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ABSTRACT 

The paper discusses an accurate method for the prediction 
of where in the complex plane the poles and zeros of a 
transfer function of linear circuit will be, taking into ac- 
count errors in the component values of the circuit. Sensi- 
tivity analysis is used, with a generalization of a known 
process for the determination of pole sensitivity presented. 
The regions on the complex plane where the poles or ze- 
ros are expected to be can be computed as rectangles or, 
more accurately, as ellipses. Examples with comparisons 
with Monte Carlo analysis results are presented. 

1. INTRODUCTION 

In the design of electronic circuits, the careful control of 
the sensitivity of the design to variations in its component 
values is of great importance. In the case of filters, the 
usual methods for the evaluation of the effect of compo- 
nent errors are Monte Carlo analysis, and first-order sen- 
sitivity analysis. 

The Monte Carlo method usually consists in brute-force 
simulation of many circuits with the components varying 
within the expected ranges for the fabrication technology, 
with the resulting frequency responses plotted for com- 
parison. This method is commonly seen in recent papers. 
It is reliable, and easily implementable in most circuit 
simulators, but the analysis can take long time, and the 
reasons for good or bad results are not always simple to 
understand. 

In principle, the same results can be obtained, for the 
usual small tollerance components, by first-order sensitiv- 
ity analysis, at the expense of little more than one analysis 
of the circuit. Statistical predictions for deviations of gain 
and phase can easily be obtained. Errors in group delay 
can also be computed at low cost. There are, however 
some artifacts resulting from the first-order analysis that 
must be considered, in particular a tendency to 
overestimation of the error when the gain changes rapidly 
with the frequency. 

A factor that can complicate the evaluation of the sensi- 
tivity of a filter design is that in many applications the ab- 
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solute gain of a filter is not important, since it can be cor- 
rected by automatic gain control circuits, but only the 
shape of the frequency response curves is significant. 
With only the analysis of errors in the frequency response 
it is not always simple to separate the two effects. 

An alternative is to look at the errors in the poles and 
zeros of the filter, that control the shape of the frequency 
response curves, and are not affected by the absolute gain. 
Again the two techniques mentioned above can be 
applied. 

This paper discusses the prediction of pole and zero er- 
rors by sensitivity analysis. The basic technique is known 
[ 11, but we introduce a generalization in the computation 
of pole sensitivity [2], and two statistical measures for the 
errors [2]. The measures are compared with Monte Carlo 
analyses for verification of accuracy and presence of pos- 
sible artifacts. 

While studying this material, we noticed that some stan- 
dard realizations can present unusually high pole sensi- 
tivities for certain approximations. These results are dis- 
cussed at the end of the paper. 

2. TRANSMISSION ZERO SENSITMTIES 

The sensitivity of a complex transmission zero Zk relative 
to the variation of a parameter x in the circuit is conven- 
iently defined as: 

where the apostrophe denotes that this is a nonnormalized 
sensitivity measure. A normal sensitivity measure would 
be normalized (divided by z k ,  in this case). The zero sen- 
sitivity can be computed using standard frequency-domain 
sensitivity analysis as: 

where T(s) is the transfer function in Laplace transform 
that has the zero. The sensitivity of T(s) in relation to s 
can be obtained by the addition of the sensitivities of T(s) 



relative to all the reactive element values (capacitors Ci 
and inductors Li), as: 

All that has to be computed are the partial derivatives of 
T(s) relative to all the component values at the transmis- 
sion zero frequency. This can be done conveniently by the 
use of the adjoint network method [ 11. 

3. POLE SENSITIVITIES 

Pole, or natural frequency, sensitivities can be computed 
by the same process, if the original circuit is modified in a 
way that transforms poles into transmission zeros. This 
can be done by zeroing all the inputs of the original net- 
work and inserting a current source in series with one 
branch of the circuit. The transfer function T(s) to be 
considered is the input impedance seen by this source. 
The natural frequencies of the original network appear as 
zeros of this impedance. 

Note that the current source can be inserted in series 
with any branch [2], and not only at the input, as done in 
[l]. This allows the computation of sensitivities of poles 
that are nonobservable from the circuit input, as happens 
with poles of filters built as biquad cascades, or of nonob- 
servable and noncontrollable natural frequencies that 
appear in some filter structures (as LC ladder band-reject 
filters). Note also that the element in the branch where the 
current source is inserted must have influence in the pole 
location, otherwise the impedance zero appears canceled 
by a pole, and the computation is impossible. 

4. MULTIPARAMETRIC MEASURES OF POLE 
AND ZERO SENSITIVITY 

Given the relative variabilities Vi=Axjxj of the circuit 
component‘s values, the first-order deterministic error in a 
zero or pole sk can be computed as: 

(4) 
i=I 

This error can be added to the pole or zero complex fre- 
quency for the approximate computation of its new posi- 
tion. 

