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Basic Principles 
 

• Switched-current circuits implement discrete-time 

linear systems, using MOS transistors with the gate 

open as current memory elements..  

• The memory elements are coupled by current mirrors. 

• A clock system with two or more phases allows the 

connection of these basic elements to form delays, 

discrete-time integrators and filters. 

• Current transfer functions are linear, even in large-

signal operation. 

• Linear capacitors and transconductors are not 

required. Precision depends on transistor matching. 

• In the simplest form, single transistors are used as 

transconductors, current sources, and switches. 

• This basic form is not sufficient for complex filters, 

due to errors introduced by Gds conductances, Cgd 

capacitances, and clock feedthrough. 
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Current memory and current mirror. 
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Operation of SI Circuits 
 

• Switched-current filters operate as periodically 

switched linear networks, where ideally the circuit 

reaches a static steady state between the switching 

instants. 

• This mode of operation is essentially the same of the 

switched-capacitor filters. 

• In switched-capacitor filters, the signal is represented 

by capacitor voltages, and the computations are done 

by charge balancing at the switching instants. 

• In switched-current filters, the signal is represented 

by currents, and the computations are done by current 

balancing between the switching instants. 

• For large signals, SI circuits exhibit a true current 

mode operation, with only currents being linear 

functions of the input signal. Voltages are related to 

the input by compressing nonlinear functions. 

• Due to the simpler structures, SI circuits can operate 

using less energy, less area, and faster than equivalent 

SC circuits, although with possibly less precision, 

because good transistor matching is more difficult to 

achieve than good capacitance matching. 
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Signals in SI Circuits 
 

• A switching period is divided in a number f of  phases. 
• Each signal Xi in the filter is composed by f 

components Xi,m, each one for the m=1,...,f phases. 

• Each Xi,m is composed by another f components  

• Xi,mk, each for one of the k=1,...,f phases of the input 

signal. 

• These f×f components add together to form the signal 
Xi. 

• In the example, a signal in a circuit with two phases. 
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Signal composition in a 2-phases system. 
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First-Generation Current Sample 

and Hold Cell 
 

• In phase 1, a diode-connected transistor is used to 

generate the gate voltage of the output transistor, 

forming a current mirror. 

• In phase 2, the output transistor retains the current of 

phase 1. The input current continues to flow through 

the input transistor, but is not sampled, and the output 

current is not affected by it. 

• Note the notation in z-transform, meaning that the 

output current in phase 2 is a delayed copy (one 

phase) of the phase 1 output. 
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Phase 1: sample; Phase 2_ hold. 
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First-Generation SI Integrator 
 

• Two sample-and-hold delay cells in a loop form an 

integrator, with two possible outputs, obtained by 

current mirrors: 
• A backward Euler integrator at IFE if (BD)/(AC)=1. 

• A forward Euler integrator at IBE if (BD)/(AC)=1. 

• Advantage: Simple clocking system, with two 

nonoverlapping clock signals. 

• Problem: Requires precise matching of two transistor 

pairs. 
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First-Generation Bilinear SI 

Integrator 
 

• A bilinear integrator can be built by the subtraction of 

an inverting BE output from a noninverting FE 

integrator. 

• An inverting version is obtained by placing the 

current inverter at the FE output. 

• Bilinear integrators allow precise filter realizations 

by transformation of passive prototypes. 

• Many precise transistor matchings are required for a 

precise integrator. 
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Second-Generation Current Sample 

and Hold Cell 
 

• The same transistor is used as memory element and 

as output driver. 

• There is no need of transistor matching to realize a 

unity-gain delay. 

• A four-phases switching system is required for 

correct operation. (The same required by the 

integrators. Details ahead.) 

• The figure shows a four-cell delay, realizing a delay 

of two switching periods. 
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Second-Generation SI Integrators 
 

• Two delays in a loop form an integrator, with a pair 

of switches simplifying to a direct connection. 

• Backward and forward Euler integrations are 

available, as in the first-generation circuit. 

• The lossless integration do not depend on transistor 

matching. 

• A four-phases clocking system is also required. 

