# ESTUDO DA ESTIMAÇÃO DE SINAIS DE UM ARRANJO CILÍNDRICO DE HIDROFONES

Fabricio de Abreu Bozzi Instituto de Pesquisas da Marinha Rua Ipiru, n 02,Cacuia, Ilha do Governador, Rio de Janeiro bozzi@ipqm.mar.mil.br

Natanael Moura Júnior COPPE-UFRJ Avenida Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro natmourajr@lps.ufrj.br

José Manoel Seixas COPPE-UFRJ Avenida Horácio Macedo, 2030, Cidade Universitária, Rio de Janeiro seixas@lps.ufrj.br

**Resumo**: Este trabalho visa analisar estatisticamente dados provenientes de arranjo cilíndrico de hidrofones. O pré-processamento é realizado com a implementação de um formador de feixes. Seções de hidrofones distintas foram escolhidas para compor o formador e avaliaram-se os estimadores. Por fim foi realizado um estudo de detecção para a seção escolhida.

### Palavras-chave: Arranjo cilíndrico; formador de feixes; estimação.

**Abstract**: This work aims to statistically analyze data from cylindrical hydrophone array. The preprocessing is performed to implement a beam-forming. Different sections of hydrophones were chosen to compose the beam-forming and evaluated the estimators. Finally, a study was carried out for detection of the chosen section.

Keywords: cylindrical hydrophone array; beam-forming; estimators.

# 1. Introdução

O Sistema SONAR presente no submarino é parte fundamental para que o mesmo consiga operar. Os arranjos de elementos transdutores são amplamente empregados em Sistemas Sonar. Os mais empregados são o *linear*, onde os sensores são dispostos em linha reta, usualmente igualmente espaçados (arranjos rebocados, *towed arrays*, sistemas fixos de vigilância, arranjos de flanco em submarinos) e o cilíndrico, onde os elementos transdutores são dispostos em uma superfície cilíndrica (sonares ativos e passivos de casco) [1].

Com o crescente interesse em dominar a tecnologia do SONAR, por parte da Marinha do Brasil, diversos campos de estudos, envolvendo sinais provenientes de sistemas acústicos submarinos, necessitam ser explorados.





# 2. Método

Para realizar a análise estatística do sinal foi necessário desenvolver um préprocessamento dos dados, de forma a obter a energia proveniente de cada direção. Para isso, foi realizado o estudo de um formador de feixes.

# 2.1. Arranjo Cilíndrico

Uma das geometrias possíveis para arrays é a configuração cilíndrica. Nesta configuração os hidrofones são dispostos sobre uma estrutura cilíndrica na qual estão fixados os sensores. De um modo geral, os hidrofones são distribuídos circularmente e axialmente, de acordo com a Figura 1 (a).



Figura 1 – Arranjo Cilíndrico

A Figura 1 (a) apresenta um arranjo cilíndrico. Ele é formado montando-se elementos transdutores de modo a compor uma superfície externa cilíndrica. Os elementos em uma mesma vertical formam um *stave* (pilha), que são, normalmente, ligações dos hidrofones verticais em paralelo [1].

Para formar um feixe de recepção, sinais de diferentes *staves* são combinados. Na Figura 1(b), é mostrado um conformador de feixes utilizando determinada seção de *staves*. Existem vários métodos de formação de feixes, no entanto, neste trabalho será abordado o Atraso e Soma no domínio da Frequência (*Delay and Sum*) [2].





## 2.2. Formador de Feixes

Baseado no estudo desenvolvido em [2] sabe-se que, ao "projetar" uma seção do array circular em um array em linha, este será do tipo desigualmente espaçado. Portanto, embora o princípio básico se assemelhe a um array em linha igualmente espaçado, este apresenta algumas características que os diferenciam. Este fato é ilustrado na Figura 2.



Figura 2 – Projeção do arco

O array desigualmente espaçado não apresenta uma forma analítica fechada, e, portanto, a sua forma deve ser obtida numericamente. Conseqüentemente, é difícil obter as propriedades dos lóbulos laterais da potência de saída.

Considerando uma onda plana incidente, deve-se, conforme o ângulo formado entre a direção de máxima resposta direcional do hidrofone e a direção de chegada da onda, estabelecer quantos sensores irão, efetivamente, contribuir para a formação do feixe, ou seja, quantos sensores terão a onda incidindo no seu respectivo setor de passagem e, conseqüentemente, "projetados" em um array voltado para o seu *broadside*.

