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Abstract— The use of asymmetrical bandpass LC filters as 
input matching networks for low noise amplifiers is 
investigated. The use of these filters instead of symmetrical 
bandpass filters for wideband impedance matching allows 
simpler structures for the matching of unequal resistances, 
some voltage gain, and stronger attenuation at high-frequency. 

I. INTRODUCTION 

The application of LC ladder filters as input matching 
networks for wideband low noise amplifiers (LNA) received 
some attention in the last years [1]-[4]. In the usual circuits, 
bandpass filters are formed by the combination of a few 
inductances and capacitances with a common-source or 
common-emitter amplifier using inductive degeneration [5]. 
The input impedance of an amplifier as the one in fig. 1, 
with the transistor having gate-source capacitance Cgs and 
transconductance Gm results as: 
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Figure 1.  Input equivalent circuit of a common-source amplifier with 

inductive degeneration. 

This is the impedance of an RLC series network. This kind 
of circuit can be directly employed to adjust the input 
impedance of the amplifier to be resistive in a narrow band 
of frequencies, with an extra series inductor used to adjust 
the frequency, but the RLC elements can also be made to be 
part of a bandpass filter, what results in wideband resistive 
input impedance for the amplifier, and low noise due to the 
(ideal) absence of resistive elements. A common choice of 
filter is a bandpass Chebyshev filter. In [1] a 4th-order filter 
is used (fig. 2), in [2] a 6th-order filter, in [3] a differential 
4th-order filter, and in [4] a 4th-order filter with a 
transformer. In all these cases, the transistor output goes to 
an inductive impedance, to compensate for the integration 
caused by the input current generating Vgs by passing trough 
the capacitance Cgs. 
The filters are usually obtained by applying a lowpass to 
bandpass transformation to a Chebyshev lowpass filter [6]. 
This results in fixed ratios between the loading resistances at 

both sides of the filter, that are 1:1 for a 6th-order bandpass 
filter and depends on the passband ripple for a 4th-order 
bandpass filter. The input transistor must be designed 
according to this limitation, or resources as the use of circuit 
transformations [1] or a transformer [4] employed to allow 
more freedom in the choice of transistor dimensions and 
input resistance of the amplifier. These resources may be 
somewhat inconvenient, because transformations require the 
use of more components in the matching filter, and 
integrated transformers require very careful modeling. 
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Figure 2.  Wideband impedance matching with a symmetrical 4th-order 

bandpass filter. 

It is observed that polynomial bandpass doubly terminated 
filters having asymmetrical frequency response, with 
different numbers of transmission zeros at zero and infinity, 
practically always require different termination resistances. 
In this work, a class of these filters, having maximally flat 
passbands, that is particularly easy to design, is proposed as 
alternative to the realization of the input matching network 
for wideband LNAs. The ratio of the terminating resistances 
depends on a single parameter, that can be adjusted so the 
network realizes a wide range of resistance transformations 
with the same structure. The resulting bandwidths are easily 
wide enough for application in ultrawideband radio. 

II. MAXIMALLY FLAT IMPEDANCE MATCHING  

NETWORKS 

To introduce the idea, consider first a low-pass filter having 
the structure shown in fig.  3.  The filter can be designed to 
exhibit a maximally flat passband around the normalized 
frequency of 1 rad/s, if it is designed from the characteristic 
function: 
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The transducer function H(s) = E(s)/P(s) corresponding to 
this characteristic function is obtained by solving 
Feldtkeller’s equation in the usual way [6]: 
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From F(s) and E(s), the input impedances or admittances of 
the LC network between the terminations can be found, and 
the structure can be obtained [6]. For the lowpass case, it is 
easy to obtain the parameter p in (2) in function of the 
termination resistances. Observing that the impedance seen 
by the input termination R1 is: 
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The constant that  p is readily obtained as: 
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As an example of what can be obtained, consider the case of 
matching R1=1Ω with R2=2Ω. The required functions are 
obtained as: 
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The element values are obtained as: 
R1 = 1 Ω; R2 = 2Ω; 
L1 = 0.817422 H; C2 = 0.865045 F; 
L3 = 1.73009 H; C4 = 0.408711 F 
The input impedance and the frequency response are shown 
in fig. 4. 
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Figure 3.  Low-pass impedance matching network. 

