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Abstract-This paper describes the formulation of‘ a 
compact form of nodal analysis, obtained by the use of 
ideal operational amplifiers in the modeling of voltage 
sources and current-controlled sources. The method 
produces a system of equations that is never larger than a 
simple nodal system, at the expense of a simple 
preprocessing. The method is particularly suitable for 
sensitivity analysis programs, because only the circuit 
variables required for sensitivity analysis are computed. 

1. INTRODUCTION 

A rather long introduction is necessary to situate the 
subject of the paper and the notation used. 

The Nodal Analysis Method 

The most commonly used method for circuit analysis is 
the “nodal analysis” method, that consists in writing for all 
the n nodes in a circuit, with the exception of a “reference” 
node, equations in the form: 

C branch currents leaving the node = 
= C current sources feeding current to the node 

The branch currents are expressed as functions of the 
voltages between the nodes and the reference node (nodal 
voltages). For a linear resistive circuit, a linear system of 
equations results, in the form G, e = I,, where G, is the nw7 
nodal conductance matrix, e is the nodal voltages vector, and 
I, is the current sources vector. 

I Conductance I vccs I Current source I 

Fig. 1 .  Circuit elements allowed in the basic nodal analysis method 

The analysis of linear time-invariant circuits in the 
sinusoidal steady state or with Laplace transforms is 
structurally identical. The nodal analysis of nonlinear andlor 
time-variant circuits can be done by methods the have as 
fundamental steps the solving of linear resistive circuits 
[ 1][5]. The discussions that follow use resistive linear 
circuits as examples, but are valid for any of these 
extensions. 

The basic nodal analysis method accepts as elements (fig. 
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1) only conductances, current sources, and voltage- 
controlled current sources (VCCS). The nodal system of 
equations can be constructed in a systematic way in a 
computer program by the algorithm [ 11 : 

1. Fill with zeros G, and I,. 
2. For all the circuit elements, add the corresponding 

“stamps” (table 1) to the system. 

The columns of the entries in G, correspond to the 
positions of the unknowns. The positions with dots are just 
for reference. 

T-LE 1. STAMPS FOR THE ELEMENTS IN FIG. 1. 

Conductance 

The Modified Nodal Analysis Method (UNA) 

The MNA method [1][3][5] is similar to the nodal 
analysis method, but includes currents in voltage-controlled 
branches as new unknowns, and the corresponding branch 
equations as new equations. These changes allow the 
inclusion of ideal voltage sources and the other three types of 
controlled sources, elements without a direct nodal 
representation, at the expense of a larger system of 
equations. 

Coupling special elements through gyrators 

The MNA method is equivalent to a normal nodal 
method where the special elements are coupled to the circuit 
by gyrators. This idea is not new. It is suggested in [l]  
(problem 4-19), and also discussed in [6]. Fig. 2 shows 
equivalent circuits with nodal representation that are 
equivalent to four basic special elements. In all cases, the 
branches of the special elements that contain voltage sources 
or short-circuits are converted into their duals, and 
connected to the network through pairs of VCCSs, that 
correspond to unitary gyrators, as shown. The nodal voltages 
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in the extra nodes (x and y )  are numerically identical to the 
currents in the original voltage sources or short-circuits, the 
extra unknowns introduced by MNA. The stamps of the 
equivalents in fig. 2 in the nodal system are shown in table 
2. They are exactly the same used in the MNA method. 

E l w “  Nodal Model Gyotol Model 

Fig. 2. Circuit elenleiits that cannot be included directly in nomial nodal 

analysis, and their equivalent “nodal models”, that transfonn exactly the nodal 
analysis in a “modified” nodal analysis. 

T A ~ L E  2. STAMPS FOR THE ELEMENTS IN FIG. 2 

Voltage source 

vcvs 

cccs 

ccvs 

The Ideal Operational Amplifier 

In the MNA method, an ideal operational amplifier (fig. 
3) is included by adding as unknown its output current, and 
including the equation e,=ed The corresponding nodal 
model reduces to two VCCSs, one with the output voltage 
controlling the other. 

The condition vcrO is forced by the input VCCS because 
its output current must be zero. As e, controls the output 
current, the circuit is solvable only if there is some external 
feedback connection from the output to the input of the op. 
amp. The model corresponds to an ideal infinite-gain voltage 

amplifier, or nullator-norator pair. The nodal voltage e, is 
numerically equal to the current through the op. amp. 
output. By this model, the ideal op. amp. stamp, the same of 
the MNA method, is: 

-1 

Op. Amp. Nodal Model 

Fig. 3. Ideal operational amplifier, and its nodal model 

Ideal op. amps. can be modeled in a more efficient way 
[4]: In an ideal operational amplifier, the input node 
voltages are equal. To reduce them to a single unknown 
corresponds to add the c and d columns of G, (or to remove 
one column if one input is grounded). The output “current” 
unknown e, can be eliminated if the two equations 
corresponding to the output nodes a and b are added (or one 
output node equation eliminated if the other output terminal 
is grounded). With these reductions, the ideal op. amp. 
removes one equation of the system. The simplified “stamp” 
for the ideal op. amp. can be represented as: 

The brackets mean that, after all the elements’ stamps are 
in place, the indicated equations and columns 
(corresponding to the unknowns turned equal) shall be 
added. If one of the indicated equations or unknowns refers 
to the reference node, the other shall be eliminated, what is 
equivalent to perform the additions in the indefinite 
admittance matrix and its excitation. 