When the xi elements vary in a random way, the pole or 
zero (in first-order approximation) moves inside a poly- 
gon centered at its nominal position, that has as corners 
some of the points obtained by adding the error above to 
the original frequency, with the Vi set to plus or minus the 
maximum values. In practice, it is very improbable that 
the extreme values of this polygon are reached, because 
this would require that all the xi  present the maximum er- 

ror simultaneously. 
A more realistic measure is to compute statistical devia- 

tions for the pole or zero positions. The simplest measures 
are the statistical deviations of real and imaginary parts, 
defined as: 

These measures keep the unit used for the Vi: If the Vi 
are given as variances, the V, are also variances. If the Vi 
are number of standard deviations ( 3 0 ,  usually), The V, 
represent also the same number of standard deviations. 

They define a rectangle in the complex plane where sk 
is expected to be. Tests against Monte Carlo analysis 
show that the measure is reliable, and it is theoretically 
exact if the xi vary following Gaussian distributions. 

A problem with this measure is that the correlation be- 
tween the errors in the real and imaginary parts of sk due 
to a single element is being ignored. The actual area 
where sk is expected is smaller that the predicted rectan- 
gle (although touching its borders), has curved borders, 
and usually there is more tendency to movement in a cer- 
tain angle. These facts are easily verified by Monte Carlo 
analysis. 

A better approximation is to consider the region where 
the sk poles or zeros are expected as ellipses in the com- 
plex plane. The angle of maximum expected variation, 
that is the angle of the ellipse longer radius with the real 
axis, can be obtained as: 

where the plus or minus signs are considered in the way 
that maximizes the modulus of the summation (it is 
enough to reduce the error angles to two adjacent quad- 
rants). It is the angle of the longest vector that can be ob- 
tained by adding the error vectors with their amplitudes 
squared. 

The two radii of the ellipse are obtained by projecting 
the error vectors over the corresponding directions, con- 
sidering Gaussian distributions (the dots mean scalar 
products): 

The result is an ellipse that is approximately inscribed 
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in the original rectangle. Note that if the error vectors are 
all along two orthogonal directions, it is not possible to 
determine the angle of maximum expected variation. 
This, however, rarely occurs. 

5. EXAMPLES 

The sensitivity measures described above are first exem- 
plified in the filter shown in fig. 1. It is a 4th-order ellip- 
tic LC singly-terminated filter, coupled to two constant- 
resistance second-order all pass phase equalizers based in 
gyrators. This circuit can be used as prototype for active 
realizations (a doubly terminated version would be less 
sensitive, but the 4th-order elliptic approximation does 
not admit an LC doubly terminated realization). This is 
an example where it is necessary to apply the input cur- 
rent source that transforms the natural frequencies into 
zeros to a branch different from the input. The poles of 
the equalizers are not observable from the input. The 
current source was applied in series with the output ter- 
mination resistor, that affects all the 8 poles. 

LI L2 

Fig. 1. Filter for the example. 
L1=0.8718; L,=1.3530; L3~2.37; L4=2.17; C,=0.4428; 

C2=1.7018; C3=0.0595; C4=1.0069; C5=0.778; C6~4.55 

The figures 3-5 show the error predictions for some of 
the filter's poles and zeros, compared with results of a 
Monte Carlo analysis with 250 samples. All the circuit 
elements were assumed as having variabilities of 0.01, or 
1 % (3 standard deviations), following Gaussian distribu- 
tions. The filter's poles and zeros (fig. 2) are: 

Poles: Zeros: 
-0.21 1+0.706j (#2) k3.525j 
-0.105f0.994j +1.610j 
-0.23O?O0.220j +0.230+0.220j 
-0.364kO.479j (#3) +0.211f0.706j (#1) 

The second example illustrates that some designs where 
low sensitivity is expected can present very high pole sen- 
sitivities, and that there are variant designs with much 
better characteristics in this aspect. 

Fig. 6 shows a classical LC doubly terminated design 
for a 5th order Bessel filter. This is one of the two possi- 
ble designs for this filter with equal terminations, ob- 
tained by the classical design method [ 11, by expansion of 
the 2, impedance with the characteristic function having 
all its complex zeros in the left half-plane. The other de- 
sign would be obtained by distributing the zeros of the 
characteristic function in both sides of the imaginary axis 

(this other design is somewhat better in terms of pole 
sensitivity that the one used as example). 

Fig. 2. Poles and zeros of the example filter in fig. 1 (with posi- 
tive imaginary parts). The indicated zero and poles are used as 

examples. 

