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Abstract—In a “triple resonance network” operating with zero-
state response, the network is composed of a transformer 
powered through a primary capacitor from a voltage source 
that produces a burst of sine cycles, that has at its output side a 
shunt capacitor and a third coil, whose other end connects to a 
capacitive load. The objective is, at the end of a number of 
cycles, to have all the energy in the system concentrated at the 
load capacitance. The operation with the zero-state response 
allows the charging of the output from a much smaller input 
voltage than what would be required in a capacitor-discharge 
system, operating with the zero-input response. In the 
comparison with a similar “double resonance” network, a 
fundamental limitation in the voltage gain is identified, and 
alternative solutions are proposed. These networks find 
applications in high-voltage generators for pulsed power 
applications, and their design procedure uses curious aspects 
of the circuit theory of lossless linear circuits. 

I. INTRODUCTION 

Triple resonance networks (Fig. 1b) were introduced in 
[2][3][4], as a variation of the double resonance network, or 
Tesla transformer (Fig. 1a), with the purpose of charging 
rapidly a relatively small capacitive load to high voltage. 
The double resonance circuit is composed of a primary 
capacitor C1, charged to moderate high voltage, that is 
connected to the input inductor La of a transformer with low 
coupling coefficient kab by a switch. The system enters then 
a transient involving two sinusoidal oscillations, that with 
proper design ideally transfers all the input capacitor energy 
to the output load capacitor CL = C2. Energy conservation 
dictates that the maximum voltage gain is: 
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The triple resonance version introduces a third inductor L3 
connecting C2 to the load CL = C3. With this the high-
voltage end can be moved away from the transformer, and it 
is possible to obtain faster energy transfer, by using a 
transformer with increased coupling coefficient, now 
possible due to the reduced insulation requirements. The 
transient after the closing of the switch involves oscillations 
at three frequencies. The structure is sometimes cited as 
Tesla “magnifier”. The design procedure described in [1], 
and in an improved version in [5], departs from the ratio of 
the three resonance frequencies of the network, k:l:m, and 
from some given component values. In any case, energy 
conservation fixes the maximum voltage gain as (1). 

In [6], a different mode of operation was described, where 
instead of a charged primary capacitor, the source of energy 
for the system is a sinusoidal voltage source connected in 
series with C1 (Fig 2) (a square wave can also be used, with 
just a small error). The output voltage has three (for Fig. 2a) 
or four (for Fig. 2b) frequency components, one coming 
from the input and the others from the natural frequencies of 
the network. The examples in [6] were all for the double 
resonance case. In this paper, the triple resonance network 
with sinusoidal excitation is discussed. 
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Figure 1.  Double resonance (a) and triple resonance (b) networks. 
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Figure 2.  The same networks operating with zero-state response. 

II. DESIGN OF THE TRIPLE RESONANCE NETWORK 

EXCITED BY A SINUSOIDAL VOLTAGE SOURCE 
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Figure 3.  Transformerless triple resonance network excited by a low-

impedance LC tank L0C0. 

The derivation follows the same ideas discussed in [6], 
departing from the transformerless 8th-order network shown 
in Fig. 3, excited by an initial current iin in the first inductor 
L0. Considering that the structure places three transmission 
zeros at 0 between an input current Iin(s) = iin/s in parallel 
with L0 and the output vout, Vout(s) has the form: 



( )( )( )( )

( ) ( ) ( ) ( )22
4

22
3

22
2

22
1

22222222

2

)(

ns

nB

ms

mB

ls

lB

ks

kB

nsmslsks

s
sVout

+
+

+
+

+
+

+
=

=
++++

α=               (2) 

where k, l, m, and n are factors that multiply a common 
frequency ω0, here normalized to ω0 = 1. The ratio k:l:m:n 
then defines the mode of operation of the network. If these 
factors are successive integers with differences that are 
doubles of odd integers, as 1:3:5:7, 3:5:7:9, 3:5:7:13, etc., 
all the four sinusoids that form the output voltage add 
constructively at t = π/2, when the output voltage is 
maximum. Changing the origin of time to this instant, vout 
becomes a sum of cosinusoids. Considering that all the 
energy in the circuit is concentrated at C3, vout can be 
generated by an impulsive current source in parallel with C3, 
and Vout(s) is proportional to the output impedance of the 
network. With a proper normalization, Vout(s) = Zout(s): 
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The residues Bi can be found, except for an arbitrary 
multiplying factor, by expanding (2) with α = 1. For 
convenience, the Bi can be scaled so their absolute values 
add to 1. The results are: 
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The expansion of (3) with the residues (4) in the structure in 
Fig. 3 would result in a “quadruple resonance network”, 
with complete energy transfer from L0 to C3 in π/2 seconds. 
Considering now that when the output voltage is maximum 
there is a voltage vin left at C0, a voltage generated by an 
impulsive current source in parallel with C0 is added to vout. 
The contribution of vin in vout has the form: 
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The residues Ai can be obtained by expanding (5) with α’ = 
1, and, for convenience, scaling the residues so their 
absolute values add to 1. The results are: 
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Introducing a factor ε to control how important is this 
contribution, Vout(s) is given by: 
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And so, the output impedance of the network can be 
obtained as: 
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There are four values of ε that cause one of the terms to 
disappear. When this happens, the tank L0C0 becomes a 
zero-impedance LC tank, that acts as an ideal sinusoidal 
voltage source driving the network. These values are: 
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Using ε1, the driving signal is at the first frequency, 
normalized to ω = k. The output impedance has the 
expansion: 
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Using ε2, the excitation is at ω = l: 
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Using ε3, the excitation is at ω = m: 
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And using ε4, the excitation is at ω = n: 
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It’s seen that only Zout3(s) and Zout4(s) are realizable, with all 
the residues always positive if k<l<m<n. This is a general 
property of these networks. Solutions exist only when the 
excitation corresponds to one of the two highest frequencies 
of the output signal. The final network is obtained by the 
expansion of Zout(s) with the structure of Fig 3, using 
Cauer’s first form, followed by the conversion of L1-L2 into 
a transformer, and adequate impedance and frequency 
scaling [1][6]. Explicit formulas for the elements become 
too complex to be listed here, but it’s easy to carry out the 
calculations numerically. 



