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Abstract -This paper presents a very practical method 
to implement the new switched-current structures 
recently proposed by the authors. Those structures are 
obtained by a one-to-one simulation of the components of 
a continuous-time Transconductance-C model. The re- 
sulting circuits operate with doubled sampling rate 
(sampling the input and updating the output at each 
phase), don’t present switching glitches, use the minimum 
possible number of switches and naturally admit two- 
phases nonoverlapping clocks. Two versions are 
presented, with “direct” or  “modulated” signals. The 
“modulated” version presents low sensitivity and first- 
order cancellation of clock feedthrough effects. 

I. INTRODUCTION 

Switched-current (SI) filter designs are usually based on 
state-variable methods using integrators or wave techniques 
[2][3][5][6]. A different approach based on a direct SI 
simulation of continuous-time capacitors and 
transconductors was presented in [ 11, that easily implements 
bilinear or Euler mappings, with doubled effective sampling 
rate and glitchless operation (due to the absence of current- 
conducting switches, as used in “second-generation” 
structures [4]). In this paper, the basic synthesis procedure 
for the bilinear mapping is reviewed, and an economical 
general implementation scheme is presented for the syn- 
thesis of these SI filters. Two versions are described: with 
“direct” or “modulated” signals. The “modulated” version is 
better, due to its inherent low sensitivity and first order 
cancellation of the clock feedthrough effects. 

11. SI TRANSCONDUCTANCES AND TRANSCAPACITANCES 

Transconductance-C continuous-time structures can be 
directly mapped into bilinear SI circuits, by the use of the 
correspondence of continuous-time transconductances and 
transcapacitances to switched-current versions presented in 
fig. 1. This mapping is obtained by comparing the 
continuous-time nodal equation (1) and the same equation 
(2) after the application of the bilinear timediscretization 
formula. The same procedure can be used for Euler formulas 
[l]. Note that the circuit is symmetric from phase to phase 
and T is the period of one switching phase (this is the 
effective switching period and z-l is the delay of one phase). 
This effectively doubles the sampling rate. 
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sCv( s) + Gv( s) + i(s) = 0 (1) 

Fig. 1. Bilinear “SI transconductance” (a) and “SI transcapacitance” (b). 

Combining these basic blocks it is possible to synthesize 
the SI filter Qrectly from the continuous transconductance-C 
prototype. The first step is to transform the capacitors in 
transcapacitances (fig. 2). The second step is to substitute the 
transconductances and transcapacitances by its SI versions 
(Fig. 1). A simple example is the Transconductance-C 
integrator shown in fig. 3. In general the circuit can be 
simplified by the elimination of redundant switches and 
reduction of the number of the inverting stages. 
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Fig. 2. Grounded capacitor and floating capacitor construction using 
transcapacitances. 
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Fig. 3. A bilinear SI integrator based on a Transconductance-C continuous 
prototype. The input and output are in current. The implementation done is the 
most trivial and without any simplification. 
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111. A GENERAL IMPLEMENTATION SCHEME 

The SI circuit obtained by this technique is node-by- 
node equivalent to the prototype. A very practical and 
systematic implementation with a reduced number of 
components can be obtained by noting that : 

1) The nodal voltages are sampled at phase 1, phase 2 
or both (this means that only two switches for each 
node are necessary). 
2) The currents injected in each node are direct or 
inverted currents (each node must have a direct and a 
inverting input for currents). 

These two observations are realized by the circuit of fig. 
4, that represents a "general" node. As an example the 
integrator of fig. 3 is re-implemented using this scheme (fig. 
5) 

Fig. 4. A "general node" of the SI circuit. 
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Fig. 5.  
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Re-implementation of the integrator of fig.4 using the proposed scheme. 

A continuous time transconductance-C circuit of a low- 
pass 5th order elliptic filter is presented in fig. 6. The circuit 
is a direct simulation of an LC doubly terminated ladder 
structure. The switchedcurrent version (bilinear) of this 
circuit is shown in fig. 7. The input and output are sampled 
and updated at the two phases, doubling the effective 
sampling rate. The total number of switches is the minimum 
possible (two times the number of nodes of the original 
model) and the circuit doesn't use current conducting 
switches. Note that the number of inverters is equal to the 
number of nodes of the model. These inverters can be 
completely removed in a balanced structure but at the cost of 
duplicating the circuit. The frequency response of the circuit 
is shown in fig. 8. The simulation was made with the ASIZ 
program [2], with error margins computed by sensitivity 
analysis, assuming 2% random errors in all the transistor 
transconductances. The circuit was designed for 10: 1 ratio 
between the switching frequency and the passband border 
frequency. In the normalized simulation, to obtain a pass- 
band border frequency at 0.2 Hz, it was used a switching 

frequency of 1 Hz only (one half of the effective sampling 
rate). 

