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Abstract—This document describes calculation 

methods for distributed capacitances of objects with 

several particular shapes, and methods for the 

evaluation of the electric fields and forces. It’s 

fundamentally a collection of formulas, some not 

very easy to find in the literature. The algorithms 

were implemented in the Inca program, available at 

http://www.coe.ufrj.br/~acmq/programs. 

 

I. INTRODUCTION 

 

Most of the formulas below are known since long time, 

most dating from works in the XIX century. Some 

appear in Maxwell’s book [1], and some in other 

collections of explicit formulas for electromagnetic 

problems, as [2], or in other early works as [3]-[5]. In 

most cases I have just adapted the notation, but some 

derivations not found in other works are presented too. 

 

In most of the early works, capacitance is expressed in 

units of length. For example, the capacitance of a 

sphere of radius a in free space is listed in [1] and [2] 

as C=a. To convert this unit to Farads, it’s necessary to 

multiply the value by 40, where 0 is the permissivity 

of vacuum, 0 = 8.8541878 x 10-12. 0 can be calculated 

from the speed of light c and from the magnetic 

permeability of vacuum, 0 = 4 x 10-7 (a definition), 

from the relation: 

00

1


=c         (1) 

The capacitance of a sphere of radius a meters is then: 

 

Csphere = 40a = 111.26501a pF             (2) 

 

Other figures that have simple expressions for the free-

space capacitance are: 

 

A thin flat disk with radius a [2]: 

 

Cdisk = 80a = 70.833503a pF          (3) 

 

An open hemisphere with radius a [2]: 

 

Copen  hemisphere = 40a(1/2+1/) = 91.049254a pF   (4) 

 

A closed (with a flat disk) hemisphere with radius a 

[2]: 

Cclosed  hemisphere = ( )3/118 0 − a   = 94.052249  pF   (5) 

 

Two spheres with radius a in contact [1]: 

 

Ctwo spheres = 80aLn(2) = 154.24505a pF        (6) 

 

An “oblate spheroid” is the figure generated by the 

rotation of an ellipse around its minor axis. A “prolate 

spheroid” is generated by the rotation of an ellipse 

around its major axis. The capacitances of these figures 

are, considering the major axis with length 2a and the 

minor axis with the length 2b [2]: 
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Note the limits when a = b reducing to (2), and the 

reduction to (3) when b = 0 in (7). 

 

For bodies embedded in materials with other 

permissivities, it’s just a question of multiplying 0 by 

the relative permissivity  of the material. The case 

when different dielectrics are present on the structure 

will be not discussed here. 

 

II. CAPACITANCE OF A TOROID 

 

D

d
a A

 
Fig. 1. Toroid with major diameter D, minor diameter 

d, center radius A, and tube radius a. 

 

From [2] (the same formula appears in [3], that is 

probably the origin of this formula, but in a somewhat 

different notation) the capacitance of a toroid with 

major diameter D and minor diameter d, d<D/2, (fig. 1) 

is: 
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where )(21 xPn−
 and )(21 xQn−

 are Legendre functions, or 

in this case, “toroidal functions”. 

 

These functions can be evaluated in the following way: 

The first two terms can be obtained from their relations 

with the complete elliptic integrals of first and second 

kinds: 
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The modulus for the elliptic integrals K and E is: 
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And for the elliptic integrals K’ and E’ (evaluated in 

the same way, with modulus k’): 

21' kk −=                            (12) 

This is enough for the evaluation of the two first terms 

of the series (enough for thin toroids). The other terms 

can be obtained using the recursion for Legendre 

functions, identical for both functions: 
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where m=n-1. All the terms can then be easily 

computed, starting with n=2 in the series (9), or m=1.  

 

The complete elliptic integrals are the irreducible 

functions: 
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They can be quickly and precisely evaluated using the 

arithmetic-geometric mean method, below 

implemented in a Pascal routine: 

 
{ 

Complete elliptic integrals of first  

and second classes - AGM method. 

Returns the global variables:  

Ek=E(c) and Fk=F(c) (E and K) 

Doesn’t require more than 7 iterations for  

c between 0 and 0.9999999999. 

Reference: Pi and the AGM, J. Borwein and  

P. Borwein, John Wiley & Sons. 

} 

procedure EF(c:real); 

var 

  a,b,a1,b1,E,i:real; 

begin 

  a:=1; 

  b:=sqrt(1-sqr(c)); 

  E:=1-sqr(c)/2; 

  i:=1; 

  repeat 

    a1:=(a+b)/2; 

    b1:=sqrt(a*b); 

    E:=E-i*sqr((a-b)/2); 

    i:=2*i; 

    a:=a1; 

    b:=b1; 

  until abs(a-b)<1e-15; 

  Fk:=pi/(2*a); 

  Ek:=E*Fk 

end; 

 

III. APPROXIMATE CALCULATIONS FOR PARTIAL 

TOROIDS 

 

A partial toroid can be described as a surface generated 

by the revolution of a partial circle of radius a centered 

at a distance A along the radial axis r from the 

revolution axis z. The circle limits are defined by two 

angles 1 and 2. See fig. 2. 

