
Band-Pass Multiple Resonance Networks

Antonio Carlos M. de Queiroz
COPPE/EP - Electrical Engineering Program, Federal University of Rio de Janeiro

CP 68504, 21945-970 Rio de Janeiro, RJ, Brazil

Abstract—The idea of “multiple resonance networks” is
reviewed and extended to networks with the structure of band-
pass LC ladders. This realization combines the properties of the
previously described low-pass and high-pass realizations. It
allows the generation, for example, of triple resonance networks
with a transformer at one side and capacitive coupling at the
other, overcoming the limitations in voltage gain of high-pass
realizations. A simple transformation allows the generation of
networks with single input and balanced output.

I. INTRODUCTION

Multiple resonance networks are a class of LC networks that
can completely transfer all the energy initially stored at a set
of capacitors or inductors of the network to another set of
elements. One of the simplest cases is the well-known Tesla
transformer, one of the first nontrivial linear circuits to be ana-
lyzed. Ref. [1] contains a review of some early works. These
circuits have found applications in many areas, when the fast
lossless conversion of low voltage to high voltage is desired.
Examples range from early radio transmitters [1] to modern
pulsed power systems. In [2], a 6th-order triple resonance
network was described for this kind of application, showing
that there are justifications for the study of more complex
versions of these networks, that besides practical applications
have also interesting properties in the point of view of linear
circuit theory. This author developed methods to extend the
design of multiple resonance networks to any order, using a
synthesis approach instead of an analysis approach, what lead
to quite simple design procedures for several different
structures1. Refs. [3][5] introduced the low-pass versions (figs.
1a and 1b), that include the Tesla transformer and the triple
resonance network mentioned in [2] as the simplest cases of
fig. 1b, transferring energy between the capacitors C1 and Cp.
Ref. [4] presented a very simple design method for these
circuits that avoids the solving of systems of equations. [6]
extended the idea to networks where the energy is transferred
from or to inductors, what allows optimized design of
induction coils and generalizations of them (energy transfer
between L1 and Cp in figs. 1a and 1b).

Ref. [7] presented high-pass versions, that have the structure
of a high-pass ladder network (fig. 1c). The transformerless
low-pass networks (fig. 1a) allow just a single design
possibility. The high-pass versions, however, allow variations
in the mechanism of energy transfer, depending on which
elements hold the energy at the start and at the end of the
energy transfer cycle. Four cases were identified for the
energy transfer between capacitors and two for the energy
transfer between inductor and capacitors:

The “symmetrical design” transfers energy between C1 and C2

(fig. 1c) charged to same voltage to Cp and Cpa only, that also
get charged to the same voltage. The same network also works

1 The referred papers, and computer programs for the design of multiple
resonance networks, can be found at: http://www.coe.ufrj.br/~acmq.

if the starting energy is applied to the “high-frequency input
capacitance” of the network, through a current impulse across
C1, transferring the energy to the “high-frequency output
capacitance” of the network, where it can be completely
extracted by a current impulse caused by short-circuiting the
output.

The “asymmetrical design” transfers energy between C1 and
C2 and the high-frequency output capacitance of the network.
The network can also be designed in a reverse form, that
transfers energy between the high-frequency input capacitance
and Cp and Cpa only.
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Fig. 1. Previously described multiple resonance networks: a) Low-pass
network. b) Low-pass network with a transformer. c) High-pass network.
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Fig. 2. Band-pass 6th-order multiple resonance networks.

A variation of the symmetrical design transfers energy
between L1 and Cp and Cpa only, and a variation of the
asymmetrical design transfers energy between L1 and the high-
frequency output capacitance. Variations of the same simple
design method described in [4] can be applied to all of these
cases.

