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Wireless Energy Transfer 

Antonio Carlos M. de Queiroz (acmq@ufrj.br) 

Introduction 

This document will relate a precise analysis and experiments of a “wireless energy transfer” system using 

a system similar to the one proposed by Nikola Tesla in his patents 649621 “Apparatus for Transmission 

of Electrical Energy” and 645576 “System of transmission of electrical energy”, both initially from 1897.  

The system (Fig. 1) consists of two identical air-core transformers, the 

transmitter (left) having a primary coil with few turns and a secondary coil 

with many turns, and the receiver (right) with the opposite. In the drawing 

the coils as depicted as flat, but solenoidal coils can be used in the same 

way. The large coils are grounded and have (optional) terminals with 

distributed capacitance. The primary coil of the transmitter is powered 

from an AC power supply at a frequency ideally identical to the resonance 

frequency of the secondary coil with its capacitive load. A conventional 

“Tesla coil” circuit could be used as transmitter too, by the addition of a 

primary capacitor, a spark gap, and a medium high-voltage power supply. 

The receiver is shown connected directly to loads as lamps (and motors, 

but this would require some signal conditioning as rectification). The 

system operates with the displacement current between the terminals, that 

may be very small, but with both devices operating at resonance with high 

voltages, it allows energy transmission at a distance similar to the sizes of 

the transmitter and receiver with reasonable efficiency (Tesla imagined 

that it would be possible to transmit significant energy at long distances, 

but this is actually infeasible due to energy dispersion with distance and 

finite quality factor of the coils). Energy return is through the ground. It’s also possible to use similar 

systems in balanced mode, without a ground connection, or to replace the ground at one or both sides by 

“counterpoises”, relatively large conductors with distributed capacitance to ground much larger than the 

one of the coils and terminals (note that the return current continues to pass through the ground). 

Implementation 

For the transmitter, a good sinusoidal high-voltage generator is 

needed. A convenient possibility, although not very efficient, is 

a blocking oscillator known as “Slayer exciter”, shown in Fig. 

2. L1 and L2 form the transformer with low coupling coefficient 

(k = 0.1-0.2) of the Tesla transmitter. L2 usually is an air-core 

solenoidal coil with many turns and L1 can be solenoidal of flat, 

with just a few turns. The terminal at the upper end of L2 forms 

a distributed capacitance, along with the self-capacitance of the 

coil L2, resonating with L2 in the hundreds of kHz or a few MHz. 

While in normal operation, the current in L2 is essentially 

sinusoidal, due to the high quality factor Q of the resonant 

circuit made of L2 and its distributed capacitances, and turns the 

transistor on and off once in each oscillation cycle. When the 

transistor is turned on, current flows through L1, what transfers 

some energy to L2. When the transistor is turned off, the LED 

D1 lights up, limiting the negative voltage at the base of the 

transistor and providing a convenient indication that the oscillator is working. The three diodes limit 

possible excessive current in the LED. A similar protection could be added for the transistor, with two 

diodes in the opposite direction. The resistor R1 is only for startup, providing a small current for the base 

of the transistor. The circuit is reasonably efficient when transistor conducts saturated, but the interruption 

of the primary current when the secondary current crosses zero consumes significant power. The output 

voltage at the terminal depends on the quality factor of the output resonant circuit. It stabilizes in a condition 

where the losses in L2 due to wire resistance, energy consumed by the receiver, irradiation, and loss by 
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Figure 2. Blocking oscillator transmitter. 

Figure 1. Tesla’s wireless system. 



2 
 

voltage drop at the base of the transistor and the LED balance the energy transferred from L1. Usually a few 

volts of vcc result in up to a few thousands of volts at the output. 

For the receiver, a copy of L2 and its terminal can be used, with a copy of L1 for low-voltage output. The 

coils can also be different, but the resonance frequency of L2 with its distributed capacitance and the 

terminal capacitance must be around the same of the transmitter. 