1

2

A

a

r

z

 
Fig. 2: A partial toroidal surface is generated by the 

rotation of a partial circle around the vertical axis. 

 

With this formulation several figures can be generated, 

as a regular toroid when 2-1 = 2 and a<A, a sphere 

when A = 0, 2 = −1 = /2, an open hemisphere, etc. 

Even overlapping toroids, with a>A, can be generated. 

 

This surface can be decomposed in a set of n infinitely 

thin circles with axles at the z axis, positioned at 

heights zi, and with radii ri, uniformly spaced at angles 

 along the surface: 
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Each of these rings has a uniform charge distribution, 

with a total charge qi. The potential  due to each ring 

i at any given position r0, z0 is given by: 
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The absolute values allow correct treatment of the 

cases when some radii are negative. 

 

Considering then the mutual influences among all the 

rings, a matrix P can be computed, that allows the 

calculation of the potentials vi at each ring, once the 

charges qi are known [1]: 
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For the calculation of the “self-potentials” Pii, 

something must be assumed about the radius of the 

rings, R. The formulation calculates then the potentials 

at a distance R above the rings. The maximum 

physically possible value of R would be when adjacent 

rings touch: 

2
sinmax


= aR                            (18) 

Any reasonable fraction of this value can be used with 

similar results, but there is one that produces better 

results in the next calculation, that was found (by 

trying!) to, curiously, be: 

2
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a
R                              (19) 

This radius makes the area of the surface of the ring to 

be identical to the flat area represented by it, at least in 

the cases when  = n/2 and small  (as in the equator 

and poles of a sphere split in many rings). 

 

 The charge distribution for uniform potential V at all 

the rings can be calculated by inverting the matrix P. 

The total charge in each ring is then obtained from a 

sum of the corresponding lines of the inverse of P, C. 

The coefficients of C are the influence coefficients kij: 
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And the capacitance of the whole assembly is simply 

the sum of all the elements of C: 
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Surface electric field 

 

The electric field at any point of the surface is normal 

to it and can be calculated by Gauss’ law as 

proportional to the charge density at that point of the 

surface: 

0


= i

iE                                (22) 

where i is the surface charge density, uniform around 

the ring i. For a closed surface, the electric field is 

entirely at the outer surface. In this case, it can be 

calculated directly from the charge distribution alone. 

 

Assuming constant voltage at the surface of the object, 

the charges at the rings can be calculated by (20). The 

ring i has a length 2ri and a total charge qi. The ring 

represents a thin belt with width equal to a. The 

charge density and the electric field in a small length l 

are then: 
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An important application of this calculation is the 

determination of the breakout voltage of the object, the 

voltage that causes ionization of the air around it when 

the electric field reaches about 3 MV/m: 

kV  /Max3000max iEV =                 (24) 

For a toroid, this value occurs at the maximum 

diameter. In the case of open objects, it’s not possible 

to calculate the surface electric field in this way, 

because it is split in an unknown way between the two 

sides of the surface. The calculation is also meaningless 

if the object has an edge, where the electric field is 

ideally infinite. A strange problem with (23) is that it 

fails when the rings are close to the center of a 

spherical surface. The last ring appears to have 

significantly less charge than it should have (around 

92%). The calculations for capacitance, however, 

continue to result in good values. 

 

IV. GENERAL TRUNCATED CONES 

 

Any other figure with circular symmetry can be 

analyzed by the same method. A simple case is the 

revolution of a straight line around the central axle, that 

generates figures ranging from a flat disk with a 

possible central hole to a cone or an open cylinder. 

r r

z

1 r2

h

 
Fig. 3. A line that rotates around the vertical axis. 

 

The coordinates or the rings are then: 
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The radius to use in the calculation of the self-

potentials would be, still using the maximum divided 

by : 
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With this radius, the surface charge density and the 

surface electric field (for a closed object) can be 

calculated considering that the surface area of the ring 

is identical to the belt area represented by it, what is 

approximately valid also for the case or curves, using R 

given by (19): 
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V. ELECTRIC FIELD FROM A RING 

 

The electric field anywhere can be calculated by adding 

the electric fields due to the rings. From (16), the radial 

and axial components of the electric field can be 

calculated by differentiation, resulting in: 
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where the derivative of the elliptic integral K in relation 

to the modulus k was used (the derivative of E is listed 

below too for reference, but was not necessary): 
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VI. GENERAL CASE WITH AXIAL SYMMETRY 

 

The capacitance matrix and the potential and electric 

field around a series of objects with axial symmetry 

decomposed in thin rings can then be easily calculated. 

