The capacitance of a wire

Antonio Carlos M. de Queiroz

The inductance of a straight wire with radius r and length l is given by:

$$
\begin{equation*}
L=\frac{\mu_{0}}{2 \pi} l \operatorname{Ln}\left(\frac{2 l}{r}-\frac{3}{4}\right) \tag{1}
\end{equation*}
$$

The capacitance of a cylinder can be calculated by decomposing it in many rings, as described in [1].
The speed of propagation of an electric signal in a lossless transmission line is given by:

$$
\begin{equation*}
v=\sqrt{\frac{1}{L_{u} C_{u}}} \tag{2}
\end{equation*}
$$

where L_{u} and C_{u} are the inductance and the capacitance per unit of length of the line.
Considering a straight wire as a transmission line, this speed is limited by the speed of light, c, and so, for a given length l and radius r, the capacitance of a straight wire can be obtained as:

$$
\begin{equation*}
C \approx \frac{2 \pi l}{\mu_{0} c^{2} \operatorname{Ln}\left(\frac{2 l}{r}-\frac{3}{4}\right)}=\frac{2 \pi \varepsilon_{0} l}{\operatorname{Ln}\left(\frac{2 l}{r}-\frac{3}{4}\right)} \approx \frac{5.56 \times 10^{-11} l}{\operatorname{Ln}\left(\frac{2 l}{r}-\frac{3}{4}\right)} \tag{3}
\end{equation*}
$$

Verification:

l	r	C calculated (pF)	200 rings	20 rings
1	0.1	18.8	16.8	16.6
1	0.01	10.5	9.88	10.21
1	0.001	7.32	7.20	9.75
1	0.0001	5.61	6.97	9.75
2	0.001	13.4	14.1	19.5

If the wire is curved into a loop, forming a thin toroid with diameter l / π, the capacitance can be compared with a capacitance of a toroid. Considering the length measured along the center of the toroid:

l	r	C toroid (pF)
1	0.1	17.7
1	0.01	10.1
1	0.001	7.09
1	0.0001	5.48
2	0.001	13.04

References

[1] Antonio C. M. de Queiroz, "Capacitance calculations". Available at: http://www.coe.ufrj.br/~acmq/tesla/capcalc.pdf

