Mutual inductance between two conical coils

The mutual inductance between two concentrical coils, with dimensions as shown above and n_{l} and n_{2} turns can be calculated by solving the integral below. The currents are assumed to be filamental. The two coils are described by the parameters obtained with $i=1$ and $i=2$, and the obtained expressions are substututed in the equation for M.

$$
\begin{aligned}
g_{i} & =\frac{s_{i}-r_{i}}{2 \pi n_{i}} \\
a_{i} & =\frac{h_{i}}{2 \pi n_{i}} \\
x_{i} & =\left(r_{i}+g_{i} \theta_{i}\right) \cos \theta_{i} \\
y_{i} & =\left(r_{i}+g_{i} \theta_{i}\right) \sin \theta_{i} \\
z_{i} & =a_{i} \theta_{i}+b_{i} \\
d x_{i} & =\left[-y_{i}+g_{i} \cos \theta_{i}\right] d \theta_{i} \\
d y_{i} & =\left[x_{i}+g_{i} \sin \theta_{i}\right] d \theta_{i} \\
d z_{i} & =a_{i} d \theta_{i} \\
M_{12} & =\frac{\mu_{0}}{4 \pi} \int_{0}^{2 \pi n_{1}} \int_{0}^{2 \pi n_{2}} \frac{d x_{1} d x_{2}+d y_{1} d y_{2}+d z_{1} d z_{2}}{\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}}
\end{aligned}
$$

