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ABSTRACT

This paper shows how “multiple resonance networks”  of any order
an with several structures can be systematically designed using
standard passive filter design techniques. These networks are com-
posed of capacitors, inductors, transformers, and a switch, and have
the property of transferring completely energy initially put in one
capacitor, insulated by the switch, to another capacitor in the circuit
through a linear transient when the switch is closed, usually with
the objective of producing very high voltages.

1.  INTRODUCTION

“Multiple resonance networks”  is a name that generalizes the
“double resonance” [3][4], “ triple resonance” [5][6], and the
higher-order versions discussed in this paper. These circuits are
usually composed of a transformer and some extra capacitors and
inductors, and work by transferring the energy initially stored in a
capacitor at one side of the transformer to another, much smaller,
capacitor at the other side of the transformer, through a linear tran-
sient composed (in the ideal lossless case) of a sum of several sinu-
soidal waveforms (Fig. 1).

C1 CpL a L b

kab

LC LC
net. net.

Figure 1. Multiple resonance network. An initial energy in
C1 is totally transferred to Cp through the transformer and
two possible LC networks, during the transient after the
closing of the switch.

The double resonance case is long known  and found applications
ranging from early radio systems [2] and electrotherapeutic devices
[1], to the generation of high voltages in high-energy physics in-
strumentation [5] and the production of impressive sparks for dem-
onstrations about electricity [4] (the “Tesla coil ” ). Only the two
capacitors and the transformer are used, what results in a 4th-order
system with a transient formed by two oscill atory modes (Fig. 2).
The analysis and design equations for this circuit can be found in
many papers [3][4] and books. With the system properly designed,
and small l osses, the voltage in C1 decays cosinusoidally at each
cycle while the voltage in C2 rises sinusoidally. When the voltage
in C2 reaches the maximum, the voltage in C1 is zero, and the cur-
rents at both sides of the transformer are also null . In the ideal
lossless case, all the original energy goes to C2, and the obtained
voltage is given, by simple conservation of energy, by eq. 1 (with
Cp=C2). Note that this equation fixes the maximum output voltage
for a system of this type, independently of the order or of the
structure, and is valid for the other systems discussed below.
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Figure. 2. Typical double resonance network, and typical
voltages in C1 and C2 after the closing of the switch. The
voltage gain was designed as 10. C1=1 nF, C2=10 pF,
La=129.8 µH, Lb=12.98 mH, kab=0.2195. VC1(0)=10 kV.

Several variations of this circuit that can be found in the literature,
as using an autotransformer (“Oudin coil ” ), with extra inductors at
one or both sides [2], or using no transformer, but a “T”  or “L”  (as
in this paper) of inductors. Equivalencies can be found among all
the versions.

More recently, triple resonance systems were developed [5][6][7]
for instrumentation used in high-energy physics. In the studied
case, an additional capacitor and an inductor are added to the out-
put side (fig. 3), with the aim of reducing the voltage stress over the
transformer and of taking into consideration the output capacitance
of the transformer. With only the extra inductor added, the system
is still a double resonance system, long known too [2], the “Tesla
magnifier” . With the extra capacitor the system is now of 6th order,
the transient has three oscill atory modes, but the operation with
complete energy transfer is equally possible. Design formulas can
be found in [5][6][7], and in [8] (with some corrections).

The system can be used also with the additional inductor and ca-
pacitor at the input side, with the aim of reducing the energy dissi-
pation in the resistance of the switch. This idea can be found in [2].
The operation is identical, using the “ return part”  of the transient,
where in the circuit in fig. 3 the energy returns to C1.
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In all the cases found in the literature the design of these systems is
based on the analysis of a fixed structure. The following section
shown that the design can be made by synthesis, can be applied to a
wide range of structures, and can be extended to systems of any
order.
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Figure 3. Typical triple resonance network, and typical
voltages in C1, C2, and C3 after the closing of the switch.
The currents in the transformer an at the extra inductor are
also all null when the output voltage is maximum. The
voltage gain was also designed to 10. C1=1 nF, C2=126.3
pF, C3=10 pF, La=110 µH, Lb=780.7 µH, L3=10.13 mH,
kab=0.28131, VC1(0)=10 kV.