The objects are decomposed in series of partial toroids 

conical sheets, and other shapes (as ellipses) and these 

parts are decomposed in rings. To obtain the 

capacitance matrix, it’s just a question of adding the 

terms of the total capacitance matrix that correspond to 

the rings that belong to the objects, instead of adding 

them all to obtain the capacitance of the entire object. 

The charges in all the rings can be obtained from the 

complete equation q=CV, with the assigned voltages in 

the objects arranged in V in correspondence with the 

rings that belong to the objects. The potential anywhere 

around the objects is obtained by adding (16) for all the 

rings, and the electric field by adding (28) and (29) and 

using (30). The terms at the diagonal of the capacitance 

matrix correspond to the capacitances of the objects to 

ground when all the other objects are grounded too. 

The influence coefficients out of the diagonal measure 

the relation between the charge induced in one object 

and the voltage in another, when all the other objects 

are grounded. From the capacitance matrix, a model of 

the circuit using lumped capacitors can be derived, by 

observing the equivalence: 
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C1, C2, …, Cn are direct capacitances between the 

elements and the ground, and the other elements are the 

negative of the floating capacitances between the 

objects. The direct capacitance to ground for the object 

i is just the sum of the elements in the line, or column, i 

of C. 

 

VII. MAXIMUM ELECTRIC FIELD BETWEEN TWO SPHERES 

 

A good test for these field calculations is the known 

formula for the maximum electric field between two 

different spheres [4]. The expression comes directly 

from the method of images developed by Lord Kelvin 

[10]. For two spheres of radii a and b, a<b, with 

distance between centers c, at potentials v1 and v2, the 

maximum electric field at the surface of the smaller 

sphere (assumed as being where the surface of the 

smaller sphere intercepts the line between the centers 

of the spheres) is given by: 
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This formula converges slowly when the spheres are at 

small distance, but the speed is acceptable. [4] 
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develops a better expression for the case of spheres at 

small distance too. The choice of  appears to work 

correctly too when the other root is used. The formula 

works for any choice of v1 and v2, but always calculates 

the electric field at the point of the sphere with radius a 

closest to the other sphere, even when this is not the 

point of maximum electric field (as when v1 and v2 

have the same sign). Note that at that point the 

calculation using rings, as formulated, calculates an 

electric field slightly smaller than the correct value. 

 

VIII. CAPACITANCES OF TWO SPHERES 

 

Similar formulas, due to Kirchhoff, lead to the 

capacitance matrix of two spheres [5]. For two spheres 

with radii a and b and distance between centers c: 
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     (34) 

These formulas also converge slowly when the spheres 

are at small distance. [5] shows better formulas for 

small distances. [11][12] have the exact solution when 

the spheres are touching, eq. (49). 

 

The coefficients of the capacitance matrix represent the 

ratio between the induced charges and the voltages. k11 

and k12 represent capacitances to ground from a sphere 

with the other sphere grounded, and –k12 is the floating 

capacitance between the spheres. The differential 

capacitance between the spheres is obtained by 

assuming opposite charges q on them: 
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The capacitances to ground with the other sphere 

floating can also be calculated, by assuming zero 

charge in the floating sphere: 
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The capacitance of both spheres to ground is simply the 

sum of the four coefficients, because both are at the 

same potential and the total charge appears in the ratio 

C = Q/V. This capacitance can be used to find the 

relation between total charge and voltage in a pith-ball 

electroscope. For equal spheres it varies between (6) 

when the spheres are touching and two times (2) when 

they are far apart: 

122211 2kkkCpair ++=                        (37) 

IX.  POTENTIAL AND ELECTRIC FIELD AROUND A TOROID 

 

The solution of this problem can be traced to [3]. The 

formula for the potential also appears in [2]. The 

potential around an isolated toroid in free space, with 

central radius A and tube radius a, at a radial distance r 

and axial distance z from the center, is found as: 
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(38) 

The surface electric field can be found by the 

differentiation of (38). The maximum occurs when 

cosh  = x =A/a (toroid surface) and =0 (major 

diameter). The result, hinted in [3] but not developed, 

is the series: 
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The ideal exact breakdown voltage can then be 

obtained as in (24). This series converges somewhat 

more slowly than (9) but still can achieve high 

precision. The series (38) may lose precision due to 

errors in the evaluation of Qn+1/2(x) by the recursion 

(13). 