Cada array desigualmente espaçado resultante da projeção estará direcionado para ondas incidentes no seu *broadside*. Ou seja, haverá 96 arrays direcionados para o seu respectivo *broadside* por toda a circunferência.

A rotação eletrônica realizada em arrays em linha efetuando a varredura espacial, aqui não será necessária, uma vez que cada array conformado estará olhando para o seu broadside cobrindo, então, os 360º. Estes arrays são denominados arrays pré-formados [2].

O formador de feixes foi implementado utilizando as seguintes etapas [3]:

- 1. Amostra-se o sinal e retira-se a FFT;
- 2. Ordenam-se os sensores da seção desejada
- 3. Retira-se metade dos bins (simetria da FFT)
- 4. Seleciona-se uma banda de interesse e multiplica este sinal pelo atraso correspondente à distância até a corda e a banda selecionada





- 5. Completa-se o sinal com zeros
- 6. Retira-se a IFFT e multiplica-se pelo fator de direcionalidade somando o sinal.
- 7. Calcula-se a energia escolhendo uma janela especifica (no caso, a janela Hanning com 1024 pontos).

## 2.3. Análise Estatística

Foram realizados dois estudos estatísticos a partir dos dados do arranjo cilíndrico. O primeiro estudo realiza a estimação para determinadas seções O do formador de feixes. E no segundo, foi feito um estudo de detecção para a seção escolhida.

#### 2.3.1. Estimação

A análise estatística foi baseada na energia de saída do formador de feixes. O diagrama da Figura 3 ilustra o estudo desenvolvido:



Figura 3 – Diagrama do estudo desenvolvido

A partir dos dados dos sensores do arranjo, é realizada a formação dos feixes, dependente do número de staves que compõem a seção ( $\Theta$ ) na direção  $\theta$ , e obtém-se o valor de energia para cada feixe formado (E(t, $\theta$ | $\Theta$ )). Esta energia é visualizada em um gráfico *waterfall*, que indica a intensidade de energia em cada direção e ao longo do tempo.

Com o intuito de se obter o melhor valor de Θ, uma variação dos possíveis valores foi feita e uma análise da relação sinal-ruído (SNR) foi realizada.

Para cada valor de O obtêm-se os seguintes parâmetros:

$$\mu_{\mathcal{X}} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

$$\sigma_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2$$
(2)

Onde  $\mu_x$  e  $\sigma_x^2$  são a média e a variância da variável aleatória x, respectivamente. Outro parâmetro que foi obtido é a Moda, que pode ser definida como a estimativa do valor mais provável de uma distribuição de probabilidade.

#### 2.3.2. Detecção

No contexto desse trabalho, foram analisados a curva ROC (Receiver Operating Characteristic) e o índice SP (soma-produto). A curva ROC mostra como as probabilidades de detecção e falso alarme (respectivamente PD e PFA) variam com o patamar de decisão.

O SP é utilizado como parâmetro para escolher o patamar de decisão ótimo. Variando-se o patamar de decisão em toda sua faixa de excursão, calculam-se os valores do SP correspondentes. O SP máximo indica um patamar que apresenta alta eficiência para todas as classes [4].

O índice SP para duas classes é definido por [5]:

$$SP = \sqrt{\left(\frac{S+E}{2}\right)\sqrt{S\cdot E}} = \sqrt{\left(\frac{S+(1-FA)}{2}\right)\sqrt{S\cdot(1-FA)}}$$
(4)

Onde S, E e FA são a sensibilidade, especificidade e taxa de falso alarme, respectivamente.

# 3. Dados Utilizados

Os dados utilizados foram gravados do Arranjo Circular de Hidrofones (CHA) de um submarino classe Tupi da Marinha do Brasil. Os dados são especificados de acordo com a Tabela 1:

#### Tabela 1 - Especificações

| F <sub>s</sub>                       | 25600Hz                          |
|--------------------------------------|----------------------------------|
| N - Número de Staves                 | 96                               |
| Variação dos valores de Θ            | [16 24 28 30 32 34 36 40]        |
| Tempo para o conjunto de treinamento | 16 s                             |
| Tempo para o conjunto de teste       | 84 s                             |
| Janelamento para obter energia       | 1024 amostras/janela             |
| Freqüência filtragem                 | 2028 a 4056Hz                    |
| Bins - direção                       | 288 bins (96x3) Interpolado em 3 |



## 4. Resultados



Para cada valor de O pode-se observar o gráfico waterfall na Figura 4:

Figura 4 – Waterfall para cada  $\Theta$ 

No eixo da marcação, escolheu-se um bin (marcação) onde nota-se maior energia, indicando uma fonte. Para representação do ruído, foi selecionada uma faixa de bins que apresentou menor intensidade de energia e retirou-se o bin que tivesse maior média. A distribuição para o bin 39 e ruído, para cada seção, é apresentada na Figura 5.



