the Download tab. Then click on the
Download button, and immediately press the reset button on your
PhyCORE-MPC555 board.

8 Downloading commences, and the Download button caption changes to
Stop.

9 Close the Download Control Panel window when downloading is complete.

Downloading Application Code
The following sections describe how to download generated image files and run
generated code on the target hardware. They also describe how to download to
RAM and to flash memory, via either the BDM port, or via CAN.

Downloading the Application Code to RAM
To download application code to RAM, you must generate a code file in
Motorola S-record format, which is suitable for downloading and execution in
RAM. To do this, select the RAM option from the Target memory model menu
in the MPC555-DK (real-time) options category of the Real-Time Workshop
pane. The build process creates two files in the working directory:

• model_ram.srec: Code only, without symbols, suitable for execution on the
target system.

• model_ram.out: Code and symbols, suitable for use with a symbolic debugger
such as Wind River SingleStep.

 You can download to RAM:

• Via CAN, using the Download Control Panel utility with Vector-Informatik
hardware, as described in “Downloading the Application to RAM via CAN”
on page 3-19

3 Generating Stand-Alone Real-Time Applications

3-28

• Via the BDM port, using the Wind River SingleStep debugger, as described
in “Downloading the Application to RAM via SingleStep/BDM” on page 3-13

Downloading the Application Code to Flash Memory
To download application code to flash memory, you must generate a code file in
flash binary format, which is suitable for downloading and execution in flash
memory. To do this, select the FLASH option from the Target memory model
menu in the MPC555-DK (real-time) options category of the Real-Time
Workshop pane. The build process creates the files model_flash.bin and
model_flash.out in the working directory. The model_flash.bin file contains
an image of the executable code. The model_flash.out file contains symbols
suitable for use with a symbolic debugger such as Wind River SingleStep.

 You can download to flash memory:

• Via CAN, using the Download Control Panel utility with Vector-Informatik
hardware, as described in “Downloading Application Code to Flash Memory
via CAN” on page 3-29.

• Via the BDM port, using the Wind River SingleStep debugger, as described
in “Downloading the Application Code to Flash Memory via BDM and
SingleStep” on page 3-28.

Downloading the Application Code
to Flash Memory via BDM and SingleStep
You can use SingleStep to download application code to flash memory via the
BDM port. The procedure is almost identical to that for downloading boot code
to flash memory.

If you have not created shortcuts to SingleStep, as described in “Configure
Shortcuts to SingleStep” on page 1-22, do so before proceeding. Then, follow the
download procedure given in “Configuring SingleStep and Downloading Boot
Code” on page 1-22, with the following differences:

1 Start SingleStep using the shortcut file SingleStep On Chip (MPC5xx) for
Flash.

2 In the Setup tab of the Flash Programmer dialog box, enter the session file
name:
matlabroot\toolbox\rtw\targets\mpc555dk\common\drivers\app_startup\app_flash.pts

Downloading Boot and Application Code

3-29

3 The application code must be programmed into memory starting at the
second bank of flash memory. On the Program/Verify pane of the Flash
Programmer dialog box, set the Bank, Sector field to 1,1 and the Address
field to 0x00008000.

4 On the Program/Verify pane of the Flash Programmer dialog box, enter the
name of your application, model_flash.bin, as the S-record or Binary
Image File.

Downloading Application Code to Flash Memory via CAN
You can use the Download Control Panel to download generated application
code to the MPC555 flash memory.

To download application code to flash memory, you must generate a code file in
flash binary format, which is suitable for downloading and execution in flash
memory. To do this, select the FLASH option from the Target memory model
menu in the MPC555-DK (real-time) options category of the Real-Time
Workshop pane. The build process creates the file model_flash.bin in the
working directory.

Do the following before you begin:

• Make sure that your Vector-Informatik CAN card and drivers are installed,
are operating properly. Make sure that the desired CAN port on the PC card
is connected to the CAN A port on the target hardware. See your
Vector-Informatik documentation for instructions on installation and
verification.

In addition, after installing the drivers from Vector-Informatik, you must
locate the vcand32.dll library, and add a path to the location where
vcand32.dll was installed to the Windows system path.

• Make sure that you have set up SingleStep and downloaded boot code to the
flash memory of the MPC555, as described in “Configuring SingleStep and
Downloading Boot Code” on page 1–22.

• Make sure that nothing is connected to the BDM port of your development
board.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page 1–12.

To download the generated model_flash.bin file to RAM:

3 Generating Stand-Alone Real-Time Applications

3-30

1 Type the following command at the MATLAB command prompt:

candnload

2 The Download Control Panel window opens.

3 Select Flash application code from the Download type menu.

4 Enter the name of the file to be downloaded into the Filename field.
Alternatively, you can use the Browse... button to navigate to the desired
file. The Download Control Panel should now appear as shown in this
picture.

5 Click on the CAN Options tab. If necessary, select an appropriate card/port
from the CAN hardware pop-up menu. The default settings for the other
parameters are appropriate for the default boot process. This picture shows
the CAN Options configured for a Vector-Informatik CAN-AC2-PCI card,
channel 1.

Downloading Boot and Application Code

3-31

6 The next step is to download code. The default method for download over
CAN requires that you manually reset the target processor in order for the
download process to begin. Under the following conditions, you do not have
to reset the target processor:

a There is an application currently running on the target.

b The application running on the target implements the CAN Calibration
Protocol (as described in “Downloading Boot or Application Code via CAN
Without Manual CPU Reset” on page 3-32).

If both these conditions are met, click on the Download tab, and then click
on the Download button. Then skip to Step 8.

7 If the conditions a and b given in Step 6 are not met, you must download by
the default method. Click on the Download tab. Then click on the
Download button, and immediately press the reset button on your
PhyCORE-MPC555 board.

8 Downloading commences, and the Download button caption changes to
Stop.

9 While downloading proceeds, numerous messages are displayed in the
MATLAB command window. A successful download ends with the following
messages:

send_connect()
send_program_prepare()
send_dnload(0)

3 Generating Stand-Alone Real-Time Applications

3-32

STOP

After the download, the Stop button caption changes back to Download.

If the download does not succeed, reset the board and return to step 6.

You can monitor the progress of the flash download using a program such as
CANalyzer. Alternatively, you can use the btest32 utility supplied with the
Vector Informatik driver software. You can invoke the btest32 utility from
the PC command prompt. The following example runs btest32 with a baud
rate of 500000:

btest32 500000

10 Close the Download Control Panel window.

Once the download process is complete, the application starts running
immediately on the target hardware.

Downloading Boot or Application Code via CAN
Without Manual CPU Reset
The default method for download over CAN requires that the target processor
be manually reset in order for the download process to begin. This requirement
may be problematic if the target hardware is not physically accessible or if it
cannot be individually reset or powered down/up.

It is possible to remove this requirement for manual reset if a suitably prepared
application is already running on the target. To do this, include a CAN
Calibration Protocol block within the model (See “CAN Calibration Protocol” on
page 5-12).

When the currently running application includes the CAN Calibration Protocol
block, the download process begins immediately when you click on the
Download button of the Download Control Panel; it is not necessary to
manually reset the target hardware to initiate the download.

When using the CAN Calibration Protocol block, you must specify

• CAN message identifier for Command Receive Objects

• CAN message identifier for Data Transmit Objects

• Can Calibration Protocol Station Address

Downloading Boot and Application Code

3-33

Note that the values specified may differ from the default values for these
parameters that are programmed in the boot code. When performing the
download procedure using the Download Control Panel, you must ensure that
the parameters specified on the CAN Options tab match those specified in the
currently running application.

For an example of how to use the CAN Calibration Protocol block, see the demo
model mpc555rt_ccp.

Boot Code Parameters for CAN Download
The boot code parameters for download over CAN determine

• CAN baud rate

• CAN message identifier for Command Receive Objects (CRO)

• CAN message identifier for Data Transmit Objects (DTO)

• Can Calibration Protocol Station Address

• The duration of the window during which the boot code listens for a download
command message

Table 3-1 shows the default values for these parameters. These defaults should
be suitable for most applications.

Table 3-1: Default Boot Code Parameters

Parameter Default Value

CAN baud rate 500,000

CCP station address 1

CAN message identifier (CRO) 6FA

CAN message identifier (DTO) 6FB

Duration of listening window 40 ms

3 Generating Stand-Alone Real-Time Applications

3-34

You cannot change these default values except by modifying and recompiling
the boot code. If it is absolutely necessary to do this, you can recompile the boot
code as follows:

1 Open a PC Command Prompt window.

2 Check whether you have the environment variables MATLABROOT and
DIABROOT defined by typing

set MATLABROOT
set DIABROOT

3 If these variables are not defined you must define them by typing the
following commands:

set MATLABROOT=matlabroot
set DIABROOT=diabpath

The paths matlabroot and diabpath specified in the commands should be the
location where MATLAB and the Diab compiler are installed.

4 Recompile the boot code by typing the following at the PC Command
Prompt:

cd matlabroot/toolbox/rtw/targets/mpc555dk
matlabroot/rtw/bin/win32/gmake -f rt_makefile

Note You should not make changes to the boot code without fully
understanding the effect of your changes. Note also that the boot code may be
changed without notice in future releases of this product.

Generating ASAP2 Files

3-35

Generating ASAP2 Files
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2 is a
standard description you use for data measurement, calibration, and
diagnostic systems. The Embedded Target for Motorola MPC555 real-time
target lets you export an ASAP2 file containing information about your model
during the code generation process.

Before you begin generating ASAP2 files with the Embedded Target for
Motorola MPC555 real-time target, you should read the “Generating ASAP2
Files” section of the Real-Time Workshop Embedded Coder documentation.
That section describes how to define the signal and parameter information
required by the ASAP2 file generation process.

The process of generating an ASAP2 file from your model with Embedded
Target for Motorola MPC555 real-time target is similar to that described in the
Real-Time Workshop Embedded Coder documentation. However, there are
certain differences and limitations. In the following sections, we describe these
differences and limitations and how they affect the procedure for generating
ASAP2 files.

The mpc555rt_ccp demo provides an example of the Embedded Target for
Motorola MPC555 ASAP2 file generation feature.

Requirements and Limitations

Compiler-Specific Post-Processing Requirements
The Embedded Target for Motorola MPC555 generates an initial ASAP2 file
during the code generation process. At this point, the addresses of signals and
parameters on the target system are unavailable, since the code has not been
compiled and linked. The initial ASAP2 file contains placeholders for the
unresolved addresses.

To supply the required memory addresses, the generated code must be
compiled and a compiler-generated MAP file must be created.

After the build process, if the Embedded Target for Motorola MPC555 real-time
target detects the presence of the ASAP2 file and a MAP file in the required
format, it performs a post-processing phase. During this phase, the MAP file is
used to propagate the required address information back into the ASAP2 file.

3 Generating Stand-Alone Real-Time Applications

3-36

MAP file formats differ between compilers, so the post processing phase is
compiler-specific. The Embedded Target for Motorola MPC555 provides the
post-processing mechanism for the Diab compiler. Therefore, the Embedded
Target for Motorola MPC555 real-time target supports generation of ASAP2
files only when used with the Diab cross-compiler.

To use the Embedded Target for Motorola MPC555 ASAP2 file generation
feature, you must configure MATLAB via the mpc555dk_asap2 utility. Before
generating ASAP2 files, run the mpc555dk_asap2 utility (described in the next
section). This will ensure that the generated MAP and ASAP2 files are
automatically post-processed.

The names of the ASAP2 file and the MAP file derive from the source model.
The MAP file is generated in the same directory as the source model. The
ASAP2 file is written to the build directory.

mpc555dk_asap2 Utility
The Embedded Target for Motorola MPC555 provides a setup utility,
mpc555dk_asap2. Before generating an ASAP2 file, you must execute the
mpc555dk_asap2 utility as follows:

mpc555dk_asap2 option

where option is either standard or mpc555. The default is standard.

The option parameter determines how the MAP file and ASAP2 file are
post-processed:

• mpc555: processes a MAP file generated by the Diab cross-compiler in the
Diab format. This is the appropriate option for use with the Embedded
Target for Motorola MPC555 real-time target, since the real-time target
supports only the Diab compiler.

• standard: processes the MAP file with a standard Perl script (asap2post.pl)
provided with Real-Time Workshop Embedded Coder. This script is not
suitable for use with Embedded Target for Motorola MPC555.

We recommend that you add a call to mpc555dk_asap2 in your startup.m file.

ASAP2 File Generation Procedure

1 Set up for ASAP2 file generation by running the mpc555dk_asap2, as
described above.

Generating ASAP2 Files

3-37

2 Create the desired model. Use appropriate parameter names and signal
labels to refer to ASAP2 CHARACTERISTICS and MEASUREMENTS respectively.

3 Define the corresponding ASAP2.Parameter and ASAP2.Signal objects in the
MATLAB workspace.

4 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property:

- ExportedGlobal
- ImportedExtern
- ImportedExternPointer

ExportedGlobal is the default storage class.

5 Configure the other data object properties such as LongID_ASAP2,
PhysicalMin_ASAP2, etc.

6 In the Advanced pane of the Simulation Parameters dialog box, select the
Inline parameters option.

Note that you should not configure the parameters associated with your data
objects in the Model Parameter Configuration dialog box. If a parameter
that resolves to a Simulink data object is configured using the Model
Parameter Configuration dialog box, the dialog box configuration is
ignored. You can, however, use the Model Parameter Configuration dialog
to configure other parameters in your model.

7 In the Real-Time Workshop pane of the Simulation Parameters dialog,
select ERT code generation options(2) from the Category menu. Then
select the Generate ASAP2 file option.

8 Click Apply.

9 Click Build (or Generate code).

10 The ASAP2 file is generated as part of the build process.

3 Generating Stand-Alone Real-Time Applications

3-38

Data Acquisition (DAQ) List Configuration
The Embedded Target for Motorola MPC555 supports the Data Acquisition
(DAQ) List feature of the CAN Calibration Protocol (CCP). DAQ lists allow
efficient synchronous signal monitoring. The CCP block provided with the
Embedded Target for Motorola MPC555 supports DAQ lists (see “CAN
Calibration Protocol” on page 5-12 for details).