 

X. OTHER CAPACITANCES 

 

Other capacitances, of shapes without circular 

symmetry, are known from numerical analysis. 

Classical cases are the capacitances of the square [13] 

and triangular [6] flat plates, the cube [7] and the 

tetrahedron [6], all with side a: 

 

Csquare = 40a  0.3667896 = 40.81085a pF     (40) 

 

Ctriangle = 40a  0.25096 = 27.293a pF            (41) 

 

Ccube = 40a  0.6606782 = 73.51036a pF       (42) 

 

Ctetrahedron = 40a  0.35688 = 39.708a pF        (43) 

 

XI. FORCES BETWEEN RINGS 

 

The force between thin coaxial filaments can be 

calculated by an integration of the Coulomb force 

between them. For two rings with radii A and a and 

separation b, containing charges q1 and q2, the force is 

given by the double integral (44). The term cos 

projects the force along the axis: 
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(44) 

This integral can be exactly solved in terms of the 

complete elliptic integral of the third kind (45), which 

is also easy to evaluate. The code below computes in 

few iterations the three complete elliptic integrals E(k), 

F(k), and (k,c): 

( )


−−


=

2/

0

2222 sin1sin1
),(

kc

d
ck              (45) 

{ 

Complete elliptic integrals of first, second, 

and third kinds - AGM 

Returns the global variables Ek=E(k), Fk=F(k), 

and IIkc=II(k,c) 

Reference: Garrett, Journal of Applied 

Physics, 34, 9, 1963, p. 2571 

} 

procedure EFII(k,c:real); 

var 

  a,b,d,e,f,a1,b1,d1,e1,f1,S,i:real; 

begin 

  a:=1; 

  b:=sqrt(1-sqr(k)); 

  d:=(1-sqr(c))/b; 

  e:=sqr(c)/(1-sqr(c)); 

  f:=0; 

  i:=1/2; 

  S:=i*sqr(a-b); 

  repeat 

    a1:=(a+b)/2; 

    b1:=sqrt(a*b); 

    i:=2*i; 

    S:=S+i*sqr(a1-b1); 

    d1:=b1/(4*a1)*(2+d+1/d); 

    e1:=(d*e+f)/(1+d); 

    f1:=(e+f)/2; 

    a:=a1; 

    b:=b1; 

    d:=d1; 

    e:=e1; 

    f:=f1; 

  until (abs(a-b)<1e-15) and (abs(d-1)<1e-15); 

  Fk:=pi/(2*a); 

  Ek:=Fk-Fk*(sqr(k)+S)/2; 

  IIkc:=Fk*f+Fk; 

end; 

 

The solution for the force is: 
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                     (46) 

The formula reduces to the well-known case of a 

charged ring and a point charge if one ring has zero 

radius. In this case k = c = 0 and (0,0) = /2: 

( ) ( ) 2/322
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To calculate the forces in conductors decomposed in 

rings, the charges in the rings are first calculated using 

q=CV and then the forces in each ring can be obtained 

by (46), by adding the values obtained between a given 

ring and all the others. Finally, the forces in all the 

rings belonging to each conductor are added. The 

calculations for rings belonging to a single conductor 

can be omitted, because they add to zero (and this is a 

good test of the algorithm). 

 

The same result can be obtained by computing the 

forces multiplying the total axial electric field seen by a 

ring by its charge, using (29): 
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                (48) 

XII. EXAMPLES 

 

Some toroids analyzed by the methods above. Vmax was 

obtained from (39) and (24), except for the “holeless” 

toroid, where (23) and (24) were used. All the 

capacitances (in this and the other examples) in pF: 
 

D x d Cexact 20 rings 200 rings Vmax (kV) 

0.2x0.1 9.6877342 9.6862459 9.6877328 226.2 

0.3x0.1 13.527991 13.526517 13.527990 282.9485 

0.4x0.1 17.200315 17.198812 17.200313 328.9148 

0.5x0.1 20.738038 20.736480 20.738037 367.4999 

 

Open hemispheres (D = diameter): 
 

D Cexact 20 rings 200 rings 

0.2 9.1049254 9.0451871 9.0989244 

0.3 13.657388 13.567781 13.648387 

0.4 18.209851 18.090374 18.197849 

0.5 22.762314 22.612968 22.747311 

 

Flat disks (D = diameter): 
 

D Cexact 20 rings 200 rings 

0.2 7.0833502 7.0067052 7.0757027 

0.3 10.625025 10.510058 10.613554 

0.4 14.166701 14.013411 14.151405 

0.5 17.708376 17.516763 17.689257 

 

Hollow cylinders (D = diameter, h = height): 
 

D h 20 rings 200 rings 

0.2 1 27.2508153 27.5562772 

0.3 1 32.7125753 33.0502066 

0.4 1 37.6883716 38.0515957 

0.5 1 42.3659124 42.7508210 
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Hollow cones (D = diameter, h = height): 
 

D h 20 rings  200 rings 

0.2 1 20.6332474 20.8219907 

0.3 1 24.3200548 24.5554254 

0.4 1 27.7305014 28.0027331 

0.5 1 30.9951485 31.3004301 

 

In the last two cases no explicit formulas were found in 

the literature, although very probably they are known. 

