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Abstract — An easily tunable high frequency balanced trans-
conductor without internal nodes and with a low output con-
ductance is presented. The structure uses only 7 MOS transis-
tors. The output conductance can be independently adjusted (in
order to be canceled) without affecting the transconductance.
The transconductor also guarantees the common-mode stability
of balanced filter structures. The simulation results of a 5th
order elliptic low-pass filter, using standard CMOS 2 µm proc-
ess, at 100 MHz with Q and frequency controls are shown.

I. INTRODUCTION

The major limitation in the frequency response of trans-
conductance-C filters are the parasitic poles of the circuit. Some
parasitic poles are associated with signal inversion (or current mir-
rors) and can be eliminated by a balanced design [1]. Other parasitic
poles arise when cascode techniques are employed in order to obtain
a low conductance at the output of the transconductors [2, 3]. Very
high frequency filters can be constructed if the transconductor
doesn't present any internal nodes. This can be obtained by the
adoption of a balanced design and a technique that compensates the
output differential conductance without the introduction of any ad-
ditional nodes [4].

This paper discusses the synthesis of transconductance-C
balanced structures, the common-mode stabilization of them, and
presents a balanced transconductor without internal nodes, that has
as advantages over previous proposed structures, the use of a fixed
low supply voltage and the completely independent control of the
output conductance. The output conductance (Gout) can be adjusted
from negative to positive values without disturbing the bias voltage
nor the transconductance (Gm). Very high Gm/Gout ratios can be
possible as long as the components can be matched.

II. TRANSCONDUCTANCE-C BALANCED STRUCTURES

The usual synthesis process for precision transconduc-
tance-C filters is the simulation of the inductors by capacitors and
gyrators. Lets take as an example the 5th order passive filter of fig-
ure 1. The active transconductance-C version of this circuit is shown
in figure 2. The positive transconductances are usually implemented
as two inverting stages (or with a current mirror), introducing a
parasitic pole in the structure. The positive transconductors can be
eliminated by a balanced structure.

The balanced version can be implemented by duplicating
the single-ended version and substituting the positive transconduc-
tors by negative ones with symmetric input voltages [1] (fig. 3). This
means that we can implement balanced filters, without any parasitic
poles created by the transconductors, as long as the negative
transconductors doesn't have any internal nodes.
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Fig. 1. 5th-order elliptic low-pass filter.
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Fig. 2. Active transconductance-C version of the filter in fig. 1
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Fig. 3. Balanced version of the circuit in fig. 2.

The balanced circuit has, however, the double of the
number of poles of the original passive version. Half of them corre-
sponds to the original passive structure but the other half doesn't.

To understand the origin of the other poles it is necessary
to do a transformation of variables. The original system of equations
describing the circuit with nodal voltages (V1, V1' ,V2 ,V2', ..., Vn
,Vn') is transformed by the following linear transformation, applied
to each pair of symmetric nodes k and k' :
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Each pair of nodal voltages is transformed into two other
variables: the common-mode voltage (Vck) and the differential-mode
voltage (Vdk). The nodal equations of a perfectly symmetric
balanced circuit can be decomposed, after the above transformation,
into two independents systems of equations corresponding to these



two sets of transformed variables. These two systems of equations
can be interpreted as two independent circuits: the differential-mode
circuit and the common-mode circuit.

The poles corresponding to the original passive structure
are those of the differential-mode circuit and the other poles are
those of the common-mode circuit.

The differential-mode circuit is identical to the single-
ended structure (fig. 2). The common-mode equivalent circuit can be
easily obtained by assuming that the differential voltages are null.
This can be done by short-circuiting the symmetric nodes of the
balanced version and dividing by 2 all the remaining conductances,
capacitances, and current sources. The resulting circuit is draw in
fig. 4.
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Fig. 4. Common-mode circuit corresponding to the filter in fig. 3. Note that
all the transconductances are negative.

The closed positive loops indicate a potential instability
(the behavior is very like the one of a “flip-flop”). An analysis of this
circuit demonstrates the existence of poles in the right-side of the s-
plane. If the filter is implemented with floating capacitors (replacing
the pairs of grounded capacitors in fig. 3), the corresponding
common-mode circuit has the same structure of fig. 4, but with the
grounded capacitors being parasitic capacitors. The result is just a
faster “flip-flop”.