Approximate analysis of the transmitter 

An approximate analysis of the 

transmitter behavior can be done by 

replacing the transistor by a switch, 

possibly with a voltage drop vcesat, 

controlled by the base current. It is 

assumed that at the beginning of a 

cycle there is no current in the coils, 

but a high voltage vomax is present at the 

output terminal, modeled as a 

capacitance C. Fig. 3 shows the model, 

using Laplace transforms. Resistances 

were ignored to avoid exponential terms in the solution. The currents in the coils can be calculated by 

solving the mesh system: 
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Resulting in: 
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I1(s) can be expanded in partial fractions as: 
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Returning to the time domain it’s then seen that i1(t) is a sinusoid added to a ramp and i2(t) is a pure sinusoid. 
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The oscillation occurs at the resonant frequency with the primary coil short-circuited: 
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Note that the coupling coefficient is defined as 21/ LLMk = , and is always smaller than 1. The output 

voltage can be calculated as: 
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Returning to the time domain, vo(t) is a cosinusoid added to a constant: 
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The minimum value of vo(t) happens when the base current falls to zero, and the cosine reaches −1: 
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Energy is gained if vomin<−vomax, but the losses in the remaining of the cycle must be accounted too. Ideally 

the transistor ceases to conduct at 

the end of the first semicycle. In 

practice it takes some time to 

switch off, first leaving the 

saturation when the ratio of the 

collector and base currents equals 

the HFE of the transistor and then 

ceasing to conduct after some time. 

Normally a large voltage pulse 

appears at the collector due to the 

interruption of the collector 

current, dissipating some energy in 

the transistor. A simplified model 

for the second semicycle is shown in Fig. 4. The transistor is considered as an open circuit, and the time 

origin is shifted to the beginning of the semicycle (it could be to some time later to account for the time 

taken by the transistor to switch off). Considering the beginning of the semicycle, i12(0) = i1final and i22(0) = 

0, where i1final is the final collector current in the first semicycle: 
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From Fig. 4 the current I22(s) in the second semicycle is obtained (Note that I12(s) = 0): 
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Figure 4. Model for the second semicycle. 
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This is a cosinusoid added to a sinusoid. The frequency is slightly different from the one in the first 

semicycle, and there is a small step at the beginning due to the cosine, meaning that some extra energy is 

transferred to the secondary when the transistor cuts off. 
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The voltage at the collector when the transistor cuts off comes from: 
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This a cosine, a sine, a DC level, and an impulse: 
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The output voltage at the second semicycle comes from: 
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This is a sinusoid, as cosinusoid, and a constant level: 
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All these waveforms are plotted in Fig. 5, for the setup: 

C = 2.5 pF; k = 0.16; L1 = 4 µH; L2 = 1.4 mH; vcc = 6 V; vcesat = 0; vomax = 1000 V; vD = vbe = 0.6 V; M = 

11.97 µH. 

There is an error in this model in the collector waveform, because the voltage can’t drop to -2.84 V as 

shown when the transistor cuts off, because the diode from the base to the collector conducts. There is little 

difference caused by this, however, when a simulation is observed. The values used correspond 

approximately to the transmitter shown in Fig. 7, where the waveforms at the collector and at the base are 

shown in the oscilloscope. The simulation does not agree well with the experimental measurement, because 

there is a delay in the switching of the transistor, it has junction capacitances, ignored, and the stray 
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capacitances in the breadboard used are significant. This causes a significant shortening of the time when 

the transistor does not conduct, transforms the impulse in a large pulse containing ringing, and causes 

ringing also in the base voltage. A LED was used as the base diode, with a larger voltage drop, and there is 

a load added by the receiver. The operation is at 2.7 MHz, quite high for the BC337 transistor used. The 

general behavior, however, is correct, and if coils resonating at a lower frequency are used, the waveforms 

get closer to the ideal. Figs. 8 and 9 show the same setup with different coils, operating at lower frequencies. 

In Fig. 8 the frequency is 1.58 MHz, and in Fig. 9 approximately 1 MHz, but the waveforms are irregular, 

not repeating at every cycle. This is quite common for this circuit, caused by the delays of the transistor 

and stray capacitances. In the last circuit small adjustable antennas were added to allow precise tuning. In 

the other cases an alligator clip was used as top load in the receiver, also to improve the tuning. 