ASAP2.Signal objects are used for monitoring a signal in the CCP polling mode
of operation. To monitor a signal in a DAQ list, however, you must configure
the signal somewhat differently. The differences are as follows:

• Instead of defining an ASAP2.Signal in the MATLAB workspace (and
associated signal in the Simulink model), define a canlib.Signal object
instead.

• There is no need to set the RTWInfo.StorageClass property of the
canlib.Signal object. By default, the storage class is set to Custom.

• You should enter data in the other fields of the canlib.Signal object in the
same way you would do for an ASAP2.Signal object.

During code generation, the Embedded Target for Motorola MPC555
automatically determines how to configure the DAQ lists in the generated code.
For each distinct sample rate (of the set of canlib.Signal objects assigned by
the user) one DAQ list in the model is created. The CCP DAQ List Object
Descriptor Tables (ODTs) are shared equally between the created DAQ lists.

The sample rates of the canlib.Signal objects are mapped to CCP event
channels in an extra file, DAQ_LIST_EVENT_MAPPINGS, that is generated in the
build directory. This shows how to assign event channels to MEASUREMENT
signals in a calibration package.

The event channels periodically transmit events that are used to trigger the
sending of DAQ data to the host. By assigning event channels as defined in
DAQ_LIST_EVENT_MAPPINGS, consistent and efficient transmission of DAQ data
is achieved.

It is the responsibility of the calibration tool (see “Compatibility with
Calibration Packages” on page 5-15) to assign an event channel and data to the
available DAQ lists using CCP commands, and to interpret the synchronous
response.

Generating ASAP2 Files

3-39

It is the responsibility of the user to make sure the calibration tool is set up
correctly and that the event channels assigned to MEASUREMENT signals
correspond to those defined in the file DAQ_LIST_EVENT_MAPPINGS.

3 Generating Stand-Alone Real-Time Applications

3-40

Summary of the Real-Time Target

Code Generation Options
The real-time target is an extension of the Real-Time Workshop Embedded
Coder embedded real-time (ERT) target configuration. The real-time target
inherits the code generation options of the ERT target, as well as the general
code generation options of the Real-Time Workshop. These options are
available via the Category menu of the Real-Time Workshop pane of the
Simulation Parameters dialog box; they are documented in the Real-Time
Workshop documentation and the Real-Time Workshop Embedded Coder
documentation.

Some code generation options of the ERT target are not relevant to the
real-time target, and are either unsupported, or restricted in their operation,
by the PIL target. See “Requirements and Restrictions” on page 3-42 for
details.

Target-Specific Options
The real-time target has several target-specific code generation options. To
view or change the setting of these options, select MPC555-DK (real-time)
options from the Category menu of the Real-Time Workshop pane of the
Simulation Parameters dialog box. This picture shows the options at their
default settings.

Summary of the Real-Time Target

3-41

The options are

• Optimize compiler for: This option controls compiler optimization switches
used during the build process. The exact effect of the optimization switches
depends on whether you are using the Diab or CodeWarrior compiler. You
can optimize for performance via the speed option, or optimize for code size
via the size option. If you select none, no optimization switches are invoked.

• Target memory model: Select either FLASH or RAM.

If you select the FLASH option, files in a format suitable for downloading into
the MPC555 on-chip flash memory are written. The naming convention for
these files is model_flash.bin (code only), and model_flash.out
(debugging symbols).

If you select the RAM option, files in a format suitable for downloading into
RAM is generated. The naming convention for these files is model_ram.srec
(code only), and model_ram.out (code plus debugging symbols).

• Target scheduler: This option controls the scheduling algorithm used by the
main program provided with the Embedded Target for Motorola MPC555. To
understand this option, refer to

- The source code:
matlabroot/toolbox/rtw/targets/mpc555dk/mpc555dk/mpc555dk_main.c

- The “Data Structures and Program Execution” section of the Real-Time
Workshop Embedded Coder documentation.

The default option is SYNCHRONOUS_PIT_SCHEDULER. When you select this
option, the main program operates as described in the “Data Structures and
Program Execution” section of the Real-Time Workshop Embedded Coder
documentation. The main() function installs rtOneStep as a timer interrupt
service routine (ISR). The IRQ level for rtOneStep is specified by the
RT_ONESTEP_IRQ_LEVEL parameter of the model's MPC555 Resource
Configuration block (see “MPC555 Resource Configuration” on page 5-47). The
main() function also sets the rate of the MPC555 Programmable Interrupt
Timer (PIT) and enables timer interrupts.

If you select the USER_DEFINED_SCHEDULER option, the main() function does not
install any ISR, and runs as an idle loop with optional calls to a background
task. You must supply your own timer ISR and execution scheduler and modify
mpc555dk_main.c accordingly.

3 Generating Stand-Alone Real-Time Applications

3-42

Requirements and Restrictions

MPC555 Resource Configuration Block Required
To generate code from a model using the Embedded Target for Motorola
MPC555 real-time target, an MPC555 Resource Configuration block must be
included in the model. The MPC555 Resource Configuration block is required
even for models that do not contain any MPC555 device driver blocks.

Note When using device driver blocks from the Embedded Target for
Motorola MPC555 libraries in conjunction with the MPC555 Resource
Configuration block, do not disable or break library links on the driver blocks.
If library links are disabled or broken, the MPC555 Resource Configuration
block will operate incorrectly. See “MPC555 Resource Configuration” on
page 5-47 for further information.

Certain ERT code generation options are not supported by the real-time target.
If these options are selected, the real-time target either ignores the option or
issues an error message during the build process. Table 3-2 summarizes these
restricted options.

Table 3-2: Real-Time Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process
proceeds

Create Simulink
(S-function) block

Error if selected; build process
terminates

External mode Error if selected; build process
terminates

Summary of the Real-Time Target

3-43

Generate an example
main program

This option should not be selected
for the real-time target. The
real-time target supplies a
target-specific main program,
mpc555dk_main.c.

Generate reusable code Error if selected; build process
terminates

Table 3-2: Real-Time Target Restricted Code Generation Options

Option Restriction

3 Generating Stand-Alone Real-Time Applications

3-44

4
Algorithm Export and
Code Analysis Reporting

This section discusses two useful tools for code analysis:

Algorithm Export Target (p. 4-2) The Algorithm Export (AE) target generates only the code
that implements the algorithm of your model or
subsystem. This is useful for code analysis and
interfacing to hand-written or legacy code.

Code Analysis Reporting (p. 4-3) This section describes the extended HTML code
generation report.

Algorithm Export Target Summary
(p. 4-5)

Summary of code generation options and restrictions.

4 Algorithm Export and Code Analysis Reporting

4-2

Algorithm Export Target
The Embedded Target for Motorola MPC555 Algorithm Export (AE) target is
an aid to code analysis and interfacing. The target generates only the code that
implements the algorithm of your model or subsystem, without any overhead
for PIL host/target communications or other operations extraneous to the
model. Such purely algorithmic code is easier to interface to your hand-written
or legacy code than code generated by the PIL or RT targets.

Another application of the AE target is to use it to produce a code generation
report. Since only model code is included, you can more easily analyze the code
generated from your model.

The AE target supports both the CodeWarrior and Diab cross-compilers, as
specified in your target preferences (see “Setting Target Preferences” on
page 1-15).

To use the AE target:

1 Open the Simulation parameters dialog box and select the Real-Time
Workshop tab. Select Target configuration from the Category menu.

2 Click on the Browse button to open the System Target File Browser. In the
browser, select Embedded Target for Motorola MPC555 (algorithm
export) target. Then click OK to close the browser and return to the
Real-Time Workshop pane.

3 Follow the usual procedure for generating code from your model or
subsystem.

4 The AE target generates a project file appropriate for your cross-compiler.
After generating the code and the project, the AE target automatically
invokes your cross-compiler and opens the project.

We recommend using the AE target in conjunction with the Embedded Target
for Motorola MPC555 HTML code generation report (see “Code Analysis
Reporting” on page 4-3). If you select the Generate HTML report option, you
can view a profiling report that includes detailed itemization of RAM and ROM
usage for all code and data sections, and a complete memory map of the
generated code. You can also easily examine the generated code via hyperlinks
in the code generation report.

Code Analysis Reporting

4-3

Code Analysis Reporting
The Embedded Target for Motorola MPC555 supports an extended version of
the Real-Time Workshop Embedded Coder HTML code generation report.

The extended code generation report consists of several sections:

• The Generated Source Files section of the Contents pane contains a table
of source code files generated from your model. You can view the source code
in the MATLAB Help browser. Hyperlinks within the displayed source code
let you view the blocks or subsystems from which the code was generated.
Click on the hyperlinks to view the relevant blocks or subsystems in a
Simulink model window.

• The Summary section lists version and date information, TLC options used
in code generation, and Simulink model settings.

• The Optimizations section lists the optimizations used during the build, and
also those that are available. If you chose options that generated less than
optimal code, they are marked in red. This section can help you select options
that will better optimize your code.

• The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

• The code profile report section includes a detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of the
generated code.

To generate a code generation report and view the profiling report:

1 Select the Real-Time Workshop tab of the Simulation Parameters dialog
box. Select Target configuration from the Category menu. Make sure
that the Generate code only option is not selected.

The reason for this step is that the Embedded Target for Motorola MPC55
extended code generation report obtains information from MAP files that
are created by your cross-compiler during the build process. If the Generate
code only option is on, these files are not generated, which prevents the
generation of the code generation report.

2 Select General code generation options from the Category menu.

4 Algorithm Export and Code Analysis Reporting

4-4

3 Select Generate HTML report, as shown in this picture.

4 Follow the usual procedure for generating code from your model or
subsystem.

5 The Real-Time Workshop writes the code generation report file in the build
directory. The file is named model_codegen_rpt.html or
subsystem_codegen_rpt.html.

6 The Real-Time Workshop automatically opens the MATLAB Help browser
and displays the code generation report.

7 To view the profiling report, click on the Code profile report link in the
Contents pane of the report.

Alternatively, you can view the code generation report in your Web browser.

Algorithm Export Target Summary

4-5

Algorithm Export Target Summary

Code Generation Options
The AE target is an extension of the Real-Time Workshop Embedded Coder
embedded real-time (ERT) target configuration. The AE target inherits the
code generation options of the ERT target, as well as the general code
generation options of the Real-Time Workshop. These options are available via
the Category menu of the Real-Time Workshop pane of the Simulation
Parameters dialog box; they are documented in the Real-Time Workshop
documentation and the Real-Time Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the AE
target, and are either unsupported, or restricted in their operation, by the AE
target. See “Restrictions” below for details.

The AE target has no target-specific options.

Restrictions
Certain ERT code generation options are not supported by the AE target. If
these options are selected, the AE target either ignores the option or issues an
error message during the build process. Table 4-1 summarizes these restricted
options.

Table 4-1: AE Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process
proceeds

Create Simulink (S-function)
block

Error if selected; build process
terminates

Generate ASAP2 file Ignored if selected; build process
proceeds

4 Algorithm Export and Code Analysis Reporting

4-6

External mode Error if selected; build process
terminates

Generate an example main
program

This option should not be selected
for the AE target. The AE target
supplies a target-specific main
program, mpc555dk_main.c.

Table 4-1: AE Target Restricted Code Generation Options (Continued)

Option Restriction

5

Block Reference

This section contains the following topics:

The Embedded Target for Motorola
MPC555 Block Libraries (p. 5-2)

Overview of the block libraries provided by the Embedded
Target for Motorola MPC555.

Blocks Organized by Libraries (p. 5-4) Block summaries and links to the block reference
documentation, grouped by block library.

Alphabetical List of Blocks (p. 5-11) Block summaries and links to the block reference
documentation, in alphabetical order.

5 Block Reference

5-2

The Embedded Target for Motorola MPC555 Block Libraries
The Embedded Target for Motorola MPC555 provides three block libraries:

• The Embedded Target for Motorola MPC555 library (mpc555drivers.mdl)
provides device driver blocks that let your applications access on-chip
resources. The I/O blocks support the following features of the MPC555:

- Pulse width modulation (PWM) generation or digital output via the
Modular Input/Output Subsystem (MIOS) PWM unit.

- Analog input via the Queued Analog-to-Digital Converter (QADC64).

- Digital input and output via the MIOS.

- Digital input via the QADC

- Frequency and pulse width measurement via the MIOS Double Action
Submodule (MDASM).

- Transmission or reception of Controller Area Network (CAN) messages via
the MPC555 TouCAN modules.

• The CAN Message Blocks library (canblks.mdl) provides device driver and
utility blocks that support the Controller Area Network (CAN) protocol. CAN
is an industry standard protocol used in automotive electronics and many
other embedded environments where dispersed components require sharing
of information. The CAN Message Blocks library includes blocks for
transmitting, receiving, decoding, and formatting CAN messages. The CAN
Message Blocks library also supports message specification via the
Vector-Informatik CANdb standard.

• The CAN Drivers (Vector) library (vector_candrivers.mdl) provides blocks
for configuring and connecting to Vector-Informatik CAN hardware and
drivers.

The following sections provide complete information on each block in the
Embedded Target for Motorola MPC555 block libraries, in a structured format.
Refer to these pages when you need details about a specific block. Click Help
on the Block Parameters dialog for the block, or access the block reference
page through Help.

Using Block Reference Pages
Block reference pages are listed in alphabetical order by the block name. Each
entry contains the following information:

The Embedded Target for Motorola MPC555 Block Libraries

5-3

• Purpose — describes why you use the block or function.

• Library — identifies the block library where you find the block.

• Description — describes what the block does.

• Dialog Box — shows the block parameters dialog and describes the
parameters and options contained in the dialog. Each parameter or option
appears with the appropriate choices and effects.

• Examples — optional section that provides demonstration models to
highlight block features.

In addition, block reference pages provide pictures of the Simulink model icon
for the blocks.

5 Block Reference

5-4

Blocks Organized by Libraries
The blocks in the Embedded Target for Motorola MPC555 libraries are
organized into sublibraries that support different functions. The tables below
reflect that organization.

