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Abstract—The use of special approximations in the design

of passive filters to be used as prototypes for OTA-C

realizations allows the elimination of multiple loops of

reactive elements that appear in usual LC ladder filters

with finite transmission zeros. This leads to more efficient

active simulations, where problems with floating

capacitors, DC or high-frequency instability, or limited

operating frequency are avoided.

of significant parasitic capacitances, with values

uncorrelated to the main capacitances or even nonlinear.

Filters where capacitor loops of the prototype are retained (or

inductor cut-sets dualized) are simple [1] (fig. 1), but can be

successfully built only at the expense of careful control of

parasitic capacitance values.

An inductor loop (or capacitor cut-set) in the prototype

results in a nonobservable DC current (or voltage) that can

circulate in the loop (or be retained in the cut-set), that is

simulated as an uncontrolled DC voltage in some part of the

OTA-C simulation. These circuits must be eliminated or

simulated by capacitor cut-sets (that include floating

capacitors), otherwise offset currents can cause the growing

of that voltage until the saturation of some of the OTAs is

reached.

I. INTRODUCTION

The realization of active filters by the simulation of LC

doubly terminated prototypes designed for maximum power

transfer is recognized as the best, when sensitivity of the

filter transfer function to variations in the element values of

the realization is to be kept as low as possible.
The elimination of capacitor loops in the OTA-C

simulation simplifies the transformation of a low-pass filter

into other forms (band-pass, high-pass, band-reject). It is

enough to apply the adequate reactance transformation to the

grounded capacitors in the transformed low-pass OTA-C

prototype, and realize the resulting inductors using OTA

gyrators and capacitors. Problems with natural frequencies at

DC (in high-pass or band-pass filters) or in the jω axis (a

problem in band-reject filters) are completely avoided.

Several methods can be used in the generation of an

OTA-C (using Operational Transconductance Amplifiers

and Capacitors) simulation of a given passive prototype

[1][2], but due to the great simplicity of the technique, the

final results are almost always equivalent.

Polynomial filter prototypes can be easily simulated with

good results. There are problems, however, if the filter

approximation presents finite transmission zeros. With usual

approximations, in the passive prototype this always causes

the existence of capacitor loops, inductor loops, or loops of

series LC tanks tuned to the same frequency (in band-reject

filters), or the dual versions of these structures.

This work first examines two techniques for the

elimination of capacitor loops. The elimination can be made

in the OTA-C simulation of the prototype, case that covers

the presence of inductor cut-sets in the prototype. It is

concluded that realizations with best performance are

obtainable when these circuits are in the simplest, single

loop, form. Modified approximations are then proposed, that

result in LC doubly terminated ladder prototypes with only

simple capacitor loops or inductor cut-sets. Finally, the

elimination of inductor loops is discussed, also with two

approaches that complement the methods shown for

capacitor loops. The elimination can also be done in an

OTA-C simulation (with some inductors retained), case that

covers the presence of capacitor cut-sets in the prototype. In

this case, there is no need for special approximations, since

the simplest method is applicable without problems to

multiple inductor loops.
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Fig. 1. Passive prototype and normalized OTA-C structure with multiple

capacitor loops for a 5th-order elliptic low-pass filter.

The presence of capacitor loops (or inductor cut-sets) in

the prototype results in OTA-C circuits presenting capacitor

loops. The loops always include floating capacitors, a

problem in most integration technologies due to the presence

II ELIMINATION OF CAPACITOR LOOPS

It is possible to eliminate floating capacitors in capacitor



loops by inserting OTA gyrators in the circuit, dualizing the

floating capacitors into inductors, that are then dualized

again into grounded capacitors [2]. This technique is

problematic, however, because extra natural frequencies are

created when the capacitor loops are broken. Parasitic

capacitances in the resulting floating nodes can create high-

Q complex natural frequencies [3], and can cause instability

when in combination with a small excess of phase in the

OTAs transconductances.

some form of frequency response compensation is used.

Current-controlled Norton equivalent

Another equivalent for the circuit in fig. 2 is shown in

fig. 5. It is equivalent to the Z parameters representation

with Norton equivalents applied at the two branches.
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A more practical solution is to modify the circuit in a

way that retains the filter operation, but eliminates the

superfluous capacitors. Two methods were previously

proposed for this purpose [4][5], sumarized here in a

somewhat different point of view:

Fig. 5. Current-controlled Norton equivalent for a capacitor loop.

An OTA-C implementation is shown in fig. 6 [5]. Each

OTA feeding one side of the loop has added a new scaled

output. Single-stage OTAs, without internal nodes, can be

used if the entire OTAs are duplicated. This is an important

characteristic for high-frequency filters, because the creation

of parasitic poles by stray capacitances in internal nodes is

avoided.

