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Multiple Resonance Networks

Antonio Carlos M. de Queiroz

Abstract—This brief shows how “multiple resonance networks” of any
order and with many possible structures can be systematically designed
using standard lossless impedance synthesis techniques. These networks
are composed of linear lumped or distributed capacitors, inductors, and
transformers, with a switch separating one of the capacitors from the re-
maining circuit. They have the property of transferring completely the en-
ergy initially stored in the capacitor insulated by the switch, to another,
much smaller, capacitor in the circuit, through a linear transient when the
switch is closed. These circuits find applications in the production of very
high voltages for pulsed power systems.

Index Terms—Linear network synthesis, power converters, resonance.

I. INTRODUCTION

“Multiple resonance networks” [1] is a name that generalizes the
“double resonance” [2], [3], “triple resonance” [4]–[6], and the higher
order networks discussed in this brief. These circuits are usually com-
posed of a transformer and some extra capacitors and inductors and
work by transferring the energy initially stored in a capacitor at one
side of the transformer to another, much smaller, capacitor at the other
side of the transformer, through a linear transient composed (in the ideal
lossless case) of a sum of several cosinusoidal waveforms (Fig. 1).

The “double resonance” case is long known [2], [7] as the “Tesla
coil” [3]. In this case, only two capacitors and one transformer are used,
resulting in a fourth-order system with a transient formed by two oscil-
latory modes (Fig. 2). With the system properly designed, after some
cycles all the initial energy inC1 is transferred toC2, and the obtained
voltage is given, by energy conservation, by

voutmax = vin(0)
C1

Cp

(1)

(with p = 2). This same equation fixes the maximum output voltage
for all the systems of this type.

More recently, triple resonance systems were developed [4]–[6] for
instrumentation used in high-energy physics. An additional capacitor
and an inductor were added to the output side (Fig. 3), with the aim
of reducing the voltage stress over the transformer and of taking into
consideration the output capacitance of the transformer. With only the
extra inductor added, the system is still a double resonance system, long
known as the “Tesla magnifier.” With the extra capacitor the system is
of sixth order and the transient has three oscillatory modes, but opera-
tion with complete energy transfer is equally possible.

In all the cases found in the literature, the design of these systems is
based on the analysis of a fixed structure. The following sections show
that the design can be made by synthesis, can be applied to a wide range
of structures, and can be extended to systems of any order.

II. SYNTHESIS APPROACH

The transformer can be left out of the problem, because it can be
inserted after the synthesis of a “ladder” structure composed of series
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Fig. 1. Multiple resonance network. An initial energy inC is totally
transferred toC through the transformer and two possibleLC networks,
during the transient after the closure of the switch.

Fig. 2. Typical double resonance network, and voltages inC andC after the
closure of the switch. The voltage gain was designed as 10.C = 1 nF,C =
10 pF,L = 129:8 �H, L = 12:98 mH, andk = 0:2195. v (0) =
10 kV.

inductors and shunt capacitors, with a shunt inductor somewhere, as
shown in Fig. 4(a). An ideal transformer with turns ratio1 : n is in-
serted at the left side of where the shunt inductor appears and is then
converted into a real transformer by using the equivalence shown in
Fig. 4(b), where

La =
Lx

n2
Lb = Lx + Ly

kab =
Lx

Lx + Ly

Z 0(s) =
Z(s)

n2
: (2)

The turns ratio can be chosen as convenient for the desired voltage
gain. It multiplies the gain in (1) directly because the input capacitor
is multiplied byn2. kab is the coupling coefficient of the resulting real
transformer that can be quite small if the energy transfer occurs in many
cycles.

If the shunt inductor is at the low-voltage end (as is the case for the
fourth- and sixth-order cases in Figs. 2 and 3, with the transformer elim-
inated, the problem is reduced to the synthesis of the output impedance
of the circuit by a succession of complete pole removals at infinity, or
an impedance synthesis in Cauer’s first form. The following discussion
shows how to find the required impedance.