Embedded Target for Motorola MPC555 Library

Note To generate code from a model using the Embedded Target for Motorola
MPC555 real-time target, an MPC555 Resource Configuration block must be
included in the model. The MPC555 Resource Configuration block is required
even for models that do not contain any MPC555 device driver blocks.

Note When using device driver blocks from the Embedded Target for
Motorola MPC555 libraries in conjunction with the MPC555 Resource
Configuration block, do not disable or break library links on the driver blocks.
If library links are disabled or broken, the MPC555 Resource Configuration
block will operate incorrectly. See “MPC555 Resource Configuration” on
page 5-47 for further information.

Top Level Library

Block Name Purpose

MPC555 Resource Configuration Support driver configuration for
MPC555 and MIOS, QADC, and
TouCAN submodules.

Watchdog In event of application failure, time
out and reset processor.

Blocks Organized by Libraries

5-5

Modular Input/Output System (MIOS1) Sublibrary

Block Name Purpose

MIOS Digital In Input driver for MIOS 16-bit
Parallel Port I/O Submodule
(MPIOSM).

MIOS Digital Out Output driver for MIOS 16-bit
Parallel Port I/O Submodule
(MPIOSM).

MIOS Digital Out (MPWMSM) Digital output via the MIOS Pulse
Width Modulation Submodule
(MPWMSM).

MIOS Pulse Width Modulation Out Output driver for MIOS Pulse
Width Modulation Submodule
(MPWMSM).

MIOS Waveform Measurement Support pulse width and pulse
period measurement via MIOS
Double Action Submodule.

Queued Analog-to-Digital Converter Module-64 Sublibrary

Block Name Purpose

QADC Analog In Input driver enables use of Queued
Analog-Digital Converter
(QADC64) in continuous scan mode.

QADC Digital In Input driver enables use of
QADC64 pins as digital inputs.

5 Block Reference

5-6

Data Type Support and Scaling for
Device Driver Blocks
The following table summarizes the input and output data types supported by
the device driver blocks in the Embedded Target for Motorola MPC555 library,
and the scaling applied to block inputs and outputs.

CAN 2.0B Controller Module (TouCAN) Sublibrary

Block Name Purpose

CAN Calibration Protocol Implement the CAN Calibration
Protocol (CCP) standard.

TouCAN Error Count Count transmit and/or receive
errors detected on selected TouCAN
modules.

TouCAN Fault Confinement State Indicate the state of a TouCAN
module.

TouCAN Interrupt Generator Generate an interrupt subsystem
for CAN interrupt sources.

TouCAN Receive Receive CAN messages from a
TouCAN module on the MPC555.

TouCAN Soft Reset Reset a TouCAN module.

TouCAN Transmit Transmit a CAN message via a
TouCAN module on the MPC555.

TouCAN Warnings Flag excessively high transmit or
receive error counts on TouCAN
modules.

Blocks Organized by Libraries

5-7

I/O Data Types and Scaling for MPC555 Device Driver Blocks

Block Input
Data
Type

Input
Scaling

Output
Data
Type

Output
Scaling/
Units

MIOS Digital
In

Any Simulink
supported datatype

logic 1 if
input > 0,
logic 0 if
input <= 0

Boolean 0 or 1 only

MIOS Digital
Out

Any Simulink
supported datatype

logic 1 if
input > 0,
logic 0 if
input <= 0

Any Simulink
supported datatype

0 or 1 only

MIOS Digital
Out
(MPWMSM)

Any Simulink
supported datatype

logic 1 if
input > 0,
logic 0 if
input <= 0

Any Simulink
supported datatype

0 or 1 only

MIOS Pulse
Width
Modulation
Out

double or single 0 to 1 double or single (must
be same as input data
type)

0 to 1

MIOS
Waveform
Measurement

double or single seconds double or single (must
be same as input data
type)

Seconds

QADC Analog
In

double or single 0 to 1 uint16 or int16
(defined by
Justification
parameter)

(defined by
Justification
parameter)

QADC Digital
In

Any Simulink
supported datatype

logic 1 if
input > 0,
logic 0 if
input <= 1

Boolean 0 or 1 only

5 Block Reference

5-8

Configuration Class Blocks
Each sublibrary of the Embedded Target for Motorola MPC555 library contains
a configuration class block that has an icon similar to the one shown in this
picture.

TouCAN
Receive

CAN_MESSAGE_STANDARD
or
CAN_MESSAGE_EXTENDED
(must be same as
output)

N/A CAN_MESSAGE_STANDARD
or
CAN_MESSAGE_EXTENDED

N/A

TouCAN
Transmit

CAN_MESSAGE_STANDARD
or
CAN_MESSAGE_EXTENDED

N/A CAN_MESSAGE_STANDARD
or
CAN_MESSAGE_EXTENDED
(must be same as input)

N/A

TouCAN
Warnings

Boolean N/A Boolean N/A

TouCAN Error
Count

uint8 N/A uint8 N/A

TouCAN Fault
Confinement
State

uint16 N/A uint16 N/A

I/O Data Types and Scaling for MPC555 Device Driver Blocks

Block Input
Data
Type

Input
Scaling

Output
Data
Type

Output
Scaling/
Units

Blocks Organized by Libraries

5-9

Note Configuration class blocks exist only to provide information to other
blocks. Do not copy these objects into a model under any circumstances.

CAN Message Blocks and CAN Drivers Libraries

CAN Message Blocks

Block Name Purpose

CAN Message Packing Map Simulink signals to CAN
messages.

CAN Message Packing (CANdb) Pack Simulink double signals into
CAN messages.

CAN Message Filter Dispatch message processing based
on message ID.

CAN Message Unpacking Inspect and unpack the individual
fields in a CAN message.

CAN Message Unpacking (CANdb) Decompose a CAN frame into its
constituent signals.

CAN Drivers (Vector)

Block Name Purpose

Vector CAN Configuration Configure a CAN channel (either
hardware or virtual) for use with
Vector-Informatik drivers.

5 Block Reference

5-10

Vector CAN Receive Read CAN frames from a Vector
CAN channel.

Vector CAN Transmit Transmit CAN frames on a Vector
CAN channel.

CAN Drivers (Vector)

Block Name Purpose

Alphabetical List of Blocks

5-11

Alphabetical List of Blocks 5

CAN Calibration Protocol . 5-12
CAN Message Filter . 5-17
CAN Message Packing . 5-19
CAN Message Packing (CANdb) . 5-21
CAN Message Unpacking . 5-27
CAN Message Unpacking (CANdb) . 5-29
MIOS Digital In . 5-35
MIOS Digital Out . 5-37
MIOS Digital Out (MPWMSM) . 5-39
MIOS Pulse Width Modulation Out . 5-41
MIOS Waveform Measurement . 5-44
MPC555 Resource Configuration . 5-47
QADC Analog In . 5-59
QADC Digital In . 5-64
TouCAN Error Count . 5-67
TouCAN Fault Confinement State . 5-68
TouCAN Interrupt Generator . 5-70
TouCAN Receive . 5-72
TouCAN Soft Reset . 5-75
TouCAN Transmit . 5-76
TouCAN Warnings . 5-77
Vector CAN Configuration . 5-78
Vector CAN Receive . 5-83
Vector CAN Transmit . 5-86
Watchdog . 5-88

CAN Calibration Protocol

5-12

5CAN Calibration ProtocolPurpose Implement the CAN Calibration Protocol (CCP) standard

Library Embedded Target for Motorola MPC555

Description The CAN Calibration Protocol block provides an implementation of a subset of
the CAN Calibration Protocol (CCP Version 2.1). CCP is a protocol for
communicating between the target processor and the host machine over CAN.
In particular, a calibration tool (see “Compatibility with Calibration Packages”
on page 5-15) running on the host can communicate with the target, allowing
remote signal monitoring and parameter tuning.

This block processes a Command Receive Object (CRO) and outputs the
resulting Data Transmission Object (DTO) and Data Acquisition Messages
(DAQ).

For more information on CCP refer to ASAM Standards: ASAM MCD: MCD 1a
on the Association for Standardization of Automation and Measuring Systems
(ASAM) Web site:

http://www.asam.de

Block Inputs and Outputs

The CAN Calibration Protocol block inputs are

• f(): a function call trigger input.

• CRO: a CAN message. The expected data source is a block such as a CAN
Receive block. The message received at the CRO input is read when a trigger
is received at the Fcn- Call input.

 The block outputs are

• f() DTO: a function call trigger output.

• DTO: a CAN message. DTO should be read by the receiving block when it
receives the f() DTOl trigger.

• f() DAQ: a function call trigger output.

• DAQ: a CAN message. DAQ should be read by the receiving block when it
receives the f() DAQ trigger.

These inputs and outputs can be used to set up generic data I/O for the block.

CAN Calibration Protocol

5-13

Using the DAQ Output
The DAQ output is the output for any CCP Data Acquisition Lists that have
been set up. You can use the ASAP2 file generation feature of the RT target to

• Set up signals to be transmitted using CCP Data Acquisition Lists.

• Assign signals in your model to a CCP Event Channel automatically (see
“Generating ASAP2 Files” on page 3-35).

Once these signals are set up, Event Channels then periodically fire events
that trigger the transmission of DAQ data to the host. When this occurs, CAN
messages with the appropriate CCP / DAQ data appear on the DAQ output,
along with an associated function call trigger.

It is the responsibility of the calibration tool (see “Compatibility with
Calibration Packages” on page 5-15) to use CCP commands to assign an Event
Channel and data to the available DAQ lists, and to interpret the synchronous
response.

Using DAQ lists for signal monitoring has the following advantages over the
polling method:

• There is no need for the host to poll for the data. Network traffic is halved.

• The data is transmitted at the correct update rate for the signal. Therefore
there is no unnecessary network traffic generated.

• Data is guaranteed to be consistent. The transmission takes place after the
signals have been updated, so there is no risk of interruptions while
sampling the signal.

Note The Embedded Target for Motorola MPC555 does not currently support
event channel prescalers.

CAN Calibration Protocol

5-14

Dialog Box

CAN station address (16 bit integer)
The station address of the target. The station address is interpreted as a
uint16. It is used to distinguish between different targets. By assigning
unique station addresses to targets sharing the same CAN bus, it is
possible for a single host to communicate with multiple targets.

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for both CAN message
block outputs. It is also used for transmitting messages to the host during
the software-induced CAN download (soft boot). See “Extended
Functionality” below.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ outputs. Select
either Standard(11-bit identifier) or Extended(29-bit identifier).

Total number of Object Descriptor Tables (ODTs)
CCP provides up to 254 Object Descriptor Tables (ODTs) that are shared
between all available Data Acquisition Lists. This implementation shares
these ODTs equally between the available DAQ Lists.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would require
over 14 KB of memory, a large proportion of the available memory on the
target. If you need to conserve memory on the target, you can reduce the

CAN Calibration Protocol

5-15

total number of ODTs, allowing DAQ List signal monitoring with reduced
memory overhead.

Supported CCP Commands
The following CCP commands are supported by the CAN Calibration Protocol
block:

• CONNECT
• DISCONNECT
• DNLOAD
• DNLOAD_6
• EXCHANGE_ID
• GET_CCP_VERSION
• GET_DAQ_SIZE
• GET_S_STATUS
• SET_DAQ_PTR
• SET_MTA
• SET_S_STATUS
• SHORT_UP
• START_STOP
• START_STOP_ALL
• TEST
• UPLOAD
• WRITE_DAQ

Compatibility with Calibration Packages
The above commands support:

• Synchronous signal monitoring via calibration packages that use DAQ Lists

• Asynchronous signal monitoring via calibration packages that poll the
target

• Asynchronous parameter tuning via CCP Memory Programming

This CCP implementation has been tested successfully with the
Vector-Informatik CANape calibration package running in both DAQ List and
Polling mode, and with the Accurate Technologies Inc. Vision calibration
package running in DAQ List mode. (Note that Accurate Technologies Inc.
Vision does not support the Polling mechanism for signal monitoring).

CAN Calibration Protocol

5-16

Extended Functionality
The CAN Calibration Protocol block also supports the PROGRAM_PREPARE
command. This command is an extension of CCP that allows the automatic
download of new code into the target memory. On receipt of the
PROGRAM_PREPARE command, the target will reboot and begin the CAN
download process. This lets you download new application code to RAM or flash
memory, or download new boot code to flash memory.

Note The CAN message identifier of the incoming CCP messages (CRO), and
that specified in the block mask for CAN message identifier (DTO/DAQ) are
used as the CAN identifiers for the download process after a PROGRAM_PREPARE
reboot. The type of CAN message used for this PROGRAM_PREPARE download
process is always Extended (29-bit identifier).

CAN Message Filter

5-17

5CAN Message FilterPurpose Dispatch message processing based on message ID

Library CAN Message Blocks

Description The CAN Message Filter block lets you process CAN messages selectively, by
message identifier (ID). It is possible that you could build a system where the
message signal would have different IDs at different times. This may happen
if you configure a TouCAN module to receive more than one ID per buffer. To
take a different action depending on the ID, program a CAN Message Filter
block with the ID you want to match. Then, connect the CAN Message Filter
block’s fcn output to the trigger input of a function call subsystem. The
function call subsystem is triggered if the ID is matched.

You must program the function call system to receive and process the CAN
message.

In the block diagram below, a CAN Message Filter block dispatches messages
with ID 10 to a function call subsystem.

Dialog Box

CAN Message Filter

5-18

CAN message identifiers to match
Specify an ID or a vector of IDs. When these IDs are encountered in the
input message, the function call is triggered and the message is passed to
the output of the block.

CAN Message Packing

5-19

5CAN Message PackingPurpose Map Simulink signals to CAN messages

Library CAN Message Blocks

Description The CAN Message Packing block builds a CAN message. The CAN message
type can be either Extended or Standard. You can set the message identifier
statically or dynamically. The input port is dynamically typed and will accept
any standard Simulink data types as input, as long as the total size does not
exceed 8 bytes (64 bits).