Energy consumed 

The energy balance in the circuit can be evaluated by considering that at the beginning of the first semicycle 

all the energy was concentrated at the capacitance C charged to vomax, and that at the end of the second 

semicycle the energy is again concentrated there. The final voltage can be obtained by taking the magnitude 

of the sine-cosine combination in vo(t) in the second semicycle and subtracting vD: 
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The numerical evaluation of the expression gives 1035 V. This value can be made equal to vomax, and the 

resulting equation can be solved for vomax. The result, using k, is: 
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Due to the subtractions, this equation has a limited range of valid results. vomax must be positive. If a negative 

value is obtained the meaning is that there is no limit in vomax, or that the oscillator does not work with these 

values due to excessive losses. In the simulated case, vomax is obtained as -63.63 V, meaning that there is no 

limit. The elements causing losses are vbe and vD only. Using just vD, for example, vomax = 1000 V is obtained 

with vD = 18.12 V. The range that produces valid results are from 17.36 V to 62.03 V. Unrealistic values, 

of course. 

No resistors were added to the coils to avoid excessively complicated formulas. The most important 

resistance to add would be one in series with L2. It is possible to adjust the values of vbe and vD to emulate 

the action of a resistor. The expression for vomax can be modified by replacing vbe by vbe+vR and vD by vD+vR, 

vR being the voltage drop due to a nonlinear resistance (a dead space operator) equivalent to a linear R in 

series with L2. The expression can then be solved for vR, resulting in a quite complicated expression due to 

the second-degree equation: 
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Calculated vR, it can be substituted in the expression for the magnitude of i2(t) in the first semicycle (here, 

and in the calculation of vR, it is assumed that the the current in the second semicycle follows the same 

sinusoid, what is not exact), giving i2max. From vR and i2max, the equivalent resistor in series with L2 is: 

max

R

i

v
R

2

4


=  

The term 4/ appears because the voltage drop in the approximation is a square wave, not a sinusoid. For 

example, with the listed values, to keep vomax = 1000 V vR is obtained as 8.764 V, i2max = 43.18 mA, and the 

equivalent R = 258.5 Ω. Simulations using vR and using R agree almost perfectly. 

This resistance is partially due to the resistance of the wire in L2, and partially due to energy transmission 

to the load. Note that these values correspond to a power dissipation P  Ri2max
2/2 = 240.9 mW. 

It is simple to calculate vomax as function of vR (just add vR to vbe and vD), but not from R, because i2max 

depends on vomax, and the resulting equation for vomax becomes too complex. Numerical solutions are 

possible, however, plotted in Fig. 6. For example, R = 100 Ω results in vomax = 2521 V. The solutions are 

valid as long as i2(t) is approximately sinusoidal, what in the example goes until R  17.5 kΩ, generating 

vomax  30.4 V. 

 

Figure 5. Simulated ideal waveforms. 

 

Figure 6. vomax as function of the load resistance R. 
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Figure 7. Experimental setup with values close to the ones of the simulations. 

A problem with this driver is the power dissipated in the transistor. With the model used, power is dissipated 

when the transistor conducts, when it ceases to conduct due to the impulse, and at the be junction. All can 

be calculated.  

When the transistor is conducting, in the first semicycle, the power dissipated at the collector is simply: 

)()( 1 tivtP cesat=  

As the numerical evaluations so far were assuming vcesat = 0, this dissipation may be ignored. 

 

Figure 8. Setup with larger coils. 
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Figure 9. Setup with coils of thin wire (#36) and adjustable top loads. 

The power dissipated by the impulse is more interesting. If a voltage impulse (t) happens at the same 

time of a current step u(t), or a step going down −u(t), as is the case, the energy dissipated can be 

evaluated as: 
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As there is one impulse per cycle, the average power is, considering the times T1 and T2 from the two 

semicycles, the second approximated: 
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Using the numerical values, these expressions result in impulseE = 0.1476 µJ and transistorP  = 399.6 mW. 

Note that these values are independent of the load, and very significant. It is interesting to note that if the 

transistor delays its switching off, i1final can be smaller because the sine term in i1(t) becomes negative, 

reducing the dissipated power. 