Since the common-mode circuit and the differential-mode
circuit are independent, the poles of one are non-observable by the
other. This means that the differential response of the balanced filter
is not perturbed by the common-mode poles (they are covered by
zeros). The poles and zeros of the differential response of the bal-
anced-filter is shown figure 5.

Fig. 5. Poles and zeros of the differential frequency response of the balanced
filter of fig. 3. The circuit is unstable

As can be seen it has non-observable poles corresponding
to the common-mode circuit. Part of them are at the right-side of the
s-plane causing instability. Despite the fact that they are non-
observable in the differential response, the filter will not work. The
common-mode circuit must be stabilized.

III. COMMON-MODE STABILIZATION

Common-mode circuit stabilization can be obtained if high
conductances to ground are added to all the nodes of the common-
mode circuit. This moves the common-mode poles to the left
stabilizing the common-mode circuit. But such conductances cannot
appear in the differential-mode circuit, or the desired transference is
affected. So, we need a device that acts as a grounded conductance
in the common-mode circuit but as an open circuit (low con-
ductance) in the differential-mode circuit. The device of figure 6,
here called a “stabilizer”, has this property.
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Fig. 6. “Stabilizer” circuit.

The terminals are connected to symmetric nodes of the
balanced filter. The nodal equations of the stabilizer are the follow-
ing :
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that after the transformation (1), results in:
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This means that in the common-mode circuit the stabilizer
corresponds to a grounded conductance of value Gc and the conduc-
tance g has no effect. The common-mode stability is strictly guaran-
teed by the crossed transconductors. In the differential-mode circuit
the stabilizer corresponds to a grounded conductance of value 2g–
Gc. The crossed transconductors produce the negative conductance.

If the conductance g is adjusted to be equal Gc/2, the total
conductance introduced in the differential-mode circuit is zero. By
controlling the value of g, it is possible to introduce negative or
positive conductances to ground at the nodes of the differential-
mode circuit without any perturbation in the common-mode circuit.
This can be useful for the compensation of the output conductances
of real devices and for global Q-tuning.

The minimum conductance value (Gc) that needs to be
added to a node of the common-mode circuit in order to guarantee
the stability, equals the absolute sum of all the transconductances (of
the common-mode circuit) with output at that node. This guarantees
a voltage attenuation at DC and is enough to move all the common-
mode poles to the left of the s-plane. This can be easily
accomplished in the balanced structure by adding an “stabilizer” at
each pair of symmetric transconductors outputs, with the Gc value
“strictly” greater then its transconductances Gm. In some cases,
where the common-mode circuit has already grounded conductances
(as in fig. 4) this condition can be relaxed.

The poles and zeros of the differential response of the
balanced filter with an “stabilizer” at the output of each pair of
symmetric transconductors (with Gc = Gm and g = Gc/2) is plotted
in figure 7. All the common-mode poles (covered by zeros) were
moved to the left-side of the s-plane. The differential-mode poles



can be moved to the left or right by adjusting the value of g. This
corresponds to a global Q-control of the filter. Since g doesn't ap-
pear in the common-mode circuit, this control doesn't disturb the
common-mode poles.

Fig. 7. Poles and zeros of the frequency response of the balanced filter, with
the “stabilizers”. The circuit is now stable.

IV. THE  TRANSCONDUCTOR

Figure 8 presents the proposed balanced transconductor,
embedded with a “stabilizer” circuit at the output, built with MOS
transistors. The transconductance (Gm) is defined by the symmetric
transistors M1, M2 and is adjusted by the current sources M6, M7.
The crossed transistors M3, M4 implements the transconductances
Gc of the stabilizer structure and, must be equal or wider then M1,
M2. They guarantee the common-mode stability but, as discussed,
introduce a differential negative conductance that is compensated by
the conductance g of the stabilizer, implemented by the transistor M5
operating in the linear region. This conductance can be adjusted by
controlling the gate voltage VQ of the transistor. A complete
cancellation of the negative conductance introduced by the crossed
transistors is obtained when g equals Gc/2.
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Fig. 8. Balanced transconductor embedded with the “stabilizer” circuit, built
with MOS transistors.