This idea suggested the models for the special elements 
described in the next section, that are similar to the models 
in fig. 2, but use ideal operational amplifiers instead of some 
VCCSs, with the objective of obtaining a final system that is 
much more compact. 

The resulting system is somewhat similar to the one 
obtained with the also compact “two-graph modified nodal” 
formulation [ 7 ] ,  

1206 



11. ECONOMICAL NODAL MODELS FOR SPECIAL ELEMENTS 
USING IDEAL OPERATIONAL AMPLIFIERS 

Simpler models for the special elements can be obtained 
by the elimination of the voltage source “current” unknowns 
and nodal voltages in one side of real of virtual short- 
circuits. The models shown in fig. 4 cause these 
eliminations, if the op. amps. are treated in the simplified 
way. All the models retain the order of the system of 
equations, with the added variables removed by the op. 
amps. The current variables are not computed, with the 
exception of the input currents of the current-controlled 
sources. A set of stamps for the special elements is shown in 
table 3, where the unknowns and equations eliminated by the 
op. amps. with grounded input or output are directly omitted. 
The brackets indicate the sums that are to be made when the 
stamps of all the elements are in place, as in the case of the 
simple op. amp. Note that some stamps add a new equation 
or a new unknown, but never both. 

Element 

Voltage 
Source 

vcvs 

cccs 

ccvs 

Op. Amp. Model 

vab Rex 
b 

Fig. 4. Models for the special elements using ideal op.anips 

It is interesting to examine how the models in fig. 4 
relate to the MNA equivalent models in fig. 2. In the case of 
the voltage sources, if the transconductance of the output 
VCCS is increased to infinity, the model remains functional, 
but ex (e  for the CCVS) reduces to 0, and the output VCCS 
is transhrmed into an ideal operational amplifier. In the 
current-controlled sources, the VCCS connected to node x, 
in open circuit, behaving as an infinite-gain voltage 
amplifier, and so is directly equivalent to an ideal 
operational amplifier. 

A simpler model for the CCVS can be obtained if R#O. It 
is similar to the input circuits used for the current-controlled 

sources in fig. 4, and is shown in fig. 5. Its equivalent stamp 
is, with g=l/R: 

(3) 

The use of this model decreases by one the size of the 
nodal system. It can also be used as a “current meter”, with 
R=l  and node “b’ grounded, measuring the current in a 
short circuit between the nodes “c” and “d’ as the voltage at 
node “a” 

Fig. 5. Alternative simpler model for the CCVS, whenR#O. 

T A ~ L E  3. STAMPS FOR THE ELEMENTS IN FIG. 4. 
I _ r  7 r - l  

U ‘  ’ 

Voltage source I { b 1 . 

= 1 -;, I x -1 +1 

vcvs vcvs 

The simplifications above can be done by a simple 
preprocessing, that generates two sets of pointers that 
indicate where the nodal equations (G, and I, lines) and 
unknowns (G, columns) come to be in the final reduced 
system. The stamps of all the elements are then added as 
indicated by the pointers, and the results taken where 
indicated by the pointers for unknowns after the solution of 
the system. 

111. EXAMPLE 

An example circuit containing all the special elements is 
shown in fig. 6. The circuit has 5 nodes, but the construction 
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of the nodal system using the stamps in fig. 2 (MNA) adds 5 
currents (j6,...410) as unknowns, increasing the order to 10. 

A 1 G i l  

-V 

3 
r3 

Fig. 6. Example circuit 

The resulting system would be: 
I 

I -1 

-I-F 
1 1 

-1  F 1 

H 

The models in fig. 4 produce a system with only 5 
equations. Before the equation and column sums, the system 

-V 

The VCVS adds the equations e2 and e5, and so the 
grounded voltage sources cause the elimination of equations 
e2, e4, and e5. The columns corresponding to terminals of 
short-circuits are also added, with their terminal nodal 
voltages reduced to single unknowns ({el ,  e2}, { e 3 ,  e4)). 
The final system is (6). All the nodal voltages are computed, 
and also the currents in short-circuits. 

the adjoint system GnTi?=is results in the computation of the 
variables corresponding to the equation labels in the stamps 
in tables 1 and 3. The required variables are normal voltages 
and adjoint currents in voltage sources, and for the 
controlled sources the voltages and currents in controlling 
branches in the normal and adjoint networks. Note that the 
sensitivities relative to the gains of the controlled sources are 
always equivalent to the sensitivities relative to the 
corresponding transconductances in the models in fig. 4. 
Even if the simplified model for the CCVS in fig. 5 is used, 
the sensitivity can still be obtained as: 

V. CONCLUSION 

A compact version of MNA can be obtained by the use 
of models that use ideal operational amplifiers in the nodal 
system. The formulation is particularly interesting when the 
complexities of the use of sparse matrix techniques are to be 
avoided. 
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IV. SENSITIVITY ANALYSIS 

All the variables required by sensitivity analysis by the 
“adjoint network” method [2] are available. The solution of 
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