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ABSTRACT 

The paper discusses the synthesis of switched-current fil- 
ters from continuous-time prototypes by the simulation of 
components, particularly capacitors and transconductors in 
OTA-C filters. The obtained structures implement discrete- 
time versions of the nodal equations of the prototype circuit 
using Euler or bilinear transformations over the circuit ele- 
ments. All the proposed structures work with doubled effec- 
tive sampling rate, do not use current-conducting switches, 
and are operated with a two-phases, non-overlapping clock 
system. 

I. INTRODUCTION 

The switched-current (SI) filter designs presented to date 
have been usually based on state-variable methods using 
integrators [ l ,  2, 61 or wave techniques [l, 41. In this paper 
a different approach based on a direct simulation of 
capacitors and continuous transconductors is presented. 
The obtained structures are equivalent to continuous-time 
transconductance-C filters, where the continuous elements 
are simulated by switched-current methods using a Euler or 
bilinear time discretization formulas. The concept of 
component simulation is also explored in the “switched- 
transconductance” technique [ 1, 51. The SI filters discussed 
here are innovative in the aspects that they operate with 
doubled sampling rate, sampling the input and updating 
the output at each phase of the switching interval; they are 
implemented without current-conducting switches, and 
naturally a h t  operation with two non-overlapping clock 
signals. In the “modulated’ version, the proposed 
structures present high immunity to charge feedthrough 
effects. Several synthesis techniques are possible, all 
derived from the same basic idea. 

II. TIME DISCRETIZATION OF NODAL 
EQUATIONS 

scribed by the nodal matricial equation (1). Where v is the 
nodal voltage vector, G is the nodal transconductance 
matrix, C is the nodal transcapacitance matrix and j is the 
vector of current sources injected at the nodes. 

sCv+Gv+j=O (1) 

Several different discretization transformations can be 
applied to (1) in order to obtain a discrete-time circuit. The 
usual ones are the bilinear, backward Euler and forward 
Euler transformations. As example, the application of the 
bilinear transformation (2) will be used. The procedure is 
the same for the other transformations. 
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After substituting s in the nodal equation (1) and 
rearranging the result, the following discretized nodal 
equation is obtained: 

Comparing this equation with the continuous time circuit 
equation (l), the following equivalence of components is 
obtained: 
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Note that transconductances and transcapacitances are 
mapped into “transconductances with memory”. The 
operation done in the input current can be implemented by 
a “transconductor” like the ones used for the 
transconductances. The relations (4) are of simple 
realization using switched-current circuits. 

Transconductance-C continuous time circuits can be de- 
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IIL SI “TRANSCONDUCTORS” AND 
“TRANSCAPACITORS” 

Switched-current circuits are built with transconductors 
(single MOS transistors and bias current sources, in the 
simplest version) and switches. The transconductors have 
an input capacitance (gate capacitance) that holds the volt- 
age when the input circuit is at high impedance. This paper 
discusses only structures were the switches are restricted to 
be in series to transconductor inputs (transistor gates). In 
these circuits after a period of stabilization all the currents 
flowing through the switches became zero. This means that 
the switches can be opened without perturbation of the 
general state (ignoring clock-feedthrough effects) and non- 
overlapping clocks can be used. Taking this restriction into 
account the desired circuit must be built with two kinds of 
components: continuous transconductors or switched trans- 
conductors (fig. 1). 

Fig. 1. Continuous (unswitched) and switched transconduc- 
tors. 

Usual switched-current circuits operate with two phases but 
process the input at only one of the phases. The operating 
frequency can be doubled if the structures process the input 
signal at both phases. This can be obtained if there is a 
structural symmetry from phase to phase. 

G 

Fig. 2. Bilinear “transconductor” (a) and bilinear 
“transcapacitor” (b). 

Combining the basic components of fig. 1 it is possible to 
synthesize the components described by the bilinear map- 
ping (4). The bilinear “transconductor” is simulated by 2 
switched transconductors (fig. 2a). At each phase one of 
the switches is closed and the other is open representing a 
transconductor and a memory of the previous current. The 
transconductance implemented is (1 + z-’)G / 2. Note that 

z-’ here is the delay of one phase (more properly, z-”* 
should be used). Since the circuit is symmetric from phase 
to phase its transference is valid in both phases. The 
bilinear “transcapacitor” is implemented by noting that 
(1 - Z-’ ) = 2 - (1 + Z-‘ ). This relation can be obtained by 

adding a continuous transconductor to a pair of switched 
transconductors as shown in fig. 2b. The transconductance 
obtained is ( ~ - z - ‘ ) c / T .  This circuit is also symmetric 
from phase to phase and the transference is valid in both 
phases. 

The same procedure can be applied to the backward Euler 
or forward Euler transformations. The “transcapacitors” 
are the same of the bilinear transformation in both cases. 
The two Euler “transconductors” are shown in fig. 3a and 
3b. These structures can be used to realize LDI simulations 
[ 11, or bilinear simulations if convenient transformations 
are made in the prototype [2, 61. 

Fig. 3. Backward Euler (a) and forward Euler (b) 
“transconductors” . 

Note that all the circuits satisfy the requirements of non- 
linearity cancellation, that are a characteristic of SI 
circuits, when interconnected. The input and output of a 
complete filter must be in current. 

IV. SWITCHED-CURRENT CIRCUIT SIMULATION 
OF OTA-C FILTERS 

A direct bilinear simulation of any continuous time circuit 
made of transconductances and transcapacitances is done 
by the simple application of the mapping of the continuous- 
time to the discrete-time components in fig. 2. Fig. 4 shows 
how to simulate the capacitors of a prototype filter with 
transcapacitances. 

