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Abstract — This paper presents a method for the overdesign of
gain-shaping filters in an optimal way. The passband minima
and the stopband maxima of a filter approximation are ad-
justed using an iterative method, with the objective of obtaining
a special approximation, that satisfies exactly the specifications
when the worst-case error in the filter transfer function due to
errors on its components is considered.

L. INTRODUCTION

The classical filter approximations for filters with steep transition
bands, the Chebyshev approximation for all-pole filters and the el-
liptic approximations for filters with finite transmission zeros, re-
sult in equal-ripple passbands, and in the case of the elliptic ap-
proximations, in also equal-ripple stopbands. These characteristics
are necessary if the approximations are to provide the shortest
possible transition bands for a given filter order and attenuation
specifications.

It is recognized, however, that these optimal approxima-
tions are in many cases of impractical realization, because the pre-
cision needed in the component values for the realization of the fil-
ter by the desired structure is unattainable. This happens when er-
rors in the filter component values can modify the filter transfer
function in a way that violates the filter specifications.

The usual approach when this occurs is to overdesign the
filter, by reducing the passband ripple, increasing the minimum
stopband attenuation, and if necessary increasing the filter order. In
some cases, this turns the approximation into something closer to
the Butterworth approximation, that is the limit of the Chebyshev
or elliptic approximations when the passband ripple is reduced and
the stopband minimum attenuation increased. In a filter built with
an LC doubly terminated structure, or any active simulation of one
that preserves the sensitivity characteristics, this approach generally
has success, because the passband and stopband sensitivities de-
crease in the process. Usually the overdesign is done simply by us-
ing more strict filter specifications, and obtaining an equal-ripple
approximation that satisfies them.

An observation of the sensitivity characteristics of most
filter structures realizing an equal-ripple approximation shows that
the errors due to component value errors are not uniform in fre-
quency, but are higher at the passband and stopband borders. A rea-
son for this is that in these regions the transfer function is deter-
mined by groups of poles or zeros closely spaced, and errors in their
relative positions cause large errors in the transfer function magni-
tude.

Most high-precision filters are based on LC doubly termi-
nated structures, or realized as active simulations of passive
prototype filters with those structures, due to the very low sensitiv-

ity to variations in element values attainable [1]. In an LC doubly
terminated filter, the gain cannot exceed the one determined by
maximum power transfer. In consequence, in a filter designed with
maximum power transfer at the passband maxima, the passband er-
rors due to small changes in component values can affect only the
passband minima. This results in the sensitivities to all the LC
element values being null at the passband maxima, and with peaks
located somewhere between adjacent maxima. For equal-ripple ap-
proximations, these sensitivity peaks are higher close to the pass-
band border. For the terminations, the sensitivities have a fre-
quency-dependent part that follows the same pattern, and a fre-
quency-independent part (+0.5) that affects only the “flat-loss” of
the filter, that in most cases can be ignored. At the stopband, the
error analysis by sensitivity presents the artifact of infinite sensi-
tivities to the values of the elements forming the zeros at the
transmission zeros frequencies [2]. The errors that are really im-
portant are the ones at the peaks of the stopband “humps”. For
equal-ripple approximations, these errors are higher close to the
stopband border. Figures 1-2 illustrate these characteristics, by de-
picting the gain characteristic of a 7th-order elliptic low-pass filter
(1 dB passband ripple, 50 dB minimum stopband attenuation, and
passband border at 1 rad/s) realized by a standard LC doubly termi-
nated ladder structure, with the gain statistical deviation when un-
correlated 5 % errors in all the element values are considered. The
error was computed by eq. (1), and is shown subtracted in the
passband and added in the stopband, with the terminations’ sensi-
tivities discounted of the frequency-independent part.
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Fig. 1. Passband gain curve of a normalized elliptic 7th-order low-pass filter,
and the gain curve with the statistical deviation due to 5 % errors in all the ele-
ment values subtracted, with the flat-loss error discounted. The maximum gain

was normalized to 0 dB, as in the other figures.
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Fig. 2. Stopband (beginning) gain curve for the same filter, shown also with the
statistical deviation added, discounted of the flat-loss error.