0 

Re: 2.110E-01 
Im: 7.056E-01 
UR: 2.984E-03 
VI: 5.049E-03 
Ra: 5.153E-03 
Rb: 2.800E-03 
Ang: 83.074 

Fig. 3. Zero #1 in fig. 2, with predicted rectangular and ellipsoi- 
dal error areas, and results of a Monte Carlo analysis. The zero 

location and the measures (5) ,  (7), and (6) are listed. 

Re: -2.110E-01 
I m :  7.056E-01 
UR: 2.055E-02 
UI: 8.591E-03 
Ra: 2.056E-02 
Rb: 8.563E-03 
finq: -1.259 

Fig. 4. Pole #2 in fig. 2. Scale reduced by 4 relative to fig. 3. 

Fig. 7 shows an alternative design, where the symmetry 
of the structure is forced by the introduction of additional 
resistors [2][3]. This design is not practical for a passive 
realization, due to the attenuation caused by the added re- 
sistors, but can be used as prototype for active and digital 
simulations, where the equalization of dynamic range re- 
moves this problem, due to the good sensitivity charac- 
teristics. 
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Re: -3.643E-01 
UR: 2.792E-02 
UI: 6.004E-02 
Ra: 6.355E-02 
Rb: 1.860E-02 

I m: 4.786E-0 1 

Ang: -111.430 

X 

Fig. 5. Pole #3 in fig. 2. Scale reduced by 8 relative to fig. 3. 

!“%XiUf 
Fig. 6. LC doubly terminated 5th-order Bessel filter. 

C1=0.9303; 4=0.4577; C3=0.3312; L4=0.2090; Cg=0.0718. 
1 L1 Li R I  L? 

Fig. 7. IUC symmetrical 5th-order Bessel filter. 
L1=0.1791; Rl70.2852; C2=1.0985; R2~0.3753;  L3~0.2337.  

Fig. 8 shows the previsions for the pole positions ob- 
tained by the proposed criterions for both structures, for 
1% 30 random variations in all the elements. The LC 
doubly terminated structure presents extremely high pole 
sensitivities, orders of magnitude higher than the pole 
sensitivities of the symmetrical design. 

Fig. 9 shows the error prevision for the pole with higher 
sensitivity in the design in fig. 6 ,  compared with the re- 
sults of a Monte Carlo simulation with 250 samples (1 % 
variabilities ( 3 0 )  with Gaussian distributions for all ele- 
ments). As expected, the error estimation is not precise 
when the predicted error is so large. For the other poles, 
and for the other design, the predictions are accurate. 

6. CONCLUSION 

Two statistical measures of pole and zero sensitivities 
were presented, and also a generalization of a method for 
the computation of pole sensitivities. The statistical pre- 
dictions of pole and zero positions are accurate for small 
errors, as exemplified by the low sensitivity zero in fig. 3, 
and usually still acceptable for larger errors, as in figs. 5.. 
For very large errors, the ellipsoidal prediction is not so 

accurate, as seen in fig. 9. It was also shown that even LC 
doubly terminated filters designed for maximum power 
transfer can exhibit very large pole sensitivities. Of the 
most usual approximations, this problem appears to be 
more apparent with the Bessel approximation. The reason 
appears to be related to the asymmetry of the filter struc- 
ture, that turns it suboptimal in terms of sensitivity [2][3]. 
As shown, a symmetrical structure in these cases results 
in much more precise pole determination. 

Rs--3 52E+00 
Imi 1:?43E+00 
UR: 5.402E-01 2.459E-02 : VI: 6.898E-01 1.551E-02 : 
Ra: 8.646E-01 2.458E-02 : 
Rb: 1.419E-01 1.553E-02 i 
Ang: 127.763 -7.556 ; 

Re: -3.647€+00 
Im: 0.000€+00 
UR: i .358~+00 3.589~-02! 
UI: o.aaaE+oo O.OOOE+OO, 

Rb: 0.000E+00 0.000E+00: 
Ra: 1.358E+00 3.589E-02: 

_ _ _ _  Ang: -180.000 ...... 0.000:.. 
Fig. 8. Poles (upper complex plane) and predicted errors for the 
filters in figs. 6 and 7. The first errors listed correspond to the 

filter in fig. 6 and the second to the filter in fig. 7. The errors for 
the symmetrical design are too small to be seen at this scale. 

Re.-33 2E+00 
Iml 1:773E+00 
UR: 5.402E-01 
VI: 6.898E-01 
Ra: 8.646E-01 
Rb: 1.419E-01 
Ang: 127.763 

I 

Fig. 9. Error prediction for the most sensitive complex pole of 
the filter in fig. 6, compared with the actual pole distribution 

obtained by a Monte Carlo simulation. 
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