A. Example 1: 

Consider the design of a network operating in mode 
5:7:9:11, with driving signal at the normalized frequency ω 
= 9 rad/s. Using the formulas (12), the result for Zout(s) and 
the normalized element values are: 
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Introducing a transformer and scaling the network so C1 = 5 
nF, C3 = 10 pF, and L3 = 30 mH, the final element values 
and the excitation frequency become: 

kHz 5.319;29990 µH; 2149;nF 000.5

µH 6545;pF 1141 mH; 00.30;pF 0010
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Figure 4.  Voltages and currents with complete energy transfer 

Fig. 4 shows the results of a simulation considering a 
sinusoid with 200 V of amplitude applied to the circuit. A 
problem with this design can be observed. The voltage gain 
is quite low, with the output reaching only 6.504 kV. 
Consider the same  C1 and C3 used in a double resonance 
network (Fig. 2a, design formulas and voltage gains in [6]), 
operating in mode 5:7:9, excited at the central frequency.  
The output voltage reaches 15.00 kV with the same 200 V 
of input peak voltage. The triple resonance design above is 
more similar to the double resonance design with excitation 
at the upper frequency (m), mode 5:7:9, that results in only 
4.998 kV of maximum output voltage. The triple resonance 
design with excitation at the upper frequency (n) is even 
worse, resulting in just 4.081 kV. The capacitor-discharge 
version would produce, from (1), 4.472 kV. 

III.  INCOMPLETE ENERGY TRANSFER TO INCREASE THE 

VOLTAGE GAIN 

A possibility that turns realizable the triple resonance 
network with excitation at the second frequency is to design 
for incomplete energy transfer, leaving some energy in the 
capacitors C1 or C2 when the output voltage is maximum.  

A. Energy left at C1: 

Considerations similar to the ones that lead to (8) and (11), 
result in: 
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Where the Di are the residues of the expansion in partial 
fractions of the contribution of an impulsive current source 
in parallel with C1 to the output voltage, already considering 
the tank L0C0 reduced to a voltage source. The expansion is 
identical to the one used in the design of a capacitor-
discharge triple resonance network [1]. The parameter γ can 
be always chosen so all the three residues of the expansion 
of Zout2(s) are positive, if it is between the limits: 

3

323

4

424

D

AB

D

AB ε−
>γ>

ε−                       (16) 

B. Example 2: 

Consider again mode 5:7:9:11, but with excitation at ω = 7 
rad/s. Using  (15), Zout2(s) results as: 
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The limits (16) are then γ > −243/140 = −1.736 and γ < 
−33/140 = −0.2357. At the limits, one term of the expansion 
disappears, and the tank L1C1 too. A reasonable value is 
between the limits, γ = −0.9, what results, approximately, in 
the maximum output voltage, of 10.82 kV. The resulting 
element values are: 

kHz5.248 ;42790 µH;1754 nF;000.5
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Fig. 5 shows the resulting waveforms. The voltage gain is 
substantially increased, but significant energy (48.21 %) is 
left at C1. 

 
Figure 5.  Voltages and currents when some energy is left at C1. 



C. Energy left at C2: 

The effect of a voltage v2  at C2 in vout can be calculated by 
placing an impulsive current source q = C2v2 in parallel with 
C2, and shifting it to the output, as shown in fig. 6. 
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Figure 6.  Finding the effect of a charge in C2 at the output. 

The output voltage can then be expressed in function of the 
output impedance, and expanded in partial fractions. After 
some manipulation, and using the fact that E1+E3+E4 = 1/C3, 
the result is: 
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Applying (18) in (7), using ε = ε2, the output impedance can 
be found as: 
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And the residues Ei of the expansion of the output 
impedance are then: 
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To make E4 positive and leave E3 positive too, q must be 
between the limits: 
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D. Example 3: 

With the same parameters of example 2, the limits for q are 
0.0125 > q > 0.00833. The maximum voltage gain is 
obtained with q = 0.0088, approximately, that results in 
maximum output voltage of  9.68 kV: 

kHz7.215 ;60010 µH;6138nF;000.5

µH4151pF;2140 mH;00.30 pF;0010
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The voltages and currents are shown in Fig. 7. The voltage 
gain is smaller than in the previous example, although the 

efficiency is slightly better. 45.96 % of the energy remains 
in C2. It is also possible to combine the two transformations, 
leaving energy in C1 and C2, by applying first the 
transformation on Zout(s) that leaves energy in C1. There is 
no apparent advantage on this, however. 

 
Figure 7.  Voltages and currents when energy is left at C2. 

IV. CONCLUSIONS 

The detailed design of the triple resonance network with 
sinusoidal excitation, assuming no losses, was described. It 
was verified that the obtainable voltage gain for fixed input 
and output capacitances and number of input cycles is 
significantly smaller than in a similar double resonance 
network. There is no solution for an arbitrarily small C2, 
what would reduce the network to the double resonance case 
with excitation between the resonances, and so produce a 
similar high voltage gain. Two possible designs with 
incomplete energy transfer were then described, that result 
in larger voltage gain. A computer program that does all the 
calculations and plots is available [7]. 
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