If the passband or stopband ripple is irregular, it can be
shown that there is a direct proportion between the depth of the
passband “valleys” and stopband “humps” and the error at their fre-
quencies. This relation is used in the optimal overdesign method
described below.

II. OPTIMUM OVERDESIGN

The gain specifications that are certainly satisfied by a fil-
ter can be obtained by adding or subtracting the error curves from
the nominal gain curve, as done in figs. 1-2. The errors can be com-
puted by several methods. The one used in the examples in this pa-
per is the gain statistical deviation, computed by:
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where T(jo ) is the transfer function, x; are the filter component

AT (jw)| =

values, and Vv, their relative tolerances, Ax/xi.

In an LC doubly terminated filter, it is easy to eliminate
from the errors the flat-loss errors, that affect only the gain of the
filter and are easy to compensate. They are caused only by errors in
the terminations at the frequencies where maximum power transfer
occurs. With the sensitivities of the terminations discounted of this
value, the measure (1) reduces to zero at the maximum power trans-
fer frequencies, that is, at the passband gain maxima for a well-de-
signed filter. With this discounted error used, the passband gain
limits are obtained by subtracting the error curve from the nominal
gain curve, since the maximum power transfer prevents any in-
crease in the passband gain.

In the stopband, the maximum gain (minimum attenu-
ation) limit is obtained by adding the error curve to the nominal
gain curve. The discount of the flat-loss error can also be used. The
infinite sensitivities at the transmission zeros can be ignored, by
considering only the error at the stopband maxima and borders, or
by using “slope-normalized” sensitivities [2].

When the errors in an overdesigned equal-ripple filter are
considered, clearly the worst-case (in this case in statistical sense)
resulting filter is not equal-ripple at all. It is possible, however, to
use the fact that errors are higher at the passbands and stopbands
limits to obtain a more selective overdesigned filter. This can be
done by computing the overdesigned approximation with irregular
passband and stopband ripples, in a way that makes the worst-case
resulting filter equal-ripple. The idea is exemplified in the example
below.

III. ExaAMPLE I

A Tth-order elliptic filter realized as a doubly terminated
LC ladder presents the passband and stopband gains and errors
shown in figs. 1-2. The objective is to obtain a similar filter, that in
the worst case is equal-ripple in the passband and stopband. An al-
gorithm for obtaining an optimally overdesigned filter is:

1. Compute the worst-case gain curve, as the filter gain curve
(dB), minus the flat-loss (—6.0206 dB in the example), minus
the gain statistical deviation (dB) in the passband, and plus the
gain statistical deviation in the stopband, as discussed in the
last section. If it is equal-ripple, stop. Else, call E; the gains at
the passband minima of this composite curve:

E, =|T(jo,)| - flat - loss + A|T( joo, )| dB (1)

and call E;' the gains of the composite curve at the stopband
gain maxima:

Ei, =|7(jw,)| - flat-loss+A|T( jo, )| dB )

Call A, the designed gains (dB) of the filter at the passband
minima and A;' the designed gains at the stopband maxima,
both without considering the flat-loss.

2. Compute new A=(-A, XA)/E, and A/=(-A,, XA, K, the
gains at the passband minima and at the stopband maxima to
be used as design parameters in the next iteration. A, is the
specified maximum passband attenuation and A, . is the
specified minimum stopband attenuation (dB). These expres-
sions assume that the direct proportions among the E; and E; ,
and the corresponding A; and A, are linear and independent,
what is approximately true, specially at the passband.

3. Compute a new approximation, with irregular ripple, with
passband minima A; and stopband maxima A; Suitable algo-
rithms were described in [3], and specially in [4]. Compute the
new values for the filter network.

4. Returnto 1.

TABLE I
Nominal passband minimum gains A;, stopband maximum gains A.' , and corre-
sponding gains with worst-case error considered, E; and E.' , for the six first steps
of the optimization algorithm of the example.

