
FDSZ - Filter Designer in "s" or "z"

By Dr. Antonio Carlos Moreirao de Queiroz

COPPE-Programa de Engenharia Eletrica

Universidade Federal do Rio de Janeiro

CP 68504

21945-970 Rio de Janeiro, RJ

Brazil

E-mail: acmq@ufrj.br

Documentation for version 2.0

The FDSZ program computes approximations in Laplace or Z transform for

continuous-time or discrete-time modulus filters. It uses a simple

graphical user interface, with all the commands accessible from a menu in

the frequency response window.

Installation:

Only the executable file is required.

Approximations:

The program can compute:

- Low-pass filters.

- High-pass filters.

- Symmetrical band-pass filters.

- Symmetrical band-reject filters.

With the approximations:

- Butterworth: Maximally flat polynomial filter.

- Chebyshev: Maximally selective polynomial filter, with uniform passband

attenuation ripple.

- Inverse Chebyshev: Same selectivity of the Chebyshev filter, but with

attenuation ripple at stopband and maximally flat passband.

- Elliptic: Maximally selective rational filter, with uniform attenuation

ripple at passband and stopband.

- Irregular: This approximation is a generalization of the other

approximations.

Irregular Approximations:

When this approximation is selected, a new dialog box appears when the

design button is pressed, where it is possible to specify the following

parameters of the low-pass prototype that the program uses to compute all

the approximations. Following is a summary of the meaning of the parameters

in the window:

Number of attenuation zeros at zero: Controls the degree of flatness of the

gain function at DC. Must be odd for odd degrees and even for even degrees.

Number of transmission zeros at infinity: Controls the slope of the filter

rolloff at high frequency, and the number of finite transmission zeros.

Must be odd for odd degrees and even for even degrees.

Extreme values of the normalized characteristic function (fx): Control the

attenuations at each passband minimum. The default values (+/-1 in

alternation) produce a filter with uniform passband ripple. Zero values

produce double attenuation zeros. It is also possible to specify directly

the attenuations at the minima instead of the fx values. The passband

minima are counted from low to high frequency.

Extreme values of the inverted and reflected normalized characteristic

function (fy): Control the attenuations at each stopband maximum. The

default values (+/-1 in alternation) produce a filter with uniform stopband

ripple. Zero values produce double transmission zeros. It is also possible

to specify directly the attenuations at the maxima instead of the fy

values. The stopband maxima are counted from high to low frequency.

Filters with double attenuation zeros or double transmission zeros can be

designed in this way, by setting appropriate extreme values (fx, fy) to 0.

The only restriction about fx and fy values is that three consecutive

values (with the fy being considered in reverse order) cannot increase or

decrease in monotonic way, including extra zero values at zero and infinity

for odd-order filters. For even-order filters, the first fx and the first

fy control the attenuations at DC and infinity respectively.

The normalized low-pass characteristic function is:

K(jw)/epsilon=alpha*X(w)/(w^n*Y(1/w))

And the inverted and reflected normalized characteristic function is:

K'(jw)/epsilon=alpha*Y(w)/(w^n*X(1/w))

where w is the normalized frequency, epsilon is a constant that controls

the passband attenuation, alpha another constant that controls the stopband

attenuation, n is the filter order (low-pass prototype), and X(w) and Y(w)

are polynomials of degree n.

The program uses these functions in the design of all the approximations.

Any low-pass prototype with real characteristic function, and a combination

of single and double attenuation and transmission zeros can be generated in

this way.

The most interesting of these approximations are:

Even-order approximations with double attenuation zeros at DC, avoiding the

less than maximum DC gain that appears in Chebyshev or elliptic even-order

approximations.

Even-order approximations with double transmission zeros at infinity,

avoiding the constant gain at infinity of even-order elliptic or inverse-

Chebyshev filters.

Filters with double attenuation zeros at the passband border, what produces

better group delay and lower Q poles, and excellent sensitivity

characteristics in LC doubly terminated realizations.

Filters with double transmission zeros, what leads to physically

symmetrical or antimetrical structures in LC doubly terminated designs, and

better stopband sensitivity characteristics in the general case.

The discrete-time approximations can be:

- Bilinear filters: Obtained from the application of the bilinear

transformation s->(2/T)(z-1)/(z+1), where T is the sampling period, to a

continuous-time prototype. This is the most usual method for the generation

of discrete-time filters.

- LDI filters: Obtained from the application of the LDI transformation s-

>(1/T)(z-1)/(z^0.5), where T is the sampling period, to a continuous time

prototype. Useful in the design of polynomial discrete-time filters,

because it does not generate zeros at z=-1, as the bilinear transformation

does for polynomial low-pass or band-pass filters, what can lead to simpler

realizations. Usually a little less selective than the bilinear filters.