 

The general algorithm for objects with axial symmetry 

was implemented in the Inca program and used to 

generate the next examples: 

 

A closed hemisphere can be generated by the 

combination of an open hemisphere and a flat disk (half 

of the rings for each element, D = diameter): 
 

D Cexact 20 rings 200 rings 

0.2 9.4052249 9.3751321 9.4038325 

0.3 14.1078374 14.0626982 14.1057488 

0.4 18.8104499 18.7502642 18.8076651 

0.5 23.5130623 23.4378303 23.5095813 

 

Two spheres in contact (D = diameter, half of the rings 

for each sphere): 
 

D Cexact 20 rings 200 rings 

0.1 7.7123025 7.7105894 7.7123007 

0.2 15.4246050 15.4211788 15.4246014 

0.3 23.1369075 23.1317682 23.1369021 

0.4 30.8492100 30.8423576 30.8492028 

0.5 38.5615125 38.5529470 38.5615035 

 

Two different spheres in contact. Some cases are listed 

in [11][12]. For spheres of radii a and b, when a = 2b 

3Ln4 0aC = , and when a = 3b 4Ln4/34 0aC = . 

 

a, b Exact 40 rings 400 rings 

0.1, 0.05 12.2237103 12.2233396 12.2237099 

0.1, 0.0333... 11.5684538 11.5680790 11.5684534 

0.1,0.025 11.3481786 11.3477839 11.3481782 

 

The last case, a = 4b, is more complicated, 

( )( )( )2/51Ln10/525Ln2/14 0 ++= aC . The general 

case can be computed by the formula in [11] (in a 

different form) and [12]: 


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where (x) is the digamma function (x) = ’(x)/(x), 

derivative of the logarithm of the gamma function, and 

 is Euler’s constant,   0.577215665.  

 

A toroid with the central hole closed by a thin disk. 

Note the small difference to a regular toroid. A toroid 

where the closure of the central hole doubles the 

capacitance would have an aspect ratio of about 

10.0004. Half of the rings for each element, D = 

major diameter, d = diameter of the tube: 

 

D x d 20 rings 200 rings 400 rings 

0.3x0.1 13.5176679 13.5296046 13.5296149 

0.4x0.1 17.2225678 17.2348074 17.2348180 

0.5x0.1 20.8623320 20.8748605 20.8748714 

 

Maximum electric field between spheres with opposite 

voltages. Half of the rings to each sphere. Dimensions 

as in (33). Fields in V/m/V: 

 

a, b, c Exact 40 rings 400 rings 

0.1, 0.1, 0.5 14.7654541 14.654655 14.762658 

0.1, 0.2, 0.5 20.7165237 20.434842 20.711307 

0.1, 0.3, 0.5  32.2318226 31.394734 32.219293 

 

Capacitance matrix for two spheres. Half of the rings to 

each sphere. Dimensions as in (33): 

 

k11 (radius a) 

a, b, c Exact 40 rings 400 rings 

0.1, 0.1, 0.5 11.6112177 11.6108704 11.6112174 

0.1, 0.2, 0.5 12.3051750 12.3047650 12.3051745 

0.1, 0.3, 0.5  13.7605384 13.7603742 13.7605373 

k22 (radius b) 

a, b, c Exact (pF) 40 rings 400 rings 

0.1, 0.1, 0.5 11.6112177 11.6108704 11.6112174 

0.1, 0.2, 0.5 24.3154312 24.3146700 24.3154303 

0.1, 0.3, 0.5  38.6334041 38.6326963 38.6334025 

k12 

a, b, c Exact (pF) 40 rings 400 rings 

0.1, 0.1, 0.5 -2.3264588 -2.3263316 -2.3264587 

0.1, 0.2, 0.5 -4.9456676 -4.9454137 -4.9456673 

0.1, 0.3, 0.5  -8.3626059 -8.3626805 -8.3626051 

 

Force between the two halves of a charged sphere. The 

exact value is simply 2/2

0vF = , independent of the 

radius of the sphere. The approximate calculation is 

also independent of it. Values for 1 V at the sphere. 