The exact time of the second semicycle can be found by making i22(t) = 0 in the second semicycle. As i22 

depends on vbe and vD, it also depends on the load in the secondary coil, that can be represented by vR, as 

discussed above. With the substitutions of M, i1final and vomin: 
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Making i22(t) = 0 and solving for t results in infinite solutions, but the one that matters is the one at the end 

of the semicycle, slightly smaller than the approximation: 

)32()(2

1)(
arctan

1

1

1 121

2
21

22

2

RomaxDbecesatcc

cesatcc

vvvvLLLvvk

kLLvvk

CLCL

Tt
+−+−−

−−
−==


 

The numerical value is T2 = 0.1826 µs. The approximate expression CL2 gives  0.1859 µs. With the 

exact value, the power dissipated by the impulse evaluates as 403.2 mW. The system oscillates at 1/(T1+T2) 

= 2.732 MHz. Considering just L2 and C the frequency would be 2.725 MHz. 

There is energy dissipated in the base too. Using the average value of i2(t) in the first semicycle, that is a 

complete sinusoidal arc, and dividing by the total period, without simplifications: 
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The expression evaluates to 8.266 mW, or to 8.193 mW with T2 approximated. 

The power in the diode can be evaluated by integrating i22(t) in the second semicycle, multiplying the result 

by vD, and dividing by the full period. Curiously, with vbe = vD the result is the same obtained for vbe. This 

happens because the average values if i2(t) in both semicycles must be identical, otherwise a crescent 

constant voltage would accumulate at the output. 
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The power coming from the power supply vcc shall be the sum of the computed powers, but it can be 

calculated directly by integrating the product of vcc and i1(t) in the first semicycle and dividing by the total 

period. 
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The power evaluates to 661.2 mW. The sum of the previously computed powers adds to 660.6 mW. A 

simulation gives precisely 661.2 mW. The error is due to the approximation made in the power dissipated 

in the resistor.  

It is possible to improve the evaluation of the power in vR, by integrating i2(t) in both semicycles, 

multiplying by vR, and dividing by the total period. The integrations are identical in both semicycles, as 

cited above. The result is, without simplification: 
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The numerical value of the expression is 241.5 mW, and with this the sum of powers adds to 661.2 mW, as 

expected. 

It is interesting to note how these powers were simulated. The power over the given element was computed 

by a multiplication of voltage and current, integrated by transforming it into a current in an 1 F capacitor, 

and divided by the time, generated by integrating 1 A by an 1 F capacitor. The division at the end of the 

first period gives the average power. Fig. 10 show the corresponding circuit in the Edfil editor and the 

simulation in the MNAE simulator, for the case of the power in vcc. The switch and the diodes are ideal. vR 

is generated by the nonlinear resistor. The diode in parallel with the switch has a drop of 100000 V, to allow 

calculation of the power in the impulse over the transistor, approximated as a large and short pulse. 

  

Fig. 10. Simulation of the power in vcc. 

The efficiency of the oscillator can be obtained as the ratio between output and input powers: 
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The expression evaluates to 0.3653. The formula can be used to evaluate the efficiency, but is not useful 

for dimensioning, since vomax and vR are associated. 

As an evaluation of how real the model used is, Fig. 11 shows the waveforms obtained with the switch and 

vbe diode replaced by a transistor modeled with the Ebers-Moll model, and with capacitances (linear) added 

(Cbe = 100 pF, Cbc = 5 pF, Cce = 5 pF). 

 

Figure 11. More realistic simulation, with a transistor model and capacitances. 

Remarkable differences are the stretching of the impulse, reversal of iL1 after the pulse, returning some 

energy to the power supply (the first cycle is different, because the current starts from zero), oscillations 

when the transistor ceases to conduct, not affecting the output, and delayed turn on and turn-off of the 

transistor (in the model used, due to the capacitances only). After several cycles, the average input power 

evaluates as 491.1 mW, the output power as 252.9 mW (using the same vR), with the output voltage growing 

to 1231 V. The efficiency is better, 0.5150. 
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Wireless energy transfer 

Fig. 12 shows an idealized model for the wireless 

energy transfer. C2 is the distributed capacitance 

associated with the transmitter, C3 the same for the 

receiver, and C1 a small capacitance between the two 

coils. There are no losses included, so the system shall 

be capable of perfect energy transfer to RL with proper 

tuning. 