Realizations:

The program designs filters in cascade of biquadratic sections. After

prompting the user for the selection of pole ordering and pole-zero

pairing, it designs an equalized cascade, where the maximum gain to each

biquad output is equalized to 1.

The designer must first determine the order of the poles to be assigned to

the biquads, by pointing with the mouse cursor one of the pole boxes and

typing the number of a pole. The complex-conjugate, if existent, will be

automatically added. The pole numbers can be conveniently obtained with the

cursor in the poles and zeros window.

After this, the zeros shall be paired with the poles, by clicking the left

mouse button in the squares corresponding to the desired pole-zero

pairings. Again, complex-conjugates are automatically added.

The program designs a biquad cascade with equalized gains, and plots the

gains from the input to each biquad output. The designer can then evaluate

if the ordering and pole-zero pairing chosen is satisfactory, and try new

designs if not.

The program can also compute the coefficients for a particular discrete

design, shown in the biquad.bmp file. The internal signal levels are not

equalized.

Plots:

The program plots the frequency response and the poles and zeros diagram

for the designed filters, and can compare one design with others, designed

in the same session.

In the frequency response plot, the magnitude in decibels, phase in

degrees, and group delay in seconds of the transfer function can be

plotted. The plotted scales always refer to the magnitude plot. The

frequency scale can be linear or logarithmic, in Hertz or rd/s.

In the poles and zeros plot, poles and zeros are plotted as "x" and "o"

respectively, in linear scale.

Note that the default frequency unit is rad/s, and this affects the

designs. It can be changed to Hertz in the frequency response parameters

window.

The poles and zeros are always plotted in rad/s.

The scales in the frequency response plot can be changed directly with the

following shortcuts:

"+", "-": Change the gain scale.

"a", "r": Change the frequency scale.

"<", ">": Move the frequency scale.

"g": Toggles the grid.

"m": Toggles the limits.

Vertical cursors: Move the gain scale.

And in the poles and zeros plot:

"+", "-": Change scale.

Cursor keys: Move the plot.

There is a zoom function in both plots activated by moving the mouse with

the left button pressed, from the top left to the lower right.

The "z" key is a zoom-out function, that returns the scales to the limits

before the last zoom-in.

The central mouse button or the space key controls a cursor, that can also

be moved with the cursor keys in the frequency response plot, and points to

the singularity that is closer to the mouse cursor in the poles and zeros

plot.

Characteristic function and transducer function:

It is possible to plot the curves of the inverse of the characteristic

function of the filter, 1/K(s), or its discrete-time equivalent 1/K(z).

K(s) is related to the transfer function by the Feldtkeller equation

K(s)K(-s)+1=H(s)H(-s), where H(s) is the continuous-time transducer

function, inverse of the continuous-time transfer function: H(s)=1/T(s). In

the nomenclature used in the program, H(s)=E(s)/P(s) and K(s)=F(s)/P(s).

F(s) (and F(z)) is not available externally, but E(s) and P(s) (or E(z) and

P(z)) can be saved.

Synthesis algorithm:

All the designs are made by optimization of a low-pass normalized

prototype, followed by frequency transformations.

The program first computes a normalized low-pass characteristic function

K(jw), as epsilon*alpha*X(w)/(w^n*Y(1/w)) using an optimization algorithm.

"n" is the prototype order, "epsilon" controls the passband ripple, "alpha"

controls the stopband ripple, and X(w) and Y(w) are two polynomials of

degree n. These values are listed at the start of the synthesis process.

From this K(jw), K(s) is obtained, and H(s) for the low-pass prototype is

computed by the resolution of Feldtkeller's equation.

From this H(s), the final continuous filter is obtained by a frequency

transformation, and, if selected, a discrete-time filter is obtained by

another transformation.

All the frequency transformations are done in the poles and zeros of the

filter, to reduce numerical problems.

Normalization:

The continuous filters are listed and saved in frequency-normalized form,

to avoid overflow in high-frequency filters.

The normalization factor is at the end of the listings and files saved.

The discrete-time filters are not normalized. Discrete-time filters with

high ratio of sampling frequency to operating frequency may result

imprecise in the ratio of polynomials form. The poles and zeros, however,

are accurate.

Availability:

The FDSZ program is available at http://www.coe.ufrj.br/~acmq/programs.

Licensing:

The use of the FDSZ is free for academic, noncommercial purposes. For other

uses, please contact the author.

Changes:

Version 1.0a: Better irregular filter design dialog box, zoom-out in the

frequency response.

Version 1.0b: Corrected the design of first-order biquads, and formulae in

this text.

Version 1.0d: Space works as the middle button of the mouse.

Version 2.0: Windows version. The older versions are not supported, but

still work in the same way.

Last update: 7/7/2019

Antonio Carlos M. de Queiroz