The following sections show that the design procedures de-
scribed in the previous papers can be combined for the
generation of other structures. Low-pass and high-pass
sections can be combined in any order for orders 6 and above.
The introduction of a low-pass section in a high-pass network
allows the inclusion of a transformer, overcoming the



association between the operating mode and the voltage gain
that limits the application of pure high-pass networks. As
examples of these structures, fig. 2 shows the possibilities for
6th-order networks, without and with a transformer. In all
cases, energy transfer between two sets of capacitors or an
inductor at both sides is possible. In this paper, only the
energy transfer from a set of capacitors, or from L1, to another
set of capacitors at the output side will be considered. Designs
with energy transfer to the output inductor, or inductors, can
be obtained by simple dualization.

II. DESIGN PROCEDURE FOR BAND-PASS MULTIPLE RESONANCE

NETWORKS

The simple design method described in [4] departs from the
observation that the output voltage of one of these networks
can be predicted, from the natural frequencies of the network,
and from the number of transmission zeros at zero that the
structure of the network places between an impulsive source
that has the same effect or the initial conditions (in figs. 1 and
2, a current source in parallel with C1 or a voltage source in
series with L1) and the output. Supposing that the circuit
resonates at frequencies ωj = kjω0, j = 1 … p , where p is the
number of conjugate pairs of natural frequencies, in all the
cases the output voltage Vout(s) must have the form:
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For complete energy transfer after a finite time, the
multipliers kj must be successive integers with odd difference
for the case of energy transfer between capacitors [5] (or in
the dual case between inductors), or must be all odd with
double odd differences for energy transfer between inductors
and capacitors [6]. The power of s, m, is odd for energy
transfer between elements of the same kind, and even for
energy transfer between inductors and capacitors. The
expansion of (1) in partial fractions results in a sum of pure
cosinusoids (2a) in the first case, and in a sum of pure
sinusoids (2b) in the second case. With the condition imposed
on the multipliers kj, the waveform components add
destructively (or are null in the second case) at the start of the
energy transfer from C1 or L1, at t = 0, and add constructively
when the energy transfer is complete, at t = π/ω0 in the first
case, and at t = π/(2ω0) in the second case.
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In a pure high-pass network with energy transfer between
capacitors [7], the power of s in the numerator of (1) is m =
2p−3 for the asymmetrical design and m = 2p−1 for the
symmetrical design. For the energy transfer from L1, consid-
erations similar to the ones in [7] lead to m = 2p−2 for the
asymmetrical design and m = 2p for the symmetrical design
(in this case, a constant term appears in the partial fraction
expansion of (1), but it is an artifact of the special calculation
for the symmetrical design and is ignored).

The next consideration [4] is that the same waveforms can
be obtained, shifted in time by the total energy transfer time, if
the input is considered as being an impulsive current source in

parallel with the output. With this excitation, the output
voltage is proportional to the output impedance of the
network. This consideration works for the symmetrical design
in energy transfer between capacitors too, because one of the
possibilities is energy transfer to the high-frequency output
capacitance [7]. As this is the impedance of an LC network, it
has the form (2a), but the residues are all positive. All that has
to be done to obtain this impedance is then to calculate the
expansions (2a) or (2b) for an arbitrary constant β in (1), as 1,
and then use the absolute values of the obtained residues A’j

or B’j as residues for the expansion of the impedance in
Foster’s first form, multiplying it by a convenient constant λ:
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The constant λ can be simply the inverse of the sum of the
Aj. This results in a normalized impedance with a high-
frequency capacitance of 1 F. The normalized network is then
obtained by the expansion of Zout(s) in a ladder with the
required structure. A transformer with arbitrary turns ratio can
be inserted where an “L” of inductors appears [1].

The inclusion of a low-pass section has the effect of
decreasing by 2 the power of s in (1), by the addition of two
transmission zeros at infinity. From this point the design
proceeds as before, with the transformerless network being
obtained by a proper expansion of the output impedance.
There are always two possible designs:

The symmetrical design, transferring energy from the input
capacitors, or the input inductor, to the output capacitors (C3

and C3a in fig. 2a, or C3, C2a, and C2 in fig. 2c). The
symmetrical design also transfers energy correctly from the
high-frequency input capacitance (C1 in fig. 2a, C1+C2//C2a in
fig. 2c) to the high-frequency output capacitance.