With the switch closed, the impedance seen across any of the ca-
pacitors has a denominator of orderp, even, and a numerator of order
p�1, with a zero ats = 0. The voltage response of one of these imped-
ances to a current impulse applied in parallel with the corresponding
capacitor is proportional to the response to a charged capacitor there.
It appears as a sum ofp pure cosinusoidal oscillations with positive

Fig. 3. Typical triple resonance network and voltages inC ,C , andC after
the closure of the switch. The voltage gain was also designed as 10.C = 1 nF,
C = 126:3 pF, C = 10 pF, L = 110 �H, L = 780:7 �H, L =
10:13 mH, k = 0:28131, andv (0) = 10 kV.

Fig. 4. (a) General structure without transformer. (b) Equivalence that allows
the insertion of a transformer where a shunt inductor appears.

multiplying factors. Sinusoidal components don’t appear and the mul-
tiplying factors must be positive, due to the proportionality between
the Laplace transform of the voltage waveform and the impedance at
that point in Foster’s first form. With thep oscillation frequencies con-
sidered as distinct integer multiples of a basic frequency!0 by factors
kj ; j = 1; . . . ; p, all the capacitor voltages have the forms

Zin;i(s) / Vi(s) =

p

j=1

Aijs

s2 + k2j!
2

0

(3)

(Laplace transform) and

vi (t) =

p

j=1

Aij cos (kj!0t) (4)

(time domain).
The currents in all the inductors are then proportional to the deriva-

tives of the capacitor voltages (4), and so are all sums ofp sinusoids at
the same frequencies

ii (t) =

p

j=1

Bij sin (kj!0t): (5)

It is convenient to work from the output of the network and compute
the output impedance. ConsideringCp initially charged tovp, the en-
ergy there is transferred toC1 using the “return” part of the (perpetual)
transient waveform. As all thekj are different positive integers, all the
currents reduce to 0 att = �=!0.
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If the output is excited by a unit impulse source, the proportionality
in (3) becomes an identity. From (3) and the structure of the network
[Fig. 4(a)], whens ! 1:

p

j=1

Apj =
1

Cp

: (6)

At t = �=!0, the backward energy transfer is complete, andvp = 0.
From (4) we have

vp
�

!0
=

p

j=1

Apj cos(kj�) =

p

j=1

Apj (�1)
k = 0: (7)

At the same instant,vp�1 = 0, vp�2 = 0, . . ., v2 = 0. At any time
after t = 0, considering the currentsii in the inductors in Fig. 4(a)
going to the right, we have

vi�1(t) = vi(t) + Li

dii(t)

dt
; i = p; p� 1; . . . ; 3: (8)

Expanding these expressions as functions ofvp(t), it can be shown
that these voltages are all zero att = �=!0 if all the even derivatives
of vp(t) up to order2p � 4 are null at this instant. Combining this
condition with (6) and (7), and eliminating powers of!0 and of�1
that multiply the derivatives ofvp(t), the following system of equations
results:

1 1 � � � 1

(�1)k (�1)k � � � (�1)k

k21 (�1)
k k22 (�1)

k
� � � k2p (�1)

k

...
...

. . .
...

k2p�41 (�1)k k2p�42 (�1)k � � � k2p�4p (�1)k

�

Ap1

Ap2

...

...
App

=

1
Cp

0

0
...
0

: (9)

It is observed that positive solutions for all theApj are only obtained
if the powers of�1 have alternate signs for increasingkj . This adds
a condition on thekj , mentioned in [2], [4]–[6], and that extends for
higher orders: Given a positive integer askj , the next valuekj+1 is
obtained by adding an odd positive integer tokj . Valid sequences are
then 1, 2, 3, …; 2, 3, 4, …; 1, 2, 5, …; 1, 4, 5, …; etc. This “rule” is
stated here without a formal proof, but no exceptions could be found.
Even differences between all the successivekj or identicalkj result in a
singular system. Sequences with mixed odd and even differences result
also in solvable systems, but produce negative residues. The rule allows
a further simplification of (9) [1] with the elimination of the powers of
�1, and is assumed in the deduction of the formulas presented in the
following sections. A particularly interesting alternative method for the
calculation of the residues of the output impedance of the network, that
does not require the solving of a system of equations, is discussed in
[8].