Figura 5 – Distribuição para cada seção



Verificando a SNR para cada uma dessas distribuições, obteve-se a Figura 6.



Figura 6 – SNR para cada seção

A incerteza de SNR para  $\Theta_4$  é dado por:

$$\left(\frac{\sigma_{SNR}}{SNR}\right)^2 = \left(\frac{\sigma_{Sinal}}{Sinal}\right)^2 + \left(\frac{\sigma_{nuido}}{Ruido}\right)^2$$
(5)

Assim tem-se SNR = 11,3234[+1,2-3,7861]. Apesar de não poder garantir, devido à incerteza, escolheu-se como melhor estimador  $\Theta_{4}$ .

Para  $\Theta_A$  nota-se a distribuição na Figura 8.



Figura 7 – Distribuição para Θ<sub>4</sub>

Percorrendo o patamar por toda a distribuição obtêm-se as curvas ROC e SP apresentadas na Figura 8. Nota-se que o patamar ótimo, definido pelo SP, está em 0,1359 de energia.







Figura 8 – Curva ROC e SP

O conjunto de teste é a gravação do sinal até 96 segundos. Este conjunto é mostrado na Figura 9.



Figura 9 - conjunto de teste

Para o patamar escolhido foi observado o comportamento das distribuições suas PD e PFA.



Figura 10 – Distribuições do sinal (bin 39) e ruído

Para a Figura 10 nota-se que para todo o conjunto de teste a PD se manteve acima de 90% e a PFA menor que 10%, assim, pelo fato do sinal estar bem discriminado, o detector de patamar conseguiu separar o sinal do ruído com as respectivas PD e PFA.

Escolhendo-se o bin 156 como sinal, obteve-se o resultado apresentado na Figura 11.



Figura 11 – Distribuição do sinal (bin 156) e ruído

Nota-se, na Figura 11, que o patamar escolhido, a partir de SP, é 0,08845. Observa-se que para os instantes de 16-32s e 32-48s, as PD são 43% e 15%,



isto ocorre pois o sinal tem baixa intensidade neste intervalo de tempo e não se distingue do ruído. Este intervalo pode ser observado na Figura 9.

# 5. Conclusão

Este estudo visou analisar estatisticamente os dados de energia de um arranjo cilíndrico de hidrofones presente no submarino. O pré-processamento dos dados foi feito possibilitando verificar as configurações dos sensores da forma desejada.

De acordo com estudos feitos em [2] e [3], para este arranjo de 96 staves utiliza-se 32 sensores. Neste estudo da energia, mostrou-se estatisticamente que não é possível afirmar, devido à incerteza, que 32 é o número ótimo de staves. No entanto, este número pode ser considerado uma boa opção.

Foi realizado um detector de patamar para um conjunto de teste onde pode-se verificar que é possível detectar, com PD acima de 90% e PFA abaixo de 10%. Em outro caso analisado notou-se a baixa PD quanto o sinal tem baixa intensidade sendo assim o detector de patamar inadequado.

## 6. Referências

[1] Souza L. A. L., Princípios de Sonar, Documento IPqM-013-0177-ET/97, 29/DEZ/1997.

[2] Rodrigues P. S. Márcio, "Estudo e Análise de Métodos Empregados em Array Cilíndrico Passivo para Determinação da Direção de Fontes Sonoras", Dissertação Mestrado – COPPE-UFRJ, Rio de Janeiro, 2006.

[3] Felzky A. Marcelo, Uma Contribuição às Técnicas de Localização de Fontes Sonoras Através de um Sistema Sonar Passivo Utilizando Filtros Fracionários, Dissertação Mestrado – COPPE-UFRJ, Rio de Janeiro, 2007.

[4] Simas F. F. Eduardo, Análise Não-Linear de Componentes Independentes para uma Filtragem Online Baseada em Calorimetria de Alta Energia e com Fina Segmentação, Dissertação Doutorado – COPPE-UFRJ, Rio de Janeiro,2010.

[5] Dos Anjos, A., Torres, R., Seixas, J., Neural triggering system operating on high resolution calorimetry information", Nuclear Instruments and Methods in Physics Research A, v. 559, n. 1, pp. 134-138, 2006.