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ABSTRACT: The paper shows a new and simple
technique for the design of “multiple resonance net-
works” . These networks are composed of inductors,
transformers, and capacitors, and have the property of
transferring all the energy initially stored in a capacitor
to another capacitor in the network, through a linear
transient. The new technique doesn’ t require the
solving of a system of equations, and is as general as
another technique previously proposed by the author.

1. INTRODUCTION

Multiple resonance networks [1] is a name that
generalizes the concepts of the “double resonance” and
“triple resonance” networks known in the literature
[2][3]. These networks are composed of ideally lossless
inductors, transformers, and capacitors, and designed in
such a way that some energy initially stored in a ca-
pacitor is, at the closing of a switch, transferred to an-
other capacitor in the circuit through a linear transient.
At a certain instant, all the energy is available in this
other capacitor, and can be used for some purpose.
Networks with this function are usually found in pulsed
power systems for physics research, where the energy
is transferred from a large capacitance charged at low
voltage to a small capacitance, that becomes charged at
high voltage, with the same energy.
The double resonance case is long known, and has
found applications ranging from early radio transmit-
ters [6] and electrotherapeutics [4] to the generation of
long sparks for demonstrations about electricity [5].
The triple resonance system was developed more re-
cently [3], for pulsed power applications. In [1], it was
shown that these cases can be generalized to any order,
and a relatively simple design procedure was proposed,
based on the synthesis of the networks instead of in
results of their analysis.
The following sections review the double and triple
resonance cases, and the technique presented in [1].
Then, a simpler technique is proposed and ill ustrated
with an example.

2. DOUBLE RESONANCE NETWORKS

Double resonance networks are usually built as a trans-
former with loose coupling, with a primary capacitor at
one side and a secondary capacitor at the other side.

The secondary capacitor is usually formed by the dis-
tributed capacitance of the secondary windings and the
distributed capacitance of a terminal, or of the device
that receives the energy. The device is known as the
“Tesla transformer” , and design formulas for it are long
known [6] and can be found in many texts. Directly
from the formulation in [1], and relative to fig. 1, the
relations for optimum design can be obtained as:
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The constants k and l are two positive integers, with l-k
odd, that define the operation “mode”. They determine
the two natural oscill ation frequencies of the network
with the switch closed, that appear as:
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The complete energy transfer occurs in a time equal to
π/ω0, at the “ l” th semicycle of the output voltage, or the
“ l/2” th cycle of the primary voltage. At this instant, all
the currents are null , and all the energy initially stored
in C1 is in C2. If the energy is not used at this point, it
returns to C1 in another identical time interval, and the
cycle repeats.

C1 C2L 1 L 2

k12

Fig. 1. Double resonance network with a transformer.

Several other equivalent circuits can be obtained, and
as discussed in [1], it’s simpler to derive the design
equations for a case that has no transformer (see fig. 3),
that can always be reincluded by a simple circuit trans-
formation.



3. TRIPLE RESONANCE NETWORKS

The fastest mode allowed for double resonance net-
works is k=1, l=2, that results in k12=0.6. This mode is
preferred for pulsed power systems, because the energy
is transferred in just one cycle. The tight coupling,
however, imposes severe construction problems for a
high-voltage transformer, and so a solution found was
to add an extra inductor between the transformer and
the output capacitor, that supports great part of the out-
put voltage, reducing the stress on the transformer. This
idea can also be traced to the works of Tesla at the end
of the XIX century (the “Tesla magnifier” circuit).
Systems built i n this way were adopted for several
pulsed power applications due to the better insulation.
A drawback from the structure is that the parasitic ca-
pacitance at the output of the transformer stores signifi-
cant energy, that is not delivered to the output capaci-
tance. Recently, it was shown [3] that if another ca-
pacitor is added to the circuit, there is again a set of
configurations that result in complete energy transfer.
Design formulas for the triple resonance network in fig.
2 can be found (by manipulating the formulas in [3]
and [1]) as:
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Where k, l, and m are three successive integers with
odd differences, that define the operating mode, and
also multiply a basic frequency ω0 to produce the three
natural oscill ation frequencies of the complete circuit
with the switch closed:
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Fig. 2. Triple resonance network with a transformer
and an additional inductor.

The complete energy transfer occurs again at the time
π/ω0, at the “ l/2” th cycle of the primary voltage. Also

for this circuit there are many equivalents, including
the transformerless version used in the deductions in
[1], and even a version with two transformers in cas-
cade.

4. MULTIPLE RESONANCE NET-
WORKS - GENERALIZATION

In [1], it was presented a design procedure that covers
the double and triple resonance cases, and cases of
higher orders. The procedure was based on two obser-
vations. The first was that the transformer can be elimi-
nated from the design problem by a simple circuit
transformation, leaving a transformerless network that
is just a ladder circuit with series inductors and shunt
capacitors, with one shunt inductor, or more, as shown
in fig. 3. This circuit has the same complexity order of
the original and produces the same input and output
voltage waveforms (with a scaling factor).
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Fig. 3. Transformerless multiple resonance network.