 

Radius (m) Exact (pN) 40 rings 400 rings 

1 13.90813 13.56727 13.87342 

 

Force between two equal spheres at the same potential, 

of 1 V. The exact values were computed by the 

approximations in [8] and [9]. The exact value for 

spheres in contact is ( ) 6/4/12Ln4 2

0 −= vF  [10].  

 

a, b, c Exact (pN) 40 rings 400 rings 

0.1, 0.1, 0.2 8.217796 8.218122 8.217796 

0.1, 0.1, 0.5 ~2.996884 2.996774 2.996872 

0.1, 0.1, 1.0  ~0.915993 0.915949 0.915993 

 

Force between the two halves of a horned toroid at 1 V. 

This case apparently has no known exact solution. The 

force doesn’t depend on the size of the device and is 

proportional to the square of the potential, as happens 

in all cases of objects in contact. Forces in pN 

 

D (m) 40 rings 200 rings 400 rings 

1 15.55986 16.02683 16.08724 

 

Force between two stacked horned toroids in contact, at 

1V. The exact solution is unknown, but in this case the 
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numerical analysis is expected to be precise. Forces in 

pN. 

D (m) 40 rings 200 rings 400 rings 

1 10.53158 10.53005 10.53003 

 

The force increases as the aspect ratio of the toroids 

increase. It doubles for a 12.68741 toroid. 

 

The problem with this approach is that as the number 

of rings increases it becomes more and more difficult to 

invert the matrix P with precision and in reasonable 

time. The examples show that the method is not very 

precise for objects with edges. The precision can be 

enhanced by adding more rings to the regions close to 

edges. For example, in the example of force between 

the two halves of a sphere, if the ±10 degrees around 

the equator of the sphere are modeled with 300 rings, 

with 100 rings for the remaining surface, the obtained 

force is of 13.90274 pN, with 4 correct digits. For the 

horned toroid, the same distribution produces 16.14268 

pN, or 40  0.1450832 N, possibly with similar 

precision. 

 

In the last page is a table of exact toroid capacitances 

calculated by (9). Note that it would be enough to have 

a single column with normalized aspect ratios, since for 

a fixed aspect ratio the capacitance is directly 

proportional to the major (or minor) diameter. 

 

Acknowledgments: Thanks to Paul Nicholson for 

discussions and verifications, and to Godfrey Loudner 

for several papers and the derivation of (39). 

 

This document is not a published paper. 
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9/2/2011: Corrected eq. 9 and small corrections in the 

text. 

6/1/2012: Corrected eq. 33. 

9/1/2012: Added section IX. 

10/2/2012: Added eq. 37. 

15/2/2012: Added section about forces. 

24/2/2012: Added formula for the capacitance of two 

different spheres in contact. 

25/2/2012: Added more examples of forces, small 

corrections. 

7/7/2018: Better values for the capacitances of the 

square plate and others. 
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Exact toroid capacitances (diameters in meters, capacitances in pF) 
 

Minor d.   0.010   0.020   0.030   0.040   0.050   0.060   0.070   0.080   0.090   0.100   0.110   0.120   0.130   0.140   0.150   0.160   0.170   0.180 

Major d. 

   0.100   3.707   4.148   4.431   4.653 ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 

   0.125   4.468   5.001   5.340   5.598   5.816   6.010 ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 

   0.150   5.205   5.827   6.221   6.518   6.764   6.979   7.174 ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 

   0.175   5.923   6.630   7.080   7.417   7.691   7.929   8.143   8.339 ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 

   0.200   6.625   7.414   7.919   8.295   8.600   8.861   9.094   9.306   9.503 ------- ------- ------- ------- ------- ------- ------- ------- ------- 

   0.225   7.313   8.182   8.740   9.156   9.492   9.778  10.029  10.258  10.469  10.667  10.854 ------- ------- ------- ------- ------- ------- ------- 

   0.250   7.990   8.937   9.547  10.002  10.369  10.679  10.951  11.196  11.422  11.632  11.831  12.019 ------- ------- ------- ------- ------- ------- 

   0.275   8.657   9.679  10.340  10.834  11.232  11.567  11.860  12.122  12.362  12.586  12.796  12.995  13.184 ------- ------- ------- ------- ------- 

   0.300   9.316  10.411  11.121  11.654  12.082  12.443  12.757  13.037  13.292  13.528  13.749  13.959  14.158  14.349 ------- ------- ------- ------- 

   0.325   9.966  11.133  11.892  12.462  12.921  13.307  13.642  13.940  14.211  14.460  14.693  14.913  15.122  15.322  15.513  15.698 ------- ------- 