With theApj computed, anLC network can be obtained by the ex-
pansion of the output impedance (3) in ladder form. Alternative forms
for the expansion of the impedance are also possible, for example, ex-
tracting the shunt inductor at other points of the expansion, or extracting
more than one shunt inductor. With this, a transformer can be inserted
at other points, or more than one transformer can be inserted.

III. EXAMPLES

A. Fourth-Order Case

This is the classic double resonance circuit, but without a trans-
former. The system of equations in (9) withC2 normalized to 1 reduces
to two equations that giveA21 = A22 = 1=2. The output impedance

Fig. 5. Structures for transformerless multiple resonance networks of: (a)
fourth, (b) sixth, and (c) eighth orders.

of the network is then, normalizing!0 to 1 and namingk1 = k and
k2 = l:

Zout =
1

2
s

s2 + k2
+

1

2
s

s2 + l2
=

s3 + 1

2
k2 + l2 s

s4 + (k2 + l2) s2 + k2l2
: (10)

This impedance, expanded in Cauer’s first form, results in the structure
in Fig. 5(a), with the values

C2 =1; L2 =
2

k2 + l2

C1 =
k2 + l2

l2 � k2

2

; L1 =
l2 � k2

2

2 (k2 + l2)k2l2
(11)

This circuit produces the voltage gain [from (1)]

vC2max
vC1(0)

=
C1

C2

=
k2 + l2

l2 � k2
: (12)

If a transformer is inserted through the use of the relations shown in
(2), the relations for the elements in Fig. 2 reduce to

C1La =C2Lb =
k2 + l2

2k2l2

k12 =
l2 � k2

k2 + l2
: (13)

The turns ration, actually just a number because the coils can have
different geometries, affects only the voltage gain (12), multiplying it
directly. The second equality in the first equation just sets the energy
transfer time to� seconds.

B. Sixth-Order Case

For the triple resonance case, the system (9) has three equations.
Symbolic expressions for the element values can be obtained as

A31 =
l2 �m2

2 (k2 �m2)
; A32 =

1

2
; A33 =

k2 � l2

2 (k2 �m2)

C3 =1; L3 =
1

l2
; C2 =

2l4

(l2 �m2) (k2 � l2)

L2 =
l2 �m2 k2 � l2

l2 (k2 (l2 +m2)� l2 (l2 �m2))

C1 =
k2 l2 +m2

� l2 l2 �m2

(k2 � l2) (l2 �m2)

2

L1 =
k2 � l2

2
l2 �m2 2

2k2l2m2 (k2 (l2 +m2)� l2 (l2 �m2))
(14)

for the structure in Fig. 5(b), withk1 = k, k2 = l, andk3 = m. The
voltage gain is given by

vC3max

vC1(0)
=

C1

C3

=
k2 l2 +m2

� l2 l2 �m2

(k2 � l2) (l2 �m2)
: (15)
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TABLE I
NORMALIZED ELEMENT VALUES FORQUADRUPLE RESONANCENETWORKS[FIG. 5(C)], AS FUNCTIONS OF THEFREQUENCYMULTIPLIERS k , k , k , AND

k . IN ALL CASES THETOTAL ENERGY TRANSFEROCCURS IN� SECONDS

Fig. 6. Experimental voltage waveforms obtained for an eighth-order network
[Fig. 5(c)] in mode 1, 2, 3, 4.C = 100 nF,L = 461 �H, C = 192 nF,
L = 199 �H, C = 338 nF,L = 131 �H, C = 706 nF, andL =

130 �H. Measured voltage gain: 2.23. Energy transfer time: 50�s. The dark
traces arev andv , and the light traces arev andv .