The asymmetrical design, transferring energy from the input
capacitors (C1, C2, and C3 in fig. 2a or C1 and C2 in fig. 2c,
charged to the same voltage) or from the input inductor (L1) to
the high-frequency output capacitance (C3a+C3//C2 in fig. 2a
or C3 in fig. 2c). The network can also be designed or
operated in the reverse direction.

The inclusion of a transformer keeps the same capacitors
charged at both ends of the energy transfer cycle, and so the
asymmetrical design doesn’t make sense in fig. 2b for energy
transfer between capacitors, since this network is obtained
from fig. 2a, where C2 and C3 would be charged along with
C1, that ends at the other side of the included transformer. The
same problem occurs with the inverted asymmetrical design in
the case of fig. 2d.

It is always possible to expand the networks in the reverse
order if convenient. For example, it may be required that the
network in Fig. 2a shall transfer energy from C1 (that is the
high-frequency input capacitance) to C3 and C3a only (not to
the high-frequency output capacitance C3a+C3//C2). This can
be obtained by expanding the structure in Fig. 2a using the
asymmetrical design, starting from the input side. C2 would be
then a selectable fraction of the capacitance seen at infinite
frequency after the extraction of C1, L1, and L2. The other
elements are all determined. The transformation to the



structure with transformer, fig. 2b, is then possible, by the
replacement of the “L” L1-L2, with correct operation.

III. EXAMPLES

Consider the design of a network with the structure in fig.
2a, with the specifications: Mode = 5:6:7, L3 = 30 mH, C1 = 1
nF, symmetrical design with energy transfer between
capacitors. The normalized resonance frequencies are 5, 6,
and 7 rad/s, and the power of s in (1) is 2p−1−2 = 3. The
expansion in partial fractions is then:
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Taking the residues in absolute value and scaling them so
they add to 1, the normalized output impedance is obtained as:
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This impedance is expanded with the structure in fig. 2a,
starting from the extraction of, say, one half of the high-
frequency output capacitance, as C3a. The values are then
denormalized for C1 and L3 as specified. See Table I.

TABLE I
ELEMENT VALUES FOR ENERGY TRANSFER BETWEEN CAPACITORS.

Element: normalized final
C3a 0.5 F 5.463487 pF
L3 0.027777777778 H 30 mH
C3 0.558367346939 F 6.101265 pF
C2 4.783216783217 F 52.266082 pF
L2 0.005501692829 H 5941.828255 µH
L1 0.000303527035 H 327.809198 µH
C1 91.516651180987 F 1 nF

This circuit transfers energy in 10.79 µs, and resonates at
231.65 kHz, 277.98 kHz, and 324.31 kHz. The final
capacitances C3 and C3a are small enough to be distributed
capacitances, allowing a realization as the example in [7]. Fig.
3 shows the voltage waveforms when the input capacitors are
charged to 10 kV, as if they were slowly charged by a voltage
source with nonzero series resistance in series with L1, and
then the source had its output short-circuited. The output
voltage reaches 95.7 kV. Observe that the voltages over C1,
C2, and C3 start from the same value, and that all the voltages
are null, except the output voltage over C3 and C3a, at the end
of the energy transfer. The currents are also null, because the
derivatives of all the voltages are null at that instant.
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Fig. 3. Energy transfer between capacitors, symmetrical design in the first
mode of operation.

Fig. 4 shows the alternative operating mode for this same
circuit. Only C1 is initially charged (as if it were slowly
charged by a negative voltage source with nonzero series
resistance inserted at its connection with the ground and then
the source had its output short-circuited). The output voltage
is almost the same, but there is some voltage over C2 when the
energy transfer is complete. A short-circuit at the output at this
time would extract all the energy, discharging completely all
the capacitors. The asymmetrical design would result in an
initial state as in fig. 3 and a final state as in fig. 4. A reverted
asymmetrical design would result in the reverse.
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Fig. 4. Energy transfer between capacitors, symmetrical design in the second
mode of operation.