   0.350  10.609  11.846  12.653  13.260  13.749  14.160  14.517  14.833  15.119  15.383  15.628  15.858  16.077  16.285  16.485  16.678  16.863 ------- 

   0.375  11.246  12.551  13.405  14.048  14.567  15.003  15.381  15.716  16.019  16.296  16.553  16.794  17.023  17.240  17.449  17.649  17.842  18.029 

   0.400  11.876  13.250  14.149  14.828  15.376  15.838  16.237  16.590  16.909  17.200  17.470  17.722  17.961  18.187  18.404  18.612  18.812  19.006 

   0.425  12.502  13.941  14.886  15.600  16.177  16.663  17.084  17.456  17.791  18.096  18.379  18.643  18.891  19.126  19.351  19.567  19.775  19.976 

   0.450  13.122  14.627  15.616  16.365  16.970  17.481  17.922  18.313  18.664  18.984  19.280  19.555  19.814  20.059  20.292  20.516  20.731  20.938 

   0.475  13.737  15.306  16.340  17.122  17.756  18.291  18.753  19.162  19.530  19.865  20.173  20.460  20.729  20.984  21.226  21.457  21.680  21.894 

   0.500  14.348  15.981  17.057  17.874  18.535  19.093  19.577  20.005  20.389  20.738  21.060  21.358  21.638  21.902  22.153  22.392  22.622  22.844 

   0.525  14.955  16.650  17.769  18.619  19.308  19.890  20.394  20.840  21.240  21.604  21.939  22.250  22.540  22.814  23.074  23.322  23.559  23.787 

   0.550  15.558  17.315  18.476  19.358  20.075  20.680  21.204  21.668  22.085  22.464  22.812  23.135  23.436  23.720  23.989  24.245  24.489  24.725 

   0.575  16.157  17.975  19.177  20.092  20.836  21.464  22.009  22.491  22.924  23.317  23.678  24.013  24.326  24.619  24.897  25.162  25.414  25.657 

   0.600  16.753  18.631  19.874  20.821  21.591  22.242  22.807  23.307  23.756  24.164  24.539  24.886  25.209  25.513  25.800  26.073  26.334  26.584 

   0.625  17.346  19.284  20.567  21.546  22.342  23.016  23.601  24.118  24.583  25.006  25.393  25.752  26.087  26.401  26.698  26.979  27.248  27.505 

   0.650  17.935  19.932  21.256  22.265  23.088  23.784  24.388  24.924  25.405  25.842  26.243  26.614  26.959  27.284  27.590  27.880  28.157  28.421 

   0.675  18.522  20.577  21.940  22.981  23.829  24.547  25.171  25.724  26.221  26.672  27.086  27.469  27.826  28.161  28.477  28.776  29.060  29.333 

   0.700  19.105  21.218  22.621  23.692  24.566  25.306  25.949  26.520  27.032  27.498  27.925  28.320  28.688  29.033  29.358  29.666  29.959  30.239 

   0.725  19.686  21.856  23.298  24.399  25.298  26.060  26.723  27.310  27.838  28.318  28.759  29.166  29.545  29.900  30.235  30.552  30.853  31.141 

   0.750  20.265  22.492  23.971  25.103  26.027  26.810  27.492  28.097  28.640  29.134  29.588  30.007  30.397  30.763  31.107  31.433  31.742  32.037 

   0.775  20.841  23.124  24.641  25.803  26.751  27.556  28.257  28.879  29.438  29.946  30.412  30.843  31.245  31.621  31.974  32.309  32.627  32.930 

   0.800  21.414  23.753  25.308  26.499  27.472  28.299  29.018  29.657  30.231  30.753  31.232  31.675  32.088  32.474  32.837  33.181  33.507  33.818 

   0.825  21.985  24.379  25.972  27.192  28.190  29.037  29.775  30.430  31.020  31.556  32.048  32.503  32.926  33.323  33.696  34.048  34.383  34.702 

   0.850  22.554  25.003  26.633  27.882  28.904  29.772  30.529  31.200  31.805  32.355  32.859  33.326  33.761  34.167  34.550  34.912  35.255  35.581 

   0.875  23.121  25.625  27.292  28.569  29.615  30.504  31.279  31.967  32.586  33.150  33.667  34.146  34.591  35.008  35.400  35.771  36.122  36.457 

   0.900  23.686  26.244  27.947  29.253  30.323  31.232  32.025  32.729  33.364  33.941  34.471  34.961  35.417  35.845  36.246  36.626  36.986  37.328 