For the structure with a transformer (see Fig. 3), convenient design
equations, adapted and normalized to!0 = 1, are

Lb

L3

=
l2 �m2 k2 � l2

2k2m2
;
C2

C3

=
2l4

(l2 �m2) (k2 � l2)

LaC1 =(Lb + L3)C3; k12 =
Lb

Lb + L3

: (16)

These equations show several curious dependencies among the compo-
nents of the structure, similar to what happens in the fourth-order case
[see (13)].

C. Eighth-Order Case

The extension to higher orders results in higher voltage gain for the
same basic frequencies of operation, and maybe smaller voltage dif-
ferences across the series inductors (with the exception of the last, that
always has to sustain the full output voltage). No attempts of design or
of applications for networks with orders greater than 6 could be found

in the literature. Symbolical expressions continue to be relatively easy
to derive for the element values, but become rather impractical for the
“quadruple resonance” case and above. Table I lists numerical normal-
ized (Cp = 1; !0 = 1) element values for the structure in Fig. 5(c) for
some of the possibly more practical combinations of frequency multi-
pliers.

An experimental circuit was constructed, operating in mode 1, 2, 3,
4. The values in Table I were denormalized for resonances at 10, 20,
30, and 40 kHz, withC4 = 100 nF. The element values were adjusted
for maximum error of 1%, and the resistances of the inductors, wound
on ferrite pot-cores, were kept around 1 Ohm. In this example, it was
not necessary to compensate for parasitic capacitances in the inductors
and all the capacitances were lumped. A mechanical switch was used to
start the energy transfer. Fig. 6 shows the resulting voltage waveforms
obtained. The measured voltage gain was just 84% of the ideal, mainly
due to the losses, but the waveforms are very similar to the ideal ones.

IV. CONCLUSION

A systematic procedure for the design ofLC voltage multipliers
that are a generalization of the “double resonance” and “triple reso-
nance” networks was presented. The procedure first obtains a special
LC impedance that is then expanded in ladder form. A transformer is
not necessary, but can be easily included. Only lossless circuits were
considered, but the applications of these circuits generally require low
losses, and they are designed to behave as lossless circuits. The pres-
ence of small losses does not significantly affect the waveforms in prac-
tical circuits of this type, adding essentially only a decay with time in
the waveforms.
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Advanced Feedback Control of the Chaotic
Duffing Equation

Zhong-Ping Jiang

Abstract—This brief deals with the celebrated chaotic Duffing equation
with external control force. It is shown that Lyapunov direct method in con-
junction with recent developments in nonlinear control yields a promising
way of engineering chaotic dynamics. Among the three types of feedback
controllers introduced in the paper, we particularly emphasize the value of
linear feedback strategy in controlling chaos. For the forced Duffing equa-
tion, it is shown that linear feedback control laws are inherently robust to
(even large) sensor errors.

Index Terms—Adaptive nonlinear control, Duffing equation, exponential
convergence, global stability, linear feedback.

I. INTRODUCTION

Chaos control has been an active research field in recent years. Var-
ious control methodologies have been developed by many researchers
from a point of view of dynamic system theory and traditional feed-
back control. Among these creative control algorithms are the cele-
brated OGY method of small time-dependent pertubations of an avail-
able system parameter [16] and Lyapunov control methods [3], [5], [7],
[14] (see the books [1], [2], [10], [15] for a rather complete list of refer-
ences in this quickly expanding area). Possibilities of applying chaotic
system theory to secure communication have also been considered and
justified by experimental work (see, e.g., [2], [4], [8], [17], [22] and
references therein).