Consider now the same structure (fig. 2a) but with initial
energy in L1. A mode that results in voltage waveforms similar
to the ones in figs. 3 and 4 is mode 7:9:11. The normalized
resonance frequencies are 7, 9, and 11 rad/s, and the power of
s in (1) is 2p−2 = 4. The expansion in partial fractions, now
with sinusoids instead of cosinusoids, is then:
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Now, taking the amplitudes of the sinusoids in absolute
value and scaling them so they add to 1, the normalized output
impedance, corresponding to an output voltage in sum of
cosinusoids, is obtained as:
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The expansion of this impedance in the structure of fig. 2a,
again extracting first one half of the high-frequency
capacitance, results in the values listed in Table II. As the
normalized C1 resulted smaller than in the previous case, The
final C1 has to be smaller, in order to keep the final
capacitances similar to what was obtained before, suitable for
distributed realization. C1=350 pF was used. Complete energy
transfer from L1 to C3a and C3 occurs in 8.27 µs. The circuit
resonates at 211.60 kHz, 272.05 kHz, and 332.51 kHz. Figs. 5
and 6 shows the resulting voltage and current waveforms for a
starting current of 10 A in L1 (currents down and to the right
in fig. 2a). The output voltage reaches –92.6 kV. Note the
inversion of the energy transfer cycle after the energy returns
to L1. The asymmetrical design of this circuit would result in
some voltage in C2 at the end of the energy transfer cycle, as
in fig. 4, and again all the energy could be extracted by a
short-circuit at the output.



TABLE II
ELEMENTS FOR INDUCTOR TO CAPACITORS ENERGY TRANSFER.

Element: normalized final
C3a 0.5 F 5.435582 pF
L3 0.011764705882 H 30 mH
C3 0.603896103896 F 6.565053 pF
C2 2.906250000000 F 31.594318 pF
L2 0.003882558320 H 9900.523717 µH
L1 0.000403382683 H 1028.625841 µH
C1 32.195266544118 F 350 pF
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Fig. 5. Voltage waveforms in inductor to capacitor energy transfer,
symmetrical mode.
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Fig. 6. Current waveforms in inductor to capacitor energy transfer,
symmetrical mode.

A transformer could be inserted in this circuit replacing L1

and L2, resulting in the structure of fig. 2b. This would reduce
the voltage over C1, at the expense of an increase in the
required input current. The circuit could then be scaled in
impedance and frequency to compensate for the current
increase, increasing the inductances and keeping the
capacitances. Eventually a structure similar to conventional
induction coils, with high output inductances and low-
frequency operation would obtained.

IV. STRUCTURES WITH BALANCED OUTPUT

An interesting possibility with these circuits is to generate a
balanced output. The last three elements in figs. 2a or 2b , C3,
L3, and C3a, can be duplicated and the circuit arranged as in
fig. 7. With the circuit operating in the modes shown in figs. 3
or 5, at the end of the energy transfer the voltage over the tank
L3-C3a is identical to the voltage over C3. If the copy of these
elements is assembled reversed, two opposite copies of the
output voltage are obtained (observe the signs). If C3a is
chosen so C3a = C3, two similar structures with distributed
capacitances, as the one shown in [7], can be used, and the

total output voltage is doubled. This can also be done with the
pure high-pass realizations, but the band-pass realization
allows the use of a transformer to set the voltage gain
independently of the operating mode.
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Fig. 7. Band-pass 6th-order multiple resonance networks with balanced
output. a) transformerless. b) with transformer.

V. CONCLUSIONS

The concept of multiple resonance networks was extended
to polynomial bandpass ladder structures, that mix low-pass
and high-pass sections. The simple design procedure
previously developed was shown to be effective in these cases
too. In all cases where high-pass sections are present, four
possible designs are possible for the same structure in the case
of energy transfer between capacitors, and two designs are
possible with energy transfer from inductors to capacitors. A
curious form of network with balanced output was also
proposed.
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