• Cascading of integrators requires the switch 2’, to 

provide a path for the input current in phase 2. 
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Switching Sequence for 

Second-Generation SI Circuits 
 

• Memory switches 1 and 2 must be opened at the start 

of the phase transitions, or the memorized currents 

are lost. 

• Switches 1’ and 2’ open at the end of the transitions, 

because currents must always have a place to go, or 

large voltage spikes occur. 

• Transistors must never leave the saturation region, or 

the input capacitance changes, invalidating current 

copies through current mirrors (hence the need of 2’). 

• Point x is a low-impedance point at the middle of the 

power supply voltage. 
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Second-Generation SI Bilinear 

Integrator 
 

• A bilinear integrator can be built by the subtraction 

of an inverting BE output from a noninverting FE 

integrator, exactly as done with the first-generation 

circuit.. 

• An inverting version is obtained by placing the 

current inverter at the FE output. 

• Precise matching is required for the correct 

realization of the numerator (not critical). The 

denominator is exact. 
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Filter Synthesis by the Simulation of 

Passive Prototypes 
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• The best prototypes are LC doubly-terminated 

ladder structures designed for maximum power 

transfer. A low-pass filter is used as example. 

• This results in very low passband sensitivities, 

because errors in the reactive elements can only 

decrease the gain at the maximum power transfer 

frequencies, causing zero gain sensitivities for all Ls 

and Cs at these frequencies. 

• The first step in the “leapfrog” technique is to obtain 

a system of (modified) state equations. 
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Generation of SI True Bilinear 

Filters 
 

• The application of the bilinear transformation to the 

continuous-time equations results in the equations 

shown. 

• From the equations, the transistor ratios for a 

unscaled SI filter are easily obtained. 

• The “state variables” are represented by the 

difference between the transistor currents and their 

bias currents. 
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First-Generation Low-Pass True 

Bilinear Filter 
(Bias sources omitted) 
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Second-Generation Low-Pass True 

Bilinear Filter 
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Sensitivity Comparison: 
First-Generation × second-Generation true bilinear 

filters 

 
Gain statistical deviation for 5% mismatches in the mirrors 

(ASIZ program). 

 

• The passband errors for the 1st-generation filter are 

significantly higher. The structures are identical except for 

the integrators. 

• The valid output (curves above) is at phase 1. The complete 

output does not result in a bilinear filter (the zeros are at z1/2 

= –1), but is a good approximation. 
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Bilinear SI filters built with Euler 

integrators 
 

• Special circuit transformations in the prototype 

transform the bilinear integrations in the modified 

state equations into Euler integrations. 
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• The introduced elements are: 
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• Applying the bilinear transformation to the 

continuous-time equations, a set of equations with 

Euler integrations results. Only one bilinear 

integration remains (the one of the input, that can be 

moved to the output). 
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The circuit transformations cause: 

• The equations corresponding to the capacitor 

voltages are transformed into backward Euler 

integrations. 

• The equations corresponding to the inductor currents 

(LC tanks) are transformed into forward Euler 

integrations. 

Transistor ratios: 
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First-Generation Bilinear Low-Pass 

Filter with Euler Integrators 
I1

21

1 11 1

21

1 11 1

21

1 11 1

21

1 11 1

21

1 11 1
Iout

A B C 1

ED

IHGF

J K

L M N

11 1

L

GF

A

 

 

Note the absence of inverters, except at the output circuit. The 

valid output is at phase 1 (as in the true bilinear circuit). 
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Second-Generation Bilinear Low-

Pass Filter with Euler Integrators 
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Note the simplified direct coupling among the integrators and 

the bilinear integration of the input. The valid output is at 

phase 1. The output at phase 2 is a delayed copy. A solution 

similar to the 1st-generation structure is also possible, but 

requires more transistors. 
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Sensitivity Comparison: 
First-generation × second generation bilinear/Euler 

filters. 

Gain statistical deviation for 5% mismatches in the 

mirrors. 

• The second-generation circuit also presents better 

sensitivity characteristics in this case. 

• The realizations with Euler integrators are slightly 

more sensitive at the stopband than the equivalent 

true bilinear realizations. This is due to the 

introduced elements without correspondent in the 

passive prototype. 
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Component Simulation SI 

Technique 

 

• A Gm-C circuit can be described by the nodal system (1), 

in Laplace transform. 