The system will be calculated with C3 and RL adjusted 

so the transmitter operates as in the previous analysis 

when at steady state. The procedure will start with the 

calculation of the impedance seen from the top of L2. 

Then C2, that was in series with the load in the basic 

transmitter, will be discounted from the impedance, so 

what remains shall be a pure resistance, equal to the 

resistance of R0 = 258.5 Ω derived previously. RL will 

be then calculated, but a complex value will be 

obtained. One of the elements, in the case C3, will be 

adjusted to make the impedance of RL purely real, and 

then the final value for RL will be obtained. Two 

solutions exist. 

The impedance seen from the top of L2 is found as, in Laplace transform (the negative signs are because 

k<1): 
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The impedance to consider is )/(1)( 2sCsZin − . Making it equal to R0, RL can be calculated (It is strange to 

have a resistance expressed in Laplace transform, but the actual calculation is in the sinusoidal steady state, 

with s = j, where 1−=j as usual, so the resistance is a complex value): 
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Transforming the expression to the sinusoidal steady state, the correct frequency must be considered, by 

making )/(2 21 TTjs +=  . The resulting expression is complex and too complicated to be copied here but 

can be evaluated numerically. The values used are: 

C1 = 0.1 pF; C2 = 2.5 pF; k = 0.16; L4 = 4 µH; L3 = 1.4 mH; T1+T2 = 0.3661 µs; R0 = 258.5 Ω 

Solving 0)Im( =LR as function of C3, results in two possible values for it: 

 

C3 = 2.430 pF; C3 = 2.468 pF 

 

Replacing C3 in the complex expression for RL results in two purely real values: 

 

RL = 132.7 Ω;  RL = 33.72 Ω 

The impedances seen for the two cases are almost identical, as seen in Fig. 13. Note that 20log(258.5) = 

48.25 dB, confirming that the calculation is correct. Figs. 14 and 15 show results of a simulation of the 

complete circuit, considering the two cases, that are almost identical. C1 and C2 are initialized with 1000 V, 

Q v

L L

R

cc

2 1

D1

LR

k

C3
C2

C1

L4
L3

k

1

Figure 12. Model for the wireless energy transfer. 
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and it’s seen that this continues to be the peak voltage on them after an initial transient, as expected. It’s 

curious to see that the voltage over C3 almost does not change even with different C3 and RL. The power 

over RL is identical in both cases, 241.5 mW, as calculated to be. 

 

Figure 13. Impedances at the top of L2 with C2 in series removed, magnitude (dB) and phase (degrees), for 

the two cases of C3 and RL, giving almost identical curves. IFFT program used. 

 

Figure 14. Simulation of the voltages over C2 (node 7) and C3 (node 10). 
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Figure 15. Expansions of the simulation at the beginning (left) and at the end (right). 

The same idea can be applied to force the value of any of the elements, maybe with restrictions on range or 

problems due to the nonlinearity of the transmitter. For example, RL can be specified instead of calculated 

if the two top loads C2 and C3 are used for tuning. The procedure starts with the impedance seen at the top 

of L2, discounted by the impedance of C2, with the value used in the calculations of the transmitter (C20 = 

2.5 pF). A new C2 is then calculated as a complex value by replacing s as in the previous calculation. C3 is 

then calculated so the imaginary part of C2 is zero, what results in two possible values, and finally two 

possible values of C2 are obtained. 

Departing from 020)/(1)( RsCsZin =− , C2 is found as:  
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Replacing )/(2 21 TTjs +=   , making RL = 200 Ω, and using the same elements of the last example, 

proceeding numerically due to the complexity of the expressions, the imaginary part of C2 is a function of 

C3. Solving it to zero results in two values for C3: 

C3 = 2.250 pf; C3 = 2.412 pF 

Corresponding to two values for C2: 

C2 = 2.283 pF; C2 = 2.517 pF 

Solutions exist for any RL, but simulations of the resulting network show that the system does not stay 

operating at the correct frequency, but shifts it to another value, ruining the impedance matching. 