Voltage-controlled Norton equivalent

Consider the simple capacitor loop in fig. 2. It is

equivalent to the circuit in fig. 3, where the original circuit

was replaced by its Y parameters equivalent.
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Fig. 2. Simple capacitor loop.
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Fig. 6. Implementation of the current-controlled Norton equivalent for a

capacitor loop.

This procedure can also be applied to multiple connected

loops, but for this each OTA must have a number of outputs

equal to the number of grounded capacitors, and the values

of the new capacitors and scaling constants depend on the

number of loops. Considering the sensitivity characteristics,

the resulting circuits are generally acceptable in the

passband, with some degradation in the stopband, mainly

due to the large number of elements involved in the

formation of the transmission zeros. The application of the

procedure to multiple connected loops may result in high

dispersion of transconductance values, due to the weak

coupling among the extremes of the circuit. For simple

loops, this is a simple and effective method for capacitor

loop elimination.

Fig. 3. Voltage-controlled Norton equivalent, or Y parameters equivalent, for a

capacitor loop.

A practical OTA-C implementation is obtained by the

observation that the currents fed by the two transca-

pacitances are proportional to the currents in the two

capacitors. Figure 4 shows (in schematic form) a possible

implementation, where the OTAs that feed the loop

(assumed as one for each side) are split in a transconductor

input stage and a current-controlled current source output

stage with two scaled outputs. Other implementations are

also possible [4].
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III. FILTERS WITH SIMPLE CAPACITOR LOOPS OBTAINED FROM

SPECIAL APPROXIMATIONS

Usual elliptic or Inverse Chebyshev low-pass filters

present the maximum possible number of finite transmission

zeros. This results in LC ladder structures presenting several

interconnected capacitor loops (or inductor cut-sets in the

dual form), that in the OTA-C version result in structures

like the one in fig. 1. If special approximations are used,

where the number of finite transmission zeros is not

maximum, a small reduction of selectivity results, but the

loops and cut-sets can be kept separated in the LC structure

(see fig. 7), and eliminated by the simplest form of the

Fig. 4. Schematic representation of an implementation of the voltage-controlled

Norton equivalent of a capacitor loop.

This procedure is directly applicable to multiple loops.

The loop equivalents are uncoupled, and can be obtained

independently. The implementation requires, however, two-

stages OTAs, or other variations that always present internal

nodes, and the correspondent parasitic poles, what may turn

these structures unsuitable for high-frequency filters unless



current-controlled Norton equivalent described above. its capacitor loops or inductor cut-sets retained, these

structures can be eliminated in the OTA-C version by

procedures similar to the two methods shown for the

elimination of capacitor loops. The first one is of common

use in active simulations of passive filters, The second is

new:
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Voltage-controlled Thévenin equivalent

Consider the simple inductor loop in fig. 9. It is

equivalent to the circuit in fig. 10, where the original circuit

was replaced by its Y parameters equivalent, and Thévenin

equivalents were applied to the resulting branches.R1
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Fig. 7. Some LC doubly terminated structures for low-pass filters with

separated capacitor loops or inductor cut-sets. (a) 5th-order with only 2 finite

transmission zeros (the normal is 4). (b) 6th-order with 4 finite transmission

zeros (the maximum possible for LC doubly terminated realization). (c) 7th-

order with only 4 finite transmission zeros (the normal is 6).

Fig. 9. Simple inductor loop.
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Approximations for these filters can be obtained by the

application of Moebius transformations [6] to usual

approximations, or by direct optimization [7]. In appendix

A, tables of some low-pass filter prototypes obtained from

modified approximations are included.

Fig. 10. Voltage-controlled Thévenin equivalent of an inductor loop.

The OTA-C simulation of this circuit is a direct

dualization (fig. 11). The extension to multiple connected

loops is trivial.
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Fig. 11. OTA-C implementation of the voltage-controlled Thévenin equivalent

for a simple inductor loop.

Current-controlled Thévenin equivalentFig. 8. Normalized OTA-C simulation of the structure in fig. 7c (with

R1=R7=1), with the capacitor loops eliminated.
Another equivalent for the inductor loop in fig. 9 can be

obtained from its Z parameters (fig. 12). Observing that the

voltages at the controlled sources are proportional to the

voltages over the inductors, and dualizing the resulting

circuit, an OTA-C simulation is obtained, using the same

idea of the current-controlled Norton equivalent. A

schematic representation is shown in fig. 13. For multiple

connected loops, the element values must be recomputed.