• Applying the bilinear transformation (2) to (1), the system 

(3) results. 

• The comparison between (1) and (3) gives the 

equivalencies (4), applicable to transcapacitances, 

transconductances, input currents, and voltages. 

• The same can be done using Euler transformations. What 

change are the equivalencies for transconductances and 

inputs, that become (5) for the backward Euler and (6) for 

the forward Euler transformations. 
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Circuit Equivalents 
 

• Equivalent circuits to the bilinear transconductance 

(a) and transcapacitance (b) in (4) can be built using 

transconductors (with input capacitance) and 

switches. 

• These circuits operate with doubled sampling rate and 

without current-conducting switches. 

• A two-phases nonoverlapping clock system can be 

used. 
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• The equivalencies for the backward Euler (c) and 

Forward Euler (d) transconductances are shown 

below. 
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Component Simulation of OTA-C 

Filters 
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Gm-C simulation of a 5th-order low-pass LC ladder filter, 

with current input and output. 
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Simulations of grounded and floating capacitors using 

transcapacitances, and construction of a bilinear integrator 

(without simplifications). 

 

• Any OTA-C structure can be simulated, what allows the 

reuse of all the structures developed for these filters. 
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CS Filters Using Modulated Signals 
 

• The transcapacitance elements using three signal 

paths are very sensitive to component mismatches, 

with the generated error being proportional to T. 

• If the filter is operated with modulated signals, that 

invert polarity at each phase, terms in z–1 must be 

realized with inverted polarity, what eliminates the 

continuous path in the transcapacitances. 
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Transcapacitance (b) and transconductances for the bilinear 

(a), backward Euler (c) and forward Euler approximations, 

considering modulated signals. 
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General Implementation Scheme for 

Component-Simulation Structures 

 
• It is possible to reduce the number of inverters and 

switches required by component-simulation 

structures to a minimum by implementing integrators 

as shown below (a bilinear integrator): 
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The inverters are moved to the input circuit, and all the 

connections are made to the inverting or to the 

noninverting inputs. 
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A current modulator, for use in modulated-signal filters. 

Simplifications are possible at the output circuit. 
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CS 5th-Order True Bilinear Low-

Pass Filter - “Direct” Form 
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CS True Bilinear Low-Pass Filter - 

“Modulated” Form 
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Sensitivity Comparison: 

“Direct” × “Modulated” CS SI 

filters 

 

Gain deviations for 5% mismatch among the transistors. 

• The direct version is very sensitive, but the modulated 

version is almost as insensitive as a second-

generation filter. Both admit the simple clock system 

of a first-generation filter. 

• The CS filters require only half of the sampling 

frequency of 1st and 2nd generation structures for 

identical responses. 
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CS Bilinear Filters Using Euler 

Integrators 
 

• The same transformations derived for the 1st and 

2nd-generation structures can be applied to CS 

structures. The OTA-C prototype becomes: 
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L 2
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• All the integrators simulating capacitor voltages must 

be backward Euler integrators, and all the ones 

simulating inductor currents must be forward Euler 

integrators. The integrator type is defined by the type 

of the transconductor feeding the capacitor. One 

bilinear integration must exist at the input or output. 

• Because the backward Euler integrators are very 

simple, some hardware simplification results, 

specially when the modulated version, the only 

practical, is used. 
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CS 5th-Order Bilinear Low-Pass 

Filter with Euler Integrators - 

“Direct” Form 
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CS 5th-Order Bilinear Low-Pass Filter 

with Euler Integrators - “Modulated” 

Form 
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Sensitivity Comparison: 
Second-Generation × Component-Simulation 

Modulated Filters, True Bilinear and Euler/Bilinear. 

Pass band. 

Pass-band error limits for 5% mismatches in a 5th-order 

elliptic filter. 

 

• There is no significant difference between True 

Bilinear and Euler/Bilinear CS structures, but the 

later are simpler. 

• Second-Generation True Bilinear structures are the 

best in terms of sensitivity. 
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Imperfections and Compensation 

Techniques in SI Filters 
 

The main sources of errors are: 

 

• Insufficient Gm/Gds ratio of single MOS transistors: 

The current-transfer operations become inaccurate, 

and the general (linear) effect is a lowering of Q 

poles. 