   0.925  24.249  26.860  28.600  29.934  31.027  31.957  32.768  33.489  34.138  34.728  35.271  35.773  36.240  36.677  37.089  37.477  37.846  38.196 

   0.950  24.810  27.474  29.250  30.613  31.729  32.679  33.508  34.245  34.908  35.513  36.068  36.581  37.059  37.507  37.927  38.325  38.702  39.060 

   0.975  25.369  28.086  29.898  31.288  32.428  33.398  34.245  34.997  35.676  36.293  36.861  37.386  37.874  38.332  38.762  39.169  39.554  39.920 

   1.000  25.927  28.696  30.543  31.962  33.124  34.114  34.979  35.747  36.440  37.071  37.650  38.187  38.686  39.154  39.594  40.009  40.403  40.777 

   1.025  26.482  29.304  31.186  32.632  33.818  34.827  35.709  36.494  37.201  37.845  38.437  38.985  39.495  39.973  40.422  40.846  41.248  41.630 

   1.050  27.036  29.910  31.827  33.300  34.509  35.538  36.437  37.237  37.959  38.616  39.220  39.779  40.300  40.788  41.246  41.680  42.090  42.480 

   1.075  27.588  30.514  32.466  33.966  35.197  36.246  37.163  37.978  38.714  39.384  40.000  40.571  41.102  41.600  42.068  42.510  42.929  43.327 

   1.100  28.139  31.116  33.103  34.630  35.883  36.951  37.885  38.716  39.466  40.149  40.778  41.360  41.901  42.409  42.886  43.337  43.764  44.170 

   1.125  28.688  31.716  33.737  35.291  36.567  37.654  38.605  39.452  40.215  40.912  41.552  42.145  42.698  43.215  43.701  44.161  44.596  45.010 

   1.150  29.236  32.315  34.370  35.950  37.248  38.355  39.323  40.185  40.962  41.671  42.324  42.928  43.491  44.018  44.513  44.982  45.425  45.847 

   1.175  29.782  32.911  35.001  36.608  37.927  39.053  40.038  40.915  41.706  42.428  43.092  43.708  44.281  44.818  45.323  45.800  46.252  46.681 

   1.200  30.327  33.506  35.629  37.263  38.604  39.749  40.751  41.643  42.448  43.183  43.859  44.485  45.068  45.615  46.129  46.615  47.075  47.513 

   1.225  30.871  34.100  36.256  37.916  39.279  40.443  41.461  42.368  43.187  43.935  44.622  45.259  45.853  46.409  46.933  47.427  47.895  48.341 

   1.250  31.413  34.692  36.882  38.567  39.952  41.134  42.169  43.091  43.924  44.684  45.383  46.031  46.635  47.201  47.734  48.237  48.713  49.166 

   1.275  31.953  35.282  37.505  39.216  40.623  41.824  42.875  43.812  44.658  45.431  46.142  46.801  47.415  47.990  48.532  49.043  49.528  49.989 

   1.300  32.493  35.871  38.127  39.864  41.292  42.511  43.579  44.531  45.390  46.175  46.898  47.568  48.192  48.777  49.327  49.848  50.341  50.809 

   1.325  33.031  36.458  38.747  40.510  41.959  43.197  44.281  45.247  46.120  46.918  47.652  48.332  48.966  49.561  50.121  50.649  51.150  51.627 

   1.350  33.568  37.044  39.365  41.154  42.624  43.880  44.980  45.961  46.848  47.658  48.403  49.094  49.739  50.343  50.911  51.448  51.957  52.442 

   1.375  34.104  37.628  39.982  41.796  43.287  44.562  45.678  46.674  47.574  48.395  49.152  49.854  50.509  51.122  51.699  52.245  52.762  53.254 

   1.400  34.639  38.211  40.598  42.436  43.949  45.241  46.374  47.384  48.297  49.131  49.899  50.612  51.276  51.899  52.485  53.039  53.565  54.064 

   1.425  35.172  38.792  41.212  43.075  44.609  45.919  47.068  48.092  49.019  49.865  50.644  51.367  52.041  52.674  53.269  53.831  54.364  54.872 

   1.450  35.705  39.373  41.824  43.713  45.267  46.595  47.760  48.799  49.738  50.596  51.387  52.120  52.805  53.446  54.050  54.621  55.162  55.677 

   1.475  36.236  39.952  42.435  44.349  45.923  47.270  48.450  49.503  50.456  51.326  52.128  52.872  53.566  54.216  54.829  55.408  55.957  56.480 

   1.500  36.766  40.530  43.045  44.983  46.578  47.942  49.138  50.206  51.171  52.053  52.866  53.621  54.324  54.984  55.606  56.193  56.751  57.280 

 