The second observation was that, as the waveforms are
symmetrical in respect to the time, the network can be
designed as seen from the output side. An initial energy
in Cp also makes its way back to C1 in π/ω0 seconds. A
charged Cp can be replaced by an uncharged capacitor
in parallel with an impulsive current source. In this
configuration, the Laplace transform of the voltage
over Cp becomes proportional to the impedance seen
between the terminals of Cp. This impedance can be
expressed in Foster’s first form, as:
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Where the kj correspond to the k, l, m, … of the simpler
cases, also sequences of positive integers with odd dif-
ferences. A set of equations was then derived for the
residues Aj, by the observation that the condition of all
the capacitors having zero voltages, except C1, at
t=π/ω0, is equivalent to say that the output voltage and
its first even derivatives, up to order 2p-4, are null at
this instant. The condition that resulted was:
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The first equation comes from the behavior of (5) as
s→∞, where it must reduce to a capacitance Cp. From



the residues, Zout can be obtained and expanded in
Cauer’s first form, resulting in the transformerless mul-
tiple resonance network (fig. 3), with the shunt inductor
in parallel with C1. The procedure can be interrupted at
any step, if convenient, and the shunt inductor ex-
tracted by a total pole removal at s=0 and positioned in
parallel with another capacitor. More than one shunt
inductor can also be generated, by partial pole
removals at s=0.

5. A SIMPLER DESIGN PROCEDURE

A careful observation of the network and its properties
reveals that there is a simpler way to obtain the resi-
dues in eq. (5).
Consider the Laplace transform of the output voltage in
the circuit in fig. 3, when C1 is initially charged to a
voltage v1(0). It’s the same Laplace transform obtained
when an impulsive current source with the value
Iin(t)=C1v1(0)δ(t) is applied in parallel with an un-
charged C1. The natural frequencies of the network are
known, as ±jk1ω0, ±jk2ω0, …, ±jkpω0. The structure of
the network places all the transmission zeros of
Vout/Iin(s) at infinity, except for a single zero at 0. At
low frequency, Vout/Iin(s) reduces to sLx. Vout(s) for
Iin(s)=C1v1(0) must then have the form:
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If this expression is expanded in partial fractions, the
result is similar to eq. (5), but the residues are different
because in this case the initial charge is in C1, not in Cp.
The relation between the residues in both cases is,
however, trivial: Vout(t) is a sum of p pure cosinusoids,
with amplitudes given by the residues and known fre-
quencies. At t=π/ω0 it reaches the maximum value,
when all the cosinusoids are at peaks with the same
polarity. The absolute value of the peak output voltage
is the sum of the absolute values of the residues of the
partial fraction expansion of eq. (7). The considerations
that lead to eq. (5) use this same idea and refer to the
same waveform, with the residues being all positive.
The only difference is the initial instant of the analysis.
The conclusion is that:
The residues in eq. (5) are the absolute values of the
residues obtained from the partial fraction expansion
of eq. (7).
A diff iculty is that the values of C1 and Lx are not
known, but it’s known that the sum of the residues in
eq. (5) reduces to 1/Cp, and with Cp specified, arbitrary
values for C1 and Lx can be used, with the resulting
residues (in absolute values) scaled to make their sum
equal to 1/Cp. Actually, the numerator of eq. (7) could
be simply set to s and the same procedure followed.
The following example, however, uses arbitrary values
for v1(0), C1 and Lx instead of this.

6. EXAMPLE

Consider a normalized triple resonance circuit design,
with the mode 2, 3, 4, ω0=1, and Cp=C3=1. Assuming
v1(0)=1, and arbitrarily C1=1, and Lx=L1=1, The output
voltage is obtained as:
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Multiplying these residues by 35/1152 their absolute
values add to 1. The residues for eq. (5) are then:
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These are the same values obtained by solving the sys-
tem of equations (6). The output impedance of the net-
work is then:
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The final normalized network, seen in fig. 4, is ob-
tained by the expansion of eq. (10) in Cauer’s first
form. Fig. 5 shows the voltage and current waveforms
that result from an initial unitary voltage in C1. At t=π
only the voltage over C3 is not null . All the currents are
sums of three pure sinusoids with frequencies of 2, 3,
and 4 rad/s, and are null at this instant too.
The transformerless network produces a voltage gain
equal to:
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Fig. 4. Transformerless triple resonance network ob-
tained in the example. C3=1 F, L3=0.11111 H,

C2=4.62857 F, L2=0.0238582 H, C1=21.6890 F, and
L1=0.00652373 H.
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Fig. 5 Voltages at the capacitors and currents at the
inductors for the normalized example circuit. Total

energy transfer occurs at ππ seconds.

A transformer can be included at this point, by
inserting an ideal transformer with turns ratio 1:n
between the switch and L1, multiplying C1 by n2, and
transforming the circuit formed by the ideal trans-
former, L1, and L2 into a real transformer using the
equivalence (see fig. 6):
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Fig. 6. Introduction of a transformer in the network.

This operation multiplies the voltage gain by n directly.
In the example, the inclusion of a transformer with
turns ratio n=10 results in a structure as in fig. 2 with
the element values: C3=1 F, L3=0.11111 H,
C2=4.62857 F, L2=30.382 mH, C1=2168.90 F,
L1=0.065237 mH, and k12=0.46338. The same values
can be obtained from the equations (3). The voltage
waveforms are identical to the ones in fig. 5, but 10
times larger for VC2 and VC3. The current waveforms
change in accordance with the transformation, but con-
tinue to cross zero at t=π seconds.

7. CONCLUSIONS

A simpler design procedure for the design of multiple
resonance networks of arbitrary order was presented
and ill ustrated with an example. Exactly the same tech-
nique can be applied for networks of any order, and the
networks can be designed without need of solving sys-
tems of equations. The approach that resulted in the
new technique seems also to be a rather curious exam-
ple of how circuit theory concepts can be applied.
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