The input port can accept

• int8 or uint8: signals of width 1 - 8

• int16 or uint16: signals of width 1 - 4

• int32 or uint32: signals of width 1 - 2

• single: signals of width 1 - 2

• double: signals of width 1

The output data type is either CAN_MESSAGE_STANDARD or
CAN_MESSAGE_EXTENDED.

In this block diagram, a CAN Message Packing block accepts a uint16 signal
of width 2 (4 bytes). The lower input is a dynamic message ID (see “CAN
message identifier” below).

CAN Message Packing

5-20

Dialog Box

CAN message identifier
Set the identifier of the message. Note that an extended message has a 27
bit ID and a standard message has a 11 bit ID. If you specify that the value
of the identifier is -1, then an extra input port on the block will appear. This
lets you set the ID dynamically.

CAN message type
Specify the CAN message type: select either Standard (11 bit
identifier) or Extended (29 bit identifier).

Signal byte ordering
Signals are packed into the message from left to right. Within each signal,
however, the byte order for signals of more than one byte is defined by the
signal byte ordering. To use the CAN Message Packing and CAN Message
Unpacking blocks correctly, both blocks must use the same signal byte
ordering.

The ordering can be either Little Endian or Big Endian.

CAN Message Packing (CANdb)

5-21

5CAN Message Packing (CANdb)Purpose Pack Simulink double signals into CAN messages

Library CAN Message Blocks

Description The CAN Message Packing (CANdb) block gives you control over the packing
of Simulink double signals into a CAN message. You can specify the scaling
and offset of individual input signals and how many bits the signal will take up
in the message.

Dialog Box

CAN Message Packing (CANdb)

5-22

There are four panels to the CAN Message Packing (CANdb) dialog box.

Data Source Panel
Specify whether you want to define the message composition manually, or
retrieve a message composition specification from a CANdb database. CANdb
is a standard controlled by Vector-Informatik. To use CANdb you need to
purchase a copy of CANdb from Vector-Informatik.

The software cannot read the CANdb format file directly. Instead you must
export the file from CANdb as a DBASE (.dbf) format file and place it in your
working directory.

Define signals by hand
When you select Define signals by hand, the Message, Message Signals,
and Signal Editor panels are activated. You can then edit the message
characteristics manually.

Use file exported from CANdb
Select this option if you want to retrieve a message composition
specification from a CANdb database. Before using this feature, you must
configure an ODBC data source and locate your database files in the
MATLAB work directory. The procedure for doing this is given in
“Configuring the ODBC Data Source for CANdb Blocks” on page 5-25.

When you select Use file exported from CANdb, the Browse... button and
.DBF file field become active. You can then select a database file by
browsing for it or by entering the file name in the .DBF file field. After you
have selected a database file, the CAN message identifier menu displays
a list of available messages (by identifier) in the database. Select the
desired message.

Message Panel
This panel contains information that applies to the whole message.

Name
Name of the message

Identifier (hex)
The hexidecimal number that identifies the message on the CAN bus.

CAN Message Packing (CANdb)

5-23

Length
Length of the message, in bytes

CAN message type
Select either Standard(11-bit identifier) or Extended(29-bit
identifier).

Message Signals Panel
Provides a display-only list of information for each input signal to be packed
into the message. The signal parameters displayed in this list are described in
the “Signal Editor Panel” section below.

In addition to the list of signals, this panel contains three buttons:

• The New button lets you create a signal, which you can then edit in the
Signal Editor.

• The Edit button activates the Signal Editor panel. This panel lets you edit
the parameters of the selected signal.

• The Delete button lets you delete a signal.

The List signals for mode menu lets you restrict the list of signals to display
only those signals with a given mode value. (See “Type and Mode” on
page 5-24). By default, the mode is set to display all signals regardless of mode
value. Note that when displaying signals for a specific mode, the Signal Editor
panel is disabled.

The Port# column displays the number of each input signal. The number
indicates the order in which the signals enter the Simulink block, from top to
bottom.

The other columns display properties described in “Signal Editor Panel” on
page 5-23.

Signal Editor Panel
Lets you enter or change parameter values for the selected signal. To edit a
signal, select it in the Message Signals Panel, and then press the Edit button.
The Signal Editor panel will become active. After you have made the required
changes to the signal click OK to commit your changes. Click Cancel to finish
editing without retaining changes.

CAN Message Packing (CANdb)

5-24

Each parameter is described briefly here. Each signal is defined according to
the CANdb standard; refer to your CANdb documentation for detailed
information.

Name
The name of the signal that you see displayed in the CANdb and on the
Simulink block.

Start bit
The bit position, in the data bytes, where the signal is inserted.

Length (bits)
The number of bits to be used in the message

Type and Mode
More than one signal can be mapped to the same location in a message. To
determine which message is actually mapped, you can define at most one
mode signal. The mode signal is an integer valued input. You can then
define as many mode dependent signals as you want. A mode dependent
signal also makes use of the Mode value. The Mode value is matched
against the mode signal. If the Mode value equals the value of the mode
signal then the signal is packed into the message. If it does not match then
the signal is ignored.

Mode
See Type and Mode above.

Data type
This menu allows you to specify whether the bits allocated to a signal are
interpreted as a signed (two’s complement) or unsigned integer. For
example, consider a 3-bit signal where all bits are set to 1. If the signal is
interpreted as signed, it would represent the value -1 before scaling and
offsetting. If the signal is interpreted as unsigned, it would represent the
value 7 (0x7h) before scaling and offsetting.

Byte order
Select one of the following options:

• Big Endian (Motorola): the start bit is the least significant bit of the least
significant byte from the end of the message. Bytes are counted left from
here.

CAN Message Packing (CANdb)

5-25

• Little Endian (Intel): the start bit is the least significant bit of the least
significant byte from the beginning of the message. Bytes are counted right
from here.

The CAN Message Packing (CANdb) block uses Motorola Backwards big
endian format, which is the default for CANdb. It does not uses Motorola
Forwards big endian format, which is the default for CANdb++.

For more detailed descriptions of byte layout, see your CANdb
documentation.

Factor and Offset
Define the Factor and Offset values in the formula for conversion between
the physical value (Simulink signal value) and the data stored in the
packet. The conversion formula is defined as

Phys_value = (Raw_value - Offset) / Factor

Where Raw_value is the value stored in the packet. Note that the
Raw_value may be signed or unsigned depending on the Data type.

Units
This field is informational only. If desired, enter the appropriate units for the
signal.

Configuring the ODBC Data Source for CANdb Blocks
The CAN Message Packing (CANdb) and CAN Message Unpacking (CANdb)
blocks let you retrieve a message composition specification from a CANdb
database. To use this feature, you must configure an ODBC data source,
specifying the MATLAB work directory as the location for database files.

To configure the data source:

1 Locate the MATLAB work directory. At the MATLAB prompt, type
what (work)

The command returns the path to matlabroot/work, for example:
files in directory D:\Work\r12p1\work

Note this path for use in Step 7.

CAN Message Packing (CANdb)

5-26

2 From the Start menu, open
 Settings/Control Pane/Administrative Tools/Data Sources (ODBC).

3 The ODBC Data Sources Administrator window opens. Click the User
DSN tab.

4 Click the Add... button. The Create New Data Source dialog box opens.
Select Microsoft dBase Driver (*.dbf) from the list of drivers. Then click
Finish.

5 The ODBC dBase Setup dialog box opens. Enter dBase Sources for CAN
in the Data Source Name field. You must use this exact name.

6 Clear the Use Current Directory check box.

7 Click the Select Directory button and navigate to the MATLAB work
directory that you located in Step 1. Click OK.

8 The path to the MATLAB work directory should now appear on the ODBC
dBase Setup dialog box. Click OK to dismiss the ODBC dBase Setup dialog
box.

9 Click OK to complete ODBC dBase Setup. Then click OK to close the ODBC
Data Sources Administrator window.

10 Place the DBF files you want to work with in the MATLAB work directory.
You can then use the Use file exported from CANdb option to access the
CANdb information by using the CANdb blocks.

CAN Message Unpacking

5-27

5CAN Message UnpackingPurpose Inspect and unpack the individual fields in a CAN message

Library CAN Message Blocks

Description The CAN Message Unpacking block receives a CAN message at its input and
(by default) outputs the ID, length, and data contained in the message.

Note that the CAN Message Blocks library provides the CAN Message
Unpacking block embedded in a Fcn Call subsystem, as shown in this
figure.When a message is received, a trigger should be provided to initiate
unpacking of the message.

By default, the data output port outputs a uint8 signal of width 1. To read the
signal as a different data type with a different vector width, modify the Signal
Specification block parameters.

Dialog Box

CAN Message Unpacking

5-28

Output data
Extract the data of the CAN message as a signal. See the notes above on
mapping the bytes of the CAN message to a Simulink signal.

Output message identifier
Extract the ID of the CAN message as a Simulink signal.

Output message length
Extract the length of the CAN message as a signal.

CAN Message Unpacking (CANdb)

5-29

5CAN Message Unpacking (CANdb)Purpose Decompose a CAN message into its constituent signals

Library CAN Message Blocks

Description The CAN Message Unpacking (CANdb) block complements the CAN Message
Packing (CANdb) block. The user interface for the block is almost identical. The
difference is that the CAN Message Unpacking (CANdb) block accepts a CAN
message as an input and decomposes it into individual signals.

Note that the CAN Message Blocks blocks library provides the CAN Message
Unpacking (CANdb) block embedded in a Fcn Call subsystem, as shown in this
figure.When a message is received, a trigger should be provided to initiate
unpacking of the message.

CAN Message Unpacking (CANdb)

5-30

Dialog Box

There are four panels to the CAN Message Unpacking (CANdb) dialog box.

Data Source Panel
Specify whether you want to define the message composition by hand or
retrieve a message composition specification from a CANdb database. CANdb
is a standard controlled by Vector-Informatik. To use CANdb you will need to
purchase a copy from Vector-Informatik.

CAN Message Unpacking (CANdb)

5-31

The software cannot read the CANdb format file directly. Instead in CANdb
you must export the file as a DBASE (.dbf) format file and place it in your
working directory.

Define signals by hand
When you select Define signals by hand, the Message, Message Signals,
and Signal Editor panels are activated. You can then edit the message
characteristics manually.

Use file exported from CANdb
Select this option if you want to retrieve a message composition
specification from a CANdb database. Before using this feature, you must
configure an ODBC data source and locate your database files in the
MATLAB work directory. The procedure for doing this is given in
“Configuring the ODBC Data Source for CANdb Blocks” on page 5-25.

When you select Use file exported from CANdb, the Browse... button and
.DBF file field become active. You can then select a database file by
browsing for it or by entering the filename in the .DBF file field. After you
have selected a database file, the CAN message identifier menu displays
a list of available messages in the database. Select the desired message.

Message Panel
Contains information that applies to the whole message.

Name
Name of the message

Identifier (hex)
The hexidecimal number that identifies the message on the CAN bus.

Length
Length of the message, in bytes.

CAN message type
Select either Standard(11-bit identifier) or Extended(29-bit
identifier).

CAN Message Unpacking (CANdb)

5-32

Message Signals Panel
Provides a display-only list of information for each input signal to be packed
into the message. The signal parameters displayed in this list are described in
the “Signal Editor Panel” section below.

In addition to the list of signals, this panel contains three buttons:

• The New button lets you create a signal, which you can then edit in the
Signal Editor.

• The Edit button activates the Signal Editor panel. This panel lets you edit
the parameters of the selected signal.

• The Delete button lets you delete a signal.

The List Signals for Mode menu lets you restrict the list of signals to display
only those signals with a given mode value. (See “Type and Mode” on
page 5-24). By default, List Signals for Mode is set to display all signals
regardless of mode value.

The Port# column displays the number of each input signal. The number
indicates the order in which the signals enter the Simulink block, from top to
bottom.

The other columns display properties described in “Signal Editor Panel” on
page 5-32.

Signal Editor Panel
Lets you enter or change parameter values for the selected signal. To edit a
signal, select it in the Message Signals Panel, and then click the Edit button.
The Signal Editor panel will become active. After you have made the required
changes to the signal, click Apply or OK to commit your changes. Click Cancel
to finish editing without retaining changes.

Each parameter is described briefly here. Each signal is defined according to
the CANdb standard; refer to your CANdb documentation for detailed
information.

Name
The name of the signal that you see displayed in the CANdb and on the
Simulink block.

CAN Message Unpacking (CANdb)

5-33

Start bit
Bit position, in the data bytes, where the signal is inserted.

Length (bits)
The number of bits to be used in the message

Type and Mode
More than one signal can be mapped to the same location in a message. To
determine which message is actually mapped, you can define at most one
mode signal. The mode signal is an integer valued input. You can then
define as many mode-dependent signals as you want. A mode-dependent
signal also makes use of the Mode value.The Mode value is matched
against the mode signal. If the Mode value equals the value of the mode
signal then the signal is packed into the message. If it does not match then
the signal is ignored.

Mode Value
See Type and Mode above.

Data type
This menu allows you to specify whether the bits allocated to a signal are
interpreted as a signed (twos complement) or unsigned integer. For
example, consider a 3-bit signal where all bits are set to 1. If the signal is
interpreted as signed, it would represent the value -1 before scaling and
offsetting. If the signal is interpreted as unsigned, it would represent the
value 7 (0x7h) before scaling and offsetting.

Byte order
Select one of the following options:

• Big Endian (Motorola): the start bit is the least significant bit of the least
significant byte from the end of the message. Bytes are counted left from
here.

• Little Endian (Intel): the start bit is the least significant bit of the least
significant byte from the beginning of the message. Bytes are counted right
from here.

The CAN Message Unpacking (CANdb) block uses Motorola Backwards big
endian format, which is the default for CANdb. It does not uses Motorola
Forwards big endian format, which is the default for CANdb++.

CAN Message Unpacking (CANdb)

5-34

For more detailed descriptions of byte layout see your CANdb
documentation.

Factor and Offset
Define the Factor and Offset values in the formula for conversion between
the physical value (Simulink signal value) and the data stored in the
packet. The conversion formula is defined as

Phys_value = (Raw_value * Factor + Offset)

Where Raw_value is the value stored in the packet. Note that the
Raw_value may be signed or unsigned depending on the Data type.