• Significant Cgd capacitances, or insufficient Cgs/Cgd 

ratio in single MOS transistors: Variations in Vds 

voltages introduce variations in Vgs voltages in 

transistors with open gate, what results in an effect 

similar to the effect of Gds. 

• Clock feedthrough through the switch capacitances: 

The effect is particularly serious in SI circuits, 

because the clock signal affects (~linearly) the Vgs 

voltages, but the currents are nonlinear functions of 

these voltages, what causes nonlinear, signal-

dependent effects. 

 

Cp Cp

Cgs

Cgd

Gm Gds

clock

Vgs
+

–  
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Effect of Finite Gm/Gds and 

Cgs/Cgd Ratios 

 

 
Loss effects in a CS modulated true bilinear filter. 

 

• Effects in other structures are similar. CS and 1st-

generation structures are the least sensitive, but the 

difference to 2nd-generation structures is small. 

• Note that the 1:100 ratios used in the simulation are 

about the maximum attainable with single transistors. 
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Compensations For Low Gm/Gds 

and Cgd/Cgs Ratios 

 
• Cascoded transistors: Decrease the effective Gds by 

~(Gm/Gds)2.Requires higher supply voltage. 
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x vb vb

 
• Regulated cascode structures: Decrease the effective 

Gds by ~(Gm/Gds)3. Also requires higher supply 

voltage. 
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1
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2

x

 
• Common-gate amplifier: Acts Increasing Gm instead 

of lowering Gds. Can operate with low voltage. 
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1'

2

x

vb  
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Compensations for Clock 

Feedthrough 
• Dummy switches: Try to decrease the injected charge 

by extracting the same charge through other , dummy, 

switch, connected to the transistor gate and operated 

with an inverted clock signal. 

• The “S2I” technique: Reduces the problematic signal-

dependent clock feedthrough using a double 

sampling technique. The upper transistor 

compensates the charge injected in the main transistor 

at the end of phase 1a, and the charge injected at the 

end of phase 1b in the upper transistor is almost 

signal-independent. 

1
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1b

2

Vdd
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Vref
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1
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• Differential SI circuits: Try to reject the feedthrough 

signal with the use of the common-mode rejection of 

differential structures. 

• Component-simulation structures using modulated 

signals eliminate a good part of the linear feedthrough 

signal by the inversion of the processed signal at each 

phase. What is injected in one phase is extracted in 

the next. 



40 

 

Simulation of SI Circuits 
 

The ASIZ program: Developed at the Federal 

University of Rio de Janeiro, the ASIZ program 

analyses multi-phase circuits, computing: 

• Transfer functions in z-transform. 

• Poles and zeros. 

• Frequency responses and output spectrum. 

• Transient responses. 

• Frequency-domain sensitivities. 

• Effect of parasitic elements. 

• Effect of component tolerances. 

The circuit is assumed as a linear time-invariant Gm-C 

circuit, that reaches the steady state in a time negligible 

when compared with the duration of a phase. This 

allows the application of a nodal analysis method that is 

a generalization of a method used for ideal switched-

capacitor circuits. 

In the next page are screen images from the DOS and 

Sun versions. The Windows version is similar. 
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Other analysis algorithms/programs 

applied to SI circuits 
 

• The WATSNAP program, developed at the 

University of Waterloo, can analyze SI circuits in 

small-signal operation, treating them as linear 

periodically switched linear circuits, computing: 

• Frequency response 

• Transient response 

• Natural frequencies 

• Sensitivities 

• The algorithm used takes into account effects of 

incomplete stabilization. 

• Some other programs developed for the analysis of 

non-ideal switched-capacitor circuits can also be used 

in the analysis of SI circuits, and compute other 

characteristics, as for example, noise (SCALP2), or 

approximate transfer functions in z-transform 

obtained by oversampling the continuous-time 

frequency responses obtained 

• Classical time-domain simulation (SPICE) can be 

used for the analysis of nonlinear effects, provided 

that the transistor models are accurate, inclusive in 

the modeling of non-linear capacitances. 
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