—-A/-E, -A|-E, —A,]-E,|-A |-E, —A/|-E, —A,]-E,
| I I I 50 50 50
1.154 1.341 2.382 | 40.63 4751  49.08
,| 0866 0746 0420 [ 6178 52.62 5093
1.012 1.049 1154 | 48.64  50.10 50.00
3 0.856 0711  0.364 | 63.51 5251 50.93
1.001 1.009 1.037 | 49.23  50.01  50.00
,| 0855 0705 0351 [ 6450 5250 5093
1.000 1.002 1.008 | 49.52  50.00  50.00
s 0855  0.703 0348 | 6513 5249 5093
1.000 1.000 1.001 | 49.68  50.00  50.00
P 0855  0.703  0.348 | 6555 5249 50093
1.000 1.000 1.000 | 49.77  50.00  50.00

Table I shows the obtained results for 6 iterations, start-
ing from a normalized filter with 1 dB passband ripple and 50 dB
minimum stopband attenuation. 5 % tolerances in the filter compo-
nents were assumed. It can be observed that the convergence is
slower at the passband and stopband borders. Figures 3-6 show the



comparison of the optimum overdesigned filter (figs. 3, 5) with a
conventional equal-ripple overdesign, obtained by the same algo-
rithm, but considering only As, Al' and E, E 1' (this results in a 0.41
dB passband ripple and 57.43 dB minimum stopband attenuation.),
and with a 8th-order modified overdesigned elliptic filter (with two
transmission zeros at oo, the next that admits a simple ladder reali-
zation), obtained in the same way, resulting in 0.33 dB passband
ripple and 60.61 dB minimum stopband attenuation (figs. 4, 6).
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Fig. 3. Optimum overdesigned filter passband gain, with flat-loss discounted,
shown also with the gain statistical deviation subtracted.
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Fig. 4. Equal-ripple 7th-order and 8th-order overdesigned filters passband gains,
as in fig. 3.

The optimum overdesigned filter is more selective than
the equal-ripple one of the same order, and slightly less selective
that the 8th-order uniform-ripple overdesigned filter, as can be ob-
served in figs. 5-6.

A frequency scaling shall be done to center the transition
band of the overdesigned filter in the specifications (not done in the
example). Note that, with this frequency scaling the method would
find a solution for any values of A, and A, .. The limit solution
would be a Butterworth approximation, frequency scaled as needed
to reduce the worst-case passband and stopband errors. Of course,
the order could have to be increased to satisfy the transition band
width specification, and the order increase would increase the error
at the passband and stopband borders. In critical cases a solution
can be inexistent, by this or by any other overdesign method.
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Fig. 5. Optimum overdesigned filter stopband gain, with flat-loss discounted,
shown also with the gain statistical deviation added.
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Fig. 6. Uniform-ripple 7th-order and 8th-order overdesigned filters stopband
gains, as in fig. 5.

IV. DIRECT OPTIMIZATION

For the implementation of the proposed method, a com-
puter program was used to compute and locate the passband and
stopband gain limits, with errors computed by sensitivity analysis,
done by the “adjoint network” method. The filter synthesis steps
were done by another program, that implements the algorithm de-
scribed in [4]. Although rather complicated, this procedure is able
to design the filters with great precision, in a reasonable time, and
without numerical problems. A simpler approach was investigated,
using direct optimization or the filter structure, using a simple gra-
dient optimizer included directly in the analysis program. The algo-
rithm is:

1. Analyze the filter, as in the first step of the previous algorithm
(locating passband minima and stopband maxima, with error
considered), but locate also the passband maxima of the gain
curve alone.

2. For each of the frequencies of these extremes, and also for the
passband edge frequency, write an equation:

$orels )2 o), —io),,..,)

desired

where the x; are a set of n elements of the filter, usually all the
reactive elements. The term at the right side is the error in Ne-
pers between the desired gain and the obtained gain (with er-



ror considered) with the present filter structure. This results in
a system of linear equations for Ax;/x;, that when solved gives
corrections for the element values that transform the present
filter into another with a gain curve closer to the desired one.
The assumption that the error extremes are proportional to the
gain extremes allows the use of gain sensitivities to compute
the corrections.

3. For usual filter structures, the number of extremes needed for
the complete characterization of the filter gain curve, plus val-
ues that define frequency scaling and bandwidth, is precisely
equal to the number of reactive elements. In these cases the
system of equations (3) is directly solvable (if not singular). If
there are more reactive elements than needed, or if the termi-
nations are included among the x;, the system (3), in the form
Sv=e, has more unknowns than equations, and there are many
solutions. A convenient solution is obtained by transforming
the system of equations into SSTz=e, with v (the Ax/x; vector)
recovered as v=STz. It can be shown that this transformation
computes the vector v with the minimum possible modulus,
that satisfies Sv=e.