Units
This field is informational only. If desired, enter the appropriate units for the
signal.

MIOS Digital In

5-35

5MIOS Digital InPurpose Input driver for MIOS 16-bit Parallel Port I/O Submodule (MPIOSM)

Library Embedded Target for Motorola MPC555

Description The MIOS Digital In block reads the state of selected pins (bits) on the MIOS
16-bit Parallel Port I/O Submodule (MPIOSM) of the MPC555. The Bits field
specifies a vector of numbers in the range 0..15, corresponding to pins
MPIO32B0..MPIO32B15 on the MPIOSM.

The output of the block is a wide vector representing the logic state of the pins
referenced in the Bits field. When the signal on a given pin is a logical 1, the
block output element will be equal to 1; otherwise the block output element will
equal zero.

Refer to section 15.13, “MIOS 16-bit Parallel Port I/O Sub module (MPIOSM),”
in the MPC555 Users Manual for further information.

Note You are responsible for ensuring that pin assignments of MIOS Digital
In and MIOS Digital Out blocks in your model do not conflict. No error
checking is performed to detect conditions where the same pin is referenced by
both an input and an output block. If such a condition occurs, the behavior of
the system is undefined.

Dialog Box

MIOS Digital In

5-36

Bits
A vector of numbers in the range 0..15. Each number corresponds to a pin
(MPIO32B0..MPIO32B15) on the MPIOSM.

Sample time
Sample time of the block.

Enable pass through (show simulation input)
Lets you provide a signal to this block for use in simulation. When this
option is enabled, an inport appears on the block. The block input is passed
through to the output during simulation. (See “Data Type Support and
Scaling for Device Driver Blocks” on page 5-6 for information on supported
input/output data types and scaling of input/output signals.) This option
affects simulation only.

MIOS Digital Out

5-37

5MIOS Digital OutPurpose Output driver for MIOS 16-bit Parallel Port I/O Submodule (MPIOSM)

Library Embedded Target for Motorola MPC555

Description The MIOS Digital Out block sets the state of selected pins (bits) on the MIOS
16-bit Parallel Port I/O Submodule (MPIOSM) of the MPC555. The Bits field
specifies a vector of numbers in the range 0..15, corresponding to pins
MPIO32B0..MPIO32B15 on the MPIOSM.

The input to the block is a wide vector with one signal element per pin. When
the input signal is greater than zero, a logical 1 is written to the corresponding
pin. When the input signal is less than or equal to zero, a logical zero is written
to the corresponding pin.

If you want to write to several digital output pins at the same sample rate,
using a single MIOS Digital Out block with a vector input signal will result in
more efficient code. However, if you want to update different output pins at
different sample rates, you must use a separate MIOS Digital Out block for
each rate.

Refer to section 15.13, “MIOS 16-bit Parallel Port I/O Sub module (MPIOSM),”
in the MPC555 Users Manual for further information.

Note You are responsible for ensuring that pin assignments of MIOS Digital
In and MIOS Digital Out blocks in your model do not conflict. No error
checking is performed to detect conditions where the same pin is referenced by
both an input and an output block. If such a condition occurs, the behavior of
the system is undefined.

MIOS Digital Out

5-38

Dialog Box

Bits
A vector of numbers in the range 0..15. Each number corresponds to a pin
(MPIO32B0..MPIO32B15) on the MPIOSM.

Enable pass through (show simulation input)
Lets you provide a signal from this block for use in simulation. When this
option is enabled, an outport appears on the block. The block input is
passed through, to the output during simulation. (See “Data Type Support
and Scaling for Device Driver Blocks” on page 5-6 for information on
supported input/output data types and scaling of input/output signals.)
This option affects simulation only.

MIOS Digital Out (MPWMSM)

5-39

5MIOS Digital Out (MPWMSM)Purpose Digital output via the MIOS Pulse Width Modulation Submodule (MPWMSM)

Library Embedded Target for Motorola MPC555

Description The MIOS Digital Out (MPWMSM) block is a device driver that lets you use
the MIOS Pulse Width Modulation Submodule (MPWMSM) in digital output
mode. In digital output mode, the Pulse Width Modulation (PWM) feature of
the MPWMSM is turned off. When the input signal is greater than zero, a
logical 1 is written to the output pin; otherwise a logical zero is written.

Refer to section 15.12, “MIOS Pulse Width Modulation Submodule
(MPWMSM),” in the MPC555 Users Manual for further information on the
parameters described below.

Dialog Box

MPWM submodule number
Selects a PWM submodule for output.

Sample time
Sample time of the block.

Invert output polarity
Switches the output level for logic one and zero.

MIOS Digital Out (MPWMSM)

5-40

Enable pass through (show simulation input)
Lets you provide a signal from this block for use in simulation. When this
option is enabled, an outport appears on the block. The block input is
passed through to the output during simulation. (See “Data Type Support
and Scaling for Device Driver Blocks” on page 5-6 for information on
supported input/output data types and scaling of input/output signals.)
This option affects simulation only.

MIOS Pulse Width Modulation Out

5-41

5MIOS Pulse Width Modulation OutPurpose Output driver for MIOS Pulse Width Modulation Submodule (MPWMSM)

Library Embedded Target for Motorola MPC555

Description The MIOS Pulse Width Modulation Out block is used for Pulse Width
Modulation (PWM) output from the MIOS Pulse Width Modulation Submodule
(MPWMSM). A PWM signal is a rectangular waveform whose period is
constant but whose duty cycle can be varied, under control of a modulator
signal, between 0% and 100%.

The MIOS Pulse Width Modulation block input signal acts as the modulator,
controlling the duty cycle of the signal on the output pin. The input signal is
constrained to be between 0 and 1. When the input signal value is 0, the output
signal’s duty cycle is 0%. When the input signal value is 1, the output signal’s
duty cycle is 100%.

There are two possible methods for calculating the period of the waveform. You
can either control the scaling registers directly, or enter the desired (ideal)
period and the mask will solve for the best values for the scaling registers.

Refer to section 15.12, “MIOS Pulse Width Modulation Submodule
(MPWMSM),” in the MPC555 Users Manual for further information on the
parameters described below.

MIOS Pulse Width Modulation Out

5-42

Dialog Box

MPWM submodule number
Selects a PWM submodule for output.

Edit period registers manually
When this option is selected, the Clock prescaler field of MPWM
Status/Control Register and Number of clock ticks per period edit
fields are activated. You can then set the PWM period by setting these
values.

When this option is not selected, use the Ideal period (sec) field to set the
PWM period parameters.

Ideal period (sec)
Specifies the desired period of the pulse signal. The mask then solves for
the clock prescaler and the pulse period.

MIOS Pulse Width Modulation Out

5-43

Clock prescaler field of MPWM Status/Control Register
Divides the counter clock to get the clock signal used to drive the PWM
output. Note that the counter clock itself is derived from the MPC555
system clock as configured by the MPC555 Resource Configuration block
(see “MPC555 Resource Configuration” on page 5-47).

Number of clock ticks per period
Determines the number of PWM counter ticks per pulse period. Valid
values are 1 - 65535.

Invert output polarity
Switches the output level for logic one and zero.

Activate transparent mode
Bypasses the register double buffers. When transparent mode is active, a
software write to the Next Pulse Width Register is immediately transferred
to the Pulse Width Register. When transparent mode is inactive, the
updated value only takes effect at the start of the next period.

Hold output when at debug break point (freeze enable)
Stops the PWM counters when a breakpoint is hit during debug mode, and
holds the current output values.

Enable pass through (show simulation input)
Lets you provide a signal from this block for use in simulation. When this
option is enabled, an outport appears on the block. The block input is
passed through to the output during simulation. (See “Data Type Support
and Scaling for Device Driver Blocks” on page 5-6 for information on
supported input/output data types and scaling of input/output signals.)
Note that both the input and output signals are duty cycle values. This
option affects simulation only.

MIOS Waveform Measurement

5-44

5MIOS Waveform MeasurementPurpose Support pulse width and pulse period measurement via MIOS Double Action
Submodule (MDASM)

Library Embedded Target for Motorola MPC555

Description Waveform measurement is a feature the MIOS Double Action Submodule
(MDASM) on the MPC555. The MIOS Waveform Measurement block currently
implements the following features of the MDASM:

• Pulse width measurement: the MIOS Waveform Measurement block outputs
the time from the leading edge of a pulse to the trailing edge of the same
pulse.

• Pulse period measurement: the MIOS Waveform Measurement block outputs
the time from the leading edge of a pulse to the next leading edge of a pulse.

Note that the minimum and maximum measurable pulse periods and pulse
widths are dependent on the selected clock sources and their configurations.

You must configure the clock sources via the MPC555 Resource Configuration
object. There are only two clock sources (assigned via the Counter bus
parameter) assignable to the ten MDASM modules. More than one MDASM
can be assigned to a single clock source.

Refer to section 15.11, “MIOS Double Action Submodule (MDASM) Registers”
in the MPC555 Users Manual for further information on the parameters
described below.

MIOS Waveform Measurement

5-45

Dialog Box

MDASM submodule number
Selects one of the 10 MIOS Double Action Submodules in the MPC555.

Measurement
Selects the mode of operation of the block: either pulse width measurement
or pulse period measurement.

Counter bus
Select one of the two counters that can be used as sources to drive the
MDASM module.The counters must be configured via the MPC555
Resource Configuration object. See “MIOS1 Configuration Parameters” on
page 5-55.

Sample time
The period at which Simulink reads the pulse width or period. The
measurements are performed in hardware so it is not necessary to set the
sample time to suit the expected period of the incoming signal.

Invert output polarity
Changes the sense of the leading edge of the pulse. When Invert output
polarity is selected, the leading edge is rising. Otherwise, the leading edge
is falling.

MIOS Waveform Measurement

5-46

Hold output when at debug break point (freeze enable)
Stops the clocks of the MDASM module when a breakpoint is hit during
debug mode.

Enable pass through (show simulation input)
Lets you provide a signal to this block for use in simulation. When this
option is enabled, an inport appears on the block. The block input is passed
through to the output during simulation. (See “Data Type Support and
Scaling for Device Driver Blocks” on page 5-6 for information on supported
input/output data types and scaling of input/output signals.) This option
affects simulation only.

MPC555 Resource Configuration

5-47

5MPC555 Resource ConfigurationPurpose Support device configuration for MPC555 CPU and MIOS, QADC, and TouCAN
Submodules

Library Embedded Target for Motorola MPC555

Description The MPC555 Resource Configuration block differs in function and behavior
from conventional blocks. Therefore, we refer to this block as the MPC555
Resource Configuration object.

The MPC555 Resource Configuration object maintains configuration settings
that apply to the MPC555 CPU and its MIOS, QADC, and TouCAN
subsystems. Although the MPC555 Resource Configuration object resembles a
conventional block in appearance, it is not connected to other blocks via input
or output ports. This is because the purpose of the MPC555 Resource
Configuration object is to provide information to other blocks in the model.
MPC555 device driver blocks register their presence with the MPC555
Resource Configuration object when they are added to a model or subsystem;
they can then query the MPC555 Resource Configuration object for required
information.

To install a MPC555 Resource Configuration object in a model or subsystem,
open the top-level Embedded Target for Motorola MPC555 library and select
the MPC555 Resource Configuration icon. Then drag and drop it into your
model or subsystem, like a conventional block.

Having installed a MPC555 Resource Configuration object into your model or
subsystem, you can then select and edit configuration settings in the MPC555
Resource Configuration window. See “Using the MPC555 Resource
Configuration Window” on page 5-51 for further information.

Note Any model or subsystem using device driver blocks from the Embedded
Target for Motorola MPC555 library must contain an MPC555 Resource
Configuration object. You should place an MPC555 Resource Configuration
object at the top level system for which you are going to generate code. If your
whole model is going to run on the target processor, put the MPC555 Resource
Configuration object at the root level of the model. If you are going to generate
code from separate subsystems (to run specific subsystems on the target),
place an MPC555 Resource Configuration object at the top level of each
subsystem. You should not have more than one MPC555 Resource

MPC555 Resource Configuration

5-48

Configuration object in the same branch of the model hierarchy. Errors will
result if these conditions are not met.

Types of Configurations
A configuration is a collection of parameter values affecting the operation of a
group of device driver blocks in one of the Embedded Target for Motorola
MPC555 libraries, such as the MIOS1, QADC64 or TouCAN libraries. The
MPC555 Resource Configuration object currently supports the following types
of configurations:

• System Configuration: MPC555 clocks and other CPU-related parameters.

• MIOS1 Configuration: parameters related to the Modular Input/Output
System (MIOS).

• QADC64 Configuration: parameters related to the Queued Analog-to-Digital
Converter module (QADC).

• TouCAN Configuration: parameters related to the CAN 2.0B Controller
Module (TouCAN).

Active and Inactive Configurations
An active configuration is a configuration associated with blocks of the model
or subsystem in which the MPC555 Resource Configuration object is installed.
There is always an active MPC555 configuration. For any other configuration
type (e.g., QADC, MIOS, or TouCAN), there is at most one active configuration.

Consider this model, which contains a MPC555 Resource Configuration object
but no MPC555 device driver blocks.

MPC555 Resource Configuration

5-49

This model has only one active configuration, for the MPC555 itself, as shown
in the MPC555 Resource Configuration window.

When a device driver block is added to the model, an appropriate configuration
is created and activated. This figure shows an MIOS Digital Out block added
to the model.

MPC555 Resource Configuration

5-50

The addition of the MIOS Digital Out block causes an MIOS configuration to
be added to the list of active configurations, as shown in this figure.

A configuration remains active until all blocks associated with it are removed
from the model or subsystem. At that point, the configuration is in an inactive
state. Inactive configurations are not shown in the MPC555 Resource
Configuration window. You can reactivate a configuration by simply adding an
appropriate block into the model.

Note When using device driver blocks from the Embedded Target for
Motorola MPC555 libraries in conjunction with the MPC555 Resource
Configuration block, do not disable or break library links on the driver blocks.
If library links are disabled or broken, the MPC555 Resource Configuration
block will operate incorrectly.