Fig. 6. Schematic representation of the continuous time transconductance-(: 
5th-order elliptic low-pass filter. 
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Fig. 7. The SI bilinear low-pass 5th order elliptic filter. The circuit operates 
sampling the input and updating the output at each phase effectively doubling 
the switching fiequency. Note that the circuit doesn't use current conducting 
switches. 
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As can be seen in fig. 8, the circuit is relatively 
sensitive to component variations. The “three-way” structure 
that implements the SI transcapacitance is very sensitive. A 
mismatch between the continuous and switched parts 
introduces a parasitic (l+t’)C/T term that is not present in 
the original model. The situation becomes worst as T 
becomes small. This problem is solved by the version that 
uses modulated signals. 

Fig. 8. Gain Gequency response of the “non-modulated” bilinear SI low-pass 
filter, with expected error margins and poles and zeros. It is relatively sensitive 
to component variations. 

Iv.  THE SIGNAL MODULATED VERSION 

A modulator is a circuit that changes the sign of the 
signal at each phase. The modulation and demodulation 
process (fig. 9) transform (l+zi) in (1-z-I) and the reverse 
too. This permits to exchange the implementation of the SI 
transconductance and the SI transcapacitance (fig. 10). 

Fig. 9. Modulation and demodulation process. 
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Fig. 10. Bilinear “SI transconductance” and “SI transcapacitance”. Admitting 
that the whole circuit has “modulators” at the input and output. 

The modulators don’t affect the sensitivity of the circuit. 
In this new situation, the “three-way” components become 
comparatively small as T becomes small. This means that 
the sensitivity becomes better with small T. 

The implementation of the input modulator is shown in 
fig. 1 1. The same modulator circuit can be used at the output 
but a simplification can be done by incorporating the 
modulator with the “SI transconductance” that appears at the 
output stage of the filter. This simplification is shown in fig. 
12. The complete SI-filter using modulated signals is 
presented in fig. 13. It implements the Transconductance-C 
model by using the SI transconductances and 
transcapacitances of fig. 10. The output modulator is 
incorporated in the output stage. As previous discussed the 
circuit has low sensitivity (as can be observed in the 
frequency response presented in fig. 14). It also does a first 
order cancellation of the clock feedthrough because the sig- 
nals in all the nodes are inverted at each phase canceling the 
charge injected at the previous phase. Note that the number 
of switches is only two above the absolute minimum. 
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Fig. 1 1 .  Modulator circuit. Note that is doesnt use current conducting switches. 
The input and output are in current. 

Fig. 12. The output modulator can be incorporated in the “switched 
transconductor” at output stage of the filter. 

V. CONCLUSION 

A practical and systematic implementation scheme for 
the switched current structures previously proposed by the 
authors was presented. The resulting circuits operate with 
doubled effective sampling rate, what allows for two times 
faster filters, as also happens with the method in [ 5 ] .  
However, they don’t present switching glitches, because of 
the absence of current conducting switches usually employed 
in second generation structures. In the modulated version 
they have low sensitivity to component variations and do a 
first order cancellation of the clock feedtrough. The circuits 
presented also use the minimum number of switches and the 
minimum number of inverters for a non-balanced circuit. A 
balanced implementation can be built but with the cost of 
nearly doubling the circuit size, without much advantage, 
since the modulated version also does a first order 
cancellation of the clock feedtrough. The fact that the 
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synthesis procedure is directly derived from the synthesis of 
a transconductor-C prototype allows the direct use of known 
structures as biquads and the various forms of passive filter 
simulations developed for that technology. 
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Fig. 14. Gain response of the ‘inodulated” SI bilinear low pass filter of fig. 11. 
Note the low sensitivity to coniponent variations. 
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Fig. 13. The SI bilinear 5th order elliptic low pass filter, using modulated 
signals. It has low sensitivity to component variations and does a first order 
cancellation of the clock feedtrough. The input and output are in current. The 
input modulator is at the top of the figure and the output modulator is 
incorporated at the last stage of the filter. 
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