The purpose of this brief is to make novel contributions to Lya-
punov control of chaotic continuous-time dynamic systems. Because
of the tremendous complexity of chaotic dynamics, we will restrict our-
selves to Duffing’s equation which has been investigated as a bench-
mark chaotic system in several articles [3], [6], [7], [13], [14]. It is
hoped that our methodologies developed for this pecular chaotic system
will be applicable to other types of chaotic dynamic systems such as
Chua’s circuits and Lorenz chaotic attractor [2], [10].

In this paper, we consider a general form of Duffing’s equation with
external control inputu

�x+ p _x+ p1x+ p2x
3 = u+ q cos(!t): (1)

The controlu is added in order to order or guide the chaotic dynamics
to meet our specific requirements. We are interested in driving the state
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x to an appropriately defined reference signalxd. This issue is widely
known as the tracking problem in the control community. The first con-
tribution of this paper is that new solutions to the tracking problem are
obtained with the help of advanced nonlinear control theory. Previous
work of others [3], [6], [7], [13], [14] have presented interesting results
on the tracking of a more restrictive form of the forced Duffing equa-
tion (1). For example, the seemingly first solution developed by Chen
and Dong [3] is applicable to Duffing’s equation only whenp > 0
andp2 = 1. In addition, their result solves the local tracking problem,
i.e., only those trajectories of (1) starting from a small neighborhood
of the desired reference orbit can be asymptotically controlled to the
desired trajectory. The assumption thatp > 0 was relaxed by Ni-
jmeijer and Berghuis [14] following classical Lyapunov direct method.
Global tracking results were obtained in [13], [14]. In this paper, we
do not require thatp > 0 and p2 = 1. When all system parame-
ters are known, we present two different feedback controllers to solve
the global tracking problem witharbitrary rate of exponential conver-
gence. Such a property of stability is introduced in Section II. The first
such controller is a linear time-varying state-feedback control law. The
second one is derived from the first one in conjunction with a nonlinear
observer without assuming that_x is measurable. When the system pa-
rametersp, p1, p2 andq are unknown, we develop a nonlinear adap-
tive controller to achieve the global tracking task. It is simply shown
that the popular method of adaptive backstepping [12] proves useful
for chaos control, in particular for the forced Duffing equation in the
general form (1).

The second contribution of this paper is to argue the importance
of linear feedback strategy in the context of controlling chaos. Linear
feedback control laws are simpler to implement in practice than non-
linear controllers and therefore more acceptable by practicing engi-
neers. More importantly, linear controllers are often less sensitive to
sensor errors and are inherently robust against measurement errors. It
is well-known in the nonlinear control community that a globally sta-
bilizing nonlinear controller may not be robust in front of (even small)
sensor errors—see [9] and references therein for detailed discussions.
Intuitively, the effect of measurement errors can be amplified through
the nonlinearity of the control law in question, therefore leading to in-
stability. A redesign of nonlinear control is needed to guarantee the
robustness property. In case when the full-state information is avail-
able, we construct a linear feedback controller to guarantee the property
of global exponential convergence with arbitrary rate for the tracking
error. In particular, we show that this linear feedback control law en-
joys the inherent robustness to (even large) measurement errors (see
Proposition 1 below).

The rest of this paper is organized as follows. In Section II, we recall
some definitions from the literature of stability theory and introduce a
new notion of stability. The statement of the control problem is also
given in Section II. Section III presents two tracking algorithms for the
controlled Duffing equation (1). Linear state-feedback and nonlinear
observer-based output-feedback controllers are obtained. It should be
mentioned that our observer structure is quite different from the mech-
anism of observing chaos proposed in [20]. In Section IV, we show how
to remove the assumption of requiring the precise knowledge of system
parameters and propose nonlinear adaptive controllers. Simulation re-
sults are offered in Section V to support our theoretic findings. Some
concluding remarks are contained in Section VI.

II. DEFINITIONS AND PROBLEM STATEMENT

First of all, recall some definitions that we will frequently use
throughout this paper. A new concept of stability is introduced. The
goal of this paper is to show that we can achieve this type of stability

1057–7122/02$17.00 © 2002 IEEE