The input impedance Z1 is “maximally resistive” around 1 
rad/s, and the voltage gain is maximally flat. Note that the 
single parameter p controls the ratio between the 
terminations, and also the bandwidth (smaller for larger 
ratios). More sections can be added by just adding more 
pairs of roots at ±j in F(s), what extends the flatness and the 
frequency range where the matching is good enough. Eq. (5) 
remains valid for higher-order networks. 

III. 4TH-ORDER IRREGULAR BANDPASS MATCHING 

NETWORK 

The previous circuit can’t be directly employed for the input 
matching of an LNA. A convenient structure can be 
obtained by adding a pole at 0 in K(s), by using P(s) = ps. 
The resulting structure is shown in fig. 5. The section 
connected to R2 can be realized by the input impedance of 
an amplifier, as in fig. 1. A complication is that it’s not 
possible anymore to obtain a simple expression relating the 
terminations with the parameter p, although they continue to 
determinate it uniquely. A way around the problem is the 
observation that the real part of the impedance seen by R2, 

Z2, is equal to R1 at low frequency. If Z2(s)/R2 is a ratio of 
polynomials as in (6) [6], then the ratio of the terminations 
can be calculated as (7). E(s) must be calculated, and part of 
Z2(s)/R2, but the expansion of the network from both sides, 
that would be required for the determination of the ratio by 
the usual method [6], is not necessary.  
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Figure 4.  Voltage gain and input impedance (Z1, after R1) for the filter in 

fig. 3. 
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Figure 5.  Irregular bandpass impedance matching network. 

After a few tries with a computer program using (7), the 
value of p that results in R2/R1 = 2 is found, and the required 
functions are: 
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The synthesis results in: 
R2 = 2 Ω; R1 = 1 Ω; 
L1 = 1.09868 H; C2 = 0.643594 F; 
L3 = 2.19737 H; C4 = 0.643594 F 
 

 
Figure 6.  Voltage gain and input impedance and for the filter in fig. 5. 

Fig. 6 shows the obtained input impedance seen by R1 and 
the voltage magnitude gain. The ratio of the upper to lower 
passband border frequencies, considering 3 dB of 
attenuation, is 4.2, that is enough for application in a 
ultrawideband radio system, operating between 3 and 10 
GHz, with a 3.3 ratio only. 

IV. 5TH-ORDER IRREGULAR BAND PASS MATCHING 

NETWORK 

This matching network has still an inconvenience that is the 
inductor at the input. A practical integrated inductor has 
always a significant parasitic capacitance to the substrate at 
both terminals, and if the input comes from out of the chip a 
significant pad capacitance is present at the input end. 
Adding a capacitance at the input transforms the network in 
the one in fig. 7. It is a 5th-order network, and so F(s) must 
have a real root. The exact value is not critical, and so as 
example a root at s = 2 is chosen. The ratio of the 
terminations continues to be given by (7). After some tries, 
the following functions are obtained, for R2/R1 = 2: 
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The synthesis results in: 

R2 = 2 Ω; R1 = 1 Ω; 
C1 = 0.356321 F; L2 = 1.41605 H; 
C3 = 0.708032 F; L4 = 2.47997 H; 
C5 = 0.564352 F 
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Figure 7.  5th-order irregular bandpass impedance matching network. 

The results are similar to the previous circuit, but the ratio 
of the cutoff frequencies results now as 3.62. The filter is a 
bit more selective, but still suitable. The free choice of the 
real root of F(s) can be used to adjust the bandwidth and the 
element values. Of course, p changes with it too. 