Apparently, C2 cannot be modified because the transmitter starts using it (and C1) as capacitive load and 

does not update it to the designed value. 

Trying then to adjust C3 and L4 by a similar procedure, supposing that k does not change, also with RL = 

200 Ω specified, departing from 02)/(1)( RsCsZin =− , C3 is found as: 
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Again, replacing )/(2 21 TTjs +=   and making RL = 200 Ω, the imaginary part of C3 is function of L4. 

Making it zero results in two values for L4: 

L4 = 6.027 µH; L4 = 0.2372 µH 



15 
 

Replacing these values in the expression for C3, two corresponding values are found: 

C3 = 2.450 pF; C3 = 2.468 pF 

In this case the circuit works correctly, with results similar to the first example. 

Note that the required adjustments are small, and high precision is required. With increased distance 

between transmitter and receiver, smaller C1, the sensitivity of the system to small changes increases. All 

the losses were ignored, as resistances of the coils, what is not realistic. Also ignored were the delay of the 

signal propagation between transmitter and receiver, the energy dispersion due to radiation, and parasitic 

receivers, all contributing to the impossibility to make the system work at large distances. 

Improving the efficiency of the transmitter 

It is well known that the transmitter used is inefficient, fact verified in the analysis made. The main loss is 

caused by the impulse over the transistor at the start of the second semicycle. The energy of the impulse 

can be in great part returned to the power supply if a proper regenerative snubber circuit is added. Figure 

15 shows a possibility. When the transistor conducts, current flows through L1, as previously calculated and 

energy is transferred to the secondary circuit. When the 

transistor ceases to conduct, a pulse appears over it, but now 

Cx gets charged through D2 and L1 and limits its amplitude. 

The pulse ends when the resonance of Cx with L1 tries to 

reverse the current. D3 then conducts, pushing current back 

to the power supply through D3, Cx, and L1. The current 

continues through D2 when Cx is discharged due to the 

energy stored in Lx. Figure 16 shows some of the waveforms. 

The model used a transistor with Ebers-Moll model, without 

capacitances to allow easier interpretation of the results. Cx 

was chosen (by simulation) to keep vomax around 1000 V (in 

the simulation larger Cx increases it, but increases also the 

consumed power) as 70 pF. Lx was chosen to keep current 

flowing for the entire cycle, as 15 µH (the current through it 

is shown negative.). The first cycle is different, because there 

is no current in L3. 

The power consumed by the load (R0 = 258.5 Ω in series with L2, as previously assumed) was simulated as 

233.0 mW, with the power coming from vcc as 327.0 mW, approximately. The simulated efficiency is then 

0.7125, and probably can be better. 

Analysis of the regenerative snubber 

A complete analysis seems overly complicated, but the initial segments can be used to find how to 

dimension Cx and Lx approximately.  

Consider the charging of Cx when the transistor turns off. The coupling between L1 and L2 is ignored, 

because the current in L2 is almost unaffected, as verified by simulation. The mesh equation of the circuit 

L1, Cx, D2 is, where iy is the mesh current: 
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The current iy is then found as: 

Q

L L

R

vcc

2 1

D1

C

k

Lx

Cx

D2

D3

1

Figure 16. Regenerative snubber. 
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Finding when iy(t) = 0 leads to: 
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Figure 17. Waveforms with a regenerative snubber. 
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Substituting the calculated t when i1(t) = 0: 
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Solving for Cx: 
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Using the example values and vcemax = 70 V, the formula gives Cx = 73.96 pF. Close to the values in Fig. 

17. It would be more consistent to use k = 0, since iL2 was ignored. This results in Cx = 75.91 pF. 

To calculate Lx, first the voltage over Cx , vx, during the pulse in vce is calculated: 
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In the time when iy(t) = 0 Cx is fully charged with vxfinal: 
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Following then the mesh including vcc, Lx, vD3, charged Cx, and L1 to find the current returning to vcc through 

L3, ix: 
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The maximum value of ix(t) is the maximum current returning to the power supply, ixmax: 
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Solving for Lx: 
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Evaluating this expression for vcemax = 70 V and ixmax = 0.1135 A (simulated), with k = 0, gives the expected 

Lx = 15 µH. Note in Fig. 17 that after the returned current reaches ixmax, the current through L1 adds to it 

passing in D2, practically doubling its value. This current flows through the transistor operating in inverse 

saturation, and must be at a safe level. Another diode can be added across the transistor to divert it. 