By reducing g, controlling VQ, the output conductance of
all the transistors can also be completely canceled as long as the
components can be matched. The output conductance can be varied
from negative to positive values without disturbing the circuit bias
or transconductance. Note that a change in the transconductance (by
Vf) affects the output conductance, that must be readjusted. Because
of the balanced structure, linearity is improved by cancellation of the
even-order non-linear terms.

The transconductor was simulated using SPICE with the
structure shown in figure 9. The first transconductor (T1) is used to
correctly generate the common-mode bias voltage at the input of T2,
permitting the use of a floating input voltage source. The input of a

practical filter may be exactly in the same way, with the signal
coupled by a transformer without a center tap. The supply voltage
used was of 5 V, and the process is a CMOS 2µm one.

Vin VoutT1 T2

Fig. 9. Test structure for the transconductor. T1 allows the use of a floating
input voltage, and Vout is used for current and output conductance

measurements.

Figure 10 depicts the transconductance as a function of the
input voltage (with Vout=0). The distortion is basically of 3rd order,
and is below 0.5 % for a 1 V peak-to-peak input. The output
conductance relation Vout × Iout with Vin = 0 for different values of
VQ is shown in figure 11. It can be observed that the output conduc-
tance (curve slope) can be varied from positive to negative values
with high gm/gout ratios attainable.
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Fig. 10. Transconductance as a function of the input voltage, when Vout=0.
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Fig. 11. Iout × Vout characteristic for various values of VQ, showing the tuning
of the output conductance.

As there are no parasitic poles, except the ones dictated by
the distributed nature of the transistors, the maximum natural
frequency for a filter using this transconductor is limited solely by
the ratio of the transconductance to the input capacitance and other
parasitic capacitances. The above transconductor connected as a
resistor (closed loop), was simulated with SPICE and presented a
natural frequency of approximately 850 MHz.



V. A FILTER SIMULATION WITH SPICE

As an example, the balanced 5th-order elliptic filter of fig.
3, with the symmetric pairs of transconductors substituted by the
proposed balanced transconductors (fig. 8), was simulated with
SPICE. The cutoff frequency was designed to be of 140 MHz, The
frequency response obtained is plotted in the figure 12. The fre-
quency distortion of the response is caused by the gate capacitances
(about 1/6th of the main capacitances), this can be corrected by
discounting these values from the values of the filter capacitances.
Filters can be built using only gate capacitances in order to obtain a
better matching of components. The curve also shows the effect of
the adjustment of VQ. By lowering VQ the output conductance of the
transconductors becomes higher and the result is a reduction of the
filter poles' Qs. A higher value of VQ introduces a slightly negative
conductance at the outputs and results in an enhancement of the Qs.
The curves shown correspond to a variation from 0.84 V to 0.86 V
in the voltage VQ.
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Fig. 12. Frequency response simulation of the test filter, showing the effect
of Q-tuning.
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Fig. 13. Frequency response simulation of the test filter, showing the effect
of frequency tuning.

Figure 13 shows the effect of varying Vf (and readjusting
VQ in order to obtain the correct Qs). The passband edge frequency
could be varied from 70 to 110 MHz without a significant reduction
of the linearity (Vf changes the circuit bias voltage and a reduction of
the bias voltage degrades the linearity of the transconductors). The
total harmonic distortion of the filter was estimated as below 1 % for
an input voltage of 0.5 V peak-to-peak.

VI. CONCLUSION

A versatile balanced transconductor, suitable for the con-
struction of very high frequency transconductance-C filters was
presented. It has as advantages over previously proposed structures
the easy and independent tuning of the output conductance and
transconductance, and the use of a fixed low supply voltage. The
circuit also guarantees the common-mode stability of balanced
structures. Because the bias and the transconductance are not af-
fected by the control of the output conductance, the proposed trans-
conductor is specially useful in the synthesis of directly coupled
cascade realizations, where there is a need of an independent control
of the Q of the sections.
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