When you save a model that contains inactive configurations, you have the
option to either save inactive configurations with the model, or delete them.

MPC555 Resource Configuration

5-51

Using the MPC555 Resource Configuration Window
To open the MPC555 Resource Configuration window, install a MPC555
Resource Configuration object in your model or subsystem, and double-click on
the MPC555 Resource Configuration icon. The MPC555 Resource
Configuration window then opens.

Figure 5-1: MPC555 Resource Configuration Window

Figure 5-1 shows the MPC555 Resource Configuration window for a model that
has active configurations for MPC555, MIOS1, QADC, and TouCAN.

The MPC555 Resource Configuration window consists of the following
elements:

• Active Configurations panel: This panel displays a list of currently active
configurations. To edit a configuration, click on its entry in the list. The
parameters for the selected configuration then appear in the System
configuration panel.

To link back to the library associated with an active configuration, right-click
on its entry in the list. From the popup menu that appears, select Go to
library.

To see documentation associated with an active configuration, right-click on
its entry in the list. From the popup menu that appears, select Help.

MPC555 Resource Configuration

5-52

• System configuration panel: This panel lets you edit the parameters of the
selected configuration. The parameters of each configuration type are
detailed in “MPC555 Resource Configuration Window Parameters” on
page 5-52.

Note There is no Apply or Undo functionality in the System configuration
panel. All parameter changes are applied immediately.

• Status panel: The Status panel displays error messages that may arise if
resource allocation conflicts are detected in the configuration.

• Validate Configuration button: After you edit a configuration, you should
always click the Validate Configuration button to check for resource
allocation conflicts. For example, if both TouCAN modules A and B are
assigned to interrupt level IRQ 1, the Validate Configuration process will
detect the conflict and display a warning in the Status panel.

Note that the Validate Configuration button does not validate the entire
model; it only checks for resource allocation conflicts related to the selected
configuration. To detect problems related to the model as a whole, select
Update diagram (Ctrl+D) from the Simulink Edit menu.

• Close button: Dismisses the window.

MPC555
Resource
Configuration
Window
Parameters

The sections below describe the parameters for each type of configuration in
the MPC555 Resource Configuration window. The default parameter settings
are optimal for most purposes. If you want to change the settings, we suggest
you read the sections of the MPC555 Users Manual referenced below. You can
find this document at the following URL.
http://e-www.motorola.com.

MPC555 Resource Configuration

5-53

System Configuration Parameters

RT_ONESTEP_IRQ_LEVEL
The rt_OneStep function is the basic execution driver of all programs
generated by the Embedded Target for Motorola MPC555. rt_OneStep is
installed as a timer interrupt service routine; it sequences calls to the
model_step function. The RT_ONESTEP_IRQ_LEVEL parameter lets you
associate rt_OneStep with any of the available IRQ levels (0..32). For non
-interrupt driven operation, select Interrupts Disabled.

See the “Data Structures and Program Execution” section in the Real-Time
Workshop Embedded Coder documentation for a detailed description of the
rt_OneStep function.

System Clock Parameters
The other parameters in the MPC555 group alter the speed of three of the
main clocks in the MPC555. Refer to section 8, “Clocks and Power Control,”
in the MPC555 Users Manual for information on these settings.

MPC555 Resource Configuration

5-54

QADC64 Configuration Parameters

The QADC64 Configuration parameters configure the QADC64 operational
mode and supports the blocks in the QADC sublibrary.

The QADC64 performs 10 bit analog to digital conversion on an input signal.
Currently the blocks in this library support only the continuous scan mode of
operation. In continuous scan mode, the QADC64 is set to run, and then
continuously acquires data into its result buffer. Input is double buffered, so
the model can read the result buffer at any time to get the latest available
signal data.

The MPC555 has two QADC modules, QADC_A and QADC_B. You can
program these individually. By default each QADC module has 16 input
channels. By attaching an external multiplexer to three of the analog input
pins, you can increase the number of possible channels to 41. These pins
become outputs from the processor and can act as inputs to an analog
multiplexer. The Multiplex Mode parameter determines whether the
QADC64 operates in internally or externally multiplexed mode.

Refer to section 13, “Queued Analog-to-Digital Converter Module-64,” in the
MPC555 Users Manual for detailed information about the QADC64.

In general, you should not need to change any of the settings of the parameters
described below from their defaults. The other parameters are advanced

MPC555 Resource Configuration

5-55

settings. Refer to section 13, “Queued Analog-to-Digital Converter Module-64,”
in the MPC555 Users Manual for information on these settings.

Multiplex Mode
Configures the QADC64 for internally or externally multiplexed mode by
setting the MUX bit. The MUX bit determines the interpretation of the
channel numbers and forces the MA[2:0] pins to be outputs. Valid settings
are:

• 0 = Internally multiplexed : 16 possible channels
• 1 = Externally multiplexed : 41 possible channels

Prescaler Clock High Time
Prescaler clock high (PSH) time. The PSH field selects the QCLK high time
in the prescaler. PSH value plus 1 represents the high time in IMB clocks.

Prescaler Clock Low Time
Prescaler clock low (PSL) time. The PSL field selects the QCLK low time in
the prescaler. PSL value plus 1 represents the low time in IMB clocks.

MIOS1 Configuration Parameters

CounterClock

MPC555 Resource Configuration

5-56

The MIOS counter clock is generated by the MIOS counter prescaler
submodule. The MIOS counter clock drives the other MIOS1 submodules.
The value shown for the counter clock is calculated automatically as the
system clock frequency divided by the prescaler value.

Freeze Enable
This allows all counters on the MIOS1 to be frozen when the processor is
stopped in debug mode. Note that this is in addition to the Freeze Enable
setting for individual submodules on the MIOS1. To allow the counters on
a particular submodule to be stopped, select Freeze enable here, and select
Hold output when at debug break point (freeze enable) in the block
parameters associated with the submodule (e.g., MIOS PWM block or
MIOS Waveform Measurement block).

Modulus Counter 6 and 22
These two counters provide reference clocks to submodules such as the
MIOS Pulse Width Modulation Submodule and the MIOS Double Action
Submodule (Frequency / Period measurement) subsystems. If you change
the Clock select to anything other than MMCSM Clock Prescaler, the
MIOS Pulse Width Modulation and MIOS Waveform Measurement blocks
will not work as expected. To change the clock frequency and hence the
available resolution of pulse width modulation and waveform
measurement, change the Clock Prescaler to a value between 0 and 255.

Refer to section 15.10, “MIOS Modulus Counter Submodule (MMCSM),” in
the MPC555 Users Manual for information on these settings.

MPC555 Resource Configuration

5-57

TouCAN Configuration Parameters

The parameters listed below are the same for TouCAN modules A and B.
Consult Section 16 of the MPC555 User’s Manual before editing the TouCAN
configuration parameter defaults.

IRQ Level
The transmit queue for each TouCAN module requires a processor
interrupt to run. Select an interrupt level (0-31) that is not used by any
other device. Use the Validate Configuration button to make sure you do
not select an interrupt level that is already in use.

Mask Configuration Parameters
Global RX Mask

Buffers 0-13 use this mask. Setting a bit to 1 in the mask causes the
corresponding bits in the message to be masked out (i.e., ignored).

Mask RX 14
 Same as Global RX Mask, but the mask applies only to buffer 14.

MPC555 Resource Configuration

5-58

 Mask RX 15
 Same as Global RX Mask, but the mask applies only to buffer 15.

Mask Type
Specify whether the buffer masks are Standard or Extended frame IDs. If
you want to receive Extended Frames in your model, you should set the
Mask Type to Extended Message. The mask type option tells the compiler
how to map the bits specified in the mask options to the bits in the
hardware. The decision as to whether a message is a Standard or Extended
frame is defined on a per message buffer basis.

Timing Configuration Parameters
CAN Bit Rate

Enter the desired bit rate. the default bit rate is 500000.0.

Number of Quanta
 The number of TouCAN clock ticks per message bit.

Register Configuration
This field is read-only. It contains intermediate data used for bit-timing
calculations.

Resynchronization Jump Width
The maximum number of clock ticks that the TouCAN device can
resynchronize over when it detects that it is losing message
synchronization.

 Sample Point
The point in the message where the TouCAN tries to sample the value of
the message bit.

Transmission Configuration Parameters
Transmit Buffer Number

Select one of buffers (0-15) for use as a transmit buffer. A queue is created
for that buffer and is used by all TouCAN transmit blocks.

Transmit Queue Length
Length (in bytes) allocated to messages in the transmit queue.

QADC Analog In

5-59

5QADC Analog InPurpose Input driver enables use of Queued Analog-Digital Converter (QADC64) in
continuous scan mode

Library Embedded Target for Motorola MPC555

Description The QADC Analog In block sets the QADC64 into continuous scan mode. It
then samples the specified channels at the specified rate. In continuous scan
mode, the analog-to-digital converter is scanned as fast as possible, at a rate
much faster than the sample rate of the model. Using continuous scan mode
ensures that your application will obtain the latest signal value.

The MPC555 has two QADC modules, A and B. You can program these
individually. You can place only one instance of the QADC Analog In block per
module in your model or subsystem.

Dialog Box

QADC module
 Selects module A or B.

Channels
 A vector of numbers representing channels to be scanned. See “Channel
Number Selection” below.

QADC Analog In

5-60

Justification
Converted data is read from the 10-bit wide QADC64 result word table into
a 16-bit word. Data from the result word table can be accessed in three
different formats. The Justification menu selects from the following
formats:

• Right-justified (unsigned): with zeros in the higher order unused bits.

• Left-justified (signed): with the most significant bit inverted to form a
sign bit, and zeros in the unused lower order bits. In this mode, zero is
treated as the half scale of the input range.

• Left-justified (unsigned): with zeros in the unused lower order bits.

Refer to section 13.13, in the “Queued Analog-to-Digital Converter
Module-64” section of the MPC555 Users Manual for further information.

 Sample time
 Block sample time; determines sample rate at which the port is monitored.

Enable pass through (show simulation input)
Lets you provide a signal to this block for use in simulation. When this
option is enabled, an inport appears on the block. The input (pass-through)
signal must have double or single data type. The input signal is scaled onto
the range 0..1 to represent the minimum and maximum voltage input.
This input signal is mapped onto output according to the selected
Justification option for justification. The Enable pass through option
affects simulation only.

 See also “Data Type Support and Scaling for Device Driver Blocks” on
page 5-6.

Channel
Number
Selection

A channel number in the Channels vector selects the input channel number
corresponding to the analog input pin to be sampled and converted. The analog
input pin channel number assignments and the pin definitions vary, depending
on whether the QADC64 is operating in multiplexed or nonmultiplexed mode.
The queue scan mechanism makes no distinction between an internally or
externally multiplexed analog input.

If a reserved channel number (channels 32 to 47) or an invalid channel number
(channels 4 to 31 in nonmultiplexed mode), the low reference level (VRL) is
converted.

QADC Analog In

5-61

Programming the channel field to channel 63 indicates the end of the queue.

Channels 60 to 62 are special internal channels. When one of these channels is
selected, the sample amplifier is not used. Instead, the value of VRL, VRH, or
(VRH - VRL)/2 is placed directly into the converter. Programming the input
sample time to any value other than two for one of the internal channels has
no benefit except to lengthen the overall conversion time.

Table 5-1 and Table 5-2 show the mapping between the channel numbers and
the hardware pins for the two scanning modes (multiplexed and
nonmultiplexed).

For example, in nonmultiplexed mode, to scan all 16 channels of the QADC64
you would specify the following vector in the Channels field:

[0 1 2 3 48 49 50 51 52 53 54 55 56 57 58 59]

Table 5-1: Nonmultiplexed Scan Mode

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel Number

PQB0
PQB1
PQB2
PQB3

A_AD0 / AN0
A_AD1 / AN1
A_AD2 / AN2
A_AD3 /AN3

-
-
-
-

I
I
I
I

0
1
2
3

-
-
PQB4
PQB5

-
-
A_AD4 / AN48
A_AD5 / AN49

Invalid
Reserved
-
-

-
-
I
I

4 to 31
32 to 47
48
49

PQB6
PQB7
PQA0
PQA1

A_AD6 / AN50
A_AD7 / AN51
A_AD8 / AN52
A_AD9 / AN53

-
-
-
-

I I
I
I/O
I/O

50
51
52
53

QADC Analog In

5-62

PQA2
PQA3
PQA4
PQA5

A_AD10 / AN54
A_AD11 / AN55
A_AD12 / AN56
A_AD13 / AN57

-
-
-
-

I/O
I/O
I/O
I/O

54
55
56
57

PQA6
PQA7
-
-

A_AD14 / AN58
A_AD15 / AN59
V RL
V RH

-
-
-
-

I/O
I/O
I
I

58
59
60
61

-
-

-
-

(VRH - VRL)/2
End of Queue Code

-
-

62
63

Table 5-1: Nonmultiplexed Scan Mode (Continued)

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel Number

Table 5-2: Multiplexed Scan Mode

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel
Number

PQB0
PQB1
PQB2
PQB3

A_AD0 / ANw
A_AD1 / ANx
A_AD2 / ANy
A_AD3 / Anz

-
-
-
-

I
I
I
I

0-14 even
1-15 odd
16-30 even
17-31 odd

-
PQB4
PQB5
PQB6

-
A_AD4 / AN48
A_AD5 / AN49
A_AD6 / AN50

Reserved
-
-
-

-
I
I
I

32-47
48
49
50

PQB7
PQA0
PQA1
PQA2

A_AD7 / AN51
-
-
-

-
MA0
MA1
MA2

I I
I/O
I/O
I/O

51
52
53
54

QADC Analog In

5-63

In Table 5-2, PQA0, PQA1 and PQA2 are used as output pins to drive an
external demultiplexer.