Experimental results 

A question is if this snubber is effective for the intended circuit. As k is not zero there is some interaction 

between L1 and L2, that can steal energy from L2 when the snubber acts. The slow turn-off of the transistor 

can change the assumed conditions, by reducing i1final. Circuit capacitances can also cause big changes, 

starting with limiting vcemax in a high-frequency circuit. The final effect may be a reduction in power 

consumption, but a reduction of the output power too. The three circuits in Figs. 7, 8 and 9 will be evaluated 

for efficiency and effect of the snubber, considering the input power and the received power over a fixed 

resistance, with the receiver at a fixed distance and tuned for maximum power, using the top load 

capacitances C2 and C3, made adjustable by two small telescopic antennas, as in Fig. 9. Frequency jumping 

during the tuning is expected, as happened in the simulation of using these capacitances for tuning. 

The setup places both coils at 27 cm of distance between centers. The primary coils are the ones shown in 

Fig. 8 and Fig. 9, used also with the smaller coils in Fig. 7. The transistor was a BC337, diodes 1N4148, 

red LED, startup resistor R1 = 47 kΩ. A 47 nF capacitor was put in series with R1, to eliminate unneeded 

power waste. The circuit continues to start normally with it. Tables 1 and 2 summarize the three setups. 

The numbers of turns for the secondary coils were not counted, but calculated with the Inca program. The 

numbers vary a bit between the pairs, but this was ignored. The snubber elements Cx and Lx were initially 

calculated, but then adjusted experimentally, trying to do not reduce much the output power. 

Table 1. Coil dimensions. 

Coils L1, L4 L2, L3 k Frequency C1, C2 Cx Lx 

Fig. 7 4.3 µH 1.4 mH 0.23 2.3 mHz 3.3 pF 69 pF 0.91 µH 

Fig. 8 4.6 µH 3.2 mH 0.28 1.4 MHz 4.0 pF 470 pF 0.91 µH 

Fig. 9 4.6 µH 7.1 mH 0.27 870 kHz 4.7 pF 2.2 nF 4.3 µH 

Table 2. Experimental values. 

Tables 2 and 3 list the obtained results. The effect of the snubber is not conclusive, but it appears to help in 

some cases, particularly in the first. In the second case the circuit without snubber was quite efficient, so 

the snubber didn’t help. 

Coils vcc iin vout pin pout Efficiency 

Fig. 7 6 V 220 mA 36.4 V 1.32 W 752.8 mW 0.5703 

Fig. 8 6 V 160 mA 34.4 V 960 mW 672.3 mW 0.7004 

Fig. 9 6 V 240 mA 33.2 V 1.44 W 626.3 mW 0.4349 

Table 3. Results without snubber. 

Coil Turns Height Radius Base height 

L1, L4 8 1.5 cm  2.51 cm  1.8 cm 

L2, L3, Fig. 7 491 14 cm 1.5 cm 1.3 cm 

L2, L3, Fig. 8 621 17.2 cm 2 cm 1.5 cm 

L2, L3, Fig. 9 907 16.5 cm 2 cm 1.8 cm 
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Coils vcc iin voutpp pin pout Efficiency 

Fig. 7 6 V 100 mA 27.2 V 600 mW 420.4 mW 0.7006 

Fig. 8 6 V 130 mA 30.8 V 780 mW 539.0 mW 0.6910 

Fig. 9 6 V 200 mA 31.2 V 1.2 W 553.1 mW 0.4609 

Table 4. Results with snubber. 

The following oscilloscope screens show the voltage at the collector (yellow) and the output voltage at the 

receiver (blue). The load resistance used was of 220 Ω. 

    

Figure 18. Circuit in Fig. 7, without (left) and with (right) snubber. 

    

Figure 19. Circuit in Fig. 8, without (left) and with (right) snubber. 

    

Figure 20. Circuit in Fig. 9, without (left) and with (right) snubber. 