2.  SYNTHESIS APPROACH

A natural form for the LC networks in fig. 1, extending the struc-
ture in fig. 3, is a ladder sequence of series inductors and shunt
capacitors. The transformer can be left out of the problem, because
it can be eliminated, or inserted after the synthesis, using the
equivalence shown in fig. 4a, where:
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n is the turns ratio for the transformer, that can be chosen as con-
venient for the desired voltage gain. It multiplies the voltage gain
directly.

This reduces the problem to the synthesis of an LC network with
the structure of an LC odd-order ladder polynomial low-pass filter,
with an added shunt inductor somewhere. If the inductor is at the
low-voltage end (as is the case for the 4th and 6th order cases in figs.

2 and 3, with the transformer eliminated, and also for the trivial 2nd

order case), the problem is reduced to the synthesis of the output
impedance of the circuit by a succession of complete pole removals
at infinity, or a synthesis in Cauer’s first form.
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Figure 4. Equivalence that allows the insertion of a trans-
former where the shunt inductor appears (a), and general
structure without transformer (b).

With the switch closed, the impedance seen from the input side of
the network has a denominator of order p, even, and a numerator of
order p–1, with a zero at DC. The same is valid for the impedance
seen at the output side. The voltage response of one of these im-
pedances to a current impulse applied in parallel with the corre-
sponding input or output capacitor, that is proportional to the re-
sponse to a charged capacitor there, is obtained from the inverse
Laplace transform of the impedance seen at that side, and appears
as a sum of p pure cosinusoidal oscill ations with positive multi-
plying factors. Sinusoidal components don’ t appear and the multi-
plying factors must be positive because the Laplace transform of
the resulting waveform is proportional to the impedance at that side
in Foster’s first form:
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Similar considerations apply also to the internal capacitors in the
structure, and so all the capacitor voltages have the forms shown in
eq. 3 (Laplace transform) and eq. 4 (time domain), where the p
oscill ation frequencies are considered as multiples of a basic fre-
quency ω0:
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The currents at all the inductors are then proportional to the deriva-
tives of the capacitor voltages (eq. 4), and so are all sums of p sinu-
soids at the same frequencies:
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For convenience, let’s work from the output of the network, and
compute the output impedance. This impedance appears simply in
Cauer’s first form if the transformer (if later included) is to be di-
rectly connected to the first capacitor, C1. Considering Cp initially
charged to Vp, the energy there is transferred to C1 using the
“return”  part of the (perpetual) transient waveform. Considering
that the first instant where complete energy transfer occurs is t =
π/ω0, it is evident that the condition that causes all the currents (eq.
5) to be zero at this instant is that the kj must be different positive
integers.
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With the coeff icients Apj in eq. 4 computed, the entire network can
be obtained simply by the expansion of the impedance in eq. 3,
conveniently scaled. A convenient scaling is to consider the output
excited by an unitary impulsive source, what transforms the pro-
portionality in eq. 3 into an identity. The conditions for the com-
plete energy transfer are:
From eq. 3 and fig. 4b, when s → ∞:
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At t = π/ω0, Vp=0. From eq. 4:
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At the same instant, Vp-1=0, Vp-2=0, …, V2=0. At any time (except t =
0 to remove the input current impulse):

V t V t L
dI t

dt
V t L C

d V t

dtp p p
p

p p p
p

− = + = +1

2

2
( ) ( )

( )
( )

( )
(8)

V t V t L
dI t

dt
V t L C

d V t

dtp p p
p

p p p
p

− − −
−

− − −
−= + = +2 1 1

1
1 1 1

2
1

2
( ) ( )

( )
( )

( )
(9)

V t V t L
dI t

dt
V t L C

d V t

dt2 3 3
3

3 3 3

2
3
2

( ) ( )
( )

( )
( )= + = +      (10)

These voltages are all zero at t = π/ω0, if all the even derivatives of
Vp(t) up to order 2p – 4 are null at this instant. Combining this con-
dition with eqs. 6 and 7, and eliminating powers of ω0 and of –1
that multiply the equations the following system of equations re-
sults:
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As all the Apj are positive and the even powers of the kj are also
positive (even if some of the ki were negative), the powers of –1
must have different signs in this system of equations, so satisty the
sums that result in zero. This adds a condition on the kj, mentioned
in [3][5][6][7], and that extends for higher orders: Given a positive
integer as kj, the next value kj+1is obtained by adding an odd integer
to kj. Valid sequences are 1, 2, 3, …; 2, 3, 4, …; 1, 2, 5, …; 1, 4, 5,
…; etc. With this condition, the system (11) is reduced to:
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With the Apj computed, an LC network can be obtained by the ex-
pansion of the output impedance (eq. 3). Note that any structure
that puts C1 “at the maximum distance”  from Cp is valid. The sim-
plest structure is shown in fig. 4b, but other possibilities exist.