4. Update the element values by x; - x(1+Ax/x;), and return to
1.

This algorithm is simpler, and less computationally inten-
sive than the previous one, since it avoids the synthesis of a new
approximation, that is also done by optimization, and the filter syn-
thesis. It presents, however, some numerical problems. The most
serious is that the LC doubly terminated realization with maximum
power transfer is an “extreme” solution for an approximation. The
gain sensitivity matrix S becomes singular at the solution. It is ob-
vious that the lines of the matrix corresponding to passband max-
ima are null, but there are also other relations that turn the matrix
singular even if the maxima are substituted by other frequencies.
The problem can be avoided by ignoring the equations of the
maximum power transfer extremes when the gain is close enough to
the desired value, with the transpose matrix technique (step 3
above) used to correct the number of unknowns in the system of
equations. This problem does not exist for filters without maximum
power transfer, but another problem appears: Because there is no
relation among gain minima and error maxima, and the discounting
of the flat-loss error can' be made, the number of extremes in the
gain curve and in the gain—error curve in the passband can be dif-
ferent. For any filter, the overdesign of passband and stopband
borders is also problematic, since the assumed proportionality be-
tween attenuation and error is not valid in these regions. The mul-
tiplication of the computed Ax,/x; by a reduction factor (about 0.5) is
usually necessary to force the convergence in these cases.

V. ExampLE II

This example illustrates the overdesign by direct optimi-
zation. A normalized 6th-order irregular band-pass filter, with pass-
band between 1 and 2 rad/s, with 1 dB ripple, and an inferior rejec-
tion band with 2 transmission zeros and minimum attenuation of 50
dB was computed directly by the optimization algorithm described,
from an initial approximation with the correct shape, obtained by
estimating empirically the element values.

The filter was overdesigned by the consideration of the
errors at the two stopband maxima, the two passband minima, and
the passband borders, with the terminations fixed, and 5% toler-
ances assumed for all the elements. The final element values are

listed in fig. 7. The obtained gain curve is shown in fig. 8, with the
passband detailed.
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R\=Rs=1; C;=1.186; L,=0.312; C,=1.198; L,=2.816; L,=0.428;
C,=1.572; L,=1.202; C=1.183; L;=0.348.

Fig. 7. Overdesigned irregular band-pass filter. Units in Q, F, and H.
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Fig. 8. Frequency response of the overdesigned irregular band-pass filter.

V1. CONCLUSIONS

A method for optimized overdesign of gain-shaping filters
with maximum-ripple passbands and stopbands was presented, with
two algorithms described. The first algorithm is more precise, al-
though more computationally intensive. The second algorithm is
simpler and more general, but somewhat numerically problematic.
The examples used the statistical deviation as a measure of the
worst-case error. A true worst-case error, or any other kind of error
could also be used exactly in the same way. The method, specially
with the second algorithm, can easily be extended to the overdesign
of phase characteristics, and can also be applied to other purposes
than to only compensate for random errors in the component values.
Deterministic effects, as the effects of losses and parasitic poles in
active realizations can also be compensated.

REFERENCES

[1] H. J. Orchard, “Inductorless filters,” Electronics Letters, vol. 2,
June 1966, pp. 224-225.

[2] J. K. Fidler and C. Nightingale, “Slope-normalized sensitivity:
an new sensitivity measure,” Electronics Letters, vol. 15,
January 1979, pp. 54-56.

[3] A. C. M. de Queiroz and L. P. Caldba, “Physically symmetrical
and antimetrical ladder filters with finite transmission zeros,”
Proc. 30th MWSCAS, Syracuse, USA, 1987, pp. 639-643.

[4] A. C. M. de Queiroz and L. P. Cal6ba, “An approximation algo-
rithm for irregular-ripple filters,” Proc. STB/IEEE International
Telecommunications Symposium, Rio de Janeiro, Brazil, 1990,
pp- 430-433.