The most efficient system, the one in Fig. 8, was also tested with a load resistance of 100 Ω. The results 

were similar: Without snubber, iin = 150 mA, vout = 22.8 V, efficiency = 0.7220. With snubber, iin = 110 

mA, vout = 18.2 V, efficiency = 0.6273.  
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Another test was to vary the separation, using the circuit in Fig. 8 with 100 Ω load and 6 V input, without 

snubber. Table 5 shows the results. The circuit was not retuned for each distance, and the antennas used as 

top loads were fully extended. The measuments were not so easy, because the system tended to show 

frequency jumps when close to the maximum power transfer condition, particularly at small distances. This 

caused the waveforms to not repeat at every cycle, resulting in an apparent increase in efficiency followed 

by a decrease. 

Separation pin pout Efficiency 

21 cm 960 mW 672.8 mW 0.6540 

23 cm 1.240 W 781.3 mW 0.6854 

25 cm 900 mW 672.8 mW 0.7476 

27 cm 840 mW 649.8 mW 0.7736 

30 cm 900 mW 649.8 mW 0.7220 

33 cm 840 mW 540.8 mW 0.6438 

36 cm 960 mW 500.0 mW 0.5208 

39 cm 960 mW 480.2 mW 0.5002 

42 cm 1.080 W 336.2 mW 0.3313 

Table 5. Varying the separation. 

Energy transfer as an impedance matching problem 

It is interesting to see how the load RL is converted into the resistance calculated as load in the transmitter 

R0 by the LCM network connecting both. To plot in a Smith chart the steps of the impedance conversion, 

consider the model in Fig. 21, where the output transformer is modeled as a T network of inductors. This 

is the model used in the calculation using C2 and C3 to perform the matching at 2.732 MHz. 

C3
C2

C1 M

ML −4ML −3
C− 20

inZ
LR

 

Figure 21. Model for calculating Zin. 

The path showing the effect of each element on the impedance is shown in Fig. 22. Starting from RL = 200 

Ω, the elements transform the impedance into R0 = 258.5 Ω, for the two possible cases. 

 

Figure 22. Paths in the Smith chart. Left: starting from 200 Ω at the center and reaching 258.5 Ω. Center: 

expansion of the high-impedance section in the first solution. Right: expansion for the second solution. 

The three fist segments starting from the center (left) are from the transformer, changing the impedance 

level to a high value. The negative capacitor completes the return to R0. The two solutions use C1 (central 

red segment at the expansions) at different impedance levels. There are just two solutions where the arcs 

defined by C2 and C3 end in the same circle of constant resistance and are joined by the arc of the fixed C1. 
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Conclusions 

A study was made about Tesla´s wireless energy transfer, using a “Slayer exciter” blocking oscillator as a 

convenient transmitter. All the waveforms in the transmitter were calculated from an idealized model and 

verified by simulation. It was observed that the oscillator is quite inefficient but can be improved by a 

variable amount with the use of a regenerative snubber. It was shown that tuning for maximum power 

transfer can be achieved by tuning two elements in the system, in the experimental case the two top load 

capacitances. The simulation of this tuning was not successful, because the nonlinear system changed the 

oscillation frequency. In the experiments this could also be observed as frequency jumps, but it was possible 

to achieve good power transmission by guiding the system towards maximum output by testing if the output 

voltage increases or decreases with a hand close to the antennas and adjusting the antennas to have the same 

effect. At this condition, any change in the capacitances, by approaching a hand to  the transmitter or the 

receiver antenna, for example, was observed to change the oscillation frequency and reduce the efficiency. 

The best condition could be restored by approaching a hand to the other antenna. The energy transmission 

is quite efficient at a distance similar to the length of the coils, considering that the oscillator has significant 

losses. This may explain the long-lasting hope that the method could be perfected for transmission at large 

distances, although a bit of reasoning shows that this is not possible. 

Most of the algebraic calculations were done with the Derive 6.10 program (“abandonware”) and verified with precise simulations 
with the programs MNAE (time domain) and IFFT (frequency domain). The coils were analyzed with the Inca program. The last 
programs are available at http://www.coe.ufrj.br/~acmq/programs. 
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