PQA3
PQA4
PQA5
PQA6

A_AD11 / AN55
A_AD12 / AN56
A_AD13 / AN57
A_AD14 / AN58

-
-
-
-

I/O
I/O
I/O
I/O

55
56
57
58

PQA7
-
-
-

A_AD15 / AN59
V RL
V RH
-

-
-
-
(VRH - VRL)/2

I/O
I
I
-

59
60
61
62

- - End of Queue Code - 63

Table 5-2: Multiplexed Scan Mode (Continued)

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel
Number

QADC Digital In

5-64

5QADC Digital InPurpose Input driver enables use of Queued Analog-Digital Converter (QADC64) pins
as digital inputs

Library Embedded Target for Motorola MPC555

Description The QADC Digital In block allows you to treat the QADC64 pins as digital
inputs. Each QADC64 module has two 8-bit ports, A and B. You can use any bit
on either port as a digital input.

Dialog Box

QADC module
 Selects module A or B.

Port
 Selects an 8 bit port (A or B) on the module.

Bits
 A vector of bits (numbered 0-7) to read. The vector should not be longer
than eight elements.

 Sample time

QADC Digital In

5-65

 Block sample time; determines sample rate at which the port is monitored.

Enable pass through (show simulation input)
Lets you provide a signal to this block for use in simulation. When this
option is enabled, an inport appears on the block. The block input is passed
through, unaltered, to the output during simulation. This option affects
simulation only.

Mapping Bits To Hardware Pins
Use Table 5-3 to work out how the block ports and bits map to processor pins
on the MPC555.

Table 5-3: Relationship of Port/Bit Parameters to Hardware Pins

Port Bit Hardware Pin

B 0 A_AD0 / PQB0

B 1 A_AD1 / PQB1

B 2 A_AD2 / PQB2

B 3 A_AD3 / PQB3

B 4 A_AD4 / PQB4

B 5 A_AD5 / PQB5

B 6 A_AD6 / PQB6

B 7 A_AD7 / PQB7

A 0 A_AD8 / PQA0

A 1 A_AD9 / PQA1

A 2 A_AD10 / PQA2

A 3 A_AD11 / PQA3

A 4 A_AD12 / PQA4

A 5 A_AD13 / PQA5

QADC Digital In

5-66

A 6 A_AD14 / PQA6

A 7 A_AD15 / PQA7

Table 5-3: Relationship of Port/Bit Parameters to Hardware Pins (Continued)

Port Bit Hardware Pin

TouCAN Error Count

5-67

5TouCAN Error CountPurpose Count transmit and/or receive errors detected on selected TouCAN modules

Library Embedded Target for Motorola MPC555

Description The TouCAN Error Count block maintains and reports a count of errors
detected by the selected TouCAN module during receive and transmit. The
receive and transmit error counts are output to the RX and TX outputs of the
block, respectively.

The error counts also drive the TouCAN Warnings block outputs. (See
“TouCAN Warnings” on page 5-77.)

Dialog Box

Module
Select TouCAN module A or B.

Sample time
Sample time of the block.

Enable pass through (show simulation input)
Lets you provide a signal to this block for use in simulation. When this option
is enabled, inports appear on the block. The block inputs are passed through,
unaltered, to the outputs during simulation. This option affects simulation
only.

TouCAN Fault Confinement State

5-68

5TouCAN Fault Confinement StatePurpose Indicate the state of a TouCAN module

Library Embedded Target for Motorola MPC555

Description The TouCAN Fault Confinement State block provides an indicator for the state
of the selected TouCAN module. The block obtains and outputs a field of two
bits from the TouCAN module’s Error and Status (ESTAT) register. The
possible states are shown in Table 5-4.

Refer to section 16, “CAN 2.0B Controller Module,” in the MPC555 Users
Manual for further information.

Dialog Box

Module
Select TouCAN module A or B.

Sample time

Table 5-4: FCS State Values

State Value Description

Error Active 00 Normal operation

Error Passive 01 Listening only mode. The device cannot
transmit.

Bus Off 1x The device is not allowed to transmit or
receive and is effectively cut off from the
bus.

TouCAN Fault Confinement State

5-69

Sample time of the block.

Enable pass through (show simulation input)
Lets you provide a signal to this block for use in simulation. When this option
is enabled, an inport appears on the block. The block input is passed through,
unaltered, to the output during simulation. This option affects simulation only.

TouCAN Interrupt Generator

5-70

5TouCAN Interrupt GeneratorPurpose Generate an interrupt subsystem for CAN interrupt sources

Library Embedded Target for Motorola MPC555

Description The TouCAN Interrupt Generator block generates a function-call trigger
within a TouCAN interrupt and executes a callback in the context of the
interrupt service routine.

This block may be used to execute a callback on occurrence of Bus Off, Error,
or Wake interrupts.

Do not use this block unless you are aware of the dangers of using
asynchronous interrupts in the model. Unpredictable data loss or model
behavior may result unless extreme caution is taken.

For faster interrupts, you can disable floating point support via the Use
floating point option. However, if you disable floating point support, do not use
blocks that require floating point operations in your model. Use of such blocks
will cause a floating point exception at runtime.

Dialog Box

Module
Select TouCAN module A or B.

Interrupt source
Choose the interrupt source (Bus Off, Error or Wake) for your ISR
generator.

TouCAN Interrupt Generator

5-71

Use floating point
Enable or disable floating point support.

TouCAN Receive

5-72

5TouCAN ReceivePurpose Receive CAN messages from the TouCAN module on the MPC555

Library Embedded Target for Motorola MPC555

Description The TouCAN Receive block receives CAN messages from the TouCAN module.

The TouCAN Receive block can reserve any of the 16 buffers on the TouCAN
module. Alternatively, you can instruct the TouCAN Receive block to select a
hardware buffer automatically from the available buffers.

The TouCAN Receive block has two outputs: a data output and a function call
trigger output. The TouCAN Receive block polls its message buffer at a rate
determined by the block’s sample time. When the TouCAN Receive block
detects that a message has arrived, the function call trigger is activated. You
should use a function call subsystem, activated by the trigger, to decode the
message available at the TouCAN Receive data output.

Dialog Box

TouCAN module
Selects one of the two TouCAN modules (A or B) on the MPC555. The
TouCAN modules can receive messages independently.

TouCAN Receive

5-73

CAN message type
The type of message you want to receive. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

CAN message identifier
The identifier of the message you want to receive. Note that if you have set
the TouCAN configuration parameters (see “MPC555 Resource
Configuration” on page 5-47) in your model to mask out certain bits (e.g.,
the message identifier field) you may receive messages with identifiers
other than the identifier specified here.

Automatically select buffer
When this option is selected, the TouCAN Receive block automatically
selects a receive buffer from the available buffers. We recommend that you
use this automatic buffer selection, unless you want to use buffer 14 or 15
to receive multiple CAN message identifiers in a single buffer. See also
“TouCAN Configuration Parameters” on page 5-57.

Buffer number [0..15]
This field is enabled if the Automatically select buffer option is cleared.
Buffer number specifies the identifier of the receive buffer for this block.
We recommend that you select Automatically select buffer instead of
manually specifying the buffer, unless you want to use buffer 14 or 15 to
receive multiple CAN message IDs in a single buffer. See also “TouCAN
Configuration Parameters” on page 5-57.

Sample time
Determines the rate at which to sample the buffer to see if a new message
has arrived.

Note The TouCAN Receive block sample time must be set to a value that is
smaller than the minimum time between CAN messages that will be received
into the corresponding buffer. If more than one message is received into a
buffer during a single sample interval, the older message will be overwritten.

TouCAN Receive

5-74

Enable pass through (show simulation input)
Lets you provide a signal to this block for use in simulation. When this
option is enabled, inports appear on the block. The block inputs are passed
through, unaltered, to the outputs during simulation. This option affects
simulation only.

TouCAN Soft Reset

5-75

5TouCAN Soft ResetPurpose Reset a TouCAN module

Library Embedded Target for Motorola MPC555

Description When the TouCAN Soft Reset block executes, the TouCAN module resets its
internal state. The TouCAN error counters will be reset. The Fault
Confinement State will be reset to the Error Active state, provided the TouCAN
module has not reached the Bus Off state.

We recommend that you place this block in a triggered subsystem, with a
sample time of -1 (inherited).

Dialog Box

Module
Select TouCAN module A or B.

Sample time
Sample time of the block.

TouCAN Transmit

5-76

5TouCAN TransmitPurpose Transmit a CAN message via a TouCAN module on the MPC555

Library Embedded Target for Motorola MPC555

Description The TouCAN Transmit block transmits a CAN message onto the CAN bus. The
TouCAN Transmit block uses the queue set up by the MPC555 Resource
Configuration object (see “MPC555 Resource Configuration” on page 5-47).

Dialog Box

Module
Selects one of the two TouCAN modules (A or B) on the MPC555.

Sample time
Choose -1 to inherit the sample time from the driving blocks. The TouCAN
Transmit block does not inherit constant sample times and runs at the base
rate of the model if driven by invariant signals.

Enable pass through (show simulation input)
Lets you provide a signal from this block for use in simulation. When this
option is enabled, an outport appears on the block. The block input is
passed through, unaltered, to the output during simulation. This option
affects simulation only.

TouCAN Warnings

5-77

5TouCAN WarningsPurpose Flag excessively high transmit or receive error counts on TouCAN modules

Library Embedded Target for Motorola MPC555

Description The TouCAN Warnings block has two logical outputs, RX and TX. If the transmit
error counter is over 95, then the TX output goes high. If the receive error
counter is over 95, then the RX output goes high.

Use this block, in conjunction with a TouCAN Error Count block, to monitor
error conditions on a selected TouCAN module.

Dialog Box

Module
Select TouCAN module A or B.

Sample time
Sample time of the block.

Enable pass through (show simulation input)
Lets you provide signals to this block for use in simulation. When this option is
enabled, inports appear on the block. The block inputs are passed through,
unaltered, to the output during simulation. This option affects simulation only.

Vector CAN Configuration

5-78

5Vector CAN ConfigurationPurpose Configure a Vector CAN channel (either hardware or virtual) for use with
Vector-Informatik drivers

Library Can Drivers (Vector)

Description The Vector CAN Configuration block configures a CAN channel on the host PC,
using the Vector CAN Driver. A CAN channel can be

• A channel associated with a CAN card installed on your PC

• A virtual channel, not requiring any CAN hardware

The Vector CAN Driver software must be installed on your PC, regardless of
whether you want to use virtual channels or actual hardware.

Place one Vector CAN Configuration block in the model for each CAN channel
required.

You can use virtual channels to communicate between two separate Simulink
models in the same MATLAB session, or between a CANalyser session and
Simulink, or even between two Simulink models running in different sessions
of MATLAB on the same machine. For an example of how this can be done see
the mpc555rt_io and mpc555rt_iohost demos.

A Vector CAN Configuration block works in association with Vector CAN
Transmit and Vector CAN Receive blocks. The association is formed by
assigning the same values to the Tag parameter of all the blocks.

Setting the Baud Rate
The Vector CAN Configuration block lets you set the speed of the CAN channel
connection.

In many cases you can avoid the complexities of CAN bit timing by selecting
one of the Precalculated baud rate settings in the Block Parameters dialog
box. We recommend using the precalculated baud rates wherever possible.

If the precalculated baud rates do not meet your requirements, you can select
the Set bit timing parameters manually option. You can then set the baud
rate by configuring the Baud rate prescaler, Synchronization jump width,
Time segment 1, Time segment 2, and Sample mode parameters as described
in this section.

Vector CAN Configuration

5-79

The following variables are defined in calculating the baud rate for the Vector
CAN Configuration block:

• f: The Vector hardware oscillator frequency f is a constant, 16MHz.

• prescaler: The baud rate prescaler that defines the length of one time
quanta.Valid values are [1..64].

• tseg1: Defines the length of time preceding the sample point within a bit
time. Valid values are [1..16].

• tseg2: Defines the length of time following a sample point within a bit time.
Valid values are [1..8].

To set the baud rate, first derive values for prescaler, tseg1, and tseg2, using the
following formulas:

1 Number of time quanta per second qps = f /(2 * prescaler).

2 Number of time quanta per bit time qpb = 1 + tseg1 + tseg2.

3 Baud rate = (number of bit times per second) = qps / qpb.

Next, select values for the following parameters:

• SJW (Synchronization Jump Width): For CAN to work successfully, all nodes
on the network must be synchronized. However, as time goes by, clocks on
different nodes will drift out of sync, and must resynchronize. SJW specifies
the maximum width (in time quanta) that can be added to tseg1 (in case of a
slower transmitter), or subtracted from tseg2 (in case of a faster transmitter)
in order to regain synchronization during the receipt of a CAN message.

Valid values for SJW are [1..4].

• Sample mode: Sample mode defines how many samples of the signal to take
to determine a valid bit. Select either 1 sample per bit or 3 samples per
bit, via the drop down menu. 3 samples per bit is more reliable, and may
be necessary on a noisy channel.

Finally, enter the values derived above into the block parameters:

• Baud rate prescaler: value of prescaler.
• Time segment 1: value of tseg1.

• Time segment 2: value of tseg2.

• Sample mode: value of sample mode.

Vector CAN Configuration

5-80

• Synchronization jump width: value of SJW.

As an example, the parameters used for the precalculated baud rate 500 kBaud
were

• Baud rate prescaler: 1
• Synchronization jump width: 1

• Time segment 1: 8.

• Time segment 2: 7.

• Sample mode: 1 sample per bit

For further information on the CAN, and on CAN bit timing, see the following
documents, available at the CAN in Automation (CiA) Web site:
http://www.can-cia.de

• CAN General Introduction

• The “Bit Timing” section of the CAN Physical Layer document.

Vector CAN Configuration

5-81

Dialog Box

Tag to identify this configuration
A unique identifier for naming a configured CAN channel. This tag is used
to associate transmit and receive blocks with the configured channel.

Channel
Lets you select either a virtual channel (Virtual 1 or Virtual 2) or a
supported hardware device.

If you have the required drivers installed, but no hardware device, you can
use Virtual 1 or Virtual 2.

If you do not have the required drivers installed, select None. This allows
you to use the block in simulation, even without the required driver or
hardware installed. If you select a hardware device and the driver detects

Vector CAN Configuration

5-82

that you do not have the requested hardware installed, the block will report
an error during simulation.