As an example, fig. 8 shows a normalized OTA-C

realization for a 7th-order filter, obtained from a prototype

with the structure in fig. 7c. The normalized filter presents 1

dB passband ripple and 50 dB minimum stopband

attenuation (Values in table III). The OTA-C realization was

obtained by the application of the current-controlled Norton

equivalent to the capacitor loops that result from the direct

simulation of the prototype.
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If the prototype still presents inductor loops (or capacitor

cut-sets in the dual version), as can happen in a filter not

obtained from a reactance transformation of a low-pass

prototype, or if for some reason the low-pass prototype has

Fig. 12. Current-controlled Thévenin equivalent, or Z parameters equivalent,

for an inductor loop.
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respectively. The structures are the ones in fig. 7. Each table

lists the element values for a fixed minimum stopband

attenuation (Amin, dB), and five values of the maximum

passband attenuation (Amax, dB). The terminations for the

odd-order filters are unitary. All the approximations present

equal-ripple passband and stopband, and are as selective as

possible.

TABLE I
Fig. 13. Schematic representation of the OTA-C realization of the current-

controlled Thévenin equivalent for an inductor loop.
5TH ORDER FILTERS (FIG. 7A). AMIN=40 DB.

Amax L/C 1  L/C 2  L/C 3  L/C 4  L/C 5

0.1         1.1915 0.2450 1.1915

V. CONCLUSION      1.1615        1.4647        1.1615

0.2         1.1480 0.2568 1.1480

Methods for the elimination of capacitor or inductor

loops in passive prototypes for OTA-C filters were described.

The four methods described were classified as Norton or

Thévenin equivalents, voltage or current-controlled. The

elimination of capacitor loops is the most important case,

and the most convenient realizations are obtained if special

approximations that allow realizations with only simple

loops are used.
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Amax Rg/Rl  L/C 1  L/C 2  L/C 3  L/C 4  L/C 5  L/C 6

0.1  1.1642        0.7768        1.6146 0.3370 0.7443REFERENCES
     0.8590 0.4985 0.8186 1.4604        1.1768

0.2  1.2404        0.7673        1.6229 0.3657 0.8169
[1] A. C. M. de Queiroz, L. P. Calôba and E. Sánchez-

Sinencio, “Signal-flow graph OTA-C integrated filters,”

Proc. 1988 IEEE ISCAS, Espoo, Finland, pp. 2165-2168,

June 1988.

     0.8062 0.5647 0.8855 1.4560        1.1864

0.5  1.4086        0.7377        1.6223 0.4123 0.9140

     0.7099 0.6530 0.9994 1.4387        1.1823

1.0  1.6309        0.6987        1.6119 0.4577 0.9814

     0.6132 0.7131 1.1180 1.4162        1.1627

[2] L. P. Calôba and Antônio C. M. de Queiroz, “OTA-C

simulation of passive filters via embedding,” Proc. 1989

IEEE ISCAS, Portland, USA, pp. 1083-1086, May 1989.

1.5  1.8308        0.6670        1.6011 0.4908 1.0146

     0.5462 0.7415 1.2099 1.3989        1.1424

TABLE III
[3] A. C. M. de Queiroz and L. P. Calôba, “Some practical

problems in OTA-C filters related with parasitic

capacitances,” Proc. 1990 IEEE ISCAS, New Orleans,

USA, pp. 2279-2282, May 1990.

7TH ORDER FILTERS (FIG. 7C). AMIN=50 DB.
Amax L/C 1  L/C 2  L/C 3  L/C 4  L/C 5  L/C 6  L/C 7

0.1         0.6956        1.6312        0.9709

     0.6019 0.9053 1.7334        1.8740 0.4503 0.8336

0.2         0.6516        1.5480        0.9204[4] Luiz P. Calôba, F. Galvez-Durand, and A. C. M. de

Queiroz, “Parasitic effects in OTA-C filters with finite

zeros,” Proc 34th MWSCAS, Monterey, USA, pp. 1049-

1051, May 1991.

     0.7301 1.0239 1.8409        2.0036 0.5114 0.9806

0.5         0.5617        1.3792        0.8110

     0.9645 1.2766 2.0684        2.2727 0.6388 1.2553

1.0         0.4682        1.1992        0.6919

     1.2257 1.6137 2.3630        2.6160 0.8047 1.5691

[5] A. C. M. de Queiroz e L. P. Calôba, “OTA-C filters

derived from unbalanced lattice passive structures,”

Proc. 1993 IEEE ISCAS, Chicago, USA, pp. 2256-2259,

May 1993.

1.5         0.4040        1.0717        0.6078

     1.4361 1.9274 2.6253        2.9197 0.9563 1.8272

[6] G. C. Temes and J. W. LaPatra, “Introduction to Circuit

Synthesis and Design,” McGraw-Hill, 1977.

[7] A. C. M. de Queiroz and L. P. Calôba, “An ap-

proximation algorithm for irregular-ripple filters,” Proc.

IEEE International Telecommunications Symposium, Rio

de Janeiro, Brazil, pp. 430-433, September 1990.

APPENDIX A

In this appendix, some tables of LC doubly terminated

prototype filters with simple capacitor loops are listed.

Filters of orders 5, 6, and 7, are listed in tables I, II, and III,