3.  EXAMPLES

3.1  4th-order case:

This is the classic double resonance circuit, but without a trans-
former (that can be included as discussed above). The system of
equations in eq. 12, with C2 normalized to 1 reduces to two equa-
tions that give A21 = A22 = 1/2. The output impedance of the network
is then, normalizing ω0 to 1 and naming k1=k and k2=l:
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This impedance, expanded in Cauer’s first form (and rearranged as
in fig. 4b) results in the structure in fig. 5a, with the component
values:
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Note that even without a transformer this circuit produces the volt-
age gain (from eq. (1)):
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3.2  6th-order case:

For the triple resonance case, the system (eq. 12) has 3 equations.
Symbolic expressions for the element values can be obtained and
are listed in eqs. 16, for the structure in fig. 5b, with k1=k, k2=l, and
k3=m.
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And the voltage gain is given by:
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These expressions reduce to the expressions in [6][8] if a trans-
former is included. Note that there is another possibilit y, with the
shunt inductor in parallel with C2, at the center of the structure. The
resulting structure is symmetrical and has no voltage gain, but with
the inclusion of a transformer both versions result in the same cir-
cuit.

3.3  8th order case:

The extension for higher orders results in more voltage gain for the
same (lower) frequencies of operation, and smaller voltage differ-
ences across the series inductors. No attempts of practical applica-
tions of networks with orders greater than 6 could be found in the
literature. Symbolical expressions continue to be relatively easy to
derive for the component values, but become rather large for the
“quadruple resonance” case and above. Table 1 lists numerical
normalized (Cp=1, ω0=1) element values for the structure in fig. 5c
for some of the possibly more practical combinations of frequency
multipliers. Fig. 6 shows the voltage waveforms for the 2, 3, 4, 5
mode.

Table 1: Normalized element values for quadruple reso-
nance networks (fig. 5c), as function of the frequency mul-
tipliers k1, k2, k3, and k4.. In all cases the total energy transfer
occurs in π seconds.

Values/Mode 1, 2, 3, 4 2, 3, 4, 5 3, 4, 5, 6
C4 1.000000 1.000000 1.000000
L4 0.181818 0.086957 0.051282
C3 1.920635 3.918519 6.584416
L3 0.078456 0.020310 0.007395
C2 3.383492 12.626002 34.290043
L2 0.051554 0.006828 0.001491
C1 7.060408 50.342404 227.082720
L1 0.051453 0.002312 0.000266
Voltage gain 2.657143 7.095238 15.069264
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Figure 5. Structures for transformerless voltage multipliers
of 4th (a), 6th (b), and 8th (c ) orders.

4.  CONCLUSIONS

A systematic procedure for the design of LC voltage multipliers
that are a generalization of the “double resonance” and “ triple reso-
nance” networks was presented. The networks can be designed in
several ways, and in the most useful form, the one that produces the

largest voltage gain, by the direct expansion of an LC impedance in
Cauer’s first form (continuous fraction expansion). It was also con-
cluded that it is not necessary, if only a voltage gain is required, to
use a transformer, and that a transformer can easily be included in
the ladder networks designed by the proposed method by a simple
circuit transformation. Only lossless circuits were considered, but
the applications of these circuits usually require low losses, and
they are designed to behave as lossless circuits. The presence of
small l osses don’ t affect significantly the behavior of practical cir-
cuits of this type. All the proposed networks are of even order, but
note that odd-order networks, without the shunt inductor, are also
possible through simple modifications in the synthesis procedure,
by the addition of a pole at 0 in eq. 3. These networks, however,
result always symmetrical, show no input-output voltage gain, and
no place where a transformer can be included.

Figure 6. Voltage waveforms for the normalized 8th-order
network in fig. 5. The voltage gain of 7.095 can be ob-
served, for an unitary starting voltage in C1.
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