(b) o - L +  og-$p-o se 

Fig. 4. Grounded capacitor and floating capacitor construc- 
tion using transcapacitances. 

A grounded capacitor is implemented by a negative 
transcapacitance in closed loop (fig. 4a). A floating capaci- 
tor is implemented by the four transcapacitors shown in fig. 
4b. Note that an integrator can be constructed by a 
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transconductor and a capacitor as in fig. 5a or by the 
simulation of a Miller integrator as in fig. 5b. The later 
equivalent allows the simulation of conventional RC-active 
state-variable filters. The amplifier can be as simple as a 
single grounded-gate MOS transistor amplifier [7]. This 
structure has the advantage of being more insensitive to the 
finite output impedances of the transconductors. 

(4 

sc 

Fig. 5 .  Integrators: Transconductor-C (a) and Miller (b) 

A continuous time transconductance-C circuit of a low-pass 
5th order elliptic filter is presented in fig. 6. The circuit is a 
direct simulation of an LC doubly terminated ladder struc- 
ture. 

0 

Fig. 6. Schematic representation of a transconductor-C 5th- 
order elliptic low-pass filter. 

10.1 

Fig. 7. Gain frequency response of a “normal” bilinear SI 
low-pass filter, with expected error margins and poles and 

zeros in ,?I2. 

The transconductance-C circuit can be directly mapped into 
a switchedcurrent circuit by first expressing the capacitors 
in terms of transcapacitances (fig. 4) an then applying the 
bilinear mapping of fig. 2. After the elimination of 
redundant switches, only two switches for each node of the 
prototype remain. The frequency response of the switched- 

current filter is shown in fig. 7. The filter was designed for 
1 dB maximum passband attenuation, 40 dB minimum 
stopband attenuation, and sampling frequency to passband 
border frequency ratio of 10. 

The simulation was made with the ASIZ program [ 11, with 
error margins computed by sensitivity analysis, assuming 
2% random errors in all the transistor transconductances. 
The filter was simulated in the most basic form at transistor 
level, with the transistor output conductances and parasitic 
capacitances neglected. The negative transconductors were 
implemented by a single transistor, and the positive trans- 
conductors by three transistors. 

The result presents a rather high sensitivity to component 
variations. This is due to the structure of the 
“transcapacitor” that operates using a cancellation of 
currents. The effect of a mismatch between the continuous 
part of the “transcapacitor” and the switched part is to in- 
troduce a loss that corrupts the transference. The result is 
that the loss is higher when the filter has a low cutoff 
frequency. There is, however, a curious way around this 
problem. It can be corrected by the use of the “reverse 
mapping”. 

V. REVERSE MAPPING AND MODULATION 

If the bilinear mapping described by fig. 2 is reversed, that 
is, the transcapacitances implemented as ( I  + 2 ) C  / T and 
the transconductances as (1 - y ’ )G  / 2,  the result is the 

same of a transformation of transconductances into tran- 
scapacitances and transcapacitances into transconductances 
in the continuous prototype filter, and the application of a 
frequency scaling. A low-pass filter is transformed into a 
high-pass filter (fig. 8). 

i m 

Fig. 8. High-pass filter obtained by the “reverse mapping” 
of the prototype. The gain frequency response is shown, 

with expected error margins, and again the poles and zeros. 
Note the transformation H(z) +H(-2). 
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Note that the sensitivities are much smaller. This occurs 
because in this case the transition frequency is higher. This 
high-pass filter is not very useful because it operates near 
the half of the switching frequency. It can be transformed 
into a low-pass filter by simply “modulating” the input and 
output signals of the filter (fig. 9). The modulator is in fact 
a circuit that changes the sign of the signal at each phase. 
I fX ( z )  is the input signal of the modulator, the output of 
the modulator will be X(-z). After the filter H(z) the signal 
will be H(zyr’(-z), and at the output of the second 
modulator the signal is demodulated becoming H(-zyi’(z). 
The new transfer function is H(-z). This process does not 
m o d e  the sensitivities and can be used to restore the 
transference as shown in fig. 10. The result is a low-pass 
filter with much lower sensitivity that the one obtained by 
direct transformation. Fig. 11 shows a suitable modulator 
circuit, that also allows the operation with a two-phases 
non-overlapping clock. 

VI. CONCLUSION 

A different technique for synthesis of current-switched cir- 
cuits was presented. The technique has as the most advan- 
tageous characteristics the doubled sampling frequency, 
that allows for two times faster filters. As the structure uses 
only switches connected to gates, a simple two-phases non- 
overlapping clock system is sufficient, with only two 
switches for each state variable needed. The more complex 
clocking schemes and extra switches needed for other low- 
sensitivity structures [3] are avoided. The structures using 
modulated signals is the least sensitive to component mis- 
matches. It also shows great immunity to clock feedthrough 
effects, because at successive phases the charge injections 
at the transconductor inputs are in opposite directions 
relative to the signal, and so are canceled if non-linear 
effects are small. The sensitivity characteristics can still be 
improved with the elimination of the many transistors 
needed in the implementation of the non-inverting 
transconductors, what is possible in a fully balanced 
realization. The example described only the generation of a 
true bilinear filter. There is also the possibility of building 
bilinear filters using only Euler integrators [2, 61. The idea 
of using modulated signals inside an SI filter can also be 
extended for other purposes that are under investigation. 

x (4 H ( Z )  H( - 4 x  (4 

Fig. 9. Modulation and demodulation process. 
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