Precalculated baud rate
This parameter sets the speed of your channel connection. If none of the
precalculated baud rates meets your requirements, you can select the Set
bit timing parameters manually option.

Set bit timing parameters manually
Select this option if you want to program the CAN bit timing values
yourself. See “Setting the Baud Rate” on page 5-78 for details.

Baud rate prescaler
Synchronization jump width
Time segment 1
Time segment 2
Sample mode

These parameters are enabled only if Set bit timing parameters
manually is selected. See “Setting the Baud Rate” on page 5-78.

Vector CAN Receive

5-83

5Vector CAN ReceivePurpose Read CAN messages from a Vector CAN channel

Library Can Drivers (Vector)

Description The Vector CAN Receive block reads CAN messages from the channel specified
by the Configuration tag parameter. The block has the following outputs:

• f() (function call trigger): The Vector CAN Receive block polls the CAN
channel and outputs a trigger from this port when a message or messages are
available. The function call trigger output should be connected to the trigger
input of a function call subsystem that will process the message when
triggered.

• Msg: This port outputs the CAN message received. Connect this port to a
Function Call subsystem that will process the message when triggered.

• If the Output timestamp option is selected, a third output, labeled
Timestamp, is added to the block. See “Output timestamp” on page 5-85.

For an example of the use of the Vector CAN Receive and Transmit blocks, see
the mpc555rt_io and mpc555rt_iohost demos.

Message Queuing
The Vector Can driver allocates a message queue to each Vector CAN Receive
block. A message queue has a maximum size of 1024 messages. As messages
are received from the CAN network, they are put into the appropriate queue.

When the Vector CAN Receive block executes, it polls the queue to see how long
it is. If Loop to clear message queue is selected, then the block will read all
messages from the queue and process them sequentially. If more messages
arrive during this process, they are added to the end of the queue and processed
the next time the Vector CAN Receive block executes. We recommend that you
select the Loop to clear message queue option, to avoid overflowing the
block’s message queue.

If Loop to clear message queue is not selected, the Vector CAN Receive
block processes only a single message from the queue is processed when the
Vector CAN Receive block executes. Any other messages remain in the queue
until handled by subsequent executions of the Vector CAN Receive block.

Vector CAN Receive

5-84

No messages are lost and no errors are reported until the queue size for a
particular Vector CAN Receive block exceeds maximum length of 1024
messages.

Note To use this block, you must place a Vector CAN Configuration block in
the model. The Configuration tag parameter of the Vector CAN
Configuration block must be identical to the Configuration tag parameter of
the Vector CAN Receive block.

Dialog Box

Configuration tag
A unique identifier for naming a configured CAN channel. This tag is used
to associate the Vector CAN Receive block with a Vector CAN
Configuration block. The Vector CAN Receive block will then receive
messages from the channel specified in the Vector CAN Configuration
block. You can assign more than one Vector CAN Receive block to the same
CAN Configuration block.

CAN message identifier
Specify a single CAN message identifier for the message you want to
receive.

Vector CAN Receive

5-85

CAN message type
Specify the CAN message type: either Standard (11 bit identifier) or
Extended (29 bit identifier).

Sample time
Specifies how often the block is to poll the CAN driver to see if any
messages are available on the specified channel.

Output timestamp
When this option is selected, a third port, labeled Timestamp, is added to
the Vector CAN Receive block.

The message timestamp output gives the time that the message was
received. This timestamp is the clock time at which the message was
received, not the Simulink run time. The timestamp is an integer scaled to
10 microsecond resolution. A value of 1 on the timestamp output equals 10
microseconds.

Loop to clear message queue
(On by default.) Controls how the block handles cases where multiple
messages are queued up between executions of the block. When Loop to
clear message queue is selected, all messages in the queue for the block
at the time of execution are processed. Any connected Function Call
subsystem executes as many times as required.

When Loop to clear message queue is not selected, a single message
from the queue for the block is processed, leaving any other messages on
the queue to be processed in the future.

Vector CAN Transmit

5-86

5Vector CAN TransmitPurpose Transmit CAN messages on a Vector CAN channel

Library Can Drivers (Vector)

Description The Vector CAN Transmit block transmits CAN messages at its input on the
channel specified by its Configuration tag parameter. The block will accept
either Standard CAN Message or Extended CAN Message data typed signals
as input.

Connect the input of this block to a CAN message signal source, such as a CAN
Message Packing block. The Vector CAN Transmit block does not construct or
specify any of the information in the messages it transmits.

The Vector CAN Transmit block is designed to be placed in a triggered
subsystem in order to transmit a message upon an event received. In this case
you should specify an inherited sample time by entering -1 in the Sample time
parameter.

For an example of the use of the Vector CAN Receive and Transmit blocks, see
the mpc555rt_io and mpc555rt_iohost demos.

Note To use this block, you must place a Vector CAN Configuration block in
the model. The Configuration tag parameter of the Vector CAN
Configuration block must be identical to the Configuration tag parameter of
the Vector Transmit block.

Vector CAN Transmit

5-87

Dialog Box

Configuration tag
A unique identifier for naming a configured CAN channel. This tag is used
to associate the Vector CAN Transmit block with a Vector CAN
Configuration block. The Vector CAN Transmit block then transmits
messages on the channel specified in the Vector CAN Configuration block.

Sample time
Specify how often this block executes to transmit a CAN message. Note
that during simulation, the block’s sample time is relative to other blocks
in the diagram, not to a real-time clock. We recommend that you enter -1
(inherited sample time) in the Sample time parameter, and use the Vector
CAN Transmit block inside a triggered subsystem in order to transmit a
message upon an event received.

Watchdog

5-88

5WatchdogPurpose In the event of an application failure, time out and reset processor

Library Embedded Target for Motorola MPC555

Description The Watchdog block lets you set the timeout period for the watchdog timer. The
watchdog timer is a safety feature that is used to monitor correct behavior of
the application. The timer is loaded with an initial value and counts down from
this value. If the timer ever reaches zero, a watchdog timeout occurs, forcing a
processor reset.

In normal operation, the watchdog timer is reloaded at a regular intervals by
the application code; this occurs at a higher frequency than the Watchdog
Timeout parameter period. Therefore the counter never reaches zero and a
processor reset is never triggered.

In the event of a software failure that causes the application to lock up, the
watchdog timer will not be serviced. Therefore, it will time out when the
counter reaches zero. This in turn causes a processor reset, which restarts the
application.

You do not need to include a Watchdog block in your model unless you want to
change the Watchdog Timeout parameter period to a value other than the
default. By default, the watchdog timer is enabled and the timeout period is set
to the largest possible value, which is several seconds.

Note that the Watchdog block has neither input nor output connections.

Watchdog

5-89

Dialog Box

Watchdog Timeout
The Watchdog Timeout period must be set to a value that is larger than
the fastest sample rate in the system. To set the Watchdog Timeout
period, place a Watchdog block anywhere in the model and open its dialog
box.

Watchdog

5-90

I-1

Index

A
algorithm export 4-2
ASAP2 files, generating 3-35

B
blocks

CAN Calibration Protocol 5-12
CAN Message Filter 5-17
CAN Message Packing 5-19
CAN Message Packing (CANdb) 5-21
CAN Message Unpacking 5-27
CAN Message Unpacking (CANdb) 5-29
MIOS Digital In 5-35
MIOS Digital Out 5-37
MIOS Digital Out (MPWMSM) 5-39
MIOS Pulse Width Modulation Out 5-41
MIOS Waveform Measurement 5-44
MPC555 Resource Configuration 5-47
QADC Analog In 5-59
QADC Digital In 5-64
TouCAN Error Count 5-67
TouCAN Fault Confinement State 5-68
TouCAN Interrupt Generator 5-70
TouCAN Receive 5-72
TouCAN Soft Reset 5-75
TouCAN Transmit 5-76
TouCAN Warnings 5-77
Vector CAN Configuration 5-78
Vector CAN Receive 5-83
Vector CAN Transmit 5-86
Watchdog 5-88

C
CAN Calibration Protocol (CCP) 5-12
CAN Calibration Protocol block 5-12

CAN Message Filter block 5-17
CAN Message Packing block 5-19
CAN Message Unpacking block 5-27
CANdb

Message Packing block 5-21
Message Unpacking block 5-29

code analysis report 4-3
Configuration Class blocks 5-8
cosimulation 2-2

D
demos for Embedded Target for Motorola MPC555

viii
device driver blocks

input data types 5-6
input scaling 5-6
output data types 5-6
output scaling 5-6

downloading code to target 3-23
application code 3-27

to flash memory 3-28
to RAM 3-27

boot code 3-25
via BDM port 3-26
via CAN 3-26

E
Embedded Target for Motorola MPC555

demos viii
feature summary 1-6

Index

I-2

I
installation of Embedded Target for Motorola

MPC555 xii

M
MIOS Digital In block 5-35
MIOS Digital Out (MPWMSM) block 5-39
MIOS Digital Out block 5-37
MIOS Pulse Width Modulation Out block 5-41
MIOS Waveform Measurement block 5-44
MPC555 Resource Configuration object 5-47

O
ODBC

configuring data source for 5-25
using with CANdb message packing block

5-22
using with CANdb message unpacking block

5-31

P
PIL (processor-in-the-loop) cosimulation 2-2

benefits of 2-2
getting started tutorial 2-5
hardware connections for 2-5
in plant/controller simulation 2-3
preparation for 2-5
technical overview of 2-3

PIL (processor-in-the-loop) target 2-2
files and directories created by 2-23
in cosimulation 2-14
in SIL simulation 2-21
using in closed-loop simulation 2-21

Q
QADC Analog In block 5-59
QADC Digital In block 5-64

R
real-time target

introduction 3-2
tutorial 3-4

code generation 3-10
example model for 3-6
prerequisites for 3-4
using pass-through for device drivers 3-9

S
software-in-the-loop (SIL) simulation 2-21

T
target hardware setup

communications ports 1-12
jumper settings 1-12

TouCAN Error Count block 5-67
TouCAN Fault Confinement State block 5-68
TouCAN Interrupt Generator block 5-70
TouCAN Receive block 5-72
TouCAN Soft Reset block 5-75
TouCAN Transmit block 5-76
TouCAN Warnings block 5-77
typographical conventions (table) xii

V
Vector CAN Configuration block 5-78
Vector CAN Receive block 5-83
Vector CAN Transmit block 5-86

Index

I-3

W
Watchdog block 5-88
watchdog timer 5-88

Index

I-4

	Preface
	Installing the Embedded Target for Motorola MPC555
	Using This Guide
	Embedded Target for Motorola MPC555 Demos
	Related Products
	Typographical Conventions

	Product Overview
	Prerequisites
	Introduction to the Embedded Target for Motorola MPC555
	Feature Summary
	Applications for the Embedded Target for Motorola MPC555

	Hardware and Software Requirements
	Host Platform
	Hardware Requirements
	Software Requirements

	Setting Up and Verifying Your Installation
	Setting Up Your Target Hardware
	Setting Target Preferences
	MATLAB Commands for Working with Target Preferences
	Editing Target Preferences via the Property Inspector Window

	Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger
	Installing SingleStep Debugger
	Configuring SingleStep and Downloading Boot Code

	Setting Up Your Installation with Metrowerks CodeWarrior

	PIL Cosimulation
	Overview of PIL Cosimulation
	Why Use Cosimulation?
	How Cosimulation Works

	Tutorial 1: Building and Running a PIL Cosimulation
	Before You Begin
	Hardware Connections
	The Demo Model
	Setting Up the Model
	Building PIL and Simulation Components
	Using the Demo Model In a PIL Cosimulation

	Tutorial 2: Modifying and Rebuilding the Controller
	Modifying the Controller
	Rebuilding the Controller and Cosimulating

	Tutorial 3: Using the Demo Model In Simulation
	PIL Target Summary
	Code Generation Options
	Build Process Files and Directories
	Restrictions

	Generating Stand-Alone Real-Time Applications
	Introduction
	Deploying Generated Code

	Tutorial: Creating a New Application
	Before You Begin
	The Example Model
	Using the Pass-Through Option in Simulation
	Generating Code
	Downloading the Application to RAM via SingleStep/BDM
	Downloading the Application to RAM via CAN

	Downloading Boot and Application Code
	RAM vs. Flash Memory
	Overview of Memory Organization and the Boot Process
	Downloading Boot Code
	Downloading Application Code
	Downloading Boot or Application Code via CAN Without Manual CPU Reset
	Boot Code Parameters for CAN Download

	Generating ASAP2 Files
	Requirements and Limitations
	ASAP2 File Generation Procedure
	Data Acquisition (DAQ) List Configuration

	Summary of the Real-Time Target
	Code Generation Options
	Requirements and Restrictions

	Algorithm Export and Code Analysis Reporting
	Algorithm Export Target
	Code Analysis Reporting
	Algorithm Export Target Summary
	Code Generation Options
	Restrictions

	Block Reference
	The Embedded Target for Motorola MPC555 Block Libraries
	Using Block Reference Pages

	Blocks Organized by Libraries
	Embedded Target for Motorola MPC555 Library
	Data Type Support and Scaling for Device Driver Blocks
	Configuration Class Blocks
	CAN Message Blocks and CAN Drivers Libraries

	Alphabetical List of Blocks
	CAN Calibration Protocol
	CAN Message Filter
	CAN Message Packing
	CAN Message Packing (CANdb)
	CAN Message Unpacking
	CAN Message Unpacking (CANdb)
	MIOS Digital In
	MIOS Digital Out
	MIOS Digital Out (MPWMSM)
	MIOS Pulse Width Modulation Out
	MIOS Waveform Measurement
	MPC555 Resource Configuration
	QADC Analog In
	QADC Digital In
	TouCAN Error Count
	TouCAN Fault Confinement State
	TouCAN Interrupt Generator
	TouCAN Receive
	TouCAN Soft Reset
	TouCAN Transmit
	TouCAN Warnings
	Vector CAN Configuration
	Vector CAN Receive
	Vector CAN Transmit
	Watchdog

	Index