V. 6TH-ORDER IRREGULAR BAND PASS MATCHING 

NETWORK 

The two last matching networks exhibit just one transmission 
zero at 0. This may be inconvenient if high-intensity signals 
are present below the filter passband, because the attenuation 
provided by the filter may be insufficient. Moreover, the 
drain current of a transistor connected as in figs. 1 and 2 
shows a 20 dB/decade roll-off in frequency, because of the 
integration in the capacitance Cgs. The net effect is that the 
single transmission zero at 0 is cancelled, with the voltage 
gain becoming constant below a frequency determined by the 
RL load network. A solution is to add another transmission 
zero at 0 to the matching network, by making P(s) = ps2. If a 
4th-order network is used, the result is a regular Butterworth 
bandpass filter with the structure of fig. 2, where the ratio of 
the terminations is fixed at 1. To allow different ratios, a 6th-
order network can be used, that compensates the added 
complexity with wider passband. Two possibilities are 
shown in fig. 8, one suitable for R1>R2 and another for 
R2>R1. 
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Figure 8.  6th-order irregular bandpass impedance matching networks, for 
R1>R2 (a) and for R1<R2 (b). 
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The ratio of the terminations for these filters is more difficult 
to find, but it still possible to apply the idea (7) in admittance 
basis after removing the series LC tank from Z2. Considering 
the first structure, the results are: 

( )

( )( )
( )( )230125

2
16

14230122
2

131
2

5

1

2

565016

1
4

4
5

5

0
5

5
6

6

2

2

1

2

1

5
62

2

0

/  ;/

)()()(

)()()()(

1
ReLim

bababba

bbbbabbababb

R

R

baLabC

sbsbsb

asasa

sFsFsE

sFsFsE

R

sZ

R

R
Lj

CjR

jZ

oe

oe

−−

−+−−=

==
+++
+++=

−+
+−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω
−ω

−

→ω

L

L      (8) 

For the second structure the new resistance ratio can be 
obtained from the ratio in the first structure. The tank L5C6 is 
removed from Z2 as in the first case, but from the resulting 
admittance C4 is removed too. A Norton transformation is 
then applied to convert the first structure into the second. The 
ratio of inductances L2/L3 is necessary, but can be obtained 
from the ratio L3/(L2//L3), easy to obtain by looking at the 
impedance at s = 0 and s = ∞. After all the algebra, the result 
is shown below. 

( )( ) ( ) ( )( )
( )( )2

50145136

52345
2

3156
2

1630125

32

3

2

32

31

2

2

3

2

1

2

1

2

//

1
1

//

1
1

'

'

bababbba

bababbbbabababab

LL

L

LL
LR

R

L

L

R

R

R

R

−−
−+−−−=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= (9) 

For R1 = 1 and R2 = 2, the required functions are: 
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The synthesis for the structure in fig. 8b gives the elements 
listed below, and fig. 9 shows the obtained results. The ratio 
of passband border frequencies reaches 6.7: 

R2 = 2 Ω; R1 = 1 Ω; 
C1 = 0.532374 F; L2 = 2.36978 H; 
L3 = 1.12096 H; C4 = 0.560481 F; 
L5 = 1.06475 H; C6 = 1.18489 F  

VI. CONCLUSIONS 

The use of irregular passband filters is an interesting option 
for the realization of input wideband matching networks for 
low-noise amplifiers, when matching between different 
terminations is required. The described filters have 
maximally flat passbands, and the resulting bandwidth is a 
function of the order and of the termination resistances, 
except for the odd-order cases where a real reflection zero 
adds another degree of freedom. Equations were derived to 
help in finding the required characteristic function from the 

required terminations. It is surely also possible to design 
equal ripple passband versions using numerical methods (as 
an adaptation of the algorithm described in [7]), what allows 
a compromise between bandwidth and passband ripple. The 
equations for the ratio of the terminations remain valid in this 
case. 

 

 
Figure 9.  Voltage gain and input impedance for the network in